1
|
Pu K, Li N, Gao Y, Wang T, Zhang M, Sun W, Li J, Xie J. Mitigating effects of Methyl Jasmonate on photosynthetic inhibition and oxidative stress of pepper (Capsicum annuum L) seedlings under low temperature combined with low light. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109843. [PMID: 40168861 DOI: 10.1016/j.plaphy.2025.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Low temperature combined with low light (LL) is a critical abiotic stress that restricting plant growth and yield of pepper (Capsicum annuum L.). Methyl jasmonate (MeJA) is considered with potential benefits for improving plant stress resistance; however, the physiological mechanisms underlying the adaptation of pepper to LL stress have not been explored. This study aimed to investigate the potential mitigating effects of foliar MeJA (200 μmol L-1) application on pepper seedlings subjected to LL stress (10/5 °C, 100 μmol m-2 s-1) for 168 h. Our results indicated that the application of exogenous MeJA reduced the negative effect on growth inhibition of pepper seedlings caused by LL stress, significantly increased chlorophyll contents and photosynthetic capacity as a result of improved photosynthesis rate. In addition, MeJA reduced the accumulation of reactive oxygen species and malondialdehyde contents induced by LL stress, while enhancing the activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and monodehydroascorbate reductase as a result of upregulated expression levels of antioxidant enzyme genes (CaSOD, CaPOD, CaCAT, CaAPX, CaGR, CaDHAR, and CaMDHAR). Additionally, it increased the ascorbic acid and reduced glutathione content, while reducing oxidized glutathione content, thereby preventing membrane lipid peroxidation and protecting plants from oxidative damage under LL stress. Furthermore, seedlings treated with MeJA exhibited significantly enhanced soluble sugar and soluble protein contents in leaves. Taken together, present findings indicate that MeJA application may serve as an effective strategy for mitigating LL-induced oxidative stress by maintaining plant growth, enhancing chlorophyll fluorescence, upregulating the antioxidant defence system, optimizing ascorbate-glutathione cycle, and osmotic adjustment.
Collapse
Affiliation(s)
- Kaiguo Pu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Nenghui Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Yanqiang Gao
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Tiantian Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Miao Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Wenli Sun
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Li L, Liu Y, Jia Y, Yuan Z. Investigation into the mechanisms of photosynthetic regulation and adaptation under salt stress in lavender. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109376. [PMID: 39693951 DOI: 10.1016/j.plaphy.2024.109376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024]
Abstract
Salinity stress is a major threat to agricultural productivity and sustainability, often causing irreversible damage to photosynthesis. Lavender, a valuable aromatic plant, experiences growth impacts under salt stress. However, the regulatory mechanisms of photosynthesis related to its adaptation to salt stress remain unclear. In this study, lavender was exposed to 0, 100, 200, and 300 mM NaCl for 28 days. It was observed that lavender effectively maintained chlorophyll stability when salt concentrations were below 200 mM and stress duration was under 21 days. The most effective model for lavender under salt stress was identified as a right-angled hyperbolic modified model. Under moderate salt stress (100 mM, 200 mM), genes such as LaPSB28, LaPSBS, and LaPSBR contributed to PSII core stability, enhanced photosynthetic pigment levels, and sustained high electron transfer rates to improve salt-tolerance. Additionally, LaLHCB4-1 and LaPSAK-1 regulated stomatal size, thereby facilitating gas exchange and supporting the photosynthetic process. Conversely, under high salt stress (300 mM), LaPSBW-1, -2, and LaPSAB were found to reduce photosynthetic pigment levels and inhibit photosynthetic activity. However, genes such as LaCHLG-2, LaGLG-3, LaBAM1-1 and -3, and LaCHLP-3 aided in starch synthesis by increasing pigment content, thus promoting energy balance and enhancing salt tolerance. This regulation involved photosynthesis-antenna proteins and pathways related to starch, sucrose, and chlorophyll metabolism. These findings may support the cultivation of salt-tolerant lavender varieties and maximize saline soil usage.
Collapse
Affiliation(s)
- Ling Li
- College of Life Science and Technology, Harbin Normal University, Harbin, China; Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China; Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
| | - Yinan Liu
- College of Life Science and Technology, Harbin Normal University, Harbin, China; Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China; Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
| | - Yujing Jia
- College of Life Science and Technology, Harbin Normal University, Harbin, China; Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China; Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
| | - Zening Yuan
- College of Life Science and Technology, Harbin Normal University, Harbin, China; Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China; Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China.
| |
Collapse
|
3
|
Wang A, Wang R, Miao X. Mechanism of Transcription Factor ChbZIP1 Enhanced Alkaline Stress Tolerance in Chlamydomonas reinhardtii. Int J Mol Sci 2025; 26:769. [PMID: 39859481 PMCID: PMC11766021 DOI: 10.3390/ijms26020769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Alkaline environments such as alkaline lands, lakes, and industrial wastewater are not conducive to the growth of plants and microorganisms due to high pH and salinity. ChbZIP1 is a bZIP family transcription factor isolated from an alkaliphilic microalgae (Chlorella sp. BLD). Previous studies have demonstrated its ability to enhance alkaline tolerance in Arabidopsis thaliana. However, the potential of ChbZIP1 to confer similar alkaline tolerance in other microalgae remains unclear, and the specific mechanisms are not fully understood. The analysis of cellular physiological and biochemical indicators revealed that the ChbZIP1 transformants exhibited enhanced photosynthetic activity, increased lipid accumulation, and reduced fatty acid unsaturation. Genes associated with cellular reactive oxygen species (ROS) detoxification were found to be upregulated, and a corresponding increase in antioxidant enzyme activity was detected. In addition, the relative abundance of intracellular ROS and malondialdehyde (MDA) was significantly lower in the transformants. In summary, our research indicates that ChbZIP1 enhances the tolerance of Chlamydomonas reinhardtii to alkaline environments through several mechanisms, including the repair of damaged photosynthesis, increased lipid accumulation, improved fatty acid unsaturation, and enhanced antioxidant enzyme activity. This study aims to contribute to a more comprehensive understanding of the mechanisms underlying alkalinity tolerance in microalgae and offers new insights and theoretical foundations for the utilization of microalgae in alkaline environments.
Collapse
Affiliation(s)
- Ao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.W.); (R.W.)
| | - Rui Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.W.); (R.W.)
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.W.); (R.W.)
- Carbon-Negative Synthetic Biology for Biomaterial Production from CO2 (CNSB), Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| |
Collapse
|
4
|
Gunasekaran JX, Yadav RM, Ramachandran P, Sharma S, Subramanyam R. Mild osmotic stress offers photoprotection in Chlamydomonas reinhardtii under high light. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109050. [PMID: 39366200 DOI: 10.1016/j.plaphy.2024.109050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 10/06/2024]
Abstract
The exposure of autotrophs to high light intensities significantly impacts their photosynthetic performance. When combined with unpredictable climate changes, the lethality of these effects is exacerbated and, often surpassing the organisms' threshold for tolerance. In this regard, our study centres on examining the mitigating effects of mild osmotic stress induced by 2% Polyethylene Glycol (PEG) in conjunction with high-light conditions, using Chlamydomonas reinhardtii as a model system. Cells were cultivated under low PEG-induced osmotic stress at various light intensities, and their responses were analyzed through biochemical and biophysical approaches. Remarkably, cells grown under lower PEG concentrations exhibited superior growth, increased biomass, and enhanced photosynthetic efficiency under high light compared to non-PEG-treated cells. Surprisingly, their non-photochemical quenching (NPQ) levels were lower, indicating the operation of a distinct photoprotective mechanism in PEG-grown samples. The PEG-grown cells demonstrated higher chlorophyll content but lower carotenoid content, supporting the NPQ data. Circular dichroism analysis suggested that the macro-organization of super-complexes was minimally disrupted in PEG-grown samples, even under high light. This was further supported by Blue native PAGE, which showed greater stability of the super-complexes in PEG-grown cells, implying heightened stability in pigment-protein interactions. Immunoblot analysis revealed minimal differences in core reaction center proteins between PEG-grown and non-PEG cells. Notably, this protective mechanism was absent in the cell wall-deficient mutant CC503. We propose that the partial photoprotection observed is attributed to the PEG shielding the cell wall. This result holds promise for enhancing algal biomass production under natural environmental conditions influenced by fluctuating light intensity.
Collapse
Affiliation(s)
- Jerome Xavier Gunasekaran
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Pavithra Ramachandran
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Shriya Sharma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
5
|
Li B, Mamuti R, Xiao L, Qian B, Wang Y, Wei X. The adaptation of lichen symbiosis to desert saline-alkali stress depends more on their symbiotic algae. PHYSIOLOGIA PLANTARUM 2024; 176:e14510. [PMID: 39221500 DOI: 10.1111/ppl.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Soil salinization is a major environmental threat to the entire terrestrial ecosystem. Lichens arose from the symbiosis of fungi and algae or cyanobacteria. They have a high tolerance to various extreme environments, including adaptation to saline-alkali habitats. Thus, lichens are pioneer species on saline-alkali soil. However, the separate resilience of the two symbiotic partners under saline-alkali conditions remains insufficiently understood. In this study, two representative symbiotic algae, Diplosphaera chodatii and Trebouxia jamesii, were studied for their physiological response to the saline-alkali stress by adjusting different concentrations of NaHCO3, together with their respective symbiotic fungi Endocarpon pusillum (terricolous lichen) and Umbilicaria muhlenbergii (saxicolous lichen). The results indicate that cell growth rate and biomass in all four cultures decreased in alkali-alkaline substrate, while cellular activities and ultrastructure were affected to a distinct extent. Compared with the symbiotic fungi, the algae were found to be more active in coordinating oxidative stress and lipid peroxidation damage under the saline-alkali stress. The antioxidant system of the alga was especially shown as a key adaptive trait and it provides an important strategy for species survival and persistence in arid saline-alkali desert. The specific survival ability of the lichen symbiosis relies on the stress resilience advantages of the symbiotic partners in combination. Our study provided new insights into understanding the adaptation of lichen symbiosis to desert saline-alkali soil, and the potential of lichen symbiotic algae in the future desert ecological restoration.
Collapse
Affiliation(s)
- Biting Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Reyim Mamuti
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Liting Xiao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Ben Qian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Maciel F, Madureira L, Geada P, Teixeira JA, Silva J, Vicente AA. The potential of Pavlovophyceae species as a source of valuable carotenoids and polyunsaturated fatty acids for human consumption. Biotechnol Adv 2024; 74:108381. [PMID: 38777244 DOI: 10.1016/j.biotechadv.2024.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Microalgae are a group of microorganisms, mostly photoautotrophs with high CO2 fixation capacity, that have gained increased attention in the last decades due to their ability to produce a wide range of valuable metabolites, such as carotenoids and polyunsaturated fatty acids, for application in food/feed, pharmaceutical, and cosmeceutical industries. Their increasing relevance has highlighted the importance of identifying and culturing new bioactive-rich microalgae species, as well as of a thorough understanding of the growth conditions to optimize the biomass production and master the biochemical composition according to the desired application. Thus, this review intends to describe the main cell processes behind the production of carotenoids and polyunsaturated fatty acids, in order to understand the possible main triggers responsible for the accumulation of those biocompounds. Their economic value and the biological relevance for human consumption are also summarized. In addition, an extensive review of the impact of culture conditions on microalgae growth performance and their biochemical composition is presented, focusing mainly on the studies involving Pavlovophyceae species. A complementary description of the biochemical composition of these microalgae is also presented, highlighting their potential applications as a promising bioresource of compounds for large-scale production and human and animal consumption.
