1
|
Tian H, Liu Q, Yu X, Cao Y, Huang X. Damage-associated molecular patterns in viral infection: potential therapeutic targets. Crit Rev Microbiol 2025; 51:514-531. [PMID: 39091137 DOI: 10.1080/1040841x.2024.2384885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/25/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Frequent viral infections leading to infectious disease outbreaks have become a significant global health concern. Fully elucidating the molecular mechanisms of the immune response against viral infections is crucial for epidemic prevention and control. The innate immune response, the host's primary defense against viral infection, plays a pivotal role and has become a breakthrough in research mechanisms. A component of the innate immune system, damage-associated molecular patterns (DAMPs) are involved in inducing inflammatory responses to viral infections. Numerous DAMPs are released from virally infected cells, activating downstream signaling pathways via internal and external receptors on immune cells. This activation triggers immune responses and helps regulate viral host invasion. This review examines the immune regulatory mechanisms of various DAMPs, such as the S100 protein family, high mobility group box 1 (HMGB1), and heat shock proteins, in various viral infections to provide a theoretical basis for designing novel antiviral drugs.
Collapse
Affiliation(s)
- Huizhen Tian
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| | - Qiong Liu
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| | - Xiaomin Yu
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
- Medical Experimental Teaching Center, School of Basic Medical Sciences, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanli Cao
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Tung YW, Yang ZS, Huang JY, Hsu YT, Tsui CI, Hemdan MS, Tadikamalla S, Baua AD, Assavalapsakul W, Thitithanyanont A, Chao DY, Liu FT, Wang SF. The Multifaceted Roles of Galectins in Host-Virus Interactions: A Comprehensive Overview. Glycobiology 2025; 35:cwaf026. [PMID: 40302013 DOI: 10.1093/glycob/cwaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/25/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025] Open
Abstract
Galectins are a family of β-galactosides-binding protein, crucial regulators of host-virus interactions. They achieve this by recognizing specific glycan patterns on viral surfaces or mediating interactions with intracellular viral or host proteins, subsequently influencing the critical phases of the viral life cycle, such as attachment, replication, immune evasion, and reactivation. Furthermore, galectins modulate host immune responses, shaping the progression and outcomes of viral infections. This review comprehensively examines the roles of both endogenous and exogenous galectins in viral infections, noting that only a few galectins, including Galectin-1, -3, -4, -7, -8, and -9, Have been identified as key players in viral infection. Notably, Galectin-1, -3, and -9 play diverse functions in both DNA and RNA viral infection. Emerging evidence highlights the potential of Galectin-4 and -8 as intracellular sensors and modulators of viral pathogenesis. Endogenous galectins, produced by host cells, act through both glycan-dependent and glycan-independent mechanisms, influencing viral processes and immune responses. Exogenous galectins, which are secreted by other cells or administered as recombinant proteins, can either enhance or counteract the actions of endogenous galectins. The functions of galectins are virus-specific and context-dependent, serving as either promoters or inhibitors of viral replication and reactivation. Dysregulation of galectin expression is often linked to disease progression, highlighting their potential as diagnostic and prognostic biomarkers, as well as therapeutic targets. The important and varied roles that galectins play in viral infections are highlighted in this review, which also provides fresh insights into host-pathogen interactions and the development of antiviral tactics. HIGHLIGHTS
Collapse
Affiliation(s)
- Ying-Wei Tung
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
| | - Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
| | - Jie-Yu Huang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
| | - Yun-Tzu Hsu
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
| | - Ching-I Tsui
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
| | - Mahmoud Salama Hemdan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
| | - Sneha Tadikamalla
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
| | - Albright Dew Baua
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 807, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 40227, Taiwan
| | - Fu-Tong Liu
- Department of Dermatology, Keck School of Medicine of USC, 1975 Zonal Ave, Los Angeles, CA 90033, United States
- Institute of Biomedical Sciences, Academia Sinica, 128 Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung 80756, Taiwan
| |
Collapse
|
3
|
Iqbal M, Feng C, Zong G, Wang LX, Vasta GR. Galectin-3 disrupts tight junctions of airway epithelial cell monolayers by inducing expression and release of matrix metalloproteinases upon influenza A infection. Glycobiology 2025; 35:cwae093. [PMID: 39569730 PMCID: PMC11727335 DOI: 10.1093/glycob/cwae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
Galectins are β-galactosyl-binding lectins with key roles in early development, immune regulation, and infectious disease. Influenza A virus (IAV) infects the airway epithelia, and in severe cases may lead to bacterial superinfections and hypercytokinemia, and eventually, to acute respiratory distress syndrome (ARDS) through the breakdown of airway barriers. The detailed mechanisms involved, however, remain poorly understood. Our prior in vivo studies in a murine model system revealed that upon experimental IAV and pneumococcal primary and secondary challenges, respectively, galectin-1 and galectin-3 (Gal-3) are released into the airway and bind to the epithelium that has been desialylated by the viral neuraminidase, contributing to secondary bacterial infection and hypercytokinemia leading to the clinical decline and death of the animals. Here we report the results of in vitro studies that reveal the role of the extracellular Gal-3 in additional detrimental effects on the host by disrupting the integrity of the airway epithelial barrier. IAV infection of the human airway epithelia cell line A549 increased release of Gal-3 and its binding to the A549 desialylated cell surface, notably to the transmembrane signaling receptors CD147 and integrin-β1. Addition of recombinant Gal-3 to A549 monolayers resulted in enhanced expression and release of matrix metalloproteinases, leading to disruption of cell-cell tight junctions, and a significant increase in paracellular permeability. This study reveals a critical mechanism involving Gal-3 that may significantly contribute to the severity of IAV infections by promoting disruption of tight junctions and enhanced permeability of the airway epithelia, potentially leading to lung edema and ARDS.
Collapse
Affiliation(s)
- Muddassar Iqbal
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Colwell Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Chiguang Feng
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Colwell Center, 701 East Pratt Street, Baltimore, MD 21202, USA
- Current address: Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Guanghui Zong
- Department of Chemistry and Biochemistry,University of Maryland, Chemistry Bldg, 1526, 8051 Regents Dr, College Park, MD 20742, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry,University of Maryland, Chemistry Bldg, 1526, 8051 Regents Dr, College Park, MD 20742, USA
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Colwell Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| |
Collapse
|
4
|
Kim JY, Li ZP, Lee G, Kim JH, Shah AB, Lee YH, Park KH. Investigation of bacterial neuraminidase inhibition of xanthones bearing geranyl and prenyl groups from Cratoxylum cochinchinense. Front Chem 2023; 11:1245071. [PMID: 37621851 PMCID: PMC10445491 DOI: 10.3389/fchem.2023.1245071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction: The root of Cratoxylum cochinchinense has been widely used as Chinese folk medicine to cure fevers, burns, and abdominal complications because it contains various bioactive metabolites such as xanthones, triterpenes, and flavonoids. In this study, we estimated bacterial neuraminidase inhibition with a series of xanthones from C. cochinchinense. BNA has connected to various biological functions such as pathogenic bacteria infection inflammatory process after infection and biofilm formation. Methods: The identification of xanthones (1-6) bearing geranyl and prenyl groups was established by spectroscopic data using UV, IR, NMR, and HREIMS. BNA inhibitory modes of isolated xanthones were investigated by Double-reciprocal plots. Moreover, the competitive inhibitor was evaluated the additional kinetic modes determined by kinetic parameters (k 3, k 4, and K i app). The molecular docking (MD) and molecular dynamics simulations (MDS) studies also provided the critical information regarding the role of the geranyl and prenyl groups against BNA inhibition. Results: A series of xanthones (1-6) appended prenyl and geranyl groups on the A-ring were isolated, and compounds 1-3 were shown to be new xanthones. The analogues within this series were highly inhibited with excellent affinity against bacterial neuraminidase (BNA). A subtle change in the prenyl or geranyl motif affected the inhibitory potency and behavior significantly. For example, the inhibitory potency and binding affinity resulting from the geranyl group on C4: xanthone 1 (IC50 = 0.38 μM, KA = 2.4434 × 105 L·mol-1) were 100-fold different from those of xanthone 3 (IC50 = 35.8 μM, KA = 0.0002 × 105 L·mol-1). The most potent compound 1 was identified as a competitive inhibitor which interacted with BNA under reversible slow-binding inhibition: K i app = 0.1440 μM, k 3 = 0.1410 μM-1s-1, and k 4 = 0.0203 min-1. The inhibitory potencies (IC50) were doubly confirmed by the binding affinities (KA). Discussion: This study suggests the potential of xanthones derived from C. cochinchinense as promising candidates for developing novel BNA inhibitors. Further research and exploration of these xanthones may contribute to the development of effective treatments for bacterial infections and inflammatory processes associated with BNA activity.
