1
|
Ng JPZ, Mariati M, Bi J, Chang MW, Yang Y. A Targeted Integration-Based CHO Cell Platform for Simultaneous Antibody Display and Secretion. Antibodies (Basel) 2025; 14:38. [PMID: 40407690 PMCID: PMC12101391 DOI: 10.3390/antib14020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/26/2025] Open
Abstract
OBJECTIVE We developed a targeted integration-based CHO cell platform for simultaneous antibody display and secretion, enabling a streamlined transition from antibody library screening to production without requiring the re-cloning of antibody genes. METHODS The platform consists of a CHO master cell line with a single-copy landing pad, a helper vector expressing FLPe recombinase, and bi-functional targeting vectors. Recombinase-mediated cassette exchange was utilized to integrate targeting vectors into the landing pad. Bi-functional vectors were designed by incorporating a minimal furin cleavage sequence (mFCS), RRKR, and various 2A peptides between the heavy chain (HC) and a membrane anchor. RESULTS Incomplete cleavage at the mFCS and 2A sites facilitated the expression of both membrane-bound and secreted antibodies, while mutations in the 2A peptide produced a range of display-to-secretion ratios. However, a fraction of secreted antibodies retained 2A residues attached to the HC polypeptides. Further analysis demonstrated that modifying the first five amino acids of the 2A peptide significantly influenced furin cleavage efficiency, resulting in different display-to-secretion ratios for targeting vectors containing mFCS-2A variant combinations. To overcome this, we designed nine-amino-acid FCS variants that, when placed between the HC and membrane anchor, provided a range of display-to-secretion ratios and eliminated the issue of attached 2A residues in the secreted antibodies. Vectors with lower display levels proved more effective at distinguishing cells expressing high-affinity antibodies with closely matched binding affinities. The platform also demonstrated high sensitivity in isolating high-affinity antibody-expressing cells and supported robust antibody production. CONCLUSION This targeted integration-based CHO platform enables efficient, in-format screening and production of antibodies with tunable display-to-secretion profiles. It provides a powerful and scalable tool for accelerating the development of functional, manufacturable therapeutic antibodies.
Collapse
Affiliation(s)
- Jessica P. Z. Ng
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #03-01 Centros, Singapore 138668, Singapore
| | - Mariati Mariati
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #03-01 Centros, Singapore 138668, Singapore
| | - Jiawu Bi
- Institute of Molecular Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Dr, #07-01 Proteos, Singapore 138673, Singapore;
| | - Matthew Wook Chang
- Synthetic Biology Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117465, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Dr, #02-07 Centre for Life Sciences, Singapore 117456, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #03-01 Centros, Singapore 138668, Singapore
| |
Collapse
|
2
|
Dübel S. Can antibodies be "vegan"? A guide through the maze of today's antibody generation methods. MAbs 2024; 16:2343499. [PMID: 38634488 PMCID: PMC11028021 DOI: 10.1080/19420862.2024.2343499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
There is no doubt that today's life sciences would look very different without the availability of millions of research antibody products. Nevertheless, the use of antibody reagents that are poorly characterized has led to the publication of false or misleading results. The use of laboratory animals to produce research antibodies has also been criticized. Surprisingly, both problems can be addressed with the same technology. This review charts today's maze of different antibody formats and the various methods for antibody production and their interconnections, ultimately concluding that sequence-defined recombinant antibodies offer a clear path to both improved quality of experimental data and reduced use of animals.
Collapse
Affiliation(s)
- Stefan Dübel
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
3
|
Huhtinen O, Salbo R, Lamminmäki U, Prince S. Selection of biophysically favorable antibody variants using a modified Flp-In CHO mammalian display platform. Front Bioeng Biotechnol 2023; 11:1170081. [PMID: 37229492 PMCID: PMC10203562 DOI: 10.3389/fbioe.2023.1170081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Mammalian display enables the selection of biophysically favorable antibodies from a large IgG antibody library displayed on the plasma membrane of mammalian cells. We constructed and validated a novel mammalian display platform utilizing the commercially available Flp-In CHO cell line as a starting point. We introduced a single copy of a landing pad for Bxb1 integrase-driven recombinase-mediated cassette exchange into the FRT site of the Flp-In CHO line to facilitate the efficient single-copy integration of an antibody display cassette into the genome of the cell line. We then proceeded to demonstrate the ability of our platform to select biophysically favorable antibodies from a library of 1 × 106 displayed antibodies designed to improve the biophysical properties of bococizumab via randomization of problematic hydrophobic surface residues of the antibody. Enrichment of bococizumab variants via fluorescence-activated cell sorting selections was followed by next generation sequencing and thorough characterization of biophysical properties of 10 bococizumab variants that subsequently allowed attribution of the mutations to the biophysical properties of the antibody variants. The mammalian displayed variants exhibited reduced aggregation propensity and polyreactivity, while critically retaining its target binding thereby demonstrating the utility of this valuable tool.
Collapse
Affiliation(s)
- Olli Huhtinen
- Protein and Antibody Engineering, Orion Corporation, Turku, Finland
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Rune Salbo
- Protein and Antibody Engineering, Orion Corporation, Turku, Finland
| | - Urpo Lamminmäki
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Stuart Prince
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Cai R, Zhao F, Zhou H, Wang Z, Lin D, Huang L, Xie W, Chen J, Zhou L, Zhang N, Huang C. A tumor-associated autoantibody panel for the detection of non-small cell lung cancer. Front Oncol 2022; 12:1056572. [PMID: 36531074 PMCID: PMC9757608 DOI: 10.3389/fonc.2022.1056572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/18/2022] [Indexed: 09/02/2023] Open
Abstract
Lung cancer is the second most frequent malignancy and the leading cause of cancer-associated death worldwide. Compared with patients diagnosed at advanced disease stages, early detection of lung cancer significantly improved the 5-year survival rate from 3.3% to 48.8%, which highlights the importance of early detection. Although multiple technologies have been applied to the screening and early diagnosis of lung cancer so far, some limitations still exist so they could not fully suit the needs for clinical application. Evidence show that autoantibodies targeting tumor-associated antigens(TAAs) could be found in the sera of early-stage patients, and they are of great value in diagnosis. Methods, we identified and screened TAAs in early-stage non-small cell lung cancer(NSCLC) samples using the serological analysis of recombinant cDNA expression libraries(SEREX). We measured the levels of the 36 autoantibodies targeting TAAs obtained by preliminary screening via liquid chip technique in the training set(332 serum samples from early-stage NSCLC patients, 167 samples from patients with benign lung lesions, and 208 samples from patients with no obvious abnormalities in lungs), and established a binary logistic regression model based on the levels of 8 autoantibodies to distinguish NSCLC samples. Results, We validated the diagnostic efficacy of this model in an independent test set(163 serum samples from early-stage NSCLC patients, and 183 samples from patients with benign lung lesions), the model performed well in distinguishing NSCLC samples with an AUC of 0.8194. After joining the levels of 4 serum tumor markers into its independent variables, the final model reached an AUC of 0.8568, this was better than just using the 8 autoantibodies (AUC:0.8194) or the 4 serum tumor markers alone(AUC: 0.6948). In conclusion, we screened and identified a set of autoantibodies in the sera of early-stage NSCLC patients through SEREX and liquid chip technique. Based on the levels of 8 autoantibodies, we established a binary logistic regression model that could diagnose early-stage NSCLC with high sensitivity and specificity, and the 4 conventional serum tumor markers were also suggested to be effective supplements for the 8 autoantibodies in the early diagnosis of NSCLC.