Collapse
Affiliation(s)
- Filipe Maciel
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Leandro Madureira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - Pedro Geada
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - José António Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana Silva
- ALLMICROALGAE, Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal.
| | - António Augusto Vicente
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
7
|
Song L, Yu Y, Chen H, Feng Y, Chen S, Zhang H, Zhou H, Meng L, Wang Y. Response of photosynthetic characteristics and antioxidant system in the leaves of safflower to NaCl and NaHCO 3. PLANT CELL REPORTS 2024; 43:146. [PMID: 38764051 DOI: 10.1007/s00299-024-03234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
KEY MESSAGE Compared with NaCl, NaHCO3 caused more serious oxidative damage and photosynthesis inhibition in safflower by down-regulating the expression of related genes. Salt-alkali stress is one of the important factors that limit plant growth. NaCl and sodium bicarbonate (NaHCO3) are neutral and alkaline salts, respectively. This study investigated the physiological characteristics and molecular responses of safflower (Carthamus tinctorius L.) leaves treated with 200 mmol L-1 of NaCl or NaHCO3. The plants treated with NaCl treatment were less effective at inhibiting the growth of safflower, but increased the content of malondialdehyde (MDA) in leaves. Meanwhile, safflower alleviated stress damage by increasing proline (Pro), soluble protein (SP), and soluble sugar (SS). Both fresh weight and dry weight of safflower was severely decreased when it was subjected to NaHCO3 stress, and there was a significant increase in the permeability of cell membranes and the contents of osmotic regulatory substances. An enrichment analysis of the differentially expressed genes (DEGs) using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes identified significant enrichment of photosynthesis and pathways related to oxidative stress. Furthermore, a weighted gene co-expression network analysis (WGCNA) showed that the darkgreen module had the highest correlation with photosynthesis and oxidative stress traits. Large numbers of transcription factors, primarily from the MYB, GRAS, WRKY, and C2H2 families, were predicted from the genes within the darkgreen module. An analysis of physiological indicators and DEGs, it was found that under saline-alkali stress, genes related to chlorophyll synthesis enzymes were downregulated, while those related to degradation were upregulated, resulting in inhibited chlorophyll biosynthesis and decreased chlorophyll content. Additionally, NaCl and NaHCO3 stress downregulated the expression of genes related to the Calvin cycle, photosynthetic antenna proteins, and the activity of photosynthetic reaction centers to varying degrees, hindering the photosynthetic electron transfer process, suppressing photosynthesis, with NaHCO3 stress causing more pronounced adverse effects. In terms of oxidative stress, the level of reactive oxygen species (ROS) did not change significantly under the NaCl treatment, but the contents of hydrogen peroxide and the rate of production of superoxide anions increased significantly under NaHCO3 stress. In addition, treatment with NaCl upregulated the levels of expression of the key genes for superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), the ascorbate-glutathione cycle, and the thioredoxin-peroxiredoxin pathway, and increased the activity of these enzymes, thus, reducing oxidative damage. Similarly, NaHCO3 stress increased the activities of SOD, CAT, and POD and the content of ascorbic acid and initiated the glutathione-S-transferase pathway to remove excess ROS but suppressed the regeneration of glutathione and the activity of peroxiredoxin. Overall, both neutral and alkaline salts inhibited the photosynthetic process of safflower, although alkaline salt caused a higher level of stress than neutral salt. Safflower alleviated the oxidative damage induced by stress by regulating its antioxidant system.
Collapse
Affiliation(s)
- Linlin Song
- School of Life Sciences, Henan Institute of Science and Technology, Henan, China
| | - Yongliang Yu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongzhi Chen
- College of Bioengineering, Xinxiang Institute of Engineering, Henan, China
| | - Yuwei Feng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Huihui Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Haijia Zhou
- School of Life Sciences, Henan Institute of Science and Technology, Henan, China
| | - Li Meng
- School of Life Sciences, Henan Institute of Science and Technology, Henan, China.
| | - Yue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China.
| |
Collapse
|
8
|
Vergou GA, Bajhaiya AK, Corredor L, Lema Asqui S, Timmerman E, Impens F, Funk C. In vivo proteolytic profiling of the type I and type II metacaspases in Chlamydomonas reinhardtii exposed to salt stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14401. [PMID: 38899462 DOI: 10.1111/ppl.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Metacaspases are cysteine proteases present in plants, fungi and protists. While the association of metacaspases with cell death is studied in a range of organisms, their native substrates are largely unknown. Here, we explored the in vivo proteolytic landscape of the two metacaspases, CrMCA-I and CrMCA-II, present in the green freshwater alga Chlamydomonas reinhardtii, using mass spectrometry-based degradomics approach, during control conditions and salt stress. Comparison between the cleavage events of CrMCA-I and CrMCA-II in metacaspase mutants revealed unique cleavage preferences and substrate specificity. Degradome analysis demonstrated the relevance of the predicted metacaspase substrates to the physiology of C. reinhardtii cells and its adaptation during salt stress. Functional enrichment analysis indicated an involvement of CrMCA-I in the catabolism of carboxylic acids, while CrMCA-II plays an important role in photosynthesis and translation. Altogether, our findings suggest distinct cellular functions of the two metacaspases in C. reinhardtii during salt stress response.
Collapse
Affiliation(s)
| | | | | | | | - Evy Timmerman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | | |
Collapse
|
9
|
Stefanov MA, Rashkov GD, Borisova PB, Apostolova EL. Changes in Photosystem II Complex and Physiological Activities in Pea and Maize Plants in Response to Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1025. [PMID: 38611554 PMCID: PMC11013719 DOI: 10.3390/plants13071025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Salt stress significantly impacts the functions of the photosynthetic apparatus, with varying degrees of damage to its components. Photosystem II (PSII) is more sensitive to environmental stresses, including salinity, than photosystem I (PSI). This study investigated the effects of different salinity levels (0 to 200 mM NaCl) on the PSII complex in isolated thylakoid membranes from hydroponically grown pea (Pisum sativum L.) and maize (Zea mays L.) plants treated with NaCl for 5 days. The data revealed that salt stress inhibits the photochemical activity of PSII (H2O → BQ), affecting the energy transfer between the pigment-protein complexes of PSII (as indicated by the fluorescence emission ratio F695/F685), QA reoxidation, and the function of the oxygen-evolving complex (OEC). These processes were more significantly affected in pea than in maize under salinity. Analysis of the oxygen evolution curves after flashes and continuous illumination showed a stronger influence on the PSIIα than PSIIβ centers. The inhibition of oxygen evolution was associated with an increase in misses (α), double hits (β), and blocked centers (SB) and a decrease in the rate constant of turnover of PSII reaction centers (KD). Salinity had different effects on the two pathways of QA reoxidation in maize and pea. In maize, the electron flow from QA- to plastoquinone was dominant after treatment with higher NaCl concentrations (150 mM and 200 mM), while in pea, the electron recombination on QAQB- with oxidized S2 (or S3) of the OEC was more pronounced. Analysis of the 77 K fluorescence emission spectra revealed changes in the ratio of the light-harvesting complex of PSII (LHCII) monomers and trimers to LHCII aggregates after salt treatment. There was also a decrease in pigment composition and an increase in oxidative stress markers, membrane injury index, antioxidant activity (FRAP assay), and antiradical activity (DPPH assay). These effects were more pronounced in pea than in maize after treatment with higher NaCl concentrations (150 mM-200 mM). This study provides insights into how salinity influences the processes in the donor and acceptor sides of PSII in plants with different salt sensitivity.
Collapse
Affiliation(s)
- Martin A Stefanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Georgi D Rashkov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Preslava B Borisova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Emilia L Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
10
|
Hemker F, Zielasek F, Jahns P. Combined high light and salt stress enhances accumulation of PsbS and zeaxanthin in Chlamydomonas reinhardtii. PHYSIOLOGIA PLANTARUM 2024; 176:e14233. [PMID: 38433102 DOI: 10.1111/ppl.14233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
The performance and acclimation strategies of Chlamydomonas reinhardtii under stress conditions are typically studied in response to single stress factors. Under natural conditions, however, organisms rarely face only one stressor at a time. Here, we investigated the impact of combined salt and high light stress on the photoprotective response of C. reinhardtii. Compared to the single stress factors, the combination of both stressors decreased the photosynthetic performance, while the activation of energy dissipation remained unaffected. However, the PsbS protein was strongly accumulated and the conversion of violaxanthin to zeaxanthin was enhanced. These results support an important photoprotective function of PsbS and zeaxanthin independently of energy dissipation under combined salt and high light stress in C. reinhardtii.
Collapse
Affiliation(s)
- Fritz Hemker
- Photosynthesis and Stress Physiology of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fabian Zielasek
- Photosynthesis and Stress Physiology of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Jahns
- Photosynthesis and Stress Physiology of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Li J, Wang W, Li B, Xue Y, Wang X, Liu S, Hu S, Tang J, Yan B, Li T, Xue J. NADP +-dependent isocitrate dehydrogenase as a novel target for altering carbon flux to lipid accumulation and enhancing antioxidant capacity in Tetradesmus obliquus. BIORESOURCE TECHNOLOGY 2024; 395:130365. [PMID: 38266784 DOI: 10.1016/j.biortech.2024.130365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Regulatory complexities in lipogenesis hinder the harmonization of metabolic carbon precursors towards lipid synthesis. Exploring regulatory complexities in lipogenesis, this study identifies NADP+-dependent isocitrate dehydrogenase (IDH) in Tetradesmus obliquus as a key factor. Overexpression IDH in strains ToIDH-1 and ToIDH-2 resulted in a 1.69 and 1.64-fold increase in neutral lipids, respectively, compared to the wild type, with lipid yield reaching 234.56 and 227.17 mg/L. Notably, despite slower growth, the cellular biomass augmented to 790.67 mg/L. Metabolite analysis indicated a shift in carbon precursors from protein to lipid and carbohydrate synthesis. Morphological observations revealed increases in the volume and number of lipid droplets, alongside a change in the fatty acid profile favoring monounsaturated and saturated fatty acids. Furthermore, IDH overexpression enhanced NADPH production and antioxidant activity, thereby further boosting lipid accumulation when combined with salt stress. This study suggests a pathway for improved lipogenesis and algal growth via metabolic engineering.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Wei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China
| | - Bingze Li
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Yunzhuan Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Xinxin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China
| | - Shihui Liu
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Shuwei Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Jiaxuan Tang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China
| | - Bo Yan
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Tong Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Jiao Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China.
| |
Collapse
|
12
|
Zhang B, Deng C, Wang S, Deng Q, Chu Y, Bai Z, Huang A, Zhang Q, He Q. The RNA landscape of Dunaliella salina in response to short-term salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1278954. [PMID: 38111875 PMCID: PMC10726701 DOI: 10.3389/fpls.2023.1278954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023]
Abstract
Using the halotolerant green microalgae Dunaliella salina as a model organism has special merits, such as a wide range of salt tolerance, unicellular organism, and simple life cycle and growth conditions. These unique characteristics make it suitable for salt stress study. In order to provide an overview of the response of Dunaliella salina to salt stress and hopefully to reveal evolutionarily conserved mechanisms of photosynthetic organisms in response to salt stress, the transcriptomes and the genome of the algae were sequenced by the second and the third-generation sequencing technologies, then the transcriptomes under salt stress were compared to the transcriptomes under non-salt stress with the newly sequenced genome as the reference genome. The major cellular biological processes that being regulated in response to salt stress, include transcription, protein synthesis, protein degradation, protein folding, protein modification, protein transport, cellular component organization, cell redox homeostasis, DNA repair, glycerol synthesis, energy metabolism, lipid metabolism, and ion homeostasis. This study gives a comprehensive overview of how Dunaliella salina responses to salt stress at transcriptomic level, especially characterized by the nearly ubiquitous up-regulation of the genes involving in protein folding, DNA repair, and cell redox homeostasis, which may confer the algae important mechanisms to survive under salt stress. The three fundamental biological processes, which face huge challenges under salt stress, are ignored by most scientists and are worth further deep study to provide useful information for breeding economic important plants competent in tolerating salt stress, other than only depending on the commonly acknowledged osmotic balance and ion homeostasis.
Collapse
Affiliation(s)
- Bingbing Zhang
- The Research Institute of Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, China
| | - Caiyun Deng
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Shuo Wang
- The Research Institute of Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, China
| | - Qianyi Deng
- The Research Institute of Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, China
| | - Yongfan Chu
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
| | - Ziwei Bai
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
| | - Axiu Huang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Qinglian Zhang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Qinghua He
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
| |
Collapse
|
13
|
Chouhan N, Marriboina S, Kumari A, Singh P, Yadav RM, Gupta KJ, Subramanyam R. Metabolomic response to high light from pgrl1 and pgr5 mutants of Chlamydomonas reinhardtii. Photochem Photobiol Sci 2023; 22:2635-2650. [PMID: 37751074 DOI: 10.1007/s43630-023-00478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023]
Abstract
Chlamydomonas (C.) reinhardtii metabolomic changes in cyclic electron flow-dependent mutants are still unknown. Here, we used mass spectrometric analysis to monitor the changes in metabolite levels in wild-type, cyclic electron-deficient mutants pgrl1 and pgr5 grown under high-light stress. A total of 55 metabolites were detected using GC-MS analysis. High-light stress-induced selective anaplerotic amino acids in pgr5. In addition, pgr5 showed enhancement in carbohydrate, polyamine, and polyol metabolism by 2.5-fold under high light. In response to high light, pgr5 triggers an increase in several metabolites involved in regulating osmotic pressure. Among these metabolites are glycerol pathway compounds such as glycerol-3-phosphate and glyceryl-glycoside, which increase significantly by 1.55 and 3.07 times, respectively. In addition, pgr5 also enhanced proline and putrescine levels by 2.6- and 1.36-fold under high light. On the other hand, pgrl1-induced metabolites, such as alanine and serine, are crucial for photorespiration when subjected to high-light stress. We also observed a significant increase in levels of polyols and glycerol by 1.37- and 2.97-fold in pgrl1 under high-light stress. Both correlation network studies and KEGG pathway enrichment analysis revealed that metabolites related to several biological pathways, such as amino acid, carbohydrate, TCA cycle, and fatty acid metabolism, were positively correlated in pgrl1 and pgr5 under high-light stress conditions. The relative mRNA expression levels of genes related to the TCA cycle, including PDC3, ACH1, OGD2, OGD3, IDH3, and MDH4, were significantly upregulated in pgrl1 and pgr5 under HL. In pgr5, the MDH1 level was significantly increased, while ACS1, ACS3, IDH2, and IDH3 levels were reduced considerably in pgrl1 under high-light stress. The current study demonstrates both pgr5 and prgl1 showed a differential defense response to high-light stress at the primary metabolites and mRNA expression level, which can be added to the existing knowledge to explore molecular regulatory responses of prg5 and pgrl1 to high-light stress.
