1
|
Ziqubu K, Mazibuko-Mbeje SE, Dludla PV. Regulation of adipokine and batokine secretion by dietary flavonoids, as a prospective therapeutic approach for obesity and its metabolic complications. Biochimie 2025; 230:95-113. [PMID: 39551425 DOI: 10.1016/j.biochi.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Traditionally recognised as the energy reservoir and main site of adaptive thermogenesis, white and brown adipose tissues are complex endocrine organs regulating systemic energy metabolism via the secretion of bioactive molecules, termed "adipokines" and "batokines", respectively. Due to its significant role in regulating whole-body energy metabolism and other physiological processes, adipose tissue has been increasingly explored as a feasible therapeutic target for obesity. Flavonoids are one of the most significant plant polyphenolic compounds holding a great potential as therapeutic agents for combating obesity. However, understanding their mechanisms of action remains largely insufficient to formulate therapeutic theories. This review critically discusses scientific evidence highlighting the role of flavonoids in ameliorating obesity-related metabolic complications, including adipose tissue dysfunction, inflammation, insulin resistance, hepatic steatosis, and cardiovascular comorbidities in part by modulating the release of adipokines and batokines. Further discussion advocates for the use of therapeutics targeting these bioactive molecules as a potential avenue for developing effective treatment for obesity and its adverse metabolic diseases such as type 2 diabetes.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | | | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
2
|
Selvaraju V, Babu SR, Judd RL, Geetha T. Lupeol Attenuates Palmitate-Induced Hypertrophy in 3T3-L1 Adipocytes. Biomolecules 2025; 15:129. [PMID: 39858523 PMCID: PMC11763665 DOI: 10.3390/biom15010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Obesity is characterized by the enlargement of adipose tissue due to an increased calorie intake exceeding the body's energy expenditure. Changes in the size of adipose tissue can lead to harmful consequences, with excessive fat accumulation resulting in adipocyte hypertrophy and promoting metabolic dysfunction. These adiposity-associated pathologies can be influenced by dietary components and their potential health benefits. Lupeol, a pharmacologically active pentacyclic triterpenoid found in medicinal plants, vegetables, and fruits, has been shown to exhibit antioxidant and anti-inflammatory properties. This study investigated the role of lupeol on adipocyte hypertrophy by evaluating key adipogenic regulators in vitro. First, 3T3-L1 MBX mouse embryonic cells were differentiated into adipocytes and hypertrophy was induced using 500 µM palmitic acid. The treated adipocytes showed a significantly increased lipid droplet size, confirming adipocyte hypertrophy. Both adipocytes and hypertrophied adipocytes were then treated with or without 60 µM lupeol, following a dose-dependent study. Lipid droplet size was assessed and validated by Oil Red O staining. Western blot analysis was performed to measure the expression of adipogenic and inflammatory markers. Differentiated adipocytes showed increased fatty acid-binding protein 4 (FABP4) expression and Oil Red O staining, indicating an increased lipid content. Western blot analysis revealed that lupeol treatment reduced the expression of FABP4, peroxisome proliferator-activated receptor-γ (PPARγ), and adipokines. In conclusion, the results suggest that lupeol reverts the inflammatory and adipogenic markers that are enhanced in adipocyte hypertrophy. Through its anti-inflammatory effects, lupeol offers protective effects against adipocyte hypertrophy and contributes to reducing hypertrophic adiposity.
Collapse
Affiliation(s)
| | - Shivani R. Babu
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - Robert L. Judd
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
3
|
Na Takuathung M, Klinjan P, Koonrungsesomboon N. A systematic review and meta-analysis of animal and human studies demonstrates the beneficial effects of Kaempferia parviflora on metabolic syndrome and erectile dysfunction. Nutr Res 2024; 122:80-91. [PMID: 38194854 DOI: 10.1016/j.nutres.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 01/11/2024]
Abstract
Kaempferia parviflora (KP) has traditionally been used for centuries to promote health and well-being. Scant evidence is available to explain the relationship between KP and metabolic syndrome and impotence. We sought to test the hypothesis that administration of KP extract enriched with active ingredients, such as polymethoxyflavone, could improve metabolic syndrome, erectile dysfunction, and related outcomes in in vivo. We performed a systematic review and meta-analysis to evaluate the in vivo effects of KP extract on metabolic syndrome, erectile dysfunction, and related outcomes. Studies from 4 databases (i.e., PubMed, Scopus, Embase, and Cochrane Library) were searched from inception up to December 2022. Animal experiment studies and randomized controlled trials comparing KP extract to a placebo control were retrieved and analyzed using RevMan 5.4.1 software. The effect estimate was presented as the standardized mean difference along with its 95% confidence interval (CI). Of 664 articles, a total of 57 articles met our prespecified criteria. KP extract significantly decreased fasting blood glucose in both animal and human studies with standardized mean difference of -0.88 (95% CI, -1.63 to -0.14) and -0.51 (95% CI, -0.98 to -0.05), respectively. Furthermore, KP extract also markedly improved sexual function and physical performance. In sum, KP extract is shown to have effects beneficial to metabolic syndrome, erectile dysfunction, and physical performance.
Collapse
Affiliation(s)
- Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Preeyaporn Klinjan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
4
|
Goswami K, Badruddeen, Arif M, Akhtar J, Khan MI, Ahmad M. Flavonoids, Isoflavonoids and others Bioactives for Insulin Sensitizations. Curr Diabetes Rev 2024; 20:e270423216247. [PMID: 37102490 DOI: 10.2174/1573399819666230427095200] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 04/28/2023]
Abstract
Diabetes is a chronic condition that has an impact on a huge part of the world. Both animals and humans have been demonstrated to benefit from natural goods, and organisms (animals, or microbes). In 2021, approximately 537 million adults (20-79 years) are living with diabetes, making it the one of the biggest cause of death worldwide. Various phytoconstituent preserved β- cells activity helps to prevent the formation of diabetes problems. As a result, β-cells mass and function are key pharmaceutical targets. The purpose of this review is to provide an overview of flavonoids' effects on pancreatic β-cells. Flavonoids have been demonstrated to improve insulin release in cell lines of isolated pancreatic islets and diabetic animal models. Flavonoids are thought to protect β-cells by inhibiting nuclear factor-κB (NF-κB) signaling, activating the phosphatidylinositol 3-kinase (PI3K) pathway, inhibiting nitric oxide production, and lowering reactive oxygen species levels. Flavonoids boost β-cells secretory capacity by improving mitochondrial bioenergetic function and increasing insulin secretion pathways. Some of the bioactive phytoconstituents such as S-methyl cysteine sulfoxides stimulate insulin synthesis in the body and increase pancreatic output. The berberine increased insulin secretion in the HIT-T15 and Insulinoma 6 (MIN6) mouse cell line. Epigallocatechin-3-Gallate protects against toxicity accrued by cytokines, reactive oxygen species (ROS), and hyperglycemia. Quercetin has been proven to boost insulin production by Insulinoma 1 (INS-1) cells and also protect cell apoptosis. Overall flavonoids have beneficial effects on β-cells by prevented their malfunctioning or degradation and improving synthesis or release of insulin from β-cells.
Collapse
Affiliation(s)
- Kushagra Goswami
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Muhammad Arif
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Mohammad Irfan Khan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| |
Collapse
|
5
|
Ahmad B, Friar EP, Taylor E, Vohra MS, Serpell CJ, Garrett MD, Loo JSE, Fong IL, Wong EH. Anti-pancreatic lipase and anti-adipogenic effects of 5, 7, 3',4',5' -pentamethoxy and 6, 2',4'-trimethoxy flavone - An In vitro study. Eur J Pharmacol 2022; 938:175445. [PMID: 36473593 DOI: 10.1016/j.ejphar.2022.175445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
In this study, the anti-obesity effects of 5,7,3',4',5-pentamethoxyflavone (PMF) and 6,2',4'-trimethoxyflavone (TMF) were evaluated through two distinct mechanisms of action: inhibition of crude porcine pancreatic lipase (PL), and inhibition of adipogenesis in 3T3-L1 pre-adipocytes. Both flavones show dose dependent, competitive inhibition of PL activity. Molecular docking studies revealed binding of the flavones to the active site of PL. In 3T3-L1 adipocytes, both flavones reduced the accumulation of lipids and triglycerides. PMF and TMF also lowered the expression of adipogenic and lipogenic genes. They both reduced the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ), CCAAT/enhancer-binding protein α and β (C/EBP α and β), sterol regulatory element-binding protein 1 (SREBF 1), fatty acid synthase (FASN), adipocyte binding protein 2 (aP2), and leptin gene. In addition, these flavones enhanced adiponectin mRNA expression, increased lipolysis and enhanced the expression of lipolytic genes: adipose triglycerides lipase (ATGL), hormone sensitive lipase (HSL) and monoglycerides lipase (MAGL) in mature 3T3-L1 adipocytes. Overall, PMF was seen to be a more potent inhibitor of both PL activity and adipogenesis versus TMF. These results suggest that PMF and TMF possess anti-obesity activities and can be further evaluated for their anti-obesity effects.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No 1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Emily P Friar
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Emerald Taylor
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No 1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Christopher J Serpell
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom.
