1
|
Li X, Chen W, Jia Z, Xiao Y, Shi A, Ma X. Mitochondrial Dysfunction as a Pathogenesis and Therapeutic Strategy for Metabolic-Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2025; 26:4256. [PMID: 40362504 DOI: 10.3390/ijms26094256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) has emerged as a significant public health concern, attributed to its increasing prevalence and correlation with metabolic disorders, including obesity and type 2 diabetes. Recent research has highlighted that mitochondrial dysfunction can result in the accumulation of lipids in non-adipose tissues, as well as increased oxidative stress and inflammation. These factors are crucial in advancing the progression of MASLD. Despite advances in the understanding of MASLD pathophysiology, challenges remain in identifying effective therapeutic strategies targeting mitochondrial dysfunction. This review aims to consolidate current knowledge on how mitochondrial imbalance affects the development and progression of MASLD, while addressing existing research gaps and potential avenues for future research. This review was conducted after a systematic search of comprehensive academic databases such as PubMed, Embase, and Web of Science to gather information on mitochondrial dysfunction as well as mitochondrial-based treatments for MASLD.
Collapse
Affiliation(s)
- Xiangqiong Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Wenling Chen
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Zhuangzhuang Jia
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Yahui Xiao
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Anhua Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Xuan Ma
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| |
Collapse
|
2
|
Pan XY, Qiu ZY, Liu C, Wang C, Wang X, Huang LN, Li SF, Shi XW, Ge SG, Xin RH. Effects of Dioscorea oppositifolia L. on growth performance, biochemical indicators, immunity, and intestinal health of weaned piglets. Front Vet Sci 2025; 12:1529881. [PMID: 40351768 PMCID: PMC12063354 DOI: 10.3389/fvets.2025.1529881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/25/2025] [Indexed: 05/14/2025] Open
Abstract
Introduction Weaning stress syndrome in piglets seriously endangers the healthy development of the breeding industry. Dioscorea oppositifolia L. (Chinese yam, YAM) has activities such as boosting immunity and regulating gastrointestinal function. In order to explore the potential efficacy of YAM on weaned piglets, this study aimed to investigate the effects of growth performance, immune function, intestinal health and intestinal flora composition of weaned piglets. Methods Forty-eight 28-day-old weaned piglets were randomly divided into a control group, YAML group and YAMH group, with 0, 1 and 2% YAM added to the basal diet, respectively. During the experiment, the piglets' feed intake was recorded, and blood and fecal samples were collected. After the feeding period, intestinal tissue samples and colon content samples were collected for testing. Results The results showed that adding YAM to the diet can lower the incidence of diarrhea in weaned piglets, improve growth performance and nutrient digestibility, and reduce serum enzyme activity alanine aminotransferase (ALT), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C); in addition, YAM can also increase serum immunoglobulins (Ig) and antibody titers, regulate the level of inflammatory factors, and promote the expression of secretory immunoglobulin A (SIgA) protein in the intestine. Furthermore, supplementation with YAM can increase the villus height (VH), the ratio of villus height to crypt depth (V/C), and the expression of Tight junctions (TJs), and also has a positive regulatory effect on the intestinal flora. Discussion In summary, YAM alleviates weaning stress syndrome in piglets by promoting growth performance, improving immune function and disease resistance, improving intestinal morphology and mucosal immunity, and regulating the intestinal microbial composition of piglets. This provides a theoretical basis for the development and application of YAM as a new plant-derived feed additive.
Collapse
Affiliation(s)
- Xiang-Yi Pan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R. Lanzhou, Lanzhou, China
| | - Zheng-Ying Qiu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R. Lanzhou, Lanzhou, China
| | - Chen Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R. Lanzhou, Lanzhou, China
| | - Chuan Wang
- Sichuan SDIC Qiangshan Technology Group Co., Ltd., Mianyang, China
| | - Xiaowu Wang
- Sichuan SDIC Qiangshan Technology Group Co., Ltd., Mianyang, China
| | - Li-Na Huang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| | - Si-Fan Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R. Lanzhou, Lanzhou, China
| | - Xiong-Wei Shi
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R. Lanzhou, Lanzhou, China
| | - Shao-Guang Ge
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R. Lanzhou, Lanzhou, China
| | - Rui-Hua Xin
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R. Lanzhou, Lanzhou, China
| |
Collapse
|
3
|
Karmakar S, Saikia R, Das A, Pathak K, Das P, Bhuyan B, Alqahtani T, Al Shmrany H, Dhara B, Kumer A. Design and Development of Xanthone Hybrid for Potent Anti-Inflammatory Effects: Synthesis and Evaluation. J Cell Mol Med 2025; 29:e70477. [PMID: 40126877 PMCID: PMC11932163 DOI: 10.1111/jcmm.70477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025] Open
Abstract
Inflammatory responses, while essential for host defence, can precipitate chronic pathologies when sustained. The polyphenolic entity xanthone is distinguished by its capacity to modulate inflammation, notably via the inhibition of the COX-2 enzyme and associated inflammatory pathways. Additionally, heterocyclic frameworks such as pyrazole, triazole, and imidazole are recognised for their anti-inflammatory attributes. This investigation was conducted to engineer and synthesise a series of novel hybrid-xanthone molecules with enhanced anti-inflammatory capabilities. Utilising computational docking strategies, these hybrid-xanthone variants were virtually screened against the COX-2 enzyme structure (PDB ID:1CX2), and the 10 leading candidates were identified based on their binding affinities. These selected entities were synthesised through an optimised three-stage synthetic route. Subsequent in vitro assessments were performed using the Egg albumin denaturation assay at incremental concentrations. Complementary in vivo experiments involved the Carrageenan-induced paw edema protocol in Wistar rats, administered at 200 mg/kg to evaluate the anti-inflammatory response over a period of 6 h. The best percentage inhibition was shown by compound A127(3-(5'(1,2,4-Triazole)-pentyloxy)-1,6,8-trihydroxy xanthone), A11(3-(1'-(1,2,4-Triazole)-methyloxy)-1,6,8-trihydroxy xanthone) and A119(3-(1'-(1,2,4-Triazole)-methyloxy)-1,6,8-trihydroxy xanthone) as 60 ± 0.31, 58.57 ± 0.023, and 57.14 ± 0.21 respectively. Spectroscopic characterisation of the compounds was achieved through UV, IR, NMR, and Mass spectrometry techniques. The investigation revealed that out of the synthesised cohort, nine compounds exhibited favourable in silico profiles, and half of these manifested substantial anti-inflammatory efficacy in both in vitro and in vivo models, outperforming the reference standard. These hybrid-xanthone molecules demonstrated precise COX-2 inhibition and maintained an acceptable safety margin in vivo, underscoring their therapeutic promise as anti-inflammatory agents.
Collapse
Affiliation(s)
- Shreyasi Karmakar
- Department of Pharmaceutical SciencesDibrugarh UniversityDibrugarhAssamIndia
| | - Riya Saikia
- Department of Pharmaceutical SciencesDibrugarh UniversityDibrugarhAssamIndia
| | - Aparoop Das
- Department of Pharmaceutical SciencesDibrugarh UniversityDibrugarhAssamIndia
| | - Kalyani Pathak
- Department of Pharmaceutical SciencesDibrugarh UniversityDibrugarhAssamIndia
| | - Padmashree Das
- Centre for Biotechnology and BioinformaticsDibrugarh UniversityDibrugarhAssamIndia
| | - Biman Bhuyan
- Department of Pharmaceutical SciencesDibrugarh UniversityDibrugarhAssamIndia
| | - Taha Alqahtani
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Humood Al Shmrany
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesPrince Sattam Bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Bikram Dhara
- Center for Global Health Research, Saveetha Medical College and HospitalSaveetha Institute of Medical and Technical SciencesChennaiIndia
| | - Ajoy Kumer
- Department of Chemistry, College of Arts and SciencesIUBAT‐International University of Business Agriculture and Technology, 4 Embankment Drive Road, Sector 10, Uttara Model TownDhaka‐1230Bangladesh
| |
Collapse
|
4
|
Tran QA, Tran GV, Velic S, Xiong HM, Kaur J, Moosavi Z, Nguyen P, Duong N, Luu VT, Singh G, Bui T, Rose M, Ho L. Effects of Astragaloside IV and Formononetin on Oxidative Stress and Mitochondrial Biogenesis in Hepatocytes. Int J Mol Sci 2025; 26:774. [PMID: 39859490 PMCID: PMC11765978 DOI: 10.3390/ijms26020774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Over-accumulation of reactive oxygen species (ROS) causes hepatocyte dysfunction and apoptosis that might lead to the progression of liver damage. Sirtuin-3 (SIRT3), the main NAD+-dependent deacetylase located in mitochondria, has a critical role in regulation of mitochondrial function and ROS production as well as in the mitochondrial antioxidant mechanism. This study explores the roles of astragaloside IV (AST-IV) and formononetin (FMR) in connection with SIRT3 for potential antioxidative effects. It was shown that the condition of combined pre- and post-treatment with AST-IV or FMR at all concentrations statistically increased and rescued cell proliferation. ROS levels were not affected by pre-or post-treatment individually with AST-IV or pre-treatment with FMR; however, post-treatment with FMR resulted in significant increases in ROS in all groups. Significant decreases in ROS levels were seen when pre- and post-treatment with AST-IV were combined at 5 and 10 μM, or FMR at 5 and 20 μM. In the condition of combined pre- and post-treatment with 10 μM AST-IV, there was a significant increase in SOD activity, and the transcriptional levels of Sod2, Cat, and GPX1 in all treatment groups, which is indicative of reactive oxygen species detoxification. Furthermore, AST-IV and FMR activated PGC-1α and AMPK as well as SIRT3 expression in AML12 hepatocytes exposed to t-BHP-induced oxidative stress, especially at high concentrations of FMR. This study presents a novel mechanism whereby AST-IV and FMR yield an antioxidant effect through induction of SIRT3 protein expression and activation of an antioxidant mechanism as well as mitochondrial biogenesis and mitochondrial content and potential. The findings suggest these agents can be used as SIRT3 modulators in treating oxidative-injury hepatocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Linh Ho
- College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| |
Collapse
|
5
|
Fang Z, Zhong B, Shi Y, Zhou W, Huang M, French SW, Tang X, Liu H. Single-cell transcriptomic analysis reveals characteristic feature of macrophage reprogramming in liver Mallory-Denk bodies pathogenesis. J Transl Med 2025; 23:77. [PMID: 39819676 PMCID: PMC11740356 DOI: 10.1186/s12967-024-05999-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/15/2024] [Indexed: 01/19/2025] Open
Abstract
Chronic liver diseases are highly linked with mitochondrial dysfunction and macrophage infiltration. Mallory-Denk bodies (MDBs) are protein aggregates associated with hepatic inflammation, and MDBs pathogenesis could be induced in mice by feeding 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Here, we investigate the macrophage heterogeneity and the role of macrophage during MDBs pathogenesis on DDC-induced MDBs mouse model by single-nucleus RNA sequencing (snRNA-seq). We defined liver macrophages into four distinct subsets including monocyte-derived macrophages (MDMs) subset and three Kupffer cells (KCs) subsets (Gpnmbhigh KCs, Peam1high KCs, and Gpnmblow Pecam1low KCs). Particularly, we identified a novel Gpnmbhigh KCs subset as lipid-associated macrophage (LAM) with high expression of Trem2, CD63, and CD9. Interestingly, LAM showed a potential immunosuppressive characteristic by expressing anti-inflammatory genes IL-7R during the MDBs formation. Using contact and transwell co-culture systems, the released mtDNA from hepatocytes was found to induce the activation of inflammasome in macrophages. Furthermore, we revealed the damaged DNA could activate the NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasome and subsequently form apoptosis-associated speck-like protein containing a caspase recruit domain (ASC) specks of liver macrophages. Collectively, our results firstly revealed macrophage heterogeneity and inflammasome activation by mtDNA from injured liver during MDBs pathogenesis, providing crucial understanding of pathogenesis of chronic liver disease.
