1
|
Mahmoud HM, Hassanein EHM, Khalaf MM. Vildagliptin attenuates doxorubicin-induced hepatotoxicity via activating Nrf2/HO-1 and SIRT1 and suppressing NF-κB signals in rats. Immunopharmacol Immunotoxicol 2025; 47:364-374. [PMID: 40148240 DOI: 10.1080/08923973.2025.2482863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Doxorubicin (DOX) is an anticancer commonly employed in cancer treatment. However, the clinical application of DOX is associated with hepatotoxicity. Vildagliptin is an anti-hyperglycemic agent that inhibits the dipeptidyl peptidase-4 enzyme. Besides being used in managing type-2 diabetes, vildagliptin showed potential anti-inflammatory, antioxidant, and other activities. OBJECTIVE Our investigation targeted the hepatoprotective effects of vildagliptin against DOX-induced hepatotoxicity. METHODS Vildagliptin was given in a dose of 30 mg/kg, once daily; p.o. for 2 weeks while DOX was injected in a single dose of 30 mg/kg, i.p. RESULTS Vildagliptin effectively decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, while it effectively elevated serum total protein (TP) level. Histologically, vildagliptin administration resulted in significant hepatoprotective efficacy with abundant figures of normal hepatocytes. Moreover, vildagliptin considerably decreased lipid peroxidation biomarker malondialdehyde (MDA), and the cytokines interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), and cyclooxygenase (COX)-2, while it remarkably boosted the antioxidative defenses of glutathione (GSH) and catalase (CAT). Dual antioxidant and anti-inflammatory activities were mediated by upregulating nuclear factor (erythroid-derived 2)-like 2 (Nrf2), silent information regulator 1 (SIRT1), and heme oxygenase (HO-1) and suppressing the nuclear factor kappa B (NF-κB) signals. Finally, vildagliptin alleviated apoptosis by downregulating hepatic p53 and cytochrome (Cyt)-C. CONCLUSION Our findings suggest that vildagliptin improved hepatocellular architecture and reduced hepatic oxidative injury, inflammation, and apoptosis associated with DOX treatment.
Collapse
Affiliation(s)
- Heba M Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Marwa M Khalaf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Yeni Y, Cicek B, Hacimuftuoglu A, Ozkaraca M, Lacin BB. Protective Effect of HMG-CoA Reductase Inhibitor Rosuvastatin on Doxorubicin-Induced Cognitive Impairment, Oxidative Stress and Neuroinflammation: Possible Role of CREB, ERK1/2, and BDNF. J Neuroimmune Pharmacol 2025; 20:53. [PMID: 40358798 PMCID: PMC12075306 DOI: 10.1007/s11481-025-10213-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
During or after chemotherapy, cognitive impairments characterized by forgetfulness, difficulty concentrating, and depressive and anxiety-like symptoms are observed. There is limited research examining the effects of rosuvastatin (RVS), an HMG-CoA reductase inhibitor, in the context of neuroinflammation-related cognitive disruption. Here, we aimed to investigate the neuroprotective potential of RVS against doxorubicin (DOX)-induced cognitive impairments. Experimental groups were planned as control (normal saline, intraperitoneal), DOX (total cumulative dose 10 mg/kg, intraperitoneal), RVS (10 mg/kg, oral, 20 days), and RVS + DOX. Efficacy was monitored by applying a battery of behavioral assessments, as well as biochemical, genetic, histopathological, and immunohistochemical examinations. Results from Morris water maze (MWM), passive avoidance, locomotion activity, and elevated plus maze (EPM) tests showed that DOX administration caused behavioral disorders. Moreover, DOX increased the levels of inducible nitric oxide synthase (iNOS), malondialdehyde (MDA), and tumor necrosis factor-α (TNF-α), while decreasing the levels of interleukin-10 (IL-10), glutathione (GSH), superoxide dismutase, catalase (SOD), endothelial nitric oxide (eNOS), and catalase (CAT). Co-treatment with RSV significantly attenuated DOX-induced behavioral changes and oxidative stress markers. In addition, similar to the immunohistochemical results, we determined that it increased the expression levels of extracellular signal-related kinases 1/2 (ERK1/2), cyclic adenosine monophosphate response element binding protein (CREB), and brain-derived neurotrophic factor (BDNF) and restored the histopathological structure of the brain. Therefore, these results indicated that RSV has a neuroprotective effect against DOX-induced cognitive impairment by reducing neurobehavioral impairments, exerting antioxidant and anti-inflammatory effects, and modulating brain growth factors.
Collapse
Affiliation(s)
- Yesim Yeni
- Faculty of Medicine, Department of Medical Pharmacology, Malatya Turgut Ozal University, Malatya, Turkey.
- Faculty of Medicine, Department of Pharmacology, Malatya Turgut Ozal University, Battalgazi-Malatya, 44210, Turkey.
| | - Betul Cicek
- Faculty of Medicine, Department of Physiology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Ahmet Hacimuftuoglu
- Faculty of Medicine, Department of Medical Pharmacology, Ataturk University, Erzurum, Turkey
| | - Mustafa Ozkaraca
- Faculty of Veterinary Medicine, Department of Pathology, Sivas Cumhuriyet University, Sivas, Turkey
| | - Burak Batuhan Lacin
- Faculty of Veterinary Medicine, Department of Physiology, Ataturk University, Erzurum, Turkey
| |
Collapse
|
3
|
Soltani Hekmat A, Hekmat M, Ramezanipour S, Javanmardi K. Protective effects of Alamandine against doxorubicin-induced liver injury in rats. BMC Pharmacol Toxicol 2025; 26:95. [PMID: 40319302 PMCID: PMC12048956 DOI: 10.1186/s40360-025-00932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Doxorubicin (DOX), a common chemotherapeutic agent, is often associated with dose-limiting hepatotoxicity. Alamandine, a peptide of the renin-angiotensin system, has shown antioxidant and anti-inflammatory properties that may counteract these adverse effects. OBJECTIVE This study investigated the protective effects of alamandine on DOX-induced liver injury in rats. METHODS Male Wistar rats received DOX (3.75 mg/kg intraperitoneally) on days 14, 21, 28, and 35, reaching a cumulative dose of 15 mg/kg. Alamandine (50 µg/kg/day) was administered continuously via mini-osmotic pumps for 42 days. Liver toxicity was assessed through biochemical measurements of oxidative stress markers, inflammatory cytokines, and liver enzymes, as well as histological examination. RESULTS DOX administration significantly increased serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), and malondialdehyde (MDA) levels while reducing superoxide dismutase (SOD) and catalase (CAT) activity. Histological analysis revealed hydropic degeneration and hepatocyte necrosis. Alamandine co-treatment restored SOD and CAT activity, reduced MDA and inflammatory markers, and normalized liver enzyme levels, indicating significant hepatoprotection. Furthermore, treatment with alamandine reduced the expression of pro-inflammatory cytokines IL-6, IL-1, and NF-κB induced by DOX, while p53 expression remained unchanged. CONCLUSION Alamandine effectively mitigates DOX-induced hepatotoxicity, demonstrating its therapeutic potential as an adjunctive agent in chemotherapy through its antioxidant and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Ava Soltani Hekmat
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Hekmat
- Department of Dermatology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Kazem Javanmardi
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
4
|
Wang N, Gao Z, Zhan H, Jing L, Meng F, Chen M. Salidroside alleviates doxorubicin-induced hepatotoxicity via Sestrin2/AMPK-mediated pyroptotic inhibition. Food Chem Toxicol 2025; 199:115335. [PMID: 39993461 DOI: 10.1016/j.fct.2025.115335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Doxorubicin (DOX) is a potent anticancer drug, while its toxic side effects involve multi-organ toxicity, including hepatotoxicity. This study aims to investigate the therapeutic potential of salidroside against DOX-induced hepatotoxicity and elucidate its underlying mechanisms. Result showed that salidroside exhibited a liver protective effect in DOX-induced hepatotoxicity in mice, represented by the decreased serum ALT, AST and LDH levels, as well as the rescue of pathological changes in mice livers. Further study showed salidroside reduced the expression level of pyroptosis-associated proteins, including NLRP3, cleaved-caspase 1, gasdermin D (GSDMD-N) and mature IL-1β in mice liver tissues. In vitro study confirmed salidroside exerted a similar effect in AML12 cells. Mechanistically, salidroside alleviated mitochondrial dysfunction by activating the PGC-1α/Mfn2 signaling pathway, and restrained the endoplasmic reticulum (ER) stress, represented by the downregulation of GRP78 and p-PERK/PERK level. Subsequent investigations revealed that salidroside activated the Sestrin2/AMPK pathway, while the application of AMPK inhibitors, PGC-1α siRNA or Sestrain2 siRNA reversed the effects of salidroside on ameliorating mitochondrial dysfunction and ER stress, suggesting salidroside could be a promising therapeutic strategy for alleviating DOX-induced hepatotoxicity.
Collapse
Affiliation(s)
- Nan Wang
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery system, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, PR China
| | - Zhengshan Gao
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Honghong Zhan
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Lin Jing
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Fancheng Meng
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Min Chen
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
5
|
Ling K, Bu J, Huang W, Kang W, Yuan Q, Zeng B, Liao C, Zheng Q, Zhang G, Zheng X, Chen Z, Jiang X, Li R, Zhai T, Jiang H. Robust Cu 2+-Modified Black Phosphorus Nanoplatform for Enhanced Drug Delivery and Synergistic Multimodal Tumor Therapy via Metal Ion-Assisted π-π Interactions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19382-19400. [PMID: 40105864 DOI: 10.1021/acsami.4c22168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The application of 2D nanomaterials for drug delivery via π-π interactions has been extensively investigated. However, these interactions often lack robustness in the presence of blood proteins due to the competitive binding of blood proteins, which results from strong π-π-stacking interactions with aromatic protein residues. This can lead to premature drug release and diminished therapeutic efficacy. To address this challenge, we developed a robust 2D delivery/therapeutic biomimetic nanoplatform that enhances the adsorption affinity and targeted delivery efficiency of the chemotherapeutic drug doxorubicin (DOX) by utilizing Cu2+-modified black phosphorus nanosheets (BP@Cu2+) through metal ion-assisted π-π interactions. The synergistic interactions between the π-electrons of BP and DOX, mediated by Cu2+ coordination, form a stable sandwiched π-cation-π stacking complex (BP@Cu2+/DOX). This metal-ion-bridged architecture significantly enhances the DOX loading capacity and minimizes premature release in serum. In the acidic tumor microenvironment, this interaction is disrupted, enabling controlled release of both DOX and Cu2+ ions. Furthermore, the encapsulation of the complex within tumor cell membranes significantly enhances the efficiency of tumor targeting, resulting in a biomimetic nanoplatform (BP@Cu2+/DOX-CMs). Combined with near-infrared laser irradiation, this nanoplatform achieves synergistic multimodal therapy by integrating phototherapy, chemotherapy, chemodynamic therapy, and cuproptosis to enhance antitumor efficacy. The study highlights the potential of metal ion-assisted π-π stacking interactions in the development of advanced 2D nanoplatforms, thereby paving the way for innovative biomedical applications utilizing conventional 2D nanomaterials.
Collapse
Affiliation(s)
- Kai Ling
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jianlan Bu
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Weijie Huang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Wenyue Kang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Qingpeng Yuan
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Bingchun Zeng
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Chuanghong Liao
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Qiunuan Zheng
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Guangrong Zhang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Xuanjun Zheng
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Zeyang Chen
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Xiaohong Jiang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Rui Li
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Tiantian Zhai
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hongyan Jiang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
6
|
Uslu H, Atila Uslu G, Çiçek B, Bolat İ, Yıldırım S. Trigonelline alkaloid is effective in preventing doxorubicin-induced lung damage. Arch Physiol Biochem 2025; 131:169-176. [PMID: 39287053 DOI: 10.1080/13813455.2024.2404097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND One of the most popular chemotherapy medications is doxorubicin (DOX), however it can have non-negligible damage. When the underlying mechanisms of damage are investigated, the most prominent pathways are oxidative stress, inflammation and apoptosis. AIM We investigated the NF-κB/MAPK inflammatory pathway and cellular apoptosis to determine the efficacy of trigonelline alkaloid (TRIG) in preventing DOX-induced lung injury. METHODOLOGY The study consisted of C, TRIG, DOX and TRIG+DOX groups. TRIG and TRIG+DOX groups received 50 mg/kg TRIG for 7 days. On day 8, DOX and TRIG+DOX groups received a single dose of 15 mg/kg DOX. RESULTS Our results showed that apoptosis markers and inflammation were higher in the DOX group. In contrast, TRIG pretreatment partially suppressed apoptosis and decreased inflammation by blocking the activation of the MAPK/NF-κB pathway, lowering IL-6 levels, and protecting the lung from apoptotic cell death. CONCLUSION Assessing TRIG's effectiveness in lung tissue injury, this study may be a crucial first step.