Collapse
Affiliation(s)
- Ruijun Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Zhao
- Research and Development Department, Guangzhou BioBlue Technology Co. Ltd, Guangzhou, China
| | - Haiying Zhou
- Department of Orthopaedics, AIR Force Hospital of Southern Theater Command of People's Liberation Army of China (PLA), Guangzhou, China
| | - Zengsong Wang
- Research and Development Department, Guangzhou BioBlue Technology Co. Ltd, Guangzhou, China
| | - Dang Lin
- Research and Development Department, Guangzhou BioBlue Technology Co. Ltd, Guangzhou, China
| | - Lu Huang
- Research and Development Department, Guangzhou BioBlue Technology Co. Ltd, Guangzhou, China
- School of Pharmacutical Sciences, Wuhan University, Wuhan, China
| | - Wenling Xie
- Research and Development Department, Guangzhou BioBlue Technology Co. Ltd, Guangzhou, China
| | - Jiawen Chen
- Research and Development Department, Guangzhou BioBlue Technology Co. Ltd, Guangzhou, China
| | - Lamei Zhou
- Research and Development Department, Guangzhou BioBlue Technology Co. Ltd, Guangzhou, China
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyuan Huang
- Research and Development Department, Guangzhou BioBlue Technology Co. Ltd, Guangzhou, China
| |
Collapse
|
5
|
Fiebig D, Bogen JP, Carrara SC, Deweid L, Zielonka S, Grzeschik J, Hock B, Kolmar H. Streamlining the Transition From Yeast Surface Display of Antibody Fragment Immune Libraries to the Production as IgG Format in Mammalian Cells. Front Bioeng Biotechnol 2022; 10:794389. [PMID: 35620472 PMCID: PMC9127228 DOI: 10.3389/fbioe.2022.794389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/20/2022] [Indexed: 01/18/2023] Open
Abstract
Yeast-surface display (YSD) is commonly applied to screen Fab immune or naïve libraries for binders of predefined target molecules. However, reformatting of isolated variants represents a time-intensive bottleneck. Herein, we present a novel approach to facilitate a lean transition from antibody screening using YSD Fab libraries to the production of full-length IgG antibodies in Expi293-F cells. In this study, utilizing Golden Gate Cloning (GGC) and a bidirectional promoter system, an exemplary Fab-displaying YSD library was generated based on immunised transgene rats. After subsequent screening for antigen-specific antibody candidates by fluorescence-activated cell sorting (FACS), the Fab-encoding genes were subcloned into a bidirectional mammalian expression vector, exhibiting CH2-CH3 encoding genes, in a GGC-mediated, PCR-free manner. This novel, straightforward and time-saving workflow allows the VH/VL pairing to be preserved. This study resulted in antibody variants exhibiting suitable biophysical properties and covered a broad VH diversity after two rounds of FACS screening, as revealed by NGS analysis. Ultimately, we demonstrate that the implication of such a gene transfer system streamlines antibody hit discovery efforts, allowing the faster characterisation of antibodies against a plethora of targets that may lead to new therapeutic agents.
Collapse
Affiliation(s)
- David Fiebig
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Stefania C Carrara
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Lukas Deweid
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | | | - Björn Hock
- Ferring Biologics Innovation Centre, Epalinges, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
6
|
Zhang MQ, Wang ZG, Fu DD, Zhang JM, Liu HY, Liu SL, Pang DW. Quantum Dots Tracking Endocytosis and Transport of Proteins Displayed by Mammalian Cells. Anal Chem 2022; 94:7567-7575. [PMID: 35581735 DOI: 10.1021/acs.analchem.2c00411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mammalian cell display technology uses eukaryotic protein expression system to display proteins on cell surfaces and has become an important method in biological research. Although mammalian cell display technology has many advantages and development potential, certain attributes of the displayed protein remain uncharacterized, such as whether the displayed proteins re-enter the cell and how displayed proteins move into the cell. Here, we present the endocytosis mechanism, motility behavior, and transport kinetics of displayed proteins determined using HaloTag as the displayed protein and quantum dot-based single-particle tracking. The displayed protein enters the cell through clathrin-mediated endocytosis and is transported through the cell in three stages, which is dependent on microfilaments and microtubules. The dynamic information obtained in this study provides answers to questions about endocytosis and postendocytosis transport of displayed proteins and, therefore, is expected to facilitate the development of surface display technology.
Collapse
Affiliation(s)
- Meng-Qian Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ju-Mei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
7
|
A novel and effective approach to generate germline-like monoclonal antibodies by integration of phage and mammalian cell display platforms. Acta Pharmacol Sin 2022; 43:954-962. [PMID: 34234269 PMCID: PMC8975860 DOI: 10.1038/s41401-021-00707-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Phage display technology allows for rapid selection of antibodies from the large repertoire of human antibody fragments displayed on phages. However, antibody fragments should be converted to IgG for biological characterizations and affinity of antibodies obtained from phage display library is frequently not sufficient for efficient use in clinical settings. Here, we describe a new approach that combines phage and mammalian cell display, enabling simultaneous affinity screening of full-length IgG antibodies. Using this strategy, we successfully obtained a novel germline-like anti-TIM-3 monoclonal antibody named m101, which was revealed to be a potent anti-TIM-3 therapeutic monoclonal antibody via in vitro and in vivo experiments, indicating its effectiveness and power. Thus, this platform can help develop new monoclonal antibody therapeutics with high affinity and low immunogenicity.
Collapse
|
8
|
Elter A, Bogen JP, Habermann J, Kolmar H. Vom Huhn abgeleitete Antikörper für Diagnostik und Immuntherapie. BIOSPEKTRUM 2021; 27:500-504. [PMID: 34511735 PMCID: PMC8417631 DOI: 10.1007/s12268-021-1623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractDue to the large evolutionary distance between birds (Aves) und humans, immunization of chickens with human proteins results in a strong response of the bird’s adaptive immune system to proteins of mammalian origin. Additionally, chicken-derived antibodies display less undesired cross-reactivity in analytical setups than conventional rodent-derived antibodies. Due to these features as well as the facile amplification of antibody-coding genes, chicken-derived antibodies emerged as promising molecules for the immunotherapy and various biotechnological applications.
Collapse
|
9
|
Robertson N, Lopez-Anton N, Gurjar SA, Khalique H, Khalaf Z, Clerkin S, Leydon VR, Parker-Manuel R, Raeside A, Payne T, Jones TD, Seymour L, Cawood R. Development of a novel mammalian display system for selection of antibodies against membrane proteins. J Biol Chem 2020; 295:18436-18448. [PMID: 33127646 PMCID: PMC7939478 DOI: 10.1074/jbc.ra120.015053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Reliable, specific polyclonal and monoclonal antibodies are important tools in research and medicine. However, the discovery of antibodies against their targets in their native forms is difficult. Here, we present a novel method for discovery of antibodies against membrane proteins in their native configuration in mammalian cells. The method involves the co-expression of an antibody library in a population of mammalian cells that express the target polypeptide within a natural membrane environment on the cell surface. Cells that secrete a single-chain fragment variable (scFv) that binds to the target membrane protein thereby become self-labeled, enabling enrichment and isolation by magnetic sorting and FRET-based flow sorting. Library sizes of up to 109 variants can be screened, thus allowing campaigns of naïve scFv libraries to be selected against membrane protein antigens in a Chinese hamster ovary cell system. We validate this method by screening a synthetic naïve human scFv library against Chinese hamster ovary cells expressing the oncogenic target epithelial cell adhesion molecule and identify a panel of three novel binders to this membrane protein, one with a dissociation constant (KD ) as low as 0.8 nm We further demonstrate that the identified antibodies have utility for killing epithelial cell adhesion molecule-positive cells when used as a targeting domain on chimeric antigen receptor T cells. Thus, we provide a new tool for identifying novel antibodies that act against membrane proteins, which could catalyze the discovery of new candidates for antibody-based therapies.
Collapse
Affiliation(s)
| | | | | | - Hena Khalique
- Anticancer Viruses and Cancer Vaccines Group, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | - Tom Payne
- OXGENE, Medawar Centre, Oxford, United Kingdom
| | - Tim D Jones
- OXGENE, Medawar Centre, Oxford, United Kingdom
| | - Len Seymour
- Anticancer Viruses and Cancer Vaccines Group, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ryan Cawood
- OXGENE, Medawar Centre, Oxford, United Kingdom.
| |
Collapse
|
10
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020; 11:1986. [PMID: 32983137 PMCID: PMC7485114 DOI: 10.3389/fimmu.2020.01986] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage–derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
BalcioĞlu BK, Denİzcİ ÖncÜ M, ÖztÜrk HÜ, YÜcel F, Kaya F, Serhatli M, ÜlbeĞİ Polat H, Tekİn Ş, Özdemİr Bahadir A. SARS-CoV-2 neutralizing antibody development strategies. Turk J Biol 2020; 44:203-214. [PMID: 32595357 PMCID: PMC7314503 DOI: 10.3906/biy-2005-91] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In December 2019 a novel coronavirus was detected in Wuhan City of Hubei Province-China. Owing to a high rate of transmission from human to human, the new virus called SARS-CoV-2 differed from others by its unexpectedly rapid spread. The World Health Organization (WHO) described the most recent coronavirus epidemic as a global pandemic in March 2020. The virus spread triggered a health crisis (the COVID-19 disease) within three months, with socioeconomic implications. No approved targeted-therapies are available for COVID-19, yet. However, it is foreseen that antibody-based treatments may provide an immediate cure for patients. Current neutralizing antibody development studies primarily target the S protein among the structural elements of SARS-CoV-2, which mediates the cell entry of the virus through the angiotensin converting enzyme 2 (ACE2) receptor of host cells. This review aims to provide some of the neutralizing antibody development strategies for SARS-CoV-2 and in vitro and in vivo neutralization assays.
