1
|
Chikaev AN, Chikaev AN, Rudometov AP, Merkulyeva YA, Karpenko LI. Phage display as a tool for identifying HIV-1 broadly neutralizing antibodies. Vavilovskii Zhurnal Genet Selektsii 2021; 25:562-572. [PMID: 34595378 PMCID: PMC8453360 DOI: 10.18699/vj21.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
Combinatorial biology methods offer a good solution for targeting interactions of specif ic molecules
by a high-throughput screening and are widely used for drug development, diagnostics, identif ication of novel
monoclonal antibodies, search for linear peptide mimetics of discontinuous epitopes for the development of
immunogens or vaccine components. Among all currently available techniques, phage display remains one of
the most popular approaches. Despite being a fairly old method, phage display is still widely used for studying
protein-protein, peptide-protein and DNA-protein interactions due to its relative simplicity and versatility. Phage
display allows highly representative libraries of peptides, proteins or their fragments to be created. Each phage
particle in a library displays peptides or proteins fused to its coat protein and simultaneously carries the DNA
sequence encoding the displayed peptide/protein in its genome. The biopanning procedure allows isolation of
specif ic clones for almost any target, and due to the physical link between the genotype and the phenotype of
recombinant phage particles it is possible to determine the structure of selected molecules. Phage display technology
continues to play an important role in HIV research. A major obstacle to the development of an effective
HIV vaccine is an extensive genetic and antigenic variability of the virus. According to recent data, in order to provide
protection against HIV infection, the so-called broadly neutralizing antibodies that are cross-reactive against
multiple viral strains of HIV must be induced, which makes the identif ication of such antibodies a key area of HIV
vaccinology. In this review, we discuss the use of phage display as a tool for identif ication of HIV-specif ic antibodies
with broad neutralizing activity. We provide an outline of phage display technology, brief ly describe the
design of antibody phage libraries and the affinity selection procedure, and discuss the biology of HIV-1-specif ic
broadly neutralizing antibodies. Finally, we summarize the studies aimed at identif ication of broadly neutralizing
antibodies using various types of phage libraries.
Collapse
Affiliation(s)
| | - A N Chikaev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A P Rudometov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - Yu A Merkulyeva
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - L I Karpenko
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
2
|
Lopez T, Chuan C, Ramirez A, Chen KHE, Lorenson MY, Benitez C, Mustafa Z, Pham H, Sanchez R, Walker AM, Ge X. Epitope-specific affinity maturation improved stability of potent protease inhibitory antibodies. Biotechnol Bioeng 2018; 115:2673-2682. [PMID: 30102763 DOI: 10.1002/bit.26814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 12/26/2022]
Abstract
Targeting effectual epitopes is essential for therapeutic antibodies to accomplish their desired biological functions. This study developed a competitive dual color fluorescence-activated cell sorting (FACS) to maturate a matrix metalloprotease 14 (MMP-14) inhibitory antibody. Epitope-specific screening was achieved by selection on MMP-14 during competition with N-terminal domain of tissue inhibitor of metalloproteinase-2 (TIMP-2) (nTIMP-2), a native inhibitor of MMP-14 binding strongly to its catalytic cleft. 3A2 variants with high potency, selectivity, and improved affinity and proteolytic stability were isolated from a random mutagenesis library. Binding kinetics indicated that the affinity improvements were mainly from slower dissociation rates. In vitro degradation tests suggested the isolated variants had half lives 6-11-fold longer than the wt. Inhibition kinetics suggested they were competitive inhibitors which showed excellent selectivity toward MMP-14 over highly homologous MMP-9. Alanine scanning revealed that they bound to the vicinity of MMP-14 catalytic cleft especially residues F204 and F260, suggesting that the desired epitope was maintained during maturation. When converted to immunoglobulin G, B3 showed 5.0 nM binding affinity and 6.5 nM inhibition potency with in vivo half-life of 4.6 days in mice. In addition to protease inhibitory antibodies, the competitive FACS described here can be applied for discovery and engineering biosimilars, and in general for other circumstances where epitope-specific modulation is needed.
Collapse
Affiliation(s)
- Tyler Lopez
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, Riverside, California
| | - Chen Chuan
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, Riverside, California
| | - Aaron Ramirez
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, Riverside, California
| | - Kuan-Hui E Chen
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Mary Y Lorenson
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Chris Benitez
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, Riverside, California
| | - Zahid Mustafa
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, Riverside, California
| | - Henry Pham
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, Riverside, California
| | - Ramon Sanchez
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, Riverside, California
| | - Ameae M Walker
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Xin Ge
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, Riverside, California
| |
Collapse
|
3
|
Sun Z, Yan L, Tang J, Qian Q, Lenberg J, Zhu D, Liu W, Wu K, Wang Y, Lu S. Brief introduction of current technologies in isolation of broadly neutralizing HIV-1 antibodies. Virus Res 2017; 243:75-82. [PMID: 29051051 PMCID: PMC7114535 DOI: 10.1016/j.virusres.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022]
Abstract
HIV/AIDS has become a worldwide pandemic. Before an effective HIV-1 vaccine eliciting broadly neutralizing monoclonal antibodies (bnmAbs) is fully developed, passive immunization for prevention and treatment of HIV-1 infection may alleviate the burden caused by the pandemic. Among HIV-1 infected individuals, about 20% of them generated cross-reactive neutralizing antibodies two to four years after infection, the details of which could provide knowledge for effective vaccine design. Recent progress in techniques for isolation of human broadly neutralizing antibodies has facilitated the study of passive immunization. The isolation and characterization of large panels of potent human broadly neutralizing antibodies has revealed new insights into the principles of antibody-mediated neutralization of HIV. In this paper, we review the current effective techniques in broadly neutralizing antibody isolation.