Collapse
Affiliation(s)
- Hamit Uslu
- Department of Physiology, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Gözde Atila Uslu
- Department of Physiology, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Betül Çiçek
- Department of Physiology, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - İsmail Bolat
- Department of Pathology, Atatürk University, Erzurum, Türkiye
| | - Serkan Yıldırım
- Department of Pathology, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
7
|
Xiang L, Xiang X, Jiao Q, Luo Y, Zeng G, Zhang W, Qin Y, Chen Y. Inhibition of HSC proliferation and hepatic fibrogenesis with Erythrocyte membrane coated Doxorubicin/Black phosphorus nanosheets. Int J Pharm 2025; 673:125403. [PMID: 40015579 DOI: 10.1016/j.ijpharm.2025.125403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/05/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Rapid proliferation underlies the abnormal expansion of activated hepatic stellate cells (aHSCs) and thereby contributes to the development and progression of liver fibrosis, so inhibition of HSC proliferation serves as a good antifibrotic strategy. As a potent topoisomerase II inhibitor, doxorubicin (DOX), an antineoplastic drug, exhibits a significant antifibrotic activity in vitro via retarding the growth of aHSCs and reversing their myofibroblastic phenotype, but its severe hepatotoxicity, cardiotoxicity, and renal toxicity limit its wide clinical application. Therefore, enhancing the specificity and efficacy of DOX in targeting aHSCs to improve its therapeutic index and minimize its adverse effects has become a key point for the success of DOX in antifibrotic treatment. In this study aimed at liver fibrosis treatment, we combined the excellent drug-loading capability and good biocompatibility of black phosphorus nanosheets (BPNSs), the protective and camouflaging properties of red blood cell membrane encapsulation, and the HSCs-targetability provided by the surface modification with vitamin A derivatives, into the construction of HSCs-targeted BP/DOX nanovesicles (BP/DOX@RMV-VA). The obtained DOX nanovesicles exhibited a uniform particle size and spheroid morphology, excellent diffusion property and stability, and high DOX loading. Specifically, they demonstrated outstanding biosafety, effective HSCs-targetability both in vivo and in vitro, and markedly improved pharmacokinetic profile of DOX. BP/DOX@RMV-VA produced strong antiproliferative and MF-phenotype reverting activity both in cultured aHSCs and in mice chronically injured by CCl4. And accordingly, the administration of BP/DOX@RMV-VA to CCl4-injured mice effectively suppressed the expansion of aHSCs and fibrogenesis, and significantly improved liver structure and function without causing detectable cardiotoxicity. These results highly suggest the therapeutic potential of BP/DOX@RMV-VA in treating liver fibrosis and other fibrosis-associated liver diseases.
Collapse
Affiliation(s)
- Li Xiang
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 410001, China; The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
| | - Xianjing Xiang
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 410001, China
| | - Qiangqiang Jiao
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 410001, China
| | - Yu Luo
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 410001, China
| | - Guodong Zeng
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 410001, China
| | - Wenhui Zhang
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 410001, China
| | - Yuting Qin
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 410001, China
| | - Yuping Chen
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 410001, China; The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China; MOE Key Laboratory of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China.
| |
Collapse
|
8
|
Chen P, Zou F, Liu W. Recent advancement in prevention against hepatotoxicity, molecular mechanisms, and bioavailability of gallic acid, a natural phenolic compound: challenges and perspectives. Front Pharmacol 2025; 16:1549526. [PMID: 40191418 PMCID: PMC11968354 DOI: 10.3389/fphar.2025.1549526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/19/2025] [Indexed: 04/09/2025] Open
Abstract
Drug-induced liver injury (DILI) results from the liver toxicity caused by drugs or their metabolites. Gallic acid (GA) is a naturally occurring secondary metabolite found in many fruits, plants, and nuts. Recently, GA has drawn increasing attention due to its potent pharmacological properties, particularly its anti-inflammatory and antioxidant capabilities. To the best of our knowledge, this is the first review to focus on the pharmacological properties of GA and related molecular activation mechanisms regarding protection against hepatotoxicity. We also provide a thorough explanation of the physicochemical properties, fruit sources, toxicity, and pharmacokinetics of GA after reviewing a substantial number of studies. Pharmacokinetic studies have shown that GA is quickly absorbed and eliminated when taken orally, which restricts its use in development. However, the bioavailability of GA can be increased by optimizing its structure or changing its form of administration. Notably, according to toxicology studies conducted on a range of animals and clinical trials, GA rarely exhibits toxicity or side effects. The antioxidation mechanisms mainly involved Nrf2, while anti-inflammatory mechanisms involved MAPKs and NF-κB signaling pathways. Owing to its marked pharmacological properties, GA is a prospective candidate for the management of diverse xenobiotic-induced hepatotoxicity. We also discuss the applications of cutting-edge technologies (nano-delivery systems, network pharmacology, and liver organoids) in DILI. In addition to guiding future research and development of GA as a medicine, this study offers a theoretical foundation for its clinical application.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fanzhao Zou
- Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Liu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Zobeydi AM, Mousavi Namavar SN, Sadeghi Shahdani M, Choobineh S, Kordi MR, Rakhshan K. Mitigating doxorubicin-induced hepatotoxicity in male rats: The role of aerobic interval training and curcumin supplementation in reducing oxidative stress, endoplasmic reticulum stress and apoptosis. Sci Rep 2025; 15:6604. [PMID: 39994295 PMCID: PMC11850886 DOI: 10.1038/s41598-025-91133-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
Doxorubicin (DOXO) is a powerful anthracycline chemotherapeutic drug, but its clinical usage has been limited by its deleterious effects on different organs, particularly hepatotoxicity. The aim of this study was to establish the combined effects of aerobic interval training (AIT) and curcumin supplementation on mitigating oxidative damage and endoplasmic reticulum (ER) stress-mediated apoptosis in a rat model of DOXO-induced hepatotoxicity. Fifty-six male Sprague-Dawley rats were randomly split into six groups: control (CON), vehicle, doxorubicin (Dox), doxorubicin + curcumin (Dox-C), doxorubicin + AIT (Dox-A), and doxorubicin + curcumin + AIT (Dox-AC). DOXO was intraperitoneally injected weekly (4 mg/kg/week) for five weeks. Curcumin supplementation (100 mg/kg/day) and AIT (4 min at 80-90% of VO2max intermitted by 3 min of active rest at 65-75% of VO2max) were conducted five times a week for six weeks. Finally, the hepatic tissue and blood samples were collected to assess histopathological changes, liver damage biomarkers, and the protein expression of oxidative stress, ER stress, and apoptosis markers. Tissue sections revealed that AIT and curcumin supplementation significantly improved hepatotoxicity induced by DOXO, as evidenced by the positive effects on histopathological alterations and serum markers of hepatic damage (P < 0.05). Both curcumin and AIT significantly reduced DOXO-triggered oxidative damage, ER stress, and apoptosis (P < 0.05), with the latter showing slightly higher effectiveness. Consequently, the combination of AIT with curcumin supplementation exhibits protective effects against chronic hepatotoxicity induced by DOXO, with AIT demonstrating relatively greater efficacy in increasing antioxidant capacity and reducing ER stress and apoptosis.
Collapse
Affiliation(s)
- Amir Mohammad Zobeydi
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran.
| | | | - Maryam Sadeghi Shahdani
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran
| | - Siroos Choobineh
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran.
| | - Mohammad Reza Kordi
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran
| | - Kamran Rakhshan
- Department of Medical Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Ergüç A, Albayrak G, Muhammed MT, Karakuş F, Arzuk E, İnce-Ergüç E. Exploring the role of quercetin on doxorubicin and lapatinib-mediated cellular and mitochondrial responses using in vitro and in silico studies. J Chemother 2025:1-15. [PMID: 39988777 DOI: 10.1080/1120009x.2025.2471154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Doxorubicin (DOX) and lapatinib (LAP) have been reported to cause liver toxicity. The roles of mitochondrial and cellular responses in DOX and LAP mediated-hepatotoxicity have not been investigated with or without quercetin (QUE) in HepG2 cells sensitive to mitochondrial damage (high-glucose or galactose media) in addition to in silico studies. Our results revealed that cytosolic pathways might play role a in DOX-induced cytotoxicity rather than mitochondria. QUE exacerbated DOX-induced ATP depletion in both environments. Our data also indicated that cytosolic and mitochondrial pathways might play a role in LAP-induced cytotoxicity. Incubating QUE with LAP increased ATP levels in high-glucose media. Therefore, QUE might have protective effect against LAP-induced cytotoxicity resulting from cytosolic pathways. The findings from in vitro experiments that QUE increased DOX or LAP-induced mitochondrial dysfunction were confirmed by the results from in silico studies indicating that QUE incubated with LAP or DOX might increase mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ali Ergüç
- Department of Pharmaceutical Toxicology, Ondokuz Mayıs University, Samsun, Turkey
- Department of Pharmaceutical Toxicology, İzmir Katip Çelebi University, İzmir, Turkey
| | - Gökay Albayrak
- Department of Pharmaceutical Botany, İzmir Katip Çelebi University, İzmir, Turkey
| | | | - Fuat Karakuş
- Department of Pharmaceutical Toxicology, Van Yuzuncu Yil University, Van, Turkey
| | - Ege Arzuk
- Department of Pharmaceutical Toxicology, Ege University, İzmir, Turkey
| | - Elif İnce-Ergüç
- Department of Pharmaceutical Toxicology, İzmir Katip Çelebi University, İzmir, Turkey
| |
Collapse
|
11
|
Lal-Shahsavar S, Zolbanin NM, Jafari A, Ghasemnejad-Berenji M. Metformin alleviates doxorubicin-induced hepatic damage by modulating oxidative stress: a molecular, biochemical, and histopathological approach in a rat model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03688-2. [PMID: 39903256 DOI: 10.1007/s00210-024-03688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/27/2024] [Indexed: 02/06/2025]
Abstract
Doxorubicin (DOX) is one of the most commonly prescribed anti-cancer drugs. However, DOX-induced hepatotoxicity is a dose-limiting side effect. This study aimed to clarify the potential protective effects of metformin on DOX-induced hepatotoxicity in rats. The animals were divided into six groups (n = 6 each): Control Group, DOX group, metformin 200 mg/kg group, DOX + metformin 50 mg/kg group, DOX + metformin 100 mg/kg group, and DOX + metformin 200 mg/kg group. Hepatic injury was induced by a single intraperitoneal injection of DOX (20 mg/kg). The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) in serum were determined. Furthermore, the hepatic histopathological changes were evaluated. To identify the markers of oxidative stress, the level of malondialdehyde (MDA) and the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in liver tissue were measured. Results showed that DOX provoked a marked elevation in ALT, AST, and ALP serum levels. In addition, oxidative stress was significantly boosted in DOX-treated rats compared to control rats. All these were abolished with the metformin administration. Histological examination also showed that metformin could substantially reduce DOX-induced alterations. The most prominent effect was observed by high-dose metformin.
Collapse
Affiliation(s)
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, 5715799313, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, 5715799313, Iran.
| |
Collapse
|
12
|
Lim JJ, Klaassen CD, Cui JY. Deciphering the cell type-specific and zonal distribution of drug-metabolizing enzymes, transporters, and transcription factors in livers of mice using single-cell transcriptomics. Drug Metab Dispos 2025; 53:100029. [PMID: 39919554 DOI: 10.1016/j.dmd.2024.100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/08/2024] [Indexed: 02/09/2025] Open
Abstract
The liver contains multiple cell types, including resident cell types and immune cells. The liver is also categorized into 3 zones: periportal (zone 1), midzonal (zone 2), and centrilobular (zone 3). The goal of this study was to characterize the distribution of drug-processing genes (DPGs) in mouse liver using published single-cell and nuclei transcriptomic datasets, which were subjected to zonal deconvolution. Filtering, normalization, clustering, and differential expression analyses were performed using Seurat V5 in R. Hepatocytes were assigned to 3 zones based on known zonal markers and validated with published spatial transcriptomics data. Among the 195 DPGs profiled, most were expressed highest in hepatocytes (61.3%). Interestingly, certain DPGs were expressed most highly in nonparenchymal cells, such as in cholangiocytes (11.2%, eg, carboxylesterase [Ces] 2e, Ces2g), endothelial cells (7.2%, eg, aldo-keto reductase [Akr] 1c19, Akr1e1), Kupffer cells (5.3%, eg, Akr1a1, Akr1b10), stellate cells (5.1%, eg, retinoic acid receptor [Rar] α, Rarβ), myofibroblasts (2.9%, RAR-related orphan receptor [Rar] α), and a few were expressed in immune cell types. In hepatocytes, 72.4% of phase-I enzymes were enriched in zone 3. Phase-II conjugation enzymes such as UDP-glucuronosyltransferases (75%) were enriched in zone 3, whereas sulfotransferases (40%) were enriched in zone 1. Hepatic xenobiotic transporters were enriched in zone 3. The xenobiotic biotransformation-regulating transcription factors were enriched in zone 3 hepatocytes. The enrichment of DPGs in liver cell types, including non-parenchymal cells and zone 1 hepatocytes, may serve as an additional repertoire for xenobiotic biotransformation. SIGNIFICANCE STATEMENT: Our study is among the first to systematically characterize the baseline mRNA enrichment of important drug-processing genes in different cell types and zones in the liver. This finding will aid in further understanding the mechanisms of chemical-induced liver injury with improved resolution and precision.
Collapse
Affiliation(s)
- Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington; Environmental Health and Microbiome Research Center (EHMBRACE), Seattle, Washington
| | - Curtis Dean Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, School of Medicine, University of Kansas, Kansas City, Kanas.
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington; Environmental Health and Microbiome Research Center (EHMBRACE), Seattle, Washington.
| |
Collapse
|
13
|
Mossenta M, Argenziano M, Capolla S, Busato D, Durigutto P, Mangogna A, Polano M, Sblattero D, Cavalli R, Macor P, Toffoli G, Dal Bo M. Idarubicin-loaded chitosan nanobubbles to improve survival and decrease drug side effects in hepatocellular carcinoma. Nanomedicine (Lond) 2025; 20:255-270. [PMID: 39815170 PMCID: PMC11792799 DOI: 10.1080/17435889.2025.2452154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Drug delivery strategies using chitosan nanobubbles (CS-NBs) could be used to reduce drug side effects and improve outcomes in hepatocellular carcinoma (HCC) treatment. To enhance their action, a targeting agent, such as the humanized anti-GPC3 antibody GC33 (condrituzumab), could be attached to their surface. Here, we investigated the use of idarubicin-loaded CS-NBs for HCC treatment and a GC33-derived minibody (that we named 4A1) to enhance CS-NB delivery. METHODS Various CS-NB formulations were prepared with or without 4A1 conjugation and idarubicin loading. RESULTS CS-NBs had a positive charge and a diameter of about 360 nm. In in-vitro experiments using the HCC-like HUH7 cell line, CS-NBs showed a cytotoxic effect once loaded with idarubicin. In-vivo biodistribution in HUH7 tumor-bearing xenograft mice demonstrated that CS-NBs can accumulate in the tumor mass. This effect was enhanced by 4A1 conjugation (p = 0.0317). In HUH7 tumor-bearing xenograft mice, CS-NBs loaded with idarubicin and conjugated or not conjugated with 4A1 were both able to slow tumor growth, to increase mouse survival time compared to free idarubicin (p = 0.00044 and 0.0018, respectively) as well as to reduce drug side effects. CONCLUSIONS CS-NBs loaded with idarubicin can be a useful drug delivery strategy for HCC treatment.
