1
|
Bolsée J, Violle B, Jacques-Hespel C, Nguyen T, Lonez C, Breman E. Tandem CAR T-cells targeting CD19 and NKG2DL can overcome CD19 antigen escape in B-ALL. Front Immunol 2025; 16:1557405. [PMID: 40416955 PMCID: PMC12098294 DOI: 10.3389/fimmu.2025.1557405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/21/2025] [Indexed: 05/27/2025] Open
Abstract
Introduction Chimeric antigen receptor (CAR) T-cell therapies have achieved remarkable success in treating B-cell malignancies, including acute lymphoblastic leukemia (B-ALL). However, despite high remission rates, relapse due to antigen escape remains a significant challenge. To overcome this, designing CAR T-cells targeting multiple cancer antigens simultaneously is a promising strategy. NKG2D ligands (NKG2DL) are eight stress-induced ligands expressed by cancer cells but largely absent on healthy cells. Methods and Results We hypothesized that simultaneous targeting of NKG2DL (using the NKG2D extracellular domain) and CD19 can prevent CD19 antigen escape and improve long-term remission rates in B-ALL patients. We developed three tandem CARs targeting both CD19 and NKG2DL and demonstrated that two tandem candidates were highly effective against both CD19+ and CD19- cancer cell lines. Importantly, when compared to CD19 CAR T-cells, tandem CAR T-cells exhibited comparable cytokine secretion, cytolytic activity and proliferation levels when incubated with cancer cells expressing CD19 and were still effective when incubated with cancer cells lacking CD19. Moreover, T-cells transduced with the selected CD19/NKG2DL tandem CAR were functional against CD19+ primary B-ALL samples and controlled tumor growth in a highly challenging xenograft model representing a CD19- B-ALL relapse. Discussion These findings provide proof-of-concept that NKG2D-based tandem CARs offer a promising approach to overcome antigen escape and enhance anti-tumor efficacy in B-cell malignancies.
Collapse
Affiliation(s)
| | | | | | | | | | - Eytan Breman
- R&D Department, Celyad Oncology,
Mont-Saint-Guibert, Belgium
| |
Collapse
|
2
|
Ceraolo MG, Leccese M, Cassotta A, Triolo S, Bombaci M, Coluccio E, Prati D, Ungaro R, Abrignani S, Bandera A, Sallusto F, Lanzavecchia A, Notarbartolo S. Dual Activation-Induced Marker Combinations Efficiently Identify and Discern Antigen-Specific and Bystander-Activated Human CD4 + T Cells. Eur J Immunol 2025; 55:e202451404. [PMID: 39663678 PMCID: PMC11830384 DOI: 10.1002/eji.202451404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Identifying activated T lymphocytes and differentiating antigen-specific from bystander T cells is crucial for understanding adaptive immune responses. This study investigates the efficacy of activation-induced markers (AIMs) in distinguishing these cell populations. We measured the expression of commonly used AIMs (CD25, CD38, CD40L, CD69, CD137, HLA-DR, ICOS, and OX40) in an in vitro T-cell activation system and evaluated their sensitivity, specificity, and positive predictive value. We demonstrated that individual AIMs, while specific in detecting activated CD4+ T cells, poorly discriminate between antigen-specific and bystander activation, as assessed by a discriminative capacity (DC) score we developed. Our analysis revealed that dual AIM combinations significantly enhanced the ability to distinguish antigen-specific from bystander-activated T cells, achieving DC scores above 90%. These combinations also improved positive predictive value and specificity with a modest reduction in sensitivity. The CD25hi/ICOShi combination emerged as the most efficient, with an average sensitivity of 84.35%, specificity of 99.7%, and DC score of 90.12%. Validation through T-cell cloning and antigen re-stimulation confirmed the robustness of our predictions. This study provides a practical framework for researchers to optimize strategies for identifying and isolating antigen-specific human CD4+ T lymphocytes and studying their phenotype, function, and T-cell receptor repertoire.
Collapse
Affiliation(s)
- Maria Grazia Ceraolo
- INGM, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
| | - Maristella Leccese
- INGM, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
| | - Antonino Cassotta
- Institute for Research in BiomedicineUniversità della Svizzera italianaBellinzonaSwitzerland
| | - Sara Triolo
- INGM, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
| | - Mauro Bombaci
- INGM, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
| | - Elena Coluccio
- Department of Transfusion Medicine and HematologyFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Daniele Prati
- Department of Transfusion Medicine and HematologyFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Riccardo Ungaro
- Infectious Diseases UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Sergio Abrignani
- INGM, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Alessandra Bandera
- Infectious Diseases UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
- Centre for Multidisciplinary Research in Health Science (MACH)Università degli Studi di MilanoMilanItaly
| | - Federica Sallusto
- Institute for Research in BiomedicineUniversità della Svizzera italianaBellinzonaSwitzerland
- Institute of Microbiology, ETH ZurichZurichSwitzerland
| | - Antonio Lanzavecchia
- INGM, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
| | - Samuele Notarbartolo
- Infectious Diseases UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
3
|
Forgioni A, Watanabe M, Goto R, Harada T, Ota T, Shimamura T, Taketomi A. Anti-Inflammatory Effects of Ex Vivo-Generated Donor Antigen-Specific Immunomodulatory Cells on Pancreatic Islet Transplantation. Cell Transplant 2025; 34:9636897251317887. [PMID: 39981681 PMCID: PMC11843686 DOI: 10.1177/09636897251317887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/01/2025] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Pancreatic islet transplantation (PITx) is a promising treatment option for patients with type 1 diabetes mellitus. Previously, we demonstrated that therapy with alloantigen-specific immunomodulatory cells (IMCs) generated ex vivo in the presence of anti-CD80 and CD86 monoclonal antibodies (mAbs), successfully induced tolerance following clinical liver transplantation. To extend IMC therapy to PITx, it is crucial to address the strong inflammatory and innate immune responses that occur immediately after PITx. In this study, we investigated the efficacy of IMCs in modulating macrophage activation and mitigating inflammatory damage of pancreatic islets. IMCs were induced using mouse splenocytes in the presence of anti-mouse anti-CD80 (RM80) and anti-CD86 (GL-1) mAbs. IMCs exerted donor-specific immunosuppressive effects in a mixed lymphocyte reaction. During lipopolysaccharide (LPS) stimulation, the addition of IMCs suppressed conversion to the M1 phenotype and promoted a shift toward the M2 phenotype, particularly under direct cell-cell contact conditions. Nitric oxide production, a hallmark of M1 polarized macrophages, was significantly reduced in LPS-stimulated RAW264 macrophages by IMC treatment. These findings were associated with reduced secretion of pro-inflammatory cytokines, tumoral necrosis factor α, and interleukin-6, and increased interleukin-10 production by macrophages. IMCs effectively prevented macrophage-mediated islet destruction after 12 h of co-culture with LPS-stimulated macrophages and significantly inhibited macrophage migration toward allogeneic islets in vitro. Intraportal co-infusion of IMCs with syngeneic islets in a mouse PITx model resulted in reduced messenger RNA (mRNA) expression of pro-inflammatory cytokines in the recipient liver. Immunohistochemical staining revealed a significantly lower number of F4/80+ macrophages at the transplantation site in IMCs-treated mice. These results demonstrate that IMCs modulate macrophage polarization, promoting a shift toward the M2 phenotype and protecting islets from macrophage-mediated damage. These effects combined with its intrinsic donor antigen-specific immunosuppressive capacity make IMC therapy a promising strategy for improving outcomes after PITx.
Collapse
Affiliation(s)
- Agustina Forgioni
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Masaaki Watanabe
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| | - Ryoichi Goto
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Takuya Harada
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Takuji Ota
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Tsuyoshi Shimamura
- Department of Organ Transplantation Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Delhez N, Aboubakar Nana F, Houbion C, Bayard A, Bruger A, Vanhaver C, Brandau S, van der Bruggen P, Hirsch T. Deciphering neutrophil heterogeneity in human blood and tumors: Methods for isolating neutrophils and assessing their effect on T-cell proliferation. Methods Cell Biol 2024; 191:151-196. [PMID: 39824555 DOI: 10.1016/bs.mcb.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Neutrophils were historically considered a homogenous population of cells with functions limited to innate immunity against external threats. However, with the rise of immunotherapy, recent works have shown that neutrophils are also important actors in immuno-oncology. In this context, neutrophils appear as a more heterogenous population of cells. However, many reported neutrophil subpopulations, or neutrophils with various transcriptional states, lack functional characterization to confirm their suspected roles. Thus, we believe that functional assays remain essential to define the role of neutrophils in cancer. In this chapter, we present a T-cell proliferation assay based on the use of allogeneic T-cells to assess the suppressive capabilities of neutrophils isolated from human blood or tumor samples. Allogeneic T-cells are isolated in large quantities from the blood of non-cancerous donors and frozen in aliquots to be used in several experiments. This reduces variability by excluding other cancer-derived factors, which would be present if autologous T-cell were used and allows to isolate the effect of neutrophils on T-cell proliferation. Thawed T-cells have poor proliferative capacities and to initiate proliferation they require co-culture with mature dendritic cells that we generate from monocytes isolated from the same blood sample. Initially developed for lung cancer patients, our method to isolate low-density neutrophils (LDN) and normal-density neutrophils (NDN) can be used with any patient and adapted to other kind of samples (e.g., ascites, urine, …).
Collapse
Affiliation(s)
- Nicolas Delhez
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Frank Aboubakar Nana
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium; Pneumology Department, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Camille Houbion
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Alexandre Bayard
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Annika Bruger
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | - Sven Brandau
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, West German Cancer Center, Essen, Germany
| | | | - Thibault Hirsch
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
5
|
Carrothers E, Appleby M, Lai V, Kozbenko T, Alomar D, Smith BJ, Hamada N, Hinton P, Ainsbury EA, Hocking R, Yauk C, Wilkins RC, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to cataracts. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:31-56. [PMID: 38644659 DOI: 10.1002/em.22594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
Cataracts are one of the leading causes of blindness, with an estimated 95 million people affected worldwide. A hallmark of cataract development is lens opacification, typically associated not only with aging but also radiation exposure as encountered by interventional radiologists and astronauts during the long-term space mission. To better understand radiation-induced cataracts, the adverse outcome pathway (AOP) framework was used to structure and evaluate knowledge across biological levels of organization (e.g., macromolecular, cell, tissue, organ, organism and population). AOPs identify a sequence of key events (KEs) causally connected by key event relationships (KERs) beginning with a molecular initiating event to an adverse outcome (AO) of relevance to regulatory decision-making. To construct the cataract AO and retrieve evidence to support it, a scoping review methodology was used to filter, screen, and review studies based on the modified Bradford Hill criteria. Eight KEs were identified that were moderately supported by empirical evidence (e.g., dose-, time-, incidence-concordance) across the adjacent (directly linked) relationships using well-established endpoints. Over half of the evidence to justify the KER linkages was derived from the evidence stream of biological plausibility. Early KEs of oxidative stress and protein modifications had strong linkages to downstream KEs and could be the focus of countermeasure development. Several identified knowledge gaps and inconsistencies related to the quantitative understanding of KERs which could be the basis of future research, most notably directed to experiments in the range of low or moderate doses and dose-rates, relevant to radiation workers and other occupational exposures.