Collapse
Affiliation(s)
- Jeong Yoon Kim
- Department of Pharmaceutical Engineering, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Zuo Peng Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Gihwan Lee
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong Ho Kim
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Abdul Bari Shah
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Yong Hyun Lee
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Ki Hun Park
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
5
|
Yang ZS, Lin CY, Khan MB, Hsu MC, Assavalapsakul W, Thitithanyanont A, Wang SF. Understanding the role of galectins toward influenza A virus infection. Expert Opin Ther Targets 2023; 27:927-937. [PMID: 37747065 DOI: 10.1080/14728222.2023.2263912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/24/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Influenza A virus (IAV) is highly contagious and causes respiratory diseases in birds, mammals, and humans. Some strains of IAV, whether from human or avian sources, have developed resistance to existing antiviral drugs. Therefore, the discovery of new influenza antiviral drugs and therapeutic approaches is crucial. Recent studies have shown that galectins (Gal), a group of β-galactose-binding lectins, play a role in regulating various viral infections, including IAVs. AREAS COVERED This review provides an overview of the roles of different galectins in IAV infection. We discuss the characteristics of galectins, their impact on IAV infection and spread, and highlight their positive or negative regulatory functions and potential mechanisms during IAV infection. Furthermore, we explore the potential application of galectins in IAV therapy. EXPERT OPINION Galectins were first identified in the mid-1970s, and currently, 15 mammalian galectins have been identified. While all galectin members possess the carbohydrate recognition domain (CRD) that interacts with β-galactoside, their regulatory functions vary in different DNA or RNA virus infections. Certain galectin members have been found to regulate IAV infection through diverse mechanisms. Therefore, a comprehensive understanding of their roles in IAV infection is essential, as it may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Muhammad Bilal Khan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Cheng Hsu
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Stojanovic BS, Stojanovic B, Milovanovic J, Arsenijević A, Dimitrijevic Stojanovic M, Arsenijevic N, Milovanovic M. The Pivotal Role of Galectin-3 in Viral Infection: A Multifaceted Player in Host-Pathogen Interactions. Int J Mol Sci 2023; 24:ijms24119617. [PMID: 37298569 DOI: 10.3390/ijms24119617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Galectin-3 (Gal-3), a beta-galactoside-binding lectin, plays a pivotal role in various cellular processes, including immune responses, inflammation, and cancer progression. This comprehensive review aims to elucidate the multifaceted functions of Gal-3, starting with its crucial involvement in viral entry through facilitating viral attachment and catalyzing internalization. Furthermore, Gal-3 assumes significant roles in modulating immune responses, encompassing the activation and recruitment of immune cells, regulation of immune signaling pathways, and orchestration of cellular processes such as apoptosis and autophagy. The impact of Gal-3 extends to the viral life cycle, encompassing critical phases such as replication, assembly, and release. Notably, Gal-3 also contributes to viral pathogenesis, demonstrating involvement in tissue damage, inflammation, and viral persistence and latency elements. A detailed examination of specific viral diseases, including SARS-CoV-2, HIV, and influenza A, underscores the intricate role of Gal-3 in modulating immune responses and facilitating viral adherence and entry. Moreover, the potential of Gal-3 as a biomarker for disease severity, particularly in COVID-19, is considered. Gaining further insight into the mechanisms and roles of Gal-3 in these infections could pave the way for the development of innovative treatment and prevention options for a wide range of viral diseases.
Collapse
Affiliation(s)
- Bojana S Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Histology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
7
|
Feng C, Cross AS, Vasta GR. Galectin-1 mediates interactions between polymorphonuclear leukocytes and vascular endothelial cells, and promotes their extravasation during lipopolysaccharide-induced acute lung injury. Mol Immunol 2023; 156:127-135. [PMID: 36921487 PMCID: PMC10154945 DOI: 10.1016/j.molimm.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/29/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023]
Abstract
The lung airway epithelial surface is heavily covered with sialic acids as the terminal carbohydrate on most cell surface glycoconjugates and can be removed by microbial neuraminidases or endogenous sialidases. By desialylating the lung epithelial surface, neuraminidase acts as an important virulence factor in many mucosal pathogens, such as influenza and S. pneumoniae. Desialylation exposes the subterminal galactosyl moieties - the binding glycotopes for galectins, a family of carbohydrate-recognition proteins playing important roles in various aspects of immune responses. Galectin-1 and galectin-3 have been extensively studied in their roles related to host immune responses, but some questions about their role(s) in leukocyte recruitment during lung bacterial infection remain unanswered. In this study, we found that both galectin-1 and galectin-3 bind to polymorphonuclear leukocytes (PMNs) and enhance the interaction of endothelial intercellular adhesion molecule-1 (ICAM-1) with PMNs, which is further increased by PMN desialylation. In addition, we observed that in vitro galectin-1 mediates the binding of PMNs, particularly desialylated PMNs, onto the endothelial cells. Finally, in a murine model for LPS-mediated acute lung injury, we observed that galectin-1 modulates PMN infiltration to the lung without altering the expression of chemoattractant cytokines. We conclude that galectins, particularly galectin-1, may function as adhesion molecules that mediate PMN-endothelial cell interactions, and modulate PMN infiltration during acute lung injury.
Collapse
Affiliation(s)
- Chiguang Feng
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Alan S Cross
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
8
|
Sigamani A, Mayo KH, Miller MC, Chen-Walden H, Reddy S, Platt D. An Oral Galectin Inhibitor in COVID-19—A Phase II Randomized Controlled Trial. Vaccines (Basel) 2023; 11:vaccines11040731. [PMID: 37112643 PMCID: PMC10140888 DOI: 10.3390/vaccines11040731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Background: SARS-CoV-2 vaccines play an important role in reducing disease severity, hospitalization, and death, although they failed to prevent the transmission of SARS-CoV-2 variants. Therefore, an effective inhibitor of galectin-3 (Gal-3) could be used to treat and prevent the transmission of COVID-19. ProLectin-M (PL-M), a Gal-3 antagonist, was shown to interact with Gal-3 and thereby prevent cellular entry of SARS-CoV-2 in previous studies. Aim: The present study aimed to further evaluate the therapeutic effect of PL-M tablets in 34 subjects with COVID-19. Methods: The efficacy of PL-M was evaluated in a randomized, double-blind, placebo-controlled clinical study in patients with mild to moderately severe COVID-19. Primary endpoints included changes in the absolute RT-PCR Ct values of the nucleocapsid and open reading frame (ORF) genes from baseline to days 3 and 7. The incidence of adverse events, changes in blood biochemistry, inflammatory biomarkers, and levels of antibodies against COVID-19 were also evaluated as part of the safety evaluation. Results: PL-M treatment significantly (p = 0.001) increased RT-PCR cycle counts for N and ORF genes on days 3 (Ct values 32.09 ± 2.39 and 30.69 ± 3.38, respectively) and 7 (Ct values 34.91 ± 0.39 and 34.85 ± 0.61, respectively) compared to a placebo treatment. On day 3, 14 subjects in the PL-M group had cycle counts for the N gene above the cut-off value of 29 (target cycle count 29), whereas on day 7, all subjects had cycle counts above the cut-off value. Ct values in placebo subjects were consistently less than 29, and no placebo subjects were RT-PCR-negative until day 7. Most of the symptoms disappeared completely after receiving PL-M treatment for 7 days in more patients compared to the placebo group. Conclusion: PL-M is safe and effective for clinical use in reducing viral loads and promoting rapid viral clearance in COVID-19 patients by inhibiting SARS-CoV-2 entry into cells through the inhibition of Gal-3.
Collapse
Affiliation(s)
- Alben Sigamani
- Carmel Research Consultancy Pvt. Ltd., Bengaluru 560025, Karnataka, India
- Correspondence: ; Tel.: +9188-8443-1444
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Michelle C. Miller
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Hana Chen-Walden
- Pharmalectin India Pvt. Ltd., Rangareddy 500039, Telangana, India
| | - Surendar Reddy
- Department of Pulmonology, ESIC Medical College and Hospital, Sanath Nagar, Hyderabad 500038, Telangana, India
| | - David Platt
- Pharmalectin India Pvt. Ltd., Rangareddy 500039, Telangana, India
| |
Collapse
|
9
|
Gaughan EE, Quinn TM, Mills A, Bruce AM, Antonelli J, MacKinnon AC, Aslanis V, Li F, O’Connor R, Boz C, Mills R, Emanuel P, Burgess M, Rinaldi G, Valanciute A, Mills B, Scholefield E, Hardisty G, Findlay EG, Parker RA, Norrie J, Dear JW, Akram AR, Koch O, Templeton K, Dockrell DH, Walsh TS, Partridge S, Humphries D, Wang-Jairaj J, Slack RJ, Schambye H, Phung D, Gravelle L, Lindmark B, Shankar-Hari M, Hirani N, Sethi T, Dhaliwal K. An Inhaled Galectin-3 Inhibitor in COVID-19 Pneumonitis: A Phase Ib/IIa Randomized Controlled Clinical Trial (DEFINE). Am J Respir Crit Care Med 2023; 207:138-149. [PMID: 35972987 PMCID: PMC9893334 DOI: 10.1164/rccm.202203-0477oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/16/2022] [Indexed: 02/02/2023] Open
Abstract
Rationale: High circulating galectin-3 is associated with poor outcomes in patients with coronavirus disease (COVID-19). We hypothesized that GB0139, a potent inhaled thiodigalactoside galectin-3 inhibitor with antiinflammatory and antifibrotic actions, would be safely and effectively delivered in COVID-19 pneumonitis. Objectives: Primary outcomes were safety and tolerability of inhaled GB0139 as an add-on therapy for patients hospitalized with COVID-19 pneumonitis. Methods: We present the findings of two arms of a phase Ib/IIa randomized controlled platform trial in hospitalized patients with confirmed COVID-19 pneumonitis. Patients received standard of care (SoC) or SoC plus 10 mg inhaled GB0139 twice daily for 48 hours, then once daily for up to 14 days or discharge. Measurements and Main Results: Data are reported from 41 patients, 20 of which were assigned randomly to receive GB0139. Primary outcomes: the GB0139 group experienced no treatment-related serious adverse events. Incidences of adverse events were similar between treatment arms (40 with GB0139 + SoC vs. 35 with SoC). Secondary outcomes: plasma GB0139 was measurable in all patients after inhaled exposure and demonstrated target engagement with decreased circulating galectin (overall treatment effect post-hoc analysis of covariance [ANCOVA] over days 2-7; P = 0.0099 vs. SoC). Plasma biomarkers associated with inflammation, fibrosis, coagulopathy, and major organ function were evaluated. Conclusions: In COVID-19 pneumonitis, inhaled GB0139 was well-tolerated and achieved clinically relevant plasma concentrations with target engagement. The data support larger clinical trials to determine clinical efficacy. Clinical trial registered with ClinicalTrials.gov (NCT04473053) and EudraCT (2020-002230-32).