Collapse
Affiliation(s)
- Bertan Koray BalcioĞlu
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Melis Denİzcİ ÖncÜ
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Hasan Ümit ÖztÜrk
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Fatıma YÜcel
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Filiz Kaya
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Müge Serhatli
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Hivda ÜlbeĞİ Polat
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Şaban Tekİn
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
- Department of Basic Medical Sciences, Faculty of Medicine, University of Health Sciences, İstanbul Turkey
| | - Aylin Özdemİr Bahadir
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| |
Collapse
|
12
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020. [PMID: 32983137 DOI: 10.3389/fimmu.2020.01986/bibtex] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage-derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Dibo M, Battocchio EC, dos Santos Souza LM, da Silva MDV, Banin-Hirata BK, Sapla MM, Marinello P, Rocha SP, Faccin-Galhardi LC. Antibody Therapy for the Control of Viral Diseases: An Update. Curr Pharm Biotechnol 2019; 20:1108-1121. [DOI: 10.2174/1389201020666190809112704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/22/2019] [Accepted: 08/01/2019] [Indexed: 12/29/2022]
Abstract
The epidemiological impact of viral diseases, combined with the emergence and reemergence of some viruses, and the difficulties in identifying effective therapies, have encouraged several studies to develop new therapeutic strategies for viral infections. In this context, the use of immunotherapy for the treatment of viral diseases is increasing. One of the strategies of immunotherapy is the use of antibodies, particularly the monoclonal antibodies (mAbs) and multi-specific antibodies, which bind directly to the viral antigen and bring about activation of the immune system. With current advancements in science and technology, several such antibodies are being tested, and some are already approved and are undergoing clinical trials. The present work aims to review the status of mAb development for the treatment of viral diseases.
Collapse
Affiliation(s)
- Miriam Dibo
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Eduardo C. Battocchio
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Lucas M. dos Santos Souza
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | | | - Bruna K. Banin-Hirata
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Milena M.M. Sapla
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Poliana Marinello
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Sérgio P.D. Rocha
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Lígia C. Faccin-Galhardi
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| |
Collapse
|
14
|
Parola C, Neumeier D, Friedensohn S, Csepregi L, Di Tacchio M, Mason DM, Reddy ST. Antibody discovery and engineering by enhanced CRISPR-Cas9 integration of variable gene cassette libraries in mammalian cells. MAbs 2019; 11:1367-1380. [PMID: 31478465 PMCID: PMC6816377 DOI: 10.1080/19420862.2019.1662691] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antibody engineering in mammalian cells offers the important advantage of expression and screening of libraries in their native conformation, increasing the likelihood of generating candidates with more favorable molecular properties. Major advances in cellular engineering enabled by CRISPR-Cas9 genome editing have made it possible to expand the use of mammalian cells in biotechnological applications. Here, we describe an antibody engineering and screening approach where complete variable light (VL) and heavy (VH) chain cassette libraries are stably integrated into the genome of hybridoma cells by enhanced Cas9-driven homology-directed repair (HDR), resulting in their surface display and secretion. By developing an improved HDR donor format that utilizes in situ linearization, we are able to achieve >15-fold improvement of genomic integration, resulting in a screening workflow that only requires a simple plasmid electroporation. This proved suitable for different applications in antibody discovery and engineering. By integrating and screening an immune library obtained from the variable gene repertoire of an immunized mouse, we could isolate a diverse panel of >40 unique antigen-binding variants. Additionally, we successfully performed affinity maturation by directed evolution screening of an antibody library based on random mutagenesis, leading to the isolation of several clones with affinities in the picomolar range.
Collapse
Affiliation(s)
- Cristina Parola
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | | | - Derek M Mason
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| |
Collapse
|
15
|
Devilder MC, Moyon M, Gautreau-Rolland L, Navet B, Perroteau J, Delbos F, Gesnel MC, Breathnach R, Saulquin X. Ex vivo evolution of human antibodies by CRISPR-X: from a naive B cell repertoire to affinity matured antibodies. BMC Biotechnol 2019; 19:14. [PMID: 30777060 PMCID: PMC6378725 DOI: 10.1186/s12896-019-0504-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/05/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Marie-Claire Devilder
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France
| | - Melinda Moyon
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Laetitia Gautreau-Rolland
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Benjamin Navet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Jeanne Perroteau
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Florent Delbos
- HLA Laboratory, EFS Centre Pays de la Loire, Nantes, France
| | - Marie-Claude Gesnel
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France
| | - Richard Breathnach
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France. .,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.
| | - Xavier Saulquin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France. .,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.
| |
Collapse
|
16
|
Enhancers Improve the AID-Induced Hypermutation in Episomal Vector for Antibody Affinity Maturation in Mammalian Cell Display. Antibodies (Basel) 2018; 7:antib7040042. [PMID: 31544892 PMCID: PMC6698961 DOI: 10.3390/antib7040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/03/2022] Open
Abstract
The induction of somatic hypermutation (SHM) in various cell lines by activation-induced cytidine deaminase (AID) has been used in protein-directed selection, especially in antibody affinity maturation. Several antibody affinity maturation systems based on mammalian cells have been developed in recent years, i.e., 293T, H1299, Raji and CHO cells. However, the efficiency of in vitro AID-induced hypermutation is low, restricting the application of such systems. In this study, we examined the role of Ig and Ek enhancers in enhancing SHM in the episomal vector pCEP4 that expresses an anti-high mobility group box 1 (HMGB1) full-length antibody. The plasmid containing the two enhancers exhibited two-fold improvement of mutation rate over pCEP4 in an AID expression H1299 cell line (H1299-AID). With the engineered episomal vector, we improved the affinity of this antibody in H1299-AID cells by 20-fold.
Collapse
|
17
|
Grzeschik J, Yanakieva D, Roth L, Krah S, Hinz SC, Elter A, Zollmann T, Schwall G, Zielonka S, Kolmar H. Yeast Surface Display in Combination with Fluorescence‐activated Cell Sorting Enables the Rapid Isolation of Antibody Fragments Derived from Immunized Chickens. Biotechnol J 2018; 14:e1800466. [DOI: 10.1002/biot.201800466] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/11/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Julius Grzeschik
- Institute for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich‐Weiss‐Strasse 4D‐64287 DarmstadtGermany
- Merck Lab @ Technische Universität DarmstadtAlarich‐Weiss‐Strasse 8, D‐64287DarmstadtGermany
| | - Desislava Yanakieva
- Institute for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich‐Weiss‐Strasse 4D‐64287 DarmstadtGermany
- Merck Lab @ Technische Universität DarmstadtAlarich‐Weiss‐Strasse 8, D‐64287DarmstadtGermany
| | - Lukas Roth
- Protein Engineering and Antibody TechnologiesMerck KGaAFrankfurter Strasse 250, D‐64293DarmstadtGermany
| | - Simon Krah
- Protein Engineering and Antibody TechnologiesMerck KGaAFrankfurter Strasse 250, D‐64293DarmstadtGermany
| | - Steffen C. Hinz
- Institute for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich‐Weiss‐Strasse 4D‐64287 DarmstadtGermany
- Merck Lab @ Technische Universität DarmstadtAlarich‐Weiss‐Strasse 8, D‐64287DarmstadtGermany
| | - Adrian Elter
- Institute for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich‐Weiss‐Strasse 4D‐64287 DarmstadtGermany
- Merck Lab @ Technische Universität DarmstadtAlarich‐Weiss‐Strasse 8, D‐64287DarmstadtGermany
| | - Tina Zollmann
- Science RelationsMerck KGaAFrankfurter Strasse 250, D‐64293DarmstadtGermany
- Merck Lab @ Technische Universität DarmstadtAlarich‐Weiss‐Strasse 8, D‐64287DarmstadtGermany
| | - Gerhard Schwall
- Science RelationsMerck KGaAFrankfurter Strasse 250, D‐64293DarmstadtGermany
- Merck Lab @ Technische Universität DarmstadtAlarich‐Weiss‐Strasse 8, D‐64287DarmstadtGermany
| | - Stefan Zielonka
- Protein Engineering and Antibody TechnologiesMerck KGaAFrankfurter Strasse 250, D‐64293DarmstadtGermany
| | - Harald Kolmar
- Institute for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich‐Weiss‐Strasse 4D‐64287 DarmstadtGermany
- Merck Lab @ Technische Universität DarmstadtAlarich‐Weiss‐Strasse 8, D‐64287DarmstadtGermany
| |
Collapse
|
18
|
Transient AID expression for in situ mutagenesis with improved cellular fitness. Sci Rep 2018; 8:9413. [PMID: 29925928 PMCID: PMC6010430 DOI: 10.1038/s41598-018-27717-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
Activation induced cytidine deaminase (AID) in germinal center B cells introduces somatic DNA mutations in transcribed immunoglobulin genes to increase antibody diversity. Ectopic expression of AID coupled with selection has been successfully employed to develop proteins with desirable properties. However, this process is laborious and time consuming because many rounds of selection are typically required to isolate the target proteins. AID expression can also adversely affect cell viability due to off target mutagenesis. Here we compared stable and transient expression of AID mutants with different catalytic activities to determine conditions for maximum accumulation of mutations with minimal toxicity. We find that transient (3–5 days) expression of an AID upmutant in the presence of selection pressure could induce a high rate of mutagenesis in reporter genes without affecting cells growth and expansion. Our findings may help improve protein evolution by ectopic expression of AID and other enzymes that can induce DNA mutations.
