1
|
Jia H, Xie Y, Yi L, Cheng W, Song G, Shi W, Zhu J, Zhao S. Comparative Analysis of Short-Chain Fatty Acids and the Immune Barrier in Cecum of Dahe Pigs and Dahe Black Pigs. Animals (Basel) 2025; 15:920. [PMID: 40218314 PMCID: PMC11987949 DOI: 10.3390/ani15070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
The intestinal immune barrier is a developed and complex immune system, and there is a fine synergy between it and the induced immune response. Short-chain fatty acids (SCFAs) are the main metabolites of intestinal microbial fermentation. In the cecum of pigs, SCFAs not only provide energy for the host but also participate in regulating the function of the intestinal immune system. The purpose of this study was to explore the mechanism of SCFAs in the regulation of immune gene expression in porcine cecum. SCFAs content and mRNA expression levels of immune genes in cecum were detected, and Gene Ontology (GO) function annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, Protein-Protein Interaction Networks (PPI) network construction, key gene identification, and correlation analysis were performed. The results showed that the content of SCFAs in the cecum of Dahe black pigs (DHB) was lower than that of Dahe pigs (DH). There were significant differences in mRNA expression of some immune genes between the two groups. GO functional annotation found terms related to cytokine activity and protein heterodimerization activity; the KEGG pathway was enriched in several pathways related to intestinal immunity. The PPI network identified Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-10 (IL-10), Interleukin-17A (IL-17A), and Interleukin-18 (IL-18) as key proteins. The correlation analysis showed that acetic acid and valerate were closely related to the immune response. In this study, the differences in cecal short-chain fatty acids and the immune barrier between Dahe pigs and Dahe black pigs were compared, which provided a theoretical basis for improving the intestinal immunity of pigs.
Collapse
Affiliation(s)
- Huijin Jia
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuxiao Xie
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- College of Biology and Agriculture, Zunyi Normal University, Zunyi 563006, China
| | - Lanlan Yi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Wenjie Cheng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Guangyao Song
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Wenzhe Shi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Junhong Zhu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Sumei Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Xiao J, Wang L, Zhang B, Hou A. Cell death in acute lung injury: caspase-regulated apoptosis, pyroptosis, necroptosis, and PANoptosis. Front Pharmacol 2025; 16:1559659. [PMID: 40191423 PMCID: PMC11968751 DOI: 10.3389/fphar.2025.1559659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
There has been abundant research on the variety of programmed cell death pathways. Apoptosis, pyroptosis, and necroptosis under the action of the caspase family are essential for the innate immune response. Caspases are classified into inflammatory caspase-1/4/5/11, apoptotic caspase-3/6/7, and caspase-2/8/9/10. Although necroptosis is not caspase-dependent to transmit cell death signals, it can cross-link with pyroptosis and apoptosis signals under the regulation of caspase-8. An increasing number of studies have reiterated the involvement of the caspase family in acute lung injuries caused by bacterial and viral infections, blood transfusion, and ventilation, which is influenced by noxious stimuli that activate or inhibit caspase engagement pathways, leading to subsequent lung injury. This article reviews the role of caspases implicated in diverse programmed cell death mechanisms in acute lung injury and the status of research on relevant inhibitors against essential target proteins of the described cell death mechanisms. The findings of this review may help in delineating novel therapeutic targets for acute lung injury.
Collapse
Affiliation(s)
| | | | | | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Malik HS, Bliska JB. Guards and decoys: RIPoptosome and inflammasome pathway regulators of bacterial effector-triggered immunity. PLoS Pathog 2025; 21:e1012884. [PMID: 39883598 PMCID: PMC11781737 DOI: 10.1371/journal.ppat.1012884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Virulent microbes produce proteins that interact with host cell targets to promote pathogenesis. For example, virulent bacterial pathogens have proteins called effectors that are typically enzymes and are secreted into host cells. To detect and respond to the activities of effectors, diverse phyla of host organisms evolved effector-triggered immunity (ETI). In ETI, effectors are often sensed indirectly by detection of their virulence activities in host cells. ETI mechanisms can be complex and involve several classes of host proteins. Guards monitor the functional or physical integrity of another host protein, the guardee or decoy, and become activated to initiate an immune response when the guardee or decoy is modified or disrupted by an effector. A guardee typically has an intrinsic anti-pathogen function and is the intended target of an effector. A decoy structurally mimics a host protein that has intrinsic anti-pathogen activity and is unintentionally targeted by an effector. A decoy can be an individual protein, or a protein domain integrated into a guard. Here, we review the origins of ETI and focus on 5 mechanisms, in which the key steps of a pathway can include activation of a caspase by a RIPoptosome or inflammasome, formation of pores in the plasma membrane, release of cytokines and ending in cell death by pyroptosis. Survey of the 5 mechanisms, which have been shown to be host protective in mouse models of bacterial infection, reveal how distinct regulators of RIPoptosome or inflammasome pathways can act as guards or integrated decoys to trigger ETI. Common themes are highlighted and the limited mechanistic understanding of ETI bactericidal activity is discussed.
Collapse
Affiliation(s)
- Haleema Sadia Malik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
4
|
Abstract
Macrophages, neutrophils, and epithelial cells are pivotal components of the host's immune response against bacterial infections. These cells employ inflammasomes to detect various microbial stimuli during infection, triggering an inflammatory response aimed at eradicating the pathogens. Among these inflammatory responses, pyroptosis, a lytic form of cell death, plays a crucial role in eliminating replicating bacteria and recruiting immune cells to combat the invading pathogen. The immunological function of pyroptosis varies across macrophages, neutrophils, and epithelial cells, aligning with their specific roles within the innate immune system. This review centers on elucidating the role of pyroptosis in resisting gram-negative bacterial infections, with a particular focus on the mechanisms at play in macrophages, neutrophils, and intestinal epithelial cells. Additionally, we underscore the cell type-specific roles of pyroptosis in vivo in these contexts during defense.
Collapse
Affiliation(s)
- Changhoon Oh
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Todd J Spears
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Youssef Aachoui
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
5
|
Khlebnikova A, Kirshina A, Zakharova N, Ivanov R, Reshetnikov V. Current Progress in the Development of mRNA Vaccines Against Bacterial Infections. Int J Mol Sci 2024; 25:13139. [PMID: 39684849 DOI: 10.3390/ijms252313139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Bacterial infections have accompanied humanity for centuries. The discovery of the first antibiotics and the subsequent golden era of their discovery temporarily shifted the balance in this confrontation to the side of humans. Nevertheless, the excessive and improper use of antibacterial drugs and the evolution of bacteria has gotten the better of humans again. Therefore, today, the search for new antibacterial drugs or the development of alternative approaches to the prevention and treatment of bacterial infections is relevant and topical again. Vaccination is one of the most effective strategies for the prevention of bacterial infections. The success of new-generation vaccines, such as mRNA vaccines, in the fight against viral infections has prompted many researchers to design mRNA vaccines against bacterial infections. Nevertheless, the biology of bacteria and their interactions with the host's immunity are much more complex compared to viruses. In this review, we discuss structural features and key mechanisms of evasion of an immune response for nine species of bacterial pathogens against which mRNA vaccines have been developed and tested in animals. We focus on the results of experiments involving the application of mRNA vaccines against various bacterial pathogens in animal models and discuss possible options for improving the vaccines' effectiveness. This is one of the first comprehensive reviews of the use of mRNA vaccines against bacterial infections in vivo to improve our knowledge.
Collapse
Affiliation(s)
- Alina Khlebnikova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Anna Kirshina
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Natalia Zakharova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| |
Collapse
|
6
|
Brady A, Mora Martinez LC, Hammond B, Whitefoot-Keliin KM, Haribabu B, Uriarte SM, Lawrenz MB. Distinct mechanisms of type 3 secretion system recognition control LTB4 synthesis in neutrophils and macrophages. PLoS Pathog 2024; 20:e1012651. [PMID: 39423229 PMCID: PMC11524448 DOI: 10.1371/journal.ppat.1012651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/30/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Leukotriene B4 (LTB4) is an inflammatory lipid produced in response to pathogens that is critical for initiating the inflammatory cascade needed to control infection. However, during plague, Yersinia pestis inhibits the timely synthesis of LTB4 and subsequent inflammation. Using bacterial mutants, we previously determined that Y. pestis inhibits LTB4 synthesis via the action of the Yop effector proteins that are directly secreted into host cells through a type 3 secretion system (T3SS). Here, we show that the T3SS is the primary pathogen associated molecular pattern (PAMP) required for production of LTB4 in response to both Yersinia and Salmonella. However, we also unexpectantly discovered that T3SS-mediated LTB4 synthesis by neutrophils and macrophages require the activation of two distinctly different host signaling pathways. We identified that phagocytosis and the NLRP3/CASP1 inflammasome significantly impact LTB4 synthesis by macrophages but not neutrophils. Instead, the SKAP2/PLC signaling pathway is required for T3SS-mediated LTB4 production by neutrophils. Finally, while recognition of the T3SS is required for LTB4 production, we also discovered that a second unrelated PAMP-mediated signal activates the MAP kinase pathway needed for synthesis. Together, these data demonstrate significant differences in the host factors and signaling pathways required by macrophages and neutrophils to quickly produce LTB4 in response to bacteria. Moreover, while macrophages and neutrophils might rely on different signaling pathways for T3SS-dependent LTB4 synthesis, Y. pestis has evolved virulence mechanisms to counteract this response by either leukocyte to inhibit LTB4 synthesis and colonize the host.