Collapse
Affiliation(s)
- Monica Mossenta
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paolo Durigutto
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Mangogna
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Institute of Pathological Anatomy, Department of Medicine, University of Udine, Udine, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | | | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| |
Collapse
|
14
|
Lushnikova EL, Koldysheva EV, Kapustina VI, Klinnikova MG. Morphological Characteristics of the Liver and Immunohistochemical Analysis of HSP70 Expression in Hepatocytes under the Impact of Doxorubicin and Rosuvastatin. Bull Exp Biol Med 2025; 178:507-513. [PMID: 40148666 DOI: 10.1007/s10517-025-06365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Indexed: 03/29/2025]
Abstract
A morphological and immunohistochemical analyses of the liver of male WAG rats (n=47) were performed after isolated and combined administration of doxorubicin and rosuvastatin. Doxorubicin (7 mg/kg) was administered intraperitoneally once, while rosuvastatin (10 mg/kg) was given intragastrically daily; the animals were euthanized after 4, 14, and 21 days of experiment. The main morphological changes observed in the liver after both isolated doxorubicin administration and in combination with rosuvastatin included dystrophic and necrobiotic changes in hepatocytes, uneven congestion with the formation of thrombotic masses in the portal vein system, and pronounced perivenous edema. Isolated administration of rosuvastatin led to severe dystrophic changes in hepatocytes and fewer circulatory disturbances in the form of vascular congestion. Immunohistochemical analysis revealed nuclear, cytoplasmic, and mixed (nuclear-cytoplasmic) localization of HSP70 in hepatocytes in all experimental groups. In the liver of control rats, mixed localization of HSP70 significantly prevailed (>62% of hepatocytes; p<0.001); only nuclear localization was found in 9% of cells. When doxorubicin and rosuvastatin were administered alone or in a combination, significant translocation of HSP70 from the cytoplasm to the nucleus occurred (the index of hepatocytes with HSP70 localization in the nuclei increase by 3-4.5 times), which may reflect the cytotoxic nature of these drugs and the activation of cytoprotective mechanisms.
Collapse
Affiliation(s)
- E L Lushnikova
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia.
| | - E V Koldysheva
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - V I Kapustina
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - M G Klinnikova
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
15
|
Sung I, Lee S, Bang D, Yi J, Lee S, Kim S. MDTR: a knowledge-guided interpretable representation for quantifying liver toxicity at transcriptomic level. Front Pharmacol 2025; 15:1398370. [PMID: 39926256 PMCID: PMC11802568 DOI: 10.3389/fphar.2024.1398370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/27/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Drug-induced liver injury (DILI) has been investigated at the patient level. Analysis of gene perturbation at the cellular level can help better characterize biological mechanisms of hepatotoxicity. Despite accumulating drug-induced transcriptome data such as LINCS, analyzing such transcriptome data upon drug treatment is a challenging task because the perturbation of expression is dose and time dependent. In addition, the mechanisms of drug toxicity are known only as literature information, not in a computable form. Methods To address these challenges, we propose a Multi-Dimensional Transcriptomic Ruler (MDTR) that quantifies the degree of DILI at the transcriptome level. To translate transcriptome data to toxicity-related mechanisms, MDTR incorporates KEGG pathways as representatives of mechanisms, mapping transcriptome data to biological pathways and subsequently aggregating them for each of the five hepatotoxicity mechanisms. Given that a single mechanism involves multiple pathways, MDTR measures pathway-level perturbation by constructing a radial basis kernel-based toxicity space and measuring the Mahalanobis distance in the transcriptomic kernel space. Representing each mechanism as a dimension, MDTR is visualized in a radar chart, enabling an effective visual presentation of hepatotoxicity at transcriptomic level. Results and Discussion In experiments with the LINCS dataset, we show that MDTR outperforms existing methods for measuring the distance of transcriptome data when describing for dose-dependent drug perturbations. In addition, MDTR shows interpretability at the level of DILI mechanisms in terms of the distance, i.e., in a metric space. Furthermore, we provided a user-friendly and freely accessible website (http://biohealth.snu.ac.kr/software/MDTR), enabling users to easily measure DILI in drug-induced transcriptome data.
Collapse
Affiliation(s)
- Inyoung Sung
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Sangseon Lee
- Institute of Computer Technology, Seoul National University, Seoul, Republic of Korea
| | - Dongmin Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- AIGENDRUG Co., Ltd., Seoul, Republic of Korea
| | - Jungseob Yi
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, Republic of Korea
| | - Sunho Lee
- AIGENDRUG Co., Ltd., Seoul, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- AIGENDRUG Co., Ltd., Seoul, Republic of Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, Republic of Korea
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Zhang X, Zou L, Liao H, Ren H, Niu H, Li Z, Zhang X, Huang X, Liu Y, Zhou Z, Pan H, Ma H, Rong S. Nanoenzyme-based sensors for the detection of anti-tumor drugs. Mikrochim Acta 2025; 192:103. [PMID: 39847110 DOI: 10.1007/s00604-024-06822-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/31/2024] [Indexed: 01/24/2025]
Abstract
Natural enzymes are a class of biological catalysts that can catalyze a specific substrate. Although natural enzymes have catalytic activity, they are susceptible to the influence of external environment such as temperature, and storage requirements are more stringent. Since the first discovery of magnetic Fe3O4 nanoparticles with peroxidase-like activity in 2007, the research on nanoenzymes has entered a rapid development stage. Nanoenzymes synthesized by chemical methods not only have the catalytic activity of natural enzymes but also are more stable, easy to store, and convenient to prepare. Anthracyclines, as a commonly used anti-tumor chemotherapy drug, will produce many side effects such as myelosuppression and liver function damage after long-term use, which will affect its therapeutic effects. This paper reviews the characteristics, classification, and mechanisms of nanoenzymes. The detection of anti-tumor drugs, especially anthracycline drugs, using a nanoenzyme-based sensor was emphatically introduced. On this basis, the application of nanoenzyme-based sensors in the detection of anti-tumor drugs is prospected.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Lina Zou
- Nursing School, Mudanjiang Medical University, Mudanjiang, China
| | - Hao Liao
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Huanyu Ren
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Huiru Niu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Zheng Li
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xueqing Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaojing Huang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Yanan Liu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Zhiren Zhou
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hongkun Ma
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Shengzhong Rong
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
17
|
Alwaili MA, Abu-Almakarem AS, Aljohani S, Alkhodair SA, Al-Bazi MM, Eid TM, Alamri J, Mobasher MA, Algarzae NK, A. Khayyat AI, Alshaygy LS, El-Said KS. Avenanthramide-C ameliorate doxorubicin-induced hepatotoxicity via modulating Akt/GSK-3β and Wnt-4/β-Catenin pathways in male rats. Front Mol Biosci 2024; 11:1507786. [PMID: 39687571 PMCID: PMC11646862 DOI: 10.3389/fmolb.2024.1507786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024] Open
Abstract
Background Doxorubicin (DOX) drugs used in cancer treatment can cause various adverse effects, including hepatotoxicity. Natural-derived constituents have shown promising effects in alleviating chemotherapy-induced toxicities. This study addressed the effect of Avenanthramides-C (AVN-C) treatment in rats with DOX-indued hepatotoxicity. Methods AutoDock Vina was used for the molecular docking investigations. In silico toxicity prediction for AVN-C and DOX was performed using the Pro Tox-III server. Four groups of ten male Sprague-Dawley rats were created: Group 1 (Gp1) served as a negative control, Gp2 received an intraperitoneal (i.p.) injection of AVN-C (10 mg/kg), Gp3 received an i.p. dose of DOX (4 mg/kg) weekly for a month, and Gp4 received the same dose of DOX as G3 and AVN-C as G2. Histopathological, molecular, and biochemical analyses were conducted 1 month later. Results The study showed that treatment with AVN-C significantly ameliorated DOX-induced hepatotoxicity in rats by restoring biochemical alterations, boosting antioxidant activity, reducing inflammation, and modulating the Akt/GSK-3β and Wnt-4/β-Catenin signaling pathways in male rats. Conclusion This study is the first to demonstrate the therapeutic effects of AVN-C therapy on DOX-induced liver damage in male rats. Therefore, AVN-C could have a pronounced palliative effect on the hepatotoxicity caused by DOX treatment. These findings suggest that AVN-C could potentially alleviate the hepatotoxicity associated with DOX-based chemotherapy.
Collapse
Affiliation(s)
- Maha Abdullah Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amal S. Abu-Almakarem
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al Bahah, Saudi Arabia
| | - Salwa Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | | | - Maha M. Al-Bazi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamir M. Eid
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jehan Alamri
- Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maysa A. Mobasher
- Department of Pathology, Biochemistry Division, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Norah K. Algarzae
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Arwa Ishaq A. Khayyat
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Luluah Saleh Alshaygy
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Karim Samy El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
18
|
Adeneye AA, Babatope FE, Adesiji-Adelekan AE, Olorundare OE, Okoye II. Tadalafil pretreatment attenuates doxorubicin-induced hepatorenal toxicity by modulating oxidative stress and inflammation in Wistar rats. Toxicol Rep 2024; 13:101737. [PMID: 39391709 PMCID: PMC11465077 DOI: 10.1016/j.toxrep.2024.101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Doxorubicin (DOX) is a widely used anticancer agent, but its clinical application is limited by significant off-target hepatorenal toxicity. Tadalafil (TAD), a selective phosphodiesterase-5 inhibitor used mainly for erectile dysfunction and pulmonary arterial hypertension, has shown potential in reducing oxidative stress. This study investigated TAD's chemoprotective effects and underlying mechanisms in DOX-induced hepatorenal toxicity in rats over 12 days. Eight groups of six rats each were orally pretreated with sterile water, silymarin (SIL), or TAD one hour before receiving intraperitoneal injections of 2.5 mg/kg DOX. On the 13th day, the rats were humanely sacrificed under inhaled halothane anesthesia, and serum was collected for hepatic and renal function tests, while liver and kidney tissues were analyzed for antioxidant enzyme activity, pro-inflammatory cytokines assay, and histopathological evaluation. DOX successfully induced hepatorenal toxicity, evidenced by significant increases (p<0.001, p<0.0001) in serum K+, urea, and creatinine levels, along with decreases in HCO3 -, TCa2+, and Cl-. Tissue analysis showed reduced SOD, CAT, GST, and GPx activities, with elevated MDA and GSH levels. TAD pretreatment significantly ameliorated these biochemical alterations (p<0.05, p<0.001, p<0.0001), suggesting its potential as an effective chemoprophylactic adjuvant in the development of DOX-induced hepatorenal toxicity.
Collapse
Affiliation(s)
- Adejuwon Adewale Adeneye
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, 1-5 Oba Akinjobi Way, G.R.A., Ikeja, Lagos State, Nigeria
- Directorate of Research Management and Innovation, 3rd Floor, Babatunde Raji Fashola Senate Building, Lagos State University, Ojo, Lagos State, Nigeria
| | - Fidaraoluwa Esther Babatope
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, 1-5 Oba Akinjobi Way, G.R.A., Ikeja, Lagos State, Nigeria
| | - Ademilayo Eunice Adesiji-Adelekan
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, 1-5 Oba Akinjobi Way, G.R.A., Ikeja, Lagos State, Nigeria
| | - Olufunke Esan Olorundare
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Ikechukwu Innocent Okoye
- Department of Oral Pathology and Medicine, Faculty of Dentistry, Lagos State University College of Medicine, 1-5 Oba Akinjobi Way, G.R.A., Ikeja, Lagos State, Nigeria
| |
Collapse
|
19
|
Mansour DF, Hashad IM, Rady M, Abd-El Razik AN, Saleh DO. Diosmin and Coenzyme q10: Synergistic histopathological and functional protection against doxorubicin-induced hepatorenal injury in rats. Toxicol Rep 2024; 13:101848. [PMID: 39703765 PMCID: PMC11655815 DOI: 10.1016/j.toxrep.2024.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
Doxorubicin (DOX) is a cytotoxic anthracycline used to treat a variety of cancers. Cardiotoxicity, hepatotoxicity, and nephrotoxicity are adverse effects of DOX, that limit prognosis. The study aims to determine if diosmin (DIOS) and coenzyme Q10 (CoQ10) alone or in combination protect rats against DOX-induced liver and kidney damage. Adult male rats were assigned randomly in five groups. An intraperitoneal injection of DOX (2.5 mg/kg) was given to the DOX group every other day for three weeks, whereas a normal control group received the vehicle. Diosmin group received oral DIOS (100 mg/kg), Co-Q10 group received oral CoQ10 (10 mg/kg) and combination group received oral DIOS and CoQ10 daily for three weeks concomitantly with DOX. Sera and tissues were obtained 24 hours after last DOX injection. Serum aspartate transaminase (AST), alanine transaminase (ALT), creatinine, urea, total bilirubin and direct bilirubin were detected with hepatic and renal reduced glutathione (GSH), malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α) and nuclear factor kappa-B (NF-κB). Histopathology and morphometry of liver and kidney were assessed. DOX exerted significant hepatorenal toxicity via elevation of liver and kidney functions, inducing oxidative stress by reducing GSH and elevating MDA, triggering renal and hepatic TNF-α and NF-kB. DIOS and CoQ10 modulated hepatic and renal functions, oxidative stress and inflammatory biomarkers. DIOS-CoQ10 combination treatment showed significant improvement in histopathology of liver and kidney along with morphometry compared to DOX group. In conclusion, combining DIOS and CoQ10 exhibited synergistic protective activity against DOX-induced hepatic and renal insult via their antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Dina F. Mansour
- Pharmacology Department, Medical Research and Clinical Studies Institute - National Research Centre, Dokki, Giza 12622, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Galala University, Mount Ataka, Suez, Egypt
| | - Ingy M. Hashad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mona Rady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo, Egypt
- Faculty of Biotechnology, German International University, New Administrative Capital, Cairo, Egypt
| | - Amira N. Abd-El Razik
- Pathology Department, Medical Research and Clinical Studies Institute - National Research Centre, Dokki, Giza 12622, Egypt
| | - Dalia O. Saleh
- Pharmacology Department, Medical Research and Clinical Studies Institute - National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
20
|
Sahu AA, Mukherjee A, Nirala SK, Bhadauria M. Cyclophosphamide-induced multiple organ dysfunctions: unravelling of dose dependent toxic impact on biochemistry and histology. Toxicol Res (Camb) 2024; 13:tfae201. [PMID: 39698395 PMCID: PMC11650506 DOI: 10.1093/toxres/tfae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/06/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Cyclophosphamide, an immunosuppressive alkylating agent, has been used against breast cancer, lymphoma and myeloid leukemia. Despite various therapeutic uses, its toxic impacts on multiple organs remains to be fully elucidated. AIM This study aimed to investigate dose dependent toxic impact of cyclophosphamide on liver, kidney, brain and testis emphasizing serum and tissue biochemical and histological alterations. MATERIALS AND METHODS Experimental design consisted of five groups of albino rats. Group 1-5 were administered vehicle for five consecutive days. On 6th day, group 1 received vehicle only and termed as control; group 2-5 received cyclophosphamide through intraperitoneal route at the rate of 50, 100, 150 and 200 mg/kg dose, respectively. After 24 h of the last administration, rats were euthanised; serum and tissue biochemistry; histology, sperm count and its motility were performed. RESULTS Serological, biochemical and histological indices exhibited dose dependent deviations from their regular status as a marker of toxicity in liver, kidney, brain and testis. Tukey's HSD post hoc test revealed maximum damage in multiple organs with 200 mg/kg dose of cyclophosphamide.
