1
|
Lian J, An Y, Wei W, Lu Y, Zhang X, Sun G, Guo H, Xu L, Chen X, Hu H. Transcriptional landscape and chromatin accessibility reveal key regulators for liver regenerative initiation and organoid formation. Cell Rep 2025; 44:115633. [PMID: 40286271 DOI: 10.1016/j.celrep.2025.115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 03/19/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Liver regeneration is a well-organized and phase-restricted process that involves chromatin remodeling and transcriptional alterations. However, the specific transcription factors (TFs) that act as key "switches" to initiate hepatocyte regeneration and organoid formation remain unclear. Comprehensive integration of RNA sequencing and ATAC sequencing reveals that ATF3 representing "Initiation_on" TF and ONECUT2 representing "Initiation_off" TF transiently modulate the occupancy of target promoters to license liver cells for regeneration. Knockdown of Atf3 or overexpression of Onecut2 not only reduces organoid formation but also delays tissue-damage repair after PHx or CCl4 treatment. Mechanistically, we demonstrate that ATF3 binds to the promoter of Slc7a5 to activate mTOR signals while the Hmgcs1 promoter loses ONECUT2 binding to facilitate regenerative initiation. The results identify the mechanism for initiating regeneration and reveal the remodeling of transcriptional landscapes and chromatin accessibility, thereby providing potential therapeutic targets for liver diseases with regenerative defects.
Collapse
Affiliation(s)
- Jiabei Lian
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yachun An
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Wenjing Wei
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yao Lu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xiyu Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Gongping Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Haiyang Guo
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Longjin Xu
- Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China
| | - Xuena Chen
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Ronca V, Gerussi A, Collins P, Parente A, Oo YH, Invernizzi P. The liver as a central "hub" of the immune system: pathophysiological implications. Physiol Rev 2025; 105:493-539. [PMID: 39297676 DOI: 10.1152/physrev.00004.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 01/16/2025] Open
Abstract
The purpose of this review is to describe the immune function of the liver, guiding the reader from the homeostatic tolerogenic status to the aberrant activation demonstrated in chronic liver disease. An extensive description of the pathways behind the inflammatory modulation of the healthy liver will be provided focusing on the complex immune cell network residing within the liver. The limit of tolerance will be presented in the context of organ transplantation, seizing the limits of homeostatic mechanisms that fail in accepting the graft, progressing eventually toward rejection. The triggers and mechanisms behind chronic activation in metabolic liver conditions and viral hepatitis will be discussed. The last part of the review will be dedicated to one of the greatest paradoxes for a tolerogenic organ, developing autoimmunity. Through the description of the three most common autoimmune liver diseases, the autoimmune reaction against hepatocytes and biliary epithelial cells will be dissected.
Collapse
Affiliation(s)
- Vincenzo Ronca
- Centre for Liver and Gastro Research and National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital University Hospital Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network Centre-Rare Liver, Birmingham, United Kingdom
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paul Collins
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Alessandro Parente
- Liver Unit, Queen Elizabeth Hospital University Hospital Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Ye Htun Oo
- Centre for Liver and Gastro Research and National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital University Hospital Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network Centre-Rare Liver, Birmingham, United Kingdom
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
3
|
Sefik E, Xiao T, Chiorazzi M, Odell I, Zhang F, Agrawal K, Micevic G, Flavell RA. Engineering Mice to Study Human Immunity. Annu Rev Immunol 2025; 43:451-487. [PMID: 40020225 DOI: 10.1146/annurev-immunol-082523-124415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Humanized mice, which carry a human hematopoietic and immune system, have greatly advanced our understanding of human immune responses and immunological diseases. These mice are created via the transplantation of human hematopoietic stem and progenitor cells into immunocompromised murine hosts further engineered to support human hematopoiesis and immune cell growth. This article explores genetic modifications in mice that enhance xeno-tolerance, promote human hematopoiesis and immunity, and enable xenotransplantation of human tissues with resident immune cells. We also discuss genetic editing of the human immune system, provide examples of how humanized mice with humanized organs model diseases for mechanistic studies, and highlight the roles of these models in advancing knowledge of organ biology, immune responses to pathogens, and preclinical drugs tested for cancer treatment. The integration of multi-omics and state-of-the art approaches with humanized mouse models is crucial for bridging existing human data with causality and promises to significantly advance mechanistic studies.
Collapse
Affiliation(s)
- Esen Sefik
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
| | - Tianli Xiao
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Chiorazzi
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ian Odell
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Fengrui Zhang
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kriti Agrawal
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Computational Biology and Bioinformatics Program, Yale University, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Goran Micevic
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
de Jong YP. Mice Engrafted with Human Liver Cells. Semin Liver Dis 2024; 44:405-415. [PMID: 39265638 PMCID: PMC11620938 DOI: 10.1055/s-0044-1790601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Rodents are commonly employed to model human liver conditions, although species differences can restrict their translational relevance. To overcome some of these limitations, researchers have long pursued human hepatocyte transplantation into rodents. More than 20 years ago, the first primary human hepatocyte transplantations into immunodeficient mice with liver injury were able to support hepatitis B and C virus infections, as these viruses cannot replicate in murine hepatocytes. Since then, hepatocyte chimeric mouse models have transitioned into mainstream preclinical research and are now employed in a diverse array of liver conditions beyond viral hepatitis, including malaria, drug metabolism, liver-targeting gene therapy, metabolic dysfunction-associated steatotic liver disease, lipoprotein and bile acid biology, and others. Concurrently, endeavors to cotransplant other cell types and humanize immune and other nonparenchymal compartments have seen growing success. Looking ahead, several challenges remain. These include enhancing immune functionality in mice doubly humanized with hepatocytes and immune systems, efficiently creating mice with genetically altered grafts and reliably humanizing chimeric mice with renewable cell sources such as patient-specific induced pluripotent stem cells. In conclusion, hepatocyte chimeric mice have evolved into vital preclinical models that address many limitations of traditional rodent models. Continued improvements may further expand their applications.
Collapse
Affiliation(s)
- Ype P de Jong
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, New York
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York
| |
Collapse
|
5
|
Creisher PS, Klein SL. Pathogenesis of viral infections during pregnancy. Clin Microbiol Rev 2024; 37:e0007323. [PMID: 38421182 PMCID: PMC11237665 DOI: 10.1128/cmr.00073-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYViral infections during pregnancy are associated with significant adverse perinatal and fetal outcomes. Pregnancy is a unique immunologic and physiologic state, which can influence control of virus replication, severity of disease, and vertical transmission. The placenta is the organ of the maternal-fetal interface and provides defense against microbial infection while supporting the semi-allogeneic fetus via tolerogenic immune responses. Some viruses, such as cytomegalovirus, Zika virus, and rubella virus, can breach these defenses, directly infecting the fetus and having long-lasting consequences. Even without direct placental infection, other viruses, including respiratory viruses like influenza viruses and severe acute respiratory syndrome coronavirus 2, still cause placental damage and inflammation. Concentrations of progesterone and estrogens rise during pregnancy and contribute to immunological adaptations, placentation, and placental development and play a pivotal role in creating a tolerogenic environment at the maternal-fetal interface. Animal models, including mice, nonhuman primates, rabbits, and guinea pigs, are instrumental for mechanistic insights into the pathogenesis of viral infections during pregnancy and identification of targetable treatments to improve health outcomes of pregnant individuals and offspring.
Collapse
Affiliation(s)
- Patrick S Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Ciupe SM, Dahari H, Ploss A. Mathematical Models of Early Hepatitis B Virus Dynamics in Humanized Mice. Bull Math Biol 2024; 86:53. [PMID: 38594319 PMCID: PMC11003933 DOI: 10.1007/s11538-024-01284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Analyzing the impact of the adaptive immune response during acute hepatitis B virus (HBV) infection is essential for understanding disease progression and control. Here we developed mathematical models of HBV infection which either lack terms for adaptive immune responses, or assume adaptive immune responses in the form of cytolytic immune killing, non-cytolytic immune cure, or non-cytolytic-mediated block of viral production. We validated the model that does not include immune responses against temporal serum hepatitis B DNA (sHBV) and temporal serum hepatitis B surface-antigen (HBsAg) experimental data from mice engrafted with human hepatocytes (HEP). Moreover, we validated the immune models against sHBV and HBsAg experimental data from mice engrafted with HEP and human immune system (HEP/HIS). As expected, the model that does not include adaptive immune responses matches the observed high sHBV and HBsAg concentrations in all HEP mice. By contrast, while all immune response models predict reduction in sHBV and HBsAg concentrations in HEP/HIS mice, the Akaike Information Criterion cannot discriminate between non-cytolytic cure (resulting in a class of cells refractory to reinfection) and antiviral block functions (of up to 99 % viral production 1-3 weeks following peak viral load). We can, however, reject cytolytic killing, as it can only match the sHBV and HBsAg data when we predict unrealistic levels of hepatocyte loss.
Collapse
Affiliation(s)
- Stanca M Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Harel Dahari
- Division of Hepatology, Department of Medicine, Loyola University, Chicago, IL, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
7
|
Martinez-Lopez S, Angel-Gomis E, Sanchez-Ardid E, Pastor-Campos A, Picó J, Gomez-Hurtado I. The 3Rs in Experimental Liver Disease. Animals (Basel) 2023; 13:2357. [PMID: 37508134 PMCID: PMC10376896 DOI: 10.3390/ani13142357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Patients with cirrhosis present multiple physiological and immunological alterations that play a very important role in the development of clinically relevant secondary complications to the disease. Experimentation in animal models is essential to understand the pathogenesis of human diseases and, considering the high prevalence of liver disease worldwide, to understand the pathophysiology of disease progression and the molecular pathways involved, due to the complexity of the liver as an organ and its relationship with the rest of the organism. However, today there is a growing awareness about the sensitivity and suffering of animals, causing opposition to animal research among a minority in society and some scientists, but also about the attention to the welfare of laboratory animals since this has been built into regulations in most nations that conduct animal research. In 1959, Russell and Burch published the book "The Principles of Humane Experimental Technique", proposing that in those experiments where animals were necessary, everything possible should be done to try to replace them with non-sentient alternatives, to reduce to a minimum their number, and to refine experiments that are essential so that they caused the least amount of pain and distress. In this review, a comprehensive summary of the most widely used techniques to replace, reduce, and refine in experimental liver research is offered, to assess the advantages and weaknesses of available experimental liver disease models for researchers who are planning to perform animal studies in the near future.