Collapse
Affiliation(s)
- Zehua Sun
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States.
| | - Lixin Yan
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China.
| | - Jiansong Tang
- Department of Technical Specialist, China Bioengineering Technology Group Limited, Unit 209,Building 16W, Hong Kong Science Park, Shatin, NT, HK, 999077, Hong Kong
| | - Qian Qian
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States
| | - Jerica Lenberg
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States; Augustana University, 2001 S Summit Avenue, Sioux Falls, SD, 571977, United States
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, 77030, United States
| | - Wan Liu
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China
| | - Kao Wu
- Glyn O. Philips Hydrocolloid Research Center at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Yilin Wang
- University of California, Irvine. 100 Pacific, Irvine, CA, 92618, United States
| | - Shiqiang Lu
- AIDS Institute, Faculty of Medicine, The University of Hong Kong, No21 Sassoon Road, 999077, Hong Kong, Hong Kong.
| |
Collapse
|
4
|
Impaired Immunogenicity of Meningococcal Neisserial Surface Protein A in Human Complement Factor H Transgenic Mice. Infect Immun 2015; 84:452-8. [PMID: 26597984 DOI: 10.1128/iai.01267-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/14/2015] [Indexed: 01/20/2023] Open
Abstract
Neisserial surface protein A (NspA) is a highly conserved outer membrane protein previously investigated as a meningococcal vaccine candidate. Despite eliciting serum bactericidal activity in mice, a recombinant NspA vaccine failed to elicit serum bactericidal antibodies in a phase 1 clinical trial in humans. The discordant results may be explained by the recent discovery that NspA is a human-specific ligand of the complement inhibitor factor H (FH). Therefore, in humans but not mice, NspA would be expected to form a complex with FH, which could impair human anti-NspA protective antibody responses. To investigate this question, we immunized human FH transgenic BALB/c mice with three doses of recombinant NspA expressed in Escherichia coli microvesicles, with each dose being separated by 3 weeks. Three of 12 (25%) transgenic mice and 13 of 14 wild-type mice responded with bactericidal titers of ≥1:10 in postimmunization sera (P = 0.0008, Fisher's exact test). In contrast, human FH transgenic and wild-type mice immunized with a control meningococcal native outer membrane vesicle vaccine had similar serum bactericidal antibody responses directed at PorA, which is not known to bind human FH, and a mutant factor H binding protein (FHbp) antigen with a >50-fold lower level of FH binding than wild-type FHbp antigen binding.Thus, human FH can impair anti-NspA serum bactericidal antibody responses, which may explain the poor immunogenicity of the NspA vaccine previously tested in humans. A mutant NspA vaccine engineered to have decreased binding to human FH may increase protective antibody responses in humans.
Collapse
|
5
|
Weiss-Ottolenghi Y, Gershoni JM. Profiling the IgOme: meeting the challenge. FEBS Lett 2014; 588:318-25. [PMID: 24239539 PMCID: PMC7094557 DOI: 10.1016/j.febslet.2013.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 02/03/2023]
Abstract
The entire repertoire of antibodies in our serum, the IgOme, is a historical record of our past experiences and a reflection of our immune status at any given moment. Understanding the dynamics of the IgOme and how the diversity and specificities of serum antibodies change in response to disease and maintenance of homeostasis can directly impact the ability to design and develop novel vaccines, diagnostics and therapeutics. Here we review both direct and indirect methodologies that are being developed to map the complexity and specificities of the antibodies in polyclonal serum - the IgOme.
Collapse
Affiliation(s)
- Yael Weiss-Ottolenghi
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jonathan M Gershoni
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
6
|
Puri V, Streaker E, Prabakaran P, Zhu Z, Dimitrov DS. Highly efficient selection of epitope specific antibody through competitive yeast display library sorting. MAbs 2013; 5:533-9. [PMID: 23765162 DOI: 10.4161/mabs.25211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Combinatory antibody library display technologies have been invented and successfully implemented for the selection and engineering of therapeutic antibodies. Precise targeting of important epitopes on the protein of interest is essential for such isolated antibodies to serve as effective modulators of molecular interactions. We developed a strategy to efficiently isolate antibodies against a specific epitope on a target protein from a yeast display antibody library using dengue virus envelope protein domain III as a model target. A domain III mutant protein with a key mutation inside a cross-reactive neutralizing epitope was designed, expressed, and used in the competitive panning of a yeast display naïve antibody library. All the yeast display antibodies that bound to the wild type domain III but not to the mutant were selectively sorted and characterized. Two unique clones were identified and showed cross-reactive binding to envelope protein domain IIIs from different serotypes. Epitope mapping of one of the antibodies confirmed that its epitope overlapped with the intended neutralizing epitope. This novel approach has implications for many areas of research where the isolation of epitope-specific antibodies is desired, such as selecting antibodies against conserved epitope(s) of viral envelope proteins from a library containing high titer, high affinity non-neutralizing antibodies, and targeting unique epitopes on cancer-related proteins.
Collapse
Affiliation(s)
- Vinita Puri
- Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD USA
| | | | | | | | | |
Collapse
|
7
|
Zhang X, Han X, Dai D, Bao M, Zhang Z, Zhang M, Bice T, Zhao M, Cao Y, Shang H. Mimotopes selected by biopanning with high-titer HIV-neutralizing antibodies in plasma from Chinese slow progressors. Braz J Infect Dis 2012; 16:510-6. [DOI: 10.1016/j.bjid.2012.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/11/2012] [Indexed: 10/27/2022] Open
|
8
|
Zhang MY, Yuan T, Li J, Rosa Borges A, Watkins JD, Guenaga J, Yang Z, Wang Y, Wilson R, Li Y, Polonis VR, Pincus SH, Ruprecht RM, Dimitrov DS. Identification and characterization of a broadly cross-reactive HIV-1 human monoclonal antibody that binds to both gp120 and gp41. PLoS One 2012; 7:e44241. [PMID: 22970187 PMCID: PMC3438192 DOI: 10.1371/journal.pone.0044241] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/30/2012] [Indexed: 11/24/2022] Open
Abstract
Identification of broadly cross-reactive HIV-1-neutralizing antibodies (bnAbs) may assist vaccine immunogen design. Here we report a novel human monoclonal antibody (mAb), designated m43, which co-targets the gp120 and gp41 subunits of the HIV-1 envelope glycoprotein (Env). M43 bound to recombinant gp140 s from various primary isolates, to membrane-associated Envs on transfected cells and HIV-1 infected cells, as well as to recombinant gp120 s and gp41 fusion intermediate structures containing N-trimer structure, but did not bind to denatured recombinant gp140 s and the CD4 binding site (CD4bs) mutant, gp120 D368R, suggesting that the m43 epitope is conformational and overlaps the CD4bs on gp120 and the N-trimer structure on gp41. M43 neutralized 34% of the HIV-1 primary isolates from different clades and all the SHIVs tested in assays based on infection of peripheral blood mononuclear cells (PBMCs) by replication-competent virus, but was less potent in cell line-based pseudovirus assays. In contrast to CD4, m43 did not induce Env conformational changes upon binding leading to exposure of the coreceptor binding site, enhanced binding of mAbs 2F5 and 4E10 specific for the membrane proximal external region (MPER) of gp41 Envs, or increased gp120 shedding. The overall modest neutralization activity of m43 is likely due to the limited binding of m43 to functional Envs which could be increased by antibody engineering if needed. M43 may represent a new class of bnAbs targeting conformational epitopes overlapping structures on both gp120 and gp41. Its novel epitope and possibly new mechanism(s) of neutralization could helpdesign improved vaccine immunogens and candidate therapeutics.