Collapse
Affiliation(s)
- Amanda Brady
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Leonardo C. Mora Martinez
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Benjamin Hammond
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Kaitlyn M. Whitefoot-Keliin
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Microbiomics, Inflammation and Pathogenicity, Louisville, Kentucky, United States of America
| | - Silvia M. Uriarte
- Deptartment of Oral Immunology & Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| | - Matthew B. Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| |
Collapse
|
7
|
Brady A, Mora-Martinez LC, Hammond B, Haribabu B, Uriarte SM, Lawrenz MB. Distinct Mechanisms of Type 3 Secretion System Recognition Control LTB 4 Synthesis in Neutrophils versus Macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601466. [PMID: 39005373 PMCID: PMC11244889 DOI: 10.1101/2024.07.01.601466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Leukotriene B4 (LTB4) is critical for initiating the inflammatory cascade in response to infection. However, Yersinia pestis colonizes the host by inhibiting the timely synthesis of LTB4 and inflammation. Here, we show that the bacterial type 3 secretion system (T3SS) is the primary pathogen associated molecular pattern (PAMP) responsible for LTB4 production by leukocytes in response to Yersinia and Salmonella, but synthesis is inhibited by the Yop effectors during Yersinia interactions. Moreover, we unexpectedly discovered that T3SS-mediated LTB4 synthesis by neutrophils and macrophages require two distinct host signaling pathways. We show that the SKAP2/PLC signaling pathway is essential for LTB4 production by neutrophils but not macrophages. Instead, phagocytosis and the NLRP3/CASP1 inflammasome are needed for LTB4 synthesis by macrophages. Finally, while recognition of the T3SS is required for LTB4 production, we also discovered a second unrelated PAMP-mediated signal independently activates the MAP kinase pathway needed for LTB4 synthesis. Together, these data demonstrate significant differences in the signaling pathways required by macrophages and neutrophils to quickly respond to bacterial infections.
Collapse
Affiliation(s)
- Amanda Brady
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Leonardo C. Mora-Martinez
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Benjamin Hammond
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Microbiomics, Inflammation and Pathogenicity, Louisville, Kentucky, United States of America
| | - Silvia M. Uriarte
- Deptartment of Oral Immunology & Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| | - Matthew B. Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| |
Collapse
|
8
|
Lu Y, Zhang L, Liu X, Lan Y, Wu L, Wang J, Wu K, Yang C, Lv R, Yi D, Zhuo G, Li Y, Shen F, Hou R, Yue B, Fan Z. Red pandas with different diets and environments exhibit different gut microbial functional composition and capacity. Integr Zool 2024; 19:662-682. [PMID: 38420673 DOI: 10.1111/1749-4877.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The red panda (Ailurus fulgens) is a distinctive mammal known for its reliance on a diet primarily consisting of bamboo. The gut microbiota and overall health of animals are strongly influenced by diets and environments. Therefore, conducting research to explore the taxonomical and functional variances within the gut microbiota of red pandas exposed to various dietary and environmental conditions could shed light on the dynamic complexities of their microbial communities. In this study, normal fecal samples were obtained from red pandas residing in captive and semi-free environments under different dietary regimes and used for metabolomic, 16S rRNA, and metagenomic sequencing analysis, with the pandas classified into four distinct cohorts according to diet and environment. In addition, metagenomic sequencing was conducted on mucus fecal samples to elucidate potential etiological agents of disease. Results revealed an increased risk of gastrointestinal diseases in red pandas consuming bamboo shoots due to the heightened presence of pathogenic bacteria, although an increased presence of microbiota-derived tryptophan metabolites appeared to facilitate intestinal balance. The red pandas fed bamboo leaves also exhibited a decrease in gut microbial diversity, which may be attributed to the antibacterial flavonoids and lower protein levels in leaves. Notably, red pandas residing in semi-free environments demonstrated an enriched gut microbial diversity. Moreover, the occurrence of mucus secretion may be due to an increased presence of species associated with diarrhea and a reduced level of microbiota-derived tryptophan metabolites. In summary, our findings substantiate the influential role of diet and environment in modulating the gut microbiota of red pandas, offering potential implications for improved captive breeding practices.
Collapse
Affiliation(s)
- Yunwei Lu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Liang Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Xu Liu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yue Lan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Lixia Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Jiao Wang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Kongju Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Chaojie Yang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Ruiqing Lv
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Dejiao Yi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Guifu Zhuo
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Yan Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Fujun Shen
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Zou M, Pezoldt J, Mohr J, Philipsen L, Leufgen A, Cerovic V, Wiechers C, Pils M, Ortiz D, Hao L, Yang J, Beckstette M, Dupont A, Hornef M, Dersch P, Strowig T, Müller AJ, Raila J, Huehn J. Early-life vitamin A treatment rescues neonatal infection-induced durably impaired tolerogenic properties of celiac lymph nodes. Cell Rep 2024; 43:114153. [PMID: 38687643 DOI: 10.1016/j.celrep.2024.114153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/23/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Gut-draining mesenteric and celiac lymph nodes (mLNs and celLNs) critically contribute to peripheral tolerance toward food and microbial antigens by supporting the de novo induction of regulatory T cells (Tregs). These tolerogenic properties of mLNs and celLNs are stably imprinted within stromal cells (SCs) by microbial signals and vitamin A (VA), respectively. Here, we report that a single, transient gastrointestinal infection in the neonatal, but not adult, period durably abrogates the efficient Treg-inducing capacity of celLNs by altering the subset composition and gene expression profile of celLNSCs. These cells carry information about the early-life pathogen encounter until adulthood and durably instruct migratory dendritic cells entering the celLN with reduced tolerogenic properties. Mechanistically, transiently reduced VA levels cause long-lasting celLN functional impairment, which can be rescued by early-life treatment with VA. Together, our data highlight the therapeutic potential of VA to prevent sequelae post gastrointestinal infections in infants.
Collapse
Affiliation(s)
- Mangge Zou
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Joern Pezoldt
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Juliane Mohr
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; Multi-Parametric Bioimaging and Cytometry (MPBIC) Platform, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Andrea Leufgen
- Institute of Molecular Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Carolin Wiechers
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Marina Pils
- Mouse Pathology Platform, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Diego Ortiz
- Department Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Lianxu Hao
- Department Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Juhao Yang
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Michael Beckstette
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Aline Dupont
- Institute of Medical Microbiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Mathias Hornef
- Institute of Medical Microbiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Petra Dersch
- Institute for Infectiology, University of Münster, 48149 Münster, Germany; German Center for Infection Research (DZIF), Associated Site University of Münster, 48149 Münster, Germany
| | - Till Strowig
- Department Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Andreas J Müller
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; Multi-Parametric Bioimaging and Cytometry (MPBIC) Platform, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; Intravital Microscopy in Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jens Raila
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
10
|
Brady A, Sheneman KR, Pulsifer AR, Price SL, Garrison TM, Maddipati KR, Bodduluri SR, Pan J, Boyd NL, Zheng JJ, Rai SN, Hellmann J, Haribabu B, Uriarte SM, Lawrenz MB. Type 3 secretion system induced leukotriene B4 synthesis by leukocytes is actively inhibited by Yersinia pestis to evade early immune recognition. PLoS Pathog 2024; 20:e1011280. [PMID: 38271464 PMCID: PMC10846697 DOI: 10.1371/journal.ppat.1011280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 02/06/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Subverting the host immune response to inhibit inflammation is a key virulence strategy of Yersinia pestis. The inflammatory cascade is tightly controlled via the sequential action of lipid and protein mediators of inflammation. Because delayed inflammation is essential for Y. pestis to cause lethal infection, defining the Y. pestis mechanisms to manipulate the inflammatory cascade is necessary to understand this pathogen's virulence. While previous studies have established that Y. pestis actively inhibits the expression of host proteins that mediate inflammation, there is currently a gap in our understanding of the inflammatory lipid mediator response during plague. Here we used the murine model to define the kinetics of the synthesis of leukotriene B4 (LTB4), a pro-inflammatory lipid chemoattractant and immune cell activator, within the lungs during pneumonic plague. Furthermore, we demonstrated that exogenous administration of LTB4 prior to infection limited bacterial proliferation, suggesting that the absence of LTB4 synthesis during plague contributes to Y. pestis immune evasion. Using primary leukocytes from mice and humans further revealed that Y. pestis actively inhibits the synthesis of LTB4. Finally, using Y. pestis mutants in the Ysc type 3 secretion system (T3SS) and Yersinia outer protein (Yop) effectors, we demonstrate that leukocytes recognize the T3SS to initiate the rapid synthesis of LTB4. However, several Yop effectors secreted through the T3SS effectively inhibit this host response. Together, these data demonstrate that Y. pestis actively inhibits the synthesis of the inflammatory lipid LTB4 contributing to the delay in the inflammatory cascade required for rapid recruitment of leukocytes to sites of infection.