| | - Michelle D Garrett
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No 1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No 1 Jalan Taylor's, 47500, Subang Jaya, Malaysia.
| |
Collapse
|
6
|
Chen Q, Wang D, Gu Y, Jiang Z, Zhou Z. Tangeretin prevents obesity by modulating systemic inflammation, fat browning, and gut microbiota in high-fat diet-induced obese C57BL/6 mice. J Nutr Biochem 2022; 101:108943. [PMID: 35017003 DOI: 10.1016/j.jnutbio.2022.108943] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/05/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022]
Abstract
Obesity and associated comorbidities are closely linked to gut microbiota dysbiosis, energy balance, and chronic inflammation. Tangeretin, a key citrus polymethoxylated flavone (PMF), is abundant in citrus fruits and has preventative and therapeutic effects for numerous diseases. The current study investigated the effects and possible mechanisms of tangeretin supplementation in preventing obesity in high-fat diet (HFD)-fed mice. Treatment of HFD-fed mice with tangeretin potently ameliorated HFD-induced body weight, liver steatosis, glucose intolerance, and insulin resistance. Tangeretin mitigated systemic chronic inflammation by reducing metabolic endotoxemia and inflammation-related gene expression in HFD-fed mice. An increased number of small brown adipocytes possessing multilocular and cytoplasmic lipid droplets and upregulation of thermogenic gene expression were observed after tangeretin treatment. 16S rRNA amplicon sequencing indicated that tangeretin markedly altered the gut microbiota composition (richness and diversity) and reversed 16 operational taxonomic units (OTUs) back to levels seen in mice consuming a normal chow diet (NCD). Notably, tangeretin decreased the ratio of Firmicutes-to-Bacteroidetes and greatly enriched Bacteroides and Lactobacillus. Overall, our results suggest that long-term supplementation with citrus tangeretin ameliorates the phenotype of obesity by improving adipose thermogenesis and reducing systemic inflammation and gut microbiota dysbiosis, which provides a good basis for studying the mechanism of tangeretin's beneficial effects.
Collapse
Affiliation(s)
- Qiyang Chen
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Dan Wang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Yue Gu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Zixiao Jiang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Zhiqin Zhou
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China.
| |
Collapse
|
7
|
Liu Y, Yu C, Shao Z, Xia X, Hu T, Kong W, He X, Sun W, Deng Y, Liao Y, Huang H. Selective degradation of AR-V7 to overcome castration resistance of prostate cancer. Cell Death Dis 2021; 12:857. [PMID: 34548474 PMCID: PMC8455663 DOI: 10.1038/s41419-021-04162-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022]
Abstract
Androgen receptor splice variant 7 (AR-V7), a form of ligand-independent and constitutively activating variant of androgen receptor (AR), is considered as the key driver to initiate castration-resistant prostate cancer (CRPC). Because AR-V7 lacks ligand-binding domain, the AR-targeted therapies that aim to inactivate AR signaling through disrupting the interaction between AR and androgen are limited in CRPC. Thus, the emergence of AR-V7 has become the greatest challenge for treating CRPC. Targeting protein degradation is a recently proposed novel avenue for cancer treatment. Our previous studies have been shown that the oncoprotein AR-V7 is a substrate of the proteasome. Identifying novel drugs that can trigger the degradation of AR-V7 is therefore critical to cure CRPC. Here we show that nobiletin, a polymethoxylated flavonoid derived from the peel of Citrus fruits, exerts a potent anticancer activity via inducing G0/G1 phase arrest and enhancing the sensitivity of cells to enzalutamide in AR-V7 positive PC cells. Mechanically, we unravel that nobiletin selectively induces proteasomal degradation of AR-V7 (but not AR). This effect relies on its selective inhibition of the interactions between AR-V7 and two deubiquitinases USP14 and USP22. These findings not only enrich our understanding on the mechanism of AR-V7 degradation, but also provide an efficient and druggable target for overcoming CRPC through interfering the stability of AR-V7 mediated by the interaction between AR-V7 and deubiquitinase.
Collapse
Affiliation(s)
- Yuan Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, Guangdong, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Cuifu Yu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, Guangdong, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Zhenlong Shao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Xiaohong Xia
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, Guangdong, China
| | - Tumei Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Weiyao Kong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Xiaoyue He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Wenshuang Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Yuanfei Deng
- Department of Pathology, First People's Hospital of Foshan, 528000, Foshan, Guangdong, China
| | - Yuning Liao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, Guangdong, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China.
| | - Hongbiao Huang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, Guangdong, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Chen PY, Chao TY, Hsu HJ, Wang CY, Lin CY, Gao WY, Wu MJ, Yen JH. The Lipid-Modulating Effect of Tangeretin on the Inhibition of Angiopoietin-like 3 (ANGPTL3) Gene Expression through Regulation of LXRα Activation in Hepatic Cells. Int J Mol Sci 2021; 22:ijms22189853. [PMID: 34576019 PMCID: PMC8471037 DOI: 10.3390/ijms22189853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
The excessive accumulation of TG-rich lipoproteins (TGRLs) in plasma is associated with dyslipidemia and atherosclerotic cardiovascular diseases (ASCVDs). Tangeretin is a bioactive pentamethoxyflavone mainly found in citrus peels, and it has been reported to protect against hyperlipidemia, diabetes, and obesity. The aim of this study was to investigate the lipid-modulating effects and the underlying mechanisms of tangeretin action in hepatic cells. Transcriptome and bioinformatics analyses with the Gene Ontology (GO) database showed that tangeretin significantly regulated a set of 13 differentially expressed genes (DEGs) associated with the regulation of lipoprotein lipase (LPL) activity. Among these DEGs, angiopoietin-like 3 (ANGPTL3), an essential inhibitor of LPL catalytic activity that regulates TGRL metabolism in plasma, was markedly downregulated by tangeretin. We demonstrated that tangeretin significantly inhibited the mRNA expression of ANGPTL3 in HepG2 and Huh-7 cells. Tangeretin treatment of hepatic cells also reduced the levels of both intracellular and secreted ANGPTL3 proteins. Moreover, we found that inhibition of ANGPTL3 production by tangeretin augmented LPL activity. We further demonstrated that the transcriptional activity of the ANGPTL3 promoter was significantly attenuated by tangeretin, and we identified a DNA element located between the −250 and −121 positions that responded to tangeretin. Furthermore, we found that tangeretin did not alter the levels of the nuclear liver X receptor α (LXRα) protein, an essential transcription factor that binds to the tangeretin-responsive element, but it can counteract LXRα-mediated ANGPTL3 transcription. On the basis of molecular docking analysis, tangeretin was predicted to bind to the ligand-binding domain of LXRα, which would result in suppression of LXRα activation. Our findings support the hypothesis that tangeretin exerts a lipid-lowering effect by modulating the LXRα-ANGPTL3-LPL pathway, and thus, it can be used as a potential phytochemical for the prevention or treatment of dyslipidemia.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Center of Medical Genetics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
| | - Tzu-Ya Chao
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
| | - Hao-Jen Hsu
- Department of Life Science, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chih-Yang Wang
- Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Yen Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
- Correspondence: or ; Tel.: +88-63-856-5301 (ext. 2683)
| |
Collapse
|
9
|
Visvanathan R, Williamson G. Citrus polyphenols and risk of type 2 diabetes: Evidence from mechanistic studies. Crit Rev Food Sci Nutr 2021; 63:2178-2202. [PMID: 34496701 DOI: 10.1080/10408398.2021.1971945] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Citrus fruits are a rich source of (poly)phenols, a group of dietary bioactive compounds that protect against developing type 2 diabetes. Our review critically evaluates how experimental in vitro and animal models have elucidated some of the underlying mechanisms on how citrus (poly)phenols affect the markers of type 2 diabetes. According to animal studies, the beneficial effects derived from consuming citrus compounds appear to be related to long-term effects, rather than acute. There are some notable effects from citrus (poly)phenol metabolites on post-absorptive processes, such as modulation of hepatic glucose metabolism and insulin sensitivity in target tissues, but with a more modest effect on digestion and sugar absorption within the gut. Experimental studies on cells and other systems in vitro have indicated some of the possible mechanisms involved, but ∼70% of the studies utilized unrealistically high concentrations and forms of the compounds, compromising physiological relevance. Future studies should discuss the relevance of concentration used in in vitro experiments, relative to the proposed site of action, and also examine the role of catabolites produced by the gut microbiota. Finally, it is important to examine the relationship between the gut microbiota and bioavailability on the action of citrus (poly)phenols.