Collapse
Affiliation(s)
- Nisha Chouhan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sureshbabu Marriboina
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben Gurion, 8499000, Beersheba, Israel
| | - Aprajita Kumari
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pooja Singh
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
14
|
Kalra I, Wang X, Zhang R, Morgan-Kiss R. High salt-induced PSI-supercomplex is associated with high CEF and attenuation of state transitions. PHOTOSYNTHESIS RESEARCH 2023; 157:65-84. [PMID: 37347385 PMCID: PMC10484818 DOI: 10.1007/s11120-023-01032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
While PSI-driven cyclic electron flow (CEF) and assembly of thylakoid supercomplexes have been described in model organisms like Chlamydomonas reinhardtii, open questions remain regarding their contributions to survival under long-term stress. The Antarctic halophyte, C. priscuii UWO241 (UWO241), possesses constitutive high CEF rates and a stable PSI-supercomplex as a consequence of adaptation to permanent low temperatures and high salinity. To understand whether CEF represents a broader acclimation strategy to short- and long-term stress, we compared high salt acclimation between the halotolerant UWO241, the salt-sensitive model, C. reinhardtii, and a moderately halotolerant Antarctic green alga, C. sp. ICE-MDV (ICE-MDV). CEF was activated under high salt and associated with increased non-photochemical quenching in all three Chlamydomonas species. Furthermore, high salt-acclimated cells of either strain formed a PSI-supercomplex, while state transition capacity was attenuated. How the CEF-associated PSI-supercomplex interferes with state transition response is not yet known. We present a model for interaction between PSI-supercomplex formation, state transitions, and the important role of CEF for survival during long-term exposure to high salt.
Collapse
Affiliation(s)
- Isha Kalra
- Department of Microbiology, Miami University, Oxford, OH 45056 USA
- Present Address: Department of Biology, University of Southern California, Los Angeles, CA 90089 USA
| | - Xin Wang
- Department of Microbiology, Miami University, Oxford, OH 45056 USA
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | | |
Collapse
|
15
|
Li N, Pu K, Ding D, Yang Y, Niu T, Li J, Xie J. Foliar Spraying of Glycine Betaine Alleviated Growth Inhibition, Photoinhibition, and Oxidative Stress in Pepper ( Capsicum annuum L.) Seedlings under Low Temperatures Combined with Low Light. PLANTS (BASEL, SWITZERLAND) 2023; 12:2563. [PMID: 37447123 DOI: 10.3390/plants12132563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Low temperature combined with low light (LL stress) is a typical environmental stress that limits peppers' productivity, yield, and quality in northwestern China. Glycine betaine (GB), an osmoregulatory substance, has increasingly valuable effects on plant stress resistance. In this study, pepper seedlings were treated with different concentrations of GB under LL stress, and 20 mM of GB was the best treatment. To further explore the mechanism of GB in response to LL stress, four treatments, including CK (normal temperature and light, 28/18 °C, 300 μmol m-2 s-1), CB (normal temperature and light + 20 mM GB), LL (10/5 °C, 100 μmol m-2 s-1), and LB (10/5 °C, 100 μmol m-2 s-1 + 20 mM GB), were investigated in terms of pepper growth, biomass accumulation, photosynthetic capacity, expression levels of encoded proteins Capsb, cell membrane permeability, antioxidant enzyme gene expression and activity, and subcellular localization. The results showed that the pre-spraying of GB under LL stress significantly alleviated the growth inhibition of pepper seedlings; increased plant height by 4.64%; increased root activity by 63.53%; and decreased photoinhibition by increasing the chlorophyll content; upregulating the expression levels of encoded proteins Capsb A, Capsb B, Capsb C, Capsb D, Capsb S, Capsb P1, and Capsb P2 by 30.29%, 36.69%, 18.81%, 30.05%, 9.01%, 6.21%, and 16.45%, respectively; enhancing the fluorescence intensity (OJIP curves), the photochemical efficiency (Fv/Fm, Fv'/Fm'), qP, and NPQ; improving the light energy distribution of PSΠ (Y(II), Y(NPQ), and Y(NO)); and increasing the photochemical reaction fraction and reduced heat dissipation, thereby increasing plant height by 4.64% and shoot bioaccumulation by 13.55%. The pre-spraying of GB under LL stress also upregulated the gene expression of CaSOD, CaPOD, and CaCAT; increased the activity of the ROS-scavenging ability in the pepper leaves; and coordinately increased the SOD activity in the mitochondria, the POD activity in the mitochondria, chloroplasts, and cytosol, and the CAT activity in the cytosol, which improved the LL resistance of the pepper plants by reducing excess H2O2, O2-, MDA, and soluble protein levels in the leaf cells, leading to reduced biological membrane damage. Overall, pre-spraying with GB effectively alleviated the negative effects of LL stress in pepper seedlings.
Collapse
Affiliation(s)
- Nenghui Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Kaiguo Pu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Dongxia Ding
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Yan Yang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| |
Collapse
|
16
|
Zamree ND, Puasa NA, Lim ZS, Wong CY, Shaharuddin NA, Zakaria NN, Merican F, Convey P, Ahmad S, Shaari H, Azmi AA, Ahmad SA, Zulkharnain A. The Utilisation of Antarctic Microalgae Isolated from Paradise Bay (Antarctic Peninsula) in the Bioremediation of Diesel. PLANTS (BASEL, SWITZERLAND) 2023; 12:2536. [PMID: 37447097 DOI: 10.3390/plants12132536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Research has confirmed that the utilisation of Antarctic microorganisms, such as bacteria, yeasts and fungi, in the bioremediation of diesel may provide practical alternative approaches. However, to date there has been very little attention towards Antarctic microalgae as potential hydrocarbon degraders. Therefore, this study focused on the utilisation of an Antarctic microalga in the bioremediation of diesel. The studied microalgal strain was originally obtained from a freshwater ecosystem in Paradise Bay, western Antarctic Peninsula. When analysed in systems with and without aeration, this microalgal strain achieved a higher growth rate under aeration. To maintain the growth of this microalga optimally, a conventional one-factor-at a-time (OFAT) analysis was also conducted. Based on the optimized parameters, algal growth and diesel degradation performance was highest at pH 7.5 with 0.5 mg/L NaCl concentration and 0.5 g/L of NaNO3 as a nitrogen source. This currently unidentified microalga flourished in the presence of diesel, with maximum algal cell numbers on day 7 of incubation in the presence of 1% v/v diesel. Chlorophyll a, b and carotenoid contents of the culture were greatest on day 9 of incubation. The diesel degradation achieved was 64.5% of the original concentration after 9 days. Gas chromatography analysis showed the complete mineralisation of C7-C13 hydrocarbon chains. Fourier transform infrared spectroscopy analysis confirmed that strain WCY_AQ5_3 fully degraded the hydrocarbon with bioabsorption of the products. Morphological and molecular analyses suggested that this spherical, single-celled green microalga was a member of the genus Micractinium. The data obtained confirm that this microalga is a suitable candidate for further research into the degradation of diesel in Antarctica.
Collapse
Affiliation(s)
- Nur Diyanah Zamree
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nurul Aini Puasa
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Zheng Syuen Lim
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Chiew-Yen Wong
- School of Health Sciences, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nur Nadhirah Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Faradina Merican
- School of Biological Sciences, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| | - Peter Convey
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
- Department of Zoology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Ñuñoa 7750000, Santiago, Chile
| | - Syahida Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Hasrizal Shaari
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Alyza Azzura Azmi
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), University Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Material Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan
| |
Collapse
|
17
|
Ramachandran P, Pandey NK, Yadav RM, Suresh P, Kumar A, Subramanyam R. Photosynthetic efficiency and transcriptome analysis of Dunaliella salina under hypersaline: a retrograde signaling mechanism in the chloroplast. FRONTIERS IN PLANT SCIENCE 2023; 14:1192258. [PMID: 37416885 PMCID: PMC10322210 DOI: 10.3389/fpls.2023.1192258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/16/2023] [Indexed: 07/08/2023]
Abstract
Understanding the molecular mechanisms of environmental salinity stress tolerance and acclimation strategies by photosynthetic organisms facilitates accelerating the genetic improvement of tolerant economically important crops. In this study, we have chosen the marine algae Dunaliella (D.) salina, a high-potential and unique organism that shows superior tolerance against abiotic stresses, especially hypersaline conditions. We have grown the cells in three different salt concentrations 1.5M NaCl (control), 2M NaCl, and 3M NaCl (hypersaline). Fast chlorophyll fluorescence analysis showed increased initial fluorescence (Fo) and decreased photosynthetic efficiency, indicating hampered photosystem II utilization capacity under hypersaline conditions. Also, the reactive oxygen species (ROS) localization studies and quantification revealed elevated accumulation of ROS was observed in the chloroplast in the 3M condition. Pigment analysis shows a deficit in chlorophyll content and increased carotenoid accumulation, especially lutein and zeaxanthin content. This study majorly explored the chloroplast transcripts of the D. salina cell as it is the major environmental sensor. Even though most of the photosystem transcripts showed moderate upregulation in hypersaline conditions in the transcriptome study, the western blot analysis showed degradation of the core as well as antenna proteins of both the photosystems. Among the upregulated chloroplast transcripts, chloroplast Tidi, flavodoxin IsiB, and carotenoid biosynthesis-related protein transcripts strongly proposed photosynthetic apparatus remodeling. Also, the transcriptomic study revealed the upregulation of the tetrapyrrole biosynthesis pathway (TPB) and identified the presence of a negative regulator of this pathway, called the s-FLP splicing variant. These observations point towards the accumulation of TPB pathway intermediates PROTO-IX, Mg-PROTO-IX, and P-Chlide, those earlier reported as retrograde signaling molecules. Our comparative transcriptomic approach along with biophysical and biochemical studies in D. salina grown under control (1.5 M NaCl) and hypersaline (3M NaCl) conditions, unveil an efficient retrograde signaling mechanism mediated remodeling of photosynthetic apparatus.
Collapse
Affiliation(s)
- Pavithra Ramachandran
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Naveen Kumar Pandey
- Novelegene Technologies Pvt. Ltd, Genomics division, Hyderabad, Telangana, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Praveena Suresh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Aman Kumar
- Novelegene Technologies Pvt. Ltd, Genomics division, Hyderabad, Telangana, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
18
|
Suwannachuen N, Leetanasaksakul K, Roytrakul S, Phaonakrop N, Thaisakun S, Roongsattham P, Jantasuriyarat C, Sanevas N, Sirikhachornkit A. Palmelloid Formation and Cell Aggregation Are Essential Mechanisms for High Light Tolerance in a Natural Strain of Chlamydomonas reinhardtii. Int J Mol Sci 2023; 24:ijms24098374. [PMID: 37176080 PMCID: PMC10179368 DOI: 10.3390/ijms24098374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Photosynthetic organisms, such as higher plants and algae, require light to survive. However, an excessive amount of light can be harmful due to the production of reactive oxygen species (ROS), which cause cell damage and, if it is not effectively regulated, cell death. The study of plants' responses to light can aid in the development of methods to improve plants' growth and productivity. Due to the multicellular nature of plants, there may be variations in the results based on plant age and tissue type. Chlamydomonas reinhardtii, a unicellular green alga, has also been used as a model organism to study photosynthesis and photoprotection. Nonetheless, the majority of the research has been conducted with strains that have been consistently utilized in laboratories and originated from the same source. Despite the availability of many field isolates of this species, very few studies have compared the light responses of field isolates. This study examined the responses of two field isolates of Chlamydomonas to high light stress. The light-tolerant strain, CC-4414, managed reactive oxygen species (ROS) slightly better than the sensitive strain, CC-2344, did. The proteomic data of cells subjected to high light revealed cellular modifications of the light-tolerant strain toward membrane proteins. The morphology of cells under light stress revealed that this strain utilized the formation of palmelloid structures and cell aggregation to shield cells from excessive light. As indicated by proteome data, morphological modifications occur simultaneously with the increase in protein degradation and autophagy. By protecting cells from stress, cells are able to continue to upregulate ROS management mechanisms and prevent cell death. This is the first report of palmelloid formation in Chlamydomonas under high light stress.