Collapse
Affiliation(s)
- Amanda Brady
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Katelyn R. Sheneman
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Amanda R. Pulsifer
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Sarah L. Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Taylor M. Garrison
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, Michigan, United States of America
| | - Sobha R. Bodduluri
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Nolan L. Boyd
- Center for Cardiometabolic Science, Christina Lee Brown Environment Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jing-Juan Zheng
- Center for Cardiometabolic Science, Christina Lee Brown Environment Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Shesh N. Rai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jason Hellmann
- Center for Cardiometabolic Science, Christina Lee Brown Environment Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Silvia M. Uriarte
- Deptartment of Oral Immunology & Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
| | - Matthew B. Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| |
Collapse
|
11
|
Malireddi RS, Bynigeri RR, Mall R, Nadendla EK, Connelly JP, Pruett-Miller SM, Kanneganti TD. Whole-genome CRISPR screen identifies RAVER1 as a key regulator of RIPK1-mediated inflammatory cell death, PANoptosis. iScience 2023; 26:106938. [PMID: 37324531 PMCID: PMC10265528 DOI: 10.1016/j.isci.2023.106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Transforming growth factor-β-activated kinase 1 (TAK1) is a central regulator of innate immunity, cell death, inflammation, and cellular homeostasis. Therefore, many pathogens carry TAK1 inhibitors (TAK1i). As a host strategy to counteract this, inhibition or deletion of TAK1 induces spontaneous inflammatory cell death, PANoptosis, through the RIPK1-PANoptosome complex, containing the NLRP3 inflammasome and caspase-8/FADD/RIPK3 as integral components; however, PANoptosis also promotes pathological inflammation. Therefore, understanding molecular mechanisms that regulate TAK1i-induced cell death is essential. Here, we report a genome-wide CRISPR screen in macrophages that identified TAK1i-induced cell death regulators, including polypyrimidine tract-binding (PTB) protein 1 (PTBP1), a known regulator of RIPK1, and a previously unknown regulator RAVER1. RAVER1 blocked alternative splicing of Ripk1, and its genetic depletion inhibited TAK1i-induced, RIPK1-mediated inflammasome activation and PANoptosis. Overall, our CRISPR screen identified several positive regulators of PANoptosis. Moreover, our study highlights the utility of genome-wide CRISPR-Cas9 screens in myeloid cells for comprehensive characterization of complex cell death pathways to discover therapeutic targets.
Collapse
Affiliation(s)
| | - Ratnakar R. Bynigeri
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Eswar Kumar Nadendla
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jon P. Connelly
- Center for Advanced Genome Engineering (CAGE), St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shondra M. Pruett-Miller
- Center for Advanced Genome Engineering (CAGE), St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
12
|
Engling P, Héchard T, Edgren T, Francis M, Dersch P, Wang H. Calcium-responsive plasmid copy number regulation is dependent on discrete YopD domains in Yersinia pseudotuberculosis. Plasmid 2023; 126:102683. [PMID: 37075853 DOI: 10.1016/j.plasmid.2023.102683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
Yersinia pathogenicity depends mainly on a Type III Secretion System (T3SS) responsible for translocating effector proteins into the eukaryotic target cell cytosol. The T3SS is encoded on a 70 kb, low copy number virulence plasmid, pYV. A key T3SS regulator, YopD, is a multifunctional protein and consists of discrete modular domains that are essential for pore formation and translocation of Yop effectors. In Y. pseudotuberculosis, the temperature-dependent plasmid copy number increase that is essential for elevated T3SS gene dosage and virulence is also affected by YopD. Here, we found that the presence of intracellular YopD results in increased levels of the CopA-RNA and CopB, two inhibitors of plasmid replication. Secretion of YopD leads to decreased expression of copA and copB, resulting in increased plasmid copy number. Moreover, using a systematic mutagenesis of YopD mutants, we demonstrated that the same discrete modular domains important for YopD translocation are also necessary for both the regulation of plasmid copy number as well as copA and copB expression. Hence, Yersinia has evolved a mechanism coupling active secretion of a plasmid-encoded component of the T3SS, YopD, to the regulation of plasmid replication. Our work provides evidence for the cross-talk between plasmid-encoded functions with the IncFII replicon.
Collapse
Affiliation(s)
- Pit Engling
- Department of Molecular Infection Biology, Helmholtz Center for Infection Research
| | - Tifaine Héchard
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Tomas Edgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Matthew Francis
- Department of Molecular Biology and Umeå Center for Microbial Research, Umeå University, Umeå, Sweden
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Center for Infection Research; Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Kuiper J, van Endert P. Uncovering the genomic toll of the Black Death. Trends Immunol 2023; 44:90-92. [PMID: 36526581 DOI: 10.1016/j.it.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
The Black Death, a notorious devastating pandemic caused by Yersinia pestis infection during the 14th century, posed a formidable challenge to human immune defenses. A new article by Klunk et al. reports that a variant in an antigen-processing gene may have favored survival during the plague and may have undergone genomic selection in Europeans at unprecedented speed.
Collapse
Affiliation(s)
- Jonas Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France.
| |
Collapse
|
14
|
Ali S, Alsayeqh AF. Review of major meat-borne zoonotic bacterial pathogens. Front Public Health 2022; 10:1045599. [PMID: 36589940 PMCID: PMC9799061 DOI: 10.3389/fpubh.2022.1045599] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/18/2022] [Indexed: 12/16/2022] Open
Abstract
The importance of meat-borne pathogens to global disease transmission and food safety is significant for public health. These pathogens, which can cause a variety of diseases, include bacteria, viruses, fungi, and parasites. The consumption of pathogen-contaminated meat or meat products causes a variety of diseases, including gastrointestinal ailments. Humans are susceptible to several diseases caused by zoonotic bacterial pathogens transmitted through meat consumption, most of which damage the digestive system. These illnesses are widespread worldwide, with the majority of the burden borne by developing countries. Various production, processing, transportation, and food preparation stages can expose meat and meat products to bacterial infections and/or toxins. Worldwide, bacterial meat-borne diseases are caused by strains of Escherichia coli, Salmonella, Listeria monocytogenes, Shigella, Campylobacter, Brucella, Mycobacterium bovis, and toxins produced by Staphylococcus aureus, Clostridium species, and Bacillus cereus. Additionally, consuming contaminated meat or meat products with drug-resistant bacteria is a severe public health hazard. Controlling zoonotic bacterial pathogens demands intervention at the interface between humans, animals, and their environments. This review aimed to highlight the significance of meat-borne bacterial zoonotic pathogens while adhering to the One Health approach for creating efficient control measures.
Collapse
Affiliation(s)
- Sultan Ali
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Abdullah F. Alsayeqh
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
15
|
Oh C, Li L, Verma A, Reuven AD, Miao EA, Bliska JB, Aachoui Y. Neutrophil inflammasomes sense the subcellular delivery route of translocated bacterial effectors and toxins. Cell Rep 2022; 41:111688. [PMID: 36417874 PMCID: PMC9827617 DOI: 10.1016/j.celrep.2022.111688] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/23/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
In neutrophils, caspase-11 cleaves gasdermin D (GSDMD), causing pyroptosis to clear cytosol-invasive bacteria. In contrast, caspase-1 also cleaves GSDMD but seems to not cause pyroptosis. Here, we show that this pyroptosis-resistant caspase-1 activation is specifically programmed by the site of translocation of the detected microbial virulence factors. We find that pyrin and NLRC4 agonists do not trigger pyroptosis in neutrophils when they access the cytosol from endosomal compartment. In contrast, when the same ligands penetrate through the plasma membrane, they cause pyroptosis. Consistently, pyrin detects extracellular Yersinia pseudotuberculosis ΔyopM in neutrophils, driving caspase-1-GSDMD pyroptosis. This pyroptotic response drives PAD4-dependent H3 citrullination and results in extrusion of neutrophil extracellular traps (NETs). Our data indicate that caspase-1, GSDMD, or PAD4 deficiency renders mice more susceptible to Y. pseudotuberculosis ΔyopM infection. Therefore, neutrophils induce pyroptosis in response to caspase-1-activating inflammasomes triggered by extracellular bacterial pathogens, but after they phagocytose pathogens, they are programmed to forego pyroptosis.