Collapse
Affiliation(s)
- Mei-Yun Zhang
- AIDS Institute; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen W, Dimitrov DS. Monoclonal antibody-based candidate therapeutics against HIV type 1. AIDS Res Hum Retroviruses 2012; 28:425-34. [PMID: 21827278 DOI: 10.1089/aid.2011.0226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Treatment of HIV-1 infection has been highly successful with small molecule drugs. However, resistance still develops. In addition, long-term use can lead to toxicity with unpredictable effects on health. Finally, current drugs do not lead to HIV-1 eradication. The presence of the virus leads to chronic inflammation, which can result in increased morbidity and mortality after prolonged periods of infection. Monoclonal antibodies (mAbs) have been highly successful during the past two decades for therapy of many diseases, primarily cancers and immune disorders. They are relatively safe, especially human mAbs that have evolved in humans at high concentrations to fight diseases and long-term use may not lead to toxicities. Several broadly neutralizing mAbs (bnmAbs) against HIV-1 can protect animals but are not effective when used for therapy of an established infection. We have hypothesized that HIV-1 has evolved strategies to effectively escape neutralization by full-size antibodies in natural infections but not by smaller antibody fragments. Therefore, a promising direction of research is to discover and exploit antibody fragments as potential candidate therapeutics against HIV-1. Here we review several bnmAbs and engineered antibody domains (eAds), their in vitro and in vivo antiviral efficacy, mechanisms used by HIV-1 to escape them, and strategies that could be effective to develop more powerful mAb-based HIV-1 therapeutics.
Collapse
Affiliation(s)
- Weizao Chen
- Protein Interactions Group, Center for Cancer Research Nanobiology Program, National Cancer Institute (NCI)-Frederick, National Institutes of Health (NIH), Frederick, Maryland
| | - Dimiter S. Dimitrov
- Protein Interactions Group, Center for Cancer Research Nanobiology Program, National Cancer Institute (NCI)-Frederick, National Institutes of Health (NIH), Frederick, Maryland
| |
Collapse
|
10
|
Delhalle S, Schmit JC, Chevigné A. Phages and HIV-1: from display to interplay. Int J Mol Sci 2012; 13:4727-4794. [PMID: 22606007 PMCID: PMC3344243 DOI: 10.3390/ijms13044727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/26/2012] [Accepted: 03/30/2012] [Indexed: 11/16/2022] Open
Abstract
The complex hide-and-seek game between HIV-1 and the host immune system has impaired the development of an efficient vaccine. In addition, the high variability of the virus impedes the long-term control of viral replication by small antiviral drugs. For more than 20 years, phage display technology has been intensively used in the field of HIV-1 to explore the epitope landscape recognized by monoclonal and polyclonal HIV-1-specific antibodies, thereby providing precious data about immunodominant and neutralizing epitopes. In parallel, biopanning experiments with various combinatorial or antibody fragment libraries were conducted on viral targets as well as host receptors to identify HIV-1 inhibitors. Besides these applications, phage display technology has been applied to characterize the enzymatic specificity of the HIV-1 protease. Phage particles also represent valuable alternative carriers displaying various HIV-1 antigens to the immune system and eliciting antiviral responses. This review presents and summarizes the different studies conducted with regard to the nature of phage libraries, target display mode and biopanning procedures.
Collapse
Affiliation(s)
- Sylvie Delhalle
- Laboratory of Retrovirology, CRP-Sante, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg; E-Mails: (J.-C.S.); (A.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +352-26970211; Fax: +352-26970221
| | - Jean-Claude Schmit
- Laboratory of Retrovirology, CRP-Sante, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg; E-Mails: (J.-C.S.); (A.C.)
- Service National des Maladies Infectieuses, Centre Hospitalier Luxembourg, 4, rue E. Barblé, L-1210 Luxembourg, Luxembourg
| | - Andy Chevigné
- Laboratory of Retrovirology, CRP-Sante, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg; E-Mails: (J.-C.S.); (A.C.)