Collapse
Affiliation(s)
- Zixuan Fang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; The Qingyuan Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Qingyuan, China
- The State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Bei Zhong
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; The Qingyuan Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Qingyuan, China
| | - Yi Shi
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; The Qingyuan Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Qingyuan, China
- The State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Wanmei Zhou
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; The Qingyuan Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Qingyuan, China
- The State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Maoping Huang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; The Qingyuan Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Qingyuan, China
| | - Samuel W French
- Department of Pathology, Harbor UCLA Medical Center, University of California, Torrance, CA90502, USA
| | - Xiaoping Tang
- The State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China.
- Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Hui Liu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; The Qingyuan Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Qingyuan, China.
- The State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Marcinek DJ, Ferrucci L. Reduced oxidative capacity of skeletal muscle mitochondria IS a fundamental consequence of adult ageing. J Physiol 2025; 603:17-20. [PMID: 38970753 DOI: 10.1113/jp285040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/03/2024] [Indexed: 07/08/2024] Open
Affiliation(s)
- David J Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Tang L, Zhu J, Zhuge S, Yu J, Jiang G. Perfluorooctane sulfonate induces hepatotoxicity through promoting inflammation, cell death and autophagy in a rat model. J Toxicol Sci 2025; 50:45-55. [PMID: 39894534 DOI: 10.2131/jts.50.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Perfluorooctane sulfonate (PFOS) is reported to cause hepatotoxicity in animals and humans. However, the underlying mechanism by which it affects organelle toxicity in the liver are not well elucidated yet. This study aimed to investigate the mechanisms underlying PFOS-induced hepatic toxicity, focusing on inflammation, cell death, and autophagy. We established a PFOS-exposed Sprague-Dawley (SD) rat liver injury model by intraperitoneal injection of PFOS (1 mg/kg and 10 mg/kg body weight) every alternate day for 15 days. Our findings indicated that PFOS increased liver weight, caused lipid disorder and hepatic steatosis in rats. Meanwhile, PFOS disrupted the structure of mitochondria, increased accumulation of reactive oxygen species (ROS), repressed superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) levels, and elevated malondialdehyde (MDA) and nitric oxide synthase (NOS) amounts. We found PFOS induced inflammation as evidenced by activation of NOD-like receptor protein 3 (NLRP3), Cleaved cysteine-aspartic acid protease (caspase)1, tumor necrosis factor (TNF)α and interleukin (IL)-1β levels. Moreover, PFOS exposure significantly decreased B-cell lymphoma2 (Bcl2)/Bcl2 associated X (Bax) ratio and increased the protein expression of Cleaved caspase-3. Compared with the control group, PFOS upregulated the protein expression of necroptotic markers and autophagy-related proteins. In conclusion, PFOS induced inflammation, cell death, and autophagy through oxidative stress by ROS overload, thereby providing a mechanistic explanation for PFOS-induced hepatotoxicity.
Collapse
Affiliation(s)
- Leilei Tang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, China
| | - Jianjun Zhu
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, China
| | - Sheng Zhuge
- Department of Surgery, The First People's Hospital of Yuhang District
| | - Jiawen Yu
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, China
| | - Guojun Jiang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, China
| |
Collapse
|
8
|
Intharuksa A, Kuljarusnont S, Sasaki Y, Tungmunnithum D. Flavonoids and Other Polyphenols: Bioactive Molecules from Traditional Medicine Recipes/Medicinal Plants and Their Potential for Phytopharmaceutical and Medical Application. Molecules 2024; 29:5760. [PMID: 39683916 DOI: 10.3390/molecules29235760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Currently, natural bioactive ingredients and/or raw materials are of significant interest to scientists around the world. Flavonoids and other polyphenols are a major group of phytochemicals that have been researched and noted as bioactive molecules. They offer several pharmacological and medical benefits. This current review aims to (1) illustrate their benefits for human health, such as antioxidant, anti-aging, anti-cancer, anti-inflammatory, anti-microbial, cardioprotective, neuroprotective, and UV-protective effects, and also (2) to perform a quality evaluation of traditional medicines for future application. Consequently, keywords were searched on Scopus, Google Scholar, and PubMed so as to search for related publications. Then, those publications were carefully checked in order to find current and non-redundant studies that matched the objective of this review. According to this review, researchers worldwide are very interested in discovering the potential of flavonoids and other polyphenols, used in traditional medicines and taken from medicinal plants, in relation to medical and pharmaceutical applications. Many studies focus on the health benefits of flavonoids and other polyphenols have been tested using in silico, in vitro, and in vivo models. However, few studies have been carried out using clinical trials that have trustworthy subject sizes and are in accordance with clinical practice guidelines. Additionally, interesting research directions and perspectives for future studies are highlighted in this work.
Collapse
Affiliation(s)
- Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sompop Kuljarusnont
- Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Yohei Sasaki
- Division of Pharmaceutical Sciences, Graduate School of Medical Plant Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Le Studium Institute for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
| |
Collapse
|
9
|
Ajiboye BO, Famusiwa CD, Oyedare DI, Julius BP, Adewole ZO, Ojo OA, Akindele AFI, Hosseinzadeh H, Brai BIC, Oyinloye BE, Vitalini S, Iriti M. Effect of Hibiscus sabdariffa L. leaf flavonoid-rich extract on Nrf-2 and HO-1 pathways in liver damage of streptozotocin-induced diabetic rats. Z NATURFORSCH C 2024:znc-2024-0182. [PMID: 39565955 DOI: 10.1515/znc-2024-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
This study investigated the effects of flavonoid-rich extract from Hibiscus sabdariffa L. (Malvaceae) leaves on liver damage in streptozotocin-induced diabetic rats by evaluating various biochemical parameters, including the molecular gene expressions of Nrf-2 and HO-1 as well as histological parameters. The extract was found to significantly reduce liver damage, as evidenced by lower levels of fragmented DNA and protein carbonyl concentrations. Oxidative stress markers, including malondialdehyde (MDA) level, were also significantly (p < 0.05) decreased, while antioxidant biomarkers, like reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) were enhanced. Additionally, the extract improved the activities of key liver enzymes, including phosphatases and transaminases, and increased albumin levels. Importantly, the study demonstrated that H. sabdariffa extract effectively regulated the expression of Nrf-2 and HO-1, suggesting a significant role in mitigating liver damage. These findings highlight its potential as a therapeutic agent for liver protection in diabetic conditions.
Collapse
Affiliation(s)
- Basiru Olaitan Ajiboye
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti, Nigeria
| | - Courage Dele Famusiwa
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti, Nigeria
| | - Damilola Ifeoluwa Oyedare
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti, Nigeria
| | - Biola Paul Julius
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti, Nigeria
| | - Zainab Odunola Adewole
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti, Nigeria
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Osun, Nigeria
| | - Ajoke Fehintola Idayat Akindele
- Department of Biosciences and Biotechnology, Environmental Management and Toxicology Unit, Faculty of Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bartholomew I C Brai
- Nutritional Biochemistry and Membrane Biochemistry, and Toxicology, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, Ado-Ekiti, Nigeria
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Ekiti, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Sara Vitalini
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi di Milano, Via G. Celoria 2, 20133, Milan, Italy
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi di Milano, Via G. Celoria 2, 20133, Milan, Italy
| |
Collapse
|
10
|
Che X, Oh JH, Kang YJ, Kim DW, Kim SG, Choi JY, Garagiola U. 4-Hexylresorcinol Enhances Glut4 Expression and Glucose Homeostasis via AMPK Activation and Histone H3 Acetylation. Int J Mol Sci 2024; 25:12281. [PMID: 39596347 PMCID: PMC11594624 DOI: 10.3390/ijms252212281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
This study investigates the potential of 4-hexylresorcinol (4HR) as a novel antidiabetic agent by assessing its effects on blood glucose levels, Glut4 expression, AMPK phosphorylation, and Histone H3 acetylation (Ac-H3) in the liver. In vitro experiments utilized Huh7 and HepG2 cells treated with varying concentrations of 4HR. Glut4, p-AMPK, and Ac-H3 expression levels were quantified via Western blotting. Additionally, GAPDH activity and glucose uptake were evaluated. In vivo experiments employed streptozotocin (STZ)-induced diabetic rats, with or without 4HR treatment, monitoring blood glucose, body weight, and hepatic levels of Glut4, p-AMPK, and Ac-H3. In vitro, 4HR treatment increased GAPDH activity and glucose uptake. Elevated Glut4, p-AMPK, and Ac-H3 levels were observed 8 h after 4HR administration. Inhibition of p-AMPK using compound C reduced 4HR-mediated Glut4 expression. In STZ-induced diabetic rats, 4HR significantly upregulated Glut4, p-AMPK, and Ac-H3 expression in the liver. Periodic 4HR injections mitigated weight loss and lowered blood glucose levels in STZ-injected animals. Histological analysis revealed increased glycogen storage in hepatocytes of the 4HR-treated group. Overall, 4HR enhanced Glut4 expression through upregulation of AMPK activity and histone H3 acetylation in vitro and in vivo, improving hepatic glucose homeostasis and suggesting potential as a candidate for diabetes treatment.
Collapse
Affiliation(s)
- Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Ji-Hyeon Oh
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (J.-H.O.); (Y.-J.K.)
| | - Yei-Jin Kang
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (J.-H.O.); (Y.-J.K.)
| | - Dae-Won Kim
- Department of Oral Biochemistry, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (J.-H.O.); (Y.-J.K.)
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Umberto Garagiola
- Maxillofacial and Dental Unit, Biomedical, Surgical and Oral Sciences Department, School of Dentistry, University of Milan, 20122 Milan, Italy;
| |
Collapse
|
11
|
Li Y, Zhang J, Chen S, Ke Y, Li Y, Chen Y. Growth differentiation factor 15: Emerging role in liver diseases. Cytokine 2024; 182:156727. [PMID: 39111112 DOI: 10.1016/j.cyto.2024.156727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024]
Abstract
Growth differentiation factor 15 (GDF15) is a cell stress-response cytokine within the transforming growth factor-β (TGFβ) superfamily. It is known to exert diverse effects on many metabolic pathways through its receptor GFRAL, which is expressed in the hindbrain, and transduces signals through the downstream receptor tyrosine kinase Ret. Since the liver is the core organ of metabolism, summarizing the functions of GDF15 is highly important. In this review, we assessed the relevant literature regarding the main metabolic, inflammatory, fibrogenic, tumorigenic and other effects of GDF15 on different liver diseases, including Metabolic dysfunction-associated steatotic liver disease(MASLD), alcohol and drug-induced liver injury, as well as autoimmune and viral hepatitis, with a particular focus on the pathogenesis of MASLD progression from hepatic steatosis to MASH, liver fibrosis and even hepatocellular carcinoma (HCC). Finally, we discuss the prospects of the clinical application potential of GDF15 along with its research and development progress. With better knowledge of GDF15, increasing in-depth research will lead to a new era in the field of liver diseases.
Collapse
Affiliation(s)
- Yu Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie Zhang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shurong Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yini Ke
- Department of Rheumatology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Youming Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yi Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
12
|
Lai W, Zhang J, Sun J, Min T, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Oxidative stress in alcoholic liver disease, focusing on proteins, nucleic acids, and lipids: A review. Int J Biol Macromol 2024; 278:134809. [PMID: 39154692 DOI: 10.1016/j.ijbiomac.2024.134809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Oxidative stress is one of the important factors in the development of alcoholic liver disease. The production of reactive oxygen species and other free radicals is an important feature of alcohol metabolism in the liver and an important substance in liver injury. When large amounts of ROS are produced, the homeostasis of the liver REDOX system will be disrupted and liver injury will be caused. Oxidative stress can damage proteins, nucleic acids and lipids, liver dysfunction. In addition, damaging factors produced by oxidative damage to liver tissue can induce the occurrence of inflammation, thereby aggravating the development of ALD. This article reviews the oxidative damage of alcohol on liver proteins, nucleic acids, and lipids, and provides new insights and summaries of the oxidative stress process. We also discussed the relationship between oxidative stress and inflammation in alcoholic liver disease from different perspectives. Finally, the research status of antioxidant therapy in alcoholic liver disease was summarized, hoping to provide better help for learning and developing the understanding of alcoholic liver disease.