Collapse
Affiliation(s)
- Changhoon Oh
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lupeng Li
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ambika Verma
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Arianna D Reuven
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03768, USA
| | - Edward A Miao
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - James B Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03768, USA
| | - Youssef Aachoui
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
16
|
Dong Z, Sun X, Tang Y, Luo S, Jia H, Xu Q, Jiang Q, Loor JJ, Xu W, Xu C. β-hydroxybutyrate impairs monocyte function via the ROS-NLR family pyrin domain-containing three inflammasome (NLRP3) pathway in ketotic cows. Front Vet Sci 2022; 9:925900. [PMID: 36105004 PMCID: PMC9464975 DOI: 10.3389/fvets.2022.925900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cows with ketosis display severe metabolic stress and immune dysfunction which renders them more susceptible to infections. Monocytes, one of the major subtypes of white blood cells, play an important role in innate immune defense against infections. Thus, the aim of this study was to investigate alterations in immune function, reactive oxygen species (ROS) production and activity of the NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway in monocytes (CD14+) of cows with clinical ketosis (CK). Twelve healthy multiparous Holstein cows [blood β-hydroxybutyrate (BHB) concentration < 1.2 mM] and 12 cows with CK (BHB > 3.0 mM) at 3 to 14 days in milk were used for blood sample collection. To determine effects of BHB on phagocytosis, ROS and protein abundance of the NLRP3 inflammasome pathway in vitro, monocytes isolated from healthy cows were treated with 3.0 mM BHB for 0, 6, 12 or 24 h. Dry matter intake (22.7 vs. 19.0 kg) was lower in cows with CK. Serum concentrations of fatty acids (0.30 vs. 0.88 mM) and BHB (0.52 vs. 3.78 mM) were greater in cows with CK, whereas concentration of glucose was lower (4.09 vs. 2.23 mM). The adhesion, migration and phagocytosis of monocytes were lower in cows with CK, but apoptosis and ROS content were greater. Protein abundance of NLRP3, cysteinyl aspartate specific proteinase 1 (caspase 1) and interleukin-1B p17 (IL1B p17) were greater in monocytes of cows with CK, while abundance of NADPH oxidase isoform 2 (NOX2) was lower. Compared with 0 h BHB, ROS content and apoptosis were greater in the monocytes challenged for 6, 12 or 24 h BHB. Compared with 0 h BHB, protein abundance of NLRP3, caspase 1, IL1B p17 and concentration of IL1B in medium were greater in the monocytes challenged for 6, 12 or 24 h BHB. However, compared with 0 h BHB, protein abundance of NOX2 and phagocytosis of monocytes were lower in the monocytes challenged for 6, 12 or 24 h BHB. Overall, the data suggested that exogenous BHB activated the ROS-NLRP3 pathway, which might be partly responsible for immune dysfunction of dairy cows with CK.
Collapse
Affiliation(s)
- Zhihao Dong
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xudong Sun
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yan Tang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shengbin Luo
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongdou Jia
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiushi Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Wei Xu
- Department of Biosystems, Biosystems Technology Cluster, KULeuven, Geel, Belgium
| | - Chuang Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Chuang Xu
| |
Collapse
|
17
|
George A, Ravi R, Tiwari PB, Srivastava SR, Jain V, Mahalakshmi R. Engineering a Hyperstable Yersinia pestis Outer Membrane Protein Ail Using Thermodynamic Design. J Am Chem Soc 2022; 144:1545-1555. [DOI: 10.1021/jacs.1c05964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anjana George
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal - 462066, India
| | - Roshika Ravi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal - 462066, India
| | - Pankaj Bharat Tiwari
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal - 462066, India
| | - Shashank Ranjan Srivastava
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal - 462066, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal - 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal - 462066, India
| |
Collapse
|
18
|
Role of the Yersinia pseudotuberculosis Virulence Plasmid in Pathogen-Phagocyte Interactions in Mesenteric Lymph Nodes. EcoSal Plus 2021; 9:eESP00142021. [PMID: 34910573 DOI: 10.1128/ecosalplus.esp-0014-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Yersinia pseudotuberculosis is an Enterobacteriaceae family member that is commonly transmitted by the fecal-oral route to cause infections. From the small intestine, Y. pseudotuberculosis can invade through Peyer's patches and lymph vessels to infect the mesenteric lymph nodes (MLNs). Infection of MLNs by Y. pseudotuberculosis results in the clinical presentation of mesenteric lymphadenitis. MLNs are important for immune responses to intestinal pathogens and microbiota in addition to their clinical relevance to Y. pseudotuberculosis infections. A characteristic of Y. pseudotuberculosis infection in MLNs is the formation of pyogranulomas. Pyogranulomas are composed of neutrophils, inflammatory monocytes, and lymphocytes surrounding extracellular microcolonies of Y. pseudotuberculosis. Key elements of the complex pathogen-host interaction in MLNs have been identified using mouse infection models. Y. pseudotuberculosis requires the virulence plasmid pYV to induce the formation of pyogranulomas in MLNs. The YadA adhesin and the Ysc-Yop type III secretion system (T3SS) are encoded on pYV. YadA mediates bacterial binding to host receptors, which engages the T3SS to preferentially translocate seven Yop effectors into phagocytes. The effectors promote pathogenesis by blocking innate immune defenses such as superoxide production, degranulation, and inflammasome activation, resulting in survival and growth of Y. pseudotuberculosis. On the other hand, certain effectors can trigger immune defenses in phagocytes. For example, YopJ triggers activation of caspase-8 and an apoptotic cell death response in monocytes within pyogranulomas that limits dissemination of Y. pseudotuberculosis from MLNs to the bloodstream. YopE can be processed as an antigen by phagocytes in MLNs, resulting in T and B cell responses to Y. pseudotuberculosis. Immune responses to Y. pseudotuberculosis in MLNs can also be detrimental to the host in the form of chronic lymphadenopathy. This review focuses on interactions between Y. pseudotuberculosis and phagocytes mediated by pYV that concurrently promote pathogenesis and host defense in MLNs. We propose that MLN pyogranulomas are immunological arenas in which opposing pYV-driven forces determine the outcome of infection in favor of the pathogen or host.
Collapse
|
19
|
Uğurlu Ö, Evran S. Bimolecular fluorescence complementation assay to explore protein-protein interactions of the Yersinia virulence factor YopM. Biochem Biophys Res Commun 2021; 582:43-48. [PMID: 34689104 DOI: 10.1016/j.bbrc.2021.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
Yersinia outer protein M (YopM) is one of the effector proteins and essential for virulence. YopM is delivered by the Yersinia type III secretion system (T3SS) into the host cell, where it shows immunosuppressive effect through interaction with host proteins. Therefore, protein-protein interactions of YopM is significant to understand its molecular mechanism. In this study, we aimed to explore protein-protein interactions of YopM with the two components of T3SS, namely LcrV and LcrG. We used bimolecular fluorescence complementation (BiFC) assay and monitored the reassembly of green fluorescence protein in Escherichia coli. As an indicator of the protein-protein interaction, we monitored the in vivo reconstitution of fluorescence by measuring fluorescence intensity and imaging the cells under fluorescence microscope. We showed, for the first time, that YopM interacts with LcrG, but not with LcrV. Here, we propose BiFC assay as a simple method to screen novel interaction partners of YopM.
Collapse
Affiliation(s)
- Özge Uğurlu
- Ege University, Faculty of Science, Department of Biochemistry, 35100, Bornova-Izmir, Turkey; Department of Medical Services and Techniques, Hatay Vocational School of Health Services, Hatay Mustafa Kemal University, Tayfur Sökmen Campus, 31060, Alahan-Antakya/ Hatay, Turkey
| | - Serap Evran
- Ege University, Faculty of Science, Department of Biochemistry, 35100, Bornova-Izmir, Turkey.
| |
Collapse
|
20
|
Davidson RK, Davis KM. Yersinia pseudotuberculosis: Cultivation, Storage, and Methods for Introducing DNA. ACTA ACUST UNITED AC 2021; 59:e122. [PMID: 33079471 DOI: 10.1002/cpmc.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Yersinia pseudotuberculosis has been studied for many decades, and research on this microbe has taught us a great deal about host-pathogen interactions, bacterial manipulation of host cells, virulence factors, and the evolution of pathogens. This microbe should not be cultivated at 37°C because this is a trigger that the bacterium uses to sense its presence within a mammalian host and results in expression of genes necessary to colonize a mammalian host. Prolonged growth at this temperature can result in accumulation of mutations that reduce the virulence of the strain, so all protocols need to be modified for growth at room temperature, or 26°C. This article describes protocols for cultivating this microbe and for its long-term storage and its genetic manipulation by transformation and conjugation. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Growth of Y. pseudotuberculosis from a stock Basic Protocol 2: Growth of Y. pseudotuberculosis in liquid medium from a single colony Basic Protocol 3: Freezing Y. pseudotuberculosis in glycerol for long-term storage Basic Protocol 4: Transformation of Y. pseudotuberculosis by electroporation Basic Protocol 5: Tri-parental mating/conjugation.
Collapse
Affiliation(s)
- Robert K Davidson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Kimberly M Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
21
|
Waag DM, Chance TB, Trevino SR, Rossi FD, Fetterer DP, Amemiya K, Dankmeyer JL, Ingavale SS, Tobery SA, Zeng X, Kern SJ, Worsham PL, Cote CK, Welkos SL. Comparison of three non-human primate aerosol models for glanders, caused by Burkholderia mallei. Microb Pathog 2021; 155:104919. [PMID: 33915206 DOI: 10.1016/j.micpath.2021.104919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/15/2023]
Abstract
Burkholderia mallei is a gram-negative obligate animal pathogen that causes glanders, a highly contagious and potentially fatal disease of solipeds including horses, mules, and donkeys. Humans are also susceptible, and exposure can result in a wide range of clinical forms, i.e., subclinical infection, chronic forms with remission and exacerbation, or acute and potentially lethal septicemia and/or pneumonia. Due to intrinsic antibiotic resistance and the ability of the organisms to survive intracellularly, current treatment regimens are protracted and complicated; and no vaccine is available. As a consequence of these issues, and since B. mallei is infectious by the aerosol route, B. mallei is regarded as a major potential biothreat agent. To develop optimal medical countermeasures and diagnostic tests, well characterized animal models of human glanders are needed. The goal of this study was to perform a head-to-head comparison of models employing three commonly used nonhuman primate (NHP) species, the African green monkey (AGM), Rhesus macaque, and the Cynomolgus macaque. The natural history of infection and in vitro clinical, histopathological, immunochemical, and bacteriological parameters were examined. The AGMs were the most susceptible NHP to B. mallei; five of six expired within 14 days. Although none of the Rhesus or Cynomolgus macaques succumbed, the Rhesus monkeys exhibited abnormal signs and clinical findings associated with B. mallei infection; and the latter may be useful for modeling chronic B. mallei infection. Based on the disease progression observations, gross and histochemical pathology, and humoral and cellular immune response findings, the AGM appears to be the optimal model of acute, lethal glanders infection. AGM models of infection by B. pseudomallei, the etiologic agent of melioidosis, have been characterized recently. Thus, the selection of the AGM species provides the research community with a single NHP model for investigations on acute, severe, inhalational melioidosis and glanders.