Collapse
Affiliation(s)
- Nittaya Suwannachuen
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Bangkok 10900, Thailand
| | - Kantinan Leetanasaksakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Paholyothin Road, Klong 1, Klong Luang, Pathum Thani 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Paholyothin Road, Klong 1, Klong Luang, Pathum Thani 12120, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Paholyothin Road, Klong 1, Klong Luang, Pathum Thani 12120, Thailand
| | - Siriwan Thaisakun
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Paholyothin Road, Klong 1, Klong Luang, Pathum Thani 12120, Thailand
| | - Peerapat Roongsattham
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Bangkok 10900, Thailand
| | - Chatchawan Jantasuriyarat
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Bangkok 10900, Thailand
| | - Nuttha Sanevas
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Anchalee Sirikhachornkit
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
19
|
Vineeth T, Krishna G, Pandesha P, Sathee L, Thomas S, James D, Ravikiran K, Taria S, John C, Vinaykumar N, Lokeshkumar B, Jat H, Bose J, Camus D, Rathor S, Krishnamurthy S, Sharma P. Photosynthetic machinery under salinity stress: Trepidations and adaptive mechanisms. PHOTOSYNTHETICA 2023; 61:73-93. [PMID: 39650121 PMCID: PMC11515832 DOI: 10.32615/ps.2023.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/06/2023] [Indexed: 12/11/2024]
Abstract
Chloroplasts and photosynthesis are the physiologically fateful arenas of salinity stress. Morphological and anatomical alterations in the leaf tissue, ultrastructural changes in the chloroplast, compromise in the integrity of the three-layered chloroplast membrane system, and defects in the light and dark reactions during the osmotic, ionic, and oxidative phases of salt stress are conversed in detail to bring the salinity-mediated physiological alterations in the chloroplast on to a single platform. Chloroplasts of salt-tolerant plants have evolved highly regulated salt-responsive pathways. Thylakoid membrane remodeling, ion homeostasis, osmoprotection, upregulation of chloroplast membrane and stromal proteins, chloroplast ROS scavenging, efficient retrograde signalling, and differential gene and metabolite abundance are the key attributes of optimal photosynthesis in tolerant species. This review throws light into the comparative mechanism of chloroplast and photosynthetic response to salinity in sensitive and tolerant plant species.
Collapse
Affiliation(s)
- T.V. Vineeth
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station (RRS), 392 012 Bharuch, Gujarat, India
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
- Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, 680 656 Thrissur, Kerala, India
| | - G.K. Krishna
- Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, 680 656 Thrissur, Kerala, India
| | - P.H. Pandesha
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research Institute (ICAR-IARI), 110 012 New Delhi, India
| | - L. Sathee
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research Institute (ICAR-IARI), 110 012 New Delhi, India
| | - S. Thomas
- Department of Plant Physiology, Kerala Agricultural University-Regional Agricultural Research Station, 686 563 Kumarakom, Kerala, India
| | - D. James
- Forest Genetics and Biotechnology Division, KSCSTE-Kerala Forest Research Institute, Peechi, 680 653 Thrissur, Kerala, India
| | - K.T. Ravikiran
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station (RRS), 226 002 Lucknow, Uttar Pradesh, India
| | - S. Taria
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research Institute (ICAR-IARI), 110 012 New Delhi, India
- Indian Council of Agricultural Research-Central Agroforestry Research Institute (ICAR-CAFRI), 284 003 Jhansi, Uttar Pradesh, India
| | - C. John
- School of Natural Resource Management, Central Agricultural University-College of Post Graduate Studies in Agricultural Sciences (CAU), 793 103 Umiam, Meghalaya, India
| | - N.M. Vinaykumar
- Department of Biotechnology, Kuvempu University, Shankaraghatta, 577 451 Shivamogga, Karnataka, India
| | - B.M. Lokeshkumar
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - H.S. Jat
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - J. Bose
- School of Science, Western Sydney University, Penrith NSW, 275 1, Australia
| | - D. Camus
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station (RRS), 392 012 Bharuch, Gujarat, India
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - S. Rathor
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - S.L. Krishnamurthy
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - P.C. Sharma
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| |
Collapse
|
20
|
Kholssi R, Lougraimzi H, Moreno-Garrido I. Effects of global environmental change on microalgal photosynthesis, growth and their distribution. MARINE ENVIRONMENTAL RESEARCH 2023; 184:105877. [PMID: 36640723 DOI: 10.1016/j.marenvres.2023.105877] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Global climate change (GCC) constitutes a complex challenge posing a serious threat to biodiversity and ecosystems in the next decades. There are several recent studies dealing with the potential effect of increased temperature, decrease of pH or shifts in salinity, as well as cascading events of GCC and their impact on human-environment systems. Microalgae as primary producers are a sensitive compartment of the marine ecosystems to all those changes. However, the potential consequences of these changes for marine microalgae have received relatively little attention and they are still not well understood. Thus, there is an urgent need to explore and understand the effects generated by multiple climatic changes on marine microalgae growth and biodiversity. Therefore, this review aimed to compare and contrast mechanisms that marine microalgae exhibit to directly respond to harsh conditions associated with GCC and the potential consequences of those changes in marine microalgal populations. Literature shows that microalgae responses to environmental stressors such as temperature were affected differently. A stress caused by salinity might slow down cell division, reduces size, ceases motility, and triggers palmelloid formation in microalgae community, but some of these changes are strongly species-specific. UV irradiance can potentially lead to an oxidative stress in microalgae, promoting the production of reactive oxygen species (ROS) or induce direct physical damage on microalgae, then inhibiting the growth of microalgae. Moreover, pH could impact many groups of microalgae being more tolerant of certain pH shifts, while others were sensitive to changes of just small units (such as coccolithophorids) and subsequently affect the species at a higher trophic level, but also total vertical carbon transport in oceans. Overall, this review highlights the importance of examining effects of multiple stressors, considering multiple responses to understand the complexity behind stressor interactions.
Collapse
Affiliation(s)
- Rajaa Kholssi
- Composting Research Group, Faculty of Sciences, University of Burgos, Burgos, Spain; Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Hanane Lougraimzi
- Laboratory of Plant, Animal and Agro-Industry Productions, Faculty of Sciences, Ibn Tofail University, BP: 242, 14000, Kenitra, Morocco
| | - Ignacio Moreno-Garrido
- Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
21
|
Devadasu E, Kanna SD, Neelam S, Yadav RM, Nama S, Akhtar P, Polgár TF, Ughy B, Garab G, Lambrev PH, Subramanyam R. Long- and short-term acclimation of the photosynthetic apparatus to salinity in Chlamydomonas reinhardtii. The role of Stt7 protein kinase. FRONTIERS IN PLANT SCIENCE 2023; 14:1051711. [PMID: 37089643 PMCID: PMC10113551 DOI: 10.3389/fpls.2023.1051711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/03/2023] [Indexed: 05/03/2023]
Abstract
Salt stress triggers an Stt7-mediated LHCII-phosphorylation signaling mechanism similar to light-induced state transitions. However, phosphorylated LHCII, after detaching from PSII, does not attach to PSI but self-aggregates instead. Salt is a major stress factor in the growth of algae and plants. Here, our study mainly focuses on the organization of the photosynthetic apparatus to the long-term responses of Chlamydomonas reinhardtii to elevated NaCl concentrations. We analyzed the physiological effects of salt treatment at a cellular, membrane, and protein level by microscopy, protein profile analyses, transcripts, circular dichroism spectroscopy, chlorophyll fluorescence transients, and steady-state and time-resolved fluorescence spectroscopy. We have ascertained that cells that were grown in high-salinity medium form palmelloids sphere-shaped colonies, where daughter cells with curtailed flagella are enclosed within the mother cell walls. Palmelloid formation depends on the presence of a cell wall, as it was not observed in a cell-wall-less mutant CC-503. Using the stt7 mutant cells, we show Stt7 kinase-dependent phosphorylation of light-harvesting complex II (LHCII) in both short- and long-term treatments of various NaCl concentrations-demonstrating NaCl-induced state transitions that are similar to light-induced state transitions. The grana thylakoids were less appressed (with higher repeat distances), and cells grown in 150 mM NaCl showed disordered structures that formed diffuse boundaries with the flanking stroma lamellae. PSII core proteins were more prone to damage than PSI. At high salt concentrations (100-150 mM), LHCII aggregates accumulated in the thylakoid membranes. Low-temperature and time-resolved fluorescence spectroscopy indicated that the stt7 mutant was more sensitive to salt stress, suggesting that LHCII phosphorylation has a role in the acclimation and protection of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Elsinraju Devadasu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sai Divya Kanna
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Satyabala Neelam
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Srilatha Nama
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Parveen Akhtar
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Tamás F. Polgár
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Bettina Ughy
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Petar H. Lambrev
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
- *Correspondence: Rajagopal Subramanyam,
| |
Collapse
|
22
|
Singh J, Kaushik S, Maharana C, Jhingan GD, Dhar DW. Elevated inorganic carbon and salinity enhances photosynthesis and ATP synthesis in picoalga Picocystis salinarum as revealed by label free quantitative proteomics. Front Microbiol 2023; 14:1059199. [PMID: 36937286 PMCID: PMC10020504 DOI: 10.3389/fmicb.2023.1059199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/27/2023] [Indexed: 03/06/2023] Open
Abstract
Saline soda lakes are of immense ecological value as they niche some of the most exclusive haloalkaliphilic communities dominated by bacterial and archaeal domains, with few eukaryotic algal representatives. A handful reports describe Picocystis as a key primary producer with great production rates in extremely saline alkaline habitats. An extremely haloalkaliphilic picoalgal strain, Picocystis salinarum SLJS6 isolated from hypersaline soda lake Sambhar, Rajasthan, India, grew robustly in an enriched soda lake medium containing mainly Na2CO3, 50 g/l; NaHCO3, 50 g/l, NaCl, 50 g/l (salinity ≈150‰) at pH 10. To elucidate the molecular basis of such adaptation to high inorganic carbon and NaCl concentrations, a high-throughput label-free quantitation based quantitative proteomics approach was applied. Out of the total 383 proteins identified in treated samples, 225 were differentially abundant proteins (DAPs), of which 150 were statistically significant (p < 0.05) including 70 upregulated and 64 downregulated proteins after 3 days of growth in highly saline-alkaline medium. Most DAPs were involved in photosynthesis, oxidative phosphorylation, glucose metabolism and ribosomal structural components envisaging that photosynthesis and ATP synthesis were central to the salinity-alkalinity response. Key components of photosynthetic machinery like photosystem reaction centres, adenosine triphosphate (ATP) synthase ATP, Rubisco, Fructose-1,6-bisphosphatase, Fructose-bisphosphate aldolase were highly upregulated. Enzymes peptidylprolyl isomerases (PPIase), important for correct protein folding showed remarkable marked-up regulation along with other chaperon proteins indicating their role in osmotic adaptation. Enhanced photosynthetic activity exhibited by P. salinarum in highly saline-alkaline condition is noteworthy as photosynthesis is suppressed under hyperosmotic conditions in most photosynthetic organisms. The study provided the first insights into the proteome of extremophilic alga P. salinarum exhibiting extraordinary osmotic adaptation and proliferation in polyextreme conditions prevailing in saline sodic ecosystems, potentially unraveling the basis of resilience in this not so known organism and paves the way for a promising future candidate for biotechnological applications and model organism for deciphering the molecular mechanisms of osmotic adaptation. The mass spectrometry proteomics data is available at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD037170.
Collapse
Affiliation(s)
- Jyoti Singh
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
- Department of Earth Sciences, Pondicherry University, Puducherry, India
- *Correspondence: Jyoti Singh,
| | - Shubham Kaushik
- Vproteomics, Valerian Chem Private Limited, New Delhi, India
| | - Chinmaya Maharana
- Department of Earth Sciences, Pondicherry University, Puducherry, India
- Water Technology Centre, Indian Agricultural Research Institute, New Delhi, India
| | | | - Dolly Wattal Dhar
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
- School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
23
|
Oliveira GC, Broetto SG, Pereira OJ, Penha JDS, Lopes NGM, Silva DM. Effects of different levels of metal exposure and precipitation regimes on chlorophyll a fluorescence parameters in a coastal Brazilian restinga species. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
He X, Wan Z, Jin N, Jin L, Zhang G, Lyu J, Liu Z, Luo S, Yu J. Enhancement of cucumber resistance under salt stress by 2, 4-epibrassinolide lactones. FRONTIERS IN PLANT SCIENCE 2022; 13:1023178. [PMID: 36438149 PMCID: PMC9682097 DOI: 10.3389/fpls.2022.1023178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the effects of exogenous 2, 4-epibrassinolide lactone (EBR) on the growth, photosynthetic pigments, antioxidant defense system, ion homeostasis, MAPK cascade and key genes of SOS signaling pathway of cucumber seedlings under salt stress using cucumber "Xinchun 4" as the test material. The experiment was set up with four treatments: foliar spraying of distilled water (CK), 50 mmol.L-1 NaCl (NaCl), 50 mmol.L-1 NaCl+foliar spray of 0.02 μmol.L-1 EBR (EBR+NaCl), and 50 mmol.L-1 NaCl+foliar spray of 24 μmol.L-1 Brassinazole (BRZ) (BRZ+NaCl). The results showed that EBR+NaCl treatment significantly increased plant height, above-ground fresh weight, total root length, total root surface area, average rhizome and photosynthetic pigment content compared to NaCl treatment. Meanwhile, compared with NaCl treatment, EBR+NaCl treatment significantly increased superoxide dismutase, catalase and ascorbate peroxidase (SOD, CAT and APX) activities, significantly promoted the accumulation of osmoregulatory substances (soluble sugars and proline), and thus effectively reduced malondialdehyde (MDA) content and relative electrical conductivity of cucumber leaves. Exogenous spraying of EBR also significantly reduced Na+/K+ under NaCl stress, effectively alleviating the toxic effects of Na+ ions. In addition, exogenous EBR induced the up-regulated expression of CsMAPK3, CsMAPK4, CsMAPK6 and CsMAPK9 genes in the MAPK cascade signaling pathway and CsSOS1, CsSOS2 and CsSOS3 genes in the SOS signaling pathway to enhance salt tolerance in cucumber under NaCl stress. Therefore, exogenous spraying EBR may effectively reduce the damage of salt stress on cucumber seedlings by improving antioxidant capacity, maintaining ion homeostasis and activating salt-tolerant related signaling pathways, which might promote the growth of cucumber seedlings and the establishment of root system morphology. This study provides a reference for EBR to improve the salt tolerance of cucumber.