Collapse
Affiliation(s)
- Asim Amitabh Sahu
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas University, Ratanpur Road, Koni-Bilaspur, Chhattisgarh 495009, India
| | - Ankita Mukherjee
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas University, Ratanpur Road, Koni-Bilaspur, Chhattisgarh 495009, India
| | - Satendra Kumar Nirala
- Laboratory of Natural Products, Department of Rural Technology and Social Development, Guru Ghasidas University, Ratanpur Road, Koni-Bilaspur, Chhattisgarh 495009, India
| | - Monika Bhadauria
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas University, Ratanpur Road, Koni-Bilaspur, Chhattisgarh 495009, India
| |
Collapse
|
21
|
Mohamed ATAE, Ragheb MA, Shehata MR, Mohamed AS. In vivo cardioprotective effect of zinc oxide nanoparticles against doxorubicin-induced myocardial infarction by enhancing the antioxidant system and nitric oxide production. J Trace Elem Med Biol 2024; 86:127516. [PMID: 39226872 DOI: 10.1016/j.jtemb.2024.127516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Myocardial infarction (MI) is the result of reduced or stopped blood supply to a section of the myocardium. Regardless of its potential effectiveness in the treatment of several types of cancers, doxorubicin (DOX) capabilities are restricted because of its widespread cardiotoxic impact. AIM In this study, the protective effect of zinc oxide nanoparticles against doxorubicin-induced myocardial infarction in rats is examined. METHODS Zinc oxide nanoparticles (ZnO NPs) were synthesized and characterized using X-ray diffraction, transmission electron microscope, and UV-Vis spectral analysis. A total cumulative dose of DOX (18 mg/kg body weight, i.p.) was injected once daily on days 2, 4, 6, 8, 10, and 12 (i.p.) to induce MI in rats. 24 rats were divided into 4 groups; control, MI, and MI treated with two doses of ZnO NPs (45 and 22.5 mg/kg). RESULTS The treatment with ZnO NPs restored ST-segment near normal, ameliorated the changes in cardiac troponin T, creatine kinase, lactate dehydrogenase, aspartate aminotransferase, alanine amino transferase, alkaline phosphatase, total proteins, malondialdehyde, nitric oxide, reduced glutathione, and catalase.The histological investigation revealed that ZnO NPs treated group showed marked improvement in the examined cardiac muscle and liver in numerous sections.The lower dose of ZnO NPs (22.5 mg/kg) was significantly more effective than the higher dose (45 mg/kg). CONCLUSION The effect of ZnO NPs against doxorubicin-induced myocardial infarction in rats was assessed and the results revealed a successful cardioprotective potency through enhancing the antioxidant system and stimulating nitric oxide production in myocardial infarcted rats. This work implies that ZnO NPs could serve as promising agents for treating doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Egypt.
| | | | | |
Collapse
|
22
|
Alsirhani AM, Abu-Almakarem AS, Alwaili MA, Aljohani S, Alali I, AlRashidi AA, Abuzinadah NY, Alkhodair SA, Mobasher MA, Alothaim T, Eid TM, El-Said KS. Syzygium aromaticum Extract Mitigates Doxorubicin-Induced Hepatotoxicity in Male Rats. Int J Mol Sci 2024; 25:12541. [PMID: 39684253 DOI: 10.3390/ijms252312541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/09/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Doxorubicin (DOX), an anticancer drug, is used to treat several types of tumors, but it has detrimental side effects that restrict its therapeutic efficacy. One is the iron-dependent form of ferroptosis, which is characterized by elevated ROS production and iron overload. Syzygium aromaticum has a diverse range of biological and pharmaceutical actions due to their antioxidant properties. This study investigated the effect of S. aromaticum extract (SAE) on hepatotoxicity caused by DOX in rats. Phytochemical analysis was performed to assess compounds in SAE. The ADMETlab 2.0 web server was used to predict the pharmacokinetic properties of the most active components of SAE when DOX was injected into rats. Molecular docking studies were performed using AutoDock Vina. Forty male Sprague Dawley rats were divided into four groups of ten rats each (G1 was a negative control group, G2 was given 1/10 of SAE LD50 by oral gavage (340 mg/kg), G3 was given 4 mg/kg of DOX intraperitoneally (i.p.) once a week for a month, and G4 was administered DOX as in G3 and SAE as in G2). After a month, biochemical and histopathological investigations were performed. Rats given SAE had promising levels of phytochemicals, which could significantly ameliorate DOX-induced hepatotoxicity by restoring biochemical alterations, mitigating ferroptosis, and upregulating the NRF-2-SLC7A-11-GPX-4 signaling pathway. These findings suggest that SAE could potentially alleviate DOX-induced hepatotoxicity in rats.
Collapse
Affiliation(s)
- Alaa Muqbil Alsirhani
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Saudi Arabia
| | - Amal S Abu-Almakarem
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al Baha 65431, Saudi Arabia
| | - Maha Abdullah Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Salwa Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu Branch, Yanbu 46423, Saudi Arabia
| | - Ibtisam Alali
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Najlaa Yousef Abuzinadah
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 23714, Saudi Arabia
| | | | - Maysa A Mobasher
- Department of Pathology, Biochemistry Division, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | - Tahiyat Alothaim
- Department of Biology, College of Science, Qassim University, Buraydah 51452, Saudi Arabia
| | - Thamir M Eid
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Karim Samy El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
23
|
Haseeb M, Khan I, Kartal Z, Mahfooz S, Hatiboglu MA. Status Quo in the Liposome-Based Therapeutic Strategies Against Glioblastoma: "Targeting the Tumor and Tumor Microenvironment". Int J Mol Sci 2024; 25:11271. [PMID: 39457052 PMCID: PMC11509082 DOI: 10.3390/ijms252011271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Glioblastoma is the most aggressive and fatal brain cancer, characterized by a high growth rate, invasiveness, and treatment resistance. The presence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) poses a challenging task for chemotherapeutics, resulting in low efficacy, bioavailability, and increased dose-associated side effects. Despite the rigorous treatment strategies, including surgical resection, radiotherapy, and adjuvant chemotherapy with temozolomide, overall survival remains poor. The failure of current chemotherapeutics and other treatment regimens in glioblastoma necessitates the development of new drug delivery methodologies to precisely and efficiently target glioblastoma. Nanoparticle-based drug delivery systems offer a better therapeutic option in glioblastoma, considering their small size, ease of diffusion, and ability to cross the BBB. Liposomes are a specific category of nanoparticles made up of fatty acids. Furthermore, liposomes can be surface-modified to target a particular receptor and are nontoxic. This review discusses various methods of liposome modification for active/directed targeting and various liposome-based therapeutic approaches in the delivery of current chemotherapeutic drugs and nucleic acids in targeting the glioblastoma and tumor microenvironment.
Collapse
Affiliation(s)
- Mohd Haseeb
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeynep Kartal
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, 34093 Istanbul, Turkey
| |
Collapse
|
24
|
Peng W, Qin L, Wang T, Sun Y, Li Z, Lefer DJ, Luo C, Ye F, Wang B, Guo W, Zheng Y. A Highly Atom-Efficient Prodrug Approach to Generate Synergy between H 2S and Nonsteroidal Anti-inflammatory Drugs and Improve Safety. J Med Chem 2024; 67:17350-17362. [PMID: 39316761 DOI: 10.1021/acs.jmedchem.4c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Efforts to synergize hydrogen sulfide (H2S) with NSAIDs have faced challenges due to complex structural entities and independent release kinetics. This study presents a highly atom-efficient approach of using a thiocarboxylic acid (thioacid) as a novel H2S releasing precursor and successfully employs it to modify NSAIDs, which offers several critical advantages. First, thioacid-modified NSAID is active in inhibiting cyclooxygenase, sometimes with improved potency. Second, this prodrug approach avoids introducing extra structural moieties, allowing for the release of only the intended active principals. Third, the release of H2S and NSAID is concomitant, thus optimally synchronizing the concentration profiles of the two active principals. The design is based on our discovery that esterases can directly and efficiently hydrolyze thiocarboxylic acids, enabling controlled release H2S. This study demonstrates the proof of principle through synthesizing analogs, assesses release kinetics, enzyme inhibition, and pharmacological efficacy, and evaluates toxicity and gut microbiota regulation in animal models.
Collapse
Affiliation(s)
- Wen Peng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Lixiao Qin
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Tianci Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yangqian Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zhen Li
- Department of Cardiac Surgery Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - David J Lefer
- Department of Cardiac Surgery Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Cheng Luo
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Weiwei Guo
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yueqin Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
25
|
Qiu M, Ma K, Zhang J, Zhao Z, Wang S, Wang Q, Xu H. Isoliquiritigenin as a modulator of the Nrf2 signaling pathway: potential therapeutic implications. Front Pharmacol 2024; 15:1395735. [PMID: 39444605 PMCID: PMC11496173 DOI: 10.3389/fphar.2024.1395735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2), a transcription factor responsible for cytoprotection, plays a crucial role in regulating the expression of numerous antioxidant genes, thereby reducing reactive oxygen species (ROS) levels and safeguarding cells against oxidative stress. Extensive research has demonstrated the involvement of Nrf2 in various diseases, prompting the exploration of Nrf2 activation as a potential therapeutic approach for a variety of diseases. Consequently, there has been a surge of interest in investigating the Nrf2 signaling pathway and developing compounds that can modulate its activity. Isoliquiritigenin (ISL) (PubChem CID:638278) exhibits a diverse range of pharmacological activities, including antioxidant, anticancer, and anti-tumor properties. Notably, its robust antioxidant activity has garnered significant attention. Furthermore, ISL has been found to possess therapeutic effects on various diseases, such as diabetes, cardiovascular diseases, kidney diseases, and cancer, through the activation of the Nrf2 pathway. This review aims to evaluate the potential of ISL in modulating the Nrf2 signaling pathway and summarize the role of ISL in diverse diseases prevention and treatment through modulating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Mangmang Qiu
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| | - Kang Ma
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Junfeng Zhang
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| | - Zhaohua Zhao
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| | - Shan Wang
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qing Wang
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hao Xu
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| |
Collapse
|
26
|
Xue J, Ye B, Sun M. Possible pathogenic mechanisms for doxorubicin-induced splenic atrophy in a human breast cancer xenograft mouse model. J Appl Toxicol 2024; 44:1606-1615. [PMID: 38943348 DOI: 10.1002/jat.4666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Doxorubicin-based chemotherapy is a widely used first-line treatment for breast cancer, yet it is associated with various side effects, including splenic atrophy. However, the pathogenic mechanisms underlying doxorubicin-induced atrophy of the spleen remain unclear. This study investigates that doxorubicin treatment leads to splenic atrophy through several interconnected pathways involving histological changes, an inflammatory response, and apoptosis. Immunohistochemical and western blot analyses revealed reduced size of white and red pulp, decreased cellularity, amyloidosis, and fibrotic remodeling in the spleen following doxorubicin treatment. Additionally, increased secretion of pro-inflammatory cytokines was detected using an antibody array and enzyme-linked immunosorbent assay (ELISA), which triggers inflammation through the regulation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor-kappa B (NF-κB) signaling pathways. Further analysis revealed that the loss of regulators and effectors of the oxidative defense system, including sirtuin (Sirt)3, Sirt5, superoxide dismutase (SOD)1, and SOD2, was implicated in the upstream regulation of caspase-dependent cellular apoptosis. These findings provide insights on the pathogenic mechanisms underlying doxorubicin-induced splenic atrophy and suggest that further investigation may be warranted to explore strategies for managing potential side effects in breast cancer patients treated with doxorubicin.