| |
Collapse
|
11
|
Identification of a gp41 core-binding molecule with homologous sequence of human TNNI3K-like protein as a novel human immunodeficiency virus type 1 entry inhibitor. J Virol 2010; 84:9359-68. [PMID: 20592080 DOI: 10.1128/jvi.00644-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) gp41 plays a critical role in the viral fusion process, and its N- and C-terminal heptad repeat domains serve as important targets for developing anti-HIV-1 drugs, like T-20 (generic name, enfuvirtide; brand name, Fuzeon). Here, we conducted a yeast two-hybrid screening on a human bone marrow cDNA library using the recombinant soluble gp41 ectodomain as the bait and identified a novel gp41 core-binding molecule, designated P20. P20 showed no homology with a current HIV fusion inhibitor, T-20, but had sequence homology to a human protein, troponin I type 3 interacting kinase (TNNI3K)-like protein. While it could bind to the six-helix bundle core structure formed by the N- and C-terminal heptad repeats, P20 did not interrupt the formation of the six-helix bundle. P20 was effective in blocking HIV-1 Env-mediated syncytium formation and inhibiting infection by a broad spectrum of HIV-1 strains with distinct subtypes and coreceptor tropism, while it was ineffective against other enveloped viruses, such as vesicular stomatitis virus and influenza A virus. P20 exhibited no significant cytotoxicity to the CD4(+) cells that were used for testing antiviral activity. Among the 11 P20 mutants, four analogous peptides with a common motif (WGRLEGRRT) exhibited significantly reduced anti-HIV-1 activity, suggesting that this region is the critical active site of P20. Therefore, this peptide can be used as a lead for developing novel HIV fusion inhibitors and as a probe for studying the membrane-fusogenic mechanism of HIV.
Collapse
|
12
|
Abstract
The potential for antibodies to act as "magic bullets" for treatment of human disease was recognized a century ago, but its full realization has began to occur only during the last decade. A key to their current success is the ability to make libraries of antibodies/B cells, isolate a single species, and engineer it to be safe, efficacious and of high quality. Despite this progress, major challenges to the effective prevention, diagnosis and treatment of a vast majority of diseases remain. Limited success in the development of effective vaccines against diseases such as AIDS and cancer reflects our incomplete understanding of how antibodies are generated and function. Only a miniscule number of antibodies are characterized out of the universe of antibodies generated by the immune system. Knowledge of antibodyomes-the complete sets of antibodies-could help solve these and other challenges.
Collapse
Affiliation(s)
- Dimiter S Dimitrov
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
13
|
Maturation Pathways of Cross-Reactive HIV-1 Neutralizing Antibodies. Viruses 2009; 1:802-17. [PMID: 21994570 PMCID: PMC3185542 DOI: 10.3390/v1030802] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 11/17/2022] Open
Abstract
Several human monoclonal antibodies (hmAbs) and antibody fragments, including the best characterized in terms of structure-function b12 and Fab X5, exhibit relatively potent and broad HIV-1 neutralizing activity. However, the elicitation of b12 or b12-like antibodies in vivo by vaccine immunogens based on the HIV-1 envelope glycoprotein (Env) has not been successful. B12 is highly divergent from the closest corresponding germline antibody while X5 is less divergent. We have hypothesized that the relatively high degree of specific somatic hypermutations may preclude binding of the HIV-1 envelope glycoprotein (Env) to closest germline antibodies, and that identifying antibodies that are intermediates in the pathways to maturation could help design novel vaccine immunogens to guide the immune system for their enhanced elicitation. In support of this hypothesis we have previously found that a germline-like b12 (monovalent and bivalent scFv as an Fc fusion protein or IgG) lacks measurable binding to an Env as measured by ELISA with a sensitivity in the μM range [1]; here we present evidence confirming and expanding these findings for a panel of Envs. In contrast, a germline-like scFv X5 bound Env with high (nM) affinity. To begin to explore the maturation pathways of these antibodies we identified several possible b12 intermediate antibodies and tested their neutralizing activity. These intermediate antibodies neutralized only some HIV-1 isolates and with relatively weak potency. In contrast, germline-like scFv X5 neutralized a subset of the tested HIV-1 isolates with comparable efficiencies to that of the mature X5. These results could help explain the relatively high immunogenicity of the coreceptor binding site on gp120 and the abundance of CD4-induced (CD4i) antibodies in HIV-1-infected patients (X5 is a CD4i antibody) as well as the maturation pathway of X5. They also can help identify antigens that can bind specifically to b12 germline and intermediate antibodies that together with Envs could be used as a conceptually novel type of candidate vaccines. Such candidate vaccines based on two or more immunogens could help guiding the immune system through complex maturation pathways for elicitation of antibodies that are similar or identical to antibodies with known properties.
Collapse
|
14
|
Xiao X, Chen W, Feng Y, Zhu Z, Prabakaran P, Wang Y, Zhang MY, Longo NS, Dimitrov DS. Germline-like predecessors of broadly neutralizing antibodies lack measurable binding to HIV-1 envelope glycoproteins: implications for evasion of immune responses and design of vaccine immunogens. Biochem Biophys Res Commun 2009; 390:404-9. [PMID: 19748484 PMCID: PMC2787893 DOI: 10.1016/j.bbrc.2009.09.029] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 09/08/2009] [Indexed: 01/02/2023]
Abstract
Several human monoclonal antibodies (hmAbs) including b12, 2G12, and 2F5 exhibit relatively potent and broad HIV-1-neutralizing activity. However, their elicitation in vivo by vaccine immunogens based on the HIV-1 envelope glycoprotein (Env) has not been successful. We have hypothesized that HIV-1 has evolved a strategy to reduce or eliminate the immunogenicity of the highly conserved epitopes of such antibodies by using “holes” (absence or very weak binding to these epitopes of germline antibodies that is not sufficient to initiate and/or maintain an efficient immune response) in the human germline B cell receptor (BCR) repertoire. To begin to test this hypothesis we have designed germline-like antibodies corresponding most closely to b12, 2G12, and 2F5 as well as to X5, m44, and m46 which are cross-reactive but with relatively modest neutralizing activity as natively occurring antibodies due to size and/or other effects. The germline-like X5, m44, and m46 bound with relatively high affinity to all tested Envs. In contrast, germline-like b12, 2G12, and 2F5 lacked measurable binding to Envs in an ELISA assay although the corresponding mature antibodies did. These results provide initial evidence that Env structures containing conserved vulnerable epitopes may not initiate humoral responses by binding to germline antibodies. Even if such responses are initiated by very weak binding undetectable in our assay it is likely that they will be outcompeted by responses to structures containing the epitopes of X5, m44, m46, and other antibodies that bind germline BCRs with much higher affinity/avidity. This hypothesis, if further supported by data, could contribute to our understanding of how HIV-1 evades immune responses and offer new concepts for design of effective vaccine immunogens.