Collapse
Affiliation(s)
- Erin E. Gaughan
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Respiratory Medicine
| | - Tom M. Quinn
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Respiratory Medicine
| | | | | | | | | | | | - Feng Li
- Centre for Inflammation Research, Edinburgh BioQuarter
| | | | - Cecilia Boz
- Centre for Inflammation Research, Edinburgh BioQuarter
| | - Ross Mills
- Centre for Inflammation Research, Edinburgh BioQuarter
| | | | | | | | | | - Bethany Mills
- Centre for Inflammation Research, Edinburgh BioQuarter
| | | | | | | | | | - John Norrie
- Edinburgh Clinical Trials Unit, Usher Institute, and
| | - James W. Dear
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Ahsan R. Akram
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Respiratory Medicine
| | - Oliver Koch
- Centre for Inflammation Research, Edinburgh BioQuarter
- Infectious Diseases Department, Western General Hospital, Edinburgh, United Kingdom
| | | | - David H. Dockrell
- Centre for Inflammation Research, Edinburgh BioQuarter
- Infectious Diseases Department, Western General Hospital, Edinburgh, United Kingdom
| | - Timothy S. Walsh
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Critical Care, New Royal Infirmary of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | | | | | | | | | | | - De Phung
- Galecto Inc., Copenhagen, Denmark; and
| | | | | | - Manu Shankar-Hari
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Critical Care, New Royal Infirmary of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Nikhil Hirani
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Respiratory Medicine
| | | | - Kevin Dhaliwal
- Centre for Inflammation Research, Edinburgh BioQuarter
- Department of Respiratory Medicine
| |
Collapse
|
10
|
Humphries DC, Mills R, Boz C, McHugh BJ, Hirani N, Rossi AG, Pedersen A, Schambye HT, Slack RJ, Leffler H, Nilsson UJ, Wang W, Sethi T, Mackinnon AC. Galectin-3 inhibitor GB0139 protects against acute lung injury by inhibiting neutrophil recruitment and activation. Front Pharmacol 2022; 13:949264. [PMID: 36003515 PMCID: PMC9393216 DOI: 10.3389/fphar.2022.949264] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Rationale: Galectin-3 (Gal-3) drives fibrosis during chronic lung injury, however, its role in acute lung injury (ALI) remains unknown. Effective pharmacological therapies available for ALI are limited; identifying novel concepts in treatment is essential. GB0139 is a Gal-3 inhibitor currently under clinical investigation for the treatment of idiopathic pulmonary fibrosis. We investigate the role of Gal-3 in ALI and evaluate whether its inhibition with GB0139 offers a protective role. The effect of GB0139 on ALI was explored in vivo and in vitro. Methods: The pharmacokinetic profile of intra-tracheal (i.t.) GB0139 was investigated in C57BL/6 mice to support the daily dosing regimen. GB0139 (1–30 µg) was then assessed following acute i.t. lipopolysaccharide (LPS) and bleomycin administration. Histology, broncho-alveolar lavage fluid (BALf) analysis, and flow cytometric analysis of lung digests and BALf were performed. The impact of GB0139 on cell activation and apoptosis was determined in vitro using neutrophils and THP-1, A549 and Jurkat E6 cell lines. Results: GB0139 decreased inflammation severity via a reduction in neutrophil and macrophage recruitment and neutrophil activation. GB0139 reduced LPS-mediated increases in interleukin (IL)-6, tumor necrosis factor alpha (TNFα) and macrophage inflammatory protein-1-alpha. In vitro, GB0139 inhibited Gal-3-induced neutrophil activation, monocyte IL-8 secretion, T cell apoptosis and the upregulation of pro-inflammatory genes encoding for IL-8, TNFα, IL-6 in alveolar epithelial cells in response to mechanical stretch. Conclusion: These data indicate that Gal-3 adopts a pro-inflammatory role following the early stages of lung injury and supports the development of GB0139, as a potential treatment approach in ALI.
Collapse
Affiliation(s)
- Duncan C. Humphries
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
- Galecto Inc. Nine Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Ross Mills
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Cecilia Boz
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian J. McHugh
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Nikhil Hirani
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Adriano G. Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Wei Wang
- Department of Asthma, Allergy and Respiratory Science, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Tariq Sethi
- Galecto Inc, Copenhagen, Denmark
- Department of Asthma, Allergy and Respiratory Science, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Alison C. Mackinnon
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
- Galecto Inc. Nine Edinburgh BioQuarter, Edinburgh, United Kingdom
- *Correspondence: Alison C. Mackinnon,
| |
Collapse
|
11
|
Sokolov D, Sharda N, Giri B, Hassan MS, Singh D, Tarasiewicz A, Lohr C, von Holzen U, Kristian T, Waddell J, Reiter RJ, Ahmed H, Banerjee A. Melatonin and andrographolide synergize to inhibit the colospheroid phenotype by targeting Wnt/beta-catenin signaling. J Pineal Res 2022; 73:e12808. [PMID: 35619550 PMCID: PMC9288490 DOI: 10.1111/jpi.12808] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/19/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
β-catenin signaling, and angiogenesis are associated with colospheroid (CSC), development. CSCs, spheroids derived from colon cancer cells, are responsible for metastasis, drug resistance, and disease recurrence. Whether dysregulating β-catenin and inhibiting angiogenesis reduce CSC growth is unknown. In this study, the molecular mechanism of CSC growth inhibition was evaluated using a novel combination of melatonin (MLT) and andrographolide (AGP). These drugs have anticarcinogenic, antioxidant, and antimetastatic properties. CSCs were obtained from two metastatic colon cancer cell lines (HT29 and HCT-15). The viability and stemness were monitored (FDA propidium iodide staining and immunoblot for CD44, CD133, Nanog, Sox2, and Oct4). The drug combination synergistically diminished stemness via increased reactive oxygen species (ROS) levels, reduced mitochondrial membrane potential and ATP level. MLT + AGP induced cell death by inhibiting β-catenin expression and its downregulatory signals, Cyclin D1, c-Myc. MLT + AGP treated cells exhibited translocation of phospho-β-catenin to the nucleus and dephosphorylated-β-catenin. Downregulation of β-catenin activation and its transcription factors (TCF4 and LEF1) and GTP binding/G-protein related activity were found in the dual therapy. Angiogenic inhibition is consistent with downregulation of VEGF messenger RNA transcripts (VEGF189), phosphorylated VEGF receptor protein expression, matrigel invasion, and capillary tube inhibition. In vivo, the intravenous injection of MLT + AGP slowed HT29 metastatic colon cancer. Histopathology indicated significant reduction in microvascular density and tumor index. Immunohistochemistry for caspase 7, and β-catenin found increased apoptosis and downregulation of β-catenin signals. The mechanism(s) of decreased colospheroids growth were the inhibition of the Wnt/β-catenin pathway. Our results provide a rationale for using MLT in combination with AGP for the inhibition of CRCs.
