1
|
Trifone C, Richard C, Pagliuzza A, Dufour C, Lemieux A, Clark NM, Janaka SK, Fennessey CM, Keele BE, Fromentin R, Estes JD, Kaufmann DE, Finzi A, Evans DT, Chomont N. Contribution of intact viral genomes persisting in blood and tissues during ART to plasma viral rebound in SHIV-infected rhesus macaques. iScience 2025; 28:111998. [PMID: 40104070 PMCID: PMC11914814 DOI: 10.1016/j.isci.2025.111998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 11/26/2024] [Accepted: 02/07/2025] [Indexed: 03/20/2025] Open
Abstract
Persistent SIV/HIV reservoirs are the primary obstacle to a cure and the source of viral rebound after ART interruption (ATI). However, the anatomical source of viral rebound remains elusive. Here, we characterized the proviral landscape in the blood, inguinal, and axillary lymph nodes and colon biopsies of five SHIV-infected rhesus macaques (RMs), under ART for 28 weeks. From the 144 near full-length (NFL) proviral sequences obtained pre-ATI, 35% were genetically intact and only 2.8% were found in multiple copies. Envelope sequences of plasma rebounding viruses after ATI, more frequently matched pre-ATI intact proviruses retrieved from lymph nodes compared to sequences isolated from the blood or the colon (4, 1, and 1 pair of matched sequences, respectively). Our results suggest that clonal expansion of infected cells rare in this model, and that intact proviruses persisting in the lymph nodes may be a preferential source of viral rebound upon ATI.
Collapse
Affiliation(s)
- César Trifone
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | | | | | | | - Audrée Lemieux
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Natasha M Clark
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53707, USA
| | - Sanath K Janaka
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53707, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Brandon E Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Rémi Fromentin
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97239, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97239, USA
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - David T Evans
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53707, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
2
|
Wu T, Zheng C, Zou X. The Application of Organoids in the Study of Antiviral Innate Immunity. Methods Mol Biol 2025; 2854:199-212. [PMID: 39192131 DOI: 10.1007/978-1-0716-4108-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Antiviral innate immunity plays a critical role in the defense against viral infections, yet its complex interactions with viruses have been challenging to study using traditional models. Organoids, three-dimensional (3D) tissue-like structures derived from stem cells, have emerged as powerful tools for modeling human tissues and studying the complex interactions between viruses and the host innate immune system. This chapter summarizes relevant applications of organoids in antiviral innate immunity studies and provides detailed information and experimental procedures for using organoids to study antiviral innate immunity.
Collapse
Affiliation(s)
- Tong Wu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Xiaodong Zou
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, China.
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China.
| |
Collapse
|
3
|
Castell NJ, Abreu CM, Shirk EN, Queen SE, Mankowski JL, Clements JE, Veenhuis RT. SIV-specific antibodies protect against inflammasome-driven encephalitis in untreated macaques. Cell Rep 2024; 43:114833. [PMID: 39383041 PMCID: PMC11552693 DOI: 10.1016/j.celrep.2024.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/26/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024] Open
Abstract
Viral encephalitis is a growing public health threat with limited diagnostic and treatment options. Simian immunodeficiency virus (SIV)-infected macaques are an established model for human immunodeficiency virus (HIV), and approximately 60% of untreated pigtail macaques rapidly progress to characteristic SIV encephalitis (SIVE). The immune responses of SIV-infected macaques are investigated in plasma, cerebrospinal fluid (CSF), and brain tissue to determine correlates with SIVE pathology. Macaques with SIVE show myeloid-dominant brain lesions with inflammasome activation in infected and bystander cells, as assessed by interleukin (IL)-1β, IL-18, and apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), and elevations in monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, and tumor necrosis factor alpha (TNF-α). SIV-specific immunoglobulin (Ig)G in plasma and CSF is predictive of SIVE as early as 21 days post-inoculation; animals with SIVE continue to show negligible seroconversion 3 months after infection. This dichotomy in immune responses, wherein some macaques fail to initiate robust IgG responses and subsequently develop SIVE, provides insight into the pathogenesis and heterogeneous outcomes in viral encephalitis.
Collapse
Affiliation(s)
- Natalie J Castell
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Celina M Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rebecca T Veenhuis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Reiter S, Sun T, Gärtner S, Pöhlmann S, Winkler M. Development of rhesus macaque astrocyte cell lines supporting infection with a panel of viruses. PLoS One 2024; 19:e0303059. [PMID: 38743751 PMCID: PMC11093292 DOI: 10.1371/journal.pone.0303059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Non-human primate (NHP)-based model systems are highly relevant for biomedical research. However, only few NHP cell lines are available and the generation of additional cell lines is an urgent need to help in the refinement and replacement of these models. Using lentiviral transduction of c-Fos, we established cell lines from the brain of rhesus macaques (Macaca mulatta). Transcriptome analysis revealed that these cell lines are closely related to astrocytes, which was confirmed by immunoblot and immunofluorescence microscopy detecting expression of the astrocyte marker glial fibrillary acidic protein (GFAP). Quantitative real-time PCR (qRT-PCR) demonstrated that major pathways of the interferon (IFN) system are intact. Using retroviral pseudotypes we found that the cell lines are susceptible to entry driven by the glycoproteins of vesicular stomatitis virus (VSV), lymphocytic choriomeningitis virus (LCMV) and to a lesser extent influenza A virus (IAV). Finally, these cells supported growth of Zika virus (ZIKV) and Papiine alphaherpesvirus 2 (PaHV2). In summary, we developed IFN-responsive cell lines from the rhesus macaque brain that allowed entry driven by several viral glycoproteins and were permissive to infection with ZIKV and a primate simplexvirus. These cell lines will be useful for efforts to analyze neurotropic viral infections in rhesus macaque models.
Collapse
Affiliation(s)
- Stefanie Reiter
- German Primate Center—Leibniz Institute for Primate Research, Infection Biology Unit, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences (City Campus), Göttingen, Germany
| | - Sabine Gärtner
- German Primate Center—Leibniz Institute for Primate Research, Infection Biology Unit, Göttingen, Germany
| | - Stefan Pöhlmann
- German Primate Center—Leibniz Institute for Primate Research, Infection Biology Unit, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Michael Winkler
- German Primate Center—Leibniz Institute for Primate Research, Infection Biology Unit, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Kong W, Frouard J, Xie G, Corley MJ, Helmy E, Zhang G, Schwarzer R, Montano M, Sohn P, Roan NR, Ndhlovu LC, Gan L, Greene WC. Neuroinflammation generated by HIV-infected microglia promotes dysfunction and death of neurons in human brain organoids. PNAS NEXUS 2024; 3:pgae179. [PMID: 38737767 PMCID: PMC11086946 DOI: 10.1093/pnasnexus/pgae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
Despite the success of combination antiretroviral therapy (ART) for individuals living with HIV, mild forms of HIV-associated neurocognitive disorder (HAND) continue to occur. Brain microglia form the principal target for HIV infection in the brain. It remains unknown how infection of these cells leads to neuroinflammation, neuronal dysfunction, and/or death observed in HAND. Utilizing two different inducible pluripotent stem cell-derived brain organoid models (cerebral and choroid plexus [ChP] organoids) containing microglia, we investigated the pathogenic changes associated with HIV infection. Infection of microglia was associated with a sharp increase in CCL2 and CXCL10 chemokine gene expression and the activation of many type I interferon stimulated genes (MX1, ISG15, ISG20, IFI27, IFITM3 and others). Production of the proinflammatory chemokines persisted at low levels after treatment of the cell cultures with ART, consistent with the persistence of mild HAND following clinical introduction of ART. Expression of multiple members of the S100 family of inflammatory genes sharply increased following HIV infection of microglia measured by single-cell RNA-seq. However, S100 gene expression was not limited to microglia but was also detected more broadly in uninfected stromal cells, mature and immature ChP cells, neural progenitor cells and importantly in bystander neurons suggesting propagation of the inflammatory response to bystander cells. Neurotransmitter transporter expression declined in uninfected neurons, accompanied by increased expression of genes promoting cellular senescence and cell death. Together, these studies underscore how an inflammatory response generated in HIV-infected microglia is propagated to multiple uninfected bystander cells ultimately resulting in the dysfunction and death of bystander neurons.