Collapse
|
19
|
Vij R, Lin Z, Chiang N, Vernes JM, Storek KM, Park S, Chan J, Meng YG, Comps-Agrar L, Luan P, Lee S, Schneider K, Bevers J, Zilberleyb I, Tam C, Koth CM, Xu M, Gill A, Auerbach MR, Smith PA, Rutherford ST, Nakamura G, Seshasayee D, Payandeh J, Koerber JT. A targeted boost-and-sort immunization strategy using Escherichia coli BamA identifies rare growth inhibitory antibodies. Sci Rep 2018; 8:7136. [PMID: 29740124 PMCID: PMC5940829 DOI: 10.1038/s41598-018-25609-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/25/2018] [Indexed: 12/19/2022] Open
Abstract
Outer membrane proteins (OMPs) in Gram-negative bacteria are essential for a number of cellular functions including nutrient transport and drug efflux. Escherichia coli BamA is an essential component of the OMP β-barrel assembly machinery and a potential novel antibacterial target that has been proposed to undergo large (~15 Å) conformational changes. Here, we explored methods to isolate anti-BamA monoclonal antibodies (mAbs) that might alter the function of this OMP and ultimately lead to bacterial growth inhibition. We first optimized traditional immunization approaches but failed to identify mAbs that altered cell growth after screening >3000 hybridomas. We then developed a “targeted boost-and-sort” strategy that combines bacterial cell immunizations, purified BamA protein boosts, and single hybridoma cell sorting using amphipol-reconstituted BamA antigen. This unique workflow improves the discovery efficiency of FACS + mAbs by >600-fold and enabled the identification of rare anti-BamA mAbs with bacterial growth inhibitory activity in the presence of a truncated lipopolysaccharide layer. These mAbs represent novel tools for dissecting the BamA-mediated mechanism of β-barrel folding and our workflow establishes a new template for the efficient discovery of novel mAbs against other highly dynamic membrane proteins.
Collapse
Affiliation(s)
- Rajesh Vij
- Department of Antibody Engineering, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Zhonghua Lin
- Department of Antibody Engineering, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Nancy Chiang
- Department of Antibody Engineering, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Jean-Michel Vernes
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Kelly M Storek
- Department of Infectious Diseases, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Summer Park
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Joyce Chan
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Y Gloria Meng
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Laetitia Comps-Agrar
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Peng Luan
- Department of Antibody Engineering, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Sophia Lee
- Department of Antibody Engineering, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Kellen Schneider
- Department of Antibody Engineering, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Jack Bevers
- Department of Antibody Engineering, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Inna Zilberleyb
- Department of BioMolecular Resources, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Christine Tam
- Department of BioMolecular Resources, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Christopher M Koth
- Department of Structural Biology, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Min Xu
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Avinash Gill
- Department of Antibody Engineering, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Marcy R Auerbach
- Department of Infectious Diseases, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Peter A Smith
- Department of Infectious Diseases, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Gerald Nakamura
- Department of Antibody Engineering, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Dhaya Seshasayee
- Department of Antibody Engineering, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Jian Payandeh
- Department of Structural Biology, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA.
| | - James T Koerber
- Department of Antibody Engineering, Genentech, 1 DNA Way, South San Francisco, California, 94080, USA.
| |
Collapse
|
20
|
Heredia JD, Park J, Brubaker RJ, Szymanski SK, Gill KS, Procko E. Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning. THE JOURNAL OF IMMUNOLOGY 2018; 200:3825-3839. [PMID: 29678950 DOI: 10.4049/jimmunol.1800343] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/30/2018] [Indexed: 02/02/2023]
Abstract
Chemokine receptors CXCR4 and CCR5 regulate WBC trafficking and are engaged by the HIV-1 envelope glycoprotein gp120 during infection. We combine a selection of human CXCR4 and CCR5 libraries comprising nearly all of ∼7000 single amino acid substitutions with deep sequencing to define sequence-activity landscapes for surface expression and ligand interactions. After consideration of sequence constraints for surface expression, known interaction sites with HIV-1-blocking Abs were appropriately identified as conserved residues following library sorting for Ab binding, validating the use of deep mutational scanning to map functional interaction sites in G protein-coupled receptors. Chemokine CXCL12 was found to interact with residues extending asymmetrically into the CXCR4 ligand-binding cavity, similar to the binding surface of CXCR4 recognized by an antagonistic viral chemokine previously observed crystallographically. CXCR4 mutations distal from the chemokine binding site were identified that enhance chemokine recognition. This included disruptive mutations in the G protein-coupling site that diminished calcium mobilization, as well as conservative mutations to a membrane-exposed site (CXCR4 residues H792.45 and W1614.50) that increased ligand binding without loss of signaling. Compared with CXCR4-CXCL12 interactions, CCR5 residues conserved for gp120 (HIV-1 BaL strain) interactions map to a more expansive surface, mimicking how the cognate chemokine CCL5 makes contacts across the entire CCR5 binding cavity. Acidic substitutions in the CCR5 N terminus and extracellular loops enhanced gp120 binding. This study demonstrates how comprehensive mutational scanning can define functional interaction sites on receptors, and novel mutations that enhance receptor activities can be found simultaneously.
Collapse
Affiliation(s)
- Jeremiah D Heredia
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jihye Park
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Riley J Brubaker
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Steven K Szymanski
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Kevin S Gill
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Erik Procko
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
21
|
Alfaleh MA, Jones ML, Howard CB, Mahler SM. Strategies for Selecting Membrane Protein-Specific Antibodies using Phage Display with Cell-Based Panning. Antibodies (Basel) 2017; 6:E10. [PMID: 31548525 PMCID: PMC6698842 DOI: 10.3390/antib6030010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022] Open
Abstract
Membrane proteins are attractive targets for monoclonal antibody (mAb) discovery and development. Although several approved mAbs against membrane proteins have been isolated from phage antibody libraries, the process is challenging, as it requires the presentation of a correctly folded protein to screen the antibody library. Cell-based panning could represent the optimal method for antibody discovery against membrane proteins, since it allows for presentation in their natural conformation along with the appropriate post-translational modifications. Nevertheless, screening antibodies against a desired antigen, within a selected cell line, may be difficult due to the abundance of irrelevant organic molecules, which can potentially obscure the antigen of interest. This review will provide a comprehensive overview of the different cell-based phage panning strategies, with an emphasis placed on the optimisation of four critical panning conditions: cell surface antigen presentation, non-specific binding events, incubation time, and temperature and recovery of phage binders.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
22
|
Antibody affinity maturation through combining display of two-chain paired antibody and precision flow cytometric sorting. Appl Microbiol Biotechnol 2016; 100:5977-88. [DOI: 10.1007/s00253-016-7472-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 01/09/2023]
|
23
|
Xiao X, Chen Y, Mugabe S, Gao C, Tkaczyk C, Mazor Y, Pavlik P, Wu H, Dall’Acqua W, Chowdhury PS. A Novel Dual Expression Platform for High Throughput Functional Screening of Phage Libraries in Product like Format. PLoS One 2015; 10:e0140691. [PMID: 26468955 PMCID: PMC4607404 DOI: 10.1371/journal.pone.0140691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
High throughput screenings of single chain Fv (scFv) antibody phage display libraries are currently done as soluble scFvs produced in E.coli. Due to endotoxin contaminations from bacterial cells these preparations cannot be reliably used in mammalian cell based assays. The monovalent nature and lack of Fc in soluble scFvs prevent functional assays that are dependent on target cross linking and/or Fc functions. A convenient approach is to convert scFvs into scFv.Fc fusion proteins and express them in mammalian cell lines for screening. This approach is low throughput and is only taken after primary screening of monovalent scFvs that are expressed in bacteria. There is no platform at present that combines the benefits of both bacterial and mammalian expression system for screening phage library output. We have, therefore, developed a novel dual expression vector, called pSplice, which can be used to express scFv.Fc fusion proteins both in E.coli and mammalian cell lines. The hallmark of the vector is an engineered intron which houses the bacterial promoter and signal peptide for expression and secretion of scFv.Fc in E.coli. When the vector is transfected into a mammalian cell line, the intron is efficiently spliced out resulting in a functional operon for expression and secretion of the scFv.Fc fusion protein into the culture medium. By applying basic knowledge of mammalian introns and splisosome, we designed this vector to enable screening of phage libraries in a product like format. Like IgG, the scFv.Fc fusion protein is bi-valent for the antigen and possesses Fc effector functions. Expression in E.coli maintains the speed of the bacterial expression platform and is used to triage clones based on binding and other assays that are not sensitive to endotoxin. Triaged clones are then expressed in a mammalian cell line without the need for any additional cloning steps. Conditioned media from the mammalian cell line containing the fusion proteins are then used for different types of cell based assays. Thus this system retains the speed of the current screening system for phage libraries and adds additional functionality to it.