Collapse
Affiliation(s)
- Daniil Sokolov
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, U.S.A
| | - Neha Sharda
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, U.S.A
| | - Banabihari Giri
- Division of Virology and Immunology, Maryland Department of Health, Baltimore, Maryland, U.S.A
| | - Md Sazzad Hassan
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, U.S.A
- Harper Cancer Research Institute, South Bend, IN, U.S.A
| | - Damandeep Singh
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, U.S.A
| | - Agnieszka Tarasiewicz
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, U.S.A
| | - Charity Lohr
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, U.S.A
| | - Urs von Holzen
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, U.S.A
- Harper Cancer Research Institute, South Bend, IN, U.S.A
- Goshen Center for Cancer Care, Goshen, Goshen, IN, U.S.A
- University of Basel, Basel, Switzerland
| | - Tibor Kristian
- VAMHCS, University of Maryland School of Medicine, Baltimore, Maryland, U.S.A
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (STAR)
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, U.S.A
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, U.S.A
| | | | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, U.S.A
- Corresponding author: Department of Pediatrics, University of Maryland School of Medicine, Bressler Research Building, 13-043, 655 W. Baltimore Street, Baltimore, MD 21201, Voice: (410) 706-1772, Fax: (410) 328-1072,
| |
Collapse
|
12
|
The Contribution of Viral Proteins to the Synergy of Influenza and Bacterial Co-Infection. Viruses 2022; 14:v14051064. [PMID: 35632805 PMCID: PMC9143653 DOI: 10.3390/v14051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
A severe course of acute respiratory disease caused by influenza A virus (IAV) infection is often linked with subsequent bacterial superinfection, which is difficult to cure. Thus, synergistic influenza-bacterial co-infection represents a serious medical problem. The pathogenic changes in the infected host are accelerated as a consequence of IAV infection, reflecting its impact on the host immune response. IAV infection triggers a complex process linked with the blocking of innate and adaptive immune mechanisms required for effective antiviral defense. Such disbalance of the immune system allows for easier initiation of bacterial superinfection. Therefore, many new studies have emerged that aim to explain why viral-bacterial co-infection can lead to severe respiratory disease with possible fatal outcomes. In this review, we discuss the key role of several IAV proteins-namely, PB1-F2, hemagglutinin (HA), neuraminidase (NA), and NS1-known to play a role in modulating the immune defense of the host, which consequently escalates the development of secondary bacterial infection, most often caused by Streptococcus pneumoniae. Understanding the mechanisms leading to pathological disorders caused by bacterial superinfection after the previous viral infection is important for the development of more effective means of prevention; for example, by vaccination or through therapy using antiviral drugs targeted at critical viral proteins.
Collapse
|
13
|
Poncini CV, Benatar AF, Gomez KA, Rabinovich GA. Galectins in Chagas Disease: A Missing Link Between Trypanosoma cruzi Infection, Inflammation, and Tissue Damage. Front Microbiol 2022; 12:794765. [PMID: 35046919 PMCID: PMC8762303 DOI: 10.3389/fmicb.2021.794765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
Trypanosoma cruzi, the protozoan parasite causative agent of Chagas disease, affects about seven million people worldwide, representing a major global public health concern with relevant socioeconomic consequences, particularly in developing countries. In this review, we discuss the multiple roles of galectins, a family of β-galactoside-binding proteins, in modulating both T. cruzi infection and immunoregulation. Specifically, we focus on galectin-driven circuits that link parasite invasion and inflammation and reprogram innate and adaptive immune responses. Understanding the dynamics of galectins and their β-galactoside-specific ligands during the pathogenesis of T. cruzi infection and elucidating their roles in immunoregulation, inflammation, and tissue damage offer new rational opportunities for treating this devastating neglected disease.
Collapse
Affiliation(s)
- Carolina V. Poncini
- Laboratorio de Inmunología Celular e Inmunopatología de Infecciones, Instituto de Investigaciones en Microbiología y Parasitología Medica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro F. Benatar
- Servicio de Citometría de Flujo, Instituto de Medicina Experimental (IMEX), Academia Nacional de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Karina A. Gomez
- Laboratorio de Biología e Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Feng C, Nita-Lazar M, González-Montalbán N, Wang J, Mancini J, Wang S, Ravindran C, Ahmed H, Vasta GR. Manipulating Galectin Expression in Zebrafish (Danio rerio). Methods Mol Biol 2022; 2442:425-443. [PMID: 35320539 DOI: 10.1007/978-1-0716-2055-7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Techniques for disrupting gene expression are invaluable tools for the analysis of the biological role of a gene product. Because of its genetic tractability and multiple advantages over conventional mammalian models, the zebrafish (Danio rerio) is recognized as a powerful system for gaining new insight into diverse aspects of human health and disease. Among the multiple mammalian gene families for which the zebrafish has shown promise as an invaluable model for functional studies, the galectins have attracted great interest due to their participation in early development, regulation of immune homeostasis, and recognition of microbial pathogens. Galectins are β-galactosyl-binding lectins with a characteristic sequence motif in their carbohydrate recognition domains (CRDs), that constitute an evolutionary conserved family ubiquitous in eukaryotic taxa. Galectins are emerging as key players in the modulation of many important pathological processes, which include acute and chronic inflammatory diseases, autoimmunity and cancer, thus making them potential molecular targets for innovative drug discovery. Here, we provide a review of the current methods available for the manipulation of gene expression in the zebrafish, with a focus on gene knockdown [morpholino (MO)-derived antisense oligonucleotides] and knockout (CRISPR-Cas) technologies.
Collapse
Affiliation(s)
- Chiguang Feng
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Mihai Nita-Lazar
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Nuria González-Montalbán
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Jingyu Wang
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Justin Mancini
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Sheng Wang
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chinnarajan Ravindran
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
- Department of Marine Biotechnology, National Institute of Oceanography (CSIR), Dona Paula, Goa, India
| | - Hafiz Ahmed
- Department of Biochemistry, School of Medicine, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD, USA.
| |
Collapse
|
15
|
Potential Roles of Modified Pectin Targeting Galectin-3 against Severe Acute Respiratory Syndrome Coronavirus-2. J 2021. [DOI: 10.3390/j4040056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Modified pectin (MP) is a bioactive complex polysaccharide that is broken down into smaller fragments of units and used as an oral dietary supplement for cell proliferation. MP is safe and non-toxic with promising therapeutic properties with regard to targeting galectin-3 (GAL-3) toward the prevention and inhibition of viral infections through the modulation of the immune response and anti-inflammatory cytokine effects. This effect of MP as a GAL-3 antagonism, which has shown benefits in preclinical and clinical models, may be of relevance to the progression of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in coronavirus disease 2019 patients. The outbreak of emerging infectious diseases continues to pose a threat to human health. Further to the circulation of multiple variants of SARS-CoV-2, an effective and alternative therapeutic approach to combat it has become pertinent. The use of MP as a GAL-3 inhibitor could serve as an antiviral agent blocking against the SARS-CoV-2-binding spike protein. This review highlights the potential effects of MP in viral infections, its proposed role as a GAL-3 inhibitor, and the associated function concerning a SARS-CoV-2 infection.
Collapse
|
16
|
Ge X, Shi K, Hou J, Fu Y, Xiao H, Chi F, Xu J, Cai F, Bai C. Galectin-1 secreted by bone marrow-derived mesenchymal stem cells mediates anti-inflammatory responses in acute airway disease. Exp Cell Res 2021; 407:112788. [PMID: 34418459 DOI: 10.1016/j.yexcr.2021.112788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022]
Abstract
The hallmarks of allergic airway disease (AAD) include infiltration of inflammatory cells into the bronchoalveolar space. Bone marrow derived mesenchymal stem cells (BMSCs) show anti-inflammatory properties in AAD. In addition, galectin-1 (Gal-1) is a lectin significantly upregulated upon inflammation and is also known to mediate potential anti-inflammatory responses. We hypothesized that BMSCs regulated inflammatory responses by secretion of Gal-1 during AAD pathogenesis. BMSCs were isolated from murine femurs and tibiae and adoptively transferred into an ovalbumin-induced AAD mouse model. Knockdown of Gal-1 in BMSCs was performed using shRNA. Flow cytometry, ELISAs, and immunohistology were performed to analyze inflammatory responses in mice, and a Transwell system was used to establish an in vitro co-culture system of lung epithelial cells (MLE-12) and BMSCs. Administration of BMSCs significantly upregulated Gal-1 expression upon inflammation and decreased infiltration of inflammatory cells and secretion of proinflammatory cytokines in vivo. In addition, we showed that this function was mediated by reduced activation of the MAPK p38 signaling pathway. Similar observations were found using an in vitro lipopolysaccharide-induced model when MLE-12 cells were co-cultured with BMSCs. Gal-1 secretion by BMSCs alleviated inflammatory responses observed in AAD and hence provides a promising therapeutic alternative to AAD patients insensitive to conventional drug treatments.