Collapse
Affiliation(s)
- Weili Kong
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
| | - Julie Frouard
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Guorui Xie
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael J Corley
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ekram Helmy
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
| | - Gang Zhang
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
| | - Roland Schwarzer
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
| | - Mauricio Montano
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
| | - Peter Sohn
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Nadia R Roan
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Li Gan
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Warner C Greene
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
- Departments of Medicine and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
Mu W, Patankar V, Kitchen S, Zhen A. Examining Chronic Inflammation, Immune Metabolism, and T Cell Dysfunction in HIV Infection. Viruses 2024; 16:219. [PMID: 38399994 PMCID: PMC10893210 DOI: 10.3390/v16020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic Human Immunodeficiency Virus (HIV) infection remains a significant challenge to global public health. Despite advances in antiretroviral therapy (ART), which has transformed HIV infection from a fatal disease into a manageable chronic condition, a definitive cure remains elusive. One of the key features of HIV infection is chronic immune activation and inflammation, which are strongly associated with, and predictive of, HIV disease progression, even in patients successfully treated with suppressive ART. Chronic inflammation is characterized by persistent inflammation, immune cell metabolic dysregulation, and cellular exhaustion and dysfunction. This review aims to summarize current knowledge of the interplay between chronic inflammation, immune metabolism, and T cell dysfunction in HIV infection, and also discusses the use of humanized mice models to study HIV immune pathogenesis and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Vaibhavi Patankar
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scott Kitchen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Liu X, Lv T, Li X, Xue J, Lin L, Lu L, Li X, Yang Y, Wu Y, Wei Q, Cao W, Li T. Comprehensive transcriptomic analyses identify the immunosuppressive effects of LLDT-8 in ART-treated SIV-infected rhesus macaques. Int Immunopharmacol 2024; 126:111173. [PMID: 37984249 DOI: 10.1016/j.intimp.2023.111173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Chronic immune activation plays a significant role in the pathogenesis and disease progression of human immunodeficiency virus (HIV), and the existing interventions to address this issue are limited. In a phase II clinical trial, (5R)-5-hydroxytriptolide (LLDT-8) demonstrated promising potential in enhancing CD4+ T cell recovery. However, the therapeutical effects of LLDT-8 remained to be systemic explored. METHODS To assess the treatment effects of LLDT-8, we conducted flow cytometry and RNA-seq analyses on eight Chinese rhesus monkeys infected with simian immunodeficiency virus (SIV). Additionally, we performed comprehensive transcriptomic analyses, including cross-sectional and longitudinal differentially expressed gene (DEG) analysis, gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), and deconvolution analysis using peripheral blood mononuclear cell (PBMC) samples from 14-time points. These findings were further validated with RNA-seq analysis on patients who received LLDT-8 treatment, along with in vitro cellular experiments using human PBMCs. RESULTS Flow cytometry analysis revealed that LLDT-8 treatment significantly reduced the percentage of HLA-DR+CD38+CD8+ T cells in SIV-infected rhesus monkeys (P < 0.001). The cross-sectional and longitudinal analysis identified 2531 and 1809 DEGs, respectively. GSEA analysis indicated that LLDT-8 treatment led to significant downregulation of proliferation-related pathways, such as E2F targets, G2M checkpoint, and mitotic spindle pathways. WGCNA analysis identified two modules and 202 hub genes associated with CD8 activation levels. Deconvolution analysis showed a significant decrease in the proportion of CD8+ T cells and activated CD4+ T cells during LLDT-8 treatment. Gene ontology results demonstrated that the common DEGs between LLDT-8-treated patients and rhesus monkeys were primarily enriched in cell activation and cell cycle progression. Furthermore, in vitro cellular experiments validated the consistent impact of LLDT-8 in inhibiting proliferation, activation (HLA-DR and CD38 expression), exhaustion (PD-1 expression), and IFN-γ production in human CD4+ and CD8+ T cells. CONCLUSION LLDT-8 exhibited notable efficacy in alleviating immune activation in both an in vivo animal model and in vitro human cell experiments. These findings suggest that LLDT-8 may hold potential as a drug for managing systemic immune activation associated with SIV/HIV infection, warranting further prospective clinical exploration.
Collapse
Affiliation(s)
- Xiaosheng Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Tingxia Lv
- Department of Infectious Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiuxia Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Jing Xue
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Ling Lin
- Department of Infectious Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lianfeng Lu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaodi Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Yang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanni Wu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qiang Wei
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Taisheng Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Orfanakis M, Molyvdas A, Petrovas C. In Situ Characterization of Human Follicular Helper CD4 T Cells. Methods Mol Biol 2024; 2813:281-293. [PMID: 38888784 DOI: 10.1007/978-1-0716-3890-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The development of an effective humoral response to pathogens and immunogens is a multiphase biological process, which is mediated by the coordinated function of specialized immune cell types in secondary lymphoid organs and particularly in T cell and follicular areas. More specifically, within the follicular/germinal center area, the orchestrated interplay between B cells, follicular helper CD4 T cells (Tfh), and stromal cells triggers a cascade of immune reactions leading to the development of memory B cells and plasma cells able to generate effective, antigen-specific antibodies. The role of Tfh cells in this process is critical. Given the need for vaccines capable to induce antibodies of high affinity, neutralizing activity, and durability, understanding the cellular and molecular mechanisms regulating Tfh cell development is of great importance. Here, we describe novel approaches for the comprehensive understanding of these cells and possible implications for future studies in vaccine development and the understanding of the pathogenesis of relevant diseases.
Collapse
Affiliation(s)
- Michail Orfanakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Adam Molyvdas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Constantinos Petrovas
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| |
Collapse
|
9
|
Rong N, Liu J. Development of animal models for emerging infectious diseases by breaking the barrier of species susceptibility to human pathogens. Emerg Microbes Infect 2023; 12:2178242. [PMID: 36748729 PMCID: PMC9970229 DOI: 10.1080/22221751.2023.2178242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Outbreaks of emerging infectious diseases pose a serious threat to public health security, human health and economic development. After an outbreak, an animal model for an emerging infectious disease is urgently needed for studying the etiology, host immune mechanisms and pathology of the disease, evaluating the efficiency of vaccines or drugs against infection, and minimizing the time available for animal model development, which is usually hindered by the nonsusceptibility of common laboratory animals to human pathogens. Thus, we summarize the technologies and methods that induce animal susceptibility to human pathogens, which include viral receptor humanization, pathogen-targeted tissue humanization, immunodeficiency induction and screening for naturally susceptible animal species. Furthermore, the advantages and deficiencies of animal models developed using each method were analyzed, and these will guide the selection of susceptible animals and potentially reduce the time needed to develop animal models during epidemics.
Collapse
Affiliation(s)
- Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, People’s Republic of China, Jiangning Liu
| |
Collapse
|
10
|
Namba MD, Xie Q, Barker JM. Advancing the preclinical study of comorbid neuroHIV and substance use disorders: Current perspectives and future directions. Brain Behav Immun 2023; 113:453-475. [PMID: 37567486 PMCID: PMC10528352 DOI: 10.1016/j.bbi.2023.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/23/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Human immunodeficiency virus (HIV) remains a persistent public health concern throughout the world. Substance use disorders (SUDs) are a common comorbidity that can worsen treatment outcomes for people living with HIV. The relationship between HIV infection and SUD outcomes is likely bidirectional, making clear interrogation of neurobehavioral outcomes challenging in clinical populations. Importantly, the mechanisms through which HIV and addictive drugs disrupt homeostatic immune and CNS function appear to be highly overlapping and synergistic within HIV-susceptible reward and motivation circuitry in the central nervous system. Decades of animal research have revealed invaluable insights into mechanisms underlying the pathophysiology SUDs and HIV, although translational studies examining comorbid SUDs and HIV are very limited due to the technical challenges of modeling HIV infection preclinically. In this review, we discuss preclinical animal models of HIV and highlight key pathophysiological characteristics of each model, with a particular emphasis on rodent models of HIV. We then review the implementation of these models in preclinical SUD research and identify key gaps in knowledge in the field. Finally, we discuss how cutting-edge behavioral neuroscience tools, which have revealed key insights into the neurobehavioral mechanisms of SUDs, can be applied to preclinical animal models of HIV to reveal potential, novel treatment avenues for comorbid HIV and SUDs. Here, we argue that future preclinical SUD research would benefit from incorporating comorbidities such as HIV into animal models and would facilitate the discovery of more refined, subpopulation-specific mechanisms and effective SUD prevention and treatment targets.
Collapse
Affiliation(s)
- Mark D Namba
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Qiaowei Xie
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Jacqueline M Barker
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Bauer A, Lindemuth E, Marino FE, Krause R, Joy J, Docken SS, Mallick S, McCormick K, Holt C, Georgiev I, Felber B, Keele BF, Veazey R, Davenport MP, Li H, Shaw GM, Bar KJ. Adaptation of a transmitted/founder simian-human immunodeficiency virus for enhanced replication in rhesus macaques. PLoS Pathog 2023; 19:e1011059. [PMID: 37399208 PMCID: PMC10348547 DOI: 10.1371/journal.ppat.1011059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/14/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
Transmitted/founder (TF) simian-human immunodeficiency viruses (SHIVs) express HIV-1 envelopes modified at position 375 to efficiently infect rhesus macaques while preserving authentic HIV-1 Env biology. SHIV.C.CH505 is an extensively characterized virus encoding the TF HIV-1 Env CH505 mutated at position 375 shown to recapitulate key features of HIV-1 immunobiology, including CCR5-tropism, a tier 2 neutralization profile, reproducible early viral kinetics, and authentic immune responses. SHIV.C.CH505 is used frequently in nonhuman primate studies of HIV, but viral loads after months of infection are variable and typically lower than those in people living with HIV. We hypothesized that additional mutations besides Δ375 might further enhance virus fitness without compromising essential components of CH505 Env biology. From sequence analysis of SHIV.C.CH505-infected macaques across multiple experiments, we identified a signature of envelope mutations associated with higher viremia. We then used short-term in vivo mutational selection and competition to identify a minimally adapted SHIV.C.CH505 with just five amino acid changes that substantially improve virus replication fitness in macaques. Next, we validated the performance of the adapted SHIV in vitro and in vivo and identified the mechanistic contributions of selected mutations. In vitro, the adapted SHIV shows improved virus entry, enhanced replication on primary rhesus cells, and preserved neutralization profiles. In vivo, the minimally adapted virus rapidly outcompetes the parental SHIV with an estimated growth advantage of 0.14 days-1 and persists through suppressive antiretroviral therapy to rebound at treatment interruption. Here, we report the successful generation of a well-characterized, minimally adapted virus, termed SHIV.C.CH505.v2, with enhanced replication fitness and preserved native Env properties that can serve as a new reagent for NHP studies of HIV-1 transmission, pathogenesis, and cure.