Collapse
Affiliation(s)
- David M Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Taylor B Chance
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Sylvia R Trevino
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Franco D Rossi
- Applied and Advanced Technology-Aerobiology, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - David P Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Susham S Ingavale
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Steven A Tobery
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Steven J Kern
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Patricia L Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA.
| | - Susan L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA.
| |
Collapse
|
22
|
Malik HS, Bliska JB. The pyrin inflammasome and the Yersinia effector interaction. Immunol Rev 2020; 297:96-107. [PMID: 32721043 DOI: 10.1111/imr.12907] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Pyrin is a cytosolic pattern-recognition receptor that normally functions as a guard to trigger capase-1 inflammasome assembly in response to bacterial toxins and effectors that inactivate RhoA. The MEFV gene encoding human pyrin is preferentially expressed in phagocytes. Key domains in pyrin include a pyrin domain (PYD), a linker region, and a B30.2 domain. Binding of ASC to pyrin by a PYD-PYD interaction triggers inflammasome assembly. Pyrin is held in an inactive conformation by negative regulation mechanisms to avoid premature inflammasome assembly. One mechanism of negative regulation involves phosphorylation of the linker by PRK kinase which in turn is positively regulated by active RhoA. The B30.2 domain also negatively regulates pyrin. Gain of function mutations in MEFV responsible for the autoinflammatory disease Familial Mediterranean Fever (FMF) map to exon 10 encoding the B30.2 domain. Insights into pyrin regulation have come from studies of several Yersinia effectors, which are injected into phagocytes and interact with the RhoA-PRK-pyrin axis during infection. Two effectors, YopE and YopT, inactivate RhoA to disrupt phagocytic signaling. To counteract an effector-triggered immune response, a third effector, YopM, binds to and inhibits pyrin by hijacking PRK and RSK and directing linker phosphorylation. Inhibition of pyrin by YopM is required for virulence of Yersinia pestis, the agent of plague. Recent results from infection studies with human phagocytes and mice producing pyrin B30.2 FMF variants show that gain of function MEFV mutations bypass inhibition by YopM. Population genetic data suggest that MEFV mutations were selected for in individuals of Mediterranean decent during historic plague pandemics. This review discusses current concepts of pyrin regulation and its interaction with Yersinia effectors.
Collapse
Affiliation(s)
- Haleema S Malik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - James B Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
23
|
Uğurlu Ö, Barlas FB, Evran S, Timur S. The cell-penetrating YopM protein-functionalized quantum dot-plasmid DNA conjugate as a novel gene delivery vector. Plasmid 2020; 110:102513. [PMID: 32502501 DOI: 10.1016/j.plasmid.2020.102513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Non-viral gene delivery systems have great potential for safe and efficient gene therapy, while inefficient cellular and nuclear uptake remain as the major hurdles. Novel approaches are needed to enhance the transfection efficiency of non-viral vectors. In accordance with this need, the objective of this study was to construct a non-viral vector that could achieve gene delivery without using additional lipid-based transfection agent. We aimed to impart self-delivery property to a non-viral vector by using the cell and nucleus penetrating properties of YopM proteins from the three Yersinia spp. (Y. pestis, Y. enterocolotica and Y. pseudotuberculosis). Plasmid DNA (pDNA) encoding green fluorescent protein (GFP) was labeled with quantum dots (QDs) via peptide-nucleic acid (PNA) recognition site. Recombinant YopM protein was then attached to the conjugate via a second PNA recognition site. The YopM ̶ QDs ̶ pDNA conjugate was transfected into HeLa cells without using additional transfection reagent. All three conjugates produced GFP fluorescence, indicating that the plasmid was successfully delivered to the nucleus. As control, naked pDNA was transfected into the cells by using a commercial transfection reagent. The Y. pseudotuberculosis YopM-functionalized conjugate achieved the highest GFP expression, compared to other two YopM proteins and the transfection reagent. To the best of our knowledge, YopM protein was used for the first time in a non-viral gene delivery vector.
Collapse
Affiliation(s)
- Özge Uğurlu
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey
| | - Fırat Barış Barlas
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey.
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey; Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
24
|
Loeven NA, Medici NP, Bliska JB. The pyrin inflammasome in host-microbe interactions. Curr Opin Microbiol 2020; 54:77-86. [PMID: 32120337 PMCID: PMC7247927 DOI: 10.1016/j.mib.2020.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Pyrin is an inflammasome sensor in phagocytes that is activated in response to bacterial toxins and effectors that modify RhoA. Pathogen effector-triggered pyrin activation is analogous to an indirect guard mechanism in plants. Pyrin activation appears to be triggered when RhoA GTPases in a host cell are prevented from binding downstream signaling proteins (transducers). RhoA transducers that control this response include PRK kinases, which negatively regulate pyrin by phosphorylation and binding of 14-3-3 proteins. Microtubules regulate pyrin at different levels and may serve as a platform for inflammasome nucleation. Pyrin increases inflammation in the lung, gut or systemically during infection or intoxication in mouse models and protects against systemic infection by decreasing bacterial loads. Pathogenic Yersinia spp. overcome this protective response using effectors that inhibit the pyrin inflammasome. Gain of function mutations in MEFV, the gene encoding pyrin, cause the autoinflammatory disease Familial Mediterranean Fever. Yersinia pestis may have selected for gain of function MEFV mutations in the human population.
Collapse
Affiliation(s)
- Nicole A Loeven
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03768, United States
| | - Natasha P Medici
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03768, United States; Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, United States
| | - James B Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03768, United States.
| |
Collapse
|
25
|
Bozcal E. A general view on virulence determinants and infection strategies of Yersinia enterocolitica. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.19.02582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Nilsson P, Solbakken MH, Schmid BV, Orr RJS, Lv R, Cui Y, Song Y, Zhang Y, Baalsrud HT, Tørresen OK, Stenseth NC, Yang R, Jakobsen KS, Easterday WR, Jentoft S. The Genome of the Great Gerbil Reveals Species-Specific Duplication of an MHCII Gene. Genome Biol Evol 2020; 12:3832-3849. [PMID: 31971556 PMCID: PMC7046166 DOI: 10.1093/gbe/evaa008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
The great gerbil (Rhombomys opimus) is a social rodent living in permanent, complex burrow systems distributed throughout Central Asia, where it serves as the main host of several important vector-borne infectious pathogens including the well-known plague bacterium (Yersinia pestis). Here, we present a continuous annotated genome assembly of the great gerbil, covering over 96% of the estimated 2.47-Gb genome. Taking advantage of the recent genome assemblies of the sand rat (Psammomys obesus) and the Mongolian gerbil (Meriones unguiculatus), comparative immunogenomic analyses reveal shared gene losses within TLR gene families (i.e., TLR8, TLR10, and the entire TLR11-subfamily) for Gerbillinae, accompanied with signs of diversifying selection of TLR7 and TLR9. Most notably, we find a great gerbil-specific duplication of the MHCII DRB locus. In silico analyses suggest that the duplicated gene provides high peptide binding affinity for Yersiniae epitopes as well as Leishmania and Leptospira epitopes, putatively leading to increased capability to withstand infections by these pathogens. Our study demonstrates the power of whole-genome sequencing combined with comparative genomic analyses to gain deeper insight into the immunogenomic landscape of the great gerbil and its close relatives.