Collapse
Affiliation(s)
- Sebastian Martinez-Lopez
- Instituto ISABIAL, Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain
- Departamento de Medicina Clínica, Universidad Miguel Hernández, 03550 Sant Joan, Spain
| | - Enrique Angel-Gomis
- Instituto ISABIAL, Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain
- Departamento de Medicina Clínica, Universidad Miguel Hernández, 03550 Sant Joan, Spain
| | - Elisabet Sanchez-Ardid
- CIBERehd, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Servicio de Patología Digestiva, Institut de Recerca IIB-Sant Pau, Hospital de Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Alberto Pastor-Campos
- Oficina de Investigación Responsable, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Joanna Picó
- Instituto ISABIAL, Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain
| | - Isabel Gomez-Hurtado
- Instituto ISABIAL, Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain
- Departamento de Medicina Clínica, Universidad Miguel Hernández, 03550 Sant Joan, Spain
- CIBERehd, Instituto de Salud Carlos III, 28220 Madrid, Spain
| |
Collapse
|
8
|
Hogan G, Winer BY, Ahodantin J, Sellau J, Huang T, Douam F, Funaki M, Chiriboga L, Su L, Ploss A. Persistent hepatitis B virus and HIV coinfections in dually humanized mice engrafted with human liver and immune system. J Med Virol 2023; 95:e28930. [PMID: 37403703 PMCID: PMC11298785 DOI: 10.1002/jmv.28930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Chronic hepatitis B (CHB), caused by hepatitis B virus (HBV), remains a major medical problem. HBV has a high propensity for progressing to chronicity and can result in severe liver disease, including fibrosis, cirrhosis, and hepatocellular carcinoma. CHB patients frequently present with viral coinfection, including human immunodeficiency virus type (HIV) and hepatitis delta virus. About 10% of chronic HIV carriers are also persistently infected with HBV, which can result in more exacerbated liver disease. Mechanistic studies of HBV-induced immune responses and pathogenesis, which could be significantly influenced by HIV infection, have been hampered by the scarcity of immunocompetent animal models. Here, we demonstrate that humanized mice dually engrafted with components of a human immune system and a human liver supported HBV infection, which was partially controlled by human immune cells, as evidenced by lower levels of serum viremia and HBV replication intermediates in the liver. HBV infection resulted in priming and expansion of human HLA-restricted CD8+ T cells, which acquired an activated phenotype. Notably, our dually humanized mice support persistent coinfections with HBV and HIV, which opens opportunities for analyzing immune dysregulation during HBV and HIV coinfection, and preclinical testing of novel immunotherapeutics.
Collapse
Affiliation(s)
- Glenn Hogan
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Benjamin Y Winer
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - James Ahodantin
- Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, Departments of Pharmacology, Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Julie Sellau
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Tiffany Huang
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Florian Douam
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Masaya Funaki
- Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, Departments of Pharmacology, Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Luis Chiriboga
- Department of Pathology, New York University Medical Center, New York, New York, USA
| | - Lishan Su
- Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, Departments of Pharmacology, Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexander Ploss
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
9
|
Liu Y, Cafiero TR, Park D, Biswas A, Winer BY, Cho CH, Bram Y, Chandar V, Connell AKO, Gertje HP, Crossland N, Schwartz RE, Ploss A. Targeted viral adaptation generates a simian-tropic hepatitis B virus that infects marmoset cells. Nat Commun 2023; 14:3582. [PMID: 37328459 PMCID: PMC10276007 DOI: 10.1038/s41467-023-39148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
Hepatitis B virus (HBV) only infects humans and chimpanzees, posing major challenges for modeling HBV infection and chronic viral hepatitis. The major barrier in establishing HBV infection in non-human primates lies at incompatibilities between HBV and simian orthologues of the HBV receptor, sodium taurocholate co-transporting polypeptide (NTCP). Through mutagenesis analysis and screening among NTCP orthologues from Old World monkeys, New World monkeys and prosimians, we determined key residues responsible for viral binding and internalization, respectively and identified marmosets as a suitable candidate for HBV infection. Primary marmoset hepatocytes and induced pluripotent stem cell-derived hepatocyte-like cells support HBV and more efficient woolly monkey HBV (WMHBV) infection. Adapted chimeric HBV genome harboring residues 1-48 of WMHBV preS1 generated here led to a more efficient infection than wild-type HBV in primary and stem cell derived marmoset hepatocytes. Collectively, our data demonstrate that minimal targeted simianization of HBV can break the species barrier in small NHPs, paving the path for an HBV primate model.
Collapse
Affiliation(s)
- Yongzhen Liu
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Thomas R Cafiero
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Debby Park
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Research Computing, Office of Information Technology, Princeton University, Princeton, NJ, 08544, USA
| | - Benjamin Y Winer
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Vasuretha Chandar
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Aoife K O' Connell
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
| | - Hans P Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
| | - Nicholas Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
10
|
Rana J, Marsic D, Zou C, Muñoz-Melero M, Li X, Kondratov O, Li N, de Jong YP, Zolotukhin S, Biswas M. Characterization of a Bioengineered AAV3B Capsid Variant with Enhanced Hepatocyte Tropism and Immune Evasion. Hum Gene Ther 2023; 34:289-302. [PMID: 36950804 PMCID: PMC10125406 DOI: 10.1089/hum.2022.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/25/2023] [Indexed: 03/24/2023] Open
Abstract
Capsid engineering of adeno-associated virus (AAV) can surmount current limitations to gene therapy such as broad tissue tropism, low transduction efficiency, or pre-existing neutralizing antibodies (NAb) that restrict patient eligibility. We previously generated an AAV3B combinatorial capsid library by integrating rational design and directed evolution with the aim of improving hepatotropism. A potential isolate, AAV3B-DE5, gained a selective proliferative advantage over five rounds of iterative selection in hepatocyte spheroid cultures. In this study, we reanalyzed our original dataset derived from the AAV3B combinatorial library and isolated variants from earlier (one to three) rounds of selection, with the assumption that variants with faster replication kinetics are not necessarily the most efficient transducers. We identified a potential candidate, AAV3B-V04, which demonstrated significantly enhanced transduction in mouse-passaged primary human hepatocytes as well as in humanized liver chimeric mice, compared to the parental AAV3B or the previously described isolate, AAV3B-DE5. Interestingly, the AAV3B-V04 capsid variant exhibited significantly reduced seroreactivity to pooled or individual human serum samples. Forty-four percent of serum samples with pre-existing NAbs to AAV3B had 5- to 20-fold lower reciprocal NAb titers to AAV3B-V04. AAV3B-V04 has only nine amino acid substitutions, clustered in variable region IV compared to AAV3B, indicating the importance of the loops at the top of the three-fold protrusions in determining both transduction efficiency and immunogenicity. This study highlights the effectiveness of rational design combined with targeted selection for enhanced AAV transduction via molecular evolution approaches. Our findings support the concept of limiting selection rounds to isolate the best transducing AAV3B variant without outgrowth of faster replicating candidates. We conclude that AAV3B-V04 provides advantages such as improved human hepatocyte tropism and immune evasion and propose its utility as a superior candidate for liver gene therapy.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Damien Marsic
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
- Porton Biologics, Jiangsu, China
| | - Chenhui Zou
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xin Li
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Oleksandr Kondratov
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Ning Li
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ype P. de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Sergei Zolotukhin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Uchida T, Teraoka Y, Imamura M, Abe-Chayama H, Makokha GN, Hayes CN, Aikata H, Hamamura S, Ishida Y, Tateno C, Shirouzu T, Kawai S, Tanaka Y, Ohdan H, Okada S, Chayama K. A novel cDNA-uPA/SCID/Rag2 -/- /Jak3 -/- mouse model for hepatitis virus infection and reconstruction of human immune system. J Viral Hepat 2023; 30:262-272. [PMID: 36575861 DOI: 10.1111/jvh.13793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/26/2022] [Accepted: 11/20/2022] [Indexed: 12/29/2022]
Abstract
Although human hepatocyte-transplanted immunodeficient mice support infection with hepatitis viruses, these mice fail to develop viral hepatitis due to the lack of an adaptive immune system. In this study, we generated new immunodeficiency cDNA-urokinase-type plasminogen activator (uPA)/SCID/Rag2-/- /Jak3-/- mice and established a mouse model with both a humanized liver and immune system. Transplantation of human hepatocytes with human leukocyte antigen (HLA)-A24 resulted in establishment of a highly replaced liver in cDNA-uPA/SCID/Rag2-/- /Jak3-/- mice. These mice were successfully infected with hepatitis B virus (HBV) and hepatitis C virus (HCV) for a prolonged period and facilitate analysis of the effect of anti-HCV drugs. Administration of peripheral blood mononuclear cells (PBMCs) obtained from an HLA-A24 donor resulted in establishment of 22.6%-81.3% human CD45-positive mononuclear cell chimerism in liver-infiltrating cells without causing graft-versus-host disease in cDNA-uPA/SCID/Rag2-/- /Jak3-/- mice without human hepatocyte transplantation. When mice were transplanted with human hepatocytes and then administered HLA-A24-positive human PBMCs, an alloimmune response between transplanted human hepatocytes and PBMCs occurred, with production of transplanted hepatocyte-specific anti-HLA antibody. In conclusion, we succeeded in establishing a humanized liver/immune system characterized by an allo-reaction between transplanted human immune cells and human liver using a novel cDNA-uPA/SCID/Rag2-/- /Jak3-/- mouse. This mouse model can be used to generate a chronic hepatitis mouse model with a human immune system with application not only to hepatitis virus virology but also to investigation of the pathology of post-transplantation liver rejection.