Collapse
Affiliation(s)
- Anya Bauer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Emily Lindemuth
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Francesco Elia Marino
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ryan Krause
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jaimy Joy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Suvadip Mallick
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kevin McCormick
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Clinton Holt
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ivelin Georgiev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Barbara Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Maryland, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ronald Veazey
- Department of Pathology and Laboratory Medicine, Tulane School of Medicine, New Orleans, Louisiana, United States of America
| | | | - Hui Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - George M. Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katharine J. Bar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
12
|
Reiter S, Gärtner S, Decker K, Pöhlmann S, Winkler M. Development of immortalized rhesus macaque kidney cells supporting infection with a panel of viruses. PLoS One 2023; 18:e0284048. [PMID: 37146034 PMCID: PMC10162512 DOI: 10.1371/journal.pone.0284048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/22/2023] [Indexed: 05/07/2023] Open
Abstract
Non-human primate (NHP)-based model systems faithfully reproduce various viral diseases including Ebola, influenza, AIDS and Zika. However, only a small number of NHP cell lines are available and generation of additional cell lines could help to refine these models. We immortalized rhesus macaque kidney cells by lentiviral transduction with a vector encoding telomerase reverse transcriptase (TERT) and report the generation of three TERT-immortalized cell lines derived from rhesus macaque kidney. Expression of the kidney podocyte marker podoplanin on these cells was demonstrated by flow cytometry. Quantitative real-time PCR (qRT-PCR) was employed to demonstrate induction of MX1 expression upon stimulation with interferon (IFN) or viral infection, suggesting a functional IFN system. Further, the cell lines were susceptible to entry driven by the glycoproteins of vesicular stomatitis virus, influenza A virus, Ebola virus, Nipah virus and Lassa virus as assessed by infection with retroviral pseudotypes. Finally, these cells supported growth of Zika virus and the primate simplexviruses Cercopithecine alphaherpesvirus 2 and Papiine alphaherpesvirus 2. In summary, we developed IFN-responsive rhesus macaque kidney cell lines that allowed entry driven by diverse viral glycoproteins and were permissive to infection with Zika virus and primate simplexviruses. These cell lines will be useful for efforts to analyze viral infections of the kidney in macaque models.
Collapse
Affiliation(s)
- Stefanie Reiter
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sabine Gärtner
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Katharina Decker
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Michael Winkler
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
13
|
Chen M, Li M, Budai MM, Rice AP, Kimata JT, Mohan M, Wang J. Clearance of HIV-1 or SIV reservoirs by promotion of apoptosis and inhibition of autophagy: Targeting intracellular molecules in cure-directed strategies. J Leukoc Biol 2022; 112:1245-1259. [PMID: 35362118 PMCID: PMC9522917 DOI: 10.1002/jlb.4mr0222-606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
The reservoirs of the HIV display cellular properties resembling long-lived immune memory cells that could be exploited for viral clearance. Our interest in developing a cure for HIV stems from the studies of immunologic memory against infections. We and others have found that long-lived immune memory cells employ prosurvival autophagy and antiapoptotic mechanisms to protect their longevity. Here, we describe the rationale for the development of an approach to clear HIV-1 by selective elimination of host cells harboring replication-competent HIV (SECH). While reactivation of HIV-1 in the host cells with latency reversing agents (LRAs) induces viral gene expression leading to cell death, LRAs also simultaneously up-regulate prosurvival antiapoptotic molecules and autophagy. Mechanistically, transcription factors that promote HIV-1 LTR-directed gene expression, such as NF-κB, AP-1, and Hif-1α, can also enhance the expression of cellular genes essential for cell survival and metabolic regulation, including Bcl-xL, Mcl-1, and autophagy genes. In the SECH approach, we inhibit the prosurvival antiapoptotic molecules and autophagy induced by LRAs, thereby allowing maximum killing of host cells by the induced HIV-1 proteins. SECH treatments cleared HIV-1 infections in humanized mice in vivo and in HIV-1 patient PBMCs ex vivo. SECH also cleared infections by the SIV in rhesus macaque PBMCs ex vivo. Research efforts are underway to improve the efficacy and safety of SECH and to facilitate the development of SECH as a therapeutic approach for treating people with HIV.
Collapse
Affiliation(s)
- Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Min Li
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
| | - Marietta M. Budai
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
| | - Andrew P. Rice
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jason T. Kimata
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, New York, USA
| |
Collapse
|
14
|
Lo Tartaro D, Camiro-Zúñiga A, Nasi M, De Biasi S, Najera-Avila MA, Jaramillo-Jante MDR, Gibellini L, Pinti M, Neroni A, Mussini C, Soto-Ramírez LE, Calva JJ, Belaunzarán-Zamudio F, Crabtree-Ramirez B, Hernández-Leon C, Mosqueda-Gómez JL, Navarro-Álvarez S, Perez-Patrigeon S, Cossarizza A. Effective Treatment of Patients Experiencing Primary, Acute HIV Infection Decreases Exhausted/Activated CD4+ T Cells and CD8+ T Memory Stem Cells. Cells 2022; 11:cells11152307. [PMID: 35954153 PMCID: PMC9367582 DOI: 10.3390/cells11152307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Several studies have identified main changes in T- and B-lymphocyte subsets during chronic HIV infection, but few data exist on how these subsets behave during the initial phase of HIV infection. We enrolled 22 HIV-infected patients during the acute stage of infection before the initiation of antiretroviral therapy (ART). Patients had blood samples drawn previous to ART initiation (T0), and at 2 (T1) and 12 (T2) months after ART initiation. We quantified cellular HIV-DNA content in sorted naïve and effector memory CD4 T cells and identified the main subsets of T- and B-lymphocytes using an 18-parameter flow cytometry panel. We identified correlations between the patients’ clinical and immunological data using PCA. Effective HIV treatment reduces integrated HIV DNA in effector memory T cells after 12 months (T2) of ART. The main changes in CD4+ T cells occurred at T2, with a reduction of activated memory, cytolytic and activated/exhausted stem cell memory T (TSCM) cells. Changes were present among CD8+ T cells since T1, with a reduction of several activated subsets, including activated/exhausted TSCM. At T2 a reduction of plasmablasts and exhausted B cells was also observed. A negative correlation was found between the total CD4+ T-cell count and IgM-negative plasmablasts. In patients initiating ART immediately following acute/early HIV infection, the fine analysis of T- and B-cell subsets has allowed us to identify and follow main modifications due to effective treatment, and to identify significant changes in CD4+ and CD8+ T memory stem cells.
Collapse
Affiliation(s)
- Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (D.L.T.); (S.D.B.); (L.G.); (A.N.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Antonio Camiro-Zúñiga
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Infectious Diseases, Mexico City 14080, Mexico; (A.C.-Z.); (M.A.N.-A.); (M.D.R.J.-J.); (L.E.S.-R.); (J.J.C.); (F.B.-Z.); (B.C.-R.); (S.P.-P.)
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Correspondence: (M.N.); (A.C.); Tel.: +39-059-205-5415 (M.N.); +39-059-205-5422 (A.C.)
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (D.L.T.); (S.D.B.); (L.G.); (A.N.)
| | - Marco A. Najera-Avila
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Infectious Diseases, Mexico City 14080, Mexico; (A.C.-Z.); (M.A.N.-A.); (M.D.R.J.-J.); (L.E.S.-R.); (J.J.C.); (F.B.-Z.); (B.C.-R.); (S.P.-P.)
| | - Maria Del Rocio Jaramillo-Jante
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Infectious Diseases, Mexico City 14080, Mexico; (A.C.-Z.); (M.A.N.-A.); (M.D.R.J.-J.); (L.E.S.-R.); (J.J.C.); (F.B.-Z.); (B.C.-R.); (S.P.-P.)
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (D.L.T.); (S.D.B.); (L.G.); (A.N.)
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (D.L.T.); (S.D.B.); (L.G.); (A.N.)
| | - Cristina Mussini
- Infectious Diseases Clinics, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy;
| | - Luis E. Soto-Ramírez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Infectious Diseases, Mexico City 14080, Mexico; (A.C.-Z.); (M.A.N.-A.); (M.D.R.J.-J.); (L.E.S.-R.); (J.J.C.); (F.B.-Z.); (B.C.-R.); (S.P.-P.)
| | - Juan J. Calva
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Infectious Diseases, Mexico City 14080, Mexico; (A.C.-Z.); (M.A.N.-A.); (M.D.R.J.-J.); (L.E.S.-R.); (J.J.C.); (F.B.-Z.); (B.C.-R.); (S.P.-P.)
| | - Francisco Belaunzarán-Zamudio
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Infectious Diseases, Mexico City 14080, Mexico; (A.C.-Z.); (M.A.N.-A.); (M.D.R.J.-J.); (L.E.S.-R.); (J.J.C.); (F.B.-Z.); (B.C.-R.); (S.P.-P.)
| | - Brenda Crabtree-Ramirez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Infectious Diseases, Mexico City 14080, Mexico; (A.C.-Z.); (M.A.N.-A.); (M.D.R.J.-J.); (L.E.S.-R.); (J.J.C.); (F.B.-Z.); (B.C.-R.); (S.P.-P.)
| | - Christian Hernández-Leon
- Centro Ambulatorio para la Prevención y Atención del Sida e Infecciones de Transmisión Sexual (CAPASITS), Puebla 72410, Mexico;
| | - Juan L. Mosqueda-Gómez
- Centro Ambulatorio para la Prevención y Atención del Sida e Infecciones de Transmisión Sexual (CAPASITS), Leon 37320, Mexico;
| | | | - Santiago Perez-Patrigeon
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Infectious Diseases, Mexico City 14080, Mexico; (A.C.-Z.); (M.A.N.-A.); (M.D.R.J.-J.); (L.E.S.-R.); (J.J.C.); (F.B.-Z.); (B.C.-R.); (S.P.-P.)
- Division of Infectious Diseases, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (D.L.T.); (S.D.B.); (L.G.); (A.N.)
- National Institute for Cardiovascular Research—INRC, 40126 Bologna, Italy
- Correspondence: (M.N.); (A.C.); Tel.: +39-059-205-5415 (M.N.); +39-059-205-5422 (A.C.)
| |
Collapse
|
15
|
NK cell spatial dynamics and IgA responses in gut-associated lymphoid tissues during SIV infections. Commun Biol 2022; 5:674. [PMID: 35798936 PMCID: PMC9262959 DOI: 10.1038/s42003-022-03619-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
HIV infection induces tissue damage including lymph node (LN) fibrosis and intestinal epithelial barrier disruption leading to bacterial translocation and systemic inflammation. Natural hosts of SIV, such as African Green Monkeys (AGM), do not display tissue damage despite high viral load in blood and intestinal mucosa. AGM mount a NK cell-mediated control of SIVagm replication in peripheral LN. We analyzed if NK cells also control SIVagm in mesenteric (mes) LN and if this has an impact on gut humoral responses and the production of IgA known for their anti-inflammatory role in the gut. We show that CXCR5 + NK cell frequencies increase in mesLN upon SIVagm infection and that NK cells migrate into and control viral replication in B cell follicles (BCF) of mesLN. The proportion of IgA+ memory B cells were increased in mesLN during SIVagm infection in contrast to SIVmac infection. Total IgA levels in gut remained normal during SIVagm infection, while strongly decreased in intestine of chronically SIVmac-infected macaques. Our data suggest an indirect impact of NK cell-mediated viral control in mesLN during SIVagm infection on preserved BCF function and IgA production in intestinal tissues. Differences between pathogenic and non-pathogenic SIV infections are investigated, in terms of NK cell location, function and IgA responses in gut associated lymphoid tissues (mesenteric lymph nodes, jejunum, ileon, colon).