Collapse
Affiliation(s)
- Jianjie Xue
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
- Qingdao Institute of Preventive Medicine, Qingdao, China
| | - Bing Ye
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
- Qingdao Institute of Preventive Medicine, Qingdao, China
| | - Mengqi Sun
- College of Life Science, Changchun Sci-Tech University, Changchun, China
| |
Collapse
|
27
|
Wang L, Sun W, Ren G, Sun Y, Xu C, Song Q, Zhang X, Yang C, Liu Z. Deletion of Nrf2 induced severe oxidative stress and apoptosis in mice model of diabetic bladder dysfunction. Int Urol Nephrol 2024; 56:3231-3240. [PMID: 38771415 PMCID: PMC11405468 DOI: 10.1007/s11255-024-04064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway has been confirmed as a therapeutic target for type 2 diabetes mellitus (T2DM), however few studies revealed its effect in diabetic bladder dysfunction (DBD). Herein, we reported a Nrf2 deletion diabetic mouse model induced by 8-week high-fat diet feeding combined with streptozocin (STZ) injection in Nrf2 knockout mice. Besides, wild-type mice (WT) were used as control group, wild-type mice with high-fat diet feeding and STZ injection as diabetic group (WT-T2DM), and Nrf2 knockout mice as Nrf2 deletion group (KO). The pathophysiological indexes and bladder morphology showed typical pathological features of diabetic bladder dysfunction in Nrf2 knockout diabetic mouse mice (KO-T2DM). ELISA results showed that advanced glycation end products (AGEs), ROS and malondialdehyde (MDA) levels in bladder was were up-regulated in both WT-T2DM and KO-T2DM group, while superoxide dismutase (SOD) and glutathione (GSH) levels decreased in these two groups. Compared with WT-T2DM group, western blot analysis of the bladder showed down-regulated expression of NQO1 and HO-1 in KO-T2DM group. However, apoptosis, marked by Caspase3 and bax/bcl-2 ratio, was increased in KO-T2DM group. Neurotrophic factor (NGF) was significantly decreased in DBD model, and even much lower in KO-T2DM group. Collectively, our findings demonstrated that deletion of Nrf2 lead to severe oxidative stress, apoptosis, and lower level of neurotrophic factor, and provided the first set of experimental evidence, in a mouse model, to support Nrf2 as a promising target for DBD.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Weiaho Sun
- Department of Urology Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Guanyu Ren
- Department of Urology Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Yi Sun
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Cheng Xu
- Department of Urology Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Qixiang Song
- Department of Urology Surgery, Renji Hospital, ShangHai JiaoTong University, Shanghai, 200433, China
| | - Xinhui Zhang
- Department of Urology Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Chenghua Yang
- Department of Urology Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Zhiyong Liu
- Department of Urology Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
28
|
Cabral RP, Ribeiro APD, Monte MG, Fujimori ASS, Tonon CR, Ferreira NF, Zanatti SG, Minicucci MF, Zornoff LAM, Paiva SARD, Polegato BF. Pera orange juice ( Citrus sinensis L. Osbeck) alters lipid metabolism and attenuates oxidative stress in the heart and liver of rats treated with doxorubicin. Heliyon 2024; 10:e36834. [PMID: 39263053 PMCID: PMC11388782 DOI: 10.1016/j.heliyon.2024.e36834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Background Doxorubicin (DOX) is a highly effective chemotherapy drug widely used to treat cancer, but its use is limited due to multisystemic toxicity. Lipid metabolism is also affected by doxorubicin. Orange juice can reduce dyslipidemia in other clinical situations and has already been shown to attenuate cardiotoxicity. Our aim is to evaluate the effects of Pera orange juice (Citrus sinensis L. Osbeck) on mitigating lipid metabolism imbalance, metabolic pathways, and DOX induced cytotoxic effects in the heart and liver. Methods Twenty-four male Wistar rats were allocated into 3 groups: Control (C); DOX (D); and DOX plus Pera orange juice (DOJ). DOJ received orange juice for 4 weeks, while C and D received water. At the end of each week, D and DOJ groups received 4 mg/kg/week DOX, intraperitoneal. At the end of 4 weeks animals were submitted to echocardiography and euthanasia. Results Animals treated with DOX decreased water intake and lost weight over time. At echocardiography, DOX treated rats presented morphologic alterations in the heart. DOX increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol, high density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides. It also reduced superoxide dismutase (SOD) activity, increased protein carbonylation in the heart and dihydroethidium (DHE) expression in the liver, decreased glucose transporter type 4 (GLUT4) and the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ1) in the heart, and reduced carnitine palmitoyltransferase I (CPT1) in the liver. Conclusion DOX caused dyslipidemia, liver and cardiac toxicity by increasing oxidative stress, and altered energy metabolic parameters in both organs. Despite not improving changes in left ventricular morphology, orange juice did attenuate oxidative stress and mitigate the metabolic effects of DOX.
Collapse
|
29
|
Qaed E, Almaamari A, Almoiliqy M, Alyafeai E, Sultan M, Aldahmash W, Mahyoub MA, Tang Z. Phosphocreatine attenuates doxorubicin-induced nephrotoxicity through inhibition of apoptosis, and restore mitochondrial function via activation of Nrf2 and PGC-1α pathways. Chem Biol Interact 2024; 400:111147. [PMID: 39043266 DOI: 10.1016/j.cbi.2024.111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Doxorubicin (DOX), a chemotherapy drug widely recognized for its efficacy in cancer treatment, unfortunately, has significant nephrotoxic effects leading to kidney damage. This study explores the nephroprotective potential of Phosphocreatine (PCr) in rats, specifically examining its influence on Nrf2 (Nuclear factor erythroid 2-related factor 2) and PGC-1α (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha) pathways, its role in apoptosis inhibition, and effectiveness in preserving mitochondrial function. The research employed in vivo experiments in rats, focusing on PCr's capacity to protect renal function against doxorubicin-induced damage. The study entailed evaluating Nrf2 and PGC-1α pathway activation, apoptosis rates, and mitochondrial health in renal tissues. A significant aspect of this research was the use of high-resolution respirometry (HRR) to assess the function of isolated kidney mitochondria, providing in-depth insights into mitochondrial bioenergetics and respiratory efficiency under the influence of PCr and doxorubicin. Results demonstrated that PCr treatment significantly enhanced the activation of Nrf2 and PGC-1α pathways, reduced apoptosis, and preserved mitochondrial structure in doxorubicin-affected kidneys. Observations included upregulated expression of Nrf2 and PGC-1α target genes, stabilization of mitochondrial membranes, and a notable improvement in cellular antioxidant defense, evidenced by the activities of enzymes like superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA) This study positions phosphocreatine as a promising agent in mitigating doxorubicin-induced kidney damage in rats. The findings, particularly the insights from HRR on isolated kidney mitochondria, highlight PCr's potential in enhancing mitochondrial function and reducing nephrotoxic side effects of chemotherapy. These encouraging results pave the way for further research into PCr's applications in cancer treatment, aiming to improve patient outcomes by managing chemotherapy-related renal injuries.
Collapse
Affiliation(s)
- Eskandar Qaed
- Collage of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ahmed Almaamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Marwan Almoiliqy
- Collage of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
| | - Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Marwa Sultan
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Waleed Aldahmash
- Zoology Department, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mueataz A Mahyoub
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zeyao Tang
- Collage of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China.
| |
Collapse
|
30
|
El-Sawy WSM, El-Bahrawy AH, Messiha BAS, Hemeida RAM, Khalaf MM. The impact of PPAR-γ/Nrf-2/HO-1, NF-κB/IL-6/ Keap-1, and Bcl-2/caspase-3/ATG-5 pathways in mitigation of DOX-induced cardiotoxicity in an animal model: The potential cardioprotective role of oxyresveratrol and/or dapagliflozin. Food Chem Toxicol 2024; 191:114863. [PMID: 38997059 DOI: 10.1016/j.fct.2024.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/04/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Antioxidants given concurrently with chemotherapy offer an effective strategy for reducing the negative effects of the drug. One remaining obstacle to the use of doxorubicin (DOX) in chemotherapy is cardiotoxicity. Using vitamin E (Vit. E) as a reference standard, our study focuses on the potential preventive benefits of oxyresveratrol (ORES) and/or dapagliflozin (DAPA) against DOX-induced cardiac injury. Acute cardiotoxicity was noticed after a single intravenous injection of a male rat's tail vein with 10 mg/kg of DOX. Oral doses of ORES (80 mg/kg), DAPA (10 mg/kg), and Vit. E (1 g/kg) were given, respectively. Pretreatment of animals with Vit. E, ORES and/or DAPA revealed a considerable alleviation of heart damage, as evidenced by histopathological change mitigation and a notable drop in serum AST, LDH, CK, CK-MB, and cardiac contents of MDA and NO2-. Also, serum TAC, tissue GSH, and SOD showed substantial increases. Additionally, tissue caspase-3, serum IL-6, and TNF-α were considerably reduced. Moreover, a downregulation in cardiac gene expression of ATG-5, Keap-1, and NF-κB in addition to an upregulation of Bcl-2 gene expression and HO-1, Nrf-2, and PPAR-γ protein expression clearly appeared. Ultimately, ORES and/or DAPA have an optimistic preventive action against severe heart deterioration caused by DOX.
Collapse
Affiliation(s)
- Waleed S M El-Sawy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ali H El-Bahrawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Basim A S Messiha
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minya, 61519, Egypt
| | - Marwa M Khalaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
31
|
Zhu L, Yang X, Wu S, Dong R, Yan Y, Lin N, Zhang B, Tan B. Hepatotoxicity of epidermal growth factor receptor - tyrosine kinase inhibitors (EGFR-TKIs). Drug Metab Rev 2024; 56:302-317. [PMID: 39120430 DOI: 10.1080/03602532.2024.2388203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Drug-induced liver injury (DILI) is one of the most frequently adverse reactions in clinical drug use, usually caused by drugs or herbal compounds. Compared with other populations, cancer patients are more prone to abnormal liver function due to primary or secondary liver malignant tumor, radiation-induced liver injury and other reasons, making potential adverse reactions from liver damage caused by anticancer drugs of particular concernduring clinical treatment process. In recent years, the application of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has changed the treatment status of a series of solid malignant tumors. Unfortunately, the increasing incidence of hepatotoxicitylimits the clinical application of EGFR-TKIs. The mechanisms of liver injury caused by EGFR-TKIs were complex. Despite more than a decade of research, other than direct damage to hepatocytes caused by inhibition of cellular DNA synthesis and resulting in hepatocyte necrosis, the rest of the specific mechanisms remain unclear, and few effective solutions are available. This review focuses on the clinical feature, incidence rates and the recent advances on the discovery of mechanism of hepatotoxicity in EGFR-TKIs, as well as rechallenge and therapeutic strategies underlying hepatotoxicity of EGFR-TKIs.
Collapse
Affiliation(s)
- Lulin Zhu
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xinxin Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanshan Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Dong
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Youyou Yan
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Nengming Lin
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Biqin Tan
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
32
|
Chen H, Yin W, Yao K, Liang J, Cai J, Sui X, Zhao X, Zhang J, Xiao J, Li R, Liu Q, Yao J, You G, Liu Y, Jiang C, Qiu X, Wang T, You Q, Zhang Y, Yang M, Zheng J, Dai Z, Yang Y. Mesenchymal Stem Cell Membrane-Camouflaged Liposomes for Biomimetic Delivery of Cyclosporine A for Hepatic Ischemia-Reperfusion Injury Prevention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404171. [PMID: 39031840 PMCID: PMC11348201 DOI: 10.1002/advs.202404171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/04/2024] [Indexed: 07/22/2024]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a prevalent issue during liver resection and transplantation, with currently no cure or FDA-approved therapy. A promising drug, Cyclosporin A (CsA), ameliorates HIRI by maintaining mitochondrial homeostasis but has systemic side effects due to its low bioavailability and high dosage requirements. This study introduces a biomimetic CsA delivery system that directly targets hepatic lesions using mesenchymal stem cell (MSC) membrane-camouflaged liposomes. These hybrid nanovesicles (NVs), leveraging MSC-derived proteins, demonstrate efficient inflammatory chemotaxis, transendothelial migration, and drug-loading capacity. In a HIRI mouse model, the biomimetic NVs accumulated at liver injury sites entered hepatocytes, and significantly reduced liver damage and restore function using only one-tenth of the CsA dose typically required. Proteomic analysis verifies the protection mechanism, which includes reactive oxygen species inhibition, preservation of mitochondrial integrity, and reduced cellular apoptosis, suggesting potential for this biomimetic strategy in HIRI intervention.