Collapse
Affiliation(s)
- Takuro Uchida
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Yuji Teraoka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Hiromi Abe-Chayama
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
- Center for Medical Specialist Graduate Education and Research, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Grace Naswa Makokha
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Clair Nelson Hayes
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Satoko Hamamura
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
- PhoenixBio Co., Ltd., Higashihiroshima, Japan
| | - Yuji Ishida
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
- PhoenixBio Co., Ltd., Higashihiroshima, Japan
| | - Chise Tateno
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
- PhoenixBio Co., Ltd., Higashihiroshima, Japan
| | - Takayuki Shirouzu
- Molecular Diagnostics Division, Wakunaga Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Shintaro Kawai
- Molecular Diagnostics Division, Wakunaga Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Yuka Tanaka
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Kazuaki Chayama
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
- Collaborative Research Laboratory of Medical Innovation, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Hiroshima Institute of Life Sciences, Hiroshima, Japan
| |
Collapse
|
12
|
Sun S, Yang H, Xin J, Yao H, Yuan L, Ren K, Jiang J, Shi D, Li J, Zhou Q, An Z, Guo B, Chen J, He L, Liang X, Cheng T, Xia N, Li J. Transcriptomics confirm the establishment of a liver-immune dual-humanized mouse model after transplantation of a single type of human bone marrow mesenchymal stem cell. Liver Int 2023; 43:1345-1356. [PMID: 36810858 DOI: 10.1111/liv.15546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/20/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND AND AIMS Human bone marrow mesenchymal stem cells (hBMSCs) are important for developing a dual-humanized mouse model to clarify disease pathogenesis. We aimed to elucidate the characteristics of hBMSC transdifferentiation into liver and immune cells. METHODS A single type of hBMSCs was transplanted into immunodeficient Fah-/- Rag2-/- IL-2Rγc-/- SCID (FRGS) mice with fulminant hepatic failure (FHF). Liver transcriptional data from the hBMSC-transplanted mice were analysed to identify transdifferentiation with traces of liver and immune chimerism. RESULTS Mice with FHF were rescued by implanted hBMSCs. Human albumin/leukocyte antigen (HLA) and CD45/HLA double-positive hepatocytes and immune cells were observed in the rescued mice during the initial 3 days. The transcriptomics analysis of liver tissues from dual-humanized mice identified two transdifferentiation phases (cellular proliferation at 1-5 days and cellular differentiation/maturation at 5-14 days) and ten cell lineages transdifferentiated from hBMSCs: human hepatocytes, cholangiocytes, stellate cells, myofibroblasts, endothelial cells and immune cells (T/B/NK/NKT/Kupffer cells). Two biological processes, hepatic metabolism and liver regeneration, were characterized in the first phase, and two additional biological processes, immune cell growth and extracellular matrix (ECM) regulation, were observed in the second phase. Immunohistochemistry verified that the ten hBMSC-derived liver and immune cells were present in the livers of dual-humanized mice. CONCLUSIONS A syngeneic liver-immune dual-humanized mouse model was developed by transplanting a single type of hBMSC. Four biological processes linked to the transdifferentiation and biological functions of ten human liver and immune cell lineages were identified, which may help to elucidate the molecular basis of this dual-humanized mouse model for further clarifying disease pathogenesis.
Collapse
Affiliation(s)
- Suwan Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Keke Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongyan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Li
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhanglu An
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beibei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaxian Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lulu He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Liang
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Chen J, Liao S, Xiao Z, Pan Q, Wang X, Shen K, Wang S, Yang L, Guo F, Liu HF, Pan Q. The development and improvement of immunodeficient mice and humanized immune system mouse models. Front Immunol 2022; 13:1007579. [PMID: 36341323 PMCID: PMC9626807 DOI: 10.3389/fimmu.2022.1007579] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
Animal models play an indispensable role in the study of human diseases. However, animal models of different diseases do not fully mimic the complex internal environment of humans. Immunodeficient mice are deficient in certain genes and do not express these or show reduced expression in some of their cells, facilitating the establishment of humanized mice and simulation of the human environment in vivo. Here, we summarize the developments in immunodeficient mice, from the initial nude mice lacking T lymphocytes to NOD/SCID rgnull mice lacking T, B, and NK cell populations. We describe existing humanized immune system mouse models based on immunodeficient mice in which human cells or tissues have been transplanted to establish a human immune system, including humanized-peripheral blood mononuclear cells (Hu-PBMCs), humanized hematopoietic stem cells (Hu-HSCs), and humanized bone marrow, liver, thymus (Hu-BLT) mouse models. The different methods for their development involve varying levels of complexity and humanization. Humanized mice are widely used in the study of various diseases to provide a transitional stage for clinical research. However, several challenges persist, including improving the efficiency of reconstructing the human B cell immune response, extending lifespan, improving the survival rate of mice to extend the observation period, and improving the development of standardized commercialized models and as well as their use. Overall, there are many opportunities and challenges in the development of humanized immune system mouse models which can provide novel strategies for understanding the mechanisms and treatments of human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qingjun Pan
- *Correspondence: Hua-feng Liu, ; Qingjun Pan,
| |
Collapse
|
14
|
Guo J, Wang S, Gao Q. Can next-generation humanized mice that reconstituted with both functional human immune system and hepatocytes model the progression of viral hepatitis to hepatocarcinogenesis? Front Med (Lausanne) 2022; 9:1002260. [PMID: 36213658 PMCID: PMC9537463 DOI: 10.3389/fmed.2022.1002260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatitis B virus (HBV) and Hepatitis C virus (HCV) chronic infections cause liver immunopathological diseases such as hepatitis, fibrosis, cirrhosis, and hepatocellular carcinomas, which are difficult to treat and continue to be major health problems globally. Due to the species-specific hepato-tropism of HBV and HCV, conventional rodent models are limited in their utility for studying the infection and associated liver immunopathogenesis. Humanized mice reconstituted with both functional human immune system and hepatocytes (HIS-HuHEP mice) have been extremely instrumental for in vivo studies of HBV or HCV infection and human-specific aspects of the progression of liver immunopathogenesis. However, none of the current HIS-HuHEP mice can model the progression of viral hepatitis to hepatocarcinogenesis which may be a notorious result of HBV or HCV chronic infection in patients, suggesting that they were functionally compromised and that there is still significant space to improve and establish next-generation of HIS-HuHEP mice with more sophisticated functions. In this review, we first summarize the principal requirements to establish HIS-HuHEP mice. We then discuss the respective protocols for current HIS-HuHEP mice and their applications, as well as their advantages and disadvantages. We also raise perspectives for further improving and establishing next-generation HIS-HuHEP mice.
Collapse
Affiliation(s)
- Jinglong Guo
- Department of Cardiovascular Disease, The First Hospital of Jilin University, Changchun, China
| | - Siyue Wang
- Graduate Program in Immunology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Qi Gao
- Department of Cardiovascular Disease, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Kabbani M, Michailidis E, Steensels S, Fulmer CG, Luna JM, Le Pen J, Tardelli M, Razooky B, Ricardo-Lax I, Zou C, Zeck B, Stenzel AF, Quirk C, Foquet L, Ashbrook AW, Schneider WM, Belkaya S, Lalazar G, Liang Y, Pittman M, Devisscher L, Suemizu H, Theise ND, Chiriboga L, Cohen DE, Copenhaver R, Grompe M, Meuleman P, Ersoy BA, Rice CM, de Jong YP. Human hepatocyte PNPLA3-148M exacerbates rapid non-alcoholic fatty liver disease development in chimeric mice. Cell Rep 2022; 40:111321. [PMID: 36103835 PMCID: PMC11587767 DOI: 10.1016/j.celrep.2022.111321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/11/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Advanced non-alcoholic fatty liver disease (NAFLD) is a rapidly emerging global health problem associated with pre-disposing genetic polymorphisms, most strikingly an isoleucine to methionine substitution in patatin-like phospholipase domain-containing protein 3 (PNPLA3-I148M). Here, we study how human hepatocytes with PNPLA3 148I and 148M variants engrafted in the livers of broadly immunodeficient chimeric mice respond to hypercaloric diets. As early as four weeks, mice developed dyslipidemia, impaired glucose tolerance, and steatosis with ballooning degeneration selectively in the human graft, followed by pericellular fibrosis after eight weeks of hypercaloric feeding. Hepatocytes with the PNPLA3-148M variant, either from a homozygous 148M donor or overexpressed in a 148I donor background, developed microvesicular and severe steatosis with frequent ballooning degeneration, resulting in more active steatohepatitis than 148I hepatocytes. We conclude that PNPLA3-148M in human hepatocytes exacerbates NAFLD. These models will facilitate mechanistic studies into human genetic variant contributions to advanced fatty liver diseases.
Collapse
Affiliation(s)
- Mohammad Kabbani
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Sandra Steensels
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Clifton G Fulmer
- Department of Pathology, Weill Cornell Medicine, New York, NY 10065, USA; Robert J. Tomsich Pathology and Laboratory Medicine Institute, The Cleveland Clinic, Cleveland, OH 44195, USA
| | - Joseph M Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Matteo Tardelli
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Chenhui Zou
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Briana Zeck
- Department of Pathology, NYU Langone, New York, NY 10028, USA
| | - Ansgar F Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | | | - Alison W Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Serkan Belkaya
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Gadi Lalazar
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA; Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Yupu Liang
- Center for Clinical and Translational Science, The Rockefeller University, New York, NY 10065, USA
| | - Meredith Pittman
- Department of Pathology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lindsey Devisscher
- Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | | | - Neil D Theise
- Department of Pathology, NYU Langone, New York, NY 10028, USA
| | - Luis Chiriboga
- Department of Pathology, NYU Langone, New York, NY 10028, USA
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | | | - Markus Grompe
- Yecuris Corporation, Tualatin, OR 97062, USA; Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Ghent University, Ghent, Belgium
| | - Baran A Ersoy
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Ype P de Jong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA.