Collapse
Affiliation(s)
- Emma Carrothers
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Meghan Appleby
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vita Lai
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Dalya Alomar
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Patricia Hinton
- Defense Research & Development Canada, Canadian Forces Environmental Medicine Establishment, Toronto, Ontario, Canada
| | - Elizabeth A Ainsbury
- Radiation, Chemical and Environmental Hazards Division, UK Health Security Agency, Birmingham, UK
- Environmental Research Group within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK
| | - Robyn Hocking
- Learning and Knowledge and Library Services, Health Canada, Ottawa, Ontario, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Davis JE, Ludford-Menting M, Koldej R, Ritchie DS. Modified cell trace violet proliferation assay preserves lymphocyte viability and allows spectral flow cytometry analysis. Cytometry A 2024; 105:394-403. [PMID: 38421087 DOI: 10.1002/cyto.a.24830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
In this study we describe three different methods for labeling T lymphocytes with cell trace violet (CTV), in order to track cell division in mouse and human cells, in both the in vitro and in vivo setting. We identified a modified method of CTV labeling that can be applied directly to either conventional or spectral flow cytometry, that maintained lymphocyte viability and function, yet minimized dye spill-over into other fluorochrome channels. Our optimized method for CTV labeling allowed us to identify up to eight cell divisions and the replication index for in vitro-stimulated mouse and human lymphocytes, and the co-expression of T-cell subset markers. Furthermore, the homeostatic trafficking, expansion and division of CTV-labeled congenic donor T cells could be detected using spectral cytometry, in an adoptive T-cell transfer mouse model. Our optimized CTV method can be applied to both in vitro and in vivo settings to examine the behavior and phenotype of activated T cells.
Collapse
Affiliation(s)
- Joanne E Davis
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Mandy Ludford-Menting
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Rachel Koldej
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - David S Ritchie
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre-Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Soh KT, Tario JD, Muirhead KA, Wallace PK. Probing cell proliferation: Considerations for dye selection. Methods Cell Biol 2024; 186:1-24. [PMID: 38705595 DOI: 10.1016/bs.mcb.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Broadly speaking, cell tracking dyes are fluorescent compounds that bind stably to components on or within the cells so the fate of the labeled cells can be followed. Their staining should be bright and homogeneous without affecting cell function. For purposes of monitoring cell proliferation, each time a cell divides the intensity of cell tracking dye should diminish equally between daughter cells. These dyes can be grouped into two different classes. Protein reactive dyes label cells by reacting covalently but non-selectively with intracellular proteins. Carboxyfluorescein diacetate succinimidyl ester (CFSE) is the prototypic general protein label. Membrane intercalating dyes label cells by partitioning non-selectively and non-covalently within the plasma membrane. The PKH membrane dyes are examples of lipophilic compounds whose chemistry allows for their retention within biological membranes without affecting cellular growth, viability, or proliferation when used properly. Here we provide considerations based for labeling cell lines and peripheral blood mononuclear cells using both classes of dyes. Examples from optimization experiments are presented along with critical aspects of the staining procedures to help mitigate common risks. Of note, we present data where a logarithmically growing cell line is labeled with both a protein dye and a membrane tracking dye to compare dye loss rates over 6days. We found that dual stained cells paralleled dye loss of the corresponding single stained cells. The decrease in fluorescence intensity by protein reactive dyes, however, was more rapid than that with the membrane reactive dyes, indicating the presence of additional division-independent dye loss.
Collapse
Affiliation(s)
- Kah Teong Soh
- Agenus, Inc., Lexington, MA, United States; Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Joseph D Tario
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | | | - Paul K Wallace
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States; SciGro, Inc., Middleton, WI, United States.
| |
Collapse
|
8
|
Pokharel J, Shryki I, Zwijnenburg AJ, Sandu I, Krumm L, Bekiari C, Avramov V, Heinbäck R, Lysell J, Eidsmo L, Harris HE, Gerlach C. The cellular microenvironment regulates CX3CR1 expression on CD8 + T cells and the maintenance of CX3CR1 + CD8 + T cells. Eur J Immunol 2024; 54:e2350658. [PMID: 37816219 DOI: 10.1002/eji.202350658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
Expression levels of the chemokine receptor CX3CR1 serve as high-resolution marker delineating functionally distinct antigen-experienced T-cell states. The factors that influence CX3CR1 expression in T cells are, however, incompletely understood. Here, we show that in vitro priming of naïve CD8+ T cells failed to robustly induce CX3CR1, which highlights the shortcomings of in vitro priming settings in recapitulating in vivo T-cell differentiation. Nevertheless, in vivo generated memory CD8+ T cells maintained CX3CR1 expression during culture. This allowed us to investigate whether T-cell receptor ligation, cell death, and CX3CL1 binding influence CX3CR1 expression. T-cell receptor stimulation led to downregulation of CX3CR1. Without stimulation, CX3CR1+ CD8+ T cells had a selective survival disadvantage, which was enhanced by factors released from necrotic but not apoptotic cells. Exposure to CX3CL1 did not rescue their survival and resulted in a dose-dependent loss of CX3CR1 surface expression. At physiological concentrations of CX3CL1, CX3CR1 surface expression was only minimally reduced, which did not hamper the interpretability of T-cell differentiation states delineated by CX3CR1. Our data further support the broad utility of CX3CR1 surface levels as T-cell differentiation marker and identify factors that influence CX3CR1 expression and the maintenance of CX3CR1 expressing CD8+ T cells.
Collapse
Affiliation(s)
- Jyoti Pokharel
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Iman Shryki
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Anthonie J Zwijnenburg
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Ioana Sandu
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Laura Krumm
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Christina Bekiari
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Victor Avramov
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Rebecka Heinbäck
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Josefin Lysell
- Dermatology and Venereology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
- Leo Foundation Skin Immunology Center, University of Copenhagen, Kobenhavn, Denmark
| | - Helena E Harris
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Carmen Gerlach
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
9
|
Tario JD, Soh KT, Wallace PK, Muirhead KA. Monitoring Cell Proliferation by Dye Dilution: Considerations for Panel Design. Methods Mol Biol 2024; 2779:159-216. [PMID: 38526787 DOI: 10.1007/978-1-0716-3738-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
High dimensional studies that include proliferation dyes face two inherent challenges in panel design. First, the more rounds of cell division to be monitored based on dye dilution, the greater the starting intensity of the labeled parent cells must be in order to distinguish highly divided daughter cells from background autofluorescence. Second, the greater their starting intensity, the more difficult it becomes to avoid spillover of proliferation dye signal into adjacent spectral channels, with resulting limitations on the use of other fluorochromes and ability to resolve dim signals of interest. In the third and fourth editions of this series, we described the similarities and differences between protein-reactive and membrane-intercalating dyes used for general cell tracking, provided detailed protocols for optimized labeling with each dye type, and summarized characteristics to be tested by the supplier and/or user when validating either dye type for use as a proliferation dye. In this fifth edition, we review: (a) Fundamental assumptions and critical controls for dye dilution proliferation assays; (b) Methods to evaluate the effect of labeling on cell growth rate and test the fidelity with which dye dilution reports cell division; and. (c) Factors that determine how many daughter generations can be accurately included in proliferation modeling. We also provide an expanded section on spectral characterization, using data collected for three protein-reactive dyes (CellTrace™ Violet, CellTrace™ CFSE, and CellTrace™ Far Red) and three membrane-intercalating dyes (PKH67, PKH26, and CellVue® Claret) on three different cytometers to illustrate typical decisions and trade-offs required during multicolor panel design. Lastly, we include methods and controls for assessing regulatory T cell potency, a functional assay that incorporates the "know your dye" and "know your cytometer" principles described herein.
Collapse
Affiliation(s)
- Joseph D Tario
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kah Teong Soh
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Agenus, Inc., Lexington, MA, USA
| | - Paul K Wallace
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- SciGro, Inc., Sedona, AZ, USA
| | | |
Collapse
|
10
|
Esher Righi S, Harriett AJ, Lilly EA, Fidel PL, Noverr MC. Candida-induced granulocytic myeloid-derived suppressor cells are protective against polymicrobial sepsis. mBio 2023; 14:e0144623. [PMID: 37681975 PMCID: PMC10653853 DOI: 10.1128/mbio.01446-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 09/09/2023] Open
Abstract
IMPORTANCE Polymicrobial intra-abdominal infections are serious clinical infections that can lead to life-threatening sepsis, which is difficult to treat in part due to the complex and dynamic inflammatory responses involved. Our prior studies demonstrated that immunization with low-virulence Candida species can provide strong protection against lethal polymicrobial sepsis challenge in mice. This long-lived protection was found to be mediated by trained Gr-1+ polymorphonuclear leukocytes with features resembling myeloid-derived suppressor cells (MDSCs). Here we definitively characterize these cells as MDSCs and demonstrate that their mechanism of protection involves the abrogation of lethal inflammation, in part through the action of the anti-inflammatory cytokine interleukin (IL)-10. These studies highlight the role of MDSCs and IL-10 in controlling acute lethal inflammation and give support for the utility of trained tolerogenic immune responses in the clinical treatment of sepsis.
Collapse
Affiliation(s)
- Shannon Esher Righi
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Amanda J. Harriett
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Elizabeth A. Lilly
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Paul L. Fidel
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, Louisiana, USA
| | - Mairi C. Noverr
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
11
|
Zwijnenburg AJ, Pokharel J, Varnaitė R, Zheng W, Hoffer E, Shryki I, Comet NR, Ehrström M, Gredmark-Russ S, Eidsmo L, Gerlach C. Graded expression of the chemokine receptor CX3CR1 marks differentiation states of human and murine T cells and enables cross-species interpretation. Immunity 2023; 56:1955-1974.e10. [PMID: 37490909 DOI: 10.1016/j.immuni.2023.06.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
T cells differentiate into functionally distinct states upon antigen encounter. These states are delineated by different cell surface markers for murine and human T cells, which hamper cross-species translation of T cell properties. We aimed to identify surface markers that reflect the graded nature of CD8+ T cell differentiation and delineate functionally comparable states in mice and humans. CITEseq analyses revealed that graded expression of CX3CR1, encoding the chemokine receptor CX3CR1, correlated with the CD8+ T cell differentiation gradient. CX3CR1 expression distinguished human and murine CD8+ and CD4+ T cell states, as defined by migratory and functional properties. Graded CX3CR1 expression, refined with CD62L, accurately captured the high-dimensional T cell differentiation continuum. Furthermore, the CX3CR1 expression gradient delineated states with comparable properties in humans and mice in steady state and on longitudinally tracked virus-specific CD8+ T cells in both species. Thus, graded CX3CR1 expression provides a strategy to translate the behavior of distinct T cell differentiation states across species.
Collapse
Affiliation(s)
- Anthonie Johan Zwijnenburg
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Jyoti Pokharel
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Renata Varnaitė
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Wenning Zheng
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Elena Hoffer
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Iman Shryki
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Natalia Ramirez Comet
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Marcus Ehrström
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden; Nordiska Kliniken, 11151 Stockholm, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; Laboratory for Molecular Infection Medicine Sweden, 90187 Umeå, Sweden
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden; Leo Foundation Skin Immunology Center, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Carmen Gerlach
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden.
| |
Collapse
|
12
|
Yabas M, Bostanci A, Aral S. ATP11C promotes the differentiation of pre-B cells into immature B cells but does not affect their IL-7-dependent proliferation. Immunol Res 2023; 71:609-616. [PMID: 36753036 DOI: 10.1007/s12026-023-09364-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
The P4-type ATPases are believed to function as flippases that contribute to the organization of the asymmetric aminophospholipid distribution on the plasma membranes of eukaryotes by their ability to internalize specific phospholipids from the outer leaflet to the inner leaflet. Despite the existence of 14 members of the P4-type ATPases in humans and 15 in mice, their roles in the immune system have not been fully understood. So far, ATP11C was shown to be important for B cells, and mice deficient for ATP11C had a developmental arrest at the pro-B to pre-B cell transition stage of B cell development. Using an ATP11C-deficient pre-B cell line generated through CRISPR/Cas9 engineering, we here tested the role of ATP11C in pre-B cells in vitro and showed that ablation of ATP11C in pre-B cells causes a defect in the flippase activity. We further demonstrated that loss of ATP11C does not impede the proliferation of pre-B cells in response to IL-7. However, pre-B cells lacking ATP11C failed to differentiate into immature B cells upon removal of IL-7. These results suggest that disruption of lipid asymmetry by loss of ATP11C in pre-B cells may control the switch from proliferation to differentiation in pre-B cells.