Collapse
Affiliation(s)
- Weiwen Lai
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahua Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiawei Sun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianqi Min
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Kuo CL, Lin YC, Lo YK, Lu YZ, Babuharisankar AP, Lien HW, Chou HY, Lee AYL. The mitochondrial stress signaling tunes immunity from a view of systemic tumor microenvironment and ecosystem. iScience 2024; 27:110710. [PMID: 39262792 PMCID: PMC11388186 DOI: 10.1016/j.isci.2024.110710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Mitochondria play important roles in cell fate, calcium signaling, mitophagy, and the signaling through reactive oxygen species (ROS). Recently, mitochondria are considered as a signaling organelle in the cell and communicate with other organelles to constitute the mitochondrial information processing system (MIPS) that transduce input-to-output biological information. The success in immunotherapy, a concept of systemic therapy, has been proved to be dependent on paracrine interactions within the tumor microenvironment (TME) and distant organs including microbiota and immune components. We will adopt a broader view from the concept of TME to tumor micro- and macroenvironment (TM 2 E) or tumor-organ ecosystem (TOE). In this review, we will discuss the role of mitochondrial signaling by mitochondrial ROS, calcium flux, metabolites, mtDNA, vesicle transportation, and mitochondria-derived peptide in the TME and TOE, in particular immune regulation and effective cancer immunotherapy.
Collapse
Affiliation(s)
- Cheng-Liang Kuo
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Ying-Chen Lin
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Yu Kang Lo
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Yu-Zhi Lu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | | | - Hui-Wen Lien
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Han-Yu Chou
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Department of Life Sciences, College of Health Sciences & Technology, National Central University, Zhongli, Taoyuan 32001, Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
14
|
Zuo X, Gao L, Peng X, Dong L, Huang M, Hu T, Deng L, Zhu Q, Zhang J. Unveiling the role of mtDNA in Liver-Kidney Crosstalk: Insights from trichloroethylene hypersensitivity syndrome. Int Immunopharmacol 2024; 138:112513. [PMID: 38917520 DOI: 10.1016/j.intimp.2024.112513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/16/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
In specific pathological conditions, addressing liver injury may yield favorable effects on renal function through the phenomenon of liver-kidney crosstalk. Mitochondrial DNA (mtDNA) possesses the capability to trigger downstream pathways of inflammatory cytokines, ultimately leading to immune-mediated organ damage. Consequently, understanding the intricate molecular mechanisms governing mtDNA involvement in diseases characterized by liver-kidney crosstalk is of paramount significance. This study seeks to elucidate the role of mtDNA in conditions marked by liver-kidney crosstalk. In previous clinical cases, it has been observed that patients with Trichloroethylene Hypersensitivity Syndrome (TCE-HS) who experience severe liver injury often also exhibit renal injury. In this study, patients diagnosed with trichloroethylene hypersensitivity syndrome were recruited from Shenzhen Occupational Disease Control Center. And Balb/c mice were treated with trichloroethylene. The correlation between liver and kidney injuries in patients with TCE-HS was assessed using Enzyme-Linked Immunosorbent Assay (ELISA). Alterations in mtDNA levels were examined in mouse hepatocytes, red blood cells (RBCs), and renal tubular epithelial cells utilizing immunofluorescence and PCR techniques. TCE-sensitized mice exhibited a significant increase in reactive oxygen species (ROS) and the opening of the mitochondrial permeability transition pore in hepatocytes, resulting in the release of mtDNA. Furthermore, heightened levels of mtDNA and Toll-like Receptor 9 (TLR9) expression were observed in RBCs. Additional experiments demonstrated elevated expression of TLR9 and its downstream mediator MyD88 in renal tubule epithelial cells of TCE-sensitized mice. In vitro investigations confirmed that mtDNA activates the TLR9 pathway in TCMK-1 cells. Collectively, these results suggest that mtDNA released from mitochondrial damage in hepatocytes is carried by RBCs to renal tubular epithelial cells and mediates inflammatory injury in renal tubular epithelial cells through activation of the TLR9 receptor.
Collapse
Affiliation(s)
- Xulei Zuo
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Lei Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Xinyu Peng
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Luolun Dong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Meng Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Tingting Hu
- Shenzhen Prevention and Treatment Center for Occupational Disease, Shenzhen, PR China
| | - Lihua Deng
- Shenzhen Prevention and Treatment Center for Occupational Disease, Shenzhen, PR China.
| | - Qixing Zhu
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| |
Collapse
|
15
|
Gay L, Desquiret-Dumas V, Nagot N, Rapenne C, Van de Perre P, Reynier P, Molès JP. Long-term persistence of mitochondrial dysfunctions after viral infections and antiviral therapies: A review of mechanisms involved. J Med Virol 2024; 96:e29886. [PMID: 39246064 DOI: 10.1002/jmv.29886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Mitochondria are vital for most cells' functions. Viruses hijack mitochondria machinery for misappropriation of energy supply or to bypass defense mechanisms. Many of these mitochondrial dysfunctions persist after recovery from treated or untreated viral infections, particularly when mitochondrial DNA is permanently damaged. Quantitative defects and structural rearrangements of mitochondrial DNA accumulate in post-mitotic tissues as recently reported long after SARS-CoV-2 or HIV infection, or following antiviral therapy. These observations are consistent with the "hit-and-run" concept proposed decades ago to explain viro-induced cell transformation and it could apply to delayed post-viral onsets of symptoms and advocate for complementary supportive care. Thus, according to this concept, following exposure to viruses or antiviral agents, mitochondrial damage could evolve into an autonomous clinical condition. It also establishes a pathogenic link between communicable and non-communicable chronic diseases.
Collapse
Affiliation(s)
- Laetitia Gay
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Valérie Desquiret-Dumas
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Clara Rapenne
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Pascal Reynier
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| |
Collapse
|
16
|
Laderian A, Ghasemi M, Mortazavi P, Mousavi Z, Ale-Ebrahim M. Hepatoprotective effect of astaxanthin against cholestasis liver fibrosis induced by bile duct ligation in adult Wistar rats. J Biochem Mol Toxicol 2024; 38:e23788. [PMID: 39087918 DOI: 10.1002/jbt.23788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
In this study, we evaluated the hepatoprotective effects of astaxanthin, a natural carotenoid, against the cholestatic liver fibrosis induced by bile duct ligation (BDL). Toward this end, male rats were subjected to BDL and treated with astaxanthin for 35 days. Afterwards, their serum and liver biochemical factors were assessed. Also, histopathological and immunohistochemical analyses were performed to determine the fibrosis and the expression levels of alpha-smooth muscle actin (α-SMA) and transforming growth factor beta (TGF-ß1) in the liver tissue. Based on the results, BDL caused a significant increase in liver enzyme levels, blood lipids, and bilirubin, while decreasing the activity of superoxide dismutase(SOD), catalase (CAT), and glutathione (GSH) enzymes. Also, in the BDL rats, hepatocyte necrosis, infiltration of inflammatory lymphocytes, and hyperplasia of bile ducts were detected, along with a significant increase in α-SMA and TGF-ß1 expression. Astaxanthin, however, significantly prevented the BDL's detrimental effects. In all, 10 mg/kg of this drug maintained the bilirubin and cholesterol serum levels of BDL rats at normal levels. It also reduced the liver enzymes' activity and serum lipids, while increasing the SOD, CAT, and GSH activity in BDL rats. The expression of α-SMA and TGF-ß1 in the BDL rats treated with 10 mg/kg of astaxanthin was moderate (in 34%-66% of cells) and no considerable cholestatic fibrosis was observed in this group. However, administrating the 20 mg/kg of astaxanthin was not effective in this regard. These findings showed that astaxanthin could considerably protect the liver from cholestatic damage by improving the biochemical features and regulating the expression of related proteins.
Collapse
Affiliation(s)
- Azadeh Laderian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences-Islamic Azad University, Tehran, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pejman Mortazavi
- Department of Pathology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Mousavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences-Islamic Azad University, Tehran, Iran
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
17
|
Gąssowska-Dobrowolska M, Olech-Kochańczyk G, Culmsee C, Adamczyk A. Novel Insights into Parkin-Mediated Mitochondrial Dysfunction and "Mito-Inflammation" in α-Synuclein Toxicity. The Role of the cGAS-STING Signalling Pathway. J Inflamm Res 2024; 17:4549-4574. [PMID: 39011416 PMCID: PMC11249072 DOI: 10.2147/jir.s468609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
The prevalence of age-related neurodegenerative diseases, such as Parkinson's disease (PD) and related disorders continues to grow worldwide. Increasing evidence links intracellular inclusions of misfolded alpha-synuclein (α-syn) aggregates, so-called Lewy bodies (LB) and Lewy neuritis, to the progressive pathology of PD and other synucleinopathies. Our previous findings established that α-syn oligomers induce S-nitrosylation and deregulation of the E3-ubiquitin ligase Parkin, leading to mitochondrial disturbances in neuronal cells. The accumulation of damaged mitochondria as a consequence, together with the release of mitochondrial-derived damage-associated molecular patterns (mtDAMPs) could activate the innate immune response and induce neuroinflammation ("mito-inflammation"), eventually accelerating neurodegeneration. However, the molecular pathways that transmit pro-inflammatory signals from damaged mitochondria are not well understood. One of the proposed pathways could be the cyclic GMP-AMP synthase (cGAS) - stimulator of interferon genes (STING) (cGAS-STING) pathway, which plays a pivotal role in modulating the innate immune response. It has recently been suggested that cGAS-STING deregulation may contribute to the development of various pathological conditions. Especially, its excessive engagement may lead to neuroinflammation and appear to be essential for the development of neurodegenerative brain diseases, including PD. However, the precise molecular mechanisms underlying cGAS-STING pathway activation in PD and other synucleinopathies are not fully understood. This review focuses on linking mitochondrial dysfunction to neuroinflammation in these disorders, particularly emphasizing the role of the cGAS-STING signaling. We propose the cGAS-STING pathway as a critical driver of inflammation in α-syn-dependent neurodegeneration and hypothesize that cGAS-STING-driven "mito-inflammation" may be one of the key mechanisms promoting the neurodegeneration in PD. Understanding the molecular mechanisms of α-syn-induced cGAS-STING-associated "mito-inflammation" in PD and related synucleinopathies may contribute to the identification of new targets for the treatment of these disorders.
Collapse
Affiliation(s)
| | - Gabriela Olech-Kochańczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior - CMBB, University of Marburg, Marburg, Germany
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
18
|
Liu L, Lu C, Tao Z, Zha Z, Wang H, Miao Z. 2D Is Better: Engineering Polydopamine into Cationic Nanosheets to Enhance Anti-Inflammatory Capability. Adv Healthc Mater 2024; 13:e2400048. [PMID: 38466315 DOI: 10.1002/adhm.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Indexed: 03/12/2024]
Abstract
Polydopamine nanomaterials have emerged as one of the most popular organic materials for the management of oxidative stress-mediated inflammatory diseases. However, their current anti-inflammatory ability is still unsatisfactory because of limited phenolic hydroxyl groups, and oxidation reaction-medicated reactive oxygen and nitrogen species (RONS) scavenging. Herein, via fusing dimension engineering and surface charge engineering, 2D cationic polydopamine nanosheets (PDA NSs) capable of scavenging multiple danger signals to enhance anti-inflammatory capability are reported. Compared with conventional spherical polydopamine nanoparticles, 2D PDA NSs exhibit three- to fourfold enhancement in RONS scavenging capability, which should be attributed to high specific surface area and abundant phenol groups of 2D ultrathin structure. To further enhance the anti-inflammatory ability, polylysine molecules are absorbed on the surface of PDA NSs to endow the scavenging capability of cell-free DNA (cfDNA), another typical inflammatory factor to exacerbate the pathogenesis of inflammation. Molecular mechanisms reveal that cationic PDA NSs can concurrently activate Keap1-Nrf2 and block TLR9 signaling pathway, achieving synergistical inflammation inhibition. As a proof of concept, cationic PDA NSs with RONS and cfDNA dual-scavenging capability effectively alleviate the inflammatory bowel disease in both delayed and prophylactic models, much better than the clinical drug 5-aminosalicylic acid.