| |
Collapse
|
16
|
Wei L, Cafiero TR, Tseng A, Gertje HP, Berneshawi A, Crossland NA, Ploss A. Conversion of hepatitis B virus relaxed circular to covalently closed circular DNA is supported in murine cells. JHEP Rep 2022; 4:100534. [PMID: 36035363 PMCID: PMC9403495 DOI: 10.1016/j.jhepr.2022.100534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/26/2022] [Accepted: 07/04/2022] [Indexed: 11/05/2022] Open
Abstract
Background & Aims HBV has a narrow host restriction, with humans and chimpanzees representing the only known natural hosts. The molecular correlates of resistance in species that are commonly used in biomedical research, such as mice, are currently incompletely understood. Expression of human NTCP (hNTCP) in mouse hepatocytes enables HBV entry, but subsequently covalently closed circular (cccDNA) does not form in most murine cells. It is unknown if this blockade in cccDNA formation is due to deficiency in repair of relaxed circular DNA (rcDNA) to cccDNA. Methods Here, we deployed both in vivo and in vitro virological and biochemical approaches to investigate if murine cells contain a complete set of repair factors capable of converting HBV rcDNA to cccDNA. Results We demonstrate that HBV cccDNA does form in murine cell culture or in mice when recombinant rcDNA without a protein adduct is directly introduced into cells. We further show that the murine orthologues of core components in DNA lagging strand synthesis, required for the repair of rcDNA to cccDNA in human cells, can support this crucial step in the HBV life cycle. It is worth noting that recombinant HBV rcDNA substrates, either without a protein adduct or containing neutravidin to mimic HBV polymerase, were used in our study; it remains unclear if the HBV polymerase removal processes are the same in mouse and human cells. Conclusions Collectively, our data suggest that the HBV life cycle is blocked post entry and likely before the repair stage in mouse cells, which yields critical insights that will aid in the construction of a mouse model with inbred susceptibility to HBV infection. Lay summary Hepatitis B virus (HBV) is only known to infect humans and chimpanzees in nature. Mouse models are often used in modeling disease pathogenesis and preclinical research to assess the efficacy and safety of interventions before they are then tested in human participants. However, because mice are not susceptible to HBV infection it is difficult to accurately model human infection (and test potential treatments) in mouse models. Herein, we have shown that mice are able to perform a key step in the HBV life cycle, tightening the net around the possible reason why HBV can not efficiently infect and replicate in mice.
Collapse
Key Words
- FEN-1, flap endonuclease 1
- HCC, hepatocellular carcinoma
- HDD, hydrodynamic delivery
- LIG1, DNA ligase 1
- NA-RrcDNA, neutravidin-recombinant relaxed circular DNA
- PCNA, proliferating cell nuclear antigen
- POLδ, DNA polymerase delta
- RFC, replication factor C
- RrcDNA, recombinant relaxed circular DNA
- animal model
- cccDNA, covalently closed circular DNA
- hNTCP, human sodium taurocholate co-transporting polypeptide
- hepatitis B virus
- rcDNA, relaxed circular DNA
- species tropism
- ssDNA, single-stranded DNA
- viral hepatitis
Collapse
Affiliation(s)
- Lei Wei
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Thomas R. Cafiero
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Anna Tseng
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Hans P. Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Andrew Berneshawi
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Alexander Ploss
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| |
Collapse
|
17
|
Zhao H, Ye W, Guo J, Wang J, Jiao D, Xu K, Yang C, Chen S, Jamal MA, Bai Z, Wei T, Cai J, Nguyen TD, Qing Y, Cheng W, Jia B, Li H, Zhao HY, Chen Q, Wei HJ. Development of RAG2-/-IL2Rγ-/Y immune deficient FAH-knockout miniature pig. Front Immunol 2022; 13:950194. [PMID: 36032112 PMCID: PMC9400017 DOI: 10.3389/fimmu.2022.950194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Human hepatocyte transplantation for liver disease treatment have been hampered by the lack of quality human hepatocytes. Pigs with their large body size, longevity and physiological similarities with human are appropriate animal models for the in vivo expansion of human hepatocytes. Here we report on the generation of RAG2-/-IL2Rγ-/YFAH-/- (RGFKO) pigs via CRISPR/Cas9 system and somatic cell nuclear transfer. We showed that thymic and splenic development in RGFKO pigs was impaired. V(D)J recombination processes were also inactivated. Consequently, RGFKO pigs had significantly reduced numbers of porcine T, B and NK cells. Moreover, due to the loss of FAH, porcine hepatocytes continuously undergo apoptosis and consequently suffer hepatic damage. Thus, RGFKO pigs are both immune deficient and constantly suffer liver injury in the absence of NTBC supplementation. These results suggest that RGFKO pigs have the potential to be engrafted with human hepatocytes without immune rejection, thereby allowing for large scale expansion of human hepatocytes.
Collapse
Affiliation(s)
- Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Weijian Ye
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianxiong Guo
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Jiaoxiang Wang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Deling Jiao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kaixiang Xu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chang Yang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Shuhan Chen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | | | - Zhongbin Bai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Taiyun Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Jie Cai
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
| | - Tien Dat Nguyen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yubo Qing
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Wenmin Cheng
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Baoyu Jia
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Honghui Li
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- *Correspondence: Hong-Jiang Wei, ; Qingfeng Chen, ; Hong-Ye Zhao,
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Hong-Jiang Wei, ; Qingfeng Chen, ; Hong-Ye Zhao,
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Hong-Jiang Wei, ; Qingfeng Chen, ; Hong-Ye Zhao,
| |
Collapse
|
18
|
Shao W, Sun J, Chen X, Dobbins A, Merricks EP, Samulski RJ, Nichols TC, Li C. Chimeric Mice Engrafted With Canine Hepatocytes Exhibits Similar AAV Transduction Efficiency to Hemophilia B Dog. Front Pharmacol 2022; 13:815317. [PMID: 35173619 PMCID: PMC8841897 DOI: 10.3389/fphar.2022.815317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Adeno-associated virus (AAV) mediated gene therapy has been successfully applied in clinical trials, including hemophilia. Novel AAV vectors have been developed with enhanced transduction and specific tissue tropism. Considering the difference in efficacy of AAV transduction between animal models and patients, the chimeric xenograft mouse model with human hepatocytes has unique advantages of studying AAV transduction efficiency in human hepatocytes. However, it is unclear whether the results in humanized mice can predict AAV transduction efficiency in human hepatocytes. To address this issue, we studied the AAV transduction efficacy in canine hepatocytes in both canine hepatocyte xenografted mice and real dogs. After administration of AAV vectors from different serotypes into canine hepatocyte xenograft mice, AAV8 induced the best canine hepatocyte transduction followed by AAV9, then AAV3, 7, 5 and 2. After administration of AAV/cFIX (cFIX-opt-R338L) vectors in hemophilia B dogs, consistent with the result in chimeric mice, AAV8 induced the highest cFIX protein expression and function, followed by AAV9 and then AAV2. These results suggest that mice xenografted with hepatocytes from different species could be used to predict the AAV liver transduction in real species and highlight this potential platform to explore novel AAV variants for future clinical applications.
Collapse
Affiliation(s)
- Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Junjiang Sun
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xiaojing Chen
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amanda Dobbins
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Elizabeth P Merricks
- Department of Pathology and Laboratory Medicine and The Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - R Jude Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine and The Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
19
|
Abstract
As medical and pharmacological technology advances, new and complex modalities of disease treatment that are more personalized and targeted are being developed. Often these modalities must be validated in the presence of critical components of the human biological system. Given the incongruencies between murine and human biology, as well as the human-tropism of certain drugs and pathogens, the selection of animal models that accurately recapitulate the intricacies of the human biological system becomes more salient for disease modeling and preclinical testing. Immunodeficient mice engrafted with functional human tissues (so-called humanized mice), which allow for the study of physiologically relevant disease mechanisms, have thus become an integral aspect of biomedical research. This review discusses the recent advancements and applications of humanized mouse models on human immune system and liver humanization in modeling human diseases, as well as how they can facilitate translational medicine.
Collapse
Affiliation(s)
- Weijian Ye
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| |
Collapse
|
20
|
Luo Y, Lu H, Peng D, Ruan X, Chen YE, Guo Y. Liver-humanized mice: A translational strategy to study metabolic disorders. J Cell Physiol 2022; 237:489-506. [PMID: 34661916 PMCID: PMC9126562 DOI: 10.1002/jcp.30610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/03/2023]
Abstract
The liver is the metabolic core of the whole body. Tools commonly used to study the human liver metabolism include hepatocyte cell lines, primary human hepatocytes, and pluripotent stem cells-derived hepatocytes in vitro, and liver genetically humanized mouse model in vivo. However, none of these systems can mimic the human liver in physiological and pathological states satisfactorily. Liver-humanized mice, which are established by reconstituting mouse liver with human hepatocytes, have emerged as an attractive animal model to study drug metabolism and evaluate the therapeutic effect in "human liver" in vivo because the humanized livers greatly replicate enzymatic features of human hepatocytes. The application of liver-humanized mice in studying metabolic disorders is relatively less common due to the largely uncertain replication of metabolic profiles compared to humans. Here, we summarize the metabolic characteristics and current application of liver-humanized mouse models in metabolic disorders that have been reported in the literature, trying to evaluate the pros and cons of using liver-humanized mice as novel mouse models to study metabolic disorders.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Haocheng Lu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangbo Ruan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Center for Advanced Models and Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Tsuge M. Are Humanized Mouse Models Useful for Basic Research of Hepatocarcinogenesis through Chronic Hepatitis B Virus Infection? Viruses 2021; 13:v13101920. [PMID: 34696350 PMCID: PMC8541657 DOI: 10.3390/v13101920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a global health problem that can lead to liver dysfunction, including liver cirrhosis and hepatocellular carcinoma (HCC). Current antiviral therapies can control viral replication in patients with chronic HBV infection; however, there is a risk of HCC development. HBV-related proteins may be produced in hepatocytes regardless of antiviral therapies and influence intracellular metabolism and signaling pathways, resulting in liver carcinogenesis. To understand the mechanisms of liver carcinogenesis, the effect of HBV infection in human hepatocytes should be analyzed. HBV infects human hepatocytes through transfer to the sodium taurocholate co-transporting polypeptide (NTCP). Although the NTCP is expressed on the hepatocyte surface in several animals, including mice, HBV infection is limited to human primates. Due to this species-specific liver tropism, suitable animal models for analyzing HBV replication and developing antivirals have been lacking since the discovery of the virus. Recently, a humanized mouse model carrying human hepatocytes in the liver was developed based on several immunodeficient mice; this is useful for analyzing the HBV life cycle, antiviral effects of existing/novel antivirals, and intracellular signaling pathways under HBV infection. Herein, the usefulness of human hepatocyte chimeric mouse models in the analysis of HBV-associated hepatocarcinogenesis is discussed.