Collapse
Affiliation(s)
- Rizliya Visvanathan
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, Notting Hill, VIC, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, Notting Hill, VIC, Australia
| |
Collapse
|
10
|
Pang Y, Liu L, Mu H, Priya Veeraraghavan V. Nobiletin promotes osteogenic differentiation of human osteoblastic cell line (MG-63) through activating the BMP-2/RUNX-2 signaling pathway. Saudi J Biol Sci 2021; 28:4916-4920. [PMID: 34466066 PMCID: PMC8381068 DOI: 10.1016/j.sjbs.2021.06.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 11/01/2022] Open
Abstract
Nobiletin (NOB) is polymethoxy flavonoids, which plentifully there in Citrus depressa and they demonstrate numerous pharmacological effects. NOB has an anti-proliferative effect, attenuates ovalbumin-treated eosinophilic airway inflammation and Type II collagen treated arthritis. NOB noticeably inhibits bone resorption and renovates bone loss in mice model, but role of NOB in bone metabolism is unclear. Human bone is a important organ that sustains its homeostasis among bone resorpting osteoclasts and bone developing osteoblasts. The balances of among these two kind of cell outcomes are implicated in bone remodeling. The current study designed to explore possessions of NOB on differentiation and proliferation of MG-63 cells and contribution of morphogenetic protein signaling. Cell proliferation was analyzed by MTT, mineralization analysis by alizarin red staining and morphogenetic signaling protein by RT-PCR. No stimulus outcome of NOB on cell proliferation was found at days of 1, 3 and 7. Accumulation of calcium was augmented after that treatment of NOB. The mRNA expression of BMP-2, COL-I, ALP, OCN, RUNX2 and COL1A1 augmented markedly with NOB supplement. Hence, NOB can stimulate osteogenic differentiation of MG-63, almost certainly by promoting RUNX2 and BMP-2 signaling and this result might provide to its action on stimulation of osteoblast development, differentiation and augments of bone mass.
Collapse
Affiliation(s)
- Ying Pang
- Dental Clinic, Cangzhou Central Hospital, Cangzhou City, Hebei Province 061000, China
| | - Lili Liu
- Dental Clinic, Cangzhou Central Hospital, Cangzhou City, Hebei Province 061000, China
| | - Hong Mu
- Dental Clinic, Cangzhou Central Hospital, Cangzhou City, Hebei Province 061000, China
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| |
Collapse
|
11
|
Liu N, Li X, Zhao P, Zhang X, Qiao O, Huang L, Guo L, Gao W. A review of chemical constituents and health-promoting effects of citrus peels. Food Chem 2021; 365:130585. [PMID: 34325351 DOI: 10.1016/j.foodchem.2021.130585] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
Citrus is one of the main fruits processed worldwide, producing a lot of industrial by-products. As the main part of citrus "residue", citrus peels have a wide application prospect. They could not only be directly used to produce various food products, but also be used as promising biofuels to produce ethanol and methane. Additionally, functional components (flavonoids, limonoids, alkaloids, essential oils and pectin) extracted from citrus peels have been related to the improvement of human health against active oxygen, inflammatory, cancer and metabolic disorders. Therefore, it is clear that the citrus peels have great potential to be developed into useful functional foods, medicines and biofuels. This review systematically summarizes the recent advances in current uses, processing, bioactive components and biological properties of citrus peels. A better understanding of citrus peels may provide reference for making full use of it.
Collapse
Affiliation(s)
- Na Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Ping Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xueqian Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Ou Qiao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
12
|
Abstract
The prevalence of obesity has increased substantially over the last several decades and several environmental factors have accelerated this trend. Poly-methoxy flavones (PMFs) exist abundantly in the peels of citrus, and their biological activities have been broadly examined in recent years. Several studies have examined the effects of PMFs on obesity and its-related diseases. This systematic review conducted to focus on the effect of PMFs on obesity and its related conditions management. The PubMed, Google Scholar, Scopus, and Science Direct databases were searched for relevant studies published before November 2020. Out of 1,615 records screened, 16 studies met the study criteria. The range of dosage of PMFs was varied from 10 to 200 mg/kg (5-26 weeks) and 1-100 μmol (2h-8 days) across selected animal and in vitro studies, respectively. The literature reviewed shows that PMFs modulate several biological processes associated with obesity such as lipid and glucose metabolism, inflammation, energy balance, and oxidative stress by different mechanisms. All of the animal studies showed significant positive effects of PMFs on obesity by reducing body weight (e.g. reduced weight gain by 21.04%), insulin resistance, energy expenditure, inhibiting lipogenesis and reduced blood lipids (e.g. reduced total cholesterol by 23.10%, TG by 44.35% and LDL by 34.41%). The results of the reviewed in vitro studies have revealed that treatment with PMFs significantly inhibits lipid accumulation in adipocytes (e.g. reduced lipid accumulation by 55-60%) and 3T3-L1 pre-adipocyte differentiation as well by decreasing the expression of PPARγ and C/EBPα and also reduces the number and size of fat cells and reduced TG content in adipocytes by 45.67% and 23.10% and 16.08% for nobiletin, tangeretin and hesperetin, respectively. Although current evidence supports the use of PMFs as a complementary treatment in obesity, future research is needed to validate this promising treatment modality.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Department of Community Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
13
|
Jo MJ, Kim SJ, Go HJ, Park NG, Kim GD. Anti‐adipogenic Effects of αAL14 Mediated by Modulation of PI3K/Akt Pathways in 3T3-L1 Cells. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10220-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Zhang M, Zhu S, Ho CT, Huang Q. Citrus polymethoxyflavones as regulators of metabolic homoeostasis: Recent advances for possible mechanisms. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Therapeutic Implications of a Polymethoxylated Flavone, Tangeretin, in the Management of Cancer via Modulation of Different Molecular Pathways. Adv Pharmacol Pharm Sci 2021; 2021:4709818. [PMID: 33748757 PMCID: PMC7954633 DOI: 10.1155/2021/4709818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/25/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Chemotherapeutics can induce oxidative stress, inflammation, apoptosis, mitochondrial dysfunction, and abnormalities in neurotransmitter metabolism leading to toxicity. Because there have been no therapeutic strategies developed to target inflammation and oxidative stress, there is a continuing need for new and improved therapy. As a result, there has been increasing interest in complementary and alternative medicine with anticancer potential. Studies have shown that the antioxidant activities and anti-inflammatory effects of citrus fruits are promising natural phytochemicals in the development of new anticancer agents. Tangeretin is a naturally polymethoxylated flavone compound extracted from the citrus peel that has shown significant intestinal absorption and adequate bioavailability, with the added benefit of promoting longevity. In addition, tangeretin is known to exhibit considerable selective toxicity to many types of cancer cell proliferation such as ovarian, brain, blood, and skin cancer. Evidence indicates that tangeretin acts through several mechanisms including growth inhibition, induction of apoptosis, autophagy, antiangiogenesis, and estrogenic-like effects. Furthermore, tangeretin works through mitigating levels of inflammatory mediators in the immune system. Using tangeretin in combination with clinically applied anticancer drugs could be a good strategy for increasing the efficiency of these agents and protecting noncancerous cells from damage caused by chemotherapy. The purpose of this review is to highlight the protective effects of a novel natural product, tangeretin against chemotherapeutic-induced toxicity. The development of chemoprevention strategies can lead to significant health care improvement in cancer survivors. Thus, study outcomes may attract more investigators to conduct tangeretin-related research and find out potentially significant impacts on health care of cancer patients and decreased health problems associated with chemotherapeutics-induced toxicity.
Collapse
|
16
|
Miyata Y, Matsumoto K, Kusano S, Kusakabe Y, Katsura Y, Oshitari T, Kosano H. Regulation of Endothelium-Reticulum-Stress-Mediated Apoptotic Cell Death by a Polymethoxylated Flavone, Nobiletin, Through the Inhibition of Nuclear Translocation of Glyceraldehyde 3-Phosphate Dehydrogenase in Retinal Müller Cells. Cells 2021; 10:cells10030669. [PMID: 33802903 PMCID: PMC8002623 DOI: 10.3390/cells10030669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
In the early stages of diabetic retinopathy (DR), subtle biochemical and functional alterations occur in Müller cells, which are one of the components of the blood-retinal barrier (BRB). Müller cells are the principal glia of the retina and have shown a strong involvement in the maintenance of homeostasis and the development of retinal tissue. Their functional abnormalities and eventual loss have been correlated with a decrease in the tight junctions between endothelial cells and a consequent breakdown of the BRB, leading to the development of DR. We demonstrated that the endothelium reticulum (ER) triggers Müller cell death and that nuclear accumulation of glyceraldehyde 3-phosphate dehydrogenase is closely associated with ER-induced Müller cell death. In addition, induction of ER stress in Müller cells increased vascular endothelial growth factor expression but decreased pigment-epithelium-derived factor (PEDF) expression in Müller cells. We found that nobiletin, a polymethoxylated flavone from citrus explants, exerts protective action against ER-stress-induced Müller cell death. In addition, nobiletin was found to augment PEDF expression in Müller cells, which may lead to the protection of BRB integrity. These results suggest that nobiletin can be an attractive candidate for the protection of the BRB from breakdown in DR.
Collapse
Affiliation(s)
- Yoshiki Miyata
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; (Y.M.); (K.M.); (Y.K.); (T.O.)
| | - Kazuya Matsumoto
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; (Y.M.); (K.M.); (Y.K.); (T.O.)
| | - Shuichi Kusano
- Fuji Sangyo Co., Ltd., 1301 Tamura-cho, Marugame, Kagawa 763-0071, Japan;
| | - Yoshio Kusakabe
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; (Y.M.); (K.M.); (Y.K.); (T.O.)
| | - Yoshiya Katsura
- The fifth Department of Internal Medicine, Tokyo Medical University, 3-20-1 Ami, Ibaraki 300-0332, Japan;
| | - Tetsuta Oshitari
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; (Y.M.); (K.M.); (Y.K.); (T.O.)
| | - Hiroshi Kosano
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; (Y.M.); (K.M.); (Y.K.); (T.O.)