Collapse
Affiliation(s)
- Lulu Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Chenxin Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Zhenchao Tao
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, Hefei, 230031, P. R. China
- The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, P. R. China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Hua Wang
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| | - Zhaohua Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
19
|
Mohammed ER, Abd-El-Fatah AH, Mohamed AR, Mahrouse MA, Mohammad MA. Discovery of new 2-(3-(naphthalen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole derivatives with potential analgesic and anti-inflammatory activities: In vitro, in vivo and in silico investigations. Bioorg Chem 2024; 147:107372. [PMID: 38653152 DOI: 10.1016/j.bioorg.2024.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Joining the global demand for the discovery of potent NSAIDs with minimized ulcerogenic effect, new pyrazole clubbed thiazole derivatives 5a-o were designed and synthesized. The new derivatives were initially evaluated for their analgesic activity. Eight compounds 5a, 5c, 5d, 5e, 5f, 5h, 5m, and 5o showed higher activity than Indomethacin (potency = 105-130 % vs. 100 %). Subsequently, they were picked for further evaluation of their anti-inflammatory activity, ulcerogenic liability as well as toxicological studies. Derivatives 5h and 5m showed a potential % edema inhibition after 3 h (79.39 % and 72.12 %, respectively), with a promising safety profile and low ulcer indices (3.80 and 3.20, respectively). The two compounds 5h and 5m were subjected to in vitro COX-1 and COX-2 inhibition assay. The candidate 5h showed nearly equipotent COX-1 inhibition (IC50 = 38.76 nM) compared to the non-selective reference drug Indomethacin (IC50 = 35.72 nM). Compound 5m expressed significant inhibitory activities and a higher COX-2 selectivity index (IC50 = 87.74 nM, SI = 2.05) in comparison with Indomethacin (SI = 0.52), with less selectivity than Celecoxib (SI = 8.31). Simulation docking studies were carried out to gain insights into the binding interaction of compounds 5h and 5m in the vicinity of COX-1 and COX-2 enzymes that illustrated the importance of pyrazole clubbed thiazole core in hydrogen bonding interactions. The thiazole motif of compounds 5h and 5m exhibited a well orientation toward COX-1 Arg120 key residue by hydrogen bonding interactions. Compound 5h revealed an additional arene-cation interaction with Arg120 that could rationalize its superior COX-1 inhibitory activity. Compounds 5h and 5m overlaid the co-crystallized ligand Celecoxib I differently in the active site of COX-2. Compound 5m showed an enhanced accommodation with binding energy of - 6.13 vs. - 1.70 kcal/mol of compounds 5h. The naphthalene ring of compound 5m adopted the Celecoxib I benzene sulfonamide region that is stabilized by hydrogen-arene interactions with the hydrophobic sidechains of the key residues Ser339 and Phe504. Further, the core structure of compound 5m, pyrazole clubbed thiazole, revealed deeper hydrophobic interactions with Ala513, Leu517 and Val509 residues. Finally, a sensitive and accurate UPLC-MS/MS method was developed for the simultaneous estimation of some selected promising pyrazole derivatives in rat plasma. Accordingly, compounds 5h and 5m were suggested to be promising potent analgesic and anti-inflammatory agents with improved safety profiles and a novel COX isozyme modulation activity.
Collapse
Affiliation(s)
- Eman R Mohammed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Aliaa H Abd-El-Fatah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Abdalla R Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt.
| | - Marianne A Mahrouse
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mohammad A Mohammad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
20
|
Jia X, Zhu L, Zhu Q, Zhang J. The role of mitochondrial dysfunction in kidney injury and disease. Autoimmun Rev 2024; 23:103576. [PMID: 38909720 DOI: 10.1016/j.autrev.2024.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Mitochondria are the main sites of aerobic respiration in the cell and mainly provide energy for the organism, and play key roles in adenosine triphosphate (ATP) synthesis, metabolic regulation, and cell differentiation and death. Mitochondrial dysfunction has been identified as a contributing factor to a variety of diseases. The kidney is rich in mitochondria to meet energy needs, and stable mitochondrial structure and function are essential for normal kidney function. Recently, many studies have shown a link between mitochondrial dysfunction and kidney disease, maintaining mitochondrial homeostasis has become an important target for kidney therapy. In this review, we integrate the role of mitochondrial dysfunction in different kidney diseases, and specifically elaborate the mechanism of mitochondrial reactive oxygen species (mtROS), autophagy and ferroptosis involved in the occurrence and development of kidney diseases, providing insights for improved treatment of kidney diseases.
Collapse
Affiliation(s)
- Xueqian Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Lifu Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Qixing Zhu
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; The Center for Scientific Research, Anhui Medical University, Hefei, PR China.
| |
Collapse
|
21
|
Li W, Li Y, Zhao J, Liao J, Wen W, Chen Y, Cui H. Release of damaged mitochondrial DNA: A novel factor in stimulating inflammatory response. Pathol Res Pract 2024; 258:155330. [PMID: 38733868 DOI: 10.1016/j.prp.2024.155330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Mitochondrial DNA (mtDNA) is a circular double-stranded genome that exists independently of the nucleus. In recent years, research on mtDNA has significantly increased, leading to a gradual increase in understanding of its physiological and pathological characteristics. Reactive oxygen species (ROS) and other factors can damage mtDNA. This damaged mtDNA can escape from the mitochondria to the cytoplasm or extracellular space, subsequently activating immune signaling pathways, such as NLR family pyrin domain protein 3 (NLRP3), and triggering inflammatory responses. Numerous studies have demonstrated the involvement of mtDNA damage and leakage in the pathological mechanisms underlying various diseases including infectious diseases, metabolic inflammation, and immune disorders. Consequently, comprehensive investigation of mtDNA can elucidate the pathological mechanisms underlying numerous diseases. The prevention of mtDNA damage and leakage has emerged as a novel approach to disease treatment, and mtDNA has emerged as a promising target for drug development. This article provides a comprehensive review of the mechanisms underlying mtDNA-induced inflammation, its association with various diseases, and the methods used for its detection.
Collapse
Affiliation(s)
- Wenting Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China
| | - Yuting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jie Zhao
- Department of TCM Endocrinology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan 650021, China
| | - Jiabao Liao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China
| | - Weibo Wen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| | - Yao Chen
- Department of TCM Encephalopathy, Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan 650021, China.
| | - Huantian Cui
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| |
Collapse
|
22
|
Liu Y, Zhang B, Duan R, Liu Y. Mitochondrial DNA Leakage and cGas/STING Pathway in Microglia: Crosstalk Between Neuroinflammation and Neurodegeneration. Neuroscience 2024; 548:1-8. [PMID: 38685462 DOI: 10.1016/j.neuroscience.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Neurodegenerative diseases, characterized by abnormal deposition of misfolded proteins, often present with progressive loss of neurons. Chronic neuroinflammation is a striking hallmark of neurodegeneration. Microglia, as the primary immune cells in the brain, is the main type of cells that participate in the formation of inflammatory microenvironment. Cytoplasmic free mitochondrial DNA (mtDNA), a common component of damage-associated molecular patterns (DAMPs), can activate the cGas/stimulator of interferon genes (STING) signalling, which subsequently produces type I interferon and proinflammatory cytokines. There are various sources of free mtDNA in microglial cytoplasm, but mitochondrial oxidative stress accumulation plays the vital role. The upregulation of cGas/STING pathway in microglia contributes to the abnormal and persistent microglial activation, accompanied by excessive secretion of neurotoxic inflammatory mediators such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), which exacerbates the damage of neurons and promotes the development of neurodegeneration. Currently, novel therapeutic approaches need to be found to delay the progression of neurodegenerative disorders, and regulation of the cGas/STING signaling in microglia may be a potential target.
Collapse
Affiliation(s)
- Yuqian Liu
- Qilu Hospital of Shandong University, Jinan, China
| | - Bohan Zhang
- Qilu Hospital of Shandong University, Jinan, China
| | - Ruonan Duan
- Qilu Hospital of Shandong University, Jinan, China.
| | - Yiming Liu
- Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
23
|
Cornejo-Guerra C, Salazar-Ardiles C, Morales P, Andrade DC. Consequences of Exposure to Hypobaric Hypoxia Associated with High Altitude on Spermatogenesis and Seminal Parameters: A Literature Review. Cells 2024; 13:592. [PMID: 38607031 PMCID: PMC11011536 DOI: 10.3390/cells13070592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 04/13/2024] Open
Abstract
Preclinical research has provided compelling evidence indicating that exposure to hypobaric hypoxia (HH) results in a deterioration of spermatogenesis. This adverse effect extends to the underlying molecular mechanisms, progressively leading to impairments in the seminiferous epithelium and germ cells and alterations in semen parameters. Indeed, several studies have demonstrated that animals exposed to HH, whether in natural high-altitude environments or under simulated hypoxic conditions, exhibit damage to the self-renewal and differentiation of spermatogenesis, an increase in germline cell apoptosis, and structural alterations in the seminiferous tubules. One of the primary mechanisms associated with the inhibition of differentiation and an increase in apoptosis among germ cells is an elevated level of oxidative stress, which has been closely associated with HH exposure. Human studies have shown that individuals exposed to HH, such as mountaineers and alpinists, exhibit decreased sperm count, reduced motility, diminished viability, and increased sperm with abnormal morphology in their semen. This evidence strongly suggests that exposure to HH may be considered a significant risk factor that could elevate the prevalence of male infertility. This literature review aims to provide a comprehensive description and propose potential mechanisms that could elucidate the infertility processes induced by HH. By doing so, it contributes to expanding our understanding of the challenges posed by extreme environments on human physiology, opening new avenues for research in this field.
Collapse
Affiliation(s)
- Carlos Cornejo-Guerra
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1271155, Chile; (C.C.-G.); (C.S.-A.)
| | - Camila Salazar-Ardiles
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1271155, Chile; (C.C.-G.); (C.S.-A.)
| | - Patricio Morales
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1271155, Chile;
| | - David C. Andrade
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1271155, Chile; (C.C.-G.); (C.S.-A.)
| |
Collapse
|
24
|
Liu SZ, Chiao YA, Rabinovitch PS, Marcinek DJ. Mitochondrial Targeted Interventions for Aging. Cold Spring Harb Perspect Med 2024; 14:a041199. [PMID: 37788882 PMCID: PMC10910403 DOI: 10.1101/cshperspect.a041199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Changes in mitochondrial function play a critical role in the basic biology of aging and age-related disease. Mitochondria are typically thought of in the context of ATP production and oxidant production. However, it is clear that the mitochondria sit at a nexus of cell signaling where they affect metabolite, redox, and energy status, which influence many factors that contribute to the biology of aging, including stress responses, proteostasis, epigenetics, and inflammation. This has led to growing interest in identifying mitochondrial targeted interventions to delay or reverse age-related decline in function and promote healthy aging. In this review, we discuss the diverse roles of mitochondria in the cell. We then highlight some of the most promising strategies and compounds to target aging mitochondria in preclinical testing. Finally, we review the strategies and compounds that have advanced to clinical trials to test their ability to improve health in older adults.