Collapse
Affiliation(s)
- Masataka Tsuge
- Natural Science Center for Basic Research and Development, Department of Biomedical Science, Research and Development Division, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; ; Tel.: +81-82-257-1510
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Antiviral therapy for chronic hepatitis B infection is rarely curative, thus research in HBV cure strategies is a priority. Drug development and testing has been hampered by the lack of robust cell culture systems and small animal models. This review summarizes existing models for HBV cure research and focuses on recent developments since 2017 until today. RECENT FINDINGS The field has progressed in the development of cell culture and animal models to study HBV. Although early cell culture systems relied on transfection of HBV genomes in hepatoma cell lines, novel models expressing the entry receptor for HBV are susceptible to infection. Improved culture conditions for primary human hepatocytes, the primary target of HBV, have enabled the screening and validation of novel antivirals. Mouse models grafted with partially humanized livers are suitable for testing viral entry inhibitors or direct acting antivirals, and can be reconstituted with human immune cells to analyze immunotherapies. Other immunocompetent models include mice transduced with HBV genomes or woodchucks infected with their native hepatitis virus. SUMMARY Model systems for HBV research have helped lay the groundwork for the development and optimization of antiviral and immune-based therapeutic approaches that are now moving to clinical trials.
Collapse
|
23
|
Liu Y, Maya S, Ploss A. Animal Models of Hepatitis B Virus Infection-Success, Challenges, and Future Directions. Viruses 2021; 13:v13050777. [PMID: 33924793 PMCID: PMC8146732 DOI: 10.3390/v13050777] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection affects more than 250 million people worldwide, which greatly increases the risk for terminal liver diseases, such as liver cirrhosis and hepatocellular carcinoma (HCC). Even though current approved antiviral therapies, including pegylated type I interferon (IFN) and nucleos(t)ide analogs, can effectively suppress viremia, HBV infection is rarely cured. Since HBV exhibits a narrow species tropism and robustly infects only humans and higher primates, progress in HBV research and preclinical testing of antiviral drugs has been hampered by the scarcity of suitable animal models. Fortunately, a series of surrogate animal models have been developed for the study of HBV. An increased understanding of the barriers towards interspecies transmission has aided in the development of human chimeric mice and has greatly paved the way for HBV research in vivo, and for evaluating potential therapies of chronic hepatitis B. In this review, we summarize the currently available animal models for research of HBV and HBV-related hepadnaviruses, and we discuss challenges and future directions for improvement.
Collapse
|
24
|
Ploss A, Strick-Marchand H, Li W. Animal Models for Hepatitis B: Does the Supply Meet the Demand? Gastroenterology 2021; 160:1437-1442. [PMID: 33352166 PMCID: PMC8035324 DOI: 10.1053/j.gastro.2020.11.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey.
| | - Hélène Strick-Marchand
- Innate Immunity Unit and, Institut National de la Santé et de la Recherche Médicale U1223, Institut Pasteur, Paris, France
| | - Wenhui Li
- National Institute of Biological Sciences and, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
25
|
Martinov T, McKenna KM, Tan WH, Collins EJ, Kehret AR, Linton JD, Olsen TM, Shobaki N, Rongvaux A. Building the Next Generation of Humanized Hemato-Lymphoid System Mice. Front Immunol 2021; 12:643852. [PMID: 33692812 PMCID: PMC7938325 DOI: 10.3389/fimmu.2021.643852] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
Since the late 1980s, mice have been repopulated with human hematopoietic cells to study the fundamental biology of human hematopoiesis and immunity, as well as a broad range of human diseases in vivo. Multiple mouse recipient strains have been developed and protocols optimized to efficiently generate these “humanized” mice. Here, we review three guiding principles that have been applied to the development of the currently available models: (1) establishing tolerance of the mouse host for the human graft; (2) opening hematopoietic niches so that they can be occupied by human cells; and (3) providing necessary support for human hematopoiesis. We then discuss four remaining challenges: (1) human hematopoietic lineages that poorly develop in mice; (2) limited antigen-specific adaptive immunity; (3) absent tolerance of the human immune system for its mouse host; and (4) sub-functional interactions between human immune effectors and target mouse tissues. While major advances are still needed, the current models can already be used to answer specific, clinically-relevant questions and hopefully inform the development of new, life-saving therapies.
Collapse
Affiliation(s)
- Tijana Martinov
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Kelly M McKenna
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, United States.,Medical Scientist Training Program, University of Washington, Seattle, WA, United States
| | - Wei Hong Tan
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Emily J Collins
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Allie R Kehret
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jonathan D Linton
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Tayla M Olsen
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Nour Shobaki
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Anthony Rongvaux
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
26
|
Hayes CN, Chayama K. Unmet Needs in Basic Research of Hepatitis B Virus Infection: In Vitro and In Vivo Models. HEPATITIS B VIRUS AND LIVER DISEASE 2021:29-49. [DOI: 10.1007/978-981-16-3615-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Bove G, Mehnert AK, Dao Thi VL. iPSCs for modeling hepatotropic pathogen infections. IPSCS FOR STUDYING INFECTIOUS DISEASES 2021:149-213. [DOI: 10.1016/b978-0-12-823808-0.00013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
28
|
Biswas M, Marsic D, Li N, Zou C, Gonzalez-Aseguinolaza G, Zolotukhin I, Kumar SRP, Rana J, Butterfield JSS, Kondratov O, de Jong YP, Herzog RW, Zolotukhin S. Engineering and In Vitro Selection of a Novel AAV3B Variant with High Hepatocyte Tropism and Reduced Seroreactivity. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:347-361. [PMID: 33145371 PMCID: PMC7591349 DOI: 10.1016/j.omtm.2020.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/29/2020] [Indexed: 01/04/2023]
Abstract
Limitations to successful gene therapy with adeno-associated virus (AAV) can comprise pre-existing neutralizing antibodies to the vector capsid that can block cellular entry, or inefficient transduction of target cells that can lead to sub-optimal expression of the therapeutic transgene. Recombinant serotype 3 AAV (AAV3) is an emerging candidate for liver-directed gene therapy. In this study, we integrated rational design by using a combinatorial library derived from AAV3B capsids with directed evolution by in vitro selection for liver-targeted AAV variants. The AAV3B-DE5 variant described herein was undetectable in the original viral library but gained a selective advantage upon in vitro passaging in human hepatocarcinoma spheroid cultures. AAV3B-DE5 contains 24 capsid amino acid substitutions compared with AAV3B, distributed among all five variable regions, with strong selective pressure on VR-IV, VR-V, and VR-VII. In vivo, AAV3B-DE5 demonstrated improved human hepatocyte tropism in a liver chimeric mouse model. Importantly, this variant exhibited reduced seroreactivity to human intravenous immunoglobulin (i.v. Ig), as well as individual serum samples from 100 healthy human donors. Therefore, molecular evolution using a combinatorial library platform generated a viral capsid with high hepatocyte tropism and enhanced evasion of pre-existing AAV neutralizing antibodies.
Collapse
Affiliation(s)
- Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Damien Marsic
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL 32610, USA.,Porton Biologics, Building 3, Ascendas Park, No. 388 Xinping Street, Suzhou Industrial Park, Jiangsu 215021, China
| | - Ning Li
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chenhui Zou
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA.,Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | | | - Irene Zolotukhin
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL 32610, USA
| | - Sandeep R P Kumar
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jyoti Rana
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John S S Butterfield
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL 32610, USA
| | - Oleksandr Kondratov
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL 32610, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
29
|
Zou C, Vercauteren KO, Michailidis E, Kabbani M, Zoluthkin I, Quirk C, Chiriboga L, Yazicioglu M, Anguela XM, Meuleman P, High KA, Herzog RW, de Jong YP. Experimental Variables that Affect Human Hepatocyte AAV Transduction in Liver Chimeric Mice. Mol Ther Methods Clin Dev 2020; 18:189-198. [PMID: 32637450 PMCID: PMC7326722 DOI: 10.1016/j.omtm.2020.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022]
Abstract
Adeno-associated virus (AAV) vector serotypes vary in their ability to transduce hepatocytes from different species. Chimeric mouse models harboring human hepatocytes have shown translational promise for liver-directed gene therapies. However, many variables that influence human hepatocyte transduction and transgene expression in such models remain poorly defined. Here, we aimed to test whether three experimental conditions influence AAV transgene expression in immunodeficient, fumaryl-acetoactetate-hydrolase-deficient (Fah -/-) chimeric mice repopulated with primary human hepatocytes. We examined the effects of the murine liver injury cycle, human donor variability, and vector doses on hepatocyte transduction with various AAV serotypes expressing a green fluorescent protein (GFP). We determined that the timing of AAV vector challenge in the liver injury cycle resulted in up to 7-fold differences in the percentage of GFP expressing human hepatocytes. The GFP+ hepatocyte frequency varied 7-fold between human donors without, however, changing the relative transduction efficiency between serotypes for an individual donor. There was also a clear relationship between AAV vector doses and human hepatocyte transduction and transgene expression. We conclude that several experimental variables substantially affect human hepatocyte transduction in the Fah -/- chimera model, attention to which may improve reproducibility between findings from different laboratories.