Collapse
Affiliation(s)
- Xiahui Ge
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, China.
| | - Kehua Shi
- Department of Respiratory Medicine, Shanghai Hospital of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jia Hou
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia, 750004, China
| | - Youhui Fu
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, China
| | - Hua Xiao
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, China
| | - Feng Chi
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, China
| | - Jing Xu
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, China
| | - Feng Cai
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| |
Collapse
|
17
|
Humphries DC, Mills R, Dobie R, Henderson NC, Sethi T, Mackinnon AC. Selective Myeloid Depletion of Galectin-3 Offers Protection Against Acute and Chronic Lung Injury. Front Pharmacol 2021; 12:715986. [PMID: 34526900 PMCID: PMC8435800 DOI: 10.3389/fphar.2021.715986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/18/2021] [Indexed: 12/03/2022] Open
Abstract
Rationale: Galectin-3 (Gal-3) is an immune regulator and an important driver of fibrosis in chronic lung injury, however, its role in acute lung injury (ALI) remains unknown. Previous work has shown that global deletion of galectin-3 reduces collagen deposition in a bleomycin-induced pulmonary fibrosis model (MacKinnon et al., Am. J. Respir. Crit. Care Med., 2012, 185, 537–46). An inhaled Gal-3 inhibitor, GB0139, is undergoing Phase II clinical development for idiopathic pulmonary fibrosis (IPF). This work aims to elucidate the role of Gal-3 in the myeloid and mesenchymal compartment on the development of acute and chronic lung injury. Methods:LgalS3fl/fl mice were generated and crossed with mice expressing the myeloid (LysM) and mesenchymal (Pdgfrb) cre drivers to yield LysM-cre+/-/LgalS3fl/fl and Pdgfrb-cre+/-/LgalS3fl/fl mice. The response to acute (bleomycin or LPS) or chronic (bleomycin) lung injury was compared to globally deficient Gal-3−/− mice. Results: Myeloid depletion of Gal-3 led to a significant reduction in Gal-3 expression in alveolar macrophages and neutrophils and a reduction in neutrophil recruitment into the interstitium but not into the alveolar space. The reduction in interstitial neutrophils corelated with decreased levels of pulmonary inflammation following acute bleomycin and LPS administration. In addition, myeloid deletion decreased Gal-3 levels in bronchoalveolar lavage (BAL) and reduced lung fibrosis induced by chronic bleomycin. In contrast, no differences in BAL Gal-3 levels or fibrosis were observed in Pdgfrb-cre+/-/LgalS3fl/flmice. Conclusions: Myeloid cell derived Galectin-3 drives acute and chronic lung inflammation and supports direct targeting of galectin-3 as an attractive new therapy for lung inflammation.
Collapse
Affiliation(s)
- Duncan C Humphries
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Mills
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Dobie
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil C Henderson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Alison C Mackinnon
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Galecto Inc, Copenhagen, Denmark
| |
Collapse
|
18
|
Lin CY, Yang ZS, Wang WH, Urbina AN, Lin YT, Huang JC, Liu FT, Wang SF. The Antiviral Role of Galectins toward Influenza A Virus Infection-An Alternative Strategy for Influenza Therapy. Pharmaceuticals (Basel) 2021; 14:490. [PMID: 34065500 PMCID: PMC8160607 DOI: 10.3390/ph14050490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
Animal lectins are proteins with carbohydrate recognition activity. Galectins, the β-galactoside binding lectins, are expressed in various cells and have been reported to regulate several immunological and physiological responses. Recently, some galectins have been reported to regulate some viral infections, including influenza A virus (IAV); however, the mechanism is still not fully understood. Thus, we aim to review systemically the roles of galectins in their antiviral functions against IAVs. The PRISMA guidelines were used to select the eligible articles. Results indicated that only Galectin-1, Galectin-3, and Galectin-9 were reported to play a regulatory role in IAV infection. These regulatory effects occur extracellularly, through their carbohydrate recognition domain (CRD) interacting with glycans expressed on the virus surface, as well as endogenously, in a cell-cell interaction manner. The inhibition effects induced by galectins on IAV infection were through blocking virus-host receptors interaction, activation of NLRP-3 inflammasome, augment expression of antiviral genes and related cytokines, as well as stimulation of Tim-3 related signaling to enhance virus-specific T cells and humoral immune response. Combined, this study concludes that currently, only three galectins have reported antiviral capabilities against IAV infection, thereby having the potential to be applied as an alternative anti-influenza therapeutic strategy.
Collapse
Affiliation(s)
- Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-Y.L.); (Z.-S.Y.); (W.-H.W.); (A.N.U.)
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-Y.L.); (Z.-S.Y.); (W.-H.W.); (A.N.U.)
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Wen-Hung Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-Y.L.); (Z.-S.Y.); (W.-H.W.); (A.N.U.)
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-Y.L.); (Z.-S.Y.); (W.-H.W.); (A.N.U.)
| | - Yu-Ting Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jason C. Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112304, Taiwan;
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-Y.L.); (Z.-S.Y.); (W.-H.W.); (A.N.U.)
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
19
|
Yang ZS, Lin CY, Huang SW, Wang WH, Urbina AN, Tseng SP, Lu PL, Chen YH, Wang SF. Regulatory roles of galectins on influenza A virus and their potential as a therapeutic strategy. Biomed Pharmacother 2021; 139:111713. [PMID: 34243634 DOI: 10.1016/j.biopha.2021.111713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/19/2022] Open
Abstract
Galectins, are β-galactoside binding lectins expressed in numerous cells and are known to regulate various immune responses and cellular physiological functions. Galectins have been reported to participate in the regulation of several viral infections via carbohydrate‑dependent/independent manner. Galectins have displayed various regulatory functions on viral infection, however, the detailed mechanism remains unclear. More recently, some members of galectins have been reported to regulate influenza A virus (IAV) infection. In this review, we aim to analyze and summarize current findings regarding the role of galectins in IAV infection and their antiviral potential therapeutic application in the treatment of IAVs. The eligible articles were selected according to the PRISMA guidelines. Results indicate that Galectin-1(Gal-1), Galectin-3(Gal-3) and Galectin-9 (Gal-9) were found as the predominant galectins reported to participate in the regulation of IAVs infection. The inhibitory regulation of IAVs by these galectins occurred mainly through extracellular binding to glycosylated envelope proteins, further blocking the interaction between influenza envelope and sialic acid receptor, interacting with ligands or receptors on immune cells to trigger immunol or cellular response against IAVs, and endogenously interacting cellular components in the cytoplasm to activate inflammasome and autophagy. This study offers information regarding the multiple roles of galectins observed in IAVs infection and suggest that galectins has the potential to be used as therapeutic agents for IAVs.
Collapse
Affiliation(s)
- Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Szu-Wei Huang
- Model Development Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wen-Hung Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Liang Lu
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yen-Hsu Chen
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
20
|
Kazancioglu S, Yilmaz FM, Bastug A, Ozbay BO, Aydos O, Yücel Ç, Bodur H, Yilmaz G. Assessment of Galectin-1, Galectin-3, and PGE2 Levels in Patients with COVID-19. Jpn J Infect Dis 2021; 74:530-536. [PMID: 33790073 DOI: 10.7883/yoken.jjid.2021.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is important to determine the inflammatory biomarkers in the severity of Coronavirus Disease 2019 (COVID-19) with the emergence of the pandemic. Galectins and prostaglandins play important roles in the regulation of immune and inflammatory responses. Therefore, this study aimed to investigate Galectin-1 (Gal-1), Galectin-3 (Gal-3), and prostaglandin E2 (PGE2) levels in patients with COVID-19. Gal-1, Gal-3, and PGE2 serum concentrations were measured using enzyme-linked immunosorbent analysis (ELISA) on 84 COVID-19 patients (severe=29 and nonsevere=55) and 56 healthy controls. In this study, the increased levels of Gal-1 (median, 9.86, 6.35, 3.67 ng/ml), Gal-3 (median, 415.31, 326.33, 243.13 pg/ml)and PGE2 (median, 193.17, 192.58, 124.62 pg/ml) levels were found in patients with COVID-19 than healthy controls (p<0.001 for all). In the severe group, Gal-3 levels were higher while there were no differences in Gal-1 and PGE2 levels (p=0.011, p=0.263, p=0.921, respectively). There was a positive correlation between serum Gal-1 and Gal-3 levels (ρ=0.871, p<0.001). Gal-3, C-reactive protein, lymphocyte count, and age were found as independent predictors of the disease severity (p=0.002, p=0.001, p=0.007, and p=0.003, respectively). With the emergence of effective drug needs in the COVID-19 pandemic, differentiation of severe disease is important. Gal-3 could be a potential prognostic biomarker of COVID-19.
Collapse
Affiliation(s)
- Sumeyye Kazancioglu
- Department of Infectious Diseases and Clinical Microbiology, Ministry of Health Ankara City Hospital, Turkey
| | - Fatma Meric Yilmaz
- Medical Biochemistry Laboratory, Ministry of Health Ankara City Hospital, Turkey.,Department of Medical Biochemistry, Ankara Yıldırım Beyazıt University, Faculty of Medicine, Turkey
| | - Aliye Bastug
- Department of Infectious Diseases and Clinical Microbiology, Health Science University Turkey, Ankara City Hospital, Turkey
| | - Bahadir Orkun Ozbay
- Department of Infectious Diseases and Clinical Microbiology, Ministry of Health Ankara City Hospital, Turkey
| | - Omer Aydos
- Department of Infectious Diseases and Clinical Microbiology, Ministry of Health Ankara City Hospital, Turkey
| | - Çiğdem Yücel
- Department of Medical Biochemistry, Health Science University Turkey, Gülhane Training and Research Hospital, Turkey
| | - Hurrem Bodur
- Department of Infectious Diseases and Clinical Microbiology, Health Science University Turkey, Ankara City Hospital, Turkey
| | - Gulsen Yilmaz
- Medical Biochemistry Laboratory, Ministry of Health Ankara City Hospital, Turkey.,Department of Medical Biochemistry, Ankara Yıldırım Beyazıt University, Faculty of Medicine, Turkey
| |
Collapse
|
21
|
Velickovic M, Arsenijevic A, Acovic A, Arsenijevic D, Milovanovic J, Dimitrijevic J, Todorovic Z, Milovanovic M, Kanjevac T, Arsenijevic N. Galectin-3, Possible Role in Pathogenesis of Periodontal Diseases and Potential Therapeutic Target. Front Pharmacol 2021; 12:638258. [PMID: 33815121 PMCID: PMC8017193 DOI: 10.3389/fphar.2021.638258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Periodontal diseases are chronic inflammatory diseases that occur due to the imbalance between microbial communities in the oral cavity and the immune response of the host that lead to destruction of tooth supporting structures and finally to alveolar bone loss. Galectin-3 is a β-galactoside-binding lectin with important roles in numerous biological processes. By direct binding to microbes and modulation of their clearence, Galectin-3 can affect the composition of microbial community in the oral cavity. Galectin-3 also modulates the function of many immune cells in the gingiva and gingival sulcus and thus can affect immune homeostasis. Few clinical studies demonstrated increased expression of Galectin-3 in different forms of periodontal diseases. Therefore, the objective of this mini review is to discuss the possible effects of Galectin-3 on the process of immune homeostasis and the balance between oral microbial community and host response and to provide insights into the potential therapeutic targeting of Gal-3 in periodontal disease.