Collapse
Affiliation(s)
- Pernille Nilsson
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Monica H Solbakken
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Boris V Schmid
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | | | - Ruichen Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujiang Zhang
- Xinjiang Center for Disease Control and Prevention, Urumqi, China
| | - Helle T Baalsrud
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - William Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
27
|
Byvalov AA, Konyshev IV. Yersinia pseudotuberculosis-derived adhesins. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2019. [DOI: 10.15789/2220-7619-2019-3-4-437-448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Around fifteen surface components referred to adhesins have been identified in Yersinia pseudotuberculosis combining primarily microbiological, molecular and genetic, as well as immunochemical and biophysical methods. Y. pseudotuberculosis-derived adhesins vary in structure and chemical composition but they are mainly presented by protein molecules. Some of them were shown to participate not only in adhesive but in other pathogen-related physiological functions in the host-parasite interplay. Adhesins can mediate bacterial adhesion to eukaryotic cell either directly or via the extracellular matrix components. These adhesion molecules are encoded by chromosomal DNA excepting YadA protein which gene is located in the calcium-dependence plasmid pYV common for pathogenic yersisniae. An optimum temperature for adhesin biosynthesis is located close to the body temperature of warm-blooded animals; however, at low temperature only invasin InvA, full-length smooth lipopolysaccharide and porin OmpF are produced in Y. pseudotuberculosis. Several adhesins (Psa, InvA) can be expressed at low pH (corresponds to intracellular content), thereby defining pathogenic yersiniae as facultative intracellular parasites. Three human Yersinia genus pathogens differ by ability to produce adhesins. Y. pseudotuberculosis adherence to host cells or extracellular matrix components is determined by a cumulative adhesion-based activity, which expression depends on chemical composition and physicochemical environmental conditions. It’s proposed that at the initial stage of infectious process adherence of Y. pseudotuberculosis to intestinal epithelium is mediated by InvA protein and “smooth” LPS form. These adhesins are produced in bacterial cells at low (lower than 30°С) temperature occurring in environment from which a pathogen invades into the host. At later stages of pathogenesis, after penetrating through intestinal epithelium, bacterial cells produce other adhesins, which promote survival and dissemination primarily into the mesenteric lymph nodes and, possibly, liver and spleen. At later stages of pathogenesis, after penetrating through intestinal epithelium, bacterial cells produce other adhesins, which promote survival and dissemination primarily into the mesenteric lymph nodes and, perhaps, liver and spleen. Qualitative and quantitative spectrum of Y. pseudotuberculosis adhesins is determined by environmental parameters (intercellular space, intracellular content within the diverse eukaryotic cells).
Collapse
|
28
|
Kusmierek M, Hoßmann J, Witte R, Opitz W, Vollmer I, Volk M, Heroven AK, Wolf-Watz H, Dersch P. A bacterial secreted translocator hijacks riboregulators to control type III secretion in response to host cell contact. PLoS Pathog 2019; 15:e1007813. [PMID: 31173606 PMCID: PMC6583979 DOI: 10.1371/journal.ppat.1007813] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/19/2019] [Accepted: 05/02/2019] [Indexed: 02/05/2023] Open
Abstract
Numerous Gram-negative pathogens use a Type III Secretion System (T3SS) to promote virulence by injecting effector proteins into targeted host cells, which subvert host cell processes. Expression of T3SS and the effectors is triggered upon host cell contact, but the underlying mechanism is poorly understood. Here, we report a novel strategy of Yersinia pseudotuberculosis in which this pathogen uses a secreted T3SS translocator protein (YopD) to control global RNA regulators. Secretion of the YopD translocator upon host cell contact increases the ratio of post-transcriptional regulator CsrA to its antagonistic small RNAs CsrB and CsrC and reduces the degradosome components PNPase and RNase E levels. This substantially elevates the amount of the common transcriptional activator (LcrF) of T3SS/Yop effector genes and triggers the synthesis of associated virulence-relevant traits. The observed hijacking of global riboregulators allows the pathogen to coordinate virulence factor expression and also readjusts its physiological response upon host cell contact.
Collapse
Affiliation(s)
- Maria Kusmierek
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jörn Hoßmann
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rebekka Witte
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wiebke Opitz
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ines Vollmer
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Infectiology, University of Münster, Germany
| | - Marcel Volk
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Infectiology, University of Münster, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hans Wolf-Watz
- Department of Molecular Biology, Umea University, Sweden
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Infectiology, University of Münster, Germany
- * E-mail:
| |
Collapse
|
29
|
Demeure C, Dussurget O, Fiol GM, Le Guern AS, Savin C, Pizarro-Cerdá J. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination and diagnostics. Microbes Infect 2019; 21:202-212. [DOI: 10.1016/j.micinf.2019.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023]
|
30
|
Demeure CE, Dussurget O, Mas Fiol G, Le Guern AS, Savin C, Pizarro-Cerdá J. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination, and diagnostics. Genes Immun 2019; 20:357-370. [PMID: 30940874 PMCID: PMC6760536 DOI: 10.1038/s41435-019-0065-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022]
Abstract
Plague is a vector-borne disease caused by Yersinia pestis. Transmitted by fleas from rodent reservoirs, Y. pestis emerged <6000 years ago from an enteric bacterial ancestor through events of gene gain and genome reduction. It is a highly remarkable model for the understanding of pathogenic bacteria evolution, and a major concern for public health as highlighted by recent human outbreaks. A complex set of virulence determinants, including the Yersinia outer-membrane proteins (Yops), the broad-range protease Pla, pathogen-associated molecular patterns (PAMPs), and iron capture systems play critical roles in the molecular strategies that Y. pestis employs to subvert the human immune system, allowing unrestricted bacterial replication in lymph nodes (bubonic plague) and in lungs (pneumonic plague). Some of these immunogenic proteins as well as the capsular antigen F1 are exploited for diagnostic purposes, which are critical in the context of the rapid onset of death in the absence of antibiotic treatment (less than a week for bubonic plague and <48 h for pneumonic plague). Here, we review recent research advances on Y. pestis evolution, virulence factor function, bacterial strategies to subvert mammalian innate immune responses, vaccination, and problems associated with pneumonic plague diagnosis.
Collapse
Affiliation(s)
| | - Olivier Dussurget
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- Université Paris-Diderot, Sorbonne Paris Cité, F-75013, Paris, France
| | - Guillem Mas Fiol
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- Université Paris-Diderot, Sorbonne Paris Cité, F-75013, Paris, France
| | - Anne-Sophie Le Guern
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France
| | - Cyril Savin
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France
| | - Javier Pizarro-Cerdá
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France.
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France.
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France.
| |
Collapse
|
31
|
Chakraborty N, Gautam A, Muhie S, Miller SA, Moyler C, Jett M, Hammamieh R. The responses of lungs and adjacent lymph nodes in responding to Yersinia pestis infection: A transcriptomic study using a non-human primate model. PLoS One 2019; 14:e0209592. [PMID: 30789917 PMCID: PMC6383991 DOI: 10.1371/journal.pone.0209592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/08/2018] [Indexed: 01/08/2023] Open
Abstract
Initiation of treatment during the pre-symptomatic phase of Yersinia pestis (Y. pestis) infection is particularly critical. The rapid proliferation of Y. pestis typically couples with the manifestation of common flu-like early symptoms that often misguides the medical intervention. Our study used African green monkeys (AGM) that did not exhibit clear clinical symptoms for nearly two days after intranasal challenge with Y. pestis and succumbed within a day after showing the first signs of clinical symptoms. The lung, and mediastinal and submandibular lymph nodes (LN) accumulated significant Y. pestis colonization immediately after the intranasal challenge. Hence, organ-specific molecular investigations are deemed to be the key to elucidating mechanisms of the initial host response. Our previous study focused on the whole blood of AGM, and we found early perturbations in the ubiquitin-microtubule-mediated host defense. Altered expression of the genes present in ubiquitin and microtubule networks indicated an early suppression of these networks in the submandibular lymph nodes. In concert, the upstream toll-like receptor signaling and downstream NFκB signaling were inhibited at the multi-omics level. The inflammatory response was suppressed in the lungs, submandibular lymph nodes and mediastinal lymph nodes. We posited a causal chain of molecular mechanisms that indicated Y. pestis was probably able to impair host-mediated proteolysis activities and evade autophagosome capture by dysregulating both ubiquitin and microtubule networks in submandibular lymph nodes. Targeting these networks in a submandibular LN-specific and time-resolved fashion could be essential for development of the next generation therapeutics for pneumonic plague.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Aarti Gautam
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Seid Muhie
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Stacy-Ann Miller
- ORISE, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Candace Moyler
- ORISE, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Marti Jett
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Rasha Hammamieh
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| |
Collapse
|
32
|
Ciczora Y, Janel S, Soyer M, Popoff M, Werkmeister E, Lafont F. Blocking bacterial entry at the adhesion step reveals dynamic recruitment of membrane and cytosolic probes. Biol Cell 2019; 111:67-77. [PMID: 30680759 DOI: 10.1111/boc.201800070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Bacterial invasion covers two steps: adhesion and entry per se. The cell signalling response is triggered upon pathogen interaction at the cell surface. This response continues when the pathogen is internalised. It is likely that these two steps activate different molecular machineries. So far, it has not been possible to easily follow in physiological conditions these events separately. We thus developed an approach to uncouple adhesion from entry using atomic force microscopy (AFM)-driven force and fluorescence measurements. RESULTS We report nanometric-scale, high-resolution, functional dynamic measurements of bacterial interaction with the host cell surface using photonic and adhesion force analyses. We describe how to achieve a precise monitoring of iterative cell-bacterium interactions to analyse host cell signalling responses to infection. By applying this method to Yersinia pseudotuberculosis, we first unveil glycosylphosphatidylinositol-anchored protein domains recruitment to the bacterium cell surface binding site and concomitant cytoskeleton rearrangements using super-resolution fluorescence microscopy. Second, we demonstrate the feasibility of monitoring post-translationally modified proteins, for example, via ubiquitylation, during the first step of infection. CONCLUSION We provide an approach to discriminate between cellular signalling response activated at the plasma membrane during host-pathogen interaction and that is triggered during the internalisation of the pathogen within the cell. SIGNIFICANCE This approach adds to the technological arsenal to better understand and fight against pathogens and beyond the scope of microbiology to address conceptual issues of cell surface signalling.