- Correspondence: ; Tel.: +81-3-3964-8191; Fax: +81-3-3964-8195
| |
Collapse
|
17
|
Heyde I, Begemann K, Oster H. Contributions of white and brown adipose tissues to the circadian regulation of energy metabolism. Endocrinology 2021; 162:6102571. [PMID: 33453099 PMCID: PMC7864004 DOI: 10.1210/endocr/bqab009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/17/2022]
Abstract
The term energy metabolism comprises the entirety of chemical processes associated with uptake, conversion, storage, and breakdown of nutrients. All these must be tightly regulated in time and space to ensure metabolic homeostasis in an environment characterized by cycles such as the succession of day and night. Most organisms evolved endogenous circadian clocks to achieve this goal. In mammals, a ubiquitous network of cellular clocks is coordinated by a pacemaker residing in the hypothalamic suprachiasmatic nucleus. Adipocytes harbor their own circadian clocks, and large aspects of adipose physiology are regulated in a circadian manner through transcriptional regulation of clock-controlled genes. White adipose tissue (WAT) stores energy in the form of triglycerides at times of high energy levels that then serve as fuel in times of need. It also functions as an endocrine organ, releasing factors in a circadian manner to regulate food intake and energy turnover in other tissues. Brown adipose tissue (BAT) produces heat through nonshivering thermogenesis, a process also controlled by the circadian clock. We here review how WAT and BAT contribute to the circadian regulation of energy metabolism. We describe how adipose rhythms are regulated by the interplay of systemic signals and local clocks and summarize how adipose-originating circadian factors feed-back on metabolic homeostasis. The role of adipose tissue in the circadian control of metabolism becomes increasingly clear as circadian disruption leads to alterations in adipose tissue regulation, promoting obesity and its sequelae. Stabilizing adipose tissue rhythms, in turn, may help to combat disrupted energy homeostasis and obesity.
Collapse
Affiliation(s)
- Isabel Heyde
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | | | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
- Correspondence: Henrik Oster, PhD, Institute of Neurobiology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
18
|
Structure – Activity Relationship and Therapeutic Benefits of Flavonoids in the Management of Diabetes and Associated Disorders. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02329-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Boudreau A, Richard AJ, Harvey I, Stephens JM. Artemisia scoparia and Metabolic Health: Untapped Potential of an Ancient Remedy for Modern Use. Front Endocrinol (Lausanne) 2021; 12:727061. [PMID: 35211087 PMCID: PMC8861327 DOI: 10.3389/fendo.2021.727061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
Botanicals have a long history of medicinal use for a multitude of ailments, and many modern pharmaceuticals were originally isolated from plants or derived from phytochemicals. Among these, artemisinin, first isolated from Artemisia annua, is the foundation for standard anti-malarial therapies. Plants of the genus Artemisia are among the most common herbal remedies across Asia and Central Europe. The species Artemisia scoparia (SCOPA) is widely used in traditional folk medicine for various liver diseases and inflammatory conditions, as well as for infections, fever, pain, cancer, and diabetes. Modern in vivo and in vitro studies have now investigated SCOPA's effects on these pathologies and its ability to mitigate hepatotoxicity, oxidative stress, obesity, diabetes, and other disease states. This review focuses on the effects of SCOPA that are particularly relevant to metabolic health. Indeed, in recent years, an ethanolic extract of SCOPA has been shown to enhance differentiation of cultured adipocytes and to share some properties of thiazolidinediones (TZDs), a class of insulin-sensitizing agonists of the adipogenic transcription factor PPARγ. In a mouse model of diet-induced obesity, SCOPA diet supplementation lowered fasting insulin and glucose levels, while inducing metabolically favorable changes in adipose tissue and liver. These observations are consistent with many lines of evidence from various tissues and cell types known to contribute to metabolic homeostasis, including immune cells, hepatocytes, and pancreatic beta-cells. Compounds belonging to several classes of phytochemicals have been implicated in these effects, and we provide an overview of these bioactives. The ongoing global epidemics of obesity and metabolic disease clearly require novel therapeutic approaches. While the mechanisms involved in SCOPA's effects on metabolic, anti-inflammatory, and oxidative stress pathways are not fully characterized, current data support further investigation of this plant and its bioactives as potential therapeutic agents in obesity-related metabolic dysfunction and many other conditions.
Collapse
Affiliation(s)
- Anik Boudreau
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Innocence Harvey
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
- *Correspondence: Jacqueline M. Stephens,
| |
Collapse
|
20
|
Ahmed OM, AbouZid SF, Ahmed NA, Zaky MY, Liu H. An Up-to-Date Review on Citrus Flavonoids: Chemistry and Benefits in Health and Diseases. Curr Pharm Des 2021; 27:513-530. [PMID: 33245267 DOI: 10.2174/1381612826666201127122313] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Flavonoids, the main class of polyphenols, are characterized by the presence of 2-phenyl-benzo-pyrane nucleus. They are found in rich quantities in citrus fruits. Citrus flavonoids are classified into flavanones, flavones, flavonols, polymethoxyflavones and anthocyanins (found only in blood oranges). Flavanones are the most abundant flavonoids in citrus fruits. In many situations, there are structure-function relationships. Due to their especial structures and presence of many hydroxyls, polymethoxies and glycoside moiety, the flavonoids have an array of multiple biological and pharmacological activities. This article provides an updated overview of the differences in chemical structures of the classes and members of citrus flavonoids and their benefits in health and diseases. The review article also sheds light on the mechanisms of actions of citrus flavonoids in the treatment of different diseases, including arthritis, diabetes mellitus, cancer and neurodegenerative disorders as well as liver, kidney and heart diseases. The accumulated and updated knowledge in this review may provide useful information and ideas in the discovery of new strategies for the use of citrus flavonoids in the protection, prevention and therapy of diseases.
Collapse
Affiliation(s)
- Osama M Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Sameh F AbouZid
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Noha A Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Mohamed Y Zaky
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Han Liu
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
21
|
Wiciński M, Gębalski J, Gołębiewski J, Malinowski B. Probiotics for the Treatment of Overweight and Obesity in Humans-A Review of Clinical Trials. Microorganisms 2020; 8:microorganisms8081148. [PMID: 32751306 PMCID: PMC7465252 DOI: 10.3390/microorganisms8081148] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
The World Health Organization (WHO) reports that 400 million people are obese, and over 1.6 billion adults are overweight worldwide. Annually, over 2.8 million people die from obesity-related diseases. The incidence of overweight and obesity is steadily increasing, and this phenomenon is referred to as a 21st-century pandemic. The main reason for this phenomenon is an easy access to high-energy, processed foods, and a low-activity lifestyle. These changes lead to an energy imbalance and, as a consequence, to the development of body fat. Weight gain contributes to the development of heart diseases, skeletal system disorders, metabolic disorders such as diabetes, and certain types of cancer. In recent years, there have been many works linking obesity with intestinal microbiota. Experiments on germ-free animals (GFs) have provided much evidence for the contribution of bacteria to obesity. The composition of the gut microbiota (GM) changes in obese people. These changes affect the degree of energy obtained from food, the composition and secretory functions of adipose tissue, carbohydrate, and lipid metabolism in the liver, and the activity of centers in the brain. The study aimed to present the current state of knowledge about the role of intestinal microbiota in the development of obesity and the impact of supplementation with probiotic bacteria on the health of overweight and obese patients.
Collapse
|
22
|
Tang XY, Zeng JX, Dai ZQ, Chen MH, Ye MN, Yao ZH, Dai Y, Yao XS. Identification and characterization of chemical constituents in Qi-Lin pills and their metabolites in rat bio-samples after oral administration using ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal 2020; 188:113402. [PMID: 32544759 DOI: 10.1016/j.jpba.2020.113402] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/13/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022]
Abstract
Qi-Lin pill (QLP), a traditional Chinese medicine prescription (TCMP), composed of fifteen herbal medicines, has been widely used for the treatment of male infertility. However, an in-depth understanding of the chemical constituents of QLP and its in vivo metabolic study is lacking. In this study, a method using ultra-performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry (UPLC/Q-TOF-MS) was established for comprehensive analysis of chemical constituents of QLP and their metabolites in plasma, urine, bile and feces after gastric perfusion. The method guaranteed the fast discovery of representative structural fragment information and provided efficient structure clues for identification based on data from MSE mode. As a result, a total of 202 constituents were unambiguously identified or tentatively characterized. In addition, a total of 203 QLP-related xenobiotics were characterized, including 41 (22 prototypes and 19 metabolites) in plasma, 144 (47 prototypes and 97 metabolites) in urine, 50 (27 prototypes and 23 metabolites) in bile and 68 (51 prototypes and 17 metabolites) in feces. The metabolism reactions included phase I reactions (demethylation, hydroxylation, deglycosylation, deoxygenation, hydrogenation, dehydration, oxidation and hydrolysis) and phase II reactions (methylation, conjugation with glucuronide and sulfate). This was the first comprehensive investigation on chemical constituents and metabolic profiles of QLP in vivo, and the results provided chemical foundation for further research on effective substances and action mechanism of QLP.