Collapse
Affiliation(s)
- Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Wen Yin
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Kang Yao
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Jinliang Liang
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- Guangdong province engineering laboratory for transplantation medicineGuangzhouChina
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Xin Sui
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- Surgical ICUThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Xuegang Zhao
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- Surgical ICUThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Jiaqi Xiao
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Rong Li
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- Guangdong province engineering laboratory for transplantation medicineGuangzhouChina
| | - Qiuli Liu
- The Biotherapy Centerthe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510630China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Guohua You
- Surgical ICUThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Yasong Liu
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Chenhao Jiang
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Xiaotong Qiu
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Tingting Wang
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Qiang You
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Yingcai Zhang
- Department of Hepatobiliary SurgeryPeople's Hospital of Xinjiang Uyghur Autonomous RegionUrumqi830001China
| | - Mo Yang
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Zong Dai
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| |
Collapse
|
33
|
Łysakowska M, Głowacka IE, Honkisz-Orzechowska E, Handzlik J, Piotrowska DG. New 3-(Dibenzyloxyphosphoryl)isoxazolidine Conjugates of N1-Benzylated Quinazoline-2,4-diones as Potential Cytotoxic Agents against Cancer Cell Lines. Molecules 2024; 29:3050. [PMID: 38999000 PMCID: PMC11243672 DOI: 10.3390/molecules29133050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
In this study, a new series of cis and trans 5-substituted-3-(dibenzyloxyphosphoryl)isoxazolidines 16a-g were synthesized by the 1,3-dipolar cycloaddition reaction of N-benzyl-C-(dibenzyloxyphosphoryl)nitrone and selected N1-allyl-N3-benzylquinazoline-2,4-diones. All the obtained trans-isoxazolidines 16a-g and the samples enriched in respective cis-isomers were evaluated for anticancer activity against three tumor cell lines. All the tested compounds exhibited high activity against the prostate cancer cell line (PC-3). Isoxazolidines trans-16a and trans-16b and diastereoisomeric mixtures of isoxazolidines enriched in cis-isomer using HPLC, namely cis-16a/trans-16a (97:3) and cis-16b/trans-16b (90:10), showed the highest antiproliferative properties towards the PC-3 cell line (IC50 = 9.84 ± 3.69-12.67 ± 3.45 μM). For the most active compounds, induction apoptosis tests and an evaluation of toxicity were conducted. Isoxazolidine trans-16b showed the highest induction of apoptosis. Moreover, the most active compounds turned out safe in vitro as none affected the cell viability in the HEK293, HepG2, and HSF cellular models at all the tested concentrations. The results indicated isoxazolidine trans-16b as a promising new lead structure in the search for effective anticancer drugs.
Collapse
Affiliation(s)
- Magdalena Łysakowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (M.Ł.); (I.E.G.)
| | - Iwona E. Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (M.Ł.); (I.E.G.)
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (E.H.-O.); (J.H.)
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (E.H.-O.); (J.H.)
| | - Dorota G. Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (M.Ł.); (I.E.G.)
| |
Collapse
|
34
|
Yuan H, Tian Y, Jiang R, Wang Y, Nie M, Li X, He Y, Liu X, Zhao R, Zhang J. Susceptibility to Hepatotoxic Drug-Induced Liver Injury Increased After Traumatic Brain Injury in Mice. J Neurotrauma 2024; 41:1425-1437. [PMID: 37265124 DOI: 10.1089/neu.2022.0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
The early stages of brain injury can induce acute liver injury, which can be recovered in the short term. Continued medication treatment during hospitalization for brain injury alleviates the prognosis and contributes to a high incidence of drug-induced liver injury (DILI). We hypothesize that there is an interaction between changes in the hepatic environment after brain injury and liver injury produced by intensive drug administration, leading to an upregulation of the organism's sensitivity to DILI. In this study, mice models of TBI were established by controlled cortical impact (CCI) and models of DILI were constructed by acetaminophen (APAP). All mice were divided into four groups: Sham, TBI, APAP, and TBI+APAP, and related liver injury indicators in liver and serum were detected by Western blot, Quantitative real-time PCR (qRT-PCR), and immunohistochemical staining. The results suggested that liver injury induced in the early stages of brain injury recovered in 3 days, but this state could still significantly aggravate DILI, represented by higher liver enzymes (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]), oxidative stress (increase in malondialdehyde [MDA] concentration and deregulation of glutathione [GSH] and superoxide dismutase [SOD] activities), inflammatory response (activation of the HMGB1/TLR4/NF-κB signaling pathway, and increased messenger RNA [mRNA] and protein levels of pro-inflammatory cytokines including tumor necrosis factor alpha [TNF-α], interleukin [IL]-6, and IL-1β), and apoptosis (TUNEL assay, upregulation of Bax protein and deregulation of Bcl-2 protein). In summary, our results suggested that TBI is a potential susceptibility factor for DILI and exacerbates DILI.
Collapse
Affiliation(s)
- Hengjie Yuan
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Ye Tian
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanzhi Wang
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Meng Nie
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaochun Li
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yifan He
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Ruiting Zhao
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Jingyue Zhang
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
35
|
Zhang X, Li Z, Qian M, Zhang B, Zhang H, Wang L, Liu H. Transcriptome and Metabolome analysis reveal HFPO-TA induced disorders of hepatic glucose and lipid metabolism in rat by interfering with PPAR signaling pathway. Food Chem Toxicol 2024; 188:114632. [PMID: 38583503 DOI: 10.1016/j.fct.2024.114632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
PFOA is one of the most representative compounds in the family of perfluorinated organic compounds. Due to its varying toxicity, alternatives to PFOA are beginning to emerge. HFPO-TA is an alternative for PFOA. It is currently unclear whether HFPO-TA affects glucose and lipid metabolism. In this study, rats were used as an animal model to investigate the effects of HFPO-TA on liver glucose and lipid metabolism. We found that HFPO-TA can affect glucose tolerance. Through omics analysis and molecular detection, it was found that HFPO-TA mainly affects the PPAR signaling pathway in the liver of rats, inhibiting liver glycolysis while promoting glucose production. HFPO-TA not only promotes the synthesis of fatty acids in the liver, but also promotes the breakdown of fatty acids, which ultimately leads to the disruption of hepatic glucose and lipid metabolism. The effects of HFPO-TA on metabolism are discussed in this paper to provide a reference for the risk assessment of this PFOA substitute.
Collapse
Affiliation(s)
- Xuemin Zhang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233030, PR China; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, PR China
| | - Zhi Li
- School of Public Health, Bengbu Medical University, Bengbu, 233030, PR China
| | - Mingqing Qian
- School of Public Health, Bengbu Medical University, Bengbu, 233030, PR China
| | - Bingya Zhang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233030, PR China; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, PR China
| | - Hongxia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Li Wang
- School of Public Health, Bengbu Medical University, Bengbu, 233030, PR China.
| | - Hui Liu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233030, PR China; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, PR China.
| |
Collapse
|
36
|
Liu X, Liu R, Wang Y. Indole-3-carboxaldehyde alleviates acetaminophen-induced liver injury via inhibition of oxidative stress and apoptosis. Biochem Biophys Res Commun 2024; 710:149880. [PMID: 38581952 DOI: 10.1016/j.bbrc.2024.149880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Drug-induced liver injury (DILI) occurs frequently and can be life-threatening. Increasing researches suggest that acetaminophen (APAP) overdose is a leading cause of drug-induced liver injury. Indole-3-carboxaldehyde (I3A) alleviates hepatic inflammation, fibrosis and atherosclerosis, suggesting a potential role in different disease development. However, the question of whether and how I3A protects against acetaminophen-induced liver injury remains unanswered. In this study, we demonstrated that I3A treatment effectively mitigates acetaminophen-induced liver injury. Serum alanine/aspartate aminotransferases (ALT/AST), liver malondialdehyde (MDA) activity, liver glutathione (GSH), and superoxide dismutase (SOD) levels confirmed the protective effect of I3A against APAP-induced liver injury. Liver histological examination provided further evidence of I3A-induced protection. Mechanistically, I3A reduced the expression of apoptosis-related factors and oxidative stress, alleviating disease symptoms. Finally, I3A treatment improved survival in mice receiving a lethal dose of APAP. In conclusion, our study demonstrates that I3A modulates hepatotoxicity and can be used as a potential therapeutic agent for DILI.
Collapse
Affiliation(s)
- Xinlei Liu
- Laboratory Animal Research Center, School of Medicine, Chongqing University, Chongqing, 400044, China; Stem Cell Research Center, School of Medicine, Chongqing University, Chongqing, 400044, China.
| | - Rui Liu
- Institute of Immunological Innovation and Translation, Chongqing Medical University, Chongqing, China.
| | - Yancheng Wang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
37
|
Arab HH, Eid AH, Alsufyani SE, Ashour AM, Alnefaie AM, Alsharif NM, Alshehri AM, Almalawi AA, Alsowat AA, Abd El Aal HA, Hassan ESG, Elesawy WH, Elhemiely AA. Activation of AMPK/mTOR-Driven Autophagy and Suppression of the HMGB1/TLR4 Pathway with Pentoxifylline Attenuates Doxorubicin-Induced Hepatic Injury in Rats. Pharmaceuticals (Basel) 2024; 17:681. [PMID: 38931349 PMCID: PMC11206793 DOI: 10.3390/ph17060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Despite being an effective chemotherapeutic agent, the clinical use of doxorubicin (DOX) is limited by several organ toxicities including hepatic injury. Pentoxifylline (PTX) is a methylxanthine derivative with marked anti-inflammatory and anti-apoptotic features. It is unknown, however, whether PTX can mitigate DOX-evoked hepatotoxicity. This study aims to explore the potential hepatoprotective impact of PTX in DOX-induced hepatic injury and the underlying molecular mechanisms. Histopathology, immunohistochemistry, and ELISA were used to examine liver tissues. The current findings revealed that PTX administration to DOX-intoxicated rats mitigated the pathological manifestations of hepatic injury, reduced microscopical damage scores, and improved serum ALT and AST markers, revealing restored hepatic cellular integrity. These favorable effects were attributed to PTX's ability to mitigate inflammation by reducing hepatic IL-1β and TNF-α levels and suppressing the pro-inflammatory HMGB1/TLR4/NF-κB axis. Moreover, PTX curtailed the hepatic apoptotic abnormalities by suppressing caspase 3 activity and lowering the Bax/Bcl-2 ratio. In tandem, PTX improved the defective autophagy events by lowering hepatic SQSTM-1/p62 accumulation and enhancing the AMPK/mTOR pathway, favoring autophagy and hepatic cell preservation. Together, for the first time, our findings demonstrate the ameliorative effect of PTX against DOX-evoked hepatotoxicity by dampening the hepatic HMGB1/TLR4/NF-κB pro-inflammatory axis and augmenting hepatic AMPK/mTOR-driven autophagy. Thus, PTX could be utilized as an adjunct agent with DOX regimens to mitigate DOX-induced hepatic injury.
Collapse
Affiliation(s)
- Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed H. Eid
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt
| | - Shuruq E. Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | | | - Nasser M. Alsharif
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | | | | | | - Hayat A. Abd El Aal
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt
| | - Eman S. G. Hassan
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt
| | - Wessam H. Elesawy
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12568, Egypt
| | - Alzahraa A. Elhemiely
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt
| |
Collapse
|
38
|
Sarkar R, Biswas S, Ghosh R, Samanta P, Pakhira S, Mondal M, Dutta Gupta Y, Bhandary S, Saha P, Bhowmik A, Hajra S. Exosome-sheathed porous silica nanoparticle-mediated co-delivery of 3,3'-diindolylmethane and doxorubicin attenuates cancer stem cell-driven EMT in triple negative breast cancer. J Nanobiotechnology 2024; 22:285. [PMID: 38796426 PMCID: PMC11127288 DOI: 10.1186/s12951-024-02518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/01/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Therapeutic management of locally advanced and metastatic triple negative breast cancer (TNBC) is often limited due to resistance to conventional chemotherapy. Metastasis is responsible for more than 90% of breast cancer-associated mortality; therefore, the clinical need to prevent or target metastasis is immense. The epithelial to mesenchymal transition (EMT) of cancer stem cells (CSCs) is a crucial determinant in metastasis. Doxorubicin (DOX) is the frequently used chemotherapeutic drug against TNBC that may increase the risk of metastasis in patients. After cancer treatment, CSCs with the EMT characteristic persist, which contributes to advanced malignancy and cancer recurrence. The latest developments in nanotechnology for medicinal applications have raised the possibility of using nanomedicines to target these CSCs. Hence, we present a novel approach of combinatorial treatment of DOX with dietary indole 3,3'-diindolylmethane (DIM) which is an intriguing field of research that may target CSC mediated EMT induction in TNBC. For efficient delivery of both the compounds to the tumor niche, advance method of drug delivery based on exosomes sheathed with mesoporous silica nanoparticles may provide an attractive strategy. RESULTS DOX, according to our findings, was able to induce EMT in CSCs, making the breast cancer cells more aggressive and metastatic. In CSCs produced from spheres of MDAMB-231 and 4T1, overexpression of N-cadherin, Snail, Slug, and Vimentin as well as downregulation of E-cadherin by DOX treatment not only demonstrated EMT induction but also underscored the pressing need for a novel chemotherapeutic combination to counteract this detrimental effect of DOX. To reach this goal, DIM was combined with DOX and delivered to the CSCs concomitantly by loading them in mesoporous silica nanoparticles encapsulated in exosomes (e-DDMSNP). These exosomes improved the specificity, stability and better homing ability of DIM and DOX in the in vitro and in vivo CSC niche. Furthermore, after treating the CSC-enriched TNBC cell population with e-DDMSNP, a notable decrease in DOX mediated EMT induction was observed. CONCLUSION Our research seeks to propose a new notion for treating TNBC by introducing this unique exosomal nano-preparation against CSC induced EMT.
Collapse
Affiliation(s)
- Rupali Sarkar
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Rituparna Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Priya Samanta
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Shampa Pakhira
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Mrinmoyee Mondal
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Yashaswi Dutta Gupta
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Suman Bhandary
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India.