Collapse
Affiliation(s)
- Xianxia He
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zilong Wan
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Li Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
25
|
Szyszka-Mroz B, Ivanov AG, Trick CG, Hüner NPA. Palmelloid formation in the Antarctic psychrophile, Chlamydomonas priscuii, is photoprotective. FRONTIERS IN PLANT SCIENCE 2022; 13:911035. [PMID: 36119589 PMCID: PMC9470844 DOI: 10.3389/fpls.2022.911035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/01/2022] [Indexed: 05/27/2023]
Abstract
Cultures of the obligate, Antarctic psychrophile, Chlamydomonas priscuii grown at permissive low temperature (8°C) are composed of flagellated, single cells, as well as non-motile, multicellular palmelloids. The relative proportions of the two cell types are temperature dependent. However, the temperature dependence for palmelloid formation is not restricted to psychrophilic C. priscuii but appears to be a general response of mesophilic Chlamydomonas species (C. reinhardtii and C. raudensis) to non-permissive growth temperatures. To examine potential differences in photosynthetic performance between single cells versus palmelloids of the psychrophile, a cell filtration technique was developed to separate single cells from palmelloids of C. priscuii grown at 8°C. Flow cytometry was used to estimate the diameter of isolated single cells (≤5 μm) versus isolated palmelloids of varying size (≥8 μm). Compared to single cells, palmelloids of C. priscuii showed a decrease in the abundance of light-harvesting complex II (LHCII) proteins with a 2-fold higher Chl a/b ratio. A decrease in both lutein and β-carotene in palmelloids resulted in carotenoid pools which were 27% lower in palmelloids compared to single cells of the psychrophile. Chlorophyll fluorescence analyses of the isolated fractions revealed that maximum photochemical efficiency of PSII (Fv/Fm) was comparable for both single cells and palmelloids of C. priscuii. However, isolated palmelloids exhibited lower excitation pressure, measured as 1 - qL, but higher yield of PSII (ΦPSII) and 50% higher rates of electron transport (ETR) than single cells exposed to high light at 8°C. This decreased sensitivity to high light in isolated palmelloids compared to single cells was associated with greater non-regulated dissipation of excess absorbed energy (ΦNO) with minimal differences in ΦNPQ in C. priscuii in response to increasing irradiance at low temperature. The ratio ΦNO/ΦNPQ observed for isolated palmelloids of C. priscuii developed at 8°C (1.414 ± 0.036) was 1.38-fold higher than ΦNO/ΦNPQ of isolated single cells (1.021 ± 0.018) exposed to low temperature combined with high light (1,000 μmol m-2 s-1). The differences in the energy quenching capacities between palmelloids and single cells are discussed in terms of enhanced photoprotection of C. priscuii palmelloids against low-temperature photoinhibition.
Collapse
Affiliation(s)
- Beth Szyszka-Mroz
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, Canada
| | - Alexander G. Ivanov
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, Canada
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Charles G. Trick
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Norman P. A. Hüner
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, Canada
| |
Collapse
|
26
|
Application of Indigenous Rhizospheric Microorganisms and Local Compost as Enhancers of Lettuce Growth, Development, and Salt Stress Tolerance. Microorganisms 2022; 10:microorganisms10081625. [PMID: 36014043 PMCID: PMC9416567 DOI: 10.3390/microorganisms10081625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to mitigate salt stress effects on lettuce by using native biostimulants (arbuscular mycorrhizal fungi (M, consortium), plant growth-promoting rhizobacteria (R, Z2, and Z4 strains), and compost (C)) applied alone or in combination under salinity stress (0, 50, and 100 mM NaCl). Physiological, biochemical, nutritional, mycorrhizal, growth, and soil characteristics were evaluated. Results revealed that growth and physiological traits were negatively affected by salinity. However, mycorrhizal colonization was enhanced under 100 mM NaCl after compost application. The applied biostimulants, particularly M and/or R improved the salinity tolerance of lettuce by increasing the dry biomass by 119% and 113% under 100 mM NaCl, respectively, for M and MR treatments. Similarly, MR enhanced stomatal conductance (47%), water content (260%), total chlorophyll (130%), phosphorus content (363%), and reduced the malondialdehyde (54%) and hydrogen peroxide (78%) compared to the control. Moreover, peroxidase activity (76%) and sugar content (36%) were enhanced by CM treatment, while protein (111%) and proline (104%) contents were significantly boosted by R treatment under 100 mM NaCl. Furthermore, glomalin content was enhanced by MR treatment under severe salinity. In conclusion, the applied biostimulants alone or in combination might help lettuce to tolerate salt stress and enhance its production in degraded areas.
Collapse
|
27
|
Huang B, Cui J, Chen X, Huang Y, Xu C, Xie E. Mechanism of the allelopathic effect of macroalgae Gracilaria bailiniae on Nitzschia closterium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113767. [PMID: 35714486 DOI: 10.1016/j.ecoenv.2022.113767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of the seaweed industry in China, the scale and production of its commercial seaweed are ranked among the most significant worldwide. Consequently, the control of algal blooms, especially fouling diatoms, during macroalgae industrialisation is an important issue. Many diatom bloom studies have focused on physical and chemical controls, with limited economic and eco-friendly biological controls reported. In our study, Gracilaria bailiniae fresh thalli and aqueous extract profoundly suppressed Nitzschia closterium growth (50% inhibition concentration of the fourth day (IC50-4 day) was 0.667 × 10-3 g·mL-1 and 3.889 × 10-3 g·mL-1, respectively). The cellular morphology changes of N. closterium exposed to the G. bailiniae aqueous extract were severe atrophies and plasmolysis and dissolution of endocellular structures. To explore more potential allelochemicals to control N. closterium, the intracellular compounds of G. bailiniae were detected and screened. Three organic acids (citrate, hydroxyethanesulfonic acid (HA) and taurine) had allelopathic potential against N. closterium. Our results showed that citrate and HA markedly suppressed N. closterium (IC50-4 day: 1.035 mM and 1.151 mM, respectively); however, taurine poorly suppressed N. closterium (IC50-4 day: 2.500 mM). Therefore, HA is one of the main allelopathic compounds in G. bailiniae. Further, the allelopathic mechanism of HA against the N. closterium photosynthetic system broke its photosynthetic apparatus (oxygen-evolving complex, reaction centres, the effective antenna size and the donor side of photosystem II) and hindered electron transport. The experimental results provide a new and eco-friendly strategy to control diatom blooms.
Collapse
Affiliation(s)
- Bowen Huang
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianjun Cui
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Xinyi Chen
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongjian Huang
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Cong Xu
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Enyi Xie
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
28
|
Melero-Jiménez IJ, Bañares-España E, García-Sánchez MJ, Flores-Moya A. Changes in the growth rate of Chlamydomonas reinhardtii under long-term selection by temperature and salinity: Acclimation vs. evolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153467. [PMID: 35093356 DOI: 10.1016/j.scitotenv.2022.153467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
We investigated the roles of acclimation and different components involved in evolution (adaptation, chance and history) on the changes in the growth rate of the model freshwater microalga Chlamydomonas reinhardtii P. A. Dang. exposed to selective temperature and salinity. Three C. reinhardtii strains previously grown during one year in freshwater medium and 20 °C were exposed to 5 °C temperature increase and a salinity of 5 g L-1 NaCl. Cultures under each selective scenario and in combination (increase of salinity and temperature), were propagated until growth rate achieved an invariant mean value for 6 months (100-350 generations, varying as a function of scenario and strain). The changes of the growth rate under increased temperature were due to both adaptation and acclimation, as well as history. However, acclimation was the only mechanism detected under salinity increase as well as in the selective scenario of both temperature and salinity, suggesting that genetic variability would not allow survival at salinity higher than that to which experimental populations were exposed. Therefore, it could be hypothesized that under a global change scenario an increase in salinity would be a greater challenge than warming for some freshwater phytoplankton.
Collapse
Affiliation(s)
- Ignacio J Melero-Jiménez
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain.
| | - Elena Bañares-España
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - María J García-Sánchez
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Antonio Flores-Moya
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| |
Collapse
|
29
|
Park J, Lee H, Dinh TB, Choi S, De Saeger J, Depuydt S, Brown MT, Han T. Commercial Potential of the Cyanobacterium Arthrospira maxima: Physiological and Biochemical Traits and the Purification of Phycocyanin. BIOLOGY 2022; 11:biology11050628. [PMID: 35625356 PMCID: PMC9138259 DOI: 10.3390/biology11050628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Arthrospira maxima is an unbranched, filamentous cyanobacterium rich in important cellular products such as vitamins, minerals, iron, essential amino acids, essential fatty acids, and protein, which has made it one of the most important commercial photoautotrophs. To optimize the growth conditions for the production of target compounds and to ensure profitability in commercial applications, the effects of pH and temperature were investigated. A. maxima has been shown to be tolerant to a range of pH conditions and to exhibit hyper-accumulation of phycoerythrin and allophycocyanin at low temperatures. These traits may offer significant advantages for future exploitation, especially in outdoor cultivation with fluctuating pH and temperature. Our study also demonstrated a new method for the purification of phycocyanin from A. maxima by using by ultrafiltration, ion-exchange chromatography, and gel filtration, producing PC at 1.0 mg·mL−1 with 97.6% purity. Abstract Arthrospira maxima is a natural source of fine chemicals for multiple biotechnological applications. We determined the optimal environmental conditions for A. maxima by measuring its relative growth rate (RGR), pigment yield, and photosynthetic performance under different pH and temperature conditions. RGR was highest at pH 7–9 and 30 °C. Chlorophyll a, phycocyanin, maximal quantum yield (Fv/Fm), relative maximal electron transport rate (rETRmax), and effective quantum yield (ΦPSII) were highest at pH 7–8 and 25 °C. Interestingly, phycoerythrin and allophycocyanin content was highest at 15 °C, which may be the lowest optimum temperature reported for phycobiliprotein production in the Arthrospira species. A threestep purification of phycocyanin (PC) by ultrafiltration, ion-exchange chromatography, and gel filtration resulted in a 97.6% purity of PC.
Collapse
Affiliation(s)
- Jihae Park
- Development & Planning Office, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea; (J.P.); (H.L.)
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea;
| | - Hojun Lee
- Development & Planning Office, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea; (J.P.); (H.L.)
| | - Thai Binh Dinh
- Department of Cosmetic Science and Management, Incheon National University, 119, Academy-ro, Incheon 22012, Korea;
| | - Soyeon Choi
- Department of Marine Science, Incheon National University, 119, Academy-ro, Incheon 22012, Korea;
| | - Jonas De Saeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium;
| | - Stephen Depuydt
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea;
| | - Murray T. Brown
- School of Marine Science & Engineering, Plymouth University, Plymouth PL4 8AA, Devon, UK;
| | - Taejun Han
- Development & Planning Office, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea; (J.P.); (H.L.)
- Department of Marine Science, Incheon National University, 119, Academy-ro, Incheon 22012, Korea;
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
30
|
Dhokne K, Pandey J, Yadav RM, Ramachandran P, Rath JR, Subramanyam R. Change in the photochemical and structural organization of thylakoids from pea (Pisum sativum) under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 177:46-60. [PMID: 35255419 DOI: 10.1016/j.plaphy.2022.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Salt can induce adverse effects, primarily on the photosynthetic process, ultimately influencing plant productivity. Still, the impact of salt on the photosynthesis process in terms of supercomplexes organization of thylakoid structure and function is not understood in Pea (Pisum sativum). To understand the structure and function in the leaves and thylakoids under salt (NaCl) treatment, we used various biophysical and biochemical techniques like infrared gas analyzer, chlorophyll a fluorescence, circular dichroism, electron microscopy, blue native gels, and western blots. The net photosynthetic rate, transpiration rate, and stomatal conductance were reduced significantly, whereas the water use efficiency was enhanced remarkably under high salt conditions (200 mM NaCl). The photochemical efficiency of both photosystem (PS) I and II was reduced in high salt by inhibiting their donor and acceptor sides. Interestingly the non-photochemical quenching (NPQ) is reduced in high salt; however, the non-regulated energy dissipation (NO) of PSII increased, leading to inactivation of PSII. The obtained results exhibit inhibition of NAD(P)H dehydrogenase (NDH) mediated pathway-dependent cyclic electron transport under salinity caused a decrease in proton motive force of ΔpH and Δψ. Further, the electron micrographs show the disorganization of grana thylakoids under salt stress. Furthermore, the macro-organization and supercomplexes of thylakoids were significantly affected by high salt. Specifically, the mega complexes, PSII-LHCII, PSI-LHCI, and NDH complexes were notably reduced, ultimately altering the electron transport. The reaction center proteins of oxygen-evolving complexes, D1 and D2 proteins were affected to high salt indicating changes in photochemical activities.