Collapse
Affiliation(s)
- Xi-Yang Tang
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Jia-Xing Zeng
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Zi-Qin Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Ming-Hao Chen
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Meng-Nan Ye
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Zhi-Hong Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Yi Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| | - Xin-Sheng Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
23
|
Feng K, Lan Y, Zhu X, Li J, Chen T, Huang Q, Ho CT, Chen Y, Cao Y. Hepatic Lipidomics Analysis Reveals the Antiobesity and Cholesterol-Lowering Effects of Tangeretin in High-Fat Diet-Fed Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6142-6153. [PMID: 32394707 DOI: 10.1021/acs.jafc.0c01778] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tangeretin (TAN) exhibited antilipogenic, antidiabetic, and lipid-lowering effects. However, the lipid biomarkers and the underlying mechanisms for antiobesity and cholesterol-lowering effects of TAN have not been sufficiently investigated. Herein, we integrated biochemical analysis with lipidomics to elucidate its efficacy and mechanisms in high-fat diet-fed rats. TAN at supplementation levels of 0.04 and 0.08% not only significantly decreased body weight gain, serum total cholesterol, and low-density lipoprotein cholesterol levels but also ameliorated hepatic steatosis. These beneficial effects were associated with the declining levels of fatty acids, diacylglycerols (DGs), triacylglycerols, ceramides, and cholesteryl esters by hepatic lipidomics analysis, which were attributed to downregulating lipogenesis-related genes and upregulating lipid oxidation- and bile acid biosynthesis-related genes. Additionally, 21 lipids were identified as potential lipid biomarkers, such as DGs and phosphatidylethanolamines. These findings indicated that the modulation of lipid homeostasis might be the key pathways for the mechanisms of TAN in the antiobesity and cholesterol-lowering effects.
Collapse
Affiliation(s)
- Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaoai Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Tong Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Shenzhen Agricultural Product Quality Safety Inspection Testing Center, Shenzhen, Guangdong 518000, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
24
|
Pan MH, Li MY, Tsai ML, Pan CY, Badmaev V, Ho CT, Lai CS. A mixture of citrus polymethoxyflavones, green tea polyphenols and lychee extracts attenuates adipogenesis in 3T3-L1 adipocytes and obesity-induced adipose inflammation in mice. Food Funct 2020; 10:7667-7677. [PMID: 31793969 DOI: 10.1039/c9fo02235j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adipocyte-macrophage interaction in obesity can cause adipose tissue inflammation and contribute to insulin resistance. Here, we investigated the effect of SlimTrym®-a formulated product containing citrus polymethoxyflavones (PMFs), green tea extract, and lychee polyphenols-on 3T3-L1 adipocyte differentiation and obesity-induced inflammation. SlimTrym® inhibited mitotic clonal expansion (MCE) of 3T3-L1 adipocytes by inducing G1 cell cycle arrest via upregulation of p21 and p53. SlimTrym® attenuated adipogenic differentiation by downregulating adipogenic factors, such as CCAAT-enhancer-binding proteins (C/EBPs) and peroxisome proliferator-activated receptor γ (PPARγ), and upregulating AMP-activated protein kinase (AMPK). Pretreatment with compound C significantly reduced SlimTrym®-mediated suppression of lipid accumulation. SlimTrym® reduced the expression of pro-inflammatory cytokines, including monocyte chemoattractant protein 1 (MCP-1), interleukin (IL)-1β and IL-6, in co-cultured 3T3-L1 adipocytes and RAW264.7 macrophages. C57BL/6 mice administered with SlimTrym® for 16 weeks showed markedly reduced high-fat diet (HFD)-induced infiltration of monocytes/macrophages in adipose tissue; however, the level of M2 macrophage markers (CD163 and IL-10) was increased. Taken together, these findings indicate that SlimTrym® exerts both anti-adipogenic and anti-inflammatory effects, and can potentially treat obesity and adipose tissue inflammation.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | | | | | | | |
Collapse
|
25
|
Miyata Y, Tatsuzaki J, Yang J, Kosano H. Potential Therapeutic Agents, Polymethoxylated Flavones Isolated from Kaempferia parviflora for Cataract Prevention through Inhibition of Matrix Metalloproteinase-9 in Lens Epithelial Cells. Biol Pharm Bull 2020; 42:1658-1664. [PMID: 31582653 DOI: 10.1248/bpb.b19-00244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural flavonoids have powerful antioxidant activity and have been reported to show promising protective effects against cataracts. The plant Kaempferia parviflora (K. parviflora) is indigenous to southeast Asia, including Thailand, and typically contains polymethoxylated flavones. The flavones in K. parviflora are reported to have various biological properties. Recently, polymethoxylated flavones of K. parviflora (KPMFs) were shown to have potent Sirtuin 1 enzyme-stimulating and anti-glycation activities that led to the suppression of cataract formation. Matrix metalloproteinases (MMPs) are upregulated in several pathologic ocular diseases, including cataracts, and have been established as an attractive target for the prevention and/or treatment of specific cataract phenotypes, such as anterior subcapsular cataract (ASC) and posterior capsular opacification (PCO). In the present study, we investigated the effect of KPMFs on MMP (gelatinase) activity in the human lens epithelial cell line, SRA01/04. We demonstrated that KPMFs inhibited the phorbol ester-induced MMP-9 activity and the mRNA expression through the suppression of mitogen-activated protein kinases (MAPKs) phosphorylation in human lens epithelial cells; 5,7-dimethoxyflavone was found to exert the most potent inhibition, but 3,5,7,4'-tetramethoxyflavone and 3,5,7,3',4'-pentamethoxyflavone also resulted in considerable inhibition. Our results suggested that the consumption of PMFs isolated from K. parviflora, may be an effective strategy to delay the development of cataracts, such as ASC and PCO.
Collapse
|
26
|
Zhang M, Zhu J, Zhang X, Zhao DG, Ma YY, Li D, Ho CT, Huang Q. Aged citrus peel (chenpi) extract causes dynamic alteration of colonic microbiota in high-fat diet induced obese mice. Food Funct 2020; 11:2667-2678. [DOI: 10.1039/c9fo02907a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aged citrus peels (chenpi) have been used as a dietary supplement for gastrointestinal health maintenance in China.
Collapse
Affiliation(s)
- Man Zhang
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
- School of Biotechnology and Health Sciences
| | - Jieyu Zhu
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| | - Xin Zhang
- Department of Food Science and Engineering
- Ningbo University
- Ningbo 315211
- China
| | - Deng-gao Zhao
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Yan-yan Ma
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Dongli Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Chi-Tang Ho
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| | - Qingrong Huang
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| |
Collapse
|
27
|
Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules 2019; 9:E430. [PMID: 31480505 PMCID: PMC6769509 DOI: 10.3390/biom9090430] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus (DM) is a prevailing global health metabolic disorder, with an alarming incidence rate and a huge burden on health care providers. DM is characterized by the elevation of blood glucose due either to a defect in insulin synthesis, secretion, binding to receptor, or an increase of insulin resistance. The internal and external factors such as obesity, urbanizations, and genetic mutations could increase the risk of developing DM. Flavonoids are phenolic compounds existing as secondary metabolites in fruits and vegetables as well as fungi. Their structure consists of 15 carbon skeletons and two aromatic rings (A and B) connected by three carbon chains. Flavonoids are furtherly classified into 6 subclasses: flavonols, flavones, flavanones, isoflavones, flavanols, and anthocyanidins. Naturally occurring flavonoids possess anti-diabetic effects. As in vitro and animal model's studies demonstrate, they have the ability to prevent diabetes and its complications. The aim of this review is to summarize the current knowledge addressing the antidiabetic effects of dietary flavonoids and their underlying molecular mechanisms on selected pathways: Glucose transporter, hepatic enzymes, tyrosine kinase inhibitor, AMPK, PPAR, and NF-κB. Flavonoids improve the pathogenesis of diabetes and its complications through the regulation of glucose metabolism, hepatic enzymes activities, and a lipid profile. Most studies illustrate a positive role of specific dietary flavonoids on diabetes, but the mechanisms of action and the side effects need more clarification. Overall, more research is needed to provide a better understanding of the mechanisms of diabetes treatment using flavonoids.
Collapse
Affiliation(s)
- Raghad Khalid Al-Ishaq
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Peter Kubatka
- Department of Medical Biology and Department of Experimental Carcinogenesis, Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovak Republic
- Biomedical Research Centre, Slovak Academy of Sciences, 81439 Bratislava, Slovak Republic
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| |
Collapse
|
28
|
Enrichment of polymethoxyflavones from Citrus reticulata ‘Chachi’ peels and their hypolipidemic effect. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:226-232. [DOI: 10.1016/j.jchromb.2019.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 01/21/2023]
|
29
|
Cheng C, Zhuo S, Zhang B, Zhao X, Liu Y, Liao C, Quan J, Li Z, Bode AM, Cao Y, Luo X. Treatment implications of natural compounds targeting lipid metabolism in nonalcoholic fatty liver disease, obesity and cancer. Int J Biol Sci 2019; 15:1654-1663. [PMID: 31360108 PMCID: PMC6643217 DOI: 10.7150/ijbs.33837] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/19/2019] [Indexed: 01/23/2023] Open
Abstract
Metabolic disorders can lead to a scarcity or excess of certain metabolites such as glucose, lipids, proteins, purines, and metal ions, which provide the biochemical foundation and directly contribute to the etiology of metabolic diseases. Nonalcoholic fatty liver disease, obesity, and cancer are common metabolic disorders closely associated with abnormal lipid metabolism. In this review, we first describe the regulatory machinery of lipid metabolism and its deregulation in metabolic diseases. Next, we enumerate and integrate the mechanism of action of some natural compounds, including terpenoids and flavonoids, to ameliorate the development of metabolic diseases by targeting lipid metabolism. Medicinal natural products have an established history of use in health care and therapy. Natural compounds might provide a good source of potential therapeutic agents for treating or preventing metabolic diseases with lipid metabolic abnormalities.