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India.
| |
Collapse
|
39
|
Savran M, Asci S, Gulle K, Aslankoc R, Asci H, Karakuyu NF, Erzurumlu Y, Kaynak M. Agomelatine ameliorates doxorubicin-induced cortical and hippocampal brain injury via inhibition of TNF-alpha/NF-kB pathway. Toxicol Mech Methods 2024; 34:359-368. [PMID: 38093452 DOI: 10.1080/15376516.2023.2291123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/29/2023] [Indexed: 04/20/2024]
Abstract
Side effects of doxorubicin (DOX) are mainly due to oxidative stress, with the involvement of inflammatory and apoptotic mechanisms. Agomelatine (AGO) is a melatonin receptor agonist with antioxidant, anti-inflammatory, and anti-apoptotic features. This study aimed to evaluate the effects of AGO with different doses on DOX-induced neurotoxicity. Rats were divided into four groups as control, DOX (40 mg/kg, intraperitoneal single dose), DOX + AGO20 (20 mg/kg AGO oral gavage for 14 days), and DOX + AGO40 (40 mg/kg AGO oral gavage for 14 days). On day 14, brain tissues were collected for biochemical, histopathological, and genetic examinations. DOX significantly increased malondialdehyde and decreased superoxide dismutase and catalase (CAT) levels. CAT levels were significantly increased only in the DOX + AGO40 group compared to the DOX group (p = 0.040) while other changes in oxidant and antioxidant indicators were insignificant. DOX-induced significant increases in TNF-alpha and NF-κB were reversed following both low and high-dose AGO administration in a dose-dependent manner (p < 0.001 for both doses). Cellular shrinkage, pycnotic change, and vacuolization in apoptotic bodies were apparent in the cortical and hippocampal areas of DOX-treated samples. Both doses of AGO alleviated these histopathological changes (p = 0.01 for AGO20 and p = 0.05 for AGO40). Significantly increased apoptosis shown with caspase-3 immunostaining in the DOX group was alleviated following AGO administration, with additional improvement after high-dose treatment (p < 0.01 for DOX compared to both AGO groups and p < 0.05 for AGO40 compared to AGO20). AGO can be protective against DOX-induced neurotoxicity by antioxidant, anti-inflammatory, and anti-apoptotic mechanisms in a dose-dependent manner.
Collapse
Affiliation(s)
- Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Sanem Asci
- Department of Neurology, Private MEDDEM Hospital, Isparta, Turkey
| | - Kanat Gulle
- Department of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Rahime Aslankoc
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Halil Asci
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Nasif Fatih Karakuyu
- Department of Pharmacology, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Yalçın Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Mine Kaynak
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
40
|
Serini S, Calviello G. Potential of Natural Phenolic Compounds against Doxorubicin-Induced Chemobrain: Biological and Molecular Mechanisms Involved. Antioxidants (Basel) 2024; 13:486. [PMID: 38671933 PMCID: PMC11047710 DOI: 10.3390/antiox13040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Chemotherapy-induced cognitive impairment or "chemobrain" is a prevalent long-term complication of chemotherapy and one of the more devastating. Most of the studies performed so far to identify the cognitive dysfunctions induced by antineoplastic chemotherapies have been focused on treatment with anthracyclines, frequently administered to breast cancer patients, a population that, after treatment, shows a high possibility of long survival and, consequently, of chemobrain development. In the last few years, different possible strategies have been explored to prevent or reduce chemobrain induced by the anthracycline doxorubicin (DOX), known to promote oxidative stress and inflammation, which have been strongly implicated in the development of this brain dysfunction. Here, we have critically analyzed the results of the preclinical studies from the last few years that have evaluated the potential of phenolic compounds (PheCs), a large class of natural products able to exert powerful antioxidant and anti-inflammatory activities, in inhibiting DOX-induced chemobrain. Several PheCs belonging to different classes have been shown to be able to revert DOX-induced brain morphological damages and deficits associated with learning, memory, and exploratory behavior. We have analyzed the biological and molecular mechanisms implicated and suggested possible future perspectives in this research area.
Collapse
Affiliation(s)
- Simona Serini
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| | - Gabriella Calviello
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| |
Collapse
|
41
|
de Souza AS, Dias DS, Ribeiro RCB, Costa DCS, de Moraes MG, Pinho DR, Masset MEG, Marins LM, Valle SP, de Carvalho CJC, de Carvalho GSG, Mello ALN, Sola-Penna M, Palmeira-Mello MV, Conceição RA, Rodrigues CR, Souza AMT, Forezi LDSM, Zancan P, Ferreira VF, da Silva FDC. Novel naphthoquinone-1H-1,2,3-triazole hybrids: Design, synthesis and evaluation as inductors of ROS-mediated apoptosis in the MCF-7 cells. Bioorg Med Chem 2024; 102:117671. [PMID: 38452407 DOI: 10.1016/j.bmc.2024.117671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
The search for novel anticancer drugs is essential to expand treatment options, overcome drug resistance, reduce toxicity, promote innovation, and tackle the economic impact. The importance of these studies lies in their contribution to advancing cancer research and enhancing patient outcomes in the battle against cancer. Here, we developed new asymmetric hybrids containing two different naphthoquinones linked by a 1,2,3-1H-triazole nucleus, which are potential new drugs for cancer treatment. The antitumor activity of the novel compounds was tested using the breast cancer cell lines MCF-7 and MDA-MB-231, using the non-cancer cell line MCF10A as control. Our results showed that two out of twenty-two substances tested presented potential antitumor activity against the breast cancer cell lines. These potential drugs, named here 12g and 12h were effective in reducing cell viability and promoting cell death of the tumor cell lines, exhibiting minimal effects on the control cell line. The mechanism of action of the novel drugs was assessed revealing that both drugs increased reactive oxygen species production with consequent activation of the AMPK pathway. Therefore, we concluded that 12g and 12h are novel AMPK activators presenting selective antitumor effects.
Collapse
Affiliation(s)
- Acácio S de Souza
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, CEP 24241-000 Niterói, RJ, Brazil
| | - Deborah S Dias
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ CEP 21941-902, Brazil
| | - Ruan C B Ribeiro
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Dora C S Costa
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Matheus G de Moraes
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - David R Pinho
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Maria E G Masset
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, CEP 24241-000 Niterói, RJ, Brazil
| | - Laís M Marins
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Sandy P Valle
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Cláudio J C de Carvalho
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Gustavo S G de Carvalho
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Angélica Lauria N Mello
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ CEP 21941-902, Brazil
| | - Mauro Sola-Penna
- Universidade Federal do Rio de Janeiro, Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, CEP 21941-902 Rio de Janeiro, RJ, Brazil
| | - Marcos V Palmeira-Mello
- Laboratório de Modelagem Molecular & QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ CEP 21941-590, Brazil
| | - Raissa A Conceição
- Laboratório de Modelagem Molecular & QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ CEP 21941-590, Brazil
| | - Carlos R Rodrigues
- Laboratório de Modelagem Molecular & QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ CEP 21941-590, Brazil
| | - Alessandra M T Souza
- Laboratório de Modelagem Molecular & QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ CEP 21941-590, Brazil
| | - Luana da S M Forezi
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Patricia Zancan
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ CEP 21941-902, Brazil.
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, CEP 24241-000 Niterói, RJ, Brazil.
| | - Fernando de C da Silva
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil.
| |
Collapse
|
42
|
Hu D, Qin B, Zhang L, Bu H. Construction of an oxidative stress-associated genes signature in breast cancer by machine learning algorithms. J Int Med Res 2024; 52:3000605241232560. [PMID: 38520254 PMCID: PMC10960342 DOI: 10.1177/03000605241232560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/26/2024] [Indexed: 03/25/2024] Open
Abstract
OBJECTIVE To construct a prognostic model of a breast cancer-related oxidative stress-related gene (OSRG) signature using machine learning algorithms. METHODS The OSRGs of breast cancer were constructed by least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis. The Cancer Genome Atlas (TCGA) was used to analyse the gene expression and prognostic value. The Human Protein Atlas was used to analyse the protein expression of hub genes. Receiver operating characteristic analysis, calibration curve and decision curve analysis were used to predict the stability of this model. RESULTS The area under the curve of 1-, 3- and 5-year overall survival were 0.751, 0.707 and 0.645 in the TCGA training dataset; and 0.692, 0.678 and 0.602 in the TCGA testing dataset, respectively. Calibration plot showed good agreement between predicted probabilities and observed outcomes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) pathway analysis indicated that multiple cancer-related pathways were highly enriched in the high-risk group. Immune infiltration analysis showed immune cells and their functions may play a key role in the development and mechanism of breast cancer. CONCLUSIONS This new OSRG signature was associated with the immune infiltration and it might be useful in predicting the prognosis in patients with breast cancer.
Collapse
Affiliation(s)
- Daojun Hu
- Department of Laboratory Medicine, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Bing Qin
- Department of Laboratory Medicine, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Zhang
- Department of Laboratory Medicine, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hanli Bu
- Department of General Practice, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
43
|
Yuan S, Wang Y, Yang J, Tang Y, Wu W, Meng X, Jian Y, Lei Y, Liu Y, Tang C, Zhao Z, Zhao F, Liu W. Treadmill exercise can regulate the redox balance in the livers of APP/PS1 mice and reduce LPS accumulation in their brains through the gut-liver-kupffer cell axis. Aging (Albany NY) 2024; 16:1374-1389. [PMID: 38295303 PMCID: PMC10866404 DOI: 10.18632/aging.205432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 02/02/2024]
Abstract
A growing body of clinical data has shown that patients with Alzheimer's disease (AD) have symptoms such as liver dysfunction and microbial-gut-brain axis dysfunction in addition to brain pathology, presenting a systemic multisystemic pathogenesis. Considering the systemic benefits of exercise, here, we first observed the effects of long-term treadmill exercise on liver injuries in APP/PS1 transgenic AD mice and explored the potential mechanisms of the gut-liver-brain axis's role in mediating exercise's ability to reduce bacterial lipopolysaccharide (LPS) pathology in the brain. The results showed that the livers of the AD mice were in states of oxidative stress, while the mice after long-term treadmill exercise showed alleviation of their oxidative stress, their intestinal barriers were protected, and the ability of their Kupffer cells to hydrolyze LPS was improved, in addition to the accumulation of LPS in their brains being reduced. Notably, the livers of the AD mice were in immunosuppressed states, with lower pro-oxidative and antioxidative levels than the livers of the wild-type mice, while exercise increased both their oxidative and antioxidative levels. These results suggest that long-term exercise modulates hepatic redox homeostasis in AD mice, attenuates oxidative damage, and reduces the accumulation of LPS in the brain through the combined action of the intestine-liver-Kupffer cells.
Collapse
Affiliation(s)
- Shunling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yirong Wang
- Hunan Sports Vocational College, Changsha 410019, China
| | - Jialun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Ye Jian
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yong Lei
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yang Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Changfa Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zhe Zhao
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Fei Zhao
- Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha 410199, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| |
Collapse
|
44
|
Lee J, Zhang W, Nguyen D, Zhou L, Amengual J, Zhai J, Cote T, Landolina M, Ahmadi E, Sands I, Mishra N, Yu H, Nieh MP, Wang K, Li Y, Chen Y. Computation-aided Design of Rod-Shaped Janus Base Nanopieces for Improved Tissue Penetration and Therapeutics Delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577046. [PMID: 38328235 PMCID: PMC10849704 DOI: 10.1101/2024.01.24.577046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Despite the development of various drug delivery technologies, there remains a significant need for vehicles that can improve targeting and biodistribution in "hard-to-penetrate" tissues. Some solid tumors, for example, are particularly challenging to penetrate due to their dense extracellular matrix (ECM). In this study, we have formulated a new family of rod-shaped delivery vehicles named Janus base nanopieces (Rod JBNps), which are more slender than conventional spherical nanoparticles, such as lipid nanoparticles (LNPs). These JBNp nanorods are formed by bundles of DNA-inspired Janus base nanotubes (JBNts) with intercalated delivery cargoes. To develop this novel family of delivery vehicles, we employed a computation-aided design (CAD) methodology that includes molecular dynamics and response surface methodology. This approach precisely and efficiently guides experimental designs. Using an ovarian cancer model, we demonstrated that JBNps markedly improve penetration into the dense ECM of solid tumors, leading to better treatment outcomes compared to FDA-approved spherical LNP delivery. This study not only successfully developed a rod-shaped delivery vehicle for improved tissue penetration but also established a CAD methodology to effectively guide material design.
Collapse
|
45
|
Feng XL, Qi WY, Xiao ZY, Zheng X, Zhang XY, Liu T, Kou XY, Chen J. Assessment of early anthracycline-induced cardiotoxicity and liver injury with T2 and T2* mapping in rabbit models. Eur Radiol 2024; 34:226-235. [PMID: 37552260 DOI: 10.1007/s00330-023-10027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 08/09/2023]
Abstract
OBJECTIVES To evaluate the early prevalence of anthracycline-induced cardiotoxicity (AIC) and anthracycline-induced liver injury (AILI) using T2 and T2* mapping and to explore their correlations. MATERIALS AND METHODS The study included 17 cardiotoxic rabbits that received weekly injections of doxorubicin and magnetic resonance imaging (MRI) every 2 weeks for 10 weeks. Cardiac function and T2 and T2* values were measured on each period. Histopathological examinations for two to five rabbits were performed after each MRI scan. The earliest sensitive time and the threshold of MRI parameters for detecting AIC and AILI based on these MRI parameters were obtained. Moreover, the relationship between myocardial and liver damage was assessed. RESULTS Early AIC could be detected by T2 mapping as early as the second week and focused on the 7th, 11th, and 12th segments of left ventricle. The cutoff value of 46.64 for the 7th segment had the best diagnostic value, with an area under the curve (of 0.767, sensitivity of 100%, and specificity of 52%. T2* mapping could detect the change in iron content for early AIC at the middle interventricular septum and AILI as early as the sixth week (p = 0.014, p = 0.027). The T2* values of the middle interventricular septum showed a significant positive association with the T2* values of the liver (r = 0.39, p = 0.002). CONCLUSION T2 and T2* mapping showed value one-stop assessment of AIC and AILI and could obtain the earliest MRI diagnosis point and optimal parameter thresholds for these conditions. CLINICAL RELEVANCE STATEMENT Anthracycline-induced cardiotoxicity could be detected by T2 mapping as earlier as the second week, mainly focusing on the 7th, 11th, and 12th segments of left ventricle. Combined with T2* mapping, hepatoxicity and supplementary cardiotoxicity were assessed by one-stop scan. KEY POINTS • MRI screening time of cardiotoxicity was as early as the second week with focusing on T2 values of the 7th, 11th, and 12th segments of left ventricle. • T2* mapping could be used as a complement to T2 mapping to evaluate cardiotoxicity and as an effective index to detect iron change in the early stages of chemotherapy. • The T2* values of the middle interventricular septum showed a significant positive association with the T2* values of the liver, indicating that iron content in the liver and heart increased with an increase in the chemotherapeutic drugs.