Collapse
Affiliation(s)
- Mehmet Yabas
- Department of Genetics and Bioengineering, Trakya University, Edirne, Turkey.
- Department of Immunology, Faculty of Medicine, Malatya Turgut Ozal University, Malatya, Turkey.
| | - Ayten Bostanci
- Department of Genetics and Bioengineering, Trakya University, Edirne, Turkey
| | - Seda Aral
- Department of Biotechnology and Genetics, Institute of Natural Sciences, Trakya University, Edirne, Turkey
| |
Collapse
|
13
|
Tippalagama R, Chihab LY, Kearns K, Lewis S, Panda S, Willemsen L, Burel JG, Lindestam Arlehamn CS. Antigen-specificity measurements are the key to understanding T cell responses. Front Immunol 2023; 14:1127470. [PMID: 37122719 PMCID: PMC10140422 DOI: 10.3389/fimmu.2023.1127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Antigen-specific T cells play a central role in the adaptive immune response and come in a wide range of phenotypes. T cell receptors (TCRs) mediate the antigen-specificities found in T cells. Importantly, high-throughput TCR sequencing provides a fingerprint which allows tracking of specific T cells and their clonal expansion in response to particular antigens. As a result, many studies have leveraged TCR sequencing in an attempt to elucidate the role of antigen-specific T cells in various contexts. Here, we discuss the published approaches to studying antigen-specific T cells and their specific TCR repertoire. Further, we discuss how these methods have been applied to study the TCR repertoire in various diseases in order to characterize the antigen-specific T cells involved in the immune control of disease.
Collapse
|
14
|
Multi-component immune knockout: A strategy for studying the effective components of traditional Chinese medicine. J Chromatogr A 2023; 1692:463853. [PMID: 36780848 DOI: 10.1016/j.chroma.2023.463853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
Periploca forrestii Schltr., a traditional Chinese medicine (TCM), is commonly used to treat autoimmune diseases such as rheumatoid arthritis (RA). However, its mechanism, involving a variety of cardiac glycosides, remains largely unknown. The immune knockout strategy can highly selectively deplete target components by immunoaffinity chromatography (IAC). We aimed to identify the common structural features of cardiac glycosides in P. forrestii and design IAC to specifically recognize these features to achieve the multi-component knockout of potential active substances from the extracts of P. forrestii. A content detection experiment confirmed that the content of a compound with periplogenin structure (CPS) in the extract of P. forrestii was reduced by 45% by IAC of periplogenin. The immunosuppressive ability of the extract on H9 human T lymphocytic cells was weakened after CPS knockout from P. forrestii extract. Molecular biology experiments showed that mRNA expression of interferon-γ (IFN-γ), interleukin-2 (IL-2), and interleukin-6 (IL-6) in H9 cells was up-regulated after CPS knockout, while no significant changes in the expression of interleukin-4 (IL-4) were found. CPS knockout from P. forrestii extract did not cause significant changes in the proliferation of lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells incubated with this extract. These results indicate that CPS exhibited immunosuppressive effects via inhibiting the T helper 1 (Th1) cell immune response and not via the anti-inflammatory components in P. forrestii. This is the first use of IAC to achieve multi-component knockout in TCM extracts for identifying effective compounds. This method is effective and reliable and warrants further exploration.
Collapse
|
15
|
Cook L, Zaunders J, Seddiki N, van Bockel D, Kelleher AD, Munier CML. Parallel analysis of multiple human memory CD4 + T-cell subsets within antigen-specific responses using cell proliferation dyes. Immunol Cell Biol 2023; 101:171-178. [PMID: 36346178 PMCID: PMC10952787 DOI: 10.1111/imcb.12606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Activation induced marker (AIM) assays are being used increasingly to measure antigen-specific T-cell responses, but this activation can alter cell lineage defining phenotypic markers. We aimed to extend the utility of AIM assays to enable pre-activation defined cell populations to be tracked and quantified within T-cell memory responses. We sorted three ex vivo CD4+ T-cell populations prior to any activation using well defined ex vivo lineage surface marker combinations. These populations were memory non-Tregs, CD39+ Tregs and CD39neg Tregs, although any three memory CD4+ T-cell populations able to be isolated by cell surface markers could potentially be tracked. These cells were labeled with three distinct fluorescent cell proliferation dyes (CFSE, CellTrace Violet and Cell Proliferation Dye eF670) and then all autologous PBMCs were reconstituted maintaining ex vivo cell ratios and CD25/OX40 AIM assays performed with CMV and HSV antigens. This approach enabled tracking of pre-defined cell populations within antigen stimulated responses using both activation marker and cell proliferation readouts. We confirmed that although CD39+ Tregs comprise a substantial proportion of AIM assay responses, they do not make substantial contributions to the proliferative response. This extends the utility of AIM assays to enable parallel analysis of the relative contribution of several CD4+ memory T-cell subsets to recall responses.
Collapse
Affiliation(s)
- Laura Cook
- Immunovirology and Pathogenesis ProgramThe Kirby Institute, UNSWSydneyNSWAustralia
- St Vincent's Centre for Applied Medical Research, St Vincent's HospitalSydneyNSWAustralia
- Present address:
Department of Microbiology and ImmunologyUniversity of Melbourne, at The Peter Doherty Institute for Infection and ImmunityParkvilleVIC3000Australia
| | - John Zaunders
- Immunovirology and Pathogenesis ProgramThe Kirby Institute, UNSWSydneyNSWAustralia
- St Vincent's Centre for Applied Medical Research, St Vincent's HospitalSydneyNSWAustralia
| | - Nabila Seddiki
- St Vincent's Centre for Applied Medical Research, St Vincent's HospitalSydneyNSWAustralia
- Present address:
IDMIT Department/IBFJ, Immunology of Viral Infections and Autoimmune Diseases (IMVA), INSERM U1184, CEAUniversité Paris SudParisFrance
| | - David van Bockel
- Immunovirology and Pathogenesis ProgramThe Kirby Institute, UNSWSydneyNSWAustralia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis ProgramThe Kirby Institute, UNSWSydneyNSWAustralia
- St Vincent's Centre for Applied Medical Research, St Vincent's HospitalSydneyNSWAustralia
| | - C. Mee Ling Munier
- Immunovirology and Pathogenesis ProgramThe Kirby Institute, UNSWSydneyNSWAustralia
| |
Collapse
|
16
|
Charnley M, Allam AH, Newton LM, Humbert PO, Russell SM. E-cadherin in developing murine T cells controls spindle alignment and progression through β-selection. SCIENCE ADVANCES 2023; 9:eade5348. [PMID: 36652509 PMCID: PMC11811980 DOI: 10.1126/sciadv.ade5348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
A critical stage of T cell development is β-selection; at this stage, the T cell receptor β (TCRβ) chain is generated, and the developing T cell starts to acquire antigenic specificity. Progression through β-selection is assisted by low-affinity interactions between the nascent TCRβ chain and peptide presented on stromal major histocompatibility complex and cues provided by the niche. In this study, we identify a cue within the developing T cell niche that is critical for T cell development. E-cadherin mediates cell-cell interactions and influences cell fate in many developmental systems. In developing T cells, E-cadherin contributed to the formation of an immunological synapse and the alignment of the mitotic spindle with the polarity axis during division, which facilitated subsequent T cell development. Collectively, these data suggest that E-cadherin facilitates interactions with the thymic niche to coordinate the β-selection stage of T cell development.
Collapse
Affiliation(s)
- Mirren Charnley
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Amr H. Allam
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Lucas M. Newton
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O. Humbert
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sarah M. Russell
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
17
|
Toma G, Karapetian E, Massa C, Quandt D, Seliger B. Characterization of the effect of histone deacetylation inhibitors on CD8 + T cells in the context of aging. J Transl Med 2022; 20:539. [PMID: 36419167 PMCID: PMC9682763 DOI: 10.1186/s12967-022-03733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/30/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Posttranslational protein modifications regulate essential cellular processes, including the immune cell activation. Despite known age-related alterations of the phenotype, composition and cytokine profiles of immune cells, the role of acetylation in the aging process of the immune system was not broadly investigated. Therefore, in the current study the effect of acetylation on the protein expression profiles and function of CD8+ T cells from donors of distinct age was analyzed using histone deacetylase inhibitors (HDACi). METHODS CD8+ T cells isolated from peripheral blood mononuclear cells of 30 young (< 30 years) and 30 old (> 60 years) healthy donors were activated with anti-CD3/anti-CD28 antibodies in the presence and absence of a cocktail of HDACi. The protein expression profiles of untreated and HDACi-treated CD8+ T cells were analyzed using two-dimensional gel electrophoresis. Proteins with a differential expression level (less than 0.66-fold decrease or more than 1.5-fold increase) between CD8+ T cells of young and old donors were identified by matrix-associated laser desorption ionization-time of flight mass spectrometry. Functional enrichment analysis of proteins identified was performed using the online tool STRING. The function of CD8+ T cells was assessed by analyses of cytokine secretion, surface expression of activation markers, proliferative capacity and apoptosis rate. RESULTS The HDACi treatment of CD8+ T cells increased in an age-independent manner the intracellular acetylation of proteins, in particular cytoskeleton components and chaperones. Despite a strong similarity between the protein expression profiles of both age groups, the functional activity of CD8+ T cells significantly differed with an age-dependent increase in cytokine secretion and expression of activation markers for CD8+ T cells from old donors, which was maintained after HDACi treatment. The proliferation and apoptosis rate of CD8+ T cells after HDACi treatment was equal between both age groups. CONCLUSIONS Despite a comparable effect of HDACi treatment on the protein signature of CD8+ T cells from donors of different ages, an initial higher functionality of CD8+ T cells from old donors when compared to CD8+ T cells from young donors was detected, which might have clinical relevance.