Collapse
Affiliation(s)
- Xiaodong Xiao
- Dept. of Antibody Discovery and Protein Engineering, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| | - Yan Chen
- Dept. of Antibody Discovery and Protein Engineering, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| | - Sheila Mugabe
- Dept. of Biopharmaceutical Development, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| | - Changshou Gao
- Dept. of Antibody Discovery and Protein Engineering, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| | - Christine Tkaczyk
- Dept. of Infectious Diseases, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| | - Yariv Mazor
- Dept. of Antibody Discovery and Protein Engineering, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| | - Peter Pavlik
- Dept. of Antibody Discovery and Protein Engineering, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| | - Herren Wu
- Dept. of Antibody Discovery and Protein Engineering, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| | - William Dall’Acqua
- Dept. of Antibody Discovery and Protein Engineering, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| | - Partha Sarathi Chowdhury
- Dept. of Antibody Discovery and Protein Engineering, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| |
Collapse
|
24
|
Chen L, Kutskova YA, Hong F, Memmott JE, Zhong S, Jenkinson MD, Hsieh CM. Preferential germline usage and VH/VL pairing observed in human antibodies selected by mRNA display. Protein Eng Des Sel 2015; 28:427-35. [PMID: 26337062 DOI: 10.1093/protein/gzv042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/31/2015] [Indexed: 11/13/2022] Open
Abstract
Since the invention of phage display, in vitro antibody display technologies have revolutionized the field of antibody discovery. In combination with antibody libraries constructed with sequences of human origin, such technologies enable accelerated therapeutic antibody discovery while bypassing the laborious animal immunization and hybridoma generation processes. Many in vitro display technologies developed since aim to differentiate from phage display by displaying full-length IgG proteins, utilizing eukaryotic translation system and codons, increasing library size or real-time kinetic selection by fluorescent activated cell sorting. We report here the development of an mRNA display technology and an accompanying HCDR3 size spectratyping monitor for human antibody discovery. Importantly, the mRNA display technology maintains a monovalent linkage between the mRNA (genotype) and display binding protein (phenotype), which minimizes avidity effect common in other display systems and allows for a stringent affinity and off-rate selection. The mRNA display technology successfully identified 100 human antibodies in 15 different selections against various targets from naïve human antibody libraries. These antibodies in general have high affinity and diversity. By analyzing the germline usage and combination of antibodies selected by the mRNA display technology, we identified trends and determined the productivity of each germline subgroup in the libraries that could serve as the knowledge base for constructing fully synthetic, next generation antibody libraries.
Collapse
Affiliation(s)
- Lei Chen
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Yuliya A Kutskova
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Feng Hong
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - John E Memmott
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Suju Zhong
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Megan D Jenkinson
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Chung-Ming Hsieh
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| |
Collapse
|
25
|
Chen C, Li N, Zhao Y, Hang H. Coupling recombinase-mediated cassette exchange with somatic hypermutation for antibody affinity maturation in CHO cells. Biotechnol Bioeng 2015; 113:39-51. [PMID: 26235363 DOI: 10.1002/bit.25541] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/07/2014] [Accepted: 11/17/2014] [Indexed: 02/06/2023]
Abstract
Heterologous expression of activation-induced cytidine deaminase (AID) can induce somatic hypermutation (SHM) for genes of interest in various cells, and several research groups (including ours) have successfully improved antibody affinity in mammalian or chicken cells using AID-induced SHM. These affinity maturation systems are time-consuming and inefficient. In this study, we developed an antibody affinity maturation platform in Chinese hamster ovary (CHO) cells by coupling recombinase-mediated cassette exchange (RMCE) with SHM. Stable CHO cell clones containing a single copy puromycin resistance gene (PuroR) expression cassette flanked by recombination target sequences (FRT and loxP) being able to highly express a gene of interest placed in the cassette were developed. The PuroR gene was replaced with an antibody gene by RMCE, and the antibody was displayed on the cell surface. Cells displaying antibodies on their membrane were transfected with the AID gene, and mutations of the antibody gene were accumulated by AID-mediated hypermutation during cell proliferation followed by flow cytometric cell sorting for cells bearing antibody mutants with improved affinity. Affinity improvements were detected after only one round of cell sorting and proliferation, mutant clones with 15-fold affinity improvement were isolated within five rounds of maturation (within 2 months). CHO cells are fast growing, stress-resistant and produce antibody with glycosylations suitable for therapy. Our antibody-evolution platform based on CHO cells makes antibody-affinity maturation more efficient and is especially convenient for therapeutic antibody affinity improvement.
Collapse
Affiliation(s)
- Chuan Chen
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Nan Li
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yun Zhao
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haiying Hang
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
26
|
Mammalian cell display technology coupling with AID induced SHM in vitro: an ideal approach to the production of therapeutic antibodies. Int Immunopharmacol 2014; 23:380-6. [PMID: 25281392 DOI: 10.1016/j.intimp.2014.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 11/21/2022]
Abstract
Traditional antibody production technology within non-mammalian cell expression systems has shown many unsatisfactory properties for the development of therapeutic antibodies. Nevertheless, mammalian cell display technology reaps the benefits of producing full-length all human antibodies. Together with the developed cytidine deaminase induced in vitro somatic hypermutation technology, mammalian cell display technology provides the opportunity to produce high affinity antibodies that might be ideal for therapeutic application. This review was concentrated on the development of the mammalian cell display technology as well as the activation-induced cytidine deaminase induced in vitro somatic hypermutation technology and their applications for the production of therapeutic antibodies.
Collapse
|
27
|
Zhang J, Zhang X, Liu Q, Li M, Gao L, Gao X, Xiang S, Wu L, Fu J, Song H. Mammalian cell display for rapid screening scFv antibody therapy. Acta Biochim Biophys Sin (Shanghai) 2014; 46:859-66. [PMID: 25246434 DOI: 10.1093/abbs/gmu079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human antibodies are beginning to draw attention for use in immune gene therapy. The efficient generation of effective therapeutic monoclonal antibodies suitable for the treatment of cancers and infectious diseases would be enormously valuable. Antibody display methods are increasingly used to screen human monoclonal antibodies. Here we report the construction of a mammalian cell display method derived from a naive antibody repertoire, for which human single-chain variable fragments (scFv) have been transiently displayed on 293T cell surfaces based on a pDisplay vector. The sizes of the current pDisplay-scFv antibody repertoires have been estimated to be 0.74 × 10(7). An immunoblot assay confirmed the expression of the scFv antibody library. The subcellular distribution of ErbB3-scFv expression plasmid facilitated the display of ErbB3 scFv on the cell membrane surface and the efficiency of the display was evaluated by fluorescence-activated cell sorting. This method of mammalian cell display was verified by successfully screening ErbB3 scFv candidates. A published scFv control was used to confirm the feasibility of the ErbB3 scFv screening process. Three ErbB3 scFv candidates were produced and they were found to have affinity similar to the published scFv candidate. Thus, the present screening system provided an optimal alternative for rapid acquisition of a novel candidate scFv sequence to target genes with high affinity in vitro.