Collapse
|
16
|
HIV Latency in Myeloid Cells: Challenges for a Cure. Pathogens 2022; 11:pathogens11060611. [PMID: 35745465 PMCID: PMC9230125 DOI: 10.3390/pathogens11060611] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 01/27/2023] Open
Abstract
The use of antiretroviral therapy (ART) for Human Immunodeficiency Virus (HIV) treatment has been highly successful in controlling plasma viremia to undetectable levels. However, a complete cure for HIV is hindered by the presence of replication-competent HIV, integrated in the host genome, that can persist long term in a resting state called viral latency. Resting memory CD4+ T cells are considered the biggest reservoir of persistent HIV infection and are often studied exclusively as the main target for an HIV cure. However, other cell types, such as circulating monocytes and tissue-resident macrophages, can harbor integrated, replication-competent HIV. To develop a cure for HIV, focus is needed not only on the T cell compartment, but also on these myeloid reservoirs of persistent HIV infection. In this review, we summarize their importance when designing HIV cure strategies and challenges associated to their identification and specific targeting by the “shock and kill” approach.
Collapse
|
17
|
Rodríguez‐Izquierdo I, Sepúlveda‐Crespo D, Lasso JM, Resino S, Muñoz‐Fernández MÁ. Baseline and time-updated factors in preclinical development of anionic dendrimers as successful anti-HIV-1 vaginal microbicides. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1774. [PMID: 35018739 PMCID: PMC9285063 DOI: 10.1002/wnan.1774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Although a wide variety of topical microbicides provide promising in vitro and in vivo efficacy, most of them failed to prevent sexual transmission of human immunodeficiency virus type 1 (HIV-1) in human clinical trials. In vitro, ex vivo, and in vivo models must be optimized, considering the knowledge acquired from unsuccessful and successful clinical trials to improve the current gaps and the preclinical development protocols. To date, dendrimers are the only nanotool that has advanced to human clinical trials as topical microbicides to prevent HIV-1 transmission. This fact demonstrates the importance and the potential of these molecules as microbicides. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV-1 that disturb HIV-1 entry. Herein, the most significant advancements in topical microbicide development, trying to mimic the real-life conditions as closely as possible, are discussed. This review also provides the preclinical assays that anionic dendrimers have passed as microbicides because they can improve current antiviral treatments' efficacy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
| | - Daniel Sepúlveda‐Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | | | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | - Ma Ángeles Muñoz‐Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)MadridSpain
- Spanish HIV HGM BioBankMadridSpain
- Section of Immunology, Laboratorio InmunoBiología MolecularHospital General Universitario Gregorio Marañón (HGUGM)MadridSpain
| |
Collapse
|
18
|
Interests of the Non-Human Primate Models for HIV Cure Research. Vaccines (Basel) 2021; 9:vaccines9090958. [PMID: 34579195 PMCID: PMC8472852 DOI: 10.3390/vaccines9090958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Non-human primate (NHP) models are important for vaccine development and also contribute to HIV cure research. Although none of the animal models are perfect, NHPs enable the exploration of important questions about tissue viral reservoirs and the development of intervention strategies. In this review, we describe recent advances in the use of these models for HIV cure research and highlight the progress that has been made as well as limitations using these models. The main NHP models used are (i) the macaque, in which simian immunodeficiency virus (SIVmac) infection displays similar replication profiles as to HIV in humans, and (ii) the macaque infected by a recombinant virus (SHIV) consisting of SIVmac expressing the HIV envelope gene serving for studies analyzing the impact of anti-HIV Env broadly neutralizing antibodies. Lessons for HIV cure that can be learned from studying the natural host of SIV are also presented here. An overview of the most promising and less well explored HIV cure strategies tested in NHP models will be given.
Collapse
|
19
|
Advances in simian--human immunodeficiency viruses for nonhuman primate studies of HIV prevention and cure. Curr Opin HIV AIDS 2021; 15:275-281. [PMID: 32769631 DOI: 10.1097/coh.0000000000000645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Simian--human immunodeficiency viruses (SHIVs), chimeric viruses that encode HIV-1 Env within an SIV backbone, are key reagents for nonhuman primate studies of antibody-based vaccines, broadly neutralizing antibodies (bnAbs), and other Env-targeting reagents. Here, we discuss the provenance and characteristics of currently relevant SHIVs, novel technical advances, recent discoveries enabled by SHIV challenge studies, and the continued development of SHIVs for persistence and cure experiments. RECENT FINDINGS SHIV SF162P3, SHIV AD8EO, and transmitter/founder SHIVs with Env375 mutations are now common reagents in nonhuman primate studies, with increased use and validation establishing their properties and potential applications. Genetic barcoding of SIV and SHIV, which allows tracing of individual lineages and elucidation of viral kinetics from transmission through latency has expanded the experimental capacity of SHIV models. SHIV challenge studies have determined the neutralizing antibody titers that correlate with protection for passive and active immunization and enabled complementary human and nonhuman primate studies of vaccine development. SHIV models of latency continue to evolve, aided by descriptions of SHIV persistence on ART and the proviral landscape. SUMMARY Recent advances and more thorough characterization of SHIVs allow for expanded applications and greater confidence in experimental results.
Collapse
|
20
|
APOBEC3F Constitutes a Barrier to Successful Cross-Species Transmission of Simian Immunodeficiency Virus SIVsmm to Humans. J Virol 2021; 95:e0080821. [PMID: 34132575 DOI: 10.1128/jvi.00808-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Simian immunodeficiency virus infecting sooty mangabeys (SIVsmm) has been transmitted to humans on at least nine occasions, giving rise to human immunodeficiency virus type 2 (HIV-2) groups A to I. SIVsmm isolates replicate in human T cells and seem capable of overcoming major human restriction factors without adaptation. However, only groups A and B are responsible for the HIV-2 epidemic in sub-Saharan Africa, and it is largely unclear whether adaptive changes were associated with spread in humans. To address this, we examined the sensitivity of infectious molecular clones (IMCs) of five HIV-2 strains and representatives of five different SIVsmm lineages to various APOBEC3 proteins. We confirmed that SIVsmm strains replicate in human T cells, albeit with more variable replication fitness and frequently lower efficiency than HIV-2 IMCs. Efficient viral propagation was generally dependent on intact vif genes, highlighting the need for counteraction of APOBEC3 proteins. On average, SIVsmm was more susceptible to inhibition by human APOBEC3D, -F, -G, and -H than HIV-2. For example, human APOBEC3F reduced infectious virus yield of SIVsmm by ∼80% but achieved only ∼40% reduction in the case of HIV-2. Functional and mutational analyses of human- and monkey-derived alleles revealed that an R128T polymorphism in APOBEC3F contributes to species-specific counteraction by HIV-2 and SIVsmm Vifs. In addition, a T84S substitution in SIVsmm Vif increased its ability to counteract human APOBEC3F. Altogether, our results confirm that SIVsmm Vif proteins show intrinsic activity against human APOBEC3 proteins but also demonstrate that epidemic HIV-2 strains evolved an increased ability to counteract this class of restriction factors during human adaptation. IMPORTANCE Viral zoonoses pose a significant threat to human health, and it is important to understand determining factors. SIVs infecting great apes gave rise to HIV-1. In contrast, SIVs infecting African monkey species have not been detected in humans, with one notable exception. SIVsmm from sooty mangabeys has crossed the species barrier to humans on at least nine independent occasions and seems capable of overcoming many innate defense mechanisms without adaptation. Here, we confirmed that SIVsmm Vif proteins show significant activity against human APOBEC3 proteins. Our analyses also revealed, however, that different lineages of SIVsmm are significantly more susceptible to inhibition by various human APOBEC3 proteins than HIV-2 strains. Mutational analyses suggest that an R128T substitution in APOBEC3F and a T84S change in Vif contribute to species-specific counteraction by HIV-2 and SIVsmm. Altogether, our results support that epidemic HIV-2 strains acquired increased activity against human APOBEC3 proteins to clear this restrictive barrier.
Collapse
|
21
|
Huot N, Rascle P, Planchais C, Contreras V, Passaes C, Le Grand R, Beignon AS, Kornobis E, Legendre R, Varet H, Saez-Cirion A, Mouquet H, Jacquelin B, Müller-Trutwin M. CD32 +CD4 + T Cells Sharing B Cell Properties Increase With Simian Immunodeficiency Virus Replication in Lymphoid Tissues. Front Immunol 2021; 12:695148. [PMID: 34220857 PMCID: PMC8242952 DOI: 10.3389/fimmu.2021.695148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
CD4 T cell responses constitute an important component of adaptive immunity and are critical regulators of anti-microbial protection. CD4+ T cells expressing CD32a have been identified as a target for HIV. CD32a is an Fcγ receptor known to be expressed on myeloid cells, granulocytes, B cells and NK cells. Little is known about the biology of CD32+CD4+ T cells. Our goal was to understand the dynamics of CD32+CD4+ T cells in tissues. We analyzed these cells in the blood, lymph nodes, spleen, ileum, jejunum and liver of two nonhuman primate models frequently used in biomedical research: African green monkeys (AGM) and macaques. We studied them in healthy animals and during viral (SIV) infection. We performed phenotypic and transcriptomic analysis at different stages of infection. In addition, we compared CD32+CD4+ T cells in tissues with well-controlled (spleen) and not efficiently controlled (jejunum) SIV replication in AGM. The CD32+CD4+ T cells more frequently expressed markers associated with T cell activation and HIV infection (CCR5, PD-1, CXCR5, CXCR3) and had higher levels of actively transcribed SIV RNA than CD32-CD4+T cells. Furthermore, CD32+CD4+ T cells from lymphoid tissues strongly expressed B-cell-related transcriptomic signatures, and displayed B cell markers at the cell surface, including immunoglobulins CD32+CD4+ T cells were rare in healthy animals and blood but increased strongly in tissues with ongoing viral replication. CD32+CD4+ T cell levels in tissues correlated with viremia. Our results suggest that the tissue environment induced by SIV replication drives the accumulation of these unusual cells with enhanced susceptibility to viral infection.