Collapse
Affiliation(s)
- Xiao-Lan Feng
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China
| | - Wan-Yin Qi
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China
| | - Zheng-Yuan Xiao
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China
| | - Xue Zheng
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China
| | - Xiao-Yong Zhang
- Department of Clinical Science, Philips Healthcare, Chengdu, 610000, China
| | - Tao Liu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China
| | - Xing-Yuan Kou
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China
| | - Jing Chen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
46
|
Kalantary-Charvadeh A, Nazari Soltan Ahmad S, Aslani S, Beyrami M, Mesgari-Abbasi M. β-lapachone protects against doxorubicin-induced hepatotoxicity through modulation of NAD + /SIRT-1/FXR/p-AMPK/NF-kB and Nrf2 signaling axis. J Biochem Mol Toxicol 2024; 38:e23564. [PMID: 37867446 DOI: 10.1002/jbt.23564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/05/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Doxorubicin (DOX) is a widely used antineoplastic drug, but its clinical use is limited by significant toxicities, such as hepatotoxicity. In this study, we evaluated the effects of β-lapachone (β-LAP), a natural quinone-containing compound, in a mouse model of DOX-induced hepatotoxicity. β-LAP was orally administered at 1.25, 2.5, and 5 mg/kg for 4 days, and a single dose of DOX (20 mg/kg) was injected intraperitoneally on the second day. Histopathological changes, liver function markers, antioxidant and inflammatory markers were assessed. β-LAP ameliorated liver injury and liver function markers evoked by DOX. β-LAP also downregulated the mRNA expression of nuclear factor-kB-corresponding genes including interleukin-6, interleukin-1β, and tumor necrosis factor-α. Moreover, β-LAP increased the nuclear factor erythroid 2-related factor 2 target genes heme oxygenase-1 and NAD(P)H: quinone oxidoreductase 1, along with antioxidant enzymes including reduced glutathione, catalase, and superoxide dismutase with simultaneous reduction in the lipid peroxidation product malondialdehyde. Meanwhile, it recovered NAD+ /NADH ratios and subsequently elevated the protein levels of sirtuin-1 (SIRT-1), farnesoid X receptor (FXR), and phosphorylated AMP-activated protein kinase (p-AMPK). Collectively, these findings suggest a protective role of β-LAP against DOX-induced hepatotoxicity by partly regulating the NAD+ /SIRT-1/FXR/p-AMPK axis.
Collapse
Affiliation(s)
- Ashkan Kalantary-Charvadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Somayeh Aslani
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Beyrami
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | |
Collapse
|
47
|
Jali AM, Alam MF, Hanbashi A, Mawkili W, Abdlasaed BM, Alshahrani S, Qahl AM, Alrashah ASS, Shahi HA. Sesamin's Therapeutic Actions on Cyclophosphamide-Induced Hepatotoxicity, Molecular Mechanisms, and Histopathological Characteristics. Biomedicines 2023; 11:3238. [PMID: 38137459 PMCID: PMC10741447 DOI: 10.3390/biomedicines11123238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Cyclophosphamide, an alkylating agent integral to specific cancer chemotherapy protocols, is often curtailed in application owing to its significant hepatotoxic side effects. Therefore, this study was conducted to assess the hepatoprotective potential of sesamin, a plant-originated antioxidant, using rat models. The rats were divided into five groups: a control group received only the vehicle for six days; a cyclophosphamide group received an intraperitoneal (i.p.) single injection of cyclophosphamide (150 mg/kg) on day four; a sesamin group received a daily high oral dose (20 mg/kg) of sesamin for six days; and two groups were pretreated with oral sesamin (10 and 20 mg/kg daily from day one to day six) followed by an i.p. injection of cyclophosphamide on day four. The final and last sesamin dose was administered 24 h before euthanasia. At the end of the experiment, blood and liver tissue were collected for biochemical and histopathological assessments. The results indicated significantly increased liver markers (AST, ALT, ALP, and BIL), cytokines (TNFα and IL-1β), caspase-3, and malondialdehyde (MDA) in the cyclophosphamide group as compared to the normal control. Additionally, there was a significant decline in antioxidants (GSH) and antioxidant enzymes (CAT and SOD), but the sesamin treatment reduced liver marker enzymes, cytokines, and caspase-3 and improved antioxidants and antioxidant enzymes. Thus, sesamin effectively countered these alterations and helped to normalize the histopathological alterations. In conclusion, sesamin demonstrated the potential for attenuating cyclophosphamide-induced hepatotoxicity by modulating cytokine networks, apoptotic pathways, and oxidative stress, suggesting its potential role as an adjunct in chemotherapy to reduce hepatotoxicity.
Collapse
Affiliation(s)
- Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.M.J.); (A.H.); (W.M.); (S.A.); (A.M.Q.); (A.S.S.A.); (H.A.S.)
| | - Mohammad Firoz Alam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.M.J.); (A.H.); (W.M.); (S.A.); (A.M.Q.); (A.S.S.A.); (H.A.S.)
| | - Ali Hanbashi
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.M.J.); (A.H.); (W.M.); (S.A.); (A.M.Q.); (A.S.S.A.); (H.A.S.)
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Wedad Mawkili
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.M.J.); (A.H.); (W.M.); (S.A.); (A.M.Q.); (A.S.S.A.); (H.A.S.)
| | - Basher M. Abdlasaed
- Department of Biology, Faculty of Education, Alasmaray Islamic University, Zliten 218521, Libya;
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.M.J.); (A.H.); (W.M.); (S.A.); (A.M.Q.); (A.S.S.A.); (H.A.S.)
| | - Abdullah M. Qahl
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.M.J.); (A.H.); (W.M.); (S.A.); (A.M.Q.); (A.S.S.A.); (H.A.S.)
- Pharmacy Department, Jazan University Hospital, Jazan University, Jazan 45142, Saudi Arabia
| | - Ahmad S. S. Alrashah
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.M.J.); (A.H.); (W.M.); (S.A.); (A.M.Q.); (A.S.S.A.); (H.A.S.)
- Pharmacy Administration, Ministry of Health, Health Affairs General Directorate, Najran 66251, Saudi Arabia
| | - Hamad Al Shahi
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.M.J.); (A.H.); (W.M.); (S.A.); (A.M.Q.); (A.S.S.A.); (H.A.S.)
| |
Collapse
|
48
|
Zhang J, Guo Y, Fang H, Guo X, Zhao L. Oncolytic virus oHSV2 combined with PD-1/PD-L1 inhibitors exert antitumor activity by mediating CD4 + T and CD8 + T cell infiltration in the lymphoma tumor microenvironment. Autoimmunity 2023; 56:2259126. [PMID: 37736847 DOI: 10.1080/08916934.2023.2259126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
A novel therapeutic regimen showed that the oncolytic type II herpes simplex virus (oHSV2) was able to prevent colorectal cancer growth, recurrence, and metastasis. However, no study has yet explored whether oHSV2 has an impact on the development of diffuse large B-cell lymphoma (DLBCL). We chose the clinical chemotherapeutic drug doxorubicin (DOX) as a positive control to evaluate the effect of oHSV2 infection on the apoptotic, invasive, and proliferative capacity of DLBCL cells. We next further explored the therapeutic efficacy of oncolytic virus oHSV2 or DOX in DLBCL tumor bearing BALB/c mice, and evaluated the infiltration of CD8 + T cells and CD4 + T cells in tumor tissues. A pathological approach was used to explore the effects of oHSV2 on various organs of tumor bearing mice, including the heart, liver, and kidney. Next, SU-DHL-4 cells were co-cultured with cytotoxic T lymphocytes (CTLs) to mimic the tumor immune microenvironment (TME), to explore the impact of oHSV2 on the immune environment at the cellular level, and then analyzed the relationship between oHSV2 and the PD-1/PD-L1 immune-checkpoint. Subsequently, we further validated the efficacy of combined oHSV2 and PD-L1 treatment on transplanted tumor growth in mice at the in vivo level. DLBCL cells were sensitive to the action of the oncolytic virus oHSV2, and the decline in their proliferative activity showed a time-and dose-dependent manner. oHSV2 and DOX intervention preeminently increased the cell apoptosis, restrained cell proliferation and invasion, with the greatest changes occurring in response to oHSV2 infection. oHSV2 application effectively improved the immune status of the tumor microenvironment, favoring the invasion of CD8 + T and CD4 + T cells, thereby enhancing their antitumor effects. Besides, oHSV2 treatment has a safety profile in the organs of tumor bearing mice and indeed inhibits the PD-1/PD-L1 immune checkpoint in DLBCL. Interestingly, the combination of oHSV2 and PD-L1 antibodies results in more profound killing of DLBCL cells than oHSV2 infection alone, with a significant increase in the proportion of CD4 + T cells and CD8 + T cells. The antitumor effect was the best after combining oHSV2 and PD-L1 antibodies, suggesting that the combination therapy of oHSV2 and PD-L1 would have a better prospect for clinical application.
Collapse
Affiliation(s)
- Jingbo Zhang
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yiwei Guo
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huiying Fang
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiuchen Guo
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lina Zhao
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
49
|
Abdel-Latif GA, Al-Kashef AS, Nooman MU, Khattab AENA, Gebril SM, Elmongy NF, Abbas SS. The mechanistic interplay between Nrf-2, NF-κB/MAPK, caspase-dependent apoptosis, and autophagy in the hepatoprotective effects of Sophorolipids produced by microbial conversion of banana peels using Saccharomyces cerevisiae against doxorubicin-induced hepatotoxicity in rats. Food Chem Toxicol 2023; 182:114119. [PMID: 37944788 DOI: 10.1016/j.fct.2023.114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/07/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is a well-known chemotherapeutic agent which causes serious adverse effects due to multiple organ damage, including cardiotoxicity, nephrotoxicity, neurotoxicity, and hepatotoxicity. The mechanism of DOX-induced organ toxicity might be attributed to oxidative stress (OS) and, consequently, activation of inflammatory signaling pathways, apoptosis, and blockage of autophagy. Sophorolipids (SLs) as a glycolipid type of biosurfactants, are natural products that have unique properties and a wide range of applications attributed to their antioxidant and anti-inflammatory properties. AIMS Production of low-cost SLs from Saccharomyces cerevisiae grown on banana peels and investigating their possible protective effects against DOX-induced hepatotoxicity. MAIN METHODS The yeast was locally isolated and molecularly identified, then the yielded SLs were characterized by FTIR, 1H NMR and LC-MS/MS spectra. Posteriorly, thirty-two male Wistar rats were randomly divided into four groups; control (oral saline), SLs (200 mg/kg, p.o), DOX (10 mg/kg; i.p.), and SL + DOX (200 mg/kg p.o.,10 mg/kg; i.p., respectively). Liver function tests (LFTs), oxidative stress, inflammatory, apoptosis as well as autophagy markers were investigated. KEY FINDINGS SLs were produced with a yield of 49.04% and treatment with SLs improved LFTs, enhanced Nrf2 and suppressed NF-κB, IL-6, IL-1β, p38, caspase 3 and Bax/Bcl2 ratio in addition to promotion of autophagy when compared to DOX group. SIGNIFICANCE Our results revealed a novel promising protective effect of SLs against DOX-induced hepatotoxicity in rats.
Collapse
Affiliation(s)
- Ghada A Abdel-Latif
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt; Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Amr S Al-Kashef
- Biochemistry Department, Biotechnology Research Institute, National Research Centre (NRC), Cairo, Egypt.
| | - Mohamed U Nooman
- Biochemistry Department, Biotechnology Research Institute, National Research Centre (NRC), Cairo, Egypt.
| | - Abd El-Nasser A Khattab
- Genetics & Cytology Department, Biotechnology Research Institute, National Research Centre (NRC), Cairo, Egypt.
| | - Sahar M Gebril
- Histology and Cell Biology Department, Faculty of Medicine, Sohag University, Sohag, Egypt.
| | - Noura F Elmongy
- Physiology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt.
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt; Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| |
Collapse
|
50
|
Abdalla ZA, Abtar AN, Kareem AA, Ahmed ZA, Aziz TA. Study of the effect of bezafibrate with ginkgo biloba extracts in an animal model of hepatotoxicity induced by doxorubicin. Biochem Biophys Rep 2023; 36:101582. [PMID: 38059266 PMCID: PMC10696391 DOI: 10.1016/j.bbrep.2023.101582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023] Open
Abstract
This study aimed to evaluate the hepatoprotective effect of combining bezafibrate with ginkgo biloba in doxorubicin-induced hepatotoxicity in rats. Thirty Wister albino rats were allocated into five groups: The negative control group, the positive control group, both received 1 ml of D.W, bezafibrate group received (100 mg/kg), ginkgo biloba group received (60 mg/kg) and the fifth group received bezafibrate + ginkgo biloba. All the treatments were for 14 days along with doxorubicin on days 11-14 except for the negative control. Blood samples were used for the measurement of ALT, AST, ALP, total protein, total bilirubin, albumin, globulin, GSH, catalase, and IL-6. Liver tissue was sent for histopathological examination. The combination of ginkgo biloba and bezafibrate significantly decreased AST, ALP, AST/ALT ratio, albumin/globulin ratio, and IL-6 with significant elevations of catalase, and GSH. The combination group produced more hepatoprotection. This could be attributed to the additive anti-inflammatory and antioxidant effects of the combination.
Collapse
Affiliation(s)
- Zhwan Azad Abdalla
- Department of Clinical Pharmacy, College of Pharmacy, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
| | - Asoo Nihad Abtar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
| | - Ahmed Azad Kareem
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
| | - Zheen Aorahman Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
| | - Tavga Ahmed Aziz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
| |
Collapse
|