Collapse
Affiliation(s)
- Milica Velickovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Acovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Arsenijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Dimitrijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Zeljko Todorovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
22
|
Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther 2021; 6:122. [PMID: 33737507 PMCID: PMC7973744 DOI: 10.1038/s41392-021-00512-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Biomaterials have had an increasingly important role in recent decades, in biomedical device design and the development of tissue engineering solutions for cell delivery, drug delivery, device integration, tissue replacement, and more. There is an increasing trend in tissue engineering to use natural substrates, such as macromolecules native to plants and animals to improve the biocompatibility and biodegradability of delivered materials. At the same time, these materials have favourable mechanical properties and often considered to be biologically inert. More importantly, these macromolecules possess innate functions and properties due to their unique chemical composition and structure, which increase their bioactivity and therapeutic potential in a wide range of applications. While much focus has been on integrating these materials into these devices via a spectrum of cross-linking mechanisms, little attention is drawn to residual bioactivity that is often hampered during isolation, purification, and production processes. Herein, we discuss methods of initial material characterisation to determine innate bioactivity, means of material processing including cross-linking, decellularisation, and purification techniques and finally, a biological assessment of retained bioactivity of a final product. This review aims to address considerations for biomaterials design from natural polymers, through the optimisation and preservation of bioactive components that maximise the inherent bioactive potency of the substrate to promote tissue regeneration.
Collapse
Affiliation(s)
- Kieran Joyce
- School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Georgina Targa Fabra
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Yagmur Bozkurt
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
23
|
Root-Bernstein R. Innate Receptor Activation Patterns Involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and Sepsis Cytokine Storms: A Review and Model Making Novel Predictions and Therapeutic Suggestions. Int J Mol Sci 2021; 22:ijms22042108. [PMID: 33672738 PMCID: PMC7924650 DOI: 10.3390/ijms22042108] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
Severe COVID-19 is characterized by a “cytokine storm”, the mechanism of which is not yet understood. I propose that cytokine storms result from synergistic interactions among Toll-like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors (NLR) due to combined infections of SARS-CoV-2 with other microbes, mainly bacterial and fungal. This proposition is based on eight linked types of evidence and their logical connections. (1) Severe cases of COVID-19 differ from healthy controls and mild COVID-19 patients in exhibiting increased TLR4, TLR7, TLR9 and NLRP3 activity. (2) SARS-CoV-2 and related coronaviruses activate TLR3, TLR7, RIG1 and NLRP3. (3) SARS-CoV-2 cannot, therefore, account for the innate receptor activation pattern (IRAP) found in severe COVID-19 patients. (4) Severe COVID-19 also differs from its mild form in being characterized by bacterial and fungal infections. (5) Respiratory bacterial and fungal infections activate TLR2, TLR4, TLR9 and NLRP3. (6) A combination of SARS-CoV-2 with bacterial/fungal coinfections accounts for the IRAP found in severe COVID-19 and why it differs from mild cases. (7) Notably, TLR7 (viral) and TLR4 (bacterial/fungal) synergize, TLR9 and TLR4 (both bacterial/fungal) synergize and TLR2 and TLR4 (both bacterial/fungal) synergize with NLRP3 (viral and bacterial). (8) Thus, a SARS-CoV-2-bacterium/fungus coinfection produces synergistic innate activation, resulting in the hyperinflammation characteristic of a cytokine storm. Unique clinical, experimental and therapeutic predictions (such as why melatonin is effective in treating COVID-19) are discussed, and broader implications are outlined for understanding why other syndromes such as acute lung injury, acute respiratory distress syndrome and sepsis display varied cytokine storm symptoms.
Collapse
|
24
|
Ma N, Li X, Jiang H, Dai Y, Xu G, Zhang Z. Influenza Virus Neuraminidase Engages CD83 and Promotes Pulmonary Injury. J Virol 2021; 95:e01753-20. [PMID: 33177200 PMCID: PMC7925101 DOI: 10.1128/jvi.01753-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Influenza A viruses cause severe respiratory illnesses in humans and animals. Overreaction of the innate immune response to influenza virus infection results in hypercytokinemia, which is responsible for mortality and morbidity. However, the mechanism by which influenza induces hypercytokinemia is not fully understood. In this study, we established a mouse-adapted H9N2 virus, MA01, to evaluate the innate immune response to influenza in the lung. MA01 infection caused high levels of cytokine release, enhanced pulmonary injury in mice, and upregulated CD83 protein in dendritic cells and macrophages in the lung. Influenza virus neuraminidase (NA) unmasked CD83 protein and contributed to high cytokine levels. Furthermore, we provide evidence that CD83 is a sialylated glycoprotein. Neuraminidase treatment enhanced lipopolysaccharide (LPS)-stimulated NF-κB activation in RAW264.7 cells. Anti-CD83 treatment alleviated influenza virus-induced lung injury in mice. Our study indicates that influenza virus neuraminidase modulates CD83 status and contributes to the "cytokine storm," which may suggest a new approach to curb this immune injury.IMPORTANCE The massive release of circulating mediators of inflammation is responsible for lung injury during influenza A virus infection. This phenomenon is referred to as the "cytokine storm." However, the mechanism by which influenza induces the cytokine storm is not fully understood. In this study, we have shown that neuraminidase unmasked CD83 protein in the lung and contributed to high cytokine levels. Anti-CD83 treatment could diminish immune damage to lung tissue. The NA-CD83 axis may represent a target for an interruption of influenza-induced lung damage.
Collapse
Affiliation(s)
- Ning Ma
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xingjie Li
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Hongyu Jiang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yulong Dai
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Guofeng Xu
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zongde Zhang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
25
|
Liu H, Wang W, Liu C. Increased expression of IFN-γ in preeclampsia impairs human trophoblast invasion via a SOCS1/JAK/STAT1 feedback loop. Exp Ther Med 2020; 21:112. [PMID: 33335575 PMCID: PMC7739872 DOI: 10.3892/etm.2020.9544] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The weakening of extravillous trophoblast (EVT) invasion results in shallow placenta implantation. In HTR8/SVneo cells, IFN-γ can activate STAT1 and reduce cell invasion, and suppressor of cytokine signaling (SOCS) is an important negative regulatory protein in the Janus kinase (JAK)/STAT activator pathway and has a negative feedback function on JAK/STAT1. The aim of the present study was to elucidate how SOCS1 feedback regulates JAK/STAT1 and affects EVT cell invasion, which in turn affects the development of preeclampsia (PE). MTT and Annexin V/phosphatidylserine (PS) assays were performed to evaluate the viability and apoptosis of HTR8/SVneo cells treated with IFN-γ, respectively. Wound healing and invasion assays were also conducted to measure the migratory and invasive abilities of IFN-γ-treated HTR8/SVneo cells. The mRNA and protein expression levels of genes were detected using reverse transcription-quantitative PCR and western blot analysis. Small interfering RNA knockdown of SOCS1 was used to verify the role of feedback regulation in the IFN-γ-activated JAK/STAT1 signaling pathway. IFN-γ can inhibit HTR8/SVneo migration and invasion, and promote apoptosis by increasing the expression of phosphorylated (p)-JAK, p-STAT1 and caspase3, and reducing the expression of platelet-derived growth factor receptor A and Ezrin. Furthermore, SOCS1 may negatively regulate JAK/STAT1 and affect HTR-8/SVneo invasiveness. Evaluation of clinical samples demonstrated that the expression levels of SOCS1 and IFN-γ were higher in patients with PE compared with the healthy group. Collectively, the present results indicated that IFN-γ reduced the invasion of HTR-8/SVneo cells by activating JAK/STAT1, concurrently leading to an increase in SOCS1, which negatively regulates JAK/STAT1 and eliminates the pro-inflammatory effects of IFN-γ, thus forming a feedback loop.