Collapse
Affiliation(s)
- Kunal Dhokne
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India; Department of Botany, Shri Vitthal Rukmini College, Sawana, Yavatmal, 445001, India
| | - Jayendra Pandey
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Pavithra Ramachandran
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Jyoti Ranjan Rath
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
31
|
Zhang LY, Xing ZT, Chen LQ, Zhang XJ, Fan SJ. Comprehensive Time-Course Transcriptome and Co-expression Network Analyses Identify Salt Stress Responding Mechanisms in Chlamydomonas reinhardtii Strain GY-D55. FRONTIERS IN PLANT SCIENCE 2022; 13:828321. [PMID: 35283918 PMCID: PMC8908243 DOI: 10.3389/fpls.2022.828321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
It is highly necessary to understand the molecular mechanism underlying the salt stress response in green algae, which may contribute to finding the evolutionary cues of abiotic stress response in plants. Here, we reported a comprehensive temporal investigation of transcriptomes using data at eight different time points, from an early stage (2 h) to a late stage (up to 96 h) in Chlamydomonas reinhardtii GY-D55 cells. The principal component analysis (PCA) of transcriptome profiles showed that the samples of the early and late stages were well separated. A total of 12,445 genes were detected as differentially expressed genes. There were 1,861/2,270 common upregulated/downregulated genes for each time point compared with control samples. Samples treated with salt for 2, 8, and 24 h had a relatively large number of characteristic upregulated/downregulated genes. The functional enrichment analysis highlighted the timing of candidate regulatory mechanisms for salt stress responses in GY-D55 cells. Short time exposure to salt stress impaired oxidation-reduction, protein synthesis and modification, and photosynthesis. The algal cells promoted transcriptional regulation and protein folding to deal with protein synthesis/modification impairments and rapidly accumulated glycerol in the early stage (2-4 h) to cope with osmotic stress. At 12 and 24 h, GY-D55 cells showed increased expressions of signaling and photosynthetic genes to deal with the damage of photosynthesis. The co-expression module blue was predicted to regulate endoplasmic reticulum (ER) stress at early time points. In addition, we identified a total of 113 transcription factors (TFs) and predicted the potential roles of Alfin, C2C2, and the MYB family TFs in algal salt stress response.
Collapse
|
32
|
Applicability Evaluation of Soil Algae Pipe Assay in Silver Nanoparticle-Contaminated Soils. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to pervasive and resilient soil contaminants, heterogeneously contaminated soil poses unpredictable potential threats to ecosystems. In this study, the extension of a previously developed soil algae pipe assay for evaluating heterogeneously contaminated soil under an open system is described. The assay can be used in soil that is heterogeneously contaminated with silver nanoparticles in combination with the examination of morphological changes (e.g., in vivo chlorophyll a, cell granularity, cell size, and mucilaginous sheath) and lipid contents. In addition, we attempted to extend the exposure duration under an open system. We evaluated the applicability of this soil algae pipe assay using green alga Chlamydomonas reinhardtii exposed to heterogeneous and homogeneous polyvinylpyrrolidone capping silver nanoparticles in contaminated soils. The results demonstrated that this method is an applicable bioassay that can be employed to better evaluate soil algal toxicity under an open system, with significant changes in the measured endpoints. The developed assay showed decent predictivity, which can be a useful tool when evaluating heterogeneous soil algae contamination.
Collapse
|
33
|
A Comprehensive Evaluation of Salt Tolerance in Tomato (Var. Ailsa Craig): Responses of Physiological and Transcriptional Changes in RBOH's and ABA Biosynthesis and Signalling Genes. Int J Mol Sci 2022; 23:ijms23031603. [PMID: 35163525 PMCID: PMC8836042 DOI: 10.3390/ijms23031603] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/24/2023] Open
Abstract
Salinity is a ubiquitous stressor, depleting osmotic potential and affecting the tomato seedlings’ development and productivity. Considering this critical concern, we explored the salinity response in tomato seedlings by evaluating them under progressive salt stress duration (0, 3, 6, and 12 days). Intriguingly, besides the adverse effect of salt stress on tomato growth the findings exhibited a significant role of tomato antioxidative system, RBOH genes, ABA biosynthesis, and signaling transcription factor for establishing tolerance to salinity stress. For instance, the activities of enzymatic and non-enzymatic antioxidants continued to incline positively with the increased levels of reactive oxygen species (O2•−, H2O2), MDA, and cellular damage, suggesting the scavenging capacity of tomato seedlings against salt stress. Notably, the RBOH transcription factors activated the hydrogen peroxide-mediated signalling pathway that induced the detoxification mechanisms in tomato seedlings. Consequently, the increased gene expression of antioxidant enzymes and the corresponding ratio of non-enzymatic antioxidants AsA-GSH suggested the modulation of antioxidants to survive the salt-induced oxidative stress. In addition, the endogenous ABA level was enhanced under salinity stress, indicating higher ABA biosynthesis and signalling gene expression. Subsequently, the upregulated transcript abundance of ABA biosynthesis and signalling-related genes suggested the ABA-mediated capacity of tomato seedlings to regulate homeostasis under salt stress. The current findings have revealed fascinating responses of the tomato to survive the salt stress periods, in order to improve the abiotic stress tolerance in tomato.
Collapse
|
34
|
Ng LM, Komaki S, Takahashi H, Yamano T, Fukuzawa H, Hashimoto T. Hyperosmotic stress-induced microtubule disassembly in Chlamydomonas reinhardtii. BMC PLANT BIOLOGY 2022; 22:46. [PMID: 35065609 PMCID: PMC8783414 DOI: 10.1186/s12870-022-03439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Land plants respond to drought and salinity by employing multitude of sophisticated mechanisms with physiological and developmental consequences. Abscisic acid-mediated signaling pathways have evolved as land plant ancestors explored their habitats toward terrestrial dry area, and now play major roles in hyperosmotic stress responses in flowering plants. Green algae living in fresh water habitat do not possess abscisic acid signaling pathways but need to cope with increasing salt concentrations or high osmolarity when challenged with adverse aquatic environment. Hyperosmotic stress responses in green algae are largely unexplored. RESULTS In this study, we characterized hyperosmotic stress-induced cytoskeletal responses in Chlamydomonas reinhardtii, a fresh water green algae. The Chlamydomonas PROPYZAMIDE-HYPERSENSITEVE 1 (PHS1) tubulin kinase quickly and transiently phosphorylated a large proportion of cellular α-tubulin at Thr349 in G1 phase and during mitosis, which resulted in transient disassembly of microtubules, when challenged with > 0.2 M sorbitol or > 0.1 M NaCl. By using phs1 loss-of-function algal mutant cells, we demonstrated that transient microtubule destabilization by sorbitol did not affect cell growth in G1 phase but delayed mitotic cell cycle progression. Genome sequence analyses indicate that PHS1 genes evolved in ancestors of the Chlorophyta. Interestingly, PHS1 genes are present in all sequenced genomes of freshwater Chlorophyta green algae (including Chlamydomonas) but are absent in some marine algae of this phylum. CONCLUSION PHS1-mediated tubulin phosphorylation was found to be partly responsible for the efficient stress-responsive mitotic delay in Chlamydomonas cells. Ancient hyperosmotic stress-triggered cytoskeletal remodeling responses thus emerged when the PHS1 tubulin kinase gene evolved in freshwater green algae.
Collapse
Affiliation(s)
- Lee Mei Ng
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Shinichiro Komaki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Hideyuki Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Takashi Hashimoto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
35
|
Kanna SD, Domonkos I, Kóbori TO, Dergez Á, Böde K, Nagyapáti S, Zsiros O, Ünnep R, Nagy G, Garab G, Szilák L, Solymosi K, Kovács L, Ughy B. Salt Stress Induces Paramylon Accumulation and Fine-Tuning of the Macro-Organization of Thylakoid Membranes in Euglena gracilis Cells. FRONTIERS IN PLANT SCIENCE 2021; 12:725699. [PMID: 34868111 PMCID: PMC8636990 DOI: 10.3389/fpls.2021.725699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/28/2021] [Indexed: 05/13/2023]
Abstract
The effects of salt stress condition on the growth, morphology, photosynthetic performance, and paramylon content were examined in the mixotrophic, unicellular, flagellate Euglena gracilis. We found that salt stress negatively influenced cell growth, accompanied by a decrease in chlorophyll (Chl) content. Circular dichroism (CD) spectroscopy revealed the changes in the macro-organization of pigment-protein complexes due to salt treatment, while the small-angle neutron scattering (SANS) investigations suggested a reduction in the thylakoid stacking, an effect confirmed by the transmission electron microscopy (TEM). At the same time, the analysis of the thylakoid membrane complexes using native-polyacrylamide gel electrophoresis (PAGE) revealed no significant change in the composition of supercomplexes of the photosynthetic apparatus. Salt stress did not substantially affect the photosynthetic activity, as reflected by the fact that Chl fluorescence yield, electron transport rate (ETR), and energy transfer between the photosystems did not change considerably in the salt-grown cells. We have observed notable increases in the carotenoid-to-Chl ratio and the accumulation of paramylon in the salt-treated cells. We propose that the accumulation of storage polysaccharides and changes in the pigment composition and thylakoid membrane organization help the adaptation of E. gracilis cells to salt stress and contribute to the maintenance of cellular processes under stress conditions.
Collapse
Affiliation(s)
- Sai Divya Kanna
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Ildikó Domonkos
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Tímea Ottília Kóbori
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
- Division for Biotechnology, Bay Zoltán Nonprofit Ltd. for Applied Research, Szeged, Hungary
| | - Ágnes Dergez
- Division for Biotechnology, Bay Zoltán Nonprofit Ltd. for Applied Research, Szeged, Hungary
| | - Kinga Böde
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Sarolta Nagyapáti
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Ottó Zsiros
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Renáta Ünnep
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Eötvös Loránd Research Network, Budapest, Hungary
| | - Gergely Nagy
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Eötvös Loránd Research Network, Budapest, Hungary
- European Spallation Source ESS ERIC, Lund, Sweden
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen PSI, Villigen, Switzerland
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Gyözö Garab
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Faculty of Science, University of Ostrava, Ostrava, Czechia
| | | | - Katalin Solymosi
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Bettina Ughy
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| |
Collapse
|
36
|
Hounslow E, Evans CA, Pandhal J, Sydney T, Couto N, Pham TK, Gilmour DJ, Wright PC. Quantitative proteomic comparison of salt stress in Chlamydomonas reinhardtii and the snow alga Chlamydomonas nivalis reveals mechanisms for salt-triggered fatty acid accumulation via reallocation of carbon resources. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:121. [PMID: 34022944 PMCID: PMC8141184 DOI: 10.1186/s13068-021-01970-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/13/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Chlamydomonas reinhardtii is a model green alga strain for molecular studies; its fully sequenced genome has enabled omic-based analyses that have been applied to better understand its metabolic responses to stress. Here, we characterised physiological and proteomic changes between a low-starch C. reinhardtii strain and the snow alga Chlamydomonas nivalis, to reveal insights into their contrasting responses to salinity stress. RESULTS Each strain was grown in conditions tailored to their growth requirements to encourage maximal fatty acid (as a proxy measure of lipid) production, with internal controls to allow comparison points. In 0.2 M NaCl, C. nivalis accumulates carbohydrates up to 10.4% DCW at 80 h, and fatty acids up to 52.0% dry cell weight (DCW) over 12 days, however, C. reinhardtii does not show fatty acid accumulation over time, and shows limited carbohydrate accumulation up to 5.5% DCW. Analysis of the C. nivalis fatty acid profiles showed that salt stress improved the biofuel qualities over time. Photosynthesis and respiration rates are reduced in C. reinhardtii relative to C. nivalis in response to 0.2 M NaCl. De novo sequencing and homology matching was used in conjunction with iTRAQ-based quantitative analysis to identify and relatively quantify proteomic alterations in cells exposed to salt stress. There were abundance differences in proteins associated with stress, photosynthesis, carbohydrate and lipid metabolism proteins. In terms of lipid synthesis, salt stress induced an increase in dihydrolipoyl dehydrogenase in C. nivalis (1.1-fold change), whilst levels in C. reinhardtii remained unaffected; this enzyme is involved in acetyl CoA production and has been linked to TAG accumulation in microalgae. In salt-stressed C. nivalis there were decreases in the abundance of UDP-sulfoquinovose (- 1.77-fold change), which is involved in sulfoquinovosyl diacylglycerol metabolism, and in citrate synthase (- 2.7-fold change), also involved in the TCA cycle. Decreases in these enzymes have been shown to lead to increased TAG production as fatty acid biosynthesis is favoured. Data are available via ProteomeXchange with identifier PXD018148. CONCLUSIONS These differences in protein abundance have given greater understanding of the mechanism by which salt stress promotes fatty acid accumulation in the un-sequenced microalga C. nivalis as it switches to a non-growth state, whereas C. reinhardtii does not have this response.