Collapse
Affiliation(s)
- Sophia Z Liu
- Department of Radiology, University of Washington, Seattle, Washington 98195, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Peter S Rabinovitch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
25
|
Ji X, Yang Z, Li C, Zhu S, Zhang Y, Xue F, Sun S, Fu T, Ding C, Liu Y, Wan Q. Mitochondrial ribosomal protein L12 potentiates hepatocellular carcinoma by regulating mitochondrial biogenesis and metabolic reprogramming. Metabolism 2024; 152:155761. [PMID: 38104924 DOI: 10.1016/j.metabol.2023.155761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Mitochondrial dysfunction and metabolic reprogramming are key features of hepatocellular carcinoma (HCC). Despite its significance, the precise underlying mechanism behind these processes has not been fully elucidated. The latest investigations, along with our previous discoveries, have substantiated the significant role of mitochondrial ribosomal protein L12 (MRPL12), a newly identified gene involved in mitochondrial transcription regulation, in the modulation of mitochondrial metabolism. Nevertheless, the role of MRPL12 in tumorigenesis has yet to be investigated. METHODS The expression of MRPL12 in HCC was assessed using an online database. Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), and immunohistochemistry (IHC) were employed to determine the expression of MRPL12 in HCC tissues, patient-derived organoid (PDO), and cell lines. The correlation between MRPL12 expression and clinicopathological features, as well as prognosis, was examined using tissue microarray analysis. An in vivo subcutaneous tumor xenograft model, gene knockdown or overexpression assay, chromatin immunoprecipitation (ChIP) assay, Seahorse XF96 assay, and cell function assay were employed to investigate the biological function and potential molecular mechanism of MRPL12 in HCC. RESULTS A significant upregulation of MRPL12 was observed in HCC cells, PDO and patient tissues, which correlated with advanced tumor stage, higher grade and poor prognosis. MRPL12 overexpression promoted cell proliferation, migration, and invasion in vitro, as well as tumorigenicity in vivo, whereas MRPL12 knockdown showed the opposite effect. MRPL12 knockdown also inhibited the capacity of organoids proliferation capacity. Furthermore, MRPL12 was found to be crucial for maintaining mitochondrial homeostasis. Both gain and loss-of-function experiments targeting MRPL12 in HCC cells altered oxidative phosphorylation (OXPHOS) and mitochondrial DNA content. Notably, suppression of OXPHOS effectively mitigates the tumor-promoting effect attributed to MRPL12 overexpression, implying the involvement of MRPL12 in HCC through the modulation of mitochondrial metabolism. Besides, Yin Yang 1 (YY1) was identified as a transcription factor responsible for regulating MRPL12, while the PI3K/mTOR pathway was found to act as an upstream regulator of YY1. MRPL12 knockdown attenuated the YY1 overexpression or PI3K/mTOR activation-induced malignant phenotype in HCC cells. CONCLUSION Our findings provide compelling evidence that MRPL12 is implicated in driving the malignant phenotype of HCC via regulating mitochondrial metabolism. Moreover, the aberrant expression of MRPL12 in HCC is mediated by the upstream PI3K/mTOR/YY1 pathway. These results highlight the potential of targeting MRPL12 as a promising therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Xingzhao Ji
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhen Yang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Chensheng Li
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Suwei Zhu
- Department of Critical-Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Fuyuan Xue
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Shengnan Sun
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Tingting Fu
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Can Ding
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Qiang Wan
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
26
|
Fatima T, Abrar H, Jahan N, Shamim S, Ahmed N, Ali AB, Begum I, Ahmed W. Molecular marker identification, antioxidant, antinociceptive, and anti-inflammatory responsiveness of malonic acid capped silver nanoparticle. Front Pharmacol 2024; 14:1319613. [PMID: 38357362 PMCID: PMC10864560 DOI: 10.3389/fphar.2023.1319613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Nano-sized silver has drawn a great deal of attention in the field of health sciences owing to its remarkable therapeutic applications. Interestingly, the method applied to synthesize nanoparticles and the choice of reagents considerably influence their therapeutic potential and toxicities. Current research has explored the toxicity, anti-inflammatory, antinociceptive, and antioxidant responses of the malonic acid-capped silver nanoparticles (MA-AgNPs (C) by using sodium borohydride as a reducing agent at low temperatures by employing both in vitro and in vivo approaches. Furthermore, it has highlighted the synergistic effect of these novel compounds with conventional anti-inflammatory therapeutic agents. Acute and sub-acute toxicity analysis performed following OECD guidelines showed that the studied MA-AgNPs (C) are safer, and prominent toxic signs have not been detected at the highest studied dose of 2,000 mg/kg. Cytotoxicity evaluation through brine shrimp lethality revealed 20% lethality at the highest concentration of 169.8 μg/mL. Significantly, positive anti-inflammatory and analgesic responses alone as well as synergism with the standard were identified through in vitro as well as in vivo methods which were more potent at a lower dose (200 mg/kg). Notably synergistic outcomes were more pronounced than individual ones, indicating their prominent effect as a feasible drug delivery system. IL-6 and TNF-α assessment in excised paw tissue through RTPCR technique further supported their anti-inflammatory potential. DPPH assay revealed eminent in vitro antioxidant activity which was further corroborated by in vivo antioxidant assessment through evaluation of SOD in excised paw tissue.
Collapse
Affiliation(s)
- Tehrim Fatima
- Department of Pharmacology, Dow College of Pharmacy, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Hina Abrar
- Department of Pharmacology, Dow College of Pharmacy, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Noor Jahan
- Department of Pharmacology, Dow College of Pharmacy, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Sana Shamim
- Department of Pharmaceutical Chemistry, Dow College of Pharmacy, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Nazia Ahmed
- Dow Research Institute of Biotechnology and Biosciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Asma Basharat Ali
- Department of Anatomy, Jinnah Medical and Dental College, Karachi, Pakistan
| | - Irshad Begum
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Waqas Ahmed
- School of Public Health, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
27
|
Shin S, Kim J, Lee JY, Kim J, Oh CM. Mitochondrial Quality Control: Its Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). J Obes Metab Syndr 2023; 32:289-302. [PMID: 38049180 PMCID: PMC10786205 DOI: 10.7570/jomes23054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 12/06/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, is characterized by hepatic steatosis and metabolic dysfunction and is often associated with obesity and insulin resistance. Recent research indicates a rapid escalation in MASLD cases, with projections suggesting a doubling in the United States by 2030. This review focuses on the central role of mitochondria in the pathogenesis of MASLD and explores potential therapeutic interventions. Mitochondria are dynamic organelles that orchestrate hepatic energy production and metabolism and are critically involved in MASLD. Dysfunctional mitochondria contribute to lipid accumulation, inflammation, and liver fibrosis. Genetic associations further underscore the relationship between mitochondrial dynamics and MASLD susceptibility. Although U.S. Food and Drug Administration-approved treatments for MASLD remain elusive, ongoing clinical trials have highlighted promising strategies that target mitochondrial dysfunction, including vitamin E, metformin, and glucagon-like peptide-1 receptor agonists. In preclinical studies, novel therapeutics, including nicotinamide adenine dinucleotide+ precursors, urolithin A, spermidine, and mitoquinone, have shown beneficial effects, such as improving mitochondrial quality control, reducing oxidative stress, and ameliorating hepatic steatosis and inflammation. In conclusion, mitochondrial dysfunction is central to MASLD pathogenesis. The innovative mitochondria-targeted approaches discussed in this review offer a promising avenue for reducing the burden of MASLD and improving global quality of life.
Collapse
Affiliation(s)
- Soyeon Shin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jaeyoung Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Ju Yeon Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
28
|
Arain MA, Khaskheli GB, Shah AH, Marghazani IB, Barham GS, Shah QA, Khand FM, Buzdar JA, Soomro F, Fazlani SA. Nutritional significance and promising therapeutic/medicinal application of camel milk as a functional food in human and animals: a comprehensive review. Anim Biotechnol 2023; 34:1988-2005. [PMID: 35389299 DOI: 10.1080/10495398.2022.2059490] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Camel milk (CM) is the key component of human diet specially for the population belongs to the arid and semi-arid regions of the world. CM possess unique composition as compare to the cow milk with abundant amount of medium chain fatty acids in fat low lactose and higher concentration of whey protein and vitamin C. Besides the nutritional significance of CM, it also contains higher concentration of bioactive compounds including bioactive peptides, lactic acid bacteria (LAB), lactoferrin (LF), lactoperoxidase, lysozyme casein and immunoglobulin. Recently, CM and their bioactive compounds gaining more attention toward scientific community owing to their multiple health benefits, especially in the current era of emerging drug resistance and untold side effects of synthetic medicines. Consumption of fresh or fermented CM and its products presumed exceptional nutraceutical and medicinal properties, including antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, hepatoprotective, nephroprotective, anticancer and immunomodulatory activities. Moreover, CM isolated LAB exhibit antioxidant and probiotic effects leading to enhance the innate and adaptive immune response against both gram-negative and gram-positive pathogenic bacteria. The main objective of this review is to highlight the nutritional significance, pharmaceutical potential, medicinal value and salient beneficial health aspect of CM for human and animals.
Collapse
Affiliation(s)
- Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Gul Bahar Khaskheli
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Atta Hussain Shah
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Illahi Bakhash Marghazani
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Ghulam Shabir Barham
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Faiz Muhammad Khand
- Department of Veterinary Surgery, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Jameel Ahmed Buzdar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Feroza Soomro
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Sarfraz Ali Fazlani
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| |
Collapse
|
29
|
Hamzeh O, Rabiei F, Shakeri M, Parsian H, Saadat P, Rostami-Mansoor S. Mitochondrial dysfunction and inflammasome activation in neurodegenerative diseases: Mechanisms and therapeutic implications. Mitochondrion 2023; 73:S1567-7249(23)00087-9. [PMID: 39492438 DOI: 10.1016/j.mito.2023.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/28/2023] [Indexed: 11/05/2024]
Abstract
Impaired mitochondrial function is crucial to the pathogenesis of several neurodegenerative diseases. It causes the release of mitochondrial DNA (mtDNA), mitochondrial reactive oxygen species (mtROS), ATP, and cardiolipin, which activate the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. NLRP3 inflammasome is an important innate immune system element contributing to neuroinflammation and neurodegeneration. Therefore, targeting the NLRP3 inflammasome has become an interesting therapeutic approach for treating neurodegenerative diseases. This review describes the role of mitochondrial abnormalities and over-activated inflammasomes in the progression of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Friedrich ataxia (FRDA). We also discuss the therapeutic strategies focusing on signaling pathways associated with inflammasome activation, which potentially alleviate neurodegenerative symptoms and impede disease progression.
Collapse
Affiliation(s)
- Olia Hamzeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Shakeri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Rostami-Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
30
|
Elyamany A, Ghazala R, Fayed O, Hamed Y, El-Shendidi A. Mitochondrial DNA copy number in Hepatitis C virus-related chronic liver disease: impact of direct-acting antiviral therapy. Sci Rep 2023; 13:18330. [PMID: 37884543 PMCID: PMC10603142 DOI: 10.1038/s41598-023-44665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Hepatitis C virus (HCV) infection can regulate the number and dynamics of mitochondria, and is associated with a prominent hepatic mitochondrial injury. Mitochondrial distress conveys oxidative damage which is implicated in liver disease progression. The present study was conducted to assess the change of mitochondrial DNA (mtDNA) copy number in patients with HCV-related chronic liver disease and the impact of direct-acting antiviral (DAA) therapy. Whole blood mtDNA copy number was measured using real-time quantitative polymerase chain reaction at baseline and 12 weeks after the end of therapy in 50 treatment-naïve HCV-infected patients who achieved sustained viral response (SVR) after DAA therapy and 20 healthy controls. Whole blood mtDNA copy number appeared significantly lower in HCV-infected patients before therapy compared to healthy subjects (P < 0.001). Post-treatment, there was significant increase of mtDNA copy number in HCV-infected patients at SVR12 compared to the pre-treatment values (P < 0.001), meanwhile it didn't differ significantly between HCV-infected patients after therapy and healthy subjects (P = 0.059). Whole blood mtDNA copy number correlated inversely to the serum bilirubin in HCV-infected patients (P = 0.013), however it didn't correlate significantly to the serum aminotransferases, viral load or fibrosis-4 score (P > 0.05). In conclusion, chronic HCV infection has been associated with a prominent mitochondrial injury which could mediate a progressive liver disease. The improved mtDNA content after DAA therapy highlights a possible potential of these drugs to alleviate mitochondrial damage in HCV-related liver disease.