Collapse
Affiliation(s)
- Georgiana Toma
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Eliza Karapetian
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Chiara Massa
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Dagmar Quandt
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Barbara Seliger
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany ,grid.418008.50000 0004 0494 3022Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| |
Collapse
|
18
|
Juhl M, Follin B, Christensen JP, Kastrup J, Ekblond A. Functional in vitro models of the inhibitory effect of adipose tissue-derived stromal cells on lymphocyte proliferation: Improved sensitivity and quantification through flow cytometric analysis. J Immunol Methods 2022; 510:113360. [PMID: 36130659 DOI: 10.1016/j.jim.2022.113360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 12/31/2022]
Abstract
As the interest in cell-based therapies continue to increase, so does the need for assays detailing potency and providing platforms for identifying mechanisms of action. For most clinical implications of mesenchymal stromal cells, the immunomodulatory effect is crucial. While the suppressive potential on lymphocyte proliferation is well-described in literature, reproducible and standardized assays to document and quantify it varies from research group to research group and between methodologies. The aim of the present study was to utilize flowcytometry to quantify proliferation and identify measurements to increase the assay sensitivity to treatment with adipose tissue-derived stromal cells (ASC). Lymphocyte proliferation was induced by the unspecific mitogen phytohemagglutinin or by alloreactivity towards an irradiated donor in a mixed lymphocyte reaction. Addition of ASC did not change the composition of T cells, B cells, NK cells, NKT cell types considerably; likewise, no increases in proliferation were observed upon inclusion of ASC, demonstrating that ASC does not evoke an additive response. On the contrary, the suppressive effect of ASC was documented. By applying different gating strategies and curve fitting, the sensitivity was increased, and dose-response relationships established. Flow cytometric evaluation allows for more detailed identification of the lymphocytes affected by ASC and constitute a significant asset in future unraveling of modes and mechanisms of action, as well as quantification of potency.
Collapse
Affiliation(s)
- Morten Juhl
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Denmark.
| | - Bjarke Follin
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Denmark
| | | | - Jens Kastrup
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Denmark
| |
Collapse
|
19
|
Acute T-Cell-Driven Inflammation Requires the Endoglycosidase Heparanase-1 from Multiple Cell Types. Int J Mol Sci 2022; 23:ijms23094625. [PMID: 35563015 PMCID: PMC9105945 DOI: 10.3390/ijms23094625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
It has been accepted for decades that T lymphocytes and metastasising tumour cells traverse basement membranes (BM) by deploying a battery of degradative enzymes, particularly proteases. However, since many redundant proteases can solubilise BM it has been difficult to prove that proteases aid cell migration, particularly in vivo. Recent studies also suggest that other mechanisms allow BM passage of cells. To resolve this issue we exploited heparanase-1 (HPSE-1), the only endoglycosidase in mammals that digests heparan sulfate (HS), a major constituent of BM. Initially we examined the effect of HPSE-1 deficiency on a well-characterised adoptive transfer model of T-cell-mediated inflammation. We found that total elimination of HPSE-1 from this system resulted in a drastic reduction in tissue injury and loss of target HS. Subsequent studies showed that the source of HPSE-1 in the transferred T cells was predominantly activated CD4+ T cells. Based on bone marrow chimeras, two cellular sources of HPSE-1 were identified in T cell recipients, one being haematopoiesis dependent and the other radiation resistant. Collectively our findings unequivocally demonstrate that an acute T-cell-initiated inflammatory response is HPSE-1 dependent and is reliant on HPSE-1 from at least three different cell types.
Collapse
|
20
|
Equine Mesenchymal Stem Cells Influence the Proliferative Response of Lymphocytes: Effect of Inflammation, Differentiation and MHC-Compatibility. Animals (Basel) 2022; 12:ani12080984. [PMID: 35454231 PMCID: PMC9031781 DOI: 10.3390/ani12080984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Mesenchymal stem cells are investigated for therapy because of their ability to regulate the immune response to an injury. Cell therapy is increasingly important in veterinary patients such as horses, which are also valuable as a model. Therefore, what is learned in these animals can benefit both them and people. However, the patient’s immune system could recognize and destroy mesenchymal stem cells, impairing effectiveness and potentially leading to adverse effects. In this study, we analysed how equine mesenchymal stem cells interact with immune cells in different scenarios. We tested the effect of inflammation and differentiation of these cells, and how they acted depending on donor–patient compatibility. As we expected, inflammation activated the regulatory ability of equine mesenchymal stem cells, but also increased the risk of immune recognition. We anticipated that, after differentiation, these cells would lose their regulatory ability and would be more easily targeted by the immune system. However, they maintained similar features after differentiating into cartilage cells. The balance between the ability of mesenchymal stem cells to stimulate and to regulate an immune response is of the utmost importance to develop safe and effective cell therapies for animals and people. Abstract Immunomodulation and immunogenicity are pivotal aspects for the therapeutic use of mesenchymal stem cells (MSCs). Since the horse is highly valuable as both a patient and translational model, further knowledge on equine MSC immune properties is required. This study analysed how inflammation, chondrogenic differentiation and compatibility for the major histocompatibility complex (MHC) influence the MSC immunomodulatory–immunogenicity balance. Equine MSCs in basal conditions, pro-inflammatory primed (MSC-primed) or chondrogenically differentiated (MSC-chondro) were co-cultured with either autologous or allogeneic MHC-matched/mismatched lymphocytes in immune-suppressive assays (immunomodulation) and in modified one-way mixed leukocyte reactions (immunogenicity). After co-culture, frequency and proliferation of T cell subsets and B cells were assessed by flow cytometry and interferon-ɣ (IFNɣ) secretion by ELISA. MSC-primed showed higher regulatory potential by decreasing proliferation of cytotoxic and helper T cells and B cells. However, MHC-mismatched MSC-primed can also activate lymphocytes (proliferative response and IFNɣ secretion), likely due to increased MHC-expression. MSC-chondro maintained their regulatory ability and did not increase their immunogenicity, but showed less capacity than MSC-primed to induce regulatory T cells and further stimulated B cells. Subsequent in vivo studies are needed to elucidate the complex interactions between MSCs and the recipient immune system, which is critical to develop safe and effective therapies.
Collapse
|
21
|
Wang S, Tian D. High transfection efficiency and cell viability of immune cells with nanomaterials-based transfection reagent. Biotechniques 2022; 72:219-224. [PMID: 35369729 DOI: 10.2144/btn-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gene manipulation in non-adhesive cells, especially lymphocytes, was difficult due to their low efficiency and high toxicity. Electroporation was reported as a highly efficient method for human and mouse lymphocytes. However, this method requires expensive equipment and causes severe cell damage. Here, the authors present a simple and efficient method to deliver siRNA into lymphocytes with high efficiency and cell viability. This nanomaterials-based transfection reagent was simple and cost-effective and can perform multiple transfections, which further increase the overall efficiency. This method should be applicable for many cell lines and can be used to decipher gene functions of lymphocytes.
Collapse
Affiliation(s)
- Song Wang
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Dan Tian
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
22
|
Tan Y, Huang J, Li Y, Li S, Luo M, Luo J, Lee AW, Fu L, Hu F, Guan X. Near-Infrared Responsive Membrane Nanovesicles Amplify Homologous Targeting Delivery of Anti-PD Immunotherapy against Metastatic Tumors. Adv Healthc Mater 2022; 11:e2101496. [PMID: 34878725 DOI: 10.1002/adhm.202101496] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Indexed: 01/10/2023]
Abstract
The major obstacles of anti-PD therapy in metastatic tumors are limited drug delivery in primary tumors and metastatic foci, and the lack of tumor-infiltrating lymphocytes (TILs). Here, the authors constructed a novel cellular membrane nanovesicles platform (M/IR NPs) based on homologous targeting and near-infrared (NIR) responsive release strategy to potentiate PD-1/PD-L1 blockade therapy against metastatic tumors. In tumor-bearing mice, biomimetic M/IR NPs targeted both primary tumors and their lung metastases. Upon laser irradiation, M/IR NPs reduced cancer-associated fibroblasts (CAFs) in tumor microenvironment, thus increasing the penetration of TILs. When shed from homologous tumor cell membranes, positively charged nanoparticles (IR NPs) core can capture released tumor-associated antigens, thereby enhancing the antigen-presenting ability of DCs to activate cytotoxic T lymphocytes. When the photothermal conversion temperature under NIR-laser is higher than 42 °C, M/IR NPs initiated the rupture of cell membranes and the responsive release of PD-1/PD-L1 inhibitor BMS, which significantly attenuated tumor-associated immunosuppression and synergistically induced T cellular immunity to inhibit the tumor growth and metastasis. Overall, biomimetic M/IR NPs can improve the targeting and therapeutic efficacy of anti-PD therapy in primary tumors and metastases, opening up a new avenue for the diagnosis and treatment of metastatic tumors in the future.
Collapse
Affiliation(s)
- Ya‐Nan Tan
- Department of Clinical Oncology The University of Hong Kong‐Shenzhen Hospital Shenzhen 518053 China
- Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Jian‐Dong Huang
- Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- School of Biomedical Sciences The University of Hong Kong Hong Kong 00852 China
| | - Yong‐Peng Li
- Department of Urology The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group) Shenzhen 518000 China
| | - Shan‐Shan Li
- Department of Clinical Oncology The University of Hong Kong‐Shenzhen Hospital Shenzhen 518053 China
| | - Min Luo
- Department of Clinical Oncology The University of Hong Kong‐Shenzhen Hospital Shenzhen 518053 China
| | - Jie Luo
- Department of Clinical Oncology The University of Hong Kong Hong Kong 00852 China
| | - Anne Wing‐Mui Lee
- Department of Clinical Oncology The University of Hong Kong‐Shenzhen Hospital Shenzhen 518053 China
- Department of Clinical Oncology The University of Hong Kong Hong Kong 00852 China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases Department of Pharmacology and International Cancer Center Shenzhen University Health Science Center Shenzhen 518060 China
| | - Fu‐Qiang Hu
- College of Pharmaceutical Science Zhejiang University Hangzhou 310058 China
| | - Xin‐Yuan Guan
- Department of Clinical Oncology The University of Hong Kong‐Shenzhen Hospital Shenzhen 518053 China
- Department of Clinical Oncology The University of Hong Kong Hong Kong 00852 China
| |
Collapse
|
23
|
Yang Z, Hu X, Zhang F, Durrani S, Zhang J, Pang AP, Gao Y, Wu FG, Lin F. Chitosan-modified fluorescent dye for simple, fast, and in-situ measurement of fungal cell growth in the presence of insoluble compounds. FEMS Microbiol Lett 2022; 369:6884137. [PMID: 36481926 DOI: 10.1093/femsle/fnac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The measurement of fungal cell growth in submerged culture systems containing insoluble compounds is essential yet difficult due to the interferences from the insoluble compounds like biopolymers. Here, we developed a fluorescent strategy based on chitosan-modified fluorescein isothiocyanate (GC-FITC) to monitor the cell growth of lignocellulosic fungi cultivated on biopolymers. GC-FITC could stain only lignocellulosic fungi (Tricoderma reesei, Penicillium oxalicum, Aspergillus nidulans, and Neurospora crassa), but not biopolymers (cellulose, xylan, pectin, or lignin), excluding the interferences from these insoluble biopolymer. Moreover, a linear relationship was observed between the fluorescence intensity of GC-FITC absorbed by lignocellulosic fungi and the biomass of lignocellulosic fungi. Therefore, GC-FITC was leveraged to monitor the cell growth of lignocellulosic fungi when using biopolymers like cellulose as the carbon sources, which is faster, more convenient, time-saving, and cost-effective than the existing methods using protein/DNA content measurement. GC-FITC offers a powerful tool to detect fungal growth in culture systems with insoluble materials.