Collapse
Affiliation(s)
- E Hounslow
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - C A Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| | - J Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - T Sydney
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - N Couto
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - T K Pham
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - D James Gilmour
- Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - P C Wright
- University of Southampton, University Road, Southampton, SO17 1BJ, UK
| |
Collapse
|
37
|
|
38
|
Ves-Urai P, Krobthong S, Thongsuk K, Roytrakul S, Yokthongwattana C. Comparative secretome analysis between salinity-tolerant and control Chlamydomonas reinhardtii strains. PLANTA 2021; 253:68. [PMID: 33594587 DOI: 10.1007/s00425-021-03583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Secretome analysis of a salt-tolerant and control Chlamydomonas reinhardtii revealed 514 differentially expressed proteins. Membrane transport and trafficking, signal transduction and channel proteins were up-regulated in the ST secretome. Salinity is a major abiotic stress that limits crop production worldwide. Multiple adverse effects have been reported in many living organisms exposed to high-saline concentrations. Chlamydomonas reinhardtii is known for secreting proteins in response to many environmental stresses. A salinity-tolerant (ST) strain of Chlamydomonas has been developed, whose cells were able to grow at 300 mM NaCl. The current study analyzed the secretomes of ST grown in TAP medium supplemented with 300 mM NaCl and the laboratory strain CC-503 grown in TAP medium without NaCl supplement. In total, 514 secreted proteins were identified of which 203 were up-regulated and 110 were down-regulated. Bioinformatic analysis predicted 168 proteins to be secreted or in the conventional secretory pathway. Out of these, 70 were up-regulated, while 51 proteins were down-regulated. Proteins involved in membrane transport and trafficking, signal transduction and channel proteins were altered in their expression in the ST secretome, suggesting the response of saline stress acts toward not only the intracellular pool of proteins but also the extracellular proteins. This also suggested that the secreted proteins might have roles in the extracellular space. Signal peptide (SP) prediction revealed that almost 40% of the predicted secreted proteins contained a signal peptide; however, a high proportion of proteins lacked an SP, suggesting that these proteins might be secreted through an unconventional protein secretion pathway.
Collapse
Affiliation(s)
- Parthompong Ves-Urai
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Sucheewin Krobthong
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Rd., Pathumthani, 12120, Thailand
| | - Karnpitcha Thongsuk
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Bangkok, 10900, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Rd., Pathumthani, 12120, Thailand
| | - Chotika Yokthongwattana
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Bangkok, 10900, Thailand.
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
39
|
Chen Q, Sun D, Fang T, Zhu B, Liu W, He X, Sun X, Duan S. In vitro allelopathic effects of compounds from Cerbera manghas L. on three Dinophyta species responsible for harmful common red tides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142253. [PMID: 33254874 DOI: 10.1016/j.scitotenv.2020.142253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/29/2020] [Accepted: 09/05/2020] [Indexed: 05/18/2023]
Abstract
Allelopathy is regarded as an economic and eco-friendly approach for the control of harmful algal blooms (HABs) because allelochemicals degrade easily and cause less pollution than traditional algicides. We first surveyed the inhibitory effect of the traditional medicinal plant Cerbera manghas L. on the notorious dinoflagellates Alexandrium tamarense, Scrippsiella trochoidea, and Karenia mikimotoi. Then, we identified and quantified the potential algicidal compounds by UPLC-MS and determined their activity. The aqueous extract inhibited algae with EC50-120 h at 0.986, 1.567 and 1.827 g L-1 for A. tamarense, S. trochoidea, and K. mikimotoi, respectively. Three potential allelochemicals were quantified in the stock solution: quinic acid (QA) (28.81 mg L-1), protocatechuic acid (PA) (53.91 mg L-1), and phloridzin (PD) (26.17 mg L-1). Our results illustrated that 1) QA did not have an inhibitory effect, 2) PA had medium toxicity to algae (EC50-120h: 0.22, 0.28, and 0.35 mM for A. tamarense, S. trochoidea, and K. mikimotoi), and 3) PD had low toxicity (EC50-120h > 0.66 mM). These findings suggested that PA might be the main allelopathic compound in the aqueous extract of the studied algae. In addition, PA could have a negative effect on the photosynthesis of S. trochoidea by impeding the reduction of quinone electrons and destroying electron transfer in PSII. In summary, this was the first study to quantify allelochemicals in C. manghas fruit. Moreover, C. manghas and protocatechuic have the potential to be algicides to control and mitigate the HABs caused by dinoflagellates.
Collapse
Affiliation(s)
- Qi Chen
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Dong Sun
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524000, China
| | - Ting Fang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Bo Zhu
- School of Life Science and Engineering, State Defense Key Laboratory of the Nuclear Waste and Environmental Security, Southwest University of Science and Technology, Mianyang 621010, China
| | - Weijie Liu
- South China Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, China
| | - Xingyu He
- University of Cincinnati, Cincinnati, OH 45221, USA
| | - Xian Sun
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, P.R. China.
| | - Shunshan Duan
- Department of Ecology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
40
|
Devadasu E, Pandey J, Dhokne K, Subramanyam R. Restoration of photosynthetic activity and supercomplexes from severe iron starvation in Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148331. [PMID: 33127356 DOI: 10.1016/j.bbabio.2020.148331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023]
Abstract
The eukaryotic alga Chlamydomonas (C.) reinhardtii is used as a model organism to study photosynthetic efficiency. We studied the organization and protein profile of thylakoid membranes under severe iron (Fe2+) deficiency condition and iron supplement for their restoration. Chlorophyll (Chl) a fluorescence fast OJIP transients were decreased in the severe Fe2+ deficient cells resulting in the reduction of the photochemical efficiency. The circular dichroism (CD) results from Fe2+ deficient thylakoid membranes show a significant change in pigment-pigment and pigment-protein excitonic interactions. The organization of super-complexes was also affected significantly. Furthermore, super-complexes of photosystem (PS) II and PSI, along with its dimers, were severely reduced. The complexes separated using sucrose gradient centrifugation shows that loss of super-complexes and excitonic pigment-pigment interactions were restored in the severely Fe2+ deficient cells upon Fe supplementation for three generations. Additionally, the immunoblots demonstrated that both PSII, PSI core, and their light-harvesting complex antenna proteins were differentially decreased. However, reduced core proteins were aggregated, which in turn proteins were unfold and destabilized the supercomplexes and its function. Interestingly, the aggregated proteins were insoluble after n-Dodecyl β-D-maltoside solubilization. Further, they were identified in the pellet form. When Fe2+ was added to the severely deficient cells, the photosynthetic activity, pigment-proteins complexes, and proteins were restored to the level of control after 3rd generation.
Collapse
Affiliation(s)
- Elsinraju Devadasu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Gachibowli, Telangana 500046, India
| | - Jayendra Pandey
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Gachibowli, Telangana 500046, India
| | - Kunal Dhokne
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Gachibowli, Telangana 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Gachibowli, Telangana 500046, India.
| |
Collapse
|
41
|
Park J. Photosynthetic and biochemical traits change in the green-tide-forming macroalga Ulva pertusa during sporulation 1. JOURNAL OF PHYCOLOGY 2020; 56:549-557. [PMID: 31953851 DOI: 10.1111/jpy.12969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
The physiological and biochemical changes in the green macroalga Ulva pertusa during the progression of sporulation have been characterized. The transition from the vegetative to the sporulation stage was accompanied by an increase in chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoid content, as well as an increase in DPPH scavenging and responsiveness to diphenylamine. However, oxygen evolution and maximum electron transport rate decreased. The discrepancy between photosynthetic performance and pigment content might relate to the self-shading of spores within a sporangium. Spore-forming U. pertusa thalli were low-light-adapted, due to an increase in the number of photosynthetic units. Decreased electron transport during sporulation might trigger sporulation, as for some cyanobacteria and other Ulva spp., via oxidization of the plastoquinone pool and cyclic phosphorylation, thus producing ATP to generate carbon and nitrogen skeletons required for spores. It is thus concluded that carotenoids function both in spore initiation and/or maturation and in their photoprotection.
Collapse
Affiliation(s)
- Jihae Park
- Lab of Plant Growth Analysis, Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon, 21985, Korea
| |
Collapse
|
42
|
Mao X, Zhang Y, Wang X, Liu J. Novel insights into salinity-induced lipogenesis and carotenogenesis in the oleaginous astaxanthin-producing alga Chromochloris zofingiensis: a multi-omics study. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:73. [PMID: 32322303 PMCID: PMC7161124 DOI: 10.1186/s13068-020-01714-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/09/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Chromochloris zofingiensis, a freshwater alga capable of synthesizing both triacylglycerol (TAG) and astaxanthin, has been receiving increasing attention as a leading candidate producer. While the mechanism of oleaginousness and/or carotenogenesis has been studied under such induction conditions as nitrogen deprivation, high light and glucose feeding, it remains to be elucidated in response to salt stress, a condition critical for reducing freshwater footprint during algal production processes. RESULTS Firstly, the effect of salt concentrations on growth, lipids and carotenoids was examined for C. zofingiensis, and 0.2 M NaCl demonstrated to be the optimal salt concentration for maximizing both TAG and astaxanthin production. Then, the time-resolved lipid and carotenoid profiles and comparative transcriptomes and metabolomes were generated in response to the optimized salt concentration for congruent analysis. A global response was triggered in C. zofingiensis allowing acclimation to salt stress, including photosynthesis impairment, ROS build-up, protein turnover, starch degradation, and TAG and astaxanthin accumulation. The lipid metabolism involved a set of stimulated biological pathways that contributed to carbon precursors, energy and reductant molecules, pushing and pulling power, and storage sink for TAG accumulation. On the other hand, salt stress suppressed lutein biosynthesis, stimulated astaxanthin biosynthesis (mainly via ketolation), yet had little effect on total carotenoid flux, leading to astaxanthin accumulation at the expense of lutein. Astaxanthin was predominantly esterified and accumulated in a well-coordinated manner with TAG, pointing to the presence of common regulators and potential communication for the two compounds. Furthermore, the comparison between salt stress and nitrogen deprivation conditions revealed distinctions in TAG and astaxanthin biosynthesis as well as critical genes with engineering potential. CONCLUSIONS Our multi-omics data and integrated analysis shed light on the salt acclimation of C. zofingiensis and underlying mechanisms of TAG and astaxanthin biosynthesis, provide engineering implications into future trait improvements, and will benefit the development of this alga for production uses under saline environment, thus reducing the footprint of freshwater.
Collapse
Affiliation(s)
- Xuemei Mao
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| | - Yu Zhang
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| | - Xiaofei Wang
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
43
|
Salinity Stress Responses and Adaptation Mechanisms in Eukaryotic Green Microalgae. Cells 2019; 8:cells8121657. [PMID: 31861232 PMCID: PMC6952985 DOI: 10.3390/cells8121657] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 01/04/2023] Open
Abstract
High salinity is a challenging environmental stress for organisms to overcome. Unicellular photosynthetic microalgae are especially vulnerable as they have to grapple not only with ionic imbalance and osmotic stress but also with the generated reactive oxygen species (ROS) interfering with photosynthesis. This review attempts to compare and contrast mechanisms that algae, particularly the eukaryotic Chlamydomonas microalgae, exhibit in order to immediately respond to harsh conditions caused by high salinity. The review also collates adaptation mechanisms of freshwater algae strains under persistent high salt conditions. Understanding both short-term and long-term algal responses to high salinity is integral to further fundamental research in algal biology and biotechnology.
Collapse
|
44
|
de Carpentier F, Lemaire SD, Danon A. When Unity Is Strength: The Strategies Used by Chlamydomonas to Survive Environmental Stresses. Cells 2019; 8:E1307. [PMID: 31652831 PMCID: PMC6912462 DOI: 10.3390/cells8111307] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a valuable model system to study a wide spectrum of scientific fields, including responses to environmental conditions. Most studies are performed under optimal growth conditions or under mild stress. However, when environmental conditions become harsher, the behavior of this unicellular alga is less well known. In this review we will show that despite being a unicellular organism, Chlamydomonas can survive very severe environmental conditions. To do so, and depending on the intensity of the stress, the strategies used by Chlamydomonas can range from acclimation to the formation of multicellular structures, or involve programmed cell death.
Collapse
Affiliation(s)
- Félix de Carpentier
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France.