Collapse
Affiliation(s)
- Xiaodong Xiao
- Protein Interactions Group, CCRNP, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang MY, Wang Y, Mankowski MK, Ptak RG, Dimitrov DS. Cross-reactive HIV-1-neutralizing activity of serum IgG from a rabbit immunized with gp41 fused to IgG1 Fc: possible role of the prolonged half-life of the immunogen. Vaccine 2009; 27:857-63. [PMID: 19084043 PMCID: PMC3399430 DOI: 10.1016/j.vaccine.2008.11.083] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/19/2008] [Accepted: 11/22/2008] [Indexed: 11/22/2022]
Abstract
The elicitation of broadly cross-reactive HIV-1 neutralizing antibodies in humans remains a major challenge in developing a viable AIDS vaccine. We hypothesized that prolonged exposure to candidate vaccine immunogens could enhance the elicitation of such antibodies. In an attempt to develop HIV-1 vaccine immunogens with prolonged half-lives and increased stability, we constructed a fusion protein, gp41Fc, in which a truncated HIV-1 gp41(89.6) was fused to a human IgG(1) Fc. Gp41Fc is stable in solution, retains its antigenic structure and is highly immunogenic in rabbits. The serum titers reached 1:102,400 for the gp41Fc and 1:5,120 for gp140(89.6). Rabbit IgG neutralized diverse HIV-1 isolates and HIV-2, and the neutralization activity was attributed to gp41-specific IgG. The concentration of the gp41Fc in the serum correlated with the neutralization activity of rabbit IgG which recognized mostly conformation-independent epitopes on gp41 and predominantly bound to peptides derived from the gp41 immunodominant loop region. These results suggest that the prolonged half-life of gp41Fc in the serum may enhance the generation of cross-reactive neutralizing antibodies. Further research is needed to confirm and extend these results which may have implications for the development of vaccine immunogens with enhanced capability to elicit cross-reactive HIV-1-neutralizing antibodies.
Collapse
Affiliation(s)
- Mei-Yun Zhang
- Center for Cancer Research Nanobiology Program, CCR, NCI-Frederick, NIH, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Neutralizing antibodies are a critical component in the protection or recovery from viral infections. In the absence of available vaccines or antiviral drugs for many important human viral pathogens, the identification and characterization of new human monoclonal antibodies (hmAbs) that are able to neutralize viruses offers the possibility for effective pre- and/or post-exposure therapeutic modalities. Such hmAbs may also help in our understanding of the virus entry process, the mechanisms of virus neutralization, and in the eventual development of specific entry inhibitors, vaccines, and research tools. The majority of the more recently developed antiviral hmAbs have come from the use of antibody phage-display technologies using both naïve and immune libraries. Many of these agents are also enveloped viruses possessing important neutralizing determinants within their membrane-anchored envelope glycoproteins, and the use of recombinant, soluble versions of these viral glycoproteins is often critical in the isolation and development of antiviral hmAbs. This chapter will detail several methods that have been successfully employed to produce, purify, and characterize soluble and secreted versions of several viral envelope glycoproteins which have been successfully used as antigens to capture and isolate human phage-displayed monoclonal antibodies.
Collapse
Affiliation(s)
- Antony S. Dimitrov
- Profectus BioSciences, Inc., South Rolling Road 1450, Baltimore, 21227 U.S.A
| |
Collapse
|
17
|
Zhang MY, Dimitrov DS. Competitive antigen panning for selection of HIV-1 neutralizing human monoclonal antibodies specific for gp41. Methods Mol Biol 2009; 525:175-86, xv. [PMID: 19252830 PMCID: PMC3399416 DOI: 10.1007/978-1-59745-554-1_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
HIV envelope glycoprotein (Env) is composed of two non-covalently associated subunits: gp120 and gp41. Panning of phage-displayed antibody libraries against gp140 (covalently linked gp120 and the extracellular portion of gp41) has resulted mostly in selection of anti-gp120 antibodies. Native gp41 in the absence of gp120 is unstable. The use of gp41 fragments as antigens has resulted in selection of antibodies with only relatively modest neutralizing activity. To enhance selection of antibodies specific for gp41 in the context of the whole Env we developed a methodology termed competitive antigen panning (CAP). Using CAP, we identified a panel of gp41-specific human monoclonal antibodies from an HIV-1 immune library derived from long-term nonprogressors. These antibodies recognize conformational epitopes in gp41 and exhibited, to various extents, neutralization activity in assays based on spreading infection in peripheral blood mononuclear cells. The CAP methodology is generally applicable for selection of antibodies specific for any epitope that is not a dominant epitope in the antigen. It is superior to a traditional pre-depletion method in avoiding potential loss of target-specific antibodies.
Collapse
Affiliation(s)
- Mei-Yun Zhang
- NCI-Frederick, National Institutes of Health, Frederick, MD, USA
| | | |
Collapse
|
18
|
Hrin R, Montgomery DL, Wang F, Condra JH, An Z, Strohl WR, Bianchi E, Pessi A, Joyce JG, Wang YJ. Short communication: In vitro synergy between peptides or neutralizing antibodies targeting the N- and C-terminal heptad repeats of HIV Type 1 gp41. AIDS Res Hum Retroviruses 2008; 24:1537-44. [PMID: 19102685 DOI: 10.1089/aid.2008.0129] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Class 1 and class 2 fusion peptides bind to the trimeric N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR) regions of HIV-1 envelope glycoprotein gp41, respectively, and block its intramolecular folding required for Env-mediated viral and host cell membrane fusion and subsequent viral entry. Using a combination of T-20 (class 1) and (CCIZN17)(3) (class 2), we provide evidence that these classes of fusion peptides work synergistically in an in vitro infectivity assay in inhibiting the entry of primary HIV-1 isolate 89.6 with combination indexes reaching 0.37 and 0.32 at IC(50) and IC(90), respectively. We further demonstrate a similar degree of neutralization synergy between a monoclonal antibody (MAb), D5, targeting the hydrophobic pocket region of the NHR, and 2F5, a well-characterized MAb that targets the C-terminal end of CHR and the membrane-proximal external region (MPER), providing a rational basis for developing combination vaccines targeting these two highly conserved regions of gp41.