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Planchais
- Institut Pasteur, INSERM U1222, Laboratoire d'Immunologie Humorale, Paris, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Caroline Passaes
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Etienne Kornobis
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, INSERM U1222, Laboratoire d'Immunologie Humorale, Paris, France
| | | | | |
Collapse
|
22
|
Kazer SW, Walker BD, Shalek AK. Evolution and Diversity of Immune Responses during Acute HIV Infection. Immunity 2021; 53:908-924. [PMID: 33207216 DOI: 10.1016/j.immuni.2020.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/03/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Understanding the earliest immune responses following HIV infection is critical to inform future vaccines and therapeutics. Here, we review recent prospective human studies in at-risk populations that have provided insight into immune responses during acute infection, including additional relevant data from non-human primate (NHP) studies. We discuss the timing, nature, and function of the diverse immune responses induced, the onset of immune dysfunction, and the effects of early anti-retroviral therapy administration. Treatment at onset of viremia mitigates peripheral T and B cell dysfunction, limits seroconversion, and enhances cellular antiviral immunity despite persistence of infection in lymphoid tissues. We highlight pertinent areas for future investigation, and how application of high-throughput technologies, alongside targeted NHP studies, may elucidate immune response features to target in novel preventions and cures.
Collapse
Affiliation(s)
- Samuel W Kazer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
23
|
Immune Responses and Viral Persistence in Simian/Human Immunodeficiency Virus SHIV.C.CH848-Infected Rhesus Macaques. J Virol 2021; 95:JVI.02198-20. [PMID: 33568508 PMCID: PMC8104099 DOI: 10.1128/jvi.02198-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
SHIVs have been extensively used in a nonhuman primate (NHP) model for HIV research. In this study, we investigated viral reservoirs in tissues and immune responses in an NHP model inoculated with newly generated transmitted/founder HIV-1 clade C-based SHIV.C.CH848. Chimeric simian/human immunodeficiency viruses (SHIVs) are widely used in nonhuman primate models to recapitulate human immunodeficiency virus (HIV) infection in humans, yet most SHIVs fail to establish persistent viral infection. We investigated immunological and virological events in rhesus macaques infected with the newly developed SHIV.C.CH848 (SHIVC) and treated with combined antiretroviral therapy (cART). Similar to HIV/simian immunodeficiency virus (SIV) infection, SHIV.C.CH848 infection established viral reservoirs in CD4+ T cells and myeloid cells, accompanied by productive infection and depletion of CD4+ T cells in systemic and lymphoid tissues throughout SHIV infection. Despite 6 months of cART-suppressed viral replication, integrated proviral DNA levels remained stable, especially in CD4+ T cells, and the viral rebound was also observed after ART interruption. Autologous neutralizing antibodies to the parental HIV-1 strain CH848 were detected, with limited viral evolution at 5 months postinfection. In comparison, heterogenous neutralizing antibodies in SHIV.C.CH848-infected macaques were not detected except for 1 (1 of 10) animal at 2 years postinfection. These findings suggest that SHIV.C.CH848, a novel class of transmitted/founder SHIVs, can establish sustained viremia and viral reservoirs in rhesus macaques with clinical immunodeficiency consequences, providing a valuable SHIV model for HIV research. IMPORTANCE SHIVs have been extensively used in a nonhuman primate (NHP) model for HIV research. In this study, we investigated viral reservoirs in tissues and immune responses in an NHP model inoculated with newly generated transmitted/founder HIV-1 clade C-based SHIV.C.CH848. The data show that transmitted founder (T/F) SHIVC infection of macaques more closely recapitulates the virological and clinical features of HIV infection, including persistent viremia and viral rebound once antiretroviral therapy is discontinued. These results suggest this CCR5-tropic, SHIVC strain is valuable for testing responses to HIV vaccines and therapeutics.
Collapse
|
24
|
Huot N, Rascle P, Tchitchek N, Wimmer B, Passaes C, Contreras V, Desjardins D, Stahl-Hennig C, Le Grand R, Saez-Cirion A, Jacquelin B, Müller-Trutwin M. Role of NKG2a/c +CD8 + T cells in pathogenic versus non-pathogenic SIV infections. iScience 2021; 24:102314. [PMID: 33870131 PMCID: PMC8040270 DOI: 10.1016/j.isci.2021.102314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/12/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Some viruses have established an equilibrium with their host. African green monkeys (AGM) display persistent high viral replication in the blood and intestine during Simian immunodeficiency virus (SIV) infection but resolve systemic inflammation after acute infection and lack intestinal immune or tissue damage during chronic infection. We show that NKG2a/c+CD8+ T cells increase in the blood and intestine of AGM in response to SIVagm infection in contrast to SIVmac infection in macaques, the latter modeling HIV infection. NKG2a/c+CD8+ T cells were not expanded in lymph nodes, and CXCR5+NKG2a/c+CD8+ T cell frequencies further decreased after SIV infection. Genome-wide transcriptome analysis of NKG2a/c+CD8+ T cells from AGM revealed the expression of NK cell receptors, and of molecules with cytotoxic effector, gut homing, and immunoregulatory and gut barrier function, including CD73. NKG2a/c+CD8+ T cells correlated negatively with IL-23 in the intestine during SIVmac infection. The data suggest a potential regulatory role of NKG2a/c+CD8+ T cells in intestinal inflammation during SIV/HIV infections. Molecular determination of NKG2a/c+CD8+ T cells in two species of nonhuman primates Tissue distribution of NKG2a/c+CD8+ T cell is profoundly sculpted by SIV infections Intestinal NKG2a/c+CD8+ T cells correlated negatively with IL-23 in SIV infection NKG2a/c+CD8+ T cells might play a protective gut barrier function in HIV/SIV infection
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nicolas Tchitchek
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Benedikt Wimmer
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Caroline Passaes
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Delphine Desjardins
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Christiane Stahl-Hennig
- Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Unit of Infection Models, Göttingen, Germany
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| |
Collapse
|
25
|
Joas S, Sauermann U, Roshani B, Klippert A, Daskalaki M, Mätz-Rensing K, Stolte-Leeb N, Heigele A, Tharp GK, Gupta PM, Nelson S, Bosinger S, Parodi L, Giavedoni L, Silvestri G, Sauter D, Stahl-Hennig C, Kirchhoff F. Nef-Mediated CD3-TCR Downmodulation Dampens Acute Inflammation and Promotes SIV Immune Evasion. Cell Rep 2021; 30:2261-2274.e7. [PMID: 32075764 PMCID: PMC7052273 DOI: 10.1016/j.celrep.2020.01.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/10/2019] [Accepted: 01/21/2020] [Indexed: 01/05/2023] Open
Abstract
The inability of Nef to downmodulate the CD3-T cell receptor (TCR) complex distinguishes HIV-1 from other primate lentiviruses and may contribute to its high virulence. However, the role of this Nef function in virus-mediated immune activation and pathogenicity remains speculative. Here, we selectively disrupted this Nef activity in SIVmac239 and analyzed the consequences for the virological, immunological, and clinical outcome of infection in rhesus macaques. The inability to downmodulate CD3-TCR does not impair viral replication during acute infection but is associated with increased immune activation and antiviral gene expression. Subsequent early reversion in three of six animals suggests strong selective pressure for this Nef function and is associated with high viral loads and progression to simian AIDS. In the absence of reversions, however, viral replication and the clinical course of infection are attenuated. Thus, Nef-mediated downmodulation of CD3 dampens the inflammatory response to simian immunodeficiency virus (SIV) infection and seems critical for efficient viral immune evasion. HIV-1 lacks the CD3 downmodulation function of Nef that is otherwise conserved in primate lentiviruses. Joas et al. disrupted this Nef activity in SIVmac239 and show that Nef-mediated downmodulation of CD3 dampens inflammatory responses to SIV. This promotes effective immune evasion and maintenance of high viral loads in infected rhesus macaques.
Collapse
Affiliation(s)
- Simone Joas
- Institute of Molecular Virology - Ulm University Medical Center, Meyerhofstraße 1, 89081 Ulm, Germany
| | | | - Berit Roshani
- German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | | | - Maria Daskalaki
- German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | | | | | - Anke Heigele
- Institute of Molecular Virology - Ulm University Medical Center, Meyerhofstraße 1, 89081 Ulm, Germany
| | - Gregory K Tharp
- Yerkes Primate Research Center, Emory Vaccine Center, and Department of Pathology, Emory University, Atlanta, GA, USA
| | - Prachi Mehrotra Gupta
- Yerkes Primate Research Center, Emory Vaccine Center, and Department of Pathology, Emory University, Atlanta, GA, USA
| | - Sydney Nelson
- Yerkes Primate Research Center, Emory Vaccine Center, and Department of Pathology, Emory University, Atlanta, GA, USA
| | - Steven Bosinger
- Yerkes Primate Research Center, Emory Vaccine Center, and Department of Pathology, Emory University, Atlanta, GA, USA
| | - Laura Parodi
- Host-Pathogen Interactions Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Luis Giavedoni
- Host-Pathogen Interactions Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Guido Silvestri
- Yerkes Primate Research Center, Emory Vaccine Center, and Department of Pathology, Emory University, Atlanta, GA, USA
| | - Daniel Sauter
- Institute of Molecular Virology - Ulm University Medical Center, Meyerhofstraße 1, 89081 Ulm, Germany
| | | | - Frank Kirchhoff
- Institute of Molecular Virology - Ulm University Medical Center, Meyerhofstraße 1, 89081 Ulm, Germany.