Collapse
Affiliation(s)
- Jing Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China Anhui Medical University, Hefei 230032, China
| | - Xiao'ai Zhang
- Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qiang Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Mengyi Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Liucun Gao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xin Gao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shensi Xiang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Liangliang Wu
- Chinese PLA General Hospital, Tumor Center Laboratory, Beijing 100850, China
| | - Jie Fu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Haifeng Song
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
28
|
Breous-Nystrom E, Schultze K, Meier M, Flueck L, Holzer C, Boll M, Seibert V, Schuster A, Blanusa M, Schaefer V, Grawunder U, Martin-Parras L, van Dijk MA. Retrocyte Display® technology: Generation and screening of a high diversity cellular antibody library. Methods 2014; 65:57-67. [DOI: 10.1016/j.ymeth.2013.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/13/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022] Open
|
29
|
Zhou Y, Wang J, Zhou I, Lou H, Li CZ, Chen ZR, Zhang ZH, Liu S, Wu S, Tan W, Jiang S, Zhou C. Simultaneous expression of displayed and secreted antibodies for antibody screen. PLoS One 2013; 8:e80005. [PMID: 24244593 PMCID: PMC3823846 DOI: 10.1371/journal.pone.0080005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/01/2013] [Indexed: 11/29/2022] Open
Abstract
The display of full-length antibody on the cell surface was achieved by fusing a transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the C-terminus of the heavy chain constant region. We also incorporated a furin cleavage site between the constant region and PDGFR transmembrane domain to obtain secreted antibodies. As a result, antibodies can be expressed simultaneously on the cell surface in a membrane-anchored version for screening and selecting through fluorescence-activated cell sorting (FACS) analysis, as well as in conditioned medium in a secreted version for function analysis.
Collapse
Affiliation(s)
- Yuanping Zhou
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ivan Zhou
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Haibo Lou
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chang-Zheng Li
- Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhen-Rui Chen
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhe-Huan Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Shuguang Wu
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Wanlong Tan
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
- Lindsley F. Kimball Research Institute, New York, New York, United States of America
| | - Chen Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Dgen Biotech Limited, Hong Kong, China
| |
Collapse
|
30
|
Tomimatsu K, Matsumoto SE, Tanaka H, Yamashita M, Nakanishi H, Teruya K, Kazuno S, Kinjo T, Hamasaki T, Kusumoto KI, Kabayama S, Katakura Y, Shirahata S. A rapid screening and production method using a novel mammalian cell display to isolate human monoclonal antibodies. Biochem Biophys Res Commun 2013; 441:59-64. [DOI: 10.1016/j.bbrc.2013.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/04/2013] [Indexed: 11/29/2022]
|
31
|
Bowers PM, Horlick RA, Kehry MR, Neben TY, Tomlinson GL, Altobell L, Zhang X, Macomber JL, Krapf IP, Wu BF, McConnell AD, Chau B, Berkebile AD, Hare E, Verdino P, King DJ. Mammalian cell display for the discovery and optimization of antibody therapeutics. Methods 2013; 65:44-56. [PMID: 23792919 DOI: 10.1016/j.ymeth.2013.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 11/15/2022] Open
Abstract
Recent advances are described for the isolation and affinity maturation of antibodies that couple in vitro somatic hypermutation (SHM) with mammalian cell display, replicating key aspects of the adaptive immune system. SHM is dependent on the action of the B cell specific enzyme, activation-induced cytidine deaminase (AID). AID-directed SHM in vitro in non-B cells, combined with mammalian display of a library of human antibodies, initially naïve to SHM, can be used to isolate and affinity mature antibodies via iterative cycles of fluorescence-activated cell sorting (FACS) under increasingly stringent sort conditions. SHM observed in vitro closely resembles SHM observed in human antibodies in vivo in both mutation type and positioning in the antibody variable region. In addition, existing antibodies originating from mouse immunization, in vivo based libraries, or alternative display technologies such as phage can also be affinity matured in a similar manner. The display system has been developed to enable simultaneous high-level cell surface expression and secretion of the same protein through alternate splicing, where the displayed protein phenotype remains linked to genotype, allowing soluble secreted antibody to be simultaneously characterized in biophysical and cell-based functional assays. This approach overcomes many of the previous limitations of mammalian cell display, enabling direct selection and maturation of antibodies as full-length, glycosylated IgGs.
Collapse
Affiliation(s)
- Peter M Bowers
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | - Robert A Horlick
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | - Marilyn R Kehry
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | - Tamlyn Y Neben
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | | | - Larry Altobell
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | - Xue Zhang
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | - John L Macomber
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | - Irina P Krapf
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | - Betty F Wu
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | | | - Betty Chau
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | | | - Eric Hare
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | - Petra Verdino
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | - David J King
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA.
| |
Collapse
|
32
|
Forsyth CM, Juan V, Akamatsu Y, DuBridge RB, Doan M, Ivanov AV, Ma Z, Polakoff D, Razo J, Wilson K, Powers DB. Deep mutational scanning of an antibody against epidermal growth factor receptor using mammalian cell display and massively parallel pyrosequencing. MAbs 2013; 5:523-32. [PMID: 23765106 PMCID: PMC3906306 DOI: 10.4161/mabs.24979] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We developed a method for deep mutational scanning of antibody complementarity-determining regions (CDRs) that can determine in parallel the effect of every possible single amino acid CDR substitution on antigen binding. The method uses libraries of full length IgGs containing more than 1000 CDR point mutations displayed on mammalian cells, sorted by flow cytometry into subpopulations based on antigen affinity and analyzed by massively parallel pyrosequencing. Higher, lower and neutral affinity mutations are identified by their enrichment or depletion in the FACS subpopulations. We applied this method to a humanized version of the anti-epidermal growth factor receptor antibody cetuximab, generated a near comprehensive data set for 1060 point mutations that recapitulates previously determined structural and mutational data for these CDRs and identified 67 point mutations that increase affinity. The large-scale, comprehensive sequence-function data sets generated by this method should have broad utility for engineering properties such as antibody affinity and specificity and may advance theoretical understanding of antibody-antigen recognition.
Collapse
|
33
|
Selection of antibodies from synthetic antibody libraries. Arch Biochem Biophys 2012; 526:87-98. [DOI: 10.1016/j.abb.2011.12.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 12/27/2011] [Accepted: 12/30/2011] [Indexed: 11/21/2022]
|
34
|
Xu Z, Juan V, Ivanov A, Ma Z, Polakoff D, Powers DB, Dubridge RB, Wilson K, Akamatsu Y. Affinity and cross-reactivity engineering of CTLA4-Ig to modulate T cell costimulation. THE JOURNAL OF IMMUNOLOGY 2012; 189:4470-7. [PMID: 23018459 DOI: 10.4049/jimmunol.1201813] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CTLA4-Ig is an Fc fusion protein containing the extracellular domain of CTLA-4, a receptor known to deliver a negative signal to T cells. CTLA4-Ig modulates T cell costimulatory signals by blocking the CD80 and CD86 ligands from binding to CD28, which delivers a positive T cell costimulatory signal. To engineer CTLA4-Ig variants with altered binding affinity to CD80 and CD86, we employed a high-throughput protein engineering method to map the ligand binding surface of CTLA-4. The resulting mutagenesis map identified positions critical for the recognition of each ligand on the three CDR-like loops of CTLA-4, consistent with the published site-directed mutagenesis and x-ray crystal structures of the CTLA-4/CD80 and CTLA-4/CD86 complexes. A number of single amino acid substitutions were identified that equally affected the binding affinity of CTLA4-Ig for both ligands as well as those that differentially affected binding. All of the high-affinity variants showed improved off-rates, with the best one being a 17.5-fold improved off-rate over parental CTLA4-Ig binding to CD86. Allostimulation of human CD4(+) T cells showed that improvement of CD80 and CD86 binding activity augmented inhibition of naive and primed T cell activation. In general, increased affinity for CD86 resulted in more potent inhibition of T cell response than did increased affinity for CD80. Optimization of the affinity balance to CD80 and CD86 to particular disease settings may lead to development of a CTLA4-Ig molecule with improved efficacy and safety profiles.