Collapse
Affiliation(s)
- Zihuayuan Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xin Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Funing Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Samran Durrani
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jie Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ai-Ping Pang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yichen Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
24
|
Wilson AS, Randall KL, Pettitt JA, Ellyard JI, Blumenthal A, Enders A, Quah BJ, Bopp T, Parish CR, Brüstle A. Neutrophil extracellular traps and their histones promote Th17 cell differentiation directly via TLR2. Nat Commun 2022; 13:528. [PMID: 35082281 PMCID: PMC8792063 DOI: 10.1038/s41467-022-28172-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 01/08/2022] [Indexed: 01/08/2023] Open
Abstract
Neutrophils perform critical functions in the innate response to infection, including through the production of neutrophil extracellular traps (NETs) - web-like DNA structures which are extruded from neutrophils upon activation. Elevated levels of NETs have been linked to autoimmunity but this association is poorly understood. By contrast, IL-17 producing Th17 cells are a key player in various autoimmune diseases but are also crucial for immunity against fungal and bacterial infections. Here we show that NETs, through their protein component histones, directly activate T cells and specifically enhance Th17 cell differentiation. This modulatory role of neutrophils, NETs and their histones is mediated downstream of TLR2 in T cells, resulting in phosphorylation of STAT3. The innate stimulation of a specific adaptive immune cell subset provides an additional mechanism demonstrating a direct link between neutrophils, NETs and T cell autoimmunity.
Collapse
Affiliation(s)
- Alicia S Wilson
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katrina L Randall
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Jessica A Pettitt
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Julia I Ellyard
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Anselm Enders
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Benjamin J Quah
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christopher R Parish
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Anne Brüstle
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
25
|
A Novel Anti-B7-H3 × Anti-CD3 Bispecific Antibody with Potent Antitumor Activity. Life (Basel) 2022; 12:life12020157. [PMID: 35207448 PMCID: PMC8879513 DOI: 10.3390/life12020157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 12/11/2022] Open
Abstract
B7-H3 plays an important role in tumor apoptosis, proliferation, adhesion, angiogenesis, invasion, migration, and evasion of immune surveillance. It is overexpressed in various human solid tumor tissues. In patients, B7-H3 overexpression correlates with advanced stages, poor clinical outcomes, and resistance to therapy. The roles of B7-H3 in tumor progression make it a potential candidate for targeted therapy. Here, we generated a mouse anti-human B7-H3 antibody and demonstrated its binding activity via Tongji University Suzhou Instituteprotein-based and cell-based assays. We then developed a novel format anti-B7-H3 × anti-CD3 bispecific antibody based on the antibody-binding fragment of the anti-B7-H3 antibody and single-chain variable fragment structure of anti-CD3 antibody (OKT3) and demonstrated that this bispecific antibody mediated potent cytotoxic activities against various B7-H3-positive tumor cell lines in vitro by improving T cell activation and proliferation. This bispecific antibody also demonstrated potent antitumor activity in humanized mice xenograft models. These results revealed that the novel anti-B7-H3 × anti-CD3 bispecific antibody has the potential to be employed in treatment of B7-H3-positive solid tumors.
Collapse
|
26
|
Stempels F, de Wit A, Swierstra M, Maassen S, Bianchi F, van den Bogaart G, Baranov M. A sensitive and less cytotoxic assay for identification of proliferating T cells based on bioorthogonally-functionalized uridine analogue. J Immunol Methods 2022; 502:113228. [DOI: 10.1016/j.jim.2022.113228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/09/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
|
27
|
Lemieszek MB, Findlay SD, Siegers GM. CellTrace™ Violet Flow Cytometric Assay to Assess Cell Proliferation. Methods Mol Biol 2022; 2508:101-114. [PMID: 35737236 DOI: 10.1007/978-1-0716-2376-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CellTrace™ Violet (CTV) is a powerful tool for tracking cell proliferation by permanently binding cellular proteins and rendering the cell fluorescent. After cell division, each daughter cell contains half of the parent cell's fluorescence, enabling quantification of proliferation via flow cytometry. This method enables monitoring of several generations of cell division and tracking of different cell populations in co-culture. Here we describe the use of CellTrace™ Violet in different cell types, and we share important observations we made during protocol optimization.
Collapse
Affiliation(s)
- Marina B Lemieszek
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Scott D Findlay
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
28
|
Tan YN, Li YP, Huang JD, Luo M, Li SS, Lee AWM, Hu FQ, Guan XY. Thermal-sensitive lipid nanoparticles potentiate anti-PD therapy through enhancing drug penetration and T lymphocytes infiltration in metastatic tumor. Cancer Lett 2021; 522:238-254. [PMID: 34571084 DOI: 10.1016/j.canlet.2021.09.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/06/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022]
Abstract
The response rate of anti-PD therapy in most cancer patients remains low. Therapeutic drug and tumor-infiltrating lymphocytes (TILs) are usually obstructed by the stromal region within tumor microenvironment (TME) rather than distributed around tumor cells, thus unable to induce the immune response of cytotoxic T cells. Here, we constructed the cationic thermosensitive lipid nanoparticles IR780/DPPC/BMS by introducing cationic NIR photosensitizer IR-780 iodide (IR780) modified lipid components, thermosensitive lipid DPPC and PD-1/PD-L1 inhibitor BMS202 (BMS). Upon laser irradiation, IR780/DPPC/BMS penetrated into deep tumor, and reduced cancer-associated fibroblasts (CAFs) around tumor cells to remodel the spatial distribution of TILs in TME. Interestingly, the cationic IR780/DPPC/BMS could capture released tumor-associated antigens (TAAs), thereby enhancing the antigen-presenting ability of DCs to activate cytotoxic T lymphocytes. Moreover, IR780/DPPC/BMS initiated gel-liquid crystal phase transition under laser irradiation, accelerating the disintegration of lipid bilayer structure and leading to the responsive release of BMS, which would reverse the tumor immunosuppression state by blocking PD-1/PD-L1 pathway for a long term. This combination treatment can synergistically exert the antitumor immune response and inhibit the tumor growth and metastasis.
Collapse
Affiliation(s)
- Ya-Nan Tan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yong-Peng Li
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, China
| | - Jian-Dong Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Min Luo
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Shan-Shan Li
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Anne Wing-Mui Lee
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China; Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 00852, China
| | - Fu-Qiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China; Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 00852, China.
| |
Collapse
|
29
|
Cheon H, Kan A, Prevedello G, Oostindie SC, Dovedi SJ, Hawkins ED, Marchingo JM, Heinzel S, Duffy KR, Hodgkin PD. Cyton2: A Model of Immune Cell Population Dynamics That Includes Familial Instructional Inheritance. FRONTIERS IN BIOINFORMATICS 2021; 1:723337. [PMID: 36303793 PMCID: PMC9581048 DOI: 10.3389/fbinf.2021.723337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Lymphocytes are the central actors in adaptive immune responses. When challenged with antigen, a small number of B and T cells have a cognate receptor capable of recognising and responding to the insult. These cells proliferate, building an exponentially growing, differentiating clone army to fight off the threat, before ceasing to divide and dying over a period of weeks, leaving in their wake memory cells that are primed to rapidly respond to any repeated infection. Due to the non-linearity of lymphocyte population dynamics, mathematical models are needed to interrogate data from experimental studies. Due to lack of evidence to the contrary and appealing to arguments based on Occam's Razor, in these models newly born progeny are typically assumed to behave independently of their predecessors. Recent experimental studies, however, challenge that assumption, making clear that there is substantial inheritance of timed fate changes from each cell by its offspring, calling for a revision to the existing mathematical modelling paradigms used for information extraction. By assessing long-term live-cell imaging of stimulated murine B and T cells in vitro, we distilled the key phenomena of these within-family inheritances and used them to develop a new mathematical model, Cyton2, that encapsulates them. We establish the model's consistency with these newly observed fine-grained features. Two natural concerns for any model that includes familial correlations would be that it is overparameterised or computationally inefficient in data fitting, but neither is the case for Cyton2. We demonstrate Cyton2's utility by challenging it with high-throughput flow cytometry data, which confirms the robustness of its parameter estimation as well as its ability to extract biological meaning from complex mixed stimulation experiments. Cyton2, therefore, offers an alternate mathematical model, one that is, more aligned to experimental observation, for drawing inferences on lymphocyte population dynamics.
Collapse
Affiliation(s)
- HoChan Cheon
- Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Andrey Kan
- Immunology Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | | | - Simone C. Oostindie
- Immunology Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | | | - Edwin D. Hawkins
- Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
- Division of Inflammation, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Julia M. Marchingo
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susanne Heinzel
- Immunology Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Ken R. Duffy
- Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Philip D. Hodgkin
- Immunology Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
30
|
Abstract
Cell cycle involves a series of changes that lead to cell growth and division. Cell cycle analysis is crucial to understand cellular responses to changing environmental conditions. Since its inception, flow cytometry has been particularly useful for cell cycle analysis at single cell level due to its speed and precision. Previously, flow cytometric cell cycle analysis relied solely on the measurement of cellular DNA content. Later, methods were developed for multiparametric analysis. This review explains the journey of flow cytometry to understand different molecular and cellular events underlying cell cycle using various protocols. Recent advances in the field that overcome the shortcomings of traditional flow cytometry and expand its scope for cell cycle studies are also discussed.
Collapse
|
31
|
Patterson DG, Kania AK, Zuo Z, Scharer CD, Boss JM. Epigenetic gene regulation in plasma cells. Immunol Rev 2021; 303:8-22. [PMID: 34010461 PMCID: PMC8387415 DOI: 10.1111/imr.12975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Humoral immunity provides protection from pathogenic infection and is mediated by antibodies following the differentiation of naive B cells (nBs) to antibody-secreting cells (ASCs). This process requires substantial epigenetic and transcriptional rewiring to ultimately repress the nB program and replace it with one conducive to ASC physiology and function. Notably, these reprogramming events occur within the framework of cell division. Efforts to understand the relationship of cell division with reprogramming and ASC differentiation in vivo have uncovered the timing and scope of reprogramming, as well as key factors that influence these events. Herein, we discuss the unique physiology of ASC and how nBs undergo epigenetic and genome architectural reorganization to acquire the necessary functions to support antibody production. We also discuss the stage-wise manner in which reprogramming occurs across cell divisions and how key molecular determinants can influence B cell fate outcomes.
Collapse
Affiliation(s)
- Dillon G. Patterson
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| | - Anna K. Kania
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| | - Zhihong Zuo
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | | | - Jeremy M. Boss
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| |
Collapse
|
32
|
Rudolph J, Völkl M, Jérôme V, Scheibel T, Freitag R. Noxic effects of polystyrene microparticles on murine macrophages and epithelial cells. Sci Rep 2021; 11:15702. [PMID: 34344948 PMCID: PMC8333329 DOI: 10.1038/s41598-021-95073-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Microplastic (MP) contamination has been identified as an ecological problem with an increasing impact on everyday life. Yet, possible effects of MP at the cellular level are still poorly understood. Here, the interaction of murine macrophages (J774A.1, ImKC) and epithelial cells (STC-1, BNL CL.2) with well-characterized poly(styrene) MP particles (MPP) of varying sizes (0.2-6.0 µm) was studied. Macrophages are expected to actively engulf particles which could be confirmed in this study, while epithelial cells are found in tissues with direct contact with ingested or inhaled MPP. Here, the epithelial cells from both investigated cell lines did not ingest MPP in significant numbers. Concomitantly, no cytotoxic effects nor any influence on cellular proliferation were observed. Cells from the two macrophage cell lines showed high ingestion of MPP of all sizes, but cytotoxic effects were observed only for one of them (ImKC) and only at MPP concentrations above 250 µg/mL. Indications of cellular stress as well as effects on cell proliferation were observed for cell populations with high particle cell interactions.
Collapse
Affiliation(s)
- Julia Rudolph
- Department of Biomaterials, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Matthias Völkl
- Department of Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Valérie Jérôme
- Department of Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany.
- Bayreuth Center for Colloids and Interfaces (BZKG), Universität Bayreuth, Bayreuth, Germany.