Collapse
Affiliation(s)
- Yann Ciczora
- Cellular Microbiology and Physics of Infection Group, Center for Infection and Immunity of Lille, CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille regional Univ. Hosp. Centr., Lille Univ., Lille, F-59019, France
| | - Sébastien Janel
- Cellular Microbiology and Physics of Infection Group, Center for Infection and Immunity of Lille, CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille regional Univ. Hosp. Centr., Lille Univ., Lille, F-59019, France
| | - Magali Soyer
- Cellular Microbiology and Physics of Infection Group, Center for Infection and Immunity of Lille, CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille regional Univ. Hosp. Centr., Lille Univ., Lille, F-59019, France
| | - Michka Popoff
- Cellular Microbiology and Physics of Infection Group, Center for Infection and Immunity of Lille, CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille regional Univ. Hosp. Centr., Lille Univ., Lille, F-59019, France.,Institut d'Electronique, de Microélectronique et de Nanotechnologie, CNRS UMR8520, Avenue Poincaré, Villeneuve d'Ascq, F-59625, France
| | - Elisabeth Werkmeister
- Cellular Microbiology and Physics of Infection Group, Center for Infection and Immunity of Lille, CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille regional Univ. Hosp. Centr., Lille Univ., Lille, F-59019, France
| | - Frank Lafont
- Cellular Microbiology and Physics of Infection Group, Center for Infection and Immunity of Lille, CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille regional Univ. Hosp. Centr., Lille Univ., Lille, F-59019, France
| |
Collapse
|
33
|
Vagima Y, Levy Y, Mamroud E. Monitoring of Neutrophil Recruitment to Mice Lungs During Pneumonic Plague. Methods Mol Biol 2019; 2010:141-150. [PMID: 31177436 DOI: 10.1007/978-1-4939-9541-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Early sensing of bacterial infection and the immediate recruitment of neutrophils to the lung is a major and decisive stage of the innate immune response to pulmonary bacterial infections. This chapter details the preparation of lung tissue suspensions from mice infected intra-nasally (I.N.) with the plague bacterium Yersinia pestis to study in vivo neutrophil responses to the infection. The samples were used for the quantification of neutrophil levels and for the characterization of the pro-inflammatory response required for neutrophil recruitment to the lung. The specific requirements for performing the procedures under Biosafety Level 3 containment and the proper handling and sterilization of the samples are discussed.
Collapse
Affiliation(s)
- Yaron Vagima
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel.
| | - Yinon Levy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
34
|
Nguyen GT, McCabe AL, Fasciano AC, Mecsas J. Detection of Cells Translocated with Yersinia Yops in Infected Tissues Using β-Lactamase Fusions. Methods Mol Biol 2019; 2010:117-139. [PMID: 31177435 PMCID: PMC6733027 DOI: 10.1007/978-1-4939-9541-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Development of the TEM-CCF2/4-AM FRET-based system has enabled investigators to track translocation of effector proteins into mammalian cells during infection. This allows for separation of translocated and non-translocated cell populations for further study. Yersinia strains expressing translational Yop-TEM fusions, containing the secretion and translocation signals of a Yop with the TEM-1 portion of β-lactamase, are used to infect mice, tissues isolated from mice, or mammalian cells in culture. Infected and harvested mammalian cells are treated with either CCF2-AM or CCF4-AM, and cleavage of this fluorescent compound by TEM is detected by fluorescence-activated cell sorting (FACS) analysis. A shift from green to blue emission spectra of individual cells is indicative of translocation of a given Yop-TEM fusion protein into the host cell during Yersinia infection due to a disruption in FRET between the two fluors of the compound. In Yersinia, this method has been used to understand Type III secretion dynamics and Yop functions in cells translocated by effectors during infection. Here, we describe how to generate Yop-TEM constructs, and how to detect, quantify, isolate, and study Yop-TEM containing cells in murine tissues during infection and in ex vivo tissues by cell sorting and flow cytometry analysis. In addition, we provide guidance for analyzing TEM-positive cells via a plate reader and fluorescent microscopy.
Collapse
Affiliation(s)
- Giang T Nguyen
- Immunology Graduate Program, Sackler School of Biomedical Science, Boston, MA, USA
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Anne L McCabe
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Alyssa C Fasciano
- Immunology Graduate Program, Sackler School of Biomedical Science, Boston, MA, USA
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
35
|
Chlebicz A, Śliżewska K. Campylobacteriosis, Salmonellosis, Yersiniosis, and Listeriosis as Zoonotic Foodborne Diseases: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E863. [PMID: 29701663 PMCID: PMC5981902 DOI: 10.3390/ijerph15050863] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022]
Abstract
Zoonoses are diseases transmitted from animals to humans, posing a great threat to the health and life of people all over the world. According to WHO estimations, 600 million cases of diseases caused by contaminated food were noted in 2010, including almost 350 million caused by pathogenic bacteria. Campylobacter, Salmonella, as well as Yersinia enterocolitica and Listeria monocytogenes may dwell in livestock (poultry, cattle, and swine) but are also found in wild animals, pets, fish, and rodents. Animals, often being asymptomatic carriers of pathogens, excrete them with faeces, thus delivering them to the environment. Therefore, pathogens may invade new individuals, as well as reside on vegetables and fruits. Pathogenic bacteria also penetrate food production areas and may remain there in the form of a biofilm covering the surfaces of machines and equipment. A common occurrence of microbes in food products, as well as their improper or careless processing, leads to common poisonings. Symptoms of foodborne infections may be mild, sometimes flu-like, but they also may be accompanied by severe complications, some even fatal. The aim of the paper is to summarize and provide information on campylobacteriosis, salmonellosis, yersiniosis, and listeriosis and the aetiological factors of those diseases, along with the general characteristics of pathogens, virulence factors, and reservoirs.
Collapse
Affiliation(s)
- Agnieszka Chlebicz
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland.
| | - Katarzyna Śliżewska
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland.
| |
Collapse
|
36
|
Loh E, Righetti F, Eichner H, Twittenhoff C, Narberhaus F. RNA Thermometers in Bacterial Pathogens. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0012-2017. [PMID: 29623874 PMCID: PMC11633587 DOI: 10.1128/microbiolspec.rwr-0012-2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 01/01/2023] Open
Abstract
Temperature variation is one of the multiple parameters a microbial pathogen encounters when it invades a warm-blooded host. To survive and thrive at host body temperature, human pathogens have developed various strategies to sense and respond to their ambient temperature. An instantaneous response is mounted by RNA thermometers (RNATs), which are integral sensory structures in mRNAs that modulate translation efficiency. At low temperatures outside the host, the folded RNA blocks access of the ribosome to the translation initiation region. The temperature shift upon entering the host destabilizes the RNA structure and thus permits ribosome binding. This reversible zipper-like mechanism of RNATs is ideally suited to fine-tune virulence gene expression when the pathogen enters or exits the body of its host. This review summarizes our present knowledge on virulence-related RNATs and discusses recent developments in the field.
Collapse
Affiliation(s)
- Edmund Loh
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
- SCELSE, Nanyang Technological University, 639798, Singapore
| | - Francesco Righetti
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hannes Eichner
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | |
Collapse
|
37
|
CCR2 + Inflammatory Monocytes Are Recruited to Yersinia pseudotuberculosis Pyogranulomas and Dictate Adaptive Responses at the Expense of Innate Immunity during Oral Infection. Infect Immun 2018; 86:IAI.00782-17. [PMID: 29263104 DOI: 10.1128/iai.00782-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/12/2017] [Indexed: 01/30/2023] Open
Abstract
Murine Ly6Chi inflammatory monocytes (IMs) require CCR2 to leave the bone marrow and enter mesenteric lymph nodes (MLNs) and other organs in response to Yersinia pseudotuberculosis infection. We are investigating how IMs, which can differentiate into CD11c+ dendritic cells (DCs), contribute to innate and adaptive immunity to Y. pseudotuberculosis Previously, we obtained evidence that IMs are important for a dominant CD8+ T cell response to the epitope YopE69-77 and host survival using intravenous infections with attenuated Y. pseudotuberculosis Here we challenged CCR2+/+ or CCR2-/- mice orally with wild-type Y. pseudotuberculosis to investigate how IMs contribute to immune responses during intestinal infection. Unexpectedly, CCR2-/- mice did not have reduced survival but retained body weight better and their MLNs cleared Y. pseudotuberculosis faster and with reduced lymphadenopathy compared to controls. Enhanced bacterial clearance in CCR2-/- mice correlated with reduced numbers of IMs in spleens and increased numbers of neutrophils in livers. In situ imaging of MLNs and spleens from CCR2-GFP mice showed that green fluorescent protein-positive (GFP+) IMs accumulated at the periphery of neutrophil-rich Yersinia-containing pyogranulomas. GFP+ IMs colocalized with CD11c+ cells and YopE69-77-specific CD8+ T cells in MLNs, suggesting that IM-derived DCs prime adaptive responses in Yersinia pyogranulomas. Consistently, CCR2-/- mice had reduced numbers of splenic DCs, YopE69-77-specific CD8+ T cells, CD4+ T cells, and B cells in organs and lower levels of serum antibodies to Y. pseudotuberculosis antigens. Our data suggest that IMs differentiate into DCs in MLN pyogranulomas and direct adaptive responses in T cells at the expense of innate immunity during oral Y. pseudotuberculosis infection.