Collapse
Affiliation(s)
- Can Cheng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China
| | - Songming Zhuo
- Department of Respiratory Medicine, Shenzhen Longgang Center Hospital, Shenzhen, Guangdong 518116, PR China
| | - Bo Zhang
- Department of Ultrasound Imaging,Xiangya Hospital,Central South University, Changsha, Hunan 410078, PR China
| | - Xu Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China
| | - Ying Liu
- Department of Medicine, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China
| | - Chaoliang Liao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China
| | - Jing Quan
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China
| | - Zhenzhen Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China.,Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China.,Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
30
|
Ren N, Kim E, Li B, Pan H, Tong T, Yang CS, Tu Y. Flavonoids Alleviating Insulin Resistance through Inhibition of Inflammatory Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5361-5373. [PMID: 30612424 DOI: 10.1021/acs.jafc.8b05348] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During the past 20 years, many studies have focused on polyphenol compounds for their potential beneficial health effects. Flavonoids represent a large class of phenolic compounds found in fruits, vegetables, nuts, grains, cocoa, tea, and other beverages. Flavonoids have shown antioxidant and anti-inflammatory activities. Given the putative relationship between inflammation and insulin resistance, the consumption of flavonoids or flavonoid-rich foods has been suggested to reduce the risk of diabetes by targeting inflammatory signals. This is the first comprehensive review summarizing the current research progress on the inhibition of inflammation and alleviation of insulin resistance by flavonoids as well as the mechanistic link between these disorders. Laboratory and human studies on the activities of major flavonoids (flavones, isoflavones, flavonols, etc.) are discussed.
Collapse
Affiliation(s)
- Ning Ren
- Department of Tea Science , Zhejiang University , Hangzhou , Zhejiang 310058 , People's Republic of China
| | - Eunhye Kim
- Department of Tea Science , Zhejiang University , Hangzhou , Zhejiang 310058 , People's Republic of China
| | - Bo Li
- Department of Tea Science , Zhejiang University , Hangzhou , Zhejiang 310058 , People's Republic of China
| | - Haibo Pan
- Department of Tea Science , Zhejiang University , Hangzhou , Zhejiang 310058 , People's Republic of China
| | - Tuantuan Tong
- Department of Tea Science , Zhejiang University , Hangzhou , Zhejiang 310058 , People's Republic of China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Youying Tu
- Department of Tea Science , Zhejiang University , Hangzhou , Zhejiang 310058 , People's Republic of China
| |
Collapse
|
31
|
Zhu J, Huang Q. Nanoencapsulation of functional food ingredients. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 88:129-165. [PMID: 31151723 DOI: 10.1016/bs.afnr.2019.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many functional food ingredients are poorly soluble in water, susceptible to chemical degradation, and incompatible with surrounding food matrix. Other issues are related to limited oral bioavailability, unpleasant sensory properties, and poor release profiles. Nanoencapsulation of functional food ingredients can help increase their water solubility/dispersibility in foods and beverages, improve their bioavailability by exhibiting good dose-dependent functionalities, mask undesired flavors/tastes to reduce the adverse effect on mouth-feel, enhance shelf-life and compatibility during production, storage, transportation and utilization of food products, and control release rate or specific delivery environment for better performance on their functionalities. This chapter provides an overview of different delivery systems for different functional food ingredients, the types of materials suitable for wall materials or building blocks of nanocapsules, the fabrication methods to assemble different delivery systems and release these active ingredients under different physiological conditions.
Collapse
Affiliation(s)
- Jieyu Zhu
- Department of Food Science, Rutgers University, New Brunswick, NJ, United States
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ, United States.
| |
Collapse
|
32
|
Ochiai M, Takeuchi T, Nozaki T, Ishihara KO, Matsuo T. Kaempferia parviflora Ethanol Extract, a Peroxisome Proliferator-Activated Receptor γ Ligand-binding Agonist, Improves Glucose Tolerance and Suppresses Fat Accumulation in Diabetic NSY Mice. J Food Sci 2019; 84:339-348. [PMID: 30726580 DOI: 10.1111/1750-3841.14437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/01/2018] [Accepted: 12/15/2018] [Indexed: 01/23/2023]
Abstract
This study assessed the effect of Kaempferia parviflora, also known as black ginger (BG), and its ethanol extract (BGE) on peroxisome proliferator-activated receptor (PPAR) γ agonistic activity, glucose tolerance, fat accumulation, and lipids-induced hypertriglyceridemia in mice. PPARγ ligand-binding capacity in vitro and polymethoxy flavone contents were highly observed in organic solvent extracts. In an animal experiment A, male diabetic Nagoya-Shibata-Yasuda mice were divided into five dietary groups and fed each diet for 8 weeks: AIN-93G diet (low-fat [LF] diet), high-fat (HF) diet, HF diet supplemented with 1% BG, HF diet supplemented with 0.19% BGE, and HF diet supplemented with pioglitazone (PPARγ agonist, 3 mg/kg/day) as a PPARγ agonistic positive control. As determined from glucose and insulin tolerance tests, plasma glucose levels were improved in the BG and BGE groups. The BGE extract suppressed fat accumulation in adipose tissues, liver, and muscles without changing the plasma adiponectin level. In an animal experiment B, in order to investigate the effect of BG and BGE on lipid-induced hypertriglyceridemia, male ddY mice were divided into three test groups: control, BG-administered group (500 mg/kg), and BGE-administered group (100 mg/kg). The plasma triacylglycerol level was not different among the groups during the lipids administration test. These results conclude that the BGE extract containing several kinds of polymethoxy flavones showed PPARγ ligand-binding capacity in vitro and prevented obesity and insulin resistance independent of adiponectin secretion in mice. PRACTICAL APPLICATION: Kaempferia parviflora, also known as black ginger (BG), is often used as a folk medicine and a functional food material to prevent metabolic syndrome mainly in Asian regions. Here, we have clarified that ethanol extract from BG (BGE) contains several kinds of polymethoxy flavones to show PPARγ ligand-binding capacity and is an active extract for the improvement of obesity and insulin resistance. The BGE is expected to be applied for functional food materials in health food markets. Also, polymethoxy flavones to show PPARγ ligand-binding capacity can be generally applied as a physiological active compound of functional food supplements.
Collapse
Affiliation(s)
- Masaru Ochiai
- School of Veterinary Medicine, Kitasato Univ., 23-35-1 Higashi, Towada, Aomori, 034-8628, Japan
| | - Toshiki Takeuchi
- Faculty of Agriculture, Kagawa Univ., 2393 Ikenobe, Miki, Kita, Kagawa, 761-0795, Japan
| | - Tsutomu Nozaki
- BHN Co., Ltd., 1-16, Kandanishiki, Chiyoda, Tokyo, 101-0054, Japan
| | - Ken-O Ishihara
- BHN Co., Ltd., 1-16, Kandanishiki, Chiyoda, Tokyo, 101-0054, Japan
| | - Tatsuhiro Matsuo
- Faculty of Agriculture, Kagawa Univ., 2393 Ikenobe, Miki, Kita, Kagawa, 761-0795, Japan
| |
Collapse
|
33
|
de Paiva A, Gonçalves D, Ferreira P, Baldwin E, Cesar T. Postprandial effect of fresh and processed orange juice on the glucose metabolism, antioxidant activity and prospective food intake. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
34
|
Wang Q, Qin X, Liang Z, Li S, Cai J, Zhu Z, Liu G. HPLC–DAD–ESI–MS2 analysis of phytochemicals from Sichuan red orange peel using ultrasound-assisted extraction. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Liu Y, Han J, Zhou Z, Li D. Tangeretin inhibits streptozotocin-induced cell apoptosis via regulating NF-κB pathway in INS-1 cells. J Cell Biochem 2018; 120:3286-3293. [PMID: 30216514 DOI: 10.1002/jcb.27596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
Oxidative stress is considered to play an important role in inducing the pancreatic β-cells apoptosis and promoting the development of diabetes mellitus. Tangeretin is a plant-derived flavonoid that retains antidiabetic effects. However, the role of tangeretin in streptozotocin (STZ)-induced β-cell apoptosis remains unclear. In this study, we aimed to examine the effects of tangeretin on STZ-induced cell apoptosis and the underlying mechanisms implicated in vitro. Our results showed that tangeretin improved the cell viability in STZ-induced INS-1 cells. Tangeretin reduced the increase of apoptosis ratio and revered the altered expressions of Bax and Bcl-2 caused by STZ induction. Furthermore, the impairment of insulin secretion ability as well as a reduction in messenger RNA levels of insulin 1 and 2 was significantly attenuated by tangeretin in STZ-induced INS-1 cells. Moreover, tangeretin resulted in a significant decrease in reactive oxygen species content, accompanied by an evident increase in the activities of superoxide dismutase, catalase, and glutathione peroxidase. Mechanistic studies further revealed that tangeretin inhibited the NF-κB pathway in STZ-induced INS-1 cells. These data indicated that tangeretin improved the cell apoptosis induced by STZ in INS-1 cells, which might be partly due to its antioxidant potential. Furthermore, NF-κB was found to be involved in the protective effect of tangeretin. Collectively, the results indicated that tangeretin could be used as a therapeutic approach for diabetes mellitus treatment.