Collapse
Affiliation(s)
- Chenhui Zou
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA
| | - Koen O.A. Vercauteren
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA
- Laboratory of Liver Infectious Diseases, Ghent University, 9000 Ghent, Belgium
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA
| | - Mohammad Kabbani
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA
| | - Irene Zoluthkin
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32603, USA
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA
| | - Luis Chiriboga
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | | | | | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Ghent University, 9000 Ghent, Belgium
| | | | - Roland W. Herzog
- Department of Pediatrics, Indiana University, Indianapolis, IN 46202, USA
- Herman B Wells Center for Pediatric Research, IUPUI, Indianapolis, IN 46202, USA
| | - Ype P. de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
30
|
Burwitz BJ, Zhou Z, Li W. Animal models for the study of human hepatitis B and D virus infection: New insights and progress. Antiviral Res 2020; 182:104898. [PMID: 32758525 DOI: 10.1016/j.antiviral.2020.104898] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) is a member of the Hepadnaviridae family and infects hepatocytes, leading to liver pathology in acutely and chronically infected individuals. Co-infection with Hepatitis D virus (HDV), which requires the surface proteins of HBV to replicate, can exacerbate this disease progression. Thus, the >250 million people living with chronic HBV infection, including 13 million co-infected with HDV, would significantly benefit from an effective and affordable curative treatment. Animal models are crucial to the development of innovative disease therapies, a paradigm repeated again and again throughout the fields of immunology, neurology, reproduction, and development. Unfortunately, HBV has a highly-restricted species tropism, infecting limited species including humans, chimpanzees, and treeshrews. The first experimentally controlled studies of HBV infection were following inoculation of human volunteers in 1942, which identified the transmissibility of hepatitis through serum transfer and led to the hypothesis that the etiological agent was viral. Subsequent research in chimpanzees (Desmyter et al., 1971; Lichter, 1969) and later in other species, such as the treeshrews (Walter et al., 1996; Yan et al., 1996), further confirmed the viral origin of hepatitis B. Shortly thereafter, HBV-like viral infections were identified in woodchucks (Summers et al., 1978; Werner et al., 1979) and ducks, and much of our understanding of HBV replication can be attributed to these important models. However, with the exodus of chimpanzees from research and the limited reagents and historical data for treeshrews and other understudied species, there remains an urgent need to identify physiologically relevant models of chronic HBV infection. While large strides have been made in generating such models, particularly over the past two decades, there is still no available model that faithfully recapitulates the immunity and pathogenesis of HBV infection. Here, we discuss recent advancements in the generation of murine and non-human primate (NHP) models of HBV/HDV infection.
Collapse
Affiliation(s)
- Benjamin J Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, 97006, USA.
| | - Zhongmin Zhou
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China; National Institute of Biological Sciences, Beijing, 102206, China.
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
31
|
Anselmi G, Helft J, Guermonprez P. Development and function of human dendritic cells in humanized mice models. Mol Immunol 2020; 125:151-161. [PMID: 32688117 DOI: 10.1016/j.molimm.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) are sentinel cells of the immune system arising from hematopoietic stem cells. DCs play a key role in the regulation of both adaptive and innate lymphocyte responses. As such, experimental models enabling a thorough analysis of human DCs development and function are needed. Humanized mice models (termed collectively as HIS mice, or human immune system mice models) provide unique opportunities to model human hematopoiesis and tackle the function of human immune cell types in vivo. Here, we review experimental approaches enabling to recapitulate the ontogeny of DC subsets in HIS mice and discuss studies addressing the biology of human DC subsets implementing HIS mice models.
Collapse
Affiliation(s)
- Giorgio Anselmi
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, United Kingdom
| | - Julie Helft
- PSL Research University, Institut Curie Research Center, Immunity and Cancer department, INSERM U932, Paris, France
| | - Pierre Guermonprez
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, United Kingdom; Université de Paris, Centre for Inflammation Research, CNRS ERL8252, INSERM 1149, Hopital Bichat Claude Bernard, France.
| |
Collapse
|
32
|
Stripecke R, Münz C, Schuringa JJ, Bissig K, Soper B, Meeham T, Yao L, Di Santo JP, Brehm M, Rodriguez E, Wege AK, Bonnet D, Guionaud S, Howard KE, Kitchen S, Klein F, Saeb‐Parsy K, Sam J, Sharma AD, Trumpp A, Trusolino L, Bult C, Shultz L. Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Mol Med 2020; 12:e8662. [PMID: 32578942 PMCID: PMC7338801 DOI: 10.15252/emmm.201708662] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Mice xenotransplanted with human cells and/or expressing human gene products (also known as "humanized mice") recapitulate the human evolutionary specialization and diversity of genotypic and phenotypic traits. These models can provide a relevant in vivo context for understanding of human-specific physiology and pathologies. Humanized mice have advanced toward mainstream preclinical models and are now at the forefront of biomedical research. Here, we considered innovations and challenges regarding the reconstitution of human immunity and human tissues, modeling of human infections and cancer, and the use of humanized mice for testing drugs or regenerative therapy products. As the number of publications exploring different facets of humanized mouse models has steadily increased in past years, it is becoming evident that standardized reporting is needed in the field. Therefore, an international community-driven resource called "Minimal Information for Standardization of Humanized Mice" (MISHUM) has been created for the purpose of enhancing rigor and reproducibility of studies in the field. Within MISHUM, we propose comprehensive guidelines for reporting critical information generated using humanized mice.
Collapse
Affiliation(s)
- Renata Stripecke
- Regenerative Immune Therapies AppliedHannover Medical SchoolHannoverGermany
- German Center for Infection Research (DZIF)Hannover RegionGermany
| | - Christian Münz
- Viral ImmunobiologyInstitute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Jan Jacob Schuringa
- Department of HematologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | | | | | | | | | | | - Michael Brehm
- University of Massachusetts Medical SchoolWorcesterMAUSA
| | | | - Anja Kathrin Wege
- Department of Gynecology and ObstetricsUniversity Cancer Center RegensburgRegensburgGermany
| | | | | | | | - Scott Kitchen
- University of California, Los AngelesLos AngelesCAUSA
| | | | | | | | - Amar Deep Sharma
- Regenerative Immune Therapies AppliedHannover Medical SchoolHannoverGermany
| | - Andreas Trumpp
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
| | - Livio Trusolino
- Department of OncologyUniversity of Torino Medical SchoolTurinItaly
- Candiolo Cancer Institute FPO IRCCSCandioloItaly
| | | | | |
Collapse
|
33
|
Broering R, Luo X, Liu J, Lu M. Controversial: Early Innate Responses to Hepatitis B Virus Infection, an Explanation for Viral Persistence? Virol Sin 2020; 36:163-166. [PMID: 32632817 PMCID: PMC7973328 DOI: 10.1007/s12250-020-00235-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| | - Xufeng Luo
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| |
Collapse
|
34
|
Wang Q, Michailidis E, Yu Y, Wang Z, Hurley AM, Oren DA, Mayer CT, Gazumyan A, Liu Z, Zhou Y, Schoofs T, Yao KH, Nieke JP, Wu J, Jiang Q, Zou C, Kabbani M, Quirk C, Oliveira T, Chhosphel K, Zhang Q, Schneider WM, Jahan C, Ying T, Horowitz J, Caskey M, Jankovic M, Robbiani DF, Wen Y, de Jong YP, Rice CM, Nussenzweig MC. A Combination of Human Broadly Neutralizing Antibodies against Hepatitis B Virus HBsAg with Distinct Epitopes Suppresses Escape Mutations. Cell Host Microbe 2020; 28:335-349.e6. [PMID: 32504577 DOI: 10.1016/j.chom.2020.05.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/09/2020] [Accepted: 05/08/2020] [Indexed: 02/08/2023]
Abstract
Although there is no effective cure for chronic hepatitis B virus (HBV) infection, antibodies are protective and correlate with recovery from infection. To examine the human antibody response to HBV, we screened 124 vaccinated and 20 infected, spontaneously recovered individuals. The selected individuals produced shared clones of broadly neutralizing antibodies (bNAbs) that targeted 3 non-overlapping epitopes on the HBV S antigen (HBsAg). Single bNAbs protected humanized mice against infection but selected for resistance mutations in mice with prior established infection. In contrast, infection was controlled by a combination of bNAbs targeting non-overlapping epitopes with complementary sensitivity to mutations that commonly emerge during human infection. The co-crystal structure of one of the bNAbs with an HBsAg peptide epitope revealed a stabilized hairpin loop. This structure, which contains residues frequently mutated in clinical immune escape variants, provides a molecular explanation for why immunotherapy for HBV infection may require combinations of complementary bNAbs.
Collapse
Affiliation(s)
- Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Yingpu Yu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Arlene M Hurley
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Deena A Oren
- Structural Biology Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Christian T Mayer
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Zhenmi Liu
- West China School of Public Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunjiao Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Till Schoofs
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jan P Nieke
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jianbo Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qingling Jiang
- West China School of Public Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenhui Zou
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mohanmmad Kabbani
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Kalsang Chhosphel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Qianqian Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Cyprien Jahan
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jill Horowitz
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ype P de Jong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
35
|
Animal Models Used in Hepatitis C Virus Research. Int J Mol Sci 2020; 21:ijms21113869. [PMID: 32485887 PMCID: PMC7312079 DOI: 10.3390/ijms21113869] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
The narrow range of species permissive to infection by hepatitis C virus (HCV) presents a unique challenge to the development of useful animal models for studying HCV, as well as host immune responses and development of chronic infection and disease. Following earlier studies in chimpanzees, several unique approaches have been pursued to develop useful animal models for research while avoiding the important ethical concerns and costs inherent in research with chimpanzees. Genetically related hepatotropic viruses that infect animals are being used as surrogates for HCV in research studies; chimeras of these surrogate viruses harboring specific regions of the HCV genome are being developed to improve their utility for vaccine testing. Concurrently, genetically humanized mice are being developed and continually advanced using human factors known to be involved in virus entry and replication. Further, xenotransplantation of human hepatocytes into mice allows for the direct study of HCV infection in human liver tissue in a small animal model. The current advances in each of these approaches are discussed in the present review.
Collapse
|
36
|
Sugahara G, Ishida Y, Sun J, Tateno C, Saito T. Art of Making Artificial Liver: Depicting Human Liver Biology and Diseases in Mice. Semin Liver Dis 2020; 40:189-212. [PMID: 32074631 PMCID: PMC8629128 DOI: 10.1055/s-0040-1701444] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Advancement in both bioengineering and cell biology of the liver led to the establishment of the first-generation humanized liver chimeric mouse (HLCM) model in 2001. The HLCM system was initially developed to satisfy the necessity for a convenient and physiologically representative small animal model for studies of hepatitis B virus and hepatitis C virus infection. Over the last two decades, the HLCM system has substantially evolved in quality, production capacity, and utility, thereby growing its versatility beyond the study of viral hepatitis. Hence, it has been increasingly employed for a variety of applications including, but not limited to, the investigation of drug metabolism and pharmacokinetics and stem cell biology. To date, more than a dozen distinctive HLCM systems have been established, and each model system has similarities as well as unique characteristics, which are often perplexing for end-users. Thus, this review aims to summarize the history, evolution, advantages, and pitfalls of each model system with the goal of providing comprehensive information that is necessary for researchers to implement the ideal HLCM system for their purposes. Furthermore, this review article summarizes the contribution of HLCM and its derivatives to our mechanistic understanding of various human liver diseases, its potential for novel applications, and its current limitations.