- Bayreuth Center for Molecular Biosciences (BZMB), Universität Bayreuth, Bayreuth, Germany.
- Bayreuth Center for Material Science (BayMAT), Universität Bayreuth, Bayreuth, Germany.
- Bavarian Polymer Institute (BPI), Universität Bayreuth, Bayreuth, Germany.
| | - Ruth Freitag
- Department of Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany.
- Bayreuth Center for Molecular Biosciences (BZMB), Universität Bayreuth, Bayreuth, Germany.
| |
Collapse
|
33
|
Chappaz S, McArthur K, Kealy L, Law CW, Tailler M, Lane RM, Lieschke A, Ritchie ME, Good-Jacobson KL, Strasser A, Kile BT. Homeostatic apoptosis prevents competition-induced atrophy in follicular B cells. Cell Rep 2021; 36:109430. [PMID: 34289356 DOI: 10.1016/j.celrep.2021.109430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
While the intrinsic apoptosis pathway is thought to play a central role in shaping the B cell lineage, its precise role in mature B cell homeostasis remains elusive. Using mice in which mature B cells are unable to undergo apoptotic cell death, we show that apoptosis constrains follicular B (FoB) cell lifespan but plays no role in marginal zone B (MZB) cell homeostasis. In these mice, FoB cells accumulate abnormally. This intensifies intercellular competition for BAFF, resulting in a contraction of the MZB cell compartment, and reducing the growth, trafficking, and fitness of FoB cells. Diminished BAFF signaling dampens the non-canonical NF-κB pathway, undermining FoB cell growth despite the concurrent triggering of a protective p53 response. Thus, MZB and FoB cells exhibit a differential requirement for the intrinsic apoptosis pathway. Homeostatic apoptosis constrains the size of the FoB cell compartment, thereby preventing competition-induced FoB cell atrophy.
Collapse
Affiliation(s)
- Stéphane Chappaz
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia.
| | - Kate McArthur
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Liam Kealy
- Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Charity W Law
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Maximilien Tailler
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Rachael M Lane
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | | | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Kim L Good-Jacobson
- Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Andreas Strasser
- Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia; Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, 5005 SA, Australia.
| |
Collapse
|
34
|
Isolation of primary human B lymphocytes from tonsils compared to blood as alternative source for ex vivo application. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122853. [PMID: 34325309 DOI: 10.1016/j.jchromb.2021.122853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/18/2023]
Abstract
B lymphocytes ('B cells') are components of the human immune system with obvious potential for medical and biotechnological applications. Here, we discuss the isolation of primary human B cells from both juvenile and adult tonsillar material using a two-step procedure based on gradient centrifugation followed by separation on a nylon wool column as alternative to the current gold standard, i.e., negative immunosorting from buffy coats by antibody-coated magnetic beads. We show that the nylon wool separation is a low-cost method well suited to the isolation of large amounts of primary B cells reaching purities ≥ 80%. More importantly, this method allows the preservation of all B cell subsets, while MACS sorting seems to be biased against a certain B cell subtype, namely the CD27+ B cells. Importantly, compared to blood, the excellent recovery yield during purification of tonsillar B cells provides high number of cells, hence increases the number of subsequent experiments feasible with identical cell material, consequently improving comparability of results. The cultivability of the isolated B cells was demonstrated using pokeweed mitogen (PWM) as a stimulatory substance. Our results showed for the first time that the proliferative response of tonsillar B cells to mitogens declines with the age of the donor. Furthermore, we observed that PWM treatment stimulates the proliferation of a dedicated subpopulation and induces some terminal differentiation with ASCs signatures. Taken together this indicates that the proposed isolation procedure preserves the proliferative capability as well as the differentiation capacity of the B cells.
Collapse
|
35
|
Marinescu CI, Preda MB, Burlacu A. A procedure for in vitro evaluation of the immunosuppressive effect of mouse mesenchymal stem cells on activated T cell proliferation. Stem Cell Res Ther 2021; 12:319. [PMID: 34090507 PMCID: PMC8178850 DOI: 10.1186/s13287-021-02344-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/19/2021] [Indexed: 02/08/2023] Open
Abstract
Background Mesenchymal stem/stromal cells (MSC) represent adult cells with multipotent capacity. Besides their capacity to differentiate into multiple lineages in vitro and in vivo, increasing evidence points towards the immunomodulatory capacity of these cells, as an important feature for their therapeutic power. Although not included in the minimal criteria established by the International Society for Cellular Therapy as a defining MSC attribute, demonstration of the immunomodulatory capacity of MSC can be useful for the characterization of these cells before being considered MSC. Methods Here we present a simple and reliable protocol by which the immunosuppressive effect of mouse bone marrow-derived MSC can be evaluated in vitro. It is based on the measuring of the proliferation of activated T cells cultured in direct contact with irradiated MSC. Results Our results showed that mouse MSC have a dose-dependent inhibitory effect on activated T cell proliferation, which can be quantified as a percentage of maximum proliferation. Our data shows that batch-to-batch variability can be determined within one or multiple experiments, by extracting the area under curve of T cell proliferation plotted against the absolute number of MSC in co-culture. Conclusions The validation of the immunosupressive capacity of MSC could be added to the characterization of the cells before being used in various MSC-based approaches to treat immunological diseases. Our results showed that mouse MSC have a dose-dependent inhibitory effect on activated T cell proliferation. The immunosuppressive properties of MSC vary between batches, but not between different passages of the same batch.
Collapse
Affiliation(s)
- Catalina-Iolanda Marinescu
- Laboratory of Stem Cell Biology, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8 B.P. Hasdeu Street, 050568, Bucharest, Romania
| | - Mihai Bogdan Preda
- Laboratory of Stem Cell Biology, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8 B.P. Hasdeu Street, 050568, Bucharest, Romania
| | - Alexandrina Burlacu
- Laboratory of Stem Cell Biology, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8 B.P. Hasdeu Street, 050568, Bucharest, Romania.
| |
Collapse
|
36
|
Jougleux JL, Léger JL, Djeungoue-Petga MA, Roy P, Soucy MFN, Veilleux V, Hébert MPA, Hebert-Chatelain E, Boudreau LH. Evaluating the mitochondrial activity and inflammatory state of dimethyl sulfoxide differentiated PLB-985 cells. Mol Immunol 2021; 135:1-11. [PMID: 33838400 DOI: 10.1016/j.molimm.2021.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/14/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022]
Abstract
Neutrophils play a key role in the innate immunity with their ability to generate and release inflammatory mediators that promote the inflammatory response and consequently restore the hemostasis. As active participants in several steps of the normal inflammatory response, neutrophils are also involved in chronic inflammatory diseases such as asthma, atherosclerosis, and arthritis. Given their dual role in the modulation of inflammation, regulating the inflammatory response of neutrophils has been suggested as an important therapeutic approach by numerous researchers. The neutrophils have a relatively short lifespan, which can be problematic for some in vitro experiments. To address this issue, researchers have used the human monomyelocyte cell line PLB-985 as an in vitro model for exploratory experiments addressing neutrophil-related physiological functions. PLB-985 cells can be differentiated into a neutrophil-like phenotype upon exposure to several agonists, including dimethyl sulfoxide (DMSO). Whether this differentiation of PLB-985 affects important features related to the neutrophil's normal functions (i.e., mitochondrial activity, eicosanoid production) remains elusive, and characterizing these changes will be the focal point of this study. Our results indicate that the differentiation affected the proliferation of PLB-985 cells, without inducing apoptosis. A significant decrease in mitochondrial respiration was observed in differentiated PLB-985 cells. However, the overall mitochondria content was not affected. Immunoblotting with mitochondrial antibodies revealed a strong modulation of the succinate dehydrogenase A, superoxide dismutase 2, ubiquinol-cytochrome c reductase core protein 2 and ATP synthase subunit α in differentiated PLB-985 cells. Finally, eicosanoids (leukotriene B4, 12-hydroxyheptadecatrienoic and 15-hydroxyeicosatetraenoic acids) production was significantly increased in differentiated cells. In summary, our data demonstrate that the differentiation process of PLB-985 cells does not impact their viability despite a reduced respiratory state of the cells. This process is also accompanied by modulation of the inflammatory state of the cell. Of importance, our data suggest that PLB-985 cells could be suitable in vitro candidates to study mitochondrial-related dysfunctions in inflammatory diseases.
Collapse
Affiliation(s)
- Jean-Luc Jougleux
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Jacob L Léger
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Marie-Ange Djeungoue-Petga
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Department of Biology, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Patrick Roy
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Marie-France N Soucy
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Vanessa Veilleux
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Mathieu P A Hébert
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Etienne Hebert-Chatelain
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Department of Biology, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada.
| |
Collapse
|
37
|
Anderson RP, Goel G, Hardy MY, Russell AK, Wang S, Szymczak E, Zhang R, Goldstein KE, Neff K, Truitt KE, Williams LJ, Dzuris JL, Tye-Din JA. Whole blood interleukin-2 release test to detect and characterize rare circulating gluten-specific T cell responses in coeliac disease. Clin Exp Immunol 2021; 204:321-334. [PMID: 33469922 DOI: 10.1111/cei.13578] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Whole blood cytokine release assays (CRA) assessing cellular immunity to gluten could simplify the diagnosis and monitoring of coeliac disease (CD). We aimed to determine the effectiveness of electrochemiluminescence CRA to detect responses to immunodominant gliadin peptides. HLA-DQ2·5+ CD adults (cohort 1, n = 6; cohort 2, n = 12) and unaffected controls (cohort 3, n = 9) were enrolled. Cohort 1 had 3-day gluten challenge (GC). Blood was collected at baseline, and for cohort 1 also at 3 h, 6 h and 6 days after commencing 3-day GC. Gliadin peptide-stimulated proliferation, interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) and 14- and 3-plex electrochemiluminescence CRA were performed. Poisson distribution analysis was used to estimate responding cell frequencies. In cohort 1, interleukin (IL)-2 dominated the gliadin peptide-stimulated cytokine release profile in whole blood. GC caused systemic IL-2 release acutely and increased gliadin peptide-stimulated IFN-γ ELISPOT and whole blood CRA responses. Whole blood CRA after GC was dominated by IL-2, but also included IFN-γ, C-X-C motif chemokine ligand 10/IFN-γ-induced protein 10 (CXCL10/IP-10), CXCL9/monokine induced by IFN-γ (MIG), IL-10, chemokine (C-C motif) ligand 3/macrophage inflammatory protein 1-alpha (CCL3/MIP-1α), TNF-α and IL-8/CXCL8. In cohorts 2 and 3, gliadin peptide-stimulated whole blood IL-2 release was 100% specific and 92% sensitive for CD patients on a gluten-free diet; the estimated frequency of cells in CD blood secreting IL-2 to α-gliadin peptide was 0·5 to 11 per ml. Whole blood IL-2 release successfully mapped human leucocyte antigen (HLA)-DQ2·5-restricted epitopes in an α-gliadin peptide library using CD blood before and after GC. Whole blood IL-2 release assay using electrochemiluminescence is a sensitive test for rare gliadin-specific T cells in CD, and could aid in monitoring and diagnosis. Larger studies and validation with tetramer-based assays are warranted.