Collapse
|
38
|
Liu L, Wei D, Qu Z, Sun L, Miao Y, Yang Y, Lu J, Du W, Wang B, Li B. A safety and immunogenicity study of a novel subunit plague vaccine in cynomolgus macaques. J Appl Toxicol 2017; 38:408-417. [PMID: 29134676 DOI: 10.1002/jat.3550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/17/2017] [Accepted: 09/17/2017] [Indexed: 02/06/2023]
Abstract
Plague has led to millions of deaths in history and outbreaks continue to the present day. The efficacy limitations and safety concerns of the existing killed whole cell and live-attenuated vaccines call for the development of new vaccines. In this study, we evaluated the immunogenicity and safety of a novel subunit plague vaccine, comprising native F1 antigen and recombinant V antigen. The cynomolgus macaques in low- and high-dose vaccine groups were vaccinated at weeks 0, 2, 4 and 6, at dose levels of 15 μg F1 + 15 μg rV and 30 μg F1 + 30 μg rV respectively. Specific antibodies and interferon-γ and interleukin-2 expression in lymphocytes were measured. For safety, except for the general toxicity and local irritation, we made a systematic immunotoxicity study on the vaccine including immunostimulation, autoimmunity and anaphylactic reaction. The vaccine induced high levels of serum anti-F1 and anti-rV antibodies, and caused small increases of interferon-γ and interleukin-2 in monkeys. The vaccination led to a reversible increase in the number of peripheral blood eosinophils, the increases in serum IgE level in a few animals and histopathological change of granulomas at injection sites. The vaccine had no impact on general conditions, most clinical pathology parameters, percentages of T-cell subsets, organ weights and gross pathology of treated monkeys and had passable local tolerance. The F1 + rV subunit plague vaccine can induce very strong humoral immunity and low level of cellular immunity in cynomolgus macaques and has a good safety profile.
Collapse
Affiliation(s)
- Li Liu
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hong Da Middle Street, Yizhuang Economic Development Area, Beijing, 100176, China
| | - Dong Wei
- Institute for the Control of Biological Products, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102269, China
| | - Zhe Qu
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hong Da Middle Street, Yizhuang Economic Development Area, Beijing, 100176, China
| | - Li Sun
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hong Da Middle Street, Yizhuang Economic Development Area, Beijing, 100176, China
| | - Yufa Miao
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hong Da Middle Street, Yizhuang Economic Development Area, Beijing, 100176, China
| | - Yanwei Yang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hong Da Middle Street, Yizhuang Economic Development Area, Beijing, 100176, China
| | - Jinbiao Lu
- Institute for the Control of Biological Products, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102269, China
| | - Weixin Du
- Institute for the Control of Biological Products, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102269, China
| | - Bingxiang Wang
- Lanzhou Institute of Biological Products Co., Ltd. 888 Yanchang Road, Lanzhou, 730046, China
| | - Bo Li
- National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102269, China
| |
Collapse
|
39
|
Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems. Proc Natl Acad Sci U S A 2017; 114:E1698-E1706. [PMID: 28193861 DOI: 10.1073/pnas.1615771114] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many invasive bacteria establish pathogen-containing vacuoles (PVs) as intracellular niches for microbial growth. Immunity to these infections is dependent on the ability of host cells to recognize PVs as targets for host defense. The delivery of several host defense proteins to PVs is controlled by IFN-inducible guanylate binding proteins (GBPs), which themselves dock to PVs through poorly characterized mechanisms. Here, we demonstrate that GBPs detect the presence of bacterial protein secretion systems as "patterns of pathogenesis" associated with PVs. We report that the delivery of GBP2 to Legionella-containing vacuoles is dependent on the bacterial Dot/Icm secretion system, whereas the delivery of GBP2 to Yersinia-containing vacuoles (YCVs) requires hypersecretion of Yersinia translocon proteins. We show that the presence of bacterial secretion systems directs cytosolic carbohydrate-binding protein Galectin-3 to PVs and that the delivery of GBP1 and GBP2 to Legionella-containing vacuoles or YCVs is substantially diminished in Galectin-3-deficient cells. Our results illustrate that insertion of bacterial secretion systems into PV membranes stimulates Galectin-3-dependent recruitment of antimicrobial GBPs to PVs as part of a coordinated host defense program.
Collapse
|
40
|
Crua Asensio N, Muñoz Giner E, de Groot NS, Torrent Burgas M. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection. Nat Commun 2017; 8:14092. [PMID: 28090086 PMCID: PMC5241799 DOI: 10.1038/ncomms14092] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
To perform their functions proteins must interact with each other, but how these interactions influence bacterial infection remains elusive. Here we demonstrate that connectivity in the host-pathogen interactome is directly related to pathogen fitness during infection. Using Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen fitness during infection but only when the host-pathogen interactome is considered. Our results suggest that the importance of pathogen proteins during infection is directly related to their number of interactions with the host. We also show that pathogen proteins causing an extensive rewiring of the host interactome have a higher impact in pathogen fitness during infection. Hence, we conclude that hubs in the host-pathogen interactome should be explored as promising targets for antimicrobial drug design.
Collapse
Affiliation(s)
- Núria Crua Asensio
- Systems Biology of Infection Lab, Department of Microbiology, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Elisabet Muñoz Giner
- Systems Biology of Infection Lab, Department of Microbiology, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Natalia Sánchez de Groot
- Gene Function and Evolution Lab, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Marc Torrent Burgas
- Systems Biology of Infection Lab, Department of Microbiology, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Universitat Autònoma de Barcelona, Department of Biochemistry and Molecular Biology, Biosciences Faculty, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
41
|
|
42
|
Green ER, Clark S, Crimmins GT, Mack M, Kumamoto CA, Mecsas J. Fis Is Essential for Yersinia pseudotuberculosis Virulence and Protects against Reactive Oxygen Species Produced by Phagocytic Cells during Infection. PLoS Pathog 2016; 12:e1005898. [PMID: 27689357 PMCID: PMC5045184 DOI: 10.1371/journal.ppat.1005898] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
All three pathogenic Yersinia species share a conserved virulence plasmid that encodes a Type 3 Secretion System (T3SS) and its associated effector proteins. During mammalian infection, these effectors are injected into innate immune cells, where they block many bactericidal functions, including the production of reactive oxygen species (ROS). However, Y. pseudotuberculosis (Yptb) lacking the T3SS retains the ability to colonize host organs, demonstrating that chromosome-encoded factors are sufficient for growth within mammalian tissue sites. Previously we uncovered more than 30 chromosomal factors that contribute to growth of T3SS-deficient Yptb in livers. Here, a deep sequencing-based approach was used to validate and characterize the phenotype of 18 of these genes during infection by both WT and plasmid-deficient Yptb. Additionally, the fitness of these mutants was evaluated in immunocompromised mice to determine whether any genes contributed to defense against phagocytic cell restriction. Mutants containing deletions of the dusB-fis operon, which encodes the nucleoid associated protein Fis, were markedly attenuated in immunocompetent mice, but were restored for growth in mice lacking neutrophils and inflammatory monocytes, two of the major cell types responsible for restricting Yersinia infection. We determined that Fis was dispensable for secretion of T3SS effectors, but was essential for resisting ROS and regulated the transcription of several ROS-responsive genes. Strikingly, this protection was critical for virulence, as growth of ΔdusB-fis was restored in mice unable to produce ROS. These data support a model in which ROS generated by neutrophils and inflammatory monocytes that have not been translocated with T3SS effectors enter bacterial cells during infection, where their bactericidal effects are resisted in a Fis-dependent manner. This is the first report of the requirement for Fis during Yersinia infection and also highlights a novel mechanism by which Yptb defends against ROS in mammalian tissues. The pathogenic members of the genus Yersinia share a conserved virulence plasmid that primarily serves to encode a Type 3 Secretion System and its associated effector proteins. During mammalian infection, these effectors are targeted toward phagocytic cells, where they neutralize a multitude of functions, including oxidative burst. However, it has previously been reported that strains of Yersinia pseudotuberculosis lacking the virulence plasmid retain the ability to grow in mammalian tissue sites, suggesting that the Yersinia chromosome encodes a number of poorly appreciated factors that enable survival in mammalian tissue sites, even in the absence of a functional T3SS. Here, we further characterize a number of these factors, including the operon dusB-fis. Using a variety of in vitro and vivo approaches, we determined that Fis regulates the transcription of several genes implicated in ROS resistance and that dusB-fis is essential for preventing growth restriction by ROS produced by the NADPH complex of phagocytes, even in a T3SS-expressing strain. Combined, these data suggest a model in which, during tissue infection, Yersinia evade killing by ROS through both T3SS-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Erin R. Green
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Stacie Clark
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Gregory T. Crimmins
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthias Mack
- Universitatsklinikum Regensburg, Innere Medizin II/Nephrologie-Transplantation, Regensburg, Germany
| | - Carol A. Kumamoto
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Joan Mecsas
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|