Collapse
Affiliation(s)
- Yang Liu
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, Henan Province, China
| | - Jiakai Han
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, Henan Province, China
| | - Zhenyu Zhou
- Department of Breast and Thyroid Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Dandan Li
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, Henan Province, China
| |
Collapse
|
36
|
Alkhalidy H, Wang Y, Liu D. Dietary Flavonoids in the Prevention of T2D: An Overview. Nutrients 2018; 10:nu10040438. [PMID: 29614722 PMCID: PMC5946223 DOI: 10.3390/nu10040438] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/15/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes (T2D) is a progressive metabolic disease that is increasing in prevalence globally. It is well established that insulin resistance (IR) and a progressive decline in functional β-cell mass are hallmarks of developing T2D. Obesity is a leading pathogenic factor for developing IR. Constant IR will progress to T2D when β-cells are unable to secret adequate amounts of insulin to compensate for decreased insulin sensitivity. Recently, a considerable amount of research has been devoted to identifying naturally occurring anti-diabetic compounds that are abundant in certain types of foods. Flavonoids are a group of polyphenols that have drawn great interest for their various health benefits. Results from many clinical and animal studies demonstrate that dietary intake of flavonoids might be helpful in preventing T2D, although cellular and molecular mechanisms underlying these effects are still not completely understood. This review discusses our current understanding of the pathophysiology of T2D and highlights the potential anti-diabetic effects of flavonoids and mechanisms of their actions.
Collapse
Affiliation(s)
- Hana Alkhalidy
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA.
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Yao Wang
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA.
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA.
| |
Collapse
|
37
|
Matsumoto S, Tominari T, Matsumoto C, Yoshinouchi S, Ichimaru R, Watanabe K, Hirata M, Grundler FMW, Miyaura C, Inada M. Effects of Polymethoxyflavonoids on Bone Loss Induced by Estrogen Deficiency and by LPS-Dependent Inflammation in Mice. Pharmaceuticals (Basel) 2018; 11:ph11010007. [PMID: 29361674 PMCID: PMC5874703 DOI: 10.3390/ph11010007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/11/2018] [Accepted: 01/18/2018] [Indexed: 01/12/2023] Open
Abstract
Polymethoxyflavonoids (PMFs) are a family of the natural compounds that mainly compise nobiletin, tangeretin, heptamethoxyflavone (HMF), and tetramethoxyflavone (TMF) in citrus fruits. PMFs have shown various biological functions, including anti-oxidative effects. We previously showed that nobiletin, tangeretin, and HMF all inhibited interleukin (IL)-1-mediated osteoclast differentiation via the inhibition of prostaglandin E2 synthesis. In this study, we created an original mixture of PMFs (nobiletin, tangeretin, HMF, and TMF) and examined whether or not PMFs exhibit co-operative inhibitory effects on osteoclastogenesis and bone resorption. In a coculture of bone marrow cells and osteoblasts, PMFs dose-dependently inhibited IL-1-induced osteoclast differentiation and bone resorption. The optimum concentration of PMFs was lower than that of nobiletin alone in the suppression of osteoclast differentiation, suggesting that the potency of PMFs was stronger than that of nobiletin in vitro. The oral administration of PMFs recovered the femoral bone loss induced by estrogen deficiency in ovariectomized mice. We further tested the effects of PMFs on lipopolysaccharide-induced bone resorption in mouse alveolar bone. In an ex vivo experimental model for periodontitis, PMFs significantly suppressed the bone-resorbing activity in organ cultures of mouse alveolar bone. These results indicate that a mixture of purified nobiletin, tangeretin, HMF, and TMF exhibits a co-operative inhibitory effect for the protection against bone loss in a mouse model of bone disease, suggesting that PMFs may be potential candidates for the prevention of bone resorption diseases, such as osteoporosis and periodontitis.
Collapse
Affiliation(s)
- Shigeru Matsumoto
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Tsukasa Tominari
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Shosei Yoshinouchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Ryota Ichimaru
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Kenta Watanabe
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Michiko Hirata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Florian M W Grundler
- Institute of Crop Science and Resource Conservation, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany.
| | - Chisato Miyaura
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Masaki Inada
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
38
|
Ademosun AO, Oboh G, Olasehinde TA, Adeoyo OO. From folk medicine to functional food: a review on the bioactive components and pharmacological properties of citrus peels. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s13596-017-0292-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Gao Z, Gao W, Zeng SL, Li P, Liu EH. Chemical structures, bioactivities and molecular mechanisms of citrus polymethoxyflavones. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
40
|
Tung YC, Chang WT, Li S, Wu JC, Badmeav V, Ho CT, Pan MH. Citrus peel extracts attenuated obesity and modulated gut microbiota in mice with high-fat diet-induced obesity. Food Funct 2018; 9:3363-3373. [DOI: 10.1039/c7fo02066j] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polymethoxyflavones (PMFs) and hydroxyl PMFs (HOPMFs) are mainly found in citrus peel and have shown anti-obesity potential in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Yen-Chen Tung
- Institute of Food Sciences and Technology
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Wei-Tien Chang
- Institute of Food Sciences and Technology
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization; Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains; Huanggang Normal University
- Huanggang
- China
| | - Jia-Ching Wu
- Institute of Food Sciences and Technology
- National Taiwan University
- Taipei 10617
- Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology
- National Taiwan University
- Taipei 10617
- Taiwan
- Department of Medical Research
| |
Collapse
|
41
|
Elhennawy MG, Lin HS. Determination of Tangeretin in Rat Plasma: Assessment of Its Clearance and Absolute Oral Bioavailability. Pharmaceutics 2017; 10:pharmaceutics10010003. [PMID: 29286295 PMCID: PMC5874816 DOI: 10.3390/pharmaceutics10010003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/09/2017] [Accepted: 12/24/2017] [Indexed: 01/23/2023] Open
Abstract
Tangeretin (TAN) is a dietary polymethoxylated flavone that possesses a broad scope of pharmacological activities. A simple high-performance liquid chromatography (HPLC) method was developed and validated in this study to quantify TAN in plasma of Sprague-Dawley rats. The lower limit of quantification (LLOQ) was 15 ng/mL; the intra- and inter-day assay variations expressed in the form of relative standard deviation (RSD) were all less than 10%; and the assay accuracy was within 100 ± 15%. Subsequently, pharmacokinetic profiles of TAN were explored and established. Upon single intravenous administration (10 mg/kg), TAN had rapid clearance (Cl = 94.1 ± 20.2 mL/min/kg) and moderate terminal elimination half-life (t1/2 λz = 166 ± 42 min). When TAN was given as a suspension (50 mg/kg), poor but erratic absolute oral bioavailability (mean value < 3.05%) was observed; however, when TAN was given in a solution prepared with randomly methylated-β-cyclodextrin (50 mg/kg), its plasma exposure was at least doubled (mean bioavailability: 6.02%). It was obvious that aqueous solubility hindered the oral absorption of TAN and acted as a barrier to its oral bioavailability. This study will facilitate further investigations on the medicinal potentials of TAN.
Collapse
Affiliation(s)
- Mai Gamal Elhennawy
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| | - Hai-Shu Lin
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
42
|
Liu L, Zhou M, Lang H, Zhou Y, Mi M. Dihydromyricetin enhances glucose uptake by inhibition of MEK/ERK pathway and consequent down-regulation of phosphorylation of PPARγ in 3T3-L1 cells. J Cell Mol Med 2017; 22:1247-1256. [PMID: 29160030 PMCID: PMC5783835 DOI: 10.1111/jcmm.13403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence suggests that inhibition of mitogen-activated protein kinase signalling can reduce phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) at serine 273, which mitigates obesity-associated insulin resistance and might be a promising treatment for type 2 diabetes. Dihydromyricetin (DHM) is a flavonoid that has many beneficial pharmacological properties. In this study, mouse fibroblast 3T3-L1 cells were used to investigate whether DHM alleviates insulin resistance by inhibiting PPARγ phosphorylation at serine 273 via the MEK/ERK pathway. 3T3-L1 pre-adipocytes were differentiated, and the effects of DHM on adipogenesis and glucose uptake in the resulting adipocytes were examined. DHM was found to dose dependently increase glucose uptake and decrease adipogenesis. Insulin resistance was then induced in adipocytes using dexamethasone, and DHM was shown to dose and time dependently promote glucose uptake in the dexamethasone-treated adipocytes. DHM also inhibited phosphorylation of PPARγ and ERK. Inhibition of PPARγ activity with GW9662 potently blocked DHM-induced glucose uptake and adiponectin secretion. Interestingly, DHM showed similar effects to PD98059, an inhibitor of the MEK/ERK pathway. DHM acted synergistically with PD98059 to improve glucose uptake and adiponectin secretion in dexamethasone-treated adipocytes. In conclusion, our findings indicate that DHM improves glucose uptake in adipocytes by inhibiting ERK-induced phosphorylation of PPARγ at serine 273.