Collapse
Affiliation(s)
- Renee Hrin
- Department of Antiviral Research, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Donna L. Montgomery
- Department of Biologics Research, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Fubao Wang
- Department of Biologics Research, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Jon H. Condra
- Department of Biologics Research, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Zhiqiang An
- Department of Biologics Research, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - William R. Strohl
- Department of Biologics Research, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Elisabetta Bianchi
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, I-00040 Pomezia (Rome), Italy
| | - Antonello Pessi
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, I-00040 Pomezia (Rome), Italy
| | - Joseph G. Joyce
- Department of Vaccines Research, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Ying-Jie Wang
- Department of Antiviral Research, Merck Research Laboratories, West Point, Pennsylvania 19486
| |
Collapse
|
19
|
Kaushik-Basu N, Basu A, Harris D. Peptide inhibition of HIV-1: current status and future potential. BioDrugs 2008; 22:161-75. [PMID: 18481899 DOI: 10.2165/00063030-200822030-00003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
More than 2 decades of intensive research has focused on defining replication mechanisms of HIV type 1 (HIV-1), the etiologic agent of AIDS. The delineation of strategies for combating this viral infection has yielded many innovative approaches toward this end. HIV-1 is a lentivirus in the family retroviridae that is relatively small with regard to both structure and genome size, having a diploid RNA genome of approximately 9 kb, with only three major genes and several gene products resulting from alternate splicing and translational frameshifting. Most marketed drugs for treating AIDS are inhibitors of HIV-1 reverse transcriptase or protease enzymes, but new targets include the integrase enzyme, cell surface interactions that facilitate viral entry, and also virus particle maturation and assembly. The emergence of drug-resistant variants of HIV-1 has been the main impediment to successful treatment of AIDS. Thus, there is a pressing need to develop novel treatment strategies targeting multiple stages of the virus life-cycle. Research efforts aimed at developing successful means for combating HIV-1 infection have included development of peptide inhibitors of HIV-1. This article summarizes past and current endeavors in the development of peptides that inhibit replication of HIV-1 and the role of peptide inhibitors in the search for new anti-HIV drugs.
Collapse
Affiliation(s)
- Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA.
| | | | | |
Collapse
|
20
|
Nelson JD, Kinkead H, Brunel FM, Leaman D, Jensen R, Louis JM, Maruyama T, Bewley CA, Bowdish K, Clore GM, Dawson PE, Frederickson S, Mage RG, Richman DD, Burton DR, Zwick MB. Antibody elicited against the gp41 N-heptad repeat (NHR) coiled-coil can neutralize HIV-1 with modest potency but non-neutralizing antibodies also bind to NHR mimetics. Virology 2008; 377:170-83. [PMID: 18499210 PMCID: PMC2493441 DOI: 10.1016/j.virol.2008.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 03/11/2008] [Accepted: 04/09/2008] [Indexed: 11/28/2022]
Abstract
Following CD4 receptor binding to the HIV-1 envelope spike (Env), the conserved N-heptad repeat (NHR) region of gp41 forms a coiled-coil that is a precursor to the fusion reaction. Although it has been a target of drug and vaccine design, there are few monoclonal antibody (mAb) tools with which to probe the antigenicity and immunogenicity specifically of the NHR coiled-coil. Here, we have rescued HIV-1-neutralizing anti-NHR mAbs from immune phage display libraries that were prepared (i) from b9 rabbits immunized with a previously described mimetic of the NHR coiled-coil, N35(CCG)-N13, and (ii) from an HIV-1 infected individual. We describe a rabbit single-chain Fv fragment (scFv), 8K8, and a human Fab, DN9, which specifically recognize NHR coiled-coils that are unoccupied by peptide corresponding to the C-heptad repeat or CHR region of gp41 (e.g. C34). The epitopes of 8K8 and DN9 were found to partially overlap with that of a previously described anti-NHR mAb, IgG D5; however, 8K8 and DN9 were much more specific than D5 for unoccupied NHR trimers. The mAbs, including a whole IgG 8K8 molecule, neutralized primary HIV-1 of clades B and C in a pseudotyped virus assay with comparable, albeit relatively modest potency. Finally, a human Fab T3 and a rabbit serum (both non-neutralizing) were able to block binding of D5 and 8K8 to a gp41 NHR mimetic, respectively, but not the neutralizing activity of these mAbs. We conclude from these results that NHR coiled-coil analogs of HIV-1 gp41 elicit many Abs during natural infection and through immunization, but that due to limited accessibility to the corresponding region on fusogenic gp41 few can neutralize. Caution is therefore required in targeting the NHR for vaccine design. Nevertheless, the mAb panel may be useful as tools for elucidating access restrictions to the NHR of gp41 and in designing potential improvements to mimetics of receptor-activated Env.