| |
Collapse
|
26
|
Spencer DA, Malherbe DC, Vázquez Bernat N, Ádori M, Goldberg B, Dambrauskas N, Henderson H, Pandey S, Cheever T, Barnette P, Sutton WF, Ackerman ME, Kobie JJ, Sather DN, Karlsson Hedestam GB, Haigwood NL, Hessell AJ. Polyfunctional Tier 2-Neutralizing Antibodies Cloned following HIV-1 Env Macaque Immunization Mirror Native Antibodies in a Human Donor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:999-1012. [PMID: 33472907 PMCID: PMC7887735 DOI: 10.4049/jimmunol.2001082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022]
Abstract
Vaccine efforts to combat HIV are challenged by the global diversity of viral strains and shielding of neutralization epitopes on the viral envelope glycoprotein trimer. Even so, the isolation of broadly neutralizing Abs from infected individuals suggests the potential for eliciting protective Abs through vaccination. This study reports a panel of 58 mAbs cloned from a rhesus macaque (Macaca mulatta) immunized with envelope glycoprotein immunogens curated from an HIV-1 clade C-infected volunteer. Twenty mAbs showed neutralizing activity, and the strongest neutralizer displayed 92% breadth with a median IC50 of 1.35 μg/ml against a 13-virus panel. Neutralizing mAbs predominantly targeted linear epitopes in the V3 region in the cradle orientation (V3C) with others targeting the V3 ladle orientation (V3L), the CD4 binding site (CD4bs), C1, C4, or gp41. Nonneutralizing mAbs bound C1, C5, or undetermined conformational epitopes. Neutralization potency strongly correlated with the magnitude of binding to infected primary macaque splenocytes and to the level of Ab-dependent cellular cytotoxicity, but did not predict the degree of Ab-dependent cellular phagocytosis. Using an individualized germline gene database, mAbs were traced to 23 of 72 functional IgHV alleles. Neutralizing V3C Abs displayed minimal nucleotide somatic hypermutation in the H chain V region (3.77%), indicating that relatively little affinity maturation was needed to achieve in-clade neutralization breadth. Overall, this study underscores the polyfunctional nature of vaccine-elicited tier 2-neutralizing V3 Abs and demonstrates partial reproduction of the human donor's humoral immune response through nonhuman primate vaccination.
Collapse
Affiliation(s)
- David A Spencer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Delphine C Malherbe
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Néstor Vázquez Bernat
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Stockholm, Sweden
| | - Monika Ádori
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Stockholm, Sweden
| | | | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109
| | - Heidi Henderson
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Tracy Cheever
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Philip Barnette
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - William F Sutton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | | | - James J Kobie
- Infectious Diseases, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109
- Department of Pediatrics, University of Washington, Seattle, WA 98105; and
| | | | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
- Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University, Portland, OR 97239
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006;
| |
Collapse
|
27
|
Kmiec D, Nchioua R, Sherrill-Mix S, Stürzel CM, Heusinger E, Braun E, Gondim MVP, Hotter D, Sparrer KMJ, Hahn BH, Sauter D, Kirchhoff F. CpG Frequency in the 5' Third of the env Gene Determines Sensitivity of Primary HIV-1 Strains to the Zinc-Finger Antiviral Protein. mBio 2020; 11:e02903-19. [PMID: 31937644 PMCID: PMC6960287 DOI: 10.1128/mbio.02903-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
CpG dinucleotide suppression has been reported to allow HIV-1 to evade inhibition by the zinc-finger antiviral protein (ZAP). Here, we show that primate lentiviruses display marked differences in CpG frequencies across their genome, ranging from 0.44% in simian immunodeficiency virus SIVwrc from Western red colobus to 2.3% in SIVmon infecting mona monkeys. Moreover, functional analyses of a large panel of human and simian immunodeficiency viruses revealed that the magnitude of CpG suppression does not correlate with their susceptibility to ZAP. However, we found that the number of CpG dinucleotides within a region of ∼700 bases at the 5' end of the env gene determines ZAP sensitivity of primary HIV-1 strains but not of HIV-2. Increased numbers of CpGs in this region were associated with reduced env mRNA expression and viral protein production. ZAP sensitivity profiles of chimeric simian-human immunodeficiency viruses (SHIVs) expressing different HIV-1 env genes were highly similar to those of the corresponding HIV-1 strains. The frequency of CpGs in the identified env region correlated with differences in clinical progression rates. Thus, the CpG frequency in a specific part of env, rather than the overall genomic CpG content, governs the susceptibility of HIV-1 to ZAP and might affect viral pathogenicity in vivoIMPORTANCE Evasion of the zinc-finger antiviral protein (ZAP) may drive CpG dinucleotide suppression in HIV-1 and many other viral pathogens but the viral determinants of ZAP sensitivity are poorly defined. Here, we examined CpG suppression and ZAP sensitivity in a large number of primate lentiviruses and demonstrate that their genomic frequency of CpGs varies substantially and does not correlate with ZAP sensitivity. We further show that the number of CpG residues in a defined region at the 5' end of the env gene together with structural features plays a key role in HIV-1 susceptibility to ZAP and correlates with differences in clinical progression rates in HIV-1-infected individuals. Our identification of a specific part of env as a major determinant of HIV-1 susceptibility to ZAP restriction provides a basis for future studies of the underlying inhibitory mechanisms and their potential relevance in the pathogenesis of AIDS.
Collapse
Affiliation(s)
- Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Elena Heusinger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Elisabeth Braun
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Marcos V P Gondim
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
28
|
Vansant G, Bruggemans A, Janssens J, Debyser Z. Block-And-Lock Strategies to Cure HIV Infection. Viruses 2020; 12:E84. [PMID: 31936859 PMCID: PMC7019976 DOI: 10.3390/v12010084] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Today HIV infection cannot be cured due to the presence of a reservoir of latently infected cells inducing a viral rebound upon treatment interruption. Hence, the latent reservoir is considered as the major barrier for an HIV cure. So far, efforts to completely eradicate the reservoir via a shock-and-kill approach have proven difficult and unsuccessful. Therefore, more research has been done recently on an alternative block-and-lock functional cure strategy. In contrast to the shock-and-kill strategy that aims to eradicate the entire reservoir, block-and-lock aims to permanently silence all proviruses, even after treatment interruption. HIV silencing can be achieved by targeting different factors of the transcription machinery. In this review, we first describe the underlying mechanisms of HIV transcription and silencing. Next, we give an overview of the different block-and-lock strategies under investigation.
Collapse
Affiliation(s)
- Gerlinde Vansant
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| | - Anne Bruggemans
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| | - Julie Janssens
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| |
Collapse
|
29
|
Crakes KR, Jiang G. Gut Microbiome Alterations During HIV/SIV Infection: Implications for HIV Cure. Front Microbiol 2019; 10:1104. [PMID: 31191468 PMCID: PMC6539195 DOI: 10.3389/fmicb.2019.01104] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022] Open
Abstract
Gut mucosal damage, associated with Human Immunodeficiency Virus-1 (HIV) infection, is characterized by depletion in CD4+ T cells and persistent immune activation as a result of early epithelial barrier disruption and systemic translocation of microbial products. Unique approaches in studying both HIV infection in human patients and Simian Immunodeficiency Virus (SIV) infection in rhesus macaques have provided critical evidence for the pathogenesis and treatment of HIV/AIDS. While there is vast resemblance between SIV and HIV infection, the development of gut dysbiosis attributed to HIV infection in chronically infected patients has not been consistently reported in SIV infection in the non-human primate model of AIDS, raising concerns for the translatability of gut microbiome studies in rhesus macaques. This review outlines our current understanding of gut microbial signatures across various stages of HIV versus SIV infection, with an emphasis on the impact of microbiome-based therapies in restoring gut mucosal immunity as well as their translational potential to supplement current HIV cure efforts.
Collapse
Affiliation(s)
- Katti R. Crakes
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Guochun Jiang
- Department of Biochemistry and Biophysics, Institute for Global Health & Infectious Diseases, UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
30
|
Gendelman HE, McMillan J, Bade AN, Edagwa B, Kevadiya BD. The Promise of Long-Acting Antiretroviral Therapies: From Need to Manufacture. Trends Microbiol 2019; 27:593-606. [PMID: 30981593 DOI: 10.1016/j.tim.2019.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 12/30/2022]
Abstract
Antiretroviral therapy has transformed human immunodeficiency virus infections from certain death to a manageable chronic disease. Achieving strict adherence to drug regimens that limit toxicities and viral resistance is an achievable goal. Success is defined by halting viral transmission and by continuous viral restriction. A step towards improving treatment outcomes is in long-acting antiretrovirals. While early results remain encouraging there remain opportunities for improvement. These rest, in part, on the required large drug dosing volumes, local injection-site reactions, and frequency of injections. Thus, implantable devices and long-acting parenteral prodrugs have emerged which may provide more effective clinical outcomes. The recent successes in transforming native antiretrovirals into lipophilic and hydrophobic prodrugs stabilized into biocompatible surfactants can positively affect both. Formulating antiretroviral prodrugs demonstrates improvements in cell and tissue targeting, in drug-dosing intervals, and in the administered volumes of nanosuspensions. As such, the newer formulations also hold the potential to suppress viral loads beyond more conventional therapies with the ultimate goal of HIV-1 elimination when combined with other modalities.