Collapse
Affiliation(s)
- Go Sugahara
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Yuji Ishida
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Jeffrey Sun
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chise Tateno
- Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Takeshi Saito
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,USC Research Center for Liver Diseases, Los Angeles, California
| |
Collapse
|
37
|
Ploss A, Kapoor A. Animal Models of Hepatitis C Virus Infection. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036970. [PMID: 31843875 DOI: 10.1101/cshperspect.a036970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is an important and underreported infectious disease, causing chronic infection in ∼71 million people worldwide. The limited host range of HCV, which robustly infects only humans and chimpanzees, has made studying this virus in vivo challenging and hampered the development of a desperately needed vaccine. The restrictions and ethical concerns surrounding biomedical research in chimpanzees has made the search for an animal model all the more important. In this review, we discuss different approaches that are being pursued toward creating small animal models for HCV infection. Although efforts to use a nonhuman primate species besides chimpanzees have proven challenging, important advances have been achieved in a variety of humanized mouse models. However, such models still fall short of the overarching goal to have an immunocompetent, inheritably susceptible in vivo platform in which the immunopathology of HCV could be studied and putative vaccines development. Alternatives to overcome this include virus adaptation, such as murine-tropic HCV strains, or the use of related hepaciviruses, of which many have been recently identified. Of the latter, the rodent/rat hepacivirus from Rattus norvegicus species-1 (RHV-rn1) holds promise as a surrogate virus in fully immunocompetent rats that can inform our understanding of the interaction between the immune response and viral outcomes (i.e., clearance vs. persistence). However, further characterization of these animal models is necessary before their use for gaining new insights into the immunopathogenesis of HCV and for conceptualizing HCV vaccines.
Collapse
Affiliation(s)
- Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Amit Kapoor
- Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| |
Collapse
|
38
|
Tricot T, De Boeck J, Verfaillie C. Alternative Cell Sources for Liver Parenchyma Repopulation: Where Do We Stand? Cells 2020; 9:E566. [PMID: 32121068 PMCID: PMC7140465 DOI: 10.3390/cells9030566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/28/2022] Open
Abstract
Acute and chronic liver failure is a highly prevalent medical condition with high morbidity and mortality. Currently, the therapy is orthotopic liver transplantation. However, in some instances, chiefly in the setting of metabolic diseases, transplantation of individual cells, specifically functional hepatocytes, can be an acceptable alternative. The gold standard for this therapy is the use of primary human hepatocytes, isolated from livers that are not suitable for whole organ transplantations. Unfortunately, primary human hepatocytes are scarcely available, which has led to the evaluation of alternative sources of functional hepatocytes. In this review, we will compare the ability of most of these candidate alternative cell sources to engraft and repopulate the liver of preclinical animal models with the repopulation ability found with primary human hepatocytes. We will discuss the current shortcomings of the different cell types, and some of the next steps that we believe need to be taken to create alternative hepatocyte progeny capable of regenerating the failing liver.
Collapse
|
39
|
O’Connell AK, Douam F. Humanized Mice for Live-Attenuated Vaccine Research: From Unmet Potential to New Promises. Vaccines (Basel) 2020; 8:E36. [PMID: 31973073 PMCID: PMC7157703 DOI: 10.3390/vaccines8010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 01/24/2023] Open
Abstract
Live-attenuated vaccines (LAV) represent one of the most important medical innovations in human history. In the past three centuries, LAV have saved hundreds of millions of lives, and will continue to do so for many decades to come. Interestingly, the most successful LAVs, such as the smallpox vaccine, the measles vaccine, and the yellow fever vaccine, have been isolated and/or developed in a purely empirical manner without any understanding of the immunological mechanisms they trigger. Today, the mechanisms governing potent LAV immunogenicity and long-term induced protective immunity continue to be elusive, and therefore hamper the rational design of innovative vaccine strategies. A serious roadblock to understanding LAV-induced immunity has been the lack of suitable and cost-effective animal models that can accurately mimic human immune responses. In the last two decades, human-immune system mice (HIS mice), i.e., mice engrafted with components of the human immune system, have been instrumental in investigating the life-cycle and immune responses to multiple human-tropic pathogens. However, their use in LAV research has remained limited. Here, we discuss the strong potential of LAVs as tools to enhance our understanding of human immunity and review the past, current and future contributions of HIS mice to this endeavor.
Collapse
Affiliation(s)
| | - Florian Douam
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA;
| |
Collapse
|
40
|
Expansion, in vivo-ex vivo cycling, and genetic manipulation of primary human hepatocytes. Proc Natl Acad Sci U S A 2020; 117:1678-1688. [PMID: 31915293 PMCID: PMC6983380 DOI: 10.1073/pnas.1919035117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ability to study human liver disease is limited by available hepatocyte models. Primary human hepatocytes (PHH) and xenograft models suffer from limited availability, donor-to-donor variability, and high cost. Here we report two transformative advances. First, the alkaloid retrorsine improves humanization of the murine liver, which allows routine production of highly humanized mice and high-quality mouse-passaged PHH. Second, the ability to genetically modify PHH cultures and retransplant to create highly humanized mice with genetically altered grafts. When combined, these two advances open new frontiers for creating disease-specific PHH models and for performing genetic and other screens in PHH. Primary human hepatocytes (PHHs) are an essential tool for modeling drug metabolism and liver disease. However, variable plating efficiencies, short lifespan in culture, and resistance to genetic manipulation have limited their use. Here, we show that the pyrrolizidine alkaloid retrorsine improves PHH repopulation of chimeric mice on average 10-fold and rescues the ability of even poorly plateable donor hepatocytes to provide cells for subsequent ex vivo cultures. These mouse-passaged (mp) PHH cultures overcome the marked donor-to-donor variability of cryopreserved PHH and remain functional for months as demonstrated by metabolic assays and infection with hepatitis B virus and Plasmodium falciparum. mpPHH can be efficiently genetically modified in culture, mobilized, and then recultured as spheroids or retransplanted to create highly humanized mice that carry a genetically altered hepatocyte graft. Together, these advances provide flexible tools for the study of human liver disease and evaluation of hepatocyte-targeted gene therapy approaches.
Collapse
|
41
|
Yuan L, Jiang J, Liu X, Zhang Y, Zhang L, Xin J, Wu K, Li X, Cao J, Guo X, Shi D, Li J, Jiang L, Sun S, Wang T, Hou W, Zhang T, Zhu H, Zhang J, Yuan Q, Cheng T, Li J, Xia N. HBV infection-induced liver cirrhosis development in dual-humanised mice with human bone mesenchymal stem cell transplantation. Gut 2019; 68:2044-2056. [PMID: 30700543 PMCID: PMC6839735 DOI: 10.1136/gutjnl-2018-316091] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 11/09/2018] [Accepted: 12/08/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Developing a small animal model that accurately delineates the natural history of hepatitis B virus (HBV) infection and immunopathophysiology is necessary to clarify the mechanisms of host-virus interactions and to identify intervention strategies for HBV-related liver diseases. This study aimed to develop an HBV-induced chronic hepatitis and cirrhosis mouse model through transplantation of human bone marrow mesenchymal stem cells (hBMSCs). DESIGN Transplantation of hBMSCs into Fah-/-Rag2-/-IL-2Rγc-/- SCID (FRGS) mice with fulminant hepatic failure (FHF) induced by hamster-anti-mouse CD95 antibody JO2 generated a liver and immune cell dual-humanised (hBMSC-FRGS) mouse. The generated hBMSC-FRGS mice were subjected to assessments of sustained viremia, specific immune and inflammatory responses and liver pathophysiological injury to characterise the progression of chronic hepatitis and cirrhosis after HBV infection. RESULTS The implantation of hBMSCs rescued FHF mice, as demonstrated by robust proliferation and transdifferentiation of functional human hepatocytes and multiple immune cell lineages, including B cells, T cells, natural killer cells, dendritic cells and macrophages. After HBV infection, the hBMSC-FRGS mice developed sustained viremia and specific immune and inflammatory responses and showed progression to chronic hepatitis and liver cirrhosis at a frequency of 55% after 54 weeks. CONCLUSION This new humanised mouse model recapitulates the liver cirrhosis induced by human HBV infection, thus providing research opportunities for understanding viral immune pathophysiology and testing antiviral therapies in vivo.
Collapse
Affiliation(s)
- Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Jing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Yali Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Liang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Xiaoling Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Jiali Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Xueran Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Dongyan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Li
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Longyan Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Suwan Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tengyun Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Wangheng Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
42
|
Alisjahbana A, Mohammad I, Gao Y, Evren E, Ringqvist E, Willinger T. Human macrophages and innate lymphoid cells: Tissue-resident innate immunity in humanized mice. Biochem Pharmacol 2019; 174:113672. [PMID: 31634458 DOI: 10.1016/j.bcp.2019.113672] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
Macrophages and innate lymphoid cells (ILCs) are tissue-resident cells that play important roles in organ homeostasis and tissue immunity. Their intricate relationship with the organs they reside in allows them to quickly respond to perturbations of organ homeostasis and environmental challenges, such as infection and tissue injury. Macrophages and ILCs have been extensively studied in mice, yet important species-specific differences exist regarding innate immunity between humans and mice. Complementary to ex-vivo studies with human cells, humanized mice (i.e. mice with a human immune system) offer the opportunity to study human macrophages and ILCs in vivo within their surrounding tissue microenvironments. In this review, we will discuss how humanized mice have helped gain new knowledge about the basic biology of these cells, as well as their function in infectious and malignant conditions. Furthermore, we will highlight active areas of investigation related to human macrophages and ILCs, such as their cellular heterogeneity, ontogeny, tissue residency, and plasticity. In the near future, we expect more fundamental discoveries in these areas through the combined use of improved humanized mouse models together with state-of-the-art technologies, such as single-cell RNA-sequencing and CRISPR/Cas9 genome editing.