Collapse
Affiliation(s)
- Huiqiang Liu
- Department of Gynecology and Obstetrics, Chaoyang Hospital Affiliated to Capital Medical University, Chaoyang, Beijing 100020, P.R. China.,Department of Gynecology and Obstetrics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Wenhao Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Chongdong Liu
- Department of Gynecology and Obstetrics, Chaoyang Hospital Affiliated to Capital Medical University, Chaoyang, Beijing 100020, P.R. China
| |
Collapse
|
26
|
Wang WH, Lin CY, Chang MR, Urbina AN, Assavalapsakul W, Thitithanyanont A, Chen YH, Liu FT, Wang SF. The role of galectins in virus infection - A systemic literature review. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:925-935. [PMID: 31630962 DOI: 10.1016/j.jmii.2019.09.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Galectins are β-Galactose binding lectins expressed in numerous cells and play multiple roles in various physiological and cellular functions. However, few information is available regarding the role of galectins in virus infections. Here, we conducted a systemic literature review to analyze the role of galectins in human virus infection. METHODS This study uses a systematic method to identify and select eligible articles according to the PRISMA guidelines. References were selected from PubMed, Web of Science and Google Scholar database covering publication dated from August 1995 to December 2018. RESULTS Results indicate that galectins play multiple roles in regulation of virus infections. Galectin-1 (Gal-1), galectin-3 (Gal-3), galectin-8 (Gal-8), and galectin-9 (Gal-9) were found as the most predominant galectins reported to participate in virus infection. The regulatory function of galectins occurs by extracellularly binding to viral glycosylated envelope proteins, interacting with ligands or receptors on immune cells, or acting intracellularly with viral or cellular components in the cytoplasm. Several galectins express either positive or negative regulatory role, while some had dual regulatory capabilities on virus propagation based on the conditions and their localization. However, limited information about the endogenous function of galectins were found. Therefore, the endogenous effects of galectins in host-virus regulation remains valuable to investigate. CONCLUSIONS This study offers information regarding the various roles galectins shown in viral infection and suggest that galectins can potentially be used as viral therapeutic targets or antagonists.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Max R Chang
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Aspiro Nayim Urbina
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Yen-Hsu Chen
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, 80145, Taiwan; Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, 300, Taiwan.
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
27
|
The therapeutic potential of galectin-3 inhibition in fibrotic disease. Int J Biochem Cell Biol 2020; 130:105881. [PMID: 33181315 DOI: 10.1016/j.biocel.2020.105881] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022]
Abstract
Galectin-3 is a beta-galactoside-binding mammalian lectin and part of the 15 member galectin family that are evolutionarily highly conserved. It is the only chimeric protein with a C-terminal carbohydrate recognition domain (CRD) linked to a proline, glycine, and tyrosine rich additional N-terminal domain. Galectin-3 binds several cell surface glycoproteins via its CRD domain as well as undergoing oligomerization, via binding at the N-terminal or the CRD, resulting in the formation of a galectin-3 lattice on the cell surface. The galectin-3 lattice has been regarded as being a crucial mechanism whereby extracellular galectin-3 modulates cellular signalling by prolonging retention time or retarding lateral movement of cell surface receptors in the plasma membrane. As such galectin-3 can regulate various cellular functions such as diffusion, compartmentalization and endocytosis of plasma membrane glycoproteins and glycolipids and the functionality of membrane receptors. In multiple models of organ fibrosis, it has been demonstrated that galectin-3 is potently pro-fibrotic and modulates the activity of fibroblasts and macrophages in chronically inflamed organs. Increased galectin-3 expression also activates myofibroblasts resulting in scar formation and may therefore impact common fibrotic pathways leading to fibrosis in multiple organs. Over the last decade there has been a marked increase in the scientific literature investigating galectin-3 in a range of fibrotic diseases as well as the clinical development of new galectin-3 inhibitors. In this review we will examine the role of galectin-3 in fibrosis, the therapeutic strategies for inhibiting galectin-3 in fibrotic disease and the clinical landscape to date.
Collapse
|
28
|
Caniglia JL, Asuthkar S, Tsung AJ, Guda MR, Velpula KK. Immunopathology of galectin-3: an increasingly promising target in COVID-19. F1000Res 2020; 9:1078. [PMID: 33082935 PMCID: PMC7536583 DOI: 10.12688/f1000research.25979.2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 01/18/2023] Open
Abstract
The pandemic brought on by the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has become a global health crisis, with over 22 million confirmed cases and 777,000 fatalities due to coronavirus disease 2019 (COVID-19) reported worldwide. The major cause of fatality in infected patients, now referred to as the "Cytokine Storm Syndrome" (CSS), is a direct result of aberrant immune activation following SARS-CoV2 infection and results in excess release of inflammatory cytokines, such as interleukin (IL)-1, tumor necrosis factor α (TNF-α), and IL-6, by macrophages, monocytes, and dendritic cells. Single cell analysis has also shown significantly elevated levels of galectin 3 (Gal-3) in macrophages, monocytes, and dendritic cells in patients with severe COVID-19 as compared to mild disease. Inhibition of Gal-3 reduces the release of IL-1, IL-6, and TNF-α from macrophages in vitro, and as such may hold promise in reducing the incidence of CSS. In addition, Gal-3 inhibition shows promise in reducing transforming growth factor ß (TGF-ß) mediated pulmonary fibrosis, likely to be a major consequence in survivors of severe COVID-19. Finally, a key domain in the spike protein of SARS-CoV2 has been shown to bind N-acetylneuraminic acid (Neu5Ac), a process that may be essential to cell entry by the virus. This Neu5Ac-binding domain shares striking morphological, sequence, and functional similarities with human Gal-3. Here we provide an updated review of the literature linking Gal-3 to COVID-19 pathogenesis. Dually targeting galectins and the Neu5Ac-binding domain of SARS-CoV2 shows tentative promise in several stages of the disease: preventing viral entry, modulating the host immune response, and reducing the post-infectious incidence of pulmonary fibrosis.
Collapse
Affiliation(s)
- John L. Caniglia
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Swapna Asuthkar
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Andrew J. Tsung
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Illinois Neurological Institute, Peoria, IL, USA
| | - Maheedhara R. Guda
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Kiran K. Velpula
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| |
Collapse
|
29
|
Caniglia JL, Asuthkar S, Tsung AJ, Guda MR, Velpula KK. Immunopathology of galectin-3: an increasingly promising target in COVID-19. F1000Res 2020; 9:1078. [PMID: 33082935 PMCID: PMC7536583 DOI: 10.12688/f1000research.25979.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 01/11/2024] Open
Abstract
The pandemic brought on by the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has become a global health crisis, with over 22 million confirmed cases and 777,000 fatalities due to coronavirus disease 2019 (COVID-19) reported worldwide. The major cause of fatality in infected patients, now referred to as the "Cytokine Storm Syndrome" (CSS), is a direct result of aberrant immune activation following SARS-CoV2 infection and results in excess release of inflammatory cytokines, such as interleukin (IL)-1, tumor necrosis factor α (TNF-α), and IL-6, by macrophages, monocytes, and dendritic cells. Single cell analysis has also shown significantly elevated levels of galectin 3 (Gal-3) in macrophages, monocytes, and dendritic cells in patients with severe COVID-19 as compared to mild disease. Inhibition of Gal-3 reduces the release of IL-1, IL-6, and TNF-α from macrophages in vitro, and as such may hold promise in reducing the incidence of CSS. In addition, Gal-3 inhibition shows promise in reducing transforming growth factor ß (TGF-ß) mediated pulmonary fibrosis, likely to be a major consequence in survivors of severe COVID-19. Finally, a key domain in the spike protein of SARS-CoV2 has been shown to bind N-acetylneuraminic acid (Neu5Ac), a process that may be essential to cell entry by the virus. This Neu5Ac-binding domain shares striking morphological, sequence, and functional similarities with human Gal-3. Here we provide an updated review of the literature linking Gal-3 to COVID-19 pathogenesis. Dually targeting galectins and the Neu5Ac-binding domain of SARS-CoV2 shows tentative promise in several stages of the disease: preventing viral entry, modulating the host immune response, and reducing the post-infectious incidence of pulmonary fibrosis.