Collapse
Affiliation(s)
- Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| |
Collapse
|
31
|
Rahman MA, Robert-Guroff M. Accelerating HIV vaccine development using non-human primate models. Expert Rev Vaccines 2018; 18:61-73. [PMID: 30526159 DOI: 10.1080/14760584.2019.1557521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The search for a preventative HIV vaccine is ongoing after three decades of research. Contributions of non-human primate (NHP) models to this research are irrefutable, however interpreting data obtained for translation to humans has been problematic. As knowledge concerning NHP models has accumulated, their utility and value in assessing immunogenicity and efficacy of novel vaccines have become apparent. NHP models have become a critical component of vaccine design. AREAS COVERED Beginning with early vaccine studies, we trace the development and evolution of NHP models concurrent with changes in HIV vaccine concepts and in response to their ability to predict clinical trial efficacy. The value of NHP studies in guiding vaccine design is highlighted along with their importance in opening new areas of investigation and facilitating movement of promising approaches into the clinic. EXPERT COMMENTARY Due to their close relatedness to humans, NHPs are an excellent choice for immunogenicity studies. The ability of NHP models to predict clinical efficacy has improved with the introduction of low-dose challenge viruses and recognition of confounding variables in study outcomes. Use of NHP models has opened new research areas with outstanding potential for generating vaccine efficacy against HIV and other infectious agents.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- a Vaccine Branch, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Marjorie Robert-Guroff
- a Vaccine Branch, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
32
|
Non-Human Primate Models of Enteric Viral Infections. Viruses 2018; 10:v10100544. [PMID: 30301125 PMCID: PMC6213648 DOI: 10.3390/v10100544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/20/2018] [Accepted: 10/03/2018] [Indexed: 12/23/2022] Open
Abstract
There is an important role non-human primates (NHP) play in biomedical research. Phylogenetic proximity of any of the NHP species to Homo sapiens assures that much better translatability of research outcomes from model studies involving human diseases can be achieved than from those generated with other pre-clinical systems. Our group and others used during past two decades NHPs in research directed towards viral and autoimmune disorders of the gastrointestinal tract. This review summarizes progress made in the area of enteric viral infections including its applicability to human disease.
Collapse
|
33
|
Ploquin MJ, Casrouge A, Madec Y, Noël N, Jacquelin B, Huot N, Duffy D, Jochems SP, Micci L, Lécuroux C, Boufassa F, Booiman T, Garcia‐Tellez T, Ghislain M, Grand RL, Lambotte O, Kootstra N, Meyer L, Goujard C, Paiardini M, Albert ML, Müller‐Trutwin M. Systemic DPP4 activity is reduced during primary HIV-1 infection and is associated with intestinal RORC + CD4 + cell levels: a surrogate marker candidate of HIV-induced intestinal damage. J Int AIDS Soc 2018; 21:e25144. [PMID: 29987877 PMCID: PMC6038000 DOI: 10.1002/jia2.25144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 05/22/2018] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Combined anti-retroviral therapy (cART) transformed HIV-1 from a deadly disease into a chronic infection, but does not cure HIV infection. It also does not fully restore HIV-induced gut damage unless administered extremely early after infection. Additional biomarkers are needed to evaluate the capacity of therapies aimed at HIV remission/cure to restore HIV-induced intestinal immune damage and limit chronic inflammation. Herein, we aimed to identify a systemic surrogate marker whose levels would reflect gut immune damage such as intestinal Th17 cell loss starting from primary HIV-1 infection. METHODS Biomarker discovery approaches were performed in four independent cohorts, covering HIV-1 primary and chronic infection in 496 naïve or cART-treated patients (Amsterdam cohort (ACS), ANRS PRIMO, COPANA and CODEX cohorts). The concentration and activity of soluble Dipeptidylpeptidase 4 (sDPP4) were quantified in the blood from these patients, including pre- and post-infection samples in the ACS cohort. For quantification of DPP4 in the gut, we utilized two non-human primate models, representing pathogenic (macaque) and non-pathogenic (African green monkey) SIV infection. Four gut compartments were analysed in each animal model (ileum, jejunum, colon and rectum) for quantification of DPP4, RORC and TBX21 gene expression in sorted CD4+ cells. To analyse if sDPP4 levels increase when Th17 cells were restored, we quantified sDPP4 in plasma from SIV-infected macaques treated with IL-21. RESULTS We showed that sDPP4 levels were strongly decreased in primary HIV-1 infection. Strikingly, sDPP4 levels in primary HIV-1 infection predicted time to AIDS. They were not increased by cART in chronic HIV-1 infection (median 36 months on cART). In the gut of SIV-infected non-human primates, DPP4 mRNA was higher in CD4+ than CD4- leucocytes. DPP4 specifically correlated with RORC expression, a Th17 marker, in CD4+ cells from the intestine. We further demonstrated that sDPP4 activity levels were increased in animals treated with IL-21 and that this increase was associated with restoration of the Th17 compartment and reduced inflammation. Furthermore, DPP4 mRNA levels in small intestine CD4+ cells positively correlated with circulating DPP4 activity. CONCLUSION These data provide evidence that blood sDPP4 levels could be useful as a correlate for HIV-induced intestinal damage.
Collapse
Affiliation(s)
| | - Armanda Casrouge
- Institut PasteurUnité Immunobiologie des cellules dendritiquesParisFrance
- INSERM U1223ParisFrance
| | - Yoann Madec
- Institut PasteurURE Epidémiologie des Maladies EmergentesParisFrance
| | - Nicolas Noël
- Institut PasteurUnité HIVInflammation et PersistanceParisFrance
- Assistance Publique – Hôpitaux de ParisService de Médecine Interne et Immunologie CliniqueGroupe Hospitalier Universitaire Paris Sud, Hôpital BicêtreLe Kremlin‐BicêtreFrance
- IDMIT DepartmentCEAUniversité Paris SudInserm U1184Immunology of viral infections and auto‐immune diseases (IMVA)IBFJFontenay‐aux‐Roses and Kremlin‐BicêtreFrance
- Université Paris SudLe Kremlin BicêtreFrance
| | | | - Nicolas Huot
- Institut PasteurUnité HIVInflammation et PersistanceParisFrance
| | - Darragh Duffy
- Institut PasteurUnité Immunobiologie des cellules dendritiquesParisFrance
- INSERM U1223ParisFrance
| | - Simon P Jochems
- Institut PasteurUnité HIVInflammation et PersistanceParisFrance
- Present address:
Liverpool School of Tropical MedicineLiverpoolUK
| | - Luca Micci
- Emory University School of Medicine and Yerkes National Primate Research CenterAtlantaGeorgiaUSA
| | - Camille Lécuroux
- IDMIT DepartmentCEAUniversité Paris SudInserm U1184Immunology of viral infections and auto‐immune diseases (IMVA)IBFJFontenay‐aux‐Roses and Kremlin‐BicêtreFrance
| | | | - Thijs Booiman
- Academisch Medisch CentrumLaboratory of Viral Immune PathogenesisAmsterdamThe Netherlands
| | | | | | - Roger Le Grand
- IDMIT DepartmentCEAUniversité Paris SudInserm U1184Immunology of viral infections and auto‐immune diseases (IMVA)IBFJFontenay‐aux‐Roses and Kremlin‐BicêtreFrance
| | - Olivier Lambotte
- Assistance Publique – Hôpitaux de ParisService de Médecine Interne et Immunologie CliniqueGroupe Hospitalier Universitaire Paris Sud, Hôpital BicêtreLe Kremlin‐BicêtreFrance
- IDMIT DepartmentCEAUniversité Paris SudInserm U1184Immunology of viral infections and auto‐immune diseases (IMVA)IBFJFontenay‐aux‐Roses and Kremlin‐BicêtreFrance
- Université Paris SudLe Kremlin BicêtreFrance
| | - Neeltje Kootstra
- Academisch Medisch CentrumLaboratory of Viral Immune PathogenesisAmsterdamThe Netherlands
| | - Laurence Meyer
- Université Paris SudLe Kremlin BicêtreFrance
- INSERM CESP U1018Université Paris SudLe Kremlin‐BicêtreFrance
| | - Cecile Goujard
- Assistance Publique – Hôpitaux de ParisService de Médecine Interne et Immunologie CliniqueGroupe Hospitalier Universitaire Paris Sud, Hôpital BicêtreLe Kremlin‐BicêtreFrance
- Université Paris SudLe Kremlin BicêtreFrance
- INSERM CESP U1018Université Paris SudLe Kremlin‐BicêtreFrance
| | - Mirko Paiardini
- Emory University School of Medicine and Yerkes National Primate Research CenterAtlantaGeorgiaUSA
| | - Matthew L Albert
- Institut PasteurUnité Immunobiologie des cellules dendritiquesParisFrance
- Present address:
Department of Cancer ImmunologyGenentech Inc.San FranciscoCAUSA
| | | |
Collapse
|
34
|
Noël N, Jacquelin B, Huot N, Goujard C, Lambotte O, Müller-Trutwin M. Interferon-associated therapies toward HIV control: The back and forth. Cytokine Growth Factor Rev 2018; 40:99-112. [PMID: 29555233 DOI: 10.1016/j.cytogfr.2018.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus (HIV) induces a persistent and incurable infection. However, the combined antiretroviral treatment (cART) has markedly changed the evolution of the infection and transformed a deadly disease into a manageable chronic infection. Withdrawal of cART generally leads though to resumption of the viral replication. The eradication of the virus from its cellular and anatomical reservoirs remains a goal-to-achieve for a cure. In this context, developing novel therapies contributing to this aim are an important field of research. Type I IFN has antiviral activity, which, before the presence of efficient anti-HIV drugs, has led to the testing of IFN-based therapeutic strategies during the early years of the pandemic. A historical overview of the results and its limitations that were put into light are reviewed here. In addition, several lessons could be drawn. For instance, the efficacy of the IFN-I depends on the timing of its administration and the context. Thus, the persistence of an endogenous IFN-signature, such as that generally observed in viremic patients, seems to be associated with a lower efficacy of IFN. Based on the lessons from previous trials, and in the context of cART and research for a cure, type I Interferon has regained interest and novel therapeutic approaches are currently tested in combination with cART, some with disappointing, other with encouraging results with regard to a reduction in the size of the HIV reservoir and/or delays in viral rebound after cessation of cART. Additional strategies are currently developed in addition to improve the antiviral function of the IFN-I, by using for instance other IFN subtypes than IFN-Iα2. In parallel, the development of innovative strategies aimed at counteracting the excessive activation of the IFN-pathways have been continued and their results are reviewed here as well. Altogether, the use of IFN-I in anti-HIV therapies has gone through distinct phases and many lessons could be drawn. Novel combinations are currently be tested that might provide interesting results.