Collapse
Affiliation(s)
- Zhenghai Xu
- Abbott Biotherapeutics Corp., Redwood City, CA 94063, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tornetta M, Reddy R, Wheeler JC. Selection and maturation of antibodies by phage display through fusion to pIX. Methods 2012; 58:34-9. [DOI: 10.1016/j.ymeth.2012.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 07/06/2012] [Indexed: 11/16/2022] Open
|
36
|
Construction and development of a mammalian cell-based full-length antibody display library for targeting hepatocellular carcinoma. Appl Microbiol Biotechnol 2012; 96:1233-41. [PMID: 22772863 DOI: 10.1007/s00253-012-4243-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/07/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
Abstract
We present a detailed method for constructing a mammalian cell-based full-length antibody display library for targeting hepatocellular carcinoma. Two novel mammalian library vectors pcDNA3-CHm and pcDNA3-CLm were constructed that contained restriction enzyme sites NheI, ClaI and antibody constant domain. Mammalian expression vector pcDNA3-CHm contains IgG heavy-chain (HC) constant region and glycosylphosphatidylinositol anchor (GPI) that could be anchored full-length antibodies on the surface of mammalian cells. GOLPH2 prokaryotic expression vector was carried out in Escherichia coli and purified by immobilized metal affinity chromatography. Variable domain of heavy-chain and variable domain of light-chain genes were respectively inserted into the vector pcDNA3-CHm and pcDNA3-CLm by ligation, and antibody libraries are displayed as whole IgG molecules on the cell surface by co-transfecting this HC-GPI with a light chain. By screening the cell library using magnetic beads and cell ELISA, the cell clone that displayed GOLPH2-specific antibodies on cell surfaces was identified. The mammalian cell-based antibody display library is a great potential application for displaying full-length functional antibodies of targeting hepatocellular carcinoma on the surface of mammalian cells. Anti-GOLPH2 display antibody was successfully isolated from the library.
Collapse
|
37
|
Gera N, Hussain M, Rao BM. Protein selection using yeast surface display. Methods 2012; 60:15-26. [PMID: 22465794 DOI: 10.1016/j.ymeth.2012.03.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/09/2012] [Indexed: 12/16/2022] Open
Abstract
Binding proteins are typically isolated from combinatorial libraries of scaffold proteins using one of the many library screening tools available, such as phage display, yeast surface display or mRNA display. A key principle underlying these screening technologies is the establishment of a link between each unique mutant protein and its corresponding genetic code. The mutant proteins binding a desired target species are separated and subsequently identified using the genetic code. In this review, we largely focus on the use of yeast surface display for the isolation of binding proteins from combinatorial libraries. In yeast surface display, the yeast cell links the mutant protein to its coding DNA. Each yeast cell expresses the mutant proteins as fusions to a yeast cell wall protein; the yeast cell also carries plasmid DNA that codes for the mutant protein. Over the years, the yeast surface display platform has emerged as a powerful tool for protein engineering, and has been used in a variety of applications including affinity maturation, epitope mapping and biophysical characterization of proteins. Here we present a broad overview of the yeast surface display system and its applications, and compare it with other contemporary screening platforms. Further, we present detailed protocols for the use of yeast surface display to isolate de novo binding proteins from combinatorial libraries, and subsequent biophysical characterization of binders. These protocols can also be easily modified for affinity maturation of the isolated de novo binders.
Collapse
Affiliation(s)
- Nimish Gera
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | |
Collapse
|
38
|
Human anti-EGFL7 recombinant full-length antibodies selected from a mammalian cell-based antibody display library. Mol Cell Biochem 2012; 365:77-84. [DOI: 10.1007/s11010-012-1245-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/14/2012] [Indexed: 11/25/2022]
|
39
|
Abstract
Display technology has been developed and widely used in antibody screening and selecting. While phage can only display antibody fragments, mammalian cells can display not only fragments but full-length antibodies. Here we described the display of full length antibody on the surface of 293 cells. Both heavy chain and light chain genes were cloned in a single mammalian expression vector containing dual mammalian expression cassettes. While transfected into 293 cells of the vector, both heavy and light chains were expressed. With the help of transmembrane domain of platelet-derived growth factor receptor (PDGFR-TM) fused at the 3'-end of heavy chain in frame, expressed full-length antibodies were displayed on the cell surface and can be easily detected and analyzed by flow cytometry.
Collapse
Affiliation(s)
- Chen Zhou
- Antivirus Research Center, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | | |
Collapse
|
40
|
Li CZ, Liang ZK, Chen ZR, Lou HB, Zhou Y, Zhang ZH, Yu F, Liu S, Zhou Y, Wu S, Zheng W, Tan W, Jiang S, Zhou C. Identification of HBsAg-specific antibodies from a mammalian cell displayed full-length human antibody library of healthy immunized donor. Cell Mol Immunol 2011; 9:184-90. [PMID: 22179672 DOI: 10.1038/cmi.2011.55] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B immunoglobulin (HBIG) is important in the management of hepatitis B virus (HBV) infection. Aiming to develop recombinant monoclonal antibodies as an alternative to HBIG, we report the successful identification of HBV surface antigen (HBsAg)-specific antibodies from a full-length human antibody library displayed on mammalian cell surface. Using total RNA of peripheral blood mononuclear cells of a natively immunized donor as template, the antibody repertoire was amplified. Combining four-way ligation and the Flp recombinase-mediated integration (Flp-In) system, we constructed a mammalian cell-based, fully human, full-length antibody display library in which each cell displayed only one kind of antibody molecule. By screening the cell library using fluorescence-activated cell sorting (FACS), eight cell clones that displayed HBsAg-specific antibodies on cell surfaces were identified. DNA sequence analysis of the antibody genes revealed three unique antibodies. FACS data indicated that fluorescent strength of expression (FSE), fluorescent strength of binding (FSB) and relative binding ability (RBA) were all different among them. These results demonstrated that by using our antibody mammalian display and screening platform, we can successfully identify antigen-specific antibodies from an immunized full-length antibody library. Therefore, this platform is very useful for the development of therapeutic antibodies.
Collapse
Affiliation(s)
- Chang-Zheng Li
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wu L, Oficjalska K, Lambert M, Fennell BJ, Darmanin-Sheehan A, Ní Shúilleabháin D, Autin B, Cummins E, Tchistiakova L, Bloom L, Paulsen J, Gill D, Cunningham O, Finlay WJJ. Fundamental characteristics of the immunoglobulin VH repertoire of chickens in comparison with those of humans, mice, and camelids. THE JOURNAL OF IMMUNOLOGY 2011; 188:322-33. [PMID: 22131336 DOI: 10.4049/jimmunol.1102466] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Examination of 1269 unique naive chicken V(H) sequences showed that the majority of positions in the framework (FW) regions were maintained as germline, with high mutation rates observed in the CDRs. Many FW mutations could be clearly related to the modulation of CDR structure or the V(H)-V(L) interface. CDRs 1 and 2 of the V(H) exhibited frequent mutation in solvent-exposed positions, but conservation of common structural residues also found in human CDRs at the same positions. In comparison with humans and mice, the chicken CDR3 repertoire was skewed toward longer sequences, was dominated by small amino acids (G/S/A/C/T), and had higher cysteine (chicken, 9.4%; human, 1.6%; and mouse, 0.25%) but lower tyrosine content (chicken, 9.2%; human, 16.8%; and mouse 26.4%). A strong correlation (R(2) = 0.97) was observed between increasing CDR3 length and higher cysteine content. This suggests that noncanonical disulfides are strongly favored in chickens, potentially increasing CDR stability and complexity in the topology of the combining site. The probable formation of disulfide bonds between CDR3 and CDR1, FW2, or CDR2 was also observed, as described in camelids. All features of the naive repertoire were fully replicated in the target-selected, phage-displayed repertoire. The isolation of a chicken Fab with four noncanonical cysteines in the V(H) that exhibits 64 nM (K(D)) binding affinity for its target proved these constituents to be part of the humoral response, not artifacts. This study supports the hypothesis that disulfide bond-constrained CDR3s are a structural diversification strategy in the restricted germline v-gene repertoire of chickens.
Collapse
Affiliation(s)
- Leeying Wu
- Global Biotherapeutics Technologies, Pfizer, Cambridge, MA 02140, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rakestraw JA, Aird D, Aha PM, Baynes BM, Lipovsek D. Secretion-and-capture cell-surface display for selection of target-binding proteins. Protein Eng Des Sel 2011; 24:525-30. [DOI: 10.1093/protein/gzr008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Zhou I, Zhang ZH, Li CZ, Chen ZR, He W, Zhou Y, Liu S, Wu S, Zhou Y, Tan W, Jiang S, Zhou C. Four-way ligation for construction of a mammalian cell-based full-length antibody display library. Acta Biochim Biophys Sin (Shanghai) 2011; 43:232-8. [PMID: 21257624 DOI: 10.1093/abbs/gmq126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A unique four-way ligation strategy was developed for rapid construction of a full-length antibody library. A mammalian expression vector was constructed that contained dual mammalian expression cassettes and sequences recognized by the unique restriction enzymes BsmBI, BstXI, and SfiI. Both full-length light-chain and variable domain of heavy-chain genes were inserted into the vector in one step by four-way ligation, and full-length bivalent antibodies were displayed on mammalian cell surfaces. Using this strategy, only 2 weeks were required to successfully construct high-quality, full-length human antibody libraries.