Collapse
Affiliation(s)
- Amany Elyamany
- Department of Internal Medicine (Hepatology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rasha Ghazala
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Omnia Fayed
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yasmin Hamed
- Department of Internal Medicine (Hepatology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Assem El-Shendidi
- Department of Internal Medicine (Hepatology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
31
|
Pereira SP, Diniz MS, Tavares LC, Cunha-Oliveira T, Li C, Cox LA, Nijland MJ, Nathanielsz PW, Oliveira PJ. Characterizing Early Cardiac Metabolic Programming via 30% Maternal Nutrient Reduction during Fetal Development in a Non-Human Primate Model. Int J Mol Sci 2023; 24:15192. [PMID: 37894873 PMCID: PMC10607248 DOI: 10.3390/ijms242015192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Intra-uterine growth restriction (IUGR) is a common cause of fetal/neonatal morbidity and mortality and is associated with increased offspring predisposition for cardiovascular disease (CVD) development. Mitochondria are essential organelles in maintaining cardiac function, and thus, fetal cardiac mitochondria could be responsive to the IUGR environment. In this study, we investigated whether in utero fetal cardiac mitochondrial programming can be detectable in an early stage of IUGR pregnancy. Using a well-established nonhuman IUGR primate model, we induced IUGR by reducing by 30% the maternal diet (MNR), both in males (MNR-M) and in female (MNR-F) fetuses. Fetal cardiac left ventricle (LV) tissue and blood were collected at 90 days of gestation (0.5 gestation, 0.5 G). Blood biochemical parameters were determined and heart LV mitochondrial biology assessed. MNR fetus biochemical blood parameters confirm an early fetal response to MNR. In addition, we show that in utero cardiac mitochondrial MNR adaptations are already detectable at this early stage, in a sex-divergent way. MNR induced alterations in the cardiac gene expression of oxidative phosphorylation (OXPHOS) subunits (mostly for complex-I, III, and ATP synthase), along with increased protein content for complex-I, -III, and -IV subunits only for MNR-M in comparison with male controls, highlight the fetal cardiac sex-divergent response to MNR. At this fetal stage, no major alterations were detected in mitochondrial DNA copy number nor markers for oxidative stress. This study shows that in 90-day nonhuman primate fetuses, a 30% decrease in maternal nutrition generated early in utero adaptations in fetal blood biochemical parameters and sex-specific alterations in cardiac left ventricle gene and protein expression profiles, affecting predominantly OXPHOS subunits. Since the OXPHOS system is determinant for energy production in mitochondria, our findings suggest that these early IUGR-induced mitochondrial adaptations play a role in offspring's mitochondrial dysfunction and can increase predisposition to CVD in a sex-specific way.
Collapse
Affiliation(s)
- Susana P. Pereira
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Mariana S. Diniz
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- PDBEB—Ph.D. Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ludgero C. Tavares
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- CIVG—Vasco da Gama Research Center, University School Vasco da Gama—EUVG, 3020-210 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
| | - Cun Li
- Texas Pregnancy & Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (L.A.C.); (P.W.N.)
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Mark J. Nijland
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Peter W. Nathanielsz
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (L.A.C.); (P.W.N.)
| | - Paulo J. Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
32
|
Al-Sanea MM, Abdel-Maksoud MS, El-Behairy MF, Hamdi A, Ur Rahman H, Parambi DGT, Elbargisy RM, Mohamed AAB. Anti-inflammatory effect of 3-fluorophenyl pyrimidinylimidazo[2,1-b]thiazole derivatives as p38α inhibitors. Bioorg Chem 2023; 139:106716. [PMID: 37459825 DOI: 10.1016/j.bioorg.2023.106716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/21/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
In the present work, the anti-inflammatory effect of 30 compounds containing 3-fluorophenyl pyrimidinylimidazo[2,1-b]thiazole was investigated. All final target compounds showed significant Inhibitory effect on p38α. P38α is considered one of the key kinases in the inflammatory process due to its regulatory effect on pro-inflammatory mediators. The final target compounds divided into four group based on the type of terminal moiety (amide and sulfonamide) and the linker between pyrimidine ring and terminal moiety (ethyl and propyl). Most compounds with terminal sulfonamide moiety and propyl linker between the sulfonamide and pyrimidine ring were the most potent among all synthesized final target compounds with sub-micromolar IC50s. Compound 24g (with p-Cl benzene sulfonamide and propyl linker) exhibited the highest activity over P38α with IC50 0.68 µM. All final target compounds were tested for their ability to inhibit nitric oxide release and prostaglandin E2 production. Compounds having amide terminal moiety with ethyl linker showed higher inhibitory activity for nitric oxide release and compound 21d exhibited the highest activity for nitric oxide release with IC50 1.21 µM. Compounds with terminal sulfonamide moiety and propyl linker showed the highest activity for inhibiting PGE2 production and compounds 24i and 24g had the lowest IC50s with value 0.87 and 0.89 µM, respectively. Compounds 21d, 22d and 24g were tested for their ability to inhibit over expression of iNOS, COX1, and COX2. In addition the ability of compounds 21d, 22d and 24g to inhibit inflammatory cytokines were determined. Finally molecular docking of the three compounds were performed on P38α crystal structure to expect their mode of binding.
Collapse
Affiliation(s)
- Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia.
| | - Mohammed S Abdel-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Dokki, Giza, Egypt.
| | - Mohammed Farrag El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufiya 32897, Egypt
| | - Abdelrahman Hamdi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hidayat Ur Rahman
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Della G T Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Rehab M Elbargisy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Ahmed A B Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
33
|
Hassan F, Khan AU, Zaidi SZUH, Niazi MK, ismail MA. In Vitro Antioxidant and Inhibitory Study of Picrorhiza kurroa (Kutki), Syzygium aromaticum (Loung), Lawsonia inermis (Henna), Rheum emodi (Revand Chini), Curcuma longa (Haldi) Against Lipid Per-Oxidation in Mice Brain and Liver. Dose Response 2023; 21:15593258231210431. [PMID: 37900620 PMCID: PMC10605699 DOI: 10.1177/15593258231210431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/11/2023] [Indexed: 10/31/2023] Open
Abstract
The aerobic organisms not only need oxygen for survival, but oxygen is also fundamentally malignant to the aerobic organism on the grounds of free radical generation and their affiliation with free oxidative stress. This study was done to evaluate the antioxidant and protective properties of P kurroa, S aromaticum, L inermis, R emodi, and C longa against lipid peroxidation induced by different pro-oxidants. The aqueous extracts of these medicinal plants showed inhibition against thiobarbituric acid reactive species (TBARS) induced by different pro-oxidants (10 mM FeSO4 and 5 mM sodium nitroprusside) in the brain and liver of mice. Moreover, the free radical scavenging activities of the extracts were evaluated by the scavenging of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. L inermis, S aromaticum, and R emodi showed higher inhibitory effects, which could be attributed to their significantly reduced ability and free radical scavenging activities. Therefore, the oxidative stress in the brain and liver could be potentially managed or prevented by the dietary intake of L inermis, S aromaticum, and R emodi plants, which justifies the use of these plants in various degenerative diseases. C longa and P kurroa showed relatively weak antioxidant activities.
Collapse
Affiliation(s)
| | - Asmat Ullah Khan
- Department of Eastern Medicine, Faculty of Medical and Health Sciences, University of Poonch, Rawalakot, Pakistan
| | | | - Madiha Khan Niazi
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | | |
Collapse
|
34
|
Ye J, Hu X, Wang Z, Li R, Gan L, Zhang M, Wang T. The role of mtDAMPs in the trauma-induced systemic inflammatory response syndrome. Front Immunol 2023; 14:1164187. [PMID: 37533869 PMCID: PMC10391641 DOI: 10.3389/fimmu.2023.1164187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a non-specific exaggerated defense response caused by infectious or non-infectious stressors such as trauma, burn, surgery, ischemia and reperfusion, and malignancy, which can eventually lead to an uncontrolled inflammatory response. In addition to the early mortality due to the "first hits" after trauma, the trauma-induced SIRS and multiple organ dysfunction syndrome (MODS) are the main reasons for the poor prognosis of trauma patients as "second hits". Unlike infection-induced SIRS caused by pathogen-associated molecular patterns (PAMPs), trauma-induced SIRS is mainly mediated by damage-associated molecular patterns (DAMPs) including mitochondrial DAMPs (mtDAMPs). MtDAMPs released after trauma-induced mitochondrial injury, including mitochondrial DNA (mtDNA) and mitochondrial formyl peptides (mtFPs), can activate inflammatory response through multiple inflammatory signaling pathways. This review summarizes the role and mechanism of mtDAMPs in the occurrence and development of trauma-induced SIRS.
Collapse
Affiliation(s)
- Jingjing Ye
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Xiaodan Hu
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
- School of Basic Medicine, Peking University, Beijing, China
| | - Zhiwei Wang
- Orthopedics Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Li
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Lebin Gan
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Mengwei Zhang
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Tianbing Wang
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| |
Collapse
|
35
|
Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res 2023; 95:101136. [PMID: 36400670 DOI: 10.1016/j.preteyeres.2022.101136] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by a slow, progressive, and multifactorial degeneration of retinal ganglion cells (RGCs) and their axons, resulting in vision loss. Despite its high prevalence in individuals 60 years of age and older, the causing factors contributing to glaucoma progression are currently not well characterized. Intraocular pressure (IOP) is the only proven treatable risk factor. However, lowering IOP is insufficient for preventing disease progression. One of the significant interests in glaucoma pathogenesis is understanding the structural and functional impairment of mitochondria in RGCs and their axons and synapses. Glaucomatous risk factors such as IOP elevation, aging, genetic variation, neuroinflammation, neurotrophic factor deprivation, and vascular dysregulation, are potential inducers for mitochondrial dysfunction in glaucoma. Because oxidative phosphorylation stress-mediated mitochondrial dysfunction is associated with structural and functional impairment of mitochondria in glaucomatous RGCs, understanding the underlying mechanisms and relationship between structural and functional alterations in mitochondria would be beneficial to developing mitochondria-related neuroprotection in RGCs and their axons and synapses against glaucomatous neurodegeneration. Here, we review the current studies focusing on mitochondrial dynamics-based structural and functional alterations in the mitochondria of glaucomatous RGCs and therapeutic strategies to protect RGCs against glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Won-Kyu Ju
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tonking Bastola
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Woo-Young Choi
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA; Department of Plastic Surgery, College of Medicine, Chosun University, Gwang-ju, South Korea
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
36
|
Zhang X, Wu J, Liu Q, Li X, Yang Y, Wu L, Wu X, Zhao Y, Ren J. RIPK3-MLKL necroptotic signalling amplifies STING pathway and exacerbates lethal sepsis. Clin Transl Med 2023; 13:e1334. [PMID: 37475188 PMCID: PMC10359592 DOI: 10.1002/ctm2.1334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUNDS The stimulator of interferon genes (STING) is an important driver in various inflammatory diseases. METHODS AND RESULTS Here, we have demonstrated that inhibition of RIPK3 and MLKL dampens STING signaling, indicating that necroptosis may be involved in sustaining STING signaling. Furthermore, RIPK3 knockout in HT-29 cells significantly suppressed STING signaling. Mechanistically, RIPK3 inhibits autophagic flux during STING activation. RIPK3 knockout inhibits STING signaling by intensifying STING autophagy. In contrast, MLKL regulates the STING pathway bidirectionally. MLKL deficiency enhances STING signaling, whereas suppression of MLKL-mediated pore formation restricts STING signaling. Mechanistically, upon abrogating the pro-necroptotic activity of MLKL, MLKL bound to activated STING is secreted to the extracellular space, where it restricts TBK1 and IRF3 recruitment. Targeting necroptotic signaling ameliorates STING activation during DMXAA-induced intestinal injury and sepsis. CONCLUSIONS These findings elucidate molecular mechanisms linking necroptosis to the STING pathway, and suggest a potential benefit of therapeutic targeting of necroptosis in STING-driven inflammatory diseases.