Collapse
Affiliation(s)
- Nicolas Noël
- Institut Pasteur, Unité HIV, Inflammation & Persistence, Paris, France; Assistance Publique - Hopitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Hopitaux Universitaires Paris Sud, Le Kremlin-Bicêtre, France; INSERM/CEA U1184, Immunologie des Maladies Virales et Autoimmunes, Le Kremlin Bicêtre, France; Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France.
| | | | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation & Persistence, Paris, France
| | - Cécile Goujard
- Assistance Publique - Hopitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Hopitaux Universitaires Paris Sud, Le Kremlin-Bicêtre, France; Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France; CESP, INSERM U1018, Le Kremlin Bicêtre, France
| | - Olivier Lambotte
- Assistance Publique - Hopitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Hopitaux Universitaires Paris Sud, Le Kremlin-Bicêtre, France; INSERM/CEA U1184, Immunologie des Maladies Virales et Autoimmunes, Le Kremlin Bicêtre, France; Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France
| | | |
Collapse
|
35
|
Merino KM, Allers C, Didier ES, Kuroda MJ. Role of Monocyte/Macrophages during HIV/SIV Infection in Adult and Pediatric Acquired Immune Deficiency Syndrome. Front Immunol 2017; 8:1693. [PMID: 29259605 PMCID: PMC5723290 DOI: 10.3389/fimmu.2017.01693] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Monocytes/macrophages are a diverse group of cells that act as first responders in innate immunity and then as mediators for adaptive immunity to help clear infections. In performing these functions, however, the macrophage inflammatory responses can also contribute to pathogenesis. Various monocyte and tissue macrophage subsets have been associated with inflammatory disorders and tissue pathogeneses such as occur during HIV infection. Non-human primate research of simian immunodeficiency virus (SIV) has been invaluable in better understanding the pathogenesis of HIV infection. The question of HIV/SIV-infected macrophages serving as a viral reservoir has become significant for achieving a cure. In the rhesus macaque model, SIV-infected macrophages have been shown to promote pathogenesis in several tissues resulting in cardiovascular, metabolic, and neurological diseases. Results from human studies illustrated that alveolar macrophages could be an important HIV reservoir and humanized myeloid-only mice supported productive HIV infection and viral persistence in macrophages during ART treatment. Depletion of CD4+ T cells is considered the primary cause for terminal progression, but it was reported that increasing monocyte turnover was a significantly better predictor in SIV-infected adult macaques. Notably, pediatric cases of HIV/SIV exhibit faster and more severe disease progression than adults, yet neonates have fewer target T cells and generally lack the hallmark CD4+ T cell depletion typical of adult infections. Current data show that the baseline blood monocyte turnover rate was significantly higher in neonatal macaques compared to adults and this remained high with disease progression. In this review, we discuss recent data exploring the contribution of monocytes and macrophages to HIV/SIV infection and progression. Furthermore, we highlight the need to further investigate their role in pediatric cases of infection.
Collapse
Affiliation(s)
- Kristen M. Merino
- Division of Immunology, Tulane National Primate Research Center, Covington LA, United States
| | - Carolina Allers
- Division of Immunology, Tulane National Primate Research Center, Covington LA, United States
| | - Elizabeth S. Didier
- Division of Microbiology, Tulane National Primate Research Center, Covington LA, United States
| | - Marcelo J. Kuroda
- Division of Immunology, Tulane National Primate Research Center, Covington LA, United States
| |
Collapse
|
36
|
Käser T, Renois F, Wilson HL, Cnudde T, Gerdts V, Dillon JAR, Jungersen G, Agerholm JS, Meurens F. Contribution of the swine model in the study of human sexually transmitted infections. INFECTION GENETICS AND EVOLUTION 2017; 66:346-360. [PMID: 29175001 DOI: 10.1016/j.meegid.2017.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022]
Abstract
The pig has garnered more and more interest as a model animal to study various conditions in humans. The growing success of the pig as an experimental animal model is explained by its similarities with humans in terms of anatomy, genetics, immunology, and physiology, by their manageable behavior and size, and by the general public acceptance of using pigs for experimental purposes. In addition, the immunological toolbox of pigs has grown substantially in the last decade. This development led to a boost in the use of pigs as a preclinical model for various human infections including sexually transmitted diseases (STIs) like Chlamydia trachomatis. In the current review, we discuss the use of animal models for biomedical research on the major human STIs. We summarize results obtained in the most common animal models and focus on the contributions of the pig model towards the understanding of pathogenesis and the host immune response. In addition, we present the main features of the porcine model that are particularly relevant for the study of pathogens affecting human female and male genital tracts. We also inform on the technological advancements in the porcine toolbox to facilitate new discoveries in this biologically important animal model. There is a continued need for improvements in animal modeling for biomedical research inclusive STI research. With all its advantages and the highly improved toolbox, the porcine model can play a crucial role in STI research and open the door to new exciting discoveries.
Collapse
Affiliation(s)
- Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, 27607 Raleigh, NC, USA
| | - Fanny Renois
- LUNAM Université, Oniris, Laboratoire d'Étude des Résidus et Contaminants dans les Aliments (LABERCA), UMR INRA 1329, 44307 Nantes, France
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Thomas Cnudde
- BIOMAP, Laboratoire Biomédicaments Anti-Parasitaires, ISP, UMR INRA 1282, Université Tours, 37380 Nouzilly, France
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Jo-Anne R Dillon
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada; Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Canada
| | - Gregers Jungersen
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Jørgen S Agerholm
- Section for Veterinary Reproduction and Obstetrics, Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
37
|
Kim J, Peachman KK, Jobe O, Morrison EB, Allam A, Jagodzinski L, Casares SA, Rao M. Tracking Human Immunodeficiency Virus-1 Infection in the Humanized DRAG Mouse Model. Front Immunol 2017; 8:1405. [PMID: 29163484 PMCID: PMC5663722 DOI: 10.3389/fimmu.2017.01405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/11/2017] [Indexed: 11/23/2022] Open
Abstract
Humanized mice are emerging as an alternative model system to well-established non-human primate (NHP) models for studying human immunodeficiency virus (HIV)-1 biology and pathogenesis. Although both NHP and humanized mice have their own strengths and could never truly reflect the complex human immune system and biology, there are several advantages of using the humanized mice in terms of using primary HIV-1 for infection instead of simian immunodeficiency virus or chimera simian/HIV. Several different types of humanized mice have been developed with varying levels of reconstitution of human CD45+ cells. In this study, we utilized humanized Rag1KO.IL2RγcKO.NOD mice expressing HLA class II (DR4) molecule (DRAG mice) infused with HLA-matched hematopoietic stem cells from umbilical cord blood to study early events after HIV-1 infection, since the mucosal tissues of these mice are highly enriched for human lymphocytes and express the receptors and coreceptors needed for HIV-1 entry. We examined the various tissues on days 4, 7, 14, and 21 after an intravaginal administration of a single dose of purified primary HIV-1. Plasma HIV-1 RNA was detected as early as day 7, with 100% of the animals becoming plasma RNA positive by day 21 post-infection. Single cells were isolated from lymph nodes, bone marrow, spleen, gut, female reproductive tissue, and brain and analyzed for gag RNA and strong stop DNA by quantitative (RT)-PCR. Our data demonstrated the presence of HIV-1 viral RNA and DNA in all of the tissues examined and that the virus was replication competent and spread rapidly. Bone marrow, gut, and lymph nodes were viral RNA positive by day 4 post-infection, while other tissues and plasma became positive typically between 7 and 14 days post-infection. Interestingly, the brain was the last tissue to become HIV-1 viral RNA and DNA positive by day 21 post-infection. These data support the notion that humanized DRAG mice could serve as an excellent model for studying the trafficking of HIV-1 to the various tissues, identification of cells harboring the virus, and thus could serve as a model system for HIV-1 pathogenesis and reservoir studies.
Collapse
Affiliation(s)
- Jiae Kim
- United States Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Laboratory of Adjuvant and Antigen Research, United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Kristina K Peachman
- United States Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Laboratory of Adjuvant and Antigen Research, United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ousman Jobe
- United States Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Laboratory of Adjuvant and Antigen Research, United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Elaine B Morrison
- Laboratory of Adjuvant and Antigen Research, United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Atef Allam
- United States Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Laboratory of Adjuvant and Antigen Research, United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Linda Jagodzinski
- United States Military HIV Research Program, Department of Laboratory Diagnostics and Monitoring, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sofia A Casares
- United States Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
38
|
Kumar S, Laurence H, Owston MA, Sharp RM, Williams P, Lanford RE, Hubbard GB, Dick EJ. Natural pathology of the captive chimpanzee (Pan troglodytes): A 35-year review. J Med Primatol 2017; 46:271-290. [PMID: 28543059 DOI: 10.1111/jmp.12277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present the spontaneous pathological lesions identified as a result of necropsy or biopsy for 245 chimpanzees (Pan troglodytes) over a 35-year period. A review of the pathology database was performed for all diagnoses on chimpanzees from 1980 to 2014. All morphologic diagnoses, associated system, organ, etiology, and demographic information were reviewed and analyzed. Cardiomyopathy was the most frequent lesion observed followed by hemosiderosis, hyperplasia, nematodiasis, edema, and hemorrhage. The most frequently affected systems were the gastrointestinal, cardiovascular, urogenital, respiratory, and lymphatic/hematopoietic systems. The most common etiology was undetermined, followed by degenerative, physiologic, neoplastic, parasitic, and bacterial. Perinatal and infant animals were mostly affected by physiologic etiologies and chimpanzee-induced trauma. Bacterial and physiologic etiologies were more common in juvenile animals. Degenerative and physiologic (and neoplastic in geriatric animals) etiologies predominated in adult, middle aged, and geriatric chimpanzees.
Collapse
Affiliation(s)
- Shyamesh Kumar
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Hannah Laurence
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.,UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Michael A Owston
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - R Mark Sharp
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Priscilla Williams
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Robert E Lanford
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Gene B Hubbard
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Edward J Dick
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|