Collapse
Affiliation(s)
- Arlisa Alisjahbana
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Imran Mohammad
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Elza Evren
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Emma Ringqvist
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Tim Willinger
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden.
| |
Collapse
|
43
|
Dagur RS, Wang W, Makarov E, Sun Y, Poluektova LY. Establishment of the Dual Humanized TK-NOG Mouse Model for HIV-associated Liver Pathogenesis. J Vis Exp 2019:10.3791/58645. [PMID: 31566621 PMCID: PMC6822171 DOI: 10.3791/58645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite the increased life expectancy of patients infected with human immunodeficiency virus-1 (HIV-1), liver disease has emerged as a common cause of their morbidity. The liver immunopathology caused by HIV-1 remains elusive. Small xenograft animal models with human hepatocytes and human immune system can recapitulate the human biology of the disease's pathogenesis. Herein, a protocol is described to establish a dual humanized mouse model through human hepatocytes and CD34+ hematopoietic stem/progenitor cells (HSPCs) transplantation, to study liver immunopathology as observed in HIV-infected patients. To achieve dual reconstitution, male TK-NOG (NOD.Cg-Prkdcscid Il2rgtm1Sug Tg(Alb-TK)7-2/ShiJic) mice are intraperitoneally injected with ganciclovir (GCV) doses to eliminate mouse transgenic liver cells, and with treosulfan for nonmyeloablative conditioning, both of which facilitate human hepatocyte (HEP) engraftment and human immune system (HIS) development. Human albumin (ALB) levels are evaluated for liver engraftment, and the presence of human immune cells in blood detected by flow cytometry confirms the establishment of human immune system. The model developed using the protocol described here resembles multiple components of liver damage from HIV-1 infection. Its establishment could prove to be essential for studies of hepatitis virus co-infection and for the evaluation of antiviral and antiretroviral drugs.
Collapse
Affiliation(s)
- Raghubendra Singh Dagur
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center;
| | - Weimin Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center
| | - Edward Makarov
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center
| | - Yimin Sun
- Department of Pathology and Microbiology, University of Nebraska Medical Center
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center
| |
Collapse
|
44
|
Yasen A, Tuxun T, Apaer S, Li W, Maimaitinijiati Y, Wang H, Aisan M, Aji T, Shao Y, Hao W. Fetal liver stem cell transplantation for liver diseases. Regen Med 2019; 14:703-714. [PMID: 31393226 DOI: 10.2217/rme-2018-0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stem cell transplantation exhibited a promising lifesaving therapy for various end-stage liver diseases and could serve as a salvaging bridge until curative methods can be performed. In past decades, mature hepatocytes, liver progenitor cells, mesenchymal stem cells and induced pluripotent stem cells have been practiced in above settings. However, long-term survival rates and continuous proliferation ability of these cells in vivo are unsatisfactory, whereas, fetal liver stem cells (FLSCs), given their unique superiority, may be the best candidate for stem cell transplantation technique. Recent studies have revealed that FLSCs could be used as an attractive genetic therapy or regenerative treatments for inherited metabolic or other hepatic disorders. In this study, we reviewed current status and advancements of FLSCs-based treatment.
Collapse
Affiliation(s)
- Aimaiti Yasen
- Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Tuerhongjiang Tuxun
- Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Shadike Apaer
- State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Wending Li
- Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Yusufukadier Maimaitinijiati
- Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Hui Wang
- State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Meiheriayi Aisan
- Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Tuerganaili Aji
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Yingmei Shao
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Wen Hao
- State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| |
Collapse
|
45
|
Yamaguchi T, Matsuzaki J, Katsuda T, Saito Y, Saito H, Ochiya T. Generation of functional human hepatocytes in vitro: current status and future prospects. Inflamm Regen 2019; 39:13. [PMID: 31308858 PMCID: PMC6604181 DOI: 10.1186/s41232-019-0102-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022] Open
Abstract
Liver and hepatocyte transplantation are the only effective therapies for late-stage liver diseases, in which the liver loses its regenerative capacity. However, there is a shortage of donors. As a potential alternative approach, functional hepatocytes were recently generated from various cell sources. Analysis of drug metabolism in the human liver is important for drug development. Consequently, cells that metabolize drugs similar to human primary hepatocytes are required. This review discusses the current challenges and future perspectives concerning hepatocytes and hepatic progenitor cells that have been reprogrammed from various cell types, focusing on their functions in transplantation models and their ability to metabolize drugs.
Collapse
Affiliation(s)
- Tomoko Yamaguchi
- 1Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512 Japan.,2Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Juntaro Matsuzaki
- 2Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan.,3Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Takeshi Katsuda
- 2Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Yoshimasa Saito
- 1Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512 Japan
| | - Hidetsugu Saito
- 1Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512 Japan
| | - Takahiro Ochiya
- 2Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan.,4Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402 Japan
| |
Collapse
|
46
|
Humanized Mouse Models for the Study of Hepatitis C and Host Interactions. Cells 2019; 8:cells8060604. [PMID: 31213010 PMCID: PMC6627916 DOI: 10.3390/cells8060604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infection is commonly attributed as a major cause of chronic hepatotropic diseases, such as, steatosis, cirrhosis and hepatocellular carcinoma. As HCV infects only humans and primates, its narrow host tropism hampers in vivo studies of HCV-mammalian host interactions and the development of effective therapeutics and vaccines. In this context, we will focus our discussion on humanized mice in HCV research. Here, these humanized mice are defined as animal models that encompass either only human hepatocytes or both human liver and immune cells. Aspects related to immunopathogenesis, anti-viral interventions, drug testing and perspectives of these models for future HCV research will be discussed.
Collapse
|
47
|
Abstract
Hepatitis B virus (HBV) affects more than 257 million people globally, resulting in progressively worsening liver disease, manifesting as fibrosis, cirrhosis, and hepatocellular carcinoma. The exceptionally narrow species tropism of HBV restricts its natural hosts to humans and non-human primates, including chimpanzees, gorillas, gibbons, and orangutans. The unavailability of completely immunocompetent small-animal models has contributed to the lack of curative therapeutic interventions. Even though surrogates allow the study of closely related viruses, their host genetic backgrounds, immune responses, and molecular virology differ from those of HBV. Various different models, based on either pure murine or xenotransplantation systems, have been introduced over the past years, often making the choice of the optimal model for any given question challenging. Here, we offer a concise review of in vivo model systems employed to study HBV infection and steps in the HBV life cycle or pathogenesis.
Collapse
Affiliation(s)
| | - Catherine Cherry
- Section of Virology, Department of Medicine, Imperial College London, W2 1PGLondon, U.K
| | - Harry Gunn
- Section of Virology, Department of Medicine, Imperial College London, W2 1PGLondon, U.K
| | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, W2 1PGLondon, U.K
| |
Collapse
|
48
|
Arrey F, Löwe D, Kuhlmann S, Kaiser P, Moura-Alves P, Krishnamoorthy G, Lozza L, Maertzdorf J, Skrahina T, Skrahina A, Gengenbacher M, Nouailles G, Kaufmann SHE. Humanized Mouse Model Mimicking Pathology of Human Tuberculosis for in vivo Evaluation of Drug Regimens. Front Immunol 2019; 10:89. [PMID: 30766535 PMCID: PMC6365439 DOI: 10.3389/fimmu.2019.00089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/14/2019] [Indexed: 11/13/2022] Open
Abstract
Human immune system mice are highly valuable for in vivo dissection of human immune responses. Although they were employed for analyzing tuberculosis (TB) disease, there is little data on the spatial organization and cellular composition of human immune cells in TB granuloma pathology in this model. We demonstrate that human immune system mice, generated by transplanted human fetal liver derived hematopoietic stem cells develop a continuum of pulmonary lesions upon Mycobacterium tuberculosis aerosol infection. In particular, caseous necrotic granulomas, which contribute to prolonged TB treatment time, developed, and had cellular phenotypic spatial-organization similar to TB patients. By comparing two recommended drug regimens, we confirmed observations made in clinical settings: Adding Moxifloxacin to a classical chemotherapy regimen had no beneficial effects on bacterial eradication. We consider this model instrumental for deeper understanding of human specific features of TB pathogenesis and of particular value for the pre-clinical drug development pipeline.
Collapse
Affiliation(s)
- Frida Arrey
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Delia Löwe
- Department of Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Stefanie Kuhlmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Peggy Kaiser
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Pedro Moura-Alves
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Laura Lozza
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jeroen Maertzdorf
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Tatsiana Skrahina
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Alena Skrahina
- Republican Scientific and Practical Centre for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Martin Gengenbacher
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Geraldine Nouailles
- Division of Pulmonary Inflammation, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
49
|
Abstract
In spite of the immense progress in hepatitis C virus (HCV) research, efforts to prevent infection, such as generating a vaccine, have not yet been successful. The high price tag associated with current treatment options for chronic infection and the spike in new infections concurrent with growing opioid abuse are strong motivators for developing effective immunization and understanding neutralizing antibodies' role in preventing infection. Humanized mice-both human liver chimeras as well as genetically humanized models-are important platforms for testing both possible vaccine candidates as well as antibody-based therapies. This chapter details the variety of ways humanized mouse technology can be employed in pursuit of learning how HCV infection can be prevented.
Collapse
Affiliation(s)
- Jenna M Gaska
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Qiang Ding
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Alexander Ploss
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
50
|
Humanized Mouse Models for the Study of Infection and Pathogenesis of Human Viruses. Viruses 2018; 10:v10110643. [PMID: 30453598 PMCID: PMC6266013 DOI: 10.3390/v10110643] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
The evolution of infectious pathogens in humans proved to be a global health problem. Technological advancements over the last 50 years have allowed better means of identifying novel therapeutics to either prevent or combat these infectious diseases. The development of humanized mouse models offers a preclinical in vivo platform for further characterization of human viral infections and human immune responses triggered by these virus particles. Multiple strains of immunocompromised mice reconstituted with a human immune system and/or human hepatocytes are susceptible to infectious pathogens as evidenced by establishment of full viral life cycles in hope of investigating viral–host interactions observed in patients and discovering potential immunotherapies. This review highlights recent progress in utilizing humanized mice to decipher human specific immune responses against viral tropism.
Collapse
|