Collapse
Affiliation(s)
- Lei Liu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Min Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Hedong Lang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yong Zhou
- Department of Clinic Nutrition, People's Hospital of Chongqing Banan District, Chongqing, China
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
43
|
Takii M, Kaneko YK, Akiyama K, Aoyagi Y, Tara Y, Asakawa T, Inai M, Kan T, Nemoto K, Ishikawa T. Insulinotropic and anti-apoptotic effects of nobiletin in INS-1D β-cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
44
|
Yasunaga S, Domen M, Nishi K, Kadota A, Sugahara T. Nobiletin suppresses monocyte chemoattractant protein-1 (MCP-1) expression by regulating MAPK signaling in 3T3-L1 cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
45
|
Ke Z, Yang Y, Tan S, Zhou Z. Characterization of Polymethoxylated Flavonoids in the Peels of Chinese Wild Mandarin (Citrus reticulata Blanco) by UPLC-Q-TOF-MS/MS. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0690-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
The Multifunctional Effects of Nobiletin and Its Metabolites In Vivo and In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2918796. [PMID: 27761146 PMCID: PMC5059563 DOI: 10.1155/2016/2918796] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 12/31/2022]
Abstract
Nobiletin (NOB) chemically known as 5,6,7,8,3′,4′-hexamethoxyflavone is a dietary polymethoxylated flavonoid found in Citrus fruits. Recent evidences show that NOB is a multifunctional pharmaceutical agent. The various pharmacological activities of NOB include neuroprotection, cardiovascular protection, antimetabolic disorder, anticancer, anti-inflammation, and antioxidation. These events may be underpinned by modulation of signaling cascades, including PKA/ERK/MEK/CREB, NF-κB, MAPK, Ca2+/CaMKII, PI3K/Akt1/2, HIF-1α, and TGFβ signaling pathways. The metabolites may exhibit stronger beneficial effects than NOB on diseases pathogenesis. The biological activities of NOB have been clarified on many systems. This review aims to discuss the pharmacological effects of NOB with specific mechanisms of actions. NOB may become a promising candidate for potential drug development. However, further investigations of NOB on specific intracellular targets and clinical trials are still needed, especially for in vivo medical applications.
Collapse
|
47
|
Ohizumi Y. [A new strategy for preventive and functional therapeutic methods for dementia--approach using natural products]. YAKUGAKU ZASSHI 2016; 135:449-64. [PMID: 25759053 DOI: 10.1248/yakushi.14-00245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) has become a serious social problem in Japan. However, effective preventive and fundamental therapeutic methods for AD have not yet been developed. Using a new strategy in the course of our survey of numerous natural resouces having neurotrophic activity, we isolated a variety of active constituents and proved their pharmacological properties. As a result, we successfully found nobiletin, a compound with anti-dementia activity that comes from citrus peels. Also, we have demonstrated that nobiletin ameliorates cognitive impairment in several dementia model animals such as chronically amyloid β(Aβ) infused rats, amyloid precursor protein transgenic (APPTg) mice, olfactory-bulbectomized (OBX) mice, N-methyl-D-aspartate (NMDA) receptor antagonist (MK-801)-treated mice, senescence-accelated mice and bilaterial common carotid arteries occlusion mice. In a APPTg mouse of AD, nobiletin greatly improved memory impairment, and this was accompanied by a marked decrease in Aβ deposition. Also, in OBX mice memory impairment was markedly recoverd by nobiletin, accompanied by improvement of a decrease indensity of cholinergic neurons. Interestingly, nobiletin improves age-related congnitive impairment and decreased hyperphosphorylation of tau as well as oxidative stress in senescence-accelerated mice. In cultured cells, nobiletin reversed the Aβ-induced inhibition of glutamate-induced increases in cAMP response element binding protein (CREB) phosphorylation and modulated gen expression of thioredoxin-interacting protein and NMDA resceptor subunits. These results suggest that nobiletin prevents memory impairment and exhibits a protecting action against neurodgeneration in AD model animals. Nobiletin and citrus peels thus have potential as functional foods for prevention of dementia.
Collapse
Affiliation(s)
- Yasushi Ohizumi
- Graduate School of Pharmaceutical Sciences, Tohoku University; 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; Graduate School of Engineering, Tohoku University; 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579; Faculty of Pharmaceutical Sciences, University of Shizuoka; 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; Kansei Research Institute, Tohoku Fukushi University; 1-19-1 Kunimi, Aoba-ku, Sendai 989-3201, Japan; Yokohama College of Pharmacy; 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| |
Collapse
|
48
|
Liu B, Huang J, Zhang B. Nobiletin protects against murine l -arginine-induced acute pancreatitis in association with downregulating p38MAPK and AKT. Biomed Pharmacother 2016; 81:104-110. [DOI: 10.1016/j.biopha.2016.03.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
|
49
|
Tung YC, Li S, Huang Q, Hung WL, Ho CT, Wei GJ, Pan MH. 5-Demethylnobiletin and 5-Acetoxy-6,7,8,3',4'-pentamethoxyflavone Suppress Lipid Accumulation by Activating the LKB1-AMPK Pathway in 3T3-L1 Preadipocytes and High Fat Diet-Fed C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3196-3205. [PMID: 27041493 DOI: 10.1021/acs.jafc.6b00706] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Polymethoxyflavones (PMFs) and hydroxylated polymethoxyflavones (HPMFs), such as nobiletin (Nob) and 5-demethylnobiletin (5-OH-Nob), are unique flavonoids that are found exclusively in citrus peels. Nobiletin has been shown to suppress adipogenesis in vitro, but the antiadipogenic activity of 5-OH-Nob has not been investigated. Both nobiletin and 5-OH-Nob have poor aqueous solubility and low oral bioavailability. We employed chemical modification to produce the acetyl derivative of 5-OH-Nob, that is, 5-acetyloxy-6,7,8,3',4'-pentamethoxyflavone (5-Ac-Nob), to improve its bioavailability and bioactive efficiency. We found that 5-Ac-Nob reduced triacylglycerol (TG) content to a greater extent than 5-OH-Nob in 3T3-L1 preadipocytes. Orally administered 5-Ac-Nob resulted in a significant reduction in body weight, intra-abdominal fat, plasma and liver TG levels, and plasma cholesterol level in high fat diet-induced obese male C57BL/6J mice. The 5-Ac-Nob treatment decreased lipid accumulation by triggering the adenosine 5'-monophosphate-activated protein kinase (AMPK) pathway to alter transcriptional factors or lipogenesis-related enzymes in vivo and in vitro.
Collapse
Affiliation(s)
- Yen-Chen Tung
- Department of Food Science, Rutgers University , New Brunswick, New Jersey 08901, United States
- Institute of Food Sciences and Technology, National Taiwan University , Taipei 106, Taiwan
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization and Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University , Huanggang, Hubei China
| | - Qingrong Huang
- Department of Food Science, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Wei-Lun Hung
- Department of Food Science, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Guor-Jien Wei
- Department of Nutrition and Health Sciences, Kainan University , Taoyuan 33857, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University , Taipei 106, Taiwan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization and Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University , Huanggang, Hubei China
- Department of Medical Research, China Medical University Hospital, China Medical University , Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University , Taichung, Taiwan
| |
Collapse
|
50
|
Kawser Hossain M, Abdal Dayem A, Han J, Yin Y, Kim K, Kumar Saha S, Yang GM, Choi HY, Cho SG. Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids. Int J Mol Sci 2016; 17:569. [PMID: 27092490 PMCID: PMC4849025 DOI: 10.3390/ijms17040569] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022] Open
Abstract
Obesity and diabetes are the most prevailing health concerns worldwide and their incidence is increasing at a high rate, resulting in enormous social costs. Obesity is a complex disease commonly accompanied by insulin resistance and increases in oxidative stress and inflammatory marker expression, leading to augmented fat mass in the body. Diabetes mellitus (DM) is a metabolic disorder characterized by the destruction of pancreatic β cells or diminished insulin secretion and action insulin. Obesity causes the development of metabolic disorders such as DM, hypertension, cardiovascular diseases, and inflammation-based pathologies. Flavonoids are the secondary metabolites of plants and have 15-carbon skeleton structures containing two phenyl rings and a heterocyclic ring. More than 5000 naturally occurring flavonoids have been reported from various plants and have been found to possess many beneficial effects with advantages over chemical treatments. A number of studies have demonstrated the potential health benefits of natural flavonoids in treating obesity and DM, and show increased bioavailability and action on multiple molecular targets. This review summarizes the current progress in our understanding of the anti-obesity and anti-diabetic potential of natural flavonoids and their molecular mechanisms for preventing and/or treating obesity and diabetes.
Collapse
Affiliation(s)
- Mohammed Kawser Hossain
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ahmed Abdal Dayem
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Jihae Han
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Yingfu Yin
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Kyeongseok Kim
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Subbroto Kumar Saha
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Gwang-Mo Yang
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|