Collapse
Affiliation(s)
| | - G Goel
- ImmusanT, Inc., Cambridge, MA, USA
| | - M Y Hardy
- Immunology Division, Department of Medical Biology, The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,University of Melbourne, Parkville, VIC, Australia
| | - A K Russell
- Immunology Division, Department of Medical Biology, The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,University of Melbourne, Parkville, VIC, Australia
| | - S Wang
- ImmusanT, Inc., Cambridge, MA, USA
| | | | - R Zhang
- ImmusanT, Inc., Cambridge, MA, USA
| | | | - K Neff
- ImmusanT, Inc., Cambridge, MA, USA
| | | | | | | | - J A Tye-Din
- Immunology Division, Department of Medical Biology, The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,University of Melbourne, Parkville, VIC, Australia.,Department of Gastroenterology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
38
|
Yabas M, Yazicioglu YF, Hoyne GF, Goodnow CC, Enders A. Loss of hnRNPLL-dependent splicing of Ptprc has no impact on B-cell development, activation and terminal differentiation into antibody-secreting cells. Immunol Cell Biol 2021; 99:532-541. [PMID: 33331104 DOI: 10.1111/imcb.12433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 01/03/2023]
Abstract
The RNA-binding protein heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) controls alternative splicing of protein tyrosine phosphatase receptor type C (Ptprc) which encodes CD45. hnRNPLL deficiency leads to a failure in silencing Ptprc exons 4-6 causing aberrant expression of the corresponding CD45 isoforms, namely, CD45RA, RB and RC. While an N-ethyl-N-nitrosourea-induced point mutation in murine Hnrnpll results in loss of peripheral naïve T cells, its role in B-cell biology remains unclear. Here, we demonstrate that B-cell development in the bone marrow of Hnrnpllthu/thu mice is normal and the number of mature B-cell subsets in the spleen and peritoneal cavity is comparable to control littermates. In response to in vivo immunization, Hnrnpllthu/thu mice were deficient in generating germinal center (GC) B cells, and analysis of mixed bone marrow chimeras revealed that the GC B-cell deficiency was a B-cell extrinsic effect of the hnRNPLL mutation. Mature Hnrnpllthu/thu B cells proliferated normally in response to various B-cell receptor- and Toll-like receptor-mediated stimuli. Similarly, in vitro stimulation of mutant B cells led to normal generation of plasmablasts, but mutant plasmablasts failed to downregulate B220 expression because of the inability of cells to undergo proper CD45 pre-messenger RNA alternative splicing. These findings collectively suggest that, like in T and natural killer T cells, the mutation disrupts hnRNPLL-mediated alternative splicing of the Ptprc gene in plasmablasts, but this dysregulation of Ptprc alternative splicing does not affect the development and function of B cells.
Collapse
Affiliation(s)
- Mehmet Yabas
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Department of Genetics and Bioengineering, Trakya University, Edirne, Turkey
| | - Yavuz F Yazicioglu
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Gerard F Hoyne
- School of Health Sciences, Institute of Health Science Research, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Christopher C Goodnow
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,The Garvan Institute of Medical Research, The University of New South Wales, Darlinghurst, NSW, Australia.,Department of Medicine, St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Anselm Enders
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
39
|
Mahmutovic A, Gillman AN, Lauksund S, Robson Moe NA, Manzi A, Storflor M, Abel Zur Wiesch P, Abel S. RESTAMP - Rate estimates by sequence-tag analysis of microbial populations. Comput Struct Biotechnol J 2021; 19:1035-1051. [PMID: 33613869 PMCID: PMC7878984 DOI: 10.1016/j.csbj.2021.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/31/2022] Open
Abstract
Microbial division rates determine the speed of mutation accumulation and thus the emergence of antimicrobial resistance. Microbial death rates are affected by antibiotic action and the immune system. Therefore, measuring these rates has advanced our understanding of host-pathogen interactions and antibiotic action. Several methods based on marker-loss or few inheritable neutral markers exist that allow estimating microbial division and death rates, each of which has advantages and limitations. Technical bottlenecks, i.e., experimental sampling events, during the experiment can distort the rate estimates and are typically unaccounted for or require additional calibration experiments. In this work, we introduce RESTAMP (Rate Estimates by Sequence Tag Analysis of Microbial Populations) as a method for determining bacterial division and death rates. This method uses hundreds of fitness neutral sequence barcodes to measure the rates and account for experimental bottlenecks at the same time. We experimentally validate RESTAMP and compare it to established plasmid loss methods. We find that RESTAMP has a number of advantages over plasmid loss or previous marker based techniques. (i) It enables to correct the distortion of rate estimates by technical bottlenecks. (ii) Rate estimates are independent of the sequence tag distribution in the starting culture allowing the use of an arbitrary number of tags. (iii) It introduces a bottleneck sensitivity measure that can be used to maximize the accuracy of the experiment. RESTAMP allows studying microbial population dynamics with great resolution over a wide dynamic range and can thus advance our understanding of host-pathogen interactions or the mechanisms of antibiotic action.
Collapse
Affiliation(s)
- Anel Mahmutovic
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Aaron Nicholas Gillman
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, PA 16802, USA
| | - Silje Lauksund
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Natasha-Anne Robson Moe
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Aime Manzi
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Merete Storflor
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, PA 16802, USA
| | - Pia Abel Zur Wiesch
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, 0318 Oslo, Norway.,Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sören Abel
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, PA 16802, USA.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, 0318 Oslo, Norway.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
40
|
Lafouresse F, Jugele R, Müller S, Doineau M, Duplan-Eche V, Espinosa E, Puisségur MP, Gadat S, Valitutti S. Stochastic asymmetric repartition of lytic machinery in dividing CD8 + T cells generates heterogeneous killing behavior. eLife 2021; 10:62691. [PMID: 33427199 PMCID: PMC7867409 DOI: 10.7554/elife.62691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
Cytotoxic immune cells are endowed with a high degree of heterogeneity in their lytic function, but how this heterogeneity is generated is still an open question. We therefore investigated if human CD8+ T cells could segregate their lytic components during telophase, using imaging flow cytometry, confocal microscopy, and live-cell imaging. We show that CD107a+-intracellular vesicles, perforin, and granzyme B unevenly segregate in a constant fraction of telophasic cells during each division round. Mathematical modeling posits that unequal lytic molecule inheritance by daughter cells results from the random distribution of lytic granules on the two sides of the cleavage furrow. Finally, we establish that the level of lytic compartment in individual cytotoxic T lymphocyte (CTL) dictates CTL killing capacity.
Collapse
Affiliation(s)
- Fanny Lafouresse
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Romain Jugele
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Sabina Müller
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Marine Doineau
- Toulouse School of Economics, CNRS UMR 5314, Université Toulouse 1 Capitole, France and Institut Universitaire de France, Toulouse, France
| | - Valérie Duplan-Eche
- INSERM, UMR1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | - Eric Espinosa
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Marie-Pierre Puisségur
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Sébastien Gadat
- Toulouse School of Economics, CNRS UMR 5314, Université Toulouse 1 Capitole, France and Institut Universitaire de France, Toulouse, France
| | - Salvatore Valitutti
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France.,Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| |
Collapse
|
41
|
Wiggins KJ, Scharer CD. Roadmap to a plasma cell: Epigenetic and transcriptional cues that guide B cell differentiation. Immunol Rev 2020; 300:54-64. [PMID: 33278036 DOI: 10.1111/imr.12934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
Antibody-secreting cells (ASCs) or plasma cells secrete antibodies and form a cornerstone of humoral immunity. B cells that receive activation signals in the presence or absence of T cells initiate a differentiation program that requires epigenetic and transcriptional reprogramming in order to ultimately form ASC. Reprogramming is accomplished through the interplay of transcription factors that initiate gene expression programs and epigenetic mechanisms that maintain these programs and cell fates. An important consideration is that all of these factors are operating in the context of cell division. Recent technical advances now allow mechanistic studies to move beyond genetic studies to identify the promoters and enhancer repertoires that are regulated by epigenetic mechanisms and transcription factors in rare cell types and differentiation stages in vivo. This review will detail efforts to integrate transcriptional and epigenetic changes during B cell differentiation with cell division in vivo. What has emerged is a multiphased differentiation model that requires distinct transcription factors and epigenetic programs at each step. The identification of markers that define each phase will help facilitate the manipulation of B cell differentiation for vaccine development or to treat diseases where antibodies are a component.
Collapse
Affiliation(s)
- Keenan J Wiggins
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
42
|
Razzo BM, Ludwig N, Hong CS, Sharma P, Fabian KP, Fecek RJ, Storkus WJ, Whiteside TL. Tumor-derived exosomes promote carcinogenesis of murine oral squamous cell carcinoma. Carcinogenesis 2020; 41:625-633. [PMID: 31245809 DOI: 10.1093/carcin/bgz124] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor-derived exosomes (TEX) interact with a variety of cells in cancer-bearing hosts, leading to cellular reprogramming which promotes disease progression. To study TEX effects on the development of solid tumors, immunosuppressive exosomes carrying PD-L1 and FasL were isolated from supernatants of murine or human HNSCC cell lines. TEX were delivered (IV) to immunocompetent C57BL/6 mice bearing premalignant oral/esophageal lesions induced by the carcinogen, 4-nitroquinoline 1-oxide (4NQO). Progression of the premalignant oropharyngeal lesions to malignant tumors was monitored. A single TEX injection increased the number of developing tumors (6.2 versus 3.2 in control mice injected with phosphate-buffered saline; P < 0.0002) and overall tumor burden per mouse (P < 0.037). The numbers of CD4+ and CD8+ T lymphocytes infiltrating the developing tumors were coordinately reduced (P < 0.01) in mice injected with SCCVII-derived TEX relative to controls. Notably, TEX isolated from mouse or human tumors had similar effects on tumor development and immune cells. A single IV injection of TEX was sufficient to condition mice harboring premalignant OSCC lesions for accelerated tumor progression in concert with reduced immune cell migration to the tumor.
Collapse
Affiliation(s)
- Beatrice M Razzo
- Department of Medicine, NYU Langone Medical Center, New York, NY, USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Chang-Sook Hong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Priyanka Sharma
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kellsye P Fabian
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ronald J Fecek
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J Storkus
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Maldini CR, Love AC, Tosh KW, Chan LLY, Gayout K, Smith T, Riley JL. Characterization of CAR T cell expansion and cytotoxic potential during Ex Vivo manufacturing using image-based cytometry. J Immunol Methods 2020; 484-485:112830. [PMID: 32745474 PMCID: PMC7487036 DOI: 10.1016/j.jim.2020.112830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Since the FDA approval of two Chimeric Antigen Receptor (CAR) T cell therapies against CD19+ malignancies, there has been significant interest in adapting CAR technology to other diseases. As such, the ability to simultaneously monitor manufacturing criteria and functional characteristics of multiple CAR T cell products by a single instrument would likely accelerate the development of candidate therapies. Here, we demonstrate that image-based cytometry yields high-throughput measurements of CAR T cell proliferation and size, and captures the kinetics of in vitro antigen-specific CAR T cell-mediated killing. The data acquired and analyzed by the image cytometer are congruent with results derived from conventional technologies when tested contemporaneously. Moreover, the use of bright-field and fluorescence microscopy by the image cytometer provides kinetic measurements and rapid data acquisition, which are direct advantages over industry standard instruments. Together, image cytometry enables fast, reproducible measurements of CAR T cell manufacturing criteria and effector function, which can greatly facilitate the evaluation of novel CARs with therapeutic potential.