- Faculty of Sciences, Doctoral School of Plant Sciences, Université Paris-Sud, Paris-Saclay, 91400 Orsay, France.
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France.
| | - Antoine Danon
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
45
|
Alam P, Albalawi TH, Altalayan FH, Bakht MA, Ahanger MA, Raja V, Ashraf M, Ahmad P. 24-Epibrassinolide (EBR) Confers Tolerance against NaCl Stress in Soybean Plants by Up-Regulating Antioxidant System, Ascorbate-Glutathione Cycle, and Glyoxalase System. Biomolecules 2019; 9:E640. [PMID: 31652728 PMCID: PMC6920941 DOI: 10.3390/biom9110640] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 01/24/2023] Open
Abstract
: The present research was performed to assess the effect of 24-epibrassinolide (EBR) on salt-stressed soybean plants. Salt stress suppressed growth, biomass yield, gas exchange parameters, pigment content, and chlorophyll fluorescence, but all these parameters were up-regulated by EBR supply. Moreover, salt stress increased hydrogen peroxide, malondialdehyde, and electrolyte leakage. EBR supplementation reduced the accumulation of oxidative stress biomarkers. The activities of superoxide dismutase and catalase, and the accumulation of proline, glycinebetaine, total phenols, and total flavonoids increased with NaCl stress, but these attributes further increased with EBR supplementation. The activities of enzymes and the levels of non-enzymatic antioxidants involved in the Asc-Glu cycle also increased with NaCl stress, and further enhancement in these attributes was recorded by EBR supplementation. Salinity elevated the methylglyoxal content, but it was decreased by the EBR supplementation accompanying with up-regulation of the glyoxalase cycle (GlyI and GlyII). Salinity enhanced the Na+ uptake in root and shoot coupled with a decrease in uptake of Ca2+, K+, and P. However, EBR supplementation declined Na+ accumulation and promoted the uptake of the aforementioned nutrients. Overall, EBR supplementation regulated the salt tolerance mechanism in soybean plants by modulating osmolytes, activities of key enzymes, and the levels of non-enzymatic antioxidants.
Collapse
Affiliation(s)
- Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Thamer H Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Fahad H Altalayan
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Md Afroz Bakht
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | | | - Vaseem Raja
- Department of Botany, Govt. College for women Baramulla-193101, Jammu and Kashmir, India.
| | - Muhammad Ashraf
- University of Agriculture Faisalabad, Faisalabad-38040, Pakistan.
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar 190001, Jammu and Kashmir, India.
| |
Collapse
|
46
|
Devadasu E, Chinthapalli DK, Chouhan N, Madireddi SK, Rasineni GK, Sripadi P, Subramanyam R. Changes in the photosynthetic apparatus and lipid droplet formation in Chlamydomonas reinhardtii under iron deficiency. PHOTOSYNTHESIS RESEARCH 2019; 139:253-266. [PMID: 30218258 DOI: 10.1007/s11120-018-0580-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/28/2018] [Indexed: 05/19/2023]
Abstract
The unicellular photosynthetic alga Chlamydomonas reinhardtii was propagated in iron deficiency medium and patterns of growth, photosynthetic efficiency, lipid accumulation, as well as the expression of lipid biosynthetic and photosynthesis-related proteins were analysed and compared with iron-sufficient growth conditions. As expected, the photosynthetic rate was reduced (maximally after 4 days of growth) as a result of increased non-photochemical quenching (NPQ). Surprisingly, the stress-response protein LHCSR3 was expressed in conditions of iron deficiency that cause NPQ induction. In addition, the protein contents of both the PSI and PSII reaction centres were gradually reduced during growth in iron deficiency medium. Interestingly, the two generations of Fe deficiency cells could be able to recover the photosynthesis but the second generation cells recovered much slower as these cells were severely in shock. Analysis by flow cytometry with fluorescence-activated cell sorting and thin layer chromatography showed that iron deficiency also induced the accumulation of triacylglycerides (TAG), which resulted in the formation of lipid droplets. This was most significant between 48 and 72 h of growth. Dramatic increases in DGAT2A and PDAT1 levels were caused by iron starvation, which indicated that the biosynthesis of TAG had been increased. Analysis using gas chromatography mass spectrometry showed that levels of 16:0, 18:0, 18:2 and 18:3Δ9,12,15 fatty acids were significantly elevated. The results of this study highlight the genes/enzymes of Chlamydomonas that affect lipid synthesis through their influence on photosynthesis, and these represent potential targets of metabolic engineering to develop strains for biofuel production.
Collapse
Affiliation(s)
- Elsinraju Devadasu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Dinesh Kumar Chinthapalli
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
- Analytical Chemistry and Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India
| | - Nisha Chouhan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Sai Kiran Madireddi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Girish Kumar Rasineni
- Center for Excellence in Medical Services Pvt. Ltd., Kineta Towers, Road No. 3, Banjara Hills, Hyderabad, Telangana, 500034, India
| | - Prabhakar Sripadi
- Analytical Chemistry and Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
47
|
Rahman MM, Mostofa MG, Rahman MA, Miah MG, Saha SR, Karim MA, Keya SS, Akter M, Islam M, Tran LSP. Insight into salt tolerance mechanisms of the halophyte Achras sapota: an important fruit tree for agriculture in coastal areas. PROTOPLASMA 2019; 256:181-191. [PMID: 30062531 DOI: 10.1007/s00709-018-1289-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Sapota (Achras sapota), a fruit tree with nutritional and medicinal properties, is known to thrive in salt-affected areas. However, the underlying mechanisms that allow sapota to adapt to saline environment are yet to be explored. Here, we examined various morphological, physiological, and biochemical features of sapota under a gradient of seawater (0, 4, 8, and 12 dS m-1) to study its adaptive responses against salinity. Our results showed that seawater-induced salinity negatively impacted on growth-related attributes, such as plant height, root length, leaf area, and dry biomass in a dose-dependent manner. This growth reduction was positively correlated with reductions in relative water content, stomatal conductance, xylem exudation rate, and chlorophyll, carbohydrate, and protein contents. However, the salt tolerance index did not decline in proportional to the increasing doses of seawater, indicating a salt tolerance capacity of sapota. Under salt stress, ion analysis revealed that Na+ mainly retained in roots, whereas K+ and Ca2+ were more highly accumulated in leaves than in roots, suggesting a potential mechanism in restricting transport of excessive Na+ to leaves to facilitate the uptake of other essential minerals. Sapota plants also maintained an improved leaf succulence with increasing levels of seawater. Furthermore, increased accumulations of proline, total amino acids, soluble sugars, and reducing sugars suggested an enhanced osmoprotective capacity of sapota to overcome salinity-induced osmotic stress. Our results demonstrate that the salt adaptation strategy of sapota is attributed to increased leaf succulence, selective transport of minerals, efficient Na+ retention in roots, and accumulation of compatible solutes.
Collapse
Affiliation(s)
- Md Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Md Abiar Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Giashuddin Miah
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Satya Ranjan Saha
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - M Abdul Karim
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Sanjida Sultana Keya
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Munny Akter
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohidul Islam
- Hill Agricultural Research Station, Raikhali, Rangamati Hill District, Bangladesh
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
| |
Collapse
|
48
|
Wang N, Qian Z, Luo M, Fan S, Zhang X, Zhang L. Identification of Salt Stress Responding Genes Using Transcriptome Analysis in Green Alga Chlamydomonas reinhardtii. Int J Mol Sci 2018; 19:E3359. [PMID: 30373210 PMCID: PMC6274750 DOI: 10.3390/ijms19113359] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
Salinity is one of the most important abiotic stresses threatening plant growth and agricultural productivity worldwide. In green alga Chlamydomonas reinhardtii, physiological evidence indicates that saline stress increases intracellular peroxide levels and inhibits photosynthetic-electron flow. However, understanding the genetic underpinnings of salt-responding traits in plantae remains a daunting challenge. In this study, the transcriptome analysis of short-term acclimation to salt stress (200 mM NaCl for 24 h) was performed in C. reinhardtii. A total of 10,635 unigenes were identified as being differently expressed by RNA-seq, including 5920 up- and 4715 down-regulated unigenes. A series of molecular cues were screened for salt stress response, including maintaining the lipid homeostasis by regulating phosphatidic acid, acetate being used as an alternative source of energy for solving impairment of photosynthesis, and enhancement of glycolysis metabolism to decrease the carbohydrate accumulation in cells. Our results may help understand the molecular and genetic underpinnings of salt stress responses in green alga C. reinhardtii.
Collapse
Affiliation(s)
- Ning Wang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, No. 88 Wenhuadong Road, Jinan 250014, China.
| | - Zhixin Qian
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, No. 88 Wenhuadong Road, Jinan 250014, China.
| | - Manwei Luo
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, No. 88 Wenhuadong Road, Jinan 250014, China.
| | - Shoujin Fan
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, No. 88 Wenhuadong Road, Jinan 250014, China.
| | - Xuejie Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, No. 88 Wenhuadong Road, Jinan 250014, China.
| | - Luoyan Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, No. 88 Wenhuadong Road, Jinan 250014, China.
| |
Collapse
|
49
|
Gao Y, Long R, Kang J, Wang Z, Zhang T, Sun H, Li X, Yang Q. Comparative Proteomic Analysis Reveals That Antioxidant System and Soluble Sugar Metabolism Contribute to Salt Tolerance in Alfalfa ( Medicago sativa L.) Leaves. J Proteome Res 2018; 18:191-203. [PMID: 30359026 DOI: 10.1021/acs.jproteome.8b00521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Soil salinity poses a serious threat to alfalfa ( Medicago sativa L.) productivity. To characterize the molecular mechanisms of salinity tolerance in Medicago, the comparative proteome of leaves from Medicago sativa cv. Zhongmu No.1 (ZM1, salt-tolerant) and Medicago truncatula cv. Jemalong A17 (A17, salt-sensitive) was performed using the iTRAQ approach. A total of 438 differentially expressed proteins (DEPs) were identified, among which 282 and 120 DEPs were specific to A17 and ZM1, respectively. In salt-tolerant ZM1, key DEPs were primarily enriched in antioxidant system, starch and sucrose metabolism, and secondary metabolism. ZM1 possessed a greater ability to remove reactive oxygen species and methylglyoxal under salt stress, as demonstrated by enhancement of the antioxidant system and secondary metabolism. Moreover, ZM1 orchestrated starch and sucrose metabolism to accumulate various soluble sugars (sucrose, maltose, glucose, and trehalose), which in turn facilitate osmotic homeostasis. Salt stress dramatically inhibited photosynthesis of A17 due to the downregulation of the light-harvesting complex and photosystem II related protein. Quantitative analyses of photochemical efficiency, antioxidant enzyme activities, hydrogen peroxide, malondialdehyde, and soluble sugar contents were consistent with the alterations predicted on the basis of DEP functions. These results shed light on our understanding of the mechanisms underlying the salt tolerance of alfalfa.
Collapse
Affiliation(s)
- Yanli Gao
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Ruicai Long
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Junmei Kang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Zhen Wang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Tiejun Zhang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Hao Sun
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Xiao Li
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Qingchuan Yang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| |
Collapse
|
50
|
Ahmad P, Abd Allah EF, Alyemeni MN, Wijaya L, Alam P, Bhardwaj R, Siddique KHM. Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate-glutathione cycle and secondary metabolites. Sci Rep 2018; 8:13515. [PMID: 30201952 PMCID: PMC6131545 DOI: 10.1038/s41598-018-31917-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/08/2018] [Indexed: 01/16/2023] Open
Abstract
The present study tested the efficacy of 24-epibrassinolide (EBL) and calcium (Ca) for mediating salinity tolerance in tomato. Salinity stress affected the morphological parameters of tomato as well as leaf relative water content (LRWC), photosynthetic and accessory pigments, leaf gas exchange parameters, chlorophyll fluorescence and the uptake of essential macronutrients. The salt (NaCl) treatment induced oxidative stress in the form of increased Na+ ion concentration by 146%, electrolyte leakage (EL) by 61.11%, lipid peroxidation (MDA) 167% and hydrogen peroxide (H2O2) content by 175%. Salt stress also enhanced antioxidant enzyme activities including those in the ascorbate-glutathione cycle. Plants treated with EBL or Ca after salt exposure mitigated the ill effects of salt stress, including oxidative stress, by reducing the uptake of Na+ ions by 52%. The combined dose of EBL + Ca reversed the salt-induced changes through an elevated pool of enzymes in the ascorbate-glutathione cycle, other antioxidants (superoxide dismutase, catalase), and osmoprotectants (proline, glycine betaine). Exogenously applied EBL and Ca help to optimize mineral nutrient status and enable tomato plants to tolerate salt toxicity. The ability of tomato plants to tolerate salt stress when supplemented with EBL and Ca was attributed to modifications to enzymatic and non-enzymatic antioxidants, osmolytes and metabolites.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, 190001, Jammu and Kashmir, India.
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Leonard Wijaya
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 11942, Alkharj, Saudi Arabia
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, LB 5005, Perth, WA, 6001, Australia
| |
Collapse
|