Collapse
Affiliation(s)
- Ivan Zhou
- Antiviral Research Center, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lin W, Kurosawa K, Murayama A, Kagaya E, Ohta K. B-cell display-based one-step method to generate chimeric human IgG monoclonal antibodies. Nucleic Acids Res 2010; 39:e14. [PMID: 21062829 PMCID: PMC3035438 DOI: 10.1093/nar/gkq1122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The recent development of screening strategies based on the generation and display of large libraries of antibody fragments has allowed considerable advances for the in vitro isolation of monoclonal antibodies (mAbs). We previously developed a technology referred to as the ‘ADLib (Autonomously Diversifying Library) system’, which allows the rapid screening and isolation in vitro of antigen-specific monoclonal antibodies (mAbs) from libraries of immunoglobulin M (IgM) displayed by the chicken B-cell line DT40. Here, we report a novel application of the ADLib system to the production of chimeric human mAbs. We have designed gene knock-in constructs to generate DT40 strains that coexpress chimeric human IgG and chicken IgM via B-cell-specific RNA alternative splicing. We demonstrate that the application of the ADLib system to these strains allows the one-step selection of antigen-specific human chimeric IgG. In addition, the production of chimeric IgG can be selectively increased when we modulate RNA processing by overexpressing the polyadenylation factor CstF-64. This method provides a new way to efficiently design mAbs suitable for a wide range of purposes including antibody therapy.
Collapse
Affiliation(s)
- Waka Lin
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | |
Collapse
|
45
|
Zhou C, Jacobsen FW, Cai L, Chen Q, Shen WD. Development of a novel mammalian cell surface antibody display platform. MAbs 2010; 2:508-18. [PMID: 20716968 DOI: 10.4161/mabs.2.5.12970] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Antibody display systems have been successfully applied to screen, select and characterize antibody fragments. These systems typically use prokaryotic organisms such as phage and bacteria or lower eukaryotic organisms, such as yeast. These organisms possess either no or different post-translational modification functions from mammalian cells and prefer to display small antibody fragments instead of full-length IgGs. We report here a novel mammalian cell-based antibody display platform that displays full-length functional antibodies on the surface of mammalian cells. Through recombinase-mediated DNA integration, each host cell contains one copy of the gene of interest in the genome. Utilizing a hot-spot integration site, the expression levels of the gene of interest are high and comparable between clones, ensuring a high signal to noise ratio. Coupled with fluorescence-activated cell sorting (FACS) technology, our platform is high throughput and can distinguish antibodies with very high antigen binding affinities directly on the cell surface. Single-round FACS can enrich high affinity antibodies by more than 500 fold. Antibodies with significantly improved neutralizing activity have been identified from a randomly mutagenized library, demonstrating the power of this platform in screening and selecting antibody therapeutics.
Collapse
Affiliation(s)
- Chen Zhou
- Protein Science, Amgen Inc., Thousand Oaks, CA, USA
| | | | | | | | | |
Collapse
|
46
|
Zhou Y, Chen ZR, Li CZ, He W, Liu S, Jiang S, Ma WL, Tan W, Zhou C. A novel strategy for rapid construction of libraries of full-length antibodies highly expressed on mammalian cell surfaces. Acta Biochim Biophys Sin (Shanghai) 2010; 42:575-84. [PMID: 20705599 DOI: 10.1093/abbs/gmq055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Development of a versatile mammalian display system is essential for the selection of functional human antibodies with high affinities. Here we described a novel strategy for rapid construction of full-length antibody libraries that could be efficiently expressed on mammalian cell surfaces. The universal vector pDGB-HC-TM was constructed by inserting multiple cloning site unique sequences recognized by restriction endonucleases BsmBI, SfiI, and BstXI for the pop-in and pop-out of genes of interest. Cytomegalovirus promoter, a commonly used promoter for high expression of proteins in a variety of mammalian cells, was used to drive expression of the inserted antibody genes and a transmembrane domain from platelet-derived growth factor receptor was fused in frame to the C-terminus of heavy chain consistent region to anchor the antibody expressed on the mammalian cell surface. Using this strategy, we constructed a full-length human antibody display library. DNA sequence analysis and expression analysis indicated that the library constructed had a combinatory expressible, detectable diversity of 6.58 x 10(10).
Collapse
Affiliation(s)
- Ye Zhou
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Walls D, Loughran ST, Cunningham O. Phage display: a powerful technology for the generation of high specificity affinity reagents from alternative immune sources. Methods Mol Biol 2010; 681:87-101. [PMID: 20978962 PMCID: PMC7120213 DOI: 10.1007/978-1-60761-913-0_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibodies are critical reagents in many fundamental biochemical methods such as affinity chromatography. As our understanding of the proteome becomes more complex, demand is rising for rapidly generated antibodies of higher specificity than ever before. It is therefore surprising that few investigators have moved beyond the classical methods of antibody production in their search for new reagents. Despite their long-standing efficacy, recombinant antibody generation technologies such as phage display are still largely the tools of biotechnology companies or research groups with a direct interest in protein engineering. In this chapter, we discuss the inherent limitations of classical polyclonal and monoclonal antibody generation and highlight an attractive alternative: generating high specificity, high affinity recombinant antibodies from alternative immune sources such as chickens, via phage display.
Collapse
Affiliation(s)
- Dermot Walls
- National Centre for Sensor Research, School of Biotechnology, Dublin City University, Dublin, 9 Ireland
| | - Sinéad T. Loughran
- National Centre for Sensor Research, School of Biotechnology, Dublin City University, Dublin, 9 Ireland
| | | |
Collapse
|
48
|
Schirrmann T, Menzel C, Hust M, Prilop J, Jostock T, Dübel S. Oligomeric forms of single chain immunoglobulin (scIgG). MAbs 2010; 2:73-6. [PMID: 20081378 DOI: 10.4161/mabs.2.1.10784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Assembly of immunoglobulin G (IgG) molecules from two heavy and two light chains can be facilitated by connecting the light chain to the heavy chain by an oligopeptide linker. Production of the anti-lysozyme D1.3-single chain (sc) IgG1 in HEK293T cells yielded up to 8 mg/L functional scIgG polypeptide. Size exclusion chromatography of material purified by protein-A affinity chromatography revealed that the majority of the D1.3-scIgG1 molecules were 150 kDa monomers, with a K(D) of 1.8 x 10(-10) M measured by surface plasmon resonance; however, significant fractions of scIgG dimers and oligomers with molecular masses of 300 kDa and >600 kDa, respectively, were identified. The oligomerization resulted in an increased avidity. The observed oligomerization capability may allow new approaches for the generation of bispecific/multivalent antibodies.
Collapse
Affiliation(s)
- Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie und Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Shibui T, Kobayashi T, Kanatani K. A completely in vitro system for obtaining scFv using mRNA display, PCR, direct sequencing, and wheat embryo cell-free translation. Biotechnol Lett 2009; 31:1103-10. [PMID: 19308326 DOI: 10.1007/s10529-009-9972-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 03/05/2009] [Accepted: 03/10/2009] [Indexed: 11/30/2022]
Abstract
Using mRNA display followed by in vitro sequencing and translation, a complete in vitro system for obtaining scFv has been developed. An mRNA display library for synthetic scFv was panned against human TNF receptor (TNFR). The nucleotide portion of the enriched molecules was subjected to limiting dilution, and PCR-amplified. Three of the proteins encoded by the amplified fragments were synthesized in a wheat embryo (WE) cell-free system using a batch method. They were shown to bind TNFR by ELISA. One of their sequences was identified in vitro. The identified clone was further synthesized at approx. 0.5 mg/ml reaction mixture in a WE system with dialysis as a totally soluble protein.
Collapse
Affiliation(s)
- Tatsuro Shibui
- Molecuence Corp., Mitsubishi Chemical Group Yokohama Research Center, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-8502, Japan.
| | | | | |
Collapse
|
50
|
Abstract
Antibody engineering has generally been carried out by displaying mouse or human antibodies or antibody fragments on the surface of microorganisms (phage, bacteria, and yeast). We have shown that mammalian cells can be used to display single-chain antibody fragments (scFvs) for affinity maturation. Using mammalian cell display one can isolate and engineer scFvs, Fabs, or whole IgGs for increased affinity and other specific biological functions. Here, we describe a mammalian cell display strategy to isolate high-affinity scFvs specific for CD22. Our strategy uses flow cytometry and human embryonic kidney 293T (HEK-293T) cells that are widely used for transient protein expression. Flow cytometry enhances the screen's sensitivity thereby allowing us to isolate high-affinity antibodies.
Collapse
Affiliation(s)
- Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|