Collapse
Affiliation(s)
- John L. Caniglia
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Swapna Asuthkar
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Andrew J. Tsung
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Illinois Neurological Institute, Peoria, IL, USA
| | - Maheedhara R. Guda
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Kiran K. Velpula
- Departments of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| |
Collapse
|
30
|
Bao J, Wang X, Liu S, Zou Q, Zheng S, Yu F, Chen Y. Galectin-1 Ameliorates Influenza A H1N1pdm09 Virus-Induced Acute Lung Injury. Front Microbiol 2020; 11:1293. [PMID: 32595629 PMCID: PMC7303544 DOI: 10.3389/fmicb.2020.01293] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/20/2020] [Indexed: 11/13/2022] Open
Abstract
Influenza remains one of the major epidemic diseases worldwide. Acute lung injury mainly caused by excessive pro-inflammatory host immune responses leads to high mortality rates in severe influenza patients. Galectin-1, an animal lectin ubiquitously expressed in mammalian tissues, is reported to play important roles in viral diseases. Here, we established murine and A549 cell models to explore the potential roles of galectin-1 treatment in H1N1pdm09-induced acute lung injury. We found that galectin-1 protein level was elevated in A549 cell culture supernatants and mouse BALF after H1N1pdm09 challenge. In vivo experiments showed recombinant galectin-1 treatment reduced wet/dry weight ratio, inflammatory cell infiltration in mouse lungs and mediated the expression of cytokines and chemokines including IL-1β, IL-6, IL-10, IL-12(p40), IL-12(p70), G-CSF, MCP-1, MIP-1α and RANTES in serum and BALF of infected mice. Reduced apoptosis and viral titers in mouse lungs were also found after galectin-1 treatment. As expected, galectin-1 treated mice performed reduced body weight loss and enhanced survival rate against H1N1pdm09 challenge. In addition, in vitro experiments showed that viral titers decreased in a dose-dependent manner and cell apoptosis in A549 cells reduced after recombinant galectin-1 treatment. Taken together, our findings indicate a potentially positive effect of Gal-1 treatment on ameliorating the progress of H1N1pdm09-induced acute lung injury and recombinant galectin-1 might serve as a new agent in treating influenza.
Collapse
Affiliation(s)
- Jiaqi Bao
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Xiaochen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Sijia Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qianda Zou
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Shufa Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Yu
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Yu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Galectins in Host-Pathogen Interactions: Structural, Functional and Evolutionary Aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:169-196. [PMID: 32152947 DOI: 10.1007/978-981-15-1580-4_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Galectins are a family of ß-galactoside-binding lectins characterized by a unique sequence motif in the carbohydrate recognition domain, and evolutionary and structural conservation from fungi to invertebrates and vertebrates, including mammals. Their biological roles, initially understood as limited to recognition of endogenous ("self") carbohydrate ligands in embryogenesis and early development, dramatically expanded in later years by the discovery of their roles in tissue repair, cancer, adipogenesis, and regulation of immune homeostasis. In recent years, however, evidence has also accumulated to support the notion that galectins can bind ("non-self") glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity. Thus, this evidence has established a new paradigm by which galectins can function not only as pattern recognition receptors but also as effector factors, by binding to the microbial surface and inhibiting adhesion and/or entry into the host cell, directly killing the potential pathogen by disrupting its surface structures, or by promoting phagocytosis, encapsulation, autophagy, and pathogen clearance from circulation. Strikingly, some viruses, bacteria, and protistan parasites take advantage of the aforementioned recognition roles of the vector/host galectins, for successful attachment and invasion. These recent findings suggest that galectin-mediated innate immune recognition and effector mechanisms, which throughout evolution have remained effective for preventing or fighting viral, bacterial, and parasitic infection, have been "subverted" by certain pathogens by unique evolutionary adaptations of their surface glycome to gain host entry, and the acquisition of effective mechanisms to evade the host's immune responses.
Collapse
|
32
|
Ghosh A, Banerjee A, Amzel LM, Vasta GR, Bianchet MA. Structure of the zebrafish galectin-1-L2 and model of its interaction with the infectious hematopoietic necrosis virus (IHNV) envelope glycoprotein. Glycobiology 2019; 29:419-430. [PMID: 30834446 PMCID: PMC6476415 DOI: 10.1093/glycob/cwz015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
Galectins, highly conserved β-galactoside-binding lectins, have diverse regulatory roles in development and immune homeostasis and can mediate protective functions during microbial infection. In recent years, the role of galectins in viral infection has generated considerable interest. Studies on highly pathogenic viruses have provided invaluable insight into the participation of galectins in various stages of viral infection, including attachment and entry. Detailed mechanistic and structural aspects of these processes remain undetermined. To address some of these gaps in knowledge, we used Zebrafish as a model system to examine the role of galectins in infection by infectious hematopoietic necrosis virus (IHNV), a rhabdovirus that is responsible for significant losses in both farmed and wild salmonid fish. Like other rhabdoviruses, IHNV is characterized by an envelope consisting of trimers of a glycoprotein that display multiple N-linked oligosaccharides and play an integral role in viral infection by mediating the virus attachment and fusion. Zebrafish's proto-typical galectin Drgal1-L2 and the chimeric-type galectin Drgal3-L1 interact directly with the glycosylated envelope of IHNV, and significantly reduce viral attachment. In this study, we report the structure of the complex of Drgal1-L2 with N-acetyl-d-lactosamine at 2.0 Å resolution. To gain structural insight into the inhibitory effect of these galectins on IHNV attachment to the zebrafish epithelial cells, we modeled Drgal3-L1 based on human galectin-3, as well as, the ectodomain of the IHNV glycoprotein. These models suggest mechanisms for which the binding of these galectins to the IHNV glycoprotein hinders with different potencies the viral attachment required for infection.
Collapse
Affiliation(s)
- Anita Ghosh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Current address: Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, W408C, Boston, MA, USA
| | - Aditi Banerjee
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, MD, USA,Current address: Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L Mario Amzel
- Structural Enzymology and Thermodynamics Group of the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Mario A Bianchet
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Structural Enzymology and Thermodynamics Group of the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA,To whom correspondence should be addressed: Tel: +1-410-614-8221; e-mail:
| |
Collapse
|
33
|
Tian M, Yang N, Zhang L, Fu Q, Tan F, Li C. Expression profiling and functional characterization of galectin-3 of turbot (Scophthalmus maximus L.) in host mucosal immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 84:333-340. [PMID: 30296481 DOI: 10.1016/j.fsi.2018.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/12/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Galectins, a family of evolutionary conserved β-galactoside-binding proteins, have been characterized in a wide range of species. Galectin-3 is the only member in the chimera type, which is a monomeric lectin with one CRD domain. A growing body of evidence have indicated vital roles of galectin-3 in innate immune responses against infection. Here, one galectin-3 gene was captured in turbot (SmLgals3) with a 1203 bp open reading frame (ORF). In comparison to other species, SmLgals3 showed the highest similarity and identity to large yellow croaker and medaka, respectively. The genomic structure analysis showed that SmLgals3 had 5 exons similar to other vertebrate species. The syntenic analysis revealed that galectin-3 had the same neighboring genes across all the selected species, which suggested the synteny encompassing galectin-3 region during vertebrate evolution. Subsequently, SmLgals3 was widely expressed in all the examined tissues, with the highest expression level in brain and the lowest expression level in skin. In addition, SmLgals3 was significantly down-regulated in intestine following both Gram-negative bacteria Vibrio anguillarum, and Gram-positive bacteria Streptococcus iniae immersion challenge. Finally, the rSmLgals3 showed strong binding ability to all the examined microbial ligands. Taken together, our results suggested SmLgals3 played vital roles in fish innate immune responses against infection. However, the knowledge of SmLgals3 are still limited in teleost species, further studies should be carried out to better characterize its detailed roles in teleost mucosal immunity.
Collapse
Affiliation(s)
- Mengyu Tian
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Lu Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China.
| |
Collapse
|
34
|
Ferreira RG, Rodrigues LC, Nascimento DC, Kanashiro A, Melo PH, Borges VF, Gozzi A, da Silva Prado D, Borges MC, Ramalho FS, Stowell SR, Cummings RD, Dias-Baruffi M, Cunha FQ, Alves-Filho JC. Galectin-3 aggravates experimental polymicrobial sepsis by impairing neutrophil recruitment to the infectious focus. J Infect 2018; 77:391-397. [DOI: 10.1016/j.jinf.2018.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/31/2018] [Accepted: 06/21/2018] [Indexed: 12/29/2022]
|
35
|
Glycosylation-dependent galectin-receptor interactions promote Chlamydia trachomatis infection. Proc Natl Acad Sci U S A 2018; 115:E6000-E6009. [PMID: 29891717 DOI: 10.1073/pnas.1802188115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chlamydia trachomatis (Ct) constitutes the most prevalent sexually transmitted bacterium worldwide. Chlamydial infections can lead to severe clinical sequelae including pelvic inflammatory disease, ectopic pregnancy, and tubal infertility. As an obligate intracellular pathogen, Ct has evolved multiple strategies to promote adhesion and invasion of host cells, including those involving both bacterial and host glycans. Here, we show that galectin-1 (Gal1), an endogenous lectin widely expressed in female and male genital tracts, promotes Ct infection. Through glycosylation-dependent mechanisms involving recognition of bacterial glycoproteins and N-glycosylated host cell receptors, Gal1 enhanced Ct attachment to cervical epithelial cells. Exposure to Gal1, mainly in its dimeric form, facilitated bacterial entry and increased the number of infected cells by favoring Ct-Ct and Ct-host cell interactions. These effects were substantiated in vivo in mice lacking Gal1 or complex β1-6-branched N-glycans. Thus, disrupting Gal1-N-glycan interactions may limit the severity of chlamydial infection by inhibiting bacterial invasion of host cells.
Collapse
|
36
|
Banerjee A, Banerjee V, Czinn S, Blanchard T. Increased reactive oxygen species levels cause ER stress and cytotoxicity in andrographolide treated colon cancer cells. Oncotarget 2018; 8:26142-26153. [PMID: 28412728 PMCID: PMC5432246 DOI: 10.18632/oncotarget.15393] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/30/2