Collapse
Affiliation(s)
- Josh D. Nelson
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Heather Kinkead
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Florence M. Brunel
- Department of Chemistry and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dan Leaman
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Richard Jensen
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John M. Louis
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - G. Marius Clore
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip E. Dawson
- Department of Chemistry and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Rose G. Mage
- Laboratory of Immunology, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Douglas D. Richman
- Center for AIDS Research, University of California, San Diego, CA 92093, and VA San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Dennis R. Burton
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael B. Zwick
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
Zhang MY, Vu BK, Choudhary A, Lu H, Humbert M, Ong H, Alam M, Ruprecht RM, Quinnan G, Jiang S, Montefiori DC, Mascola JR, Broder CC, Haynes BF, Dimitrov DS. Cross-reactive human immunodeficiency virus type 1-neutralizing human monoclonal antibody that recognizes a novel conformational epitope on gp41 and lacks reactivity against self-antigens. J Virol 2008; 82:6869-79. [PMID: 18480433 PMCID: PMC2446971 DOI: 10.1128/jvi.00033-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Accepted: 04/24/2008] [Indexed: 11/20/2022] Open
Abstract
Broadly cross-reactive human immunodeficiency virus (HIV)-neutralizing antibodies are infrequently elicited in infected humans. The two best-characterized gp41-specific cross-reactive neutralizing human monoclonal antibodies, 4E10 and 2F5, target linear epitopes in the membrane-proximal external region (MPER) and bind to cardiolipin and several other autoantigens. It has been hypothesized that, because of such reactivity to self-antigens, elicitation of 2F5 and 4E10 and similar antibodies by vaccine immunogens based on the MPER could be affected by tolerance mechanisms. Here, we report the identification and characterization of a novel anti-gp41 monoclonal antibody, designated m44, which neutralized most of the 22 HIV type 1 (HIV-1) primary isolates from different clades tested in assays based on infection of peripheral blood mononuclear cells by replication-competent virus but did not bind to cardiolipin and phosphatidylserine in an enzyme-linked immunosorbent assay and a Biacore assay nor to any protein or DNA autoantigens tested in Luminex assays. m44 bound to membrane-associated HIV-1 envelope glycoproteins (Envs), to recombinant Envs lacking the transmembrane domain and cytoplasmic tail (gp140s), and to gp41 structures containing five-helix bundles and six-helix bundles, but not to N-heptad repeat trimers, suggesting that the C-heptad repeat is involved in m44 binding. In contrast to 2F5, 4E10, and Z13, m44 did not bind to any significant degree to denatured gp140 and linear peptides derived from gp41, suggesting a conformational nature of the epitope. This is the first report of a gp41-specific cross-reactive HIV-1-neutralizing human antibody that does not have detectable reactivity to autoantigens. Its novel conserved conformational epitope on gp41 could be helpful in the design of vaccine immunogens and as a target for therapeutics.
Collapse
Affiliation(s)
- Mei-Yun Zhang
- CCRNP, CCR, NCI-Frederick, NIH, Bldg. 469, Rm. 131, P.O. Box B, Miller Drive, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Li J, Chen X, Huang J, Jiang S, Chen YH. Identification of critical antibody-binding sites in the HIV-1 gp41 six-helix bundle core as potential targets for HIV-1 fusion inhibitors. Immunobiology 2008; 214:51-60. [PMID: 19159827 DOI: 10.1016/j.imbio.2008.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 04/17/2008] [Accepted: 04/21/2008] [Indexed: 12/01/2022]
Abstract
Formation of the six-helix bundle (6-HB) core between the N- and C-terminal heptad repeats (NHR and CHR) regions of the HIV-1 envelope glycoprotein (Env) transmembrane subunit gp41 is a critical step during the process of virus and target cell membrane fusion. In the present study, we generated a panel of five monoclonal antibodies (mAbs) which specifically recognized the HIV-1 gp41 6-HB formed by the NHR-peptide N36 and CHR-peptide C34 mixture, but did not react with the isolated peptides N36 and C34. These mAbs did not block the HIV-1 Env-mediated cell-cell fusion at physiological temperature (37 degrees C), but inhibited the HIV-1 Env-mediated cell-cell fusion at suboptimal temperature (31.5 degrees C), under which condition the fusion process is slowed down and the viral 6-HB becomes accessible. The fusion inhibitory activity of the mAbs is correlated with their binding affinity with the 6-HB core. By screening 24 6-HB variants with single mutations at the b, c, and f positions in the helical wheels, we found that the critical binding sites of these mAbs were localized in the N-terminal region of the NHR and the C-terminal region of the CHR. These sites may serve as targets for design of small molecule HIV fusion inhibitors, e.g., organic compounds, peptides, and low molecular weight proteins.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Immunology, Department of Biology, Tsinghua University, Beijing 100084, PR China
| | | | | | | | | |
Collapse
|
23
|
Penn-Nicholson A, Han DP, Kim SJ, Park H, Ansari R, Montefiori DC, Cho MW. Assessment of antibody responses against gp41 in HIV-1-infected patients using soluble gp41 fusion proteins and peptides derived from M group consensus envelope. Virology 2008; 372:442-56. [PMID: 18068750 PMCID: PMC2293309 DOI: 10.1016/j.virol.2007.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 10/29/2007] [Accepted: 11/08/2007] [Indexed: 11/18/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) transmembrane glycoprotein gp41 is targeted by broadly-reactive neutralizing antibodies 2F5 and 4E10, making it an attractive target for vaccine development. To better assess immunogenic properties of gp41, we generated five soluble glutathione S-transferase fusion proteins encompassing C-terminal 30, 64, 100, 142, or 172 (full-length) amino acids of gp41 ectodomain from M group consensus envelope sequence. Antibody responses in HIV-1-infected patients were evaluated using these proteins and overlapping peptides. We found (i) antibody responses against different regions of gp41 varied tremendously among individual patients, (ii) patients with stronger antibody responses against membrane-proximal external region exhibit broader and more potent neutralizing activity, and (iii) several patients mounted antibodies against epitopes that are near, or overlap with, those targeted by 2F5 or 4E10. These soluble gp41 fusion proteins could be an important source of antigens for future vaccine development efforts.