Collapse
Affiliation(s)
- Xufei Zhang
- Research Institute of General Surgery, Jinling Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Jie Wu
- Research Center of Surgery, BenQ Medical Centerthe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
| | - Qinjie Liu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xuanheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yiyu Yang
- Research Institute of General Surgery, Jinling Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Lei Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yun Zhao
- Research Center of Surgery, BenQ Medical Centerthe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, School of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|
37
|
Rafiyan M, Sadeghmousavi S, Akbarzadeh M, Rezaei N. Experimental animal models of chronic inflammation. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100063. [PMID: 37334102 PMCID: PMC10276141 DOI: 10.1016/j.crimmu.2023.100063] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Inflammation is a general term for a wide variety of both physiological and pathophysiological processes in the body which primarily prevents the body from diseases and helps to remove dead tissues. It has a crucial part in the body immune system. Tissue damage can recruit inflammatory cells and cytokines and induce inflammation. Inflammation can be classified as acute, sub-acute, and chronic. If it remained unresolved and lasted for prolonged periods, it would be considered as chronic inflammation (CI), which consequently exacerbates tissue damage in different organs. CI is the main pathophysiological cause of many disorders such as obesity, diabetes, arthritis, myocardial infarction, and cancer. Thus, it is critical to investigate different mechanisms involved in CI to understand its processes and to find proper anti-inflammatory therapeutic approaches for it. Animal models are one of the most useful tools for study about different diseases and mechanisms in the body, and are important in pharmacological studies to find proper treatments. In this study, we discussed the various experimental animal models that have been used to recreate CI which can help us to enhance the understanding of CI mechanisms in human and contribute to the development of potent new therapies.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Shaghayegh Sadeghmousavi
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Milad Akbarzadeh
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
38
|
Kakiyama G, Rodriguez-Agudo D, Pandak WM. Mitochondrial Cholesterol Metabolites in a Bile Acid Synthetic Pathway Drive Nonalcoholic Fatty Liver Disease: A Revised "Two-Hit" Hypothesis. Cells 2023; 12:1434. [PMID: 37408268 PMCID: PMC10217489 DOI: 10.3390/cells12101434] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
The rising prevalence of nonalcoholic fatty liver disease (NAFLD)-related cirrhosis highlights the need for a better understanding of the molecular mechanisms responsible for driving the transition of hepatic steatosis (fatty liver; NAFL) to steatohepatitis (NASH) and fibrosis/cirrhosis. Obesity-related insulin resistance (IR) is a well-known hallmark of early NAFLD progression, yet the mechanism linking aberrant insulin signaling to hepatocyte inflammation has remained unclear. Recently, as a function of more distinctly defining the regulation of mechanistic pathways, hepatocyte toxicity as mediated by hepatic free cholesterol and its metabolites has emerged as fundamental to the subsequent necroinflammation/fibrosis characteristics of NASH. More specifically, aberrant hepatocyte insulin signaling, as found with IR, leads to dysregulation in bile acid biosynthetic pathways with the subsequent intracellular accumulation of mitochondrial CYP27A1-derived cholesterol metabolites, (25R)26-hydroxycholesterol and 3β-Hydroxy-5-cholesten-(25R)26-oic acid, which appear to be responsible for driving hepatocyte toxicity. These findings bring forth a "two-hit" interpretation as to how NAFL progresses to NAFLD: abnormal hepatocyte insulin signaling, as occurs with IR, develops as a "first hit" that sequentially drives the accumulation of toxic CYP27A1-driven cholesterol metabolites as the "second hit". In the following review, we examine the mechanistic pathway by which mitochondria-derived cholesterol metabolites drive the development of NASH. Insights into mechanistic approaches for effective NASH intervention are provided.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| | - William M. Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
39
|
Bian XB, Yu PC, Yang XH, Han L, Wang QY, Zhang L, Zhang LX, Sun X. The effect of ginsenosides on liver injury in preclinical studies: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1184774. [PMID: 37251340 PMCID: PMC10213882 DOI: 10.3389/fphar.2023.1184774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Background: Liver injury is a severe liver lesion caused by various etiologies and is one of the main areas of medical research. Panax ginseng C.A. Meyer has traditionally been used as medicine to treat diseases and regulate body functions. Ginsenosides are the main active components of ginseng, and their effects on liver injury have been extensively reported. Methods: Preclinical studies meeting the inclusion criteria were retrieved from PubMed, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), and Wan Fang Data Knowledge Service Platforms. The Stata 17.0 was used to perform the meta-analysis, meta-regression, and subgroup analysis. Results: This meta-analysis included ginsenosides Rb1, Rg1, Rg3, and compound K (CK), in 43 articles. The overall results showed that multiple ginsenosides significantly reduced alanine aminotransferase (ALT) and aspartate aminotransferase (AST), affected oxidative stress-related indicators, such as superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GSH-Px), and catalase (CAT), and reduced levels of inflammatory factor, such as factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6). Additionally, there was a large amount of heterogeneity in the meta-analysis results. Our predefined subgroup analysis shows that the animal species, the type of liver injury model, the duration of treatment, and the administration route may be the sources of some of the heterogeneity. Conclusion: In a word, ginsenosides have good efficacy against liver injury, and their potential mechanisms of action target antioxidant, anti-inflammatory and apoptotic-related pathways. However, the overall methodological quality of our current included studies was low, and more high-quality studies are needed to confirm their effects and mechanisms further.
Collapse
Affiliation(s)
- Xing-Bo Bian
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Peng-Cheng Yu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiao-Hang Yang
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Liu Han
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Qi-Yao Wang
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Li Zhang
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Lian-Xue Zhang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, Jilin, China
| | - Xin Sun
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| |
Collapse
|
40
|
Intracellular DAMPs in Neurodegeneration and Their Role in Clinical Therapeutics. Mol Neurobiol 2023; 60:3600-3616. [PMID: 36859688 DOI: 10.1007/s12035-023-03289-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Neuroinflammation is the major implication of neurodegeneration. This is a complex process which initiates from the cellular injury triggering the innate immune system which gives rise to damage-associated molecular patterns (DAMPs) which are also recognized as endogenous danger indicators. These originate from various compartments of the cell under pathological stimulus. These are very popular candidates having their origin in the intracellular compartments and organelles of the cell and may have their site of action itself in the intracellular or at the extracellular spaces. Under the influence of the pathological stimuli, they interact with the pattern-recognition receptor to initiate their pro-inflammatory cascade followed by the cytokine release. This provides a good opportunity for diagnostic and therapeutic interventions creating better conditions for repair and reversal. Since the major contributors arise from the intracellular compartment, in this review, we have attempted to focus on the DAMP molecules arising from the intracellular compartments and their specific roles in the neurodegenerative events explaining their downstream mediators and signaling. Moreover, we have tried to cover the latest interventions in terms of DAMPs as clinical biomarkers which can assist in detecting the disease and also target it to reduce the innate-immune activation response which can help in reducing the sterile neuroinflammation having an integral role in the neurodegenerative processes.
Collapse
|
41
|
Janovičová Ľ, Kmeťová K, Pribulová N, Janko J, Gromová B, Gardlík R, Celec P. Endogenous DNase Activity in an Animal Model of Acute Liver Failure. Int J Mol Sci 2023; 24:ijms24032984. [PMID: 36769306 PMCID: PMC9918174 DOI: 10.3390/ijms24032984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Deoxyribonucleases (DNases) cleave extracellular DNA (ecDNA) and are under intense research as interventions for diseases associated with high ecDNA, such as acute live injury. DNase I treatment decreases morbidity and mortality in this animal model. Endogenous DNase activity has high interindividual variability. In this study, we tested the hypothesis that high endogenous DNase activity is beneficial in an animal model of acute liver failure. DNase activity was measured in the plasma of adult male mice taken before i.p. injection of thioacetamide to induce acute liver failure. The survival of mice was monitored for 48 h. Mice were retrospectively divided into two groups based on the median DNase activity assessed using the gel-based single-radial enzyme diffusion assay. In acute liver failure, mice with a higher baseline DNase activity had lower mortality after 48 h (by 25%). Different protection of ecDNA against nucleases by vesicles or DNA-binding proteins could play a role and should be further evaluated. Similarly, the role of endogenous DNase activity should be analyzed in other disease models associated with high ecDNA.