Collapse
Affiliation(s)
- Colby R Maldini
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrea C Love
- Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA 01843, USA
| | - Kevin W Tosh
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leo Li-Ying Chan
- Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA 01843, USA
| | - Kevin Gayout
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tim Smith
- Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA 01843, USA
| | - James L Riley
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Hu F, Huang D, Luo Y, Zhou P, Lv C, Wang K, Weng Q, Liu X, Guan Y, Geng Y, Du J, Chen J, Wang J, Wu H. Hematopoietic lineage-converted T cells carrying tumor-associated antigen-recognizing TCRs effectively kill tumor cells. J Immunother Cancer 2020; 8:jitc-2019-000498. [PMID: 32669292 PMCID: PMC7368548 DOI: 10.1136/jitc-2019-000498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2020] [Indexed: 11/04/2022] Open
Abstract
Tumor-associated antigen (TAA) T-cell receptor (TCR) gene-engineered T cells exhibit great potential in antitumor immunotherapy. Considering the high costs and low availability of patient-derived peripheral blood T cells, substantial efforts have been made to explore alternatives to natural T cells. We previously reported that enforced expression of Hoxb5 converted B cells into induced T (iT) cells in vivo Here, we successfully regenerated naive OT1 (major histocompatibility complex I restricted ovalbumin antigen) iT cells (OT1-iT) in vivo by expressing Hoxb5 in pro-pre-B cells in the OT1 transgenic mouse. The OT1-iT cells can be activated and expanded in vitro in the presence of tumor cells. Particularly, these regenerated OT1-iT cells effectively eradicated tumor cells expressing the TAA (ovalbumin) both in vitro and in vivo This study provides insights into the translational applications of blood lineage-transdifferentiated T cells in immunotherapy.
Collapse
Affiliation(s)
- Fangxiao Hu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Dehao Huang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuxuan Luo
- Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Peiqing Zhou
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cui Lv
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Kaitao Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qitong Weng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofei Liu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong, China
| | - Yuxian Guan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yang Geng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong, China
| | - Juan Du
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong, China
| | - Jinyong Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China .,CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,University of Chinese Academy of Sciences, Beijing, China.,Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Hongling Wu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China .,Guangdong Provincial Key Laboratory of Stem cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong, China
| |
Collapse
|
45
|
Halabi EA, Arasa J, Püntener S, Collado-Diaz V, Halin C, Rivera-Fuentes P. Dual-Activatable Cell Tracker for Controlled and Prolonged Single-Cell Labeling. ACS Chem Biol 2020; 15:1613-1620. [PMID: 32298071 PMCID: PMC7309267 DOI: 10.1021/acschembio.0c00208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Cell
trackers are fluorescent chemical tools that facilitate imaging
and tracking cells within live organisms. Despite their versatility,
these dyes lack specificity, tend to leak outside of the cell, and
stain neighboring cells. Here, we report a dual-activatable cell tracker
for increased spatial and temporal staining control, especially for
single-cell tracking. This probe overcomes the typical problems of
current cell trackers: off-target staining, high background signal,
and leakage from the intracellular medium. Staining with this dye
is not cytotoxic, and it can be used in sensitive primary cells. Moreover,
this dye is resistant to harsh fixation and permeabilization conditions
and allows for multiwavelength studies with confocal microscopy and
fluorescence-activated cell sorting. Using this cell tracker, we performed in vivo homing experiments in mice with primary splenocytes
and tracked a single cell in a heterogeneous, multicellular culture
environment for over 20 h. These experiments, in addition to comparative
proliferation studies with other cell trackers, demonstrated that
the signal from this dye is retained in cells for over 72 h after
photoactivation. We envision that this type of probes will facilitate
the analysis of single-cell behavior and migration in cell culture
and in vivo experiments.
Collapse
Affiliation(s)
- Elias A. Halabi
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Jorge Arasa
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Salome Püntener
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
- Institute of Chemical Sciences and Engineering, EPF Lausanne, 1015, Lausanne, Switzerland
| | | | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Pablo Rivera-Fuentes
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
- Institute of Chemical Sciences and Engineering, EPF Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
46
|
J Lacy K, Parlane NA, Riley CB, Gee EK, Roberts JM, McIlwraith CW. CellTrace Violet™ inhibits equine lymphocyte proliferation. Vet Immunol Immunopathol 2020; 223:110037. [PMID: 32229340 DOI: 10.1016/j.vetimm.2020.110037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 01/23/2023]
Abstract
CellTrace Violet™ is a commonly used fluorescent dye used with flow cytometry to identify cell proliferation. Activated equine lymphocytes were examined using flow cytometry, microscopy and tritiated thymidine proliferation assays. CellTrace Violet™ was incorporated into the equine lymphocytes effectively. Equine lymphocytes proliferated when activated with pokeweed mitogen, but did not proliferate when previously stained with CellTrace Violet™. Serial dilutions of CellTrace Violet™ did not eliminate the inhibition of activated lymphocytes. Equine lymphocyte viability was greater than 90 % for both stained and unstained cells. Based on these data, CellTrace Violet™ is not recommended for the assessment of lymphocyte proliferation in equine cells. The mechanism of inhibition of equine lymphocyte proliferation by CellTrace Violet™ is unknown.
Collapse
Affiliation(s)
- Kamm J Lacy
- Massey University, Tennent Drive, Palmerston North, 4474, New Zealand.
| | - Natalie A Parlane
- AgResearch, University and Library Rd, Massey University, Palmerston North, 4472, New Zealand
| | | | - Erica K Gee
- Massey University, Tennent Drive, Palmerston North, 4474, New Zealand
| | - Joanna M Roberts
- Flowjoanna Tapui Ltd, 429 No 1 Line, Palmerston North, 4475, New Zealand
| | - C Wayne McIlwraith
- Colorado State University Veterinary Teaching Hospital, 300 W Drake Rd Fort Collins, CO, 80523, USA
| |
Collapse
|
47
|
Determining the Development of Persisters in Extensively Drug-Resistant Acinetobacter baumannii upon Exposure to Polymyxin B-Based Antibiotic Combinations Using Flow Cytometry. Antimicrob Agents Chemother 2020; 64:AAC.01712-19. [PMID: 31818819 DOI: 10.1128/aac.01712-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
Polymyxin B-based combinations are increasingly prescribed as a last-line option against extensively drug-resistant (XDR) Acinetobacter baumannii It is unknown if such combinations can result in the development of nondividing persister cells in XDR A. baumannii We investigated persister development upon exposure of XDR A. baumannii to polymyxin B-based antibiotic combinations using flow cytometry. Time-kill studies (TKSs) were conducted in three nonclonal XDR A. baumannii strains with 5 log10 CFU/ml bacteria against polymyxin B alone and polymyxin B-based two-drug combinations over 24 h. At different time points, samples were obtained and enumerated by viable plating and flow cytometry. Propidium iodide and carboxyfluorescein succinimidyl ester dyes were used to differentiate between live and dead cells and between dividing and nondividing cells, respectively, at the single-cell level, and nondividing live cells were resuscitated and characterized phenotypically. Our results from viable plating showed that polymyxin B plus meropenem and polymyxin B plus rifampin were each bactericidal (>99.9% kill compared to the initial inoculum) against 2/3 XDR A. baumannii strains at 24 h. By flow cytometry, however, none of the combinations were bactericidal against XDR A. baumannii at 24 h. Further analysis using cellular dyes in flow cytometry revealed that upon exposure to polymyxin B-based combinations, XDR A. baumannii entered a viable but nondividing persister state. These bacterial cells reinitiated division upon the removal of antibiotic pressure and did not have a growth deficit compared to the parent strain. We conclude that persister cells develop in XDR A. baumannii upon exposure to polymyxin B-based combinations and that nonplating methods appear to complement viable-plating methods in describing the killing activity of polymyxin B-based combinations against XDR A. baumannii.
Collapse
|
48
|
Pereira TF, Levin G, DeOcesano-Pereira C, Caodaglio AS, Fujita A, Tonso A, Sogayar MC. Fluorescence-based method is more accurate than counting-based methods for plotting growth curves of adherent cells. BMC Res Notes 2020; 13:57. [PMID: 32019595 PMCID: PMC7001368 DOI: 10.1186/s13104-020-4914-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Cell growth curves constitute one of the primary assays employed to analyze cell proliferation dynamics of in vitro cultured cells under specific culture conditions. From the cell growth curve, it is possible to assess the behavior of proliferating cells under different conditions, such as drug treatment and genomic editions. Traditionally, growth curves for adherent cells are obtained by seeding the cells in multiple-well plates and counting the total number of cells at different time points. Here, we compare this traditional method to the fluorescence-based method, which is based on the CFSE fluorescence decay over time. RESULTS The fluorescence-based method is not dependent on the determination of the total number of cells, but rather is approached by assessing the fluorescence of a sample of single cells from a cell population at different time points after plating. Therefore, this method is not biased due to either cell loss during harvesting or to the presence of cellular debris and cell clumps. Moreover, the fluorescence-based method displays lower variation among different measurements of the same time point, which increases the reliability on the determination of lag, log and stationary phase transitions.
Collapse
Affiliation(s)
- Túlio Felipe Pereira
- Cell and Molecular Therapy Center (NUCEL), Department of Internal Medicine, School of Medicine, University of São Paulo, Rua Pangaré, 100, Cidade Universitária, São Paulo, SP, 05360-130, Brazil
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriel Levin
- Cell and Molecular Therapy Center (NUCEL), Department of Internal Medicine, School of Medicine, University of São Paulo, Rua Pangaré, 100, Cidade Universitária, São Paulo, SP, 05360-130, Brazil
| | - Carlos DeOcesano-Pereira
- Cell and Molecular Therapy Center (NUCEL), Department of Internal Medicine, School of Medicine, University of São Paulo, Rua Pangaré, 100, Cidade Universitária, São Paulo, SP, 05360-130, Brazil
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Amanda Schiersner Caodaglio
- Cell and Molecular Therapy Center (NUCEL), Department of Internal Medicine, School of Medicine, University of São Paulo, Rua Pangaré, 100, Cidade Universitária, São Paulo, SP, 05360-130, Brazil
| | - André Fujita
- Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, SP, Brazil
| | - Aldo Tonso
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, São Paulo, SP, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Center (NUCEL), Department of Internal Medicine, School of Medicine, University of São Paulo, Rua Pangaré, 100, Cidade Universitária, São Paulo, SP, 05360-130, Brazil.
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
49
|
Moutuou MM, Gauthier SD, Chen N, Leboeuf D, Guimond M. Studying Peripheral T Cell Homeostasis in Mice: A Concise Technical Review. Methods Mol Biol 2020; 2111:267-283. [PMID: 31933214 DOI: 10.1007/978-1-0716-0266-9_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For several years, it was believed that the thymus was entirely responsible for maintaining T cell homeostasis. Today, it is well-known that homeostatic peripheral mechanisms are essential in order to maintain T cell numbers and diversity constant in the periphery. Naïve and memory T cells require continual access to self-peptide MHC class I and II molecules and/or cytokines to survive in the periphery. Under normal conditions, homeostatic resources are low, and lymphocytes undergo very slow proliferation and survive. Following T cell depletion, the bioavailability of homeostatic resources is significantly increased, and T cell proliferation is dramatically augmented. The development of lymphopenic mouse models has helped our current understanding of factors involved in the regulation of peripheral T cell homeostasis. In this minireview, we will give a brief overview about basic techniques used to study peripheral T cell homeostasis in mice.
Collapse
Affiliation(s)
- Moutuaata M Moutuou
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Simon-David Gauthier
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Nicolas Chen
- Département de Biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | | | - Martin Guimond
- Division Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
50
|
|