Collapse
Affiliation(s)
- Adam Penn-Nicholson
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Choudhry V, Zhang MY, Sidorov IA, Louise JM, Harris I, Dimitrov AS, Bouma P, Cham F, Choudhary A, Rybak SM, Fouts T, Montefiori DC, Broder CC, Quinnan GV, Dimitrov DS. Cross-reactive HIV-1 neutralizing monoclonal antibodies selected by screening of an immune human phage library against an envelope glycoprotein (gp140) isolated from a patient (R2) with broadly HIV-1 neutralizing antibodies. Virology 2007; 363:79-90. [PMID: 17306322 PMCID: PMC2696119 DOI: 10.1016/j.virol.2007.01.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Revised: 10/08/2006] [Accepted: 01/12/2007] [Indexed: 10/23/2022]
Abstract
Elicitation of broadly cross-reactive neutralizing antibodies (bcnAbs) in HIV infections is rare. To test the hypothesis that such antibodies could be elicited by HIV envelope glycoproteins (Envs) with unusual immunogenic properties and to identify novel bcnAbs, we used a soluble Env ectodomain (gp140) from a donor (R2) with high level of bcnAbs as an antigen for panning of an immune phage-displayed antibody library. The panning with the R2 Env resulted in significantly higher number of cross-reactive antibody clones than by using Envs from two other isolates (89.6 and IIIB). Two of the identified human monoclonal antibodies (hmAbs), m22 and m24, had sequences, neutralizing and binding activities similar or identical to those of the gp120-specific bcnAbs m18 and m14. The use of the R2 Env but not other Envs for panning resulted in the identification of a novel gp41-specific hmAb, m46. For several of the tested HIV-1 primary isolates its potency on molar basis was comparable to that of T20. It inhibited entry of primary isolates from different clades with an increased activity for cell lines with low CCR5 surface concentrations. The m46 neutralizing activity against a panel of clade C isolates was significantly higher in an assay based on peripheral blood mononuclear cells (4 out of 5 isolates were neutralized with an IC(50) in the range from 1.5 to 25 microg/ml) than in an assay based on a cell line with relatively high concentration of cell-surface-associated CCR5. In contrast to 2F5 and Z13, this antibody did not bind to denatured gp140 and gp41-derived peptides indicating a conformational nature of its epitope. It bound to a 5-helix bundle but not to N-heptad repeat coiled coils and a 6-helix bundle construct indicating contribution of both gp41 heptad repeats to its epitope and to a possible mechanism of neutralization. These results indicate that the R2 Env may contain unique exposed conserved epitopes that could contribute to its ability to elicit broadly cross-reactive antibodies in animals and humans; the newly identified antibodies may help in the development of novel vaccine immunogens and therapeutics.
Collapse
Affiliation(s)
- Vidita Choudhry
- Protein Interactions Group, CCRNP, NCI-Frederick, NIH, Frederick, MD 21702
| | - Mei-Yun Zhang
- Protein Interactions Group, CCRNP, NCI-Frederick, NIH, Frederick, MD 21702
- BRP, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702
| | - Igor A. Sidorov
- Protein Interactions Group, CCRNP, NCI-Frederick, NIH, Frederick, MD 21702
| | - John M. Louise
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892
| | - Ilia Harris
- Profectus BioSciences, Inc., 1450 South Rolling Road, Baltimore, MD 21227
| | - Antony S. Dimitrov
- Profectus BioSciences, Inc., 1450 South Rolling Road, Baltimore, MD 21227
| | - Peter Bouma
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Fatim Cham
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Anil Choudhary
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Susanna M. Rybak
- Biological Testing Branch, National Cancer Institute-Frederick, NIH, Frederick, MD 21702
| | - Timothy Fouts
- Profectus BioSciences, Inc., 1450 South Rolling Road, Baltimore, MD 21227
| | - David C. Montefiori
- Department of Surgery, Laboratory for AIDS Vaccine Research & Development, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Gerald V. Quinnan
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | | |
Collapse
|
25
|
Montefiori DC, Morris L, Ferrari G, Mascola JR. Neutralizing and other antiviral antibodies in HIV-1 infection and vaccination. Curr Opin HIV AIDS 2007; 2:169-76. [PMID: 19372883 PMCID: PMC3171201 DOI: 10.1097/coh.0b013e3280ef691e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW New findings continue to support the notion that broadly crossreactive neutralizing antibody induction is a worthwhile and achievable goal for HIV-1 vaccines. Immunogens are needed that can overcome the genetic variability and complex immune evasion tactics of the virus. Other antibodies might bridge innate and acquired immunity for possible beneficial vaccine effects. This review summarizes progress made over the past year that has enhanced our understanding of humoral immunity as it relates to HIV-1 vaccine development. RECENT FINDINGS Although a clear path to designing an effective neutralizing antibody-based HIV-1 vaccine remains elusive, there is new information on how antibodies neutralize HIV-1, the epitopes involved, and clues to the possible nature of protective immunogens that keep this goal alive. Moreover, there is a greater understanding of HIV-1 diversity and its possible limits under immune pressure. Other antibodies might possess antiviral activity by mechanisms involving Fc receptor engagement or complement activation that would be of value for HIV-1 vaccines. SUMMARY Recent developments strengthen the rationale for antibody-based HIV-1 vaccine immunogens and provide a stronger foundation for vaccine discovery.
Collapse
Affiliation(s)
- David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Lynn Morris
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Prabakaran P, Dimitrov AS, Fouts TR, Dimitrov DS. Structure and function of the HIV envelope glycoprotein as entry mediator, vaccine immunogen, and target for inhibitors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2007; 55:33-97. [PMID: 17586312 PMCID: PMC7111665 DOI: 10.1016/s1054-3589(07)55002-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter discusses the advances of the envelope glycoprotein (Env) structure as related to the interactions of conserved Env structures with receptor molecules and antibodies with implications for the design of vaccine immunogens and inhibitors. The human immunodeficiency virus (HIV) Env binds to cell surface–associated receptor (CD4) and coreceptor (CCR5 or CXCR4) by one of its two non-covalently associated subunits, gp120. The induced conformational changes activate the other subunit (gp41), which causes the fusion of the viral with the plasma cell membranes resulting in the delivery of the viral genome into the cell and the initiation of the infection cycle. As the only HIV protein exposed to the environment, the Env is also a major immunogen to which neutralizing antibodies are directed and a target that is relatively easy to access by inhibitors. A fundamental problem in the development of effective vaccines and inhibitors against HIV is the rapid generation of alterations at high levels of expression during long chronic infection and the resulting significant heterogeneity of the Env. The preservation of the Env function as an entry mediator and limitations on size and expression impose restrictions on its variability and lead to the existence of conserved structures.
Collapse
Affiliation(s)
- Ponraj Prabakaran
- Protein Interactions Group, CCRNP, CCR, NCI-Frederick, NIH Frederick, MD 21702, USA
| | | | | | | |
Collapse
|