Collapse
Affiliation(s)
- Ľubica Janovičová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Katarína Kmeťová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Nikola Pribulová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Jakub Janko
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Barbora Gromová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Roman Gardlík
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
- Correspondence: or
| |
Collapse
|
42
|
Zhang Y, Li W, Bian Y, Li Y, Cong L. Multifaceted roles of aerobic glycolysis and oxidative phosphorylation in hepatocellular carcinoma. PeerJ 2023; 11:e14797. [PMID: 36748090 PMCID: PMC9899054 DOI: 10.7717/peerj.14797] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Liver cancer is a common malignancy with high morbidity and mortality rates. Changes in liver metabolism are key factors in the development of primary hepatic carcinoma, and mitochondrial dysfunction is closely related to the occurrence and development of tumours. Accordingly, the study of the metabolic mechanism of mitochondria in primary hepatic carcinomas has gained increasing attention. A growing body of research suggests that defects in mitochondrial respiration are not generally responsible for aerobic glycolysis, nor are they typically selected during tumour evolution. Conversely, the dysfunction of mitochondrial oxidative phosphorylation (OXPHOS) may promote the proliferation, metastasis, and invasion of primary hepatic carcinoma. This review presents the current paradigm of the roles of aerobic glycolysis and OXPHOS in the occurrence and development of hepatocellular carcinoma (HCC). Mitochondrial OXPHOS and cytoplasmic glycolysis cooperate to maintain the energy balance in HCC cells. Our study provides evidence for the targeting of mitochondrial metabolism as a potential therapy for HCC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Wenhuan Li
- Department of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Bian
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Li
- Department of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Lei Cong
- Department of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China,Department of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
43
|
Wang X, He Q, Zhou C, Xu Y, Liu D, Fujiwara N, Kubota N, Click A, Henderson P, Vancil J, Marquez CA, Gunasekaran G, Schwartz ME, Tabrizian P, Sarpel U, Fiel MI, Diao Y, Sun B, Hoshida Y, Liang S, Zhong Z. Prolonged hypernutrition impairs TREM2-dependent efferocytosis to license chronic liver inflammation and NASH development. Immunity 2023; 56:58-77.e11. [PMID: 36521495 PMCID: PMC9839616 DOI: 10.1016/j.immuni.2022.11.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/12/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
Obesity-induced chronic liver inflammation is a hallmark of nonalcoholic steatohepatitis (NASH)-an aggressive form of nonalcoholic fatty liver disease. However, it remains unclear how such a low-grade, yet persistent, inflammation is sustained in the liver. Here, we show that the macrophage phagocytic receptor TREM2, induced by hepatocyte-derived sphingosine-1-phosphate, was required for efferocytosis of lipid-laden apoptotic hepatocytes and thereby maintained liver immune homeostasis. However, prolonged hypernutrition led to the production of proinflammatory cytokines TNF and IL-1β in the liver to induce TREM2 shedding through ADAM17-dependent proteolytic cleavage. Loss of TREM2 resulted in aberrant accumulation of dying hepatocytes, thereby further augmenting proinflammatory cytokine production. This ultimately precipitated a vicious cycle that licensed chronic inflammation to drive simple steatosis transition to NASH. Therefore, impaired macrophage efferocytosis is a previously unrecognized key pathogenic event that enables chronic liver inflammation in obesity. Blocking TREM2 cleavage to restore efferocytosis may represent an effective strategy to treat NASH.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qifeng He
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Chuanli Zhou
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yueyuan Xu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Regeneration Center, Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC 27710, USA
| | - Danhui Liu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naoto Fujiwara
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naoto Kubota
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arielle Click
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Polly Henderson
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Janiece Vancil
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cesia Ammi Marquez
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ganesh Gunasekaran
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Myron E Schwartz
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Parissa Tabrizian
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Umut Sarpel
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Regeneration Center, Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC 27710, USA
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuang Liang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
44
|
Salsinha AS, Socodato R, Relvas JB, Pintado M. The pro- and antiinflammatory activity of fatty acids. BIOACTIVE LIPIDS 2023:51-75. [DOI: 10.1016/b978-0-12-824043-4.00002-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
45
|
Guha S, Sesili S, Mir IH, Thirunavukkarasu C. Epigenetics and mitochondrial dysfunction insights into the impact of the progression of non-alcoholic fatty liver disease. Cell Biochem Funct 2023; 41:4-19. [PMID: 36330539 DOI: 10.1002/cbf.3763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
A metabolic problem occurs when regular functions of the body are disrupted due to an undesirable imbalance. Nonalcoholic fatty liver disease (NAFLD) is considered as one of the most common in this category. NAFLD is subclassified and progresses from lipid accumulation to cirrhosis before advancing to hepatocellular cancer. In spite of being a critical concern, the standard treatment is inadequate. Metformin, silymarin, and other nonspecific medications are used in the management of NAFLD. Aside from this available medicine, maintaining a healthy lifestyle has been emphasized as a means of combating this. Epigenetics, which has been attributed to NAFLD, is another essential feature of this disease that has emerged as a result of several sorts of research. The mechanisms by which DNA methylation, noncoding RNA, and histone modification promote NAFLD have been extensively researched. Another organelle, mitochondria, which play a pivotal role in biological processes, contributes to the global threat. Individuals with NAFLD have been documented to have a multitude of alterations and malfunctioning. Mitochondria are mainly concerned with the process of energy production and regulation of the signaling pathway on which the fate of a cell relies. Modulation of mitochondria leads to elevated lipid deposition in the liver. Further, changes in oxidation states result in an impaired balance between the antioxidant system and reactive oxygen species directly linked to mitochondria. Hence mitochondria have a definite role in potentiating NAFLD. In this regard, it is essential to consider the role of epigenetics as well as mitochondrial contribution while developing a medication or therapy with the desired accuracy.
Collapse
Affiliation(s)
- Shreyoshi Guha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Selvam Sesili
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | |
Collapse
|
46
|
Feng J, Chen Z, Liang W, Wei Z, Ding G. Roles of Mitochondrial DNA Damage in Kidney Diseases: A New Biomarker. Int J Mol Sci 2022; 23:ijms232315166. [PMID: 36499488 PMCID: PMC9735745 DOI: 10.3390/ijms232315166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The kidney is a mitochondria-rich organ, and kidney diseases are recognized as mitochondria-related pathologies. Intact mitochondrial DNA (mtDNA) maintains normal mitochondrial function. Mitochondrial dysfunction caused by mtDNA damage, including impaired mtDNA replication, mtDNA mutation, mtDNA leakage, and mtDNA methylation, is involved in the progression of kidney diseases. Herein, we review the roles of mtDNA damage in different setting of kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD). In a variety of kidney diseases, mtDNA damage is closely associated with loss of kidney function. The level of mtDNA in peripheral serum and urine also reflects the status of kidney injury. Alleviating mtDNA damage can promote the recovery of mitochondrial function by exogenous drug treatment and thus reduce kidney injury. In short, we conclude that mtDNA damage may serve as a novel biomarker for assessing kidney injury in different causes of renal dysfunction, which provides a new theoretical basis for mtDNA-targeted intervention as a therapeutic option for kidney diseases.
Collapse
Affiliation(s)
- Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhongping Wei
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
- Correspondence:
| |
Collapse
|
47
|
Gupta GS. The Lactate and the Lactate Dehydrogenase in Inflammatory Diseases and Major Risk Factors in COVID-19 Patients. Inflammation 2022; 45:2091-2123. [PMID: 35588340 PMCID: PMC9117991 DOI: 10.1007/s10753-022-01680-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/04/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022]
Abstract
Lactate dehydrogenase (LDH) is a terminating enzyme in the metabolic pathway of anaerobic glycolysis with end product of lactate from glucose. The lactate formation is crucial in the metabolism of glucose when oxygen is in inadequate supply. Lactate can also be formed and utilised by different cell types under fully aerobic conditions. Blood LDH is the marker enzyme, which predicts mortality in many conditions such as ARDS, serious COVID-19 and cancer patients. Lactate plays a critical role in normal physiology of humans including an energy source, a signaling molecule and a pH regulator. Depending on the pH, lactate exists as the protonated acidic form (lactic acid) at low pH or as sodium salt (sodium lactate) at basic pH. Lactate can affect the immune system and act as a signaling molecule, which can provide a "danger" signal for life. Several reports provide evidence that the serum lactate represents a chemical marker of severity of disease similar to LDH under inflammatory conditions. Since the mortality rate is much higher among COVID-19 patients, associated with high serum LDH, this article is aimed to review the LDH as a therapeutic target and lactate as potential marker for monitoring treatment response of inflammatory diseases. Finally, the review summarises various LDH inhibitors, which offer potential applications as therapeutic agents for inflammatory diseases, associated with high blood LDH. Both blood LDH and blood lactate are suggested as risk factors for the mortality of patients in serious inflammatory diseases.
Collapse
Affiliation(s)
- G S Gupta
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
48
|
Characterization of Mitochondrial Alterations in Aicardi-Goutières Patients Mutated in RNASEH2A and RNASEH2B Genes. Int J Mol Sci 2022; 23:ijms232214482. [PMID: 36430958 PMCID: PMC9692803 DOI: 10.3390/ijms232214482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Aicardi-Goutières syndrome (AGS) is a rare encephalopathy characterized by neurological and immunological features. Mitochondrial dysfunctions may lead to mitochondrial DNA (mtDNA) release and consequent immune system activation. We investigated the role of mitochondria and mtDNA in AGS pathogenesis by studying patients mutated in RNASEH2B and RNASEH2A genes. Lymphoblastoid cell lines (LCLs) from RNASEH2A- and RNASEH2B-mutated patients and healthy control were used. Transmission Electron Microscopy (TEM) and flow cytometry were used to assess morphological alterations, reactive oxygen species (ROS) production and mitochondrial membrane potential variations. Seahorse Analyzer was used to investigate metabolic alterations, and mtDNA oxidation and VDAC1 oligomerization were assessed by immunofluorescence. Western blot and RT-qPCR were used to quantify mtTFA protein and mtDNA release. Morphological alterations of mitochondria were observed in both mutated LCLs, and loss of physiological membrane potential was mainly identified in RNASEH2A LCLs. ROS production and 8-oxoGuanine levels were increased in RNASEH2B LCLs. Additionally, the VDAC1 signal was increased, suggesting a mitochondrial pore formation possibly determining mtDNA release. Indeed, higher cytoplasmic mtDNA levels were found in RNASEH2B LCLs. Metabolic alterations confirmed mitochondrial damage in both LCLs. Data highlighted mitochondrial alterations in AGS patients' LCLs suggesting a pivotal role in AGS pathogenesis.
Collapse
|
49
|
Nsengimana B, Okpara ES, Hou W, Yan C, Han S. Involvement of oxidative species in cyclosporine-mediated cholestasis. Front Pharmacol 2022; 13:1004844. [PMID: 36425570 PMCID: PMC9679297 DOI: 10.3389/fphar.2022.1004844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/24/2022] [Indexed: 04/11/2025] Open
Abstract
Cyclosporine is an established medication for the prevention of transplant rejection. However, adverse consequences such as nephrotoxicity, hepatotoxicity, and cholestasis have been associated with prolonged usage. In cyclosporine-induced obstructive and chronic cholestasis, for example, the overproduction of oxidative stress is significantly increased. Additionally, cyclosporine exerts adverse effects on liver function and redox balance responses in treated rats, as evidenced by its increasing levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and bilirubin while also decreasing the levels of glutathione and NADPH. Cyclosporine binds to cyclophilin to produce its therapeutic effects, and the resulting complex inhibits calcineurin, causing calcium to accumulate in the mitochondria. Accumulating calcium with concomitant mitochondrial abnormalities induces oxidative stress, perturbation in ATP balance, and failure of calcium pumps. Also, cyclosporine-induced phagocyte oxidative stress generation via the interaction of phagocytes with Toll-like receptor-4 has been studied. The adverse effect of cyclosporine may be amplified by the release of mitochondrial DNA, mediated by oxidative stress-induced mitochondrial damage. Given the uncertainty surrounding the mechanism of cyclosporine-induced oxidative stress in cholestasis, we aim to illuminate the involvement of oxidative stress in cyclosporine-mediated cholestasis and also explore possible strategic interventions that may be applied in the future.
Collapse
Affiliation(s)
| | | | | | | | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
50
|
Chen L, Dong J, Liao S, Wang S, Wu Z, Zuo M, Liu B, Yan C, Chen Y, He H, Meng Q, Song Z. Loss of Sam50 in hepatocytes induces cardiolipin-dependent mitochondrial membrane remodeling to trigger mtDNA release and liver injury. Hepatology 2022; 76:1389-1408. [PMID: 35313046 DOI: 10.1002/hep.32471] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Sam50, a key component of the sorting and assembly machinery (SAM) complex, is also involved in bridging mitochondrial outer-membrane and inner-membrane contacts. However, the physiological and pathological functions of Sam50 remain largely unknown. APPROACH AND RESULTS Here we show that Sam50 interacts with MICOS (mitochondrial contact site and cristae organizing system) and ATAD3 (ATPase family AAA domain-containing protein 3) to form the Sam50-MICOS-ATAD3-mtDNA axis, which maintains mtDNA stability. Loss of Sam50 causes mitochondrial DNA (mtDNA) aggregation. Furthermore, Sam50 cooperates with Mic60 to bind to cardiolipin, maintaining the integrity of mitochondrial membranes. Sam50 depletion leads to cardiolipin externalization, which causes mitochondrial outer-membrane and inner-membrane (including crista membrane) remodeling, triggering Bax mitochondrial recruitment, mtDNA aggregation, and release. Physiologically, acetaminophen (an effective antipyretic and analgesic)-caused Sam50 reduction or Sam50 liver-specific knockout induces mtDNA release, leading to activation of the cGAS-STING pathway and liver inflammation in mice. Moreover, exogenous expression of Sam50 remarkably attenuates APAP-induced liver hepatoxicity. CONCLUSIONS Our findings uncover the critical role of Sam50 in maintaining mitochondrial membrane integrity and mtDNA stability in hepatocytes and reveal that Sam50 depletion-induced cardiolipin externalization is a signal of mtDNA release and controls mtDNA-dependent innate immunity.
Collapse
Affiliation(s)
- Li Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Jun Dong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Siyang Liao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Siyou Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Zhida Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Meiling Zuo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Bing Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Chaojun Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yong Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - He He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Qingtao Meng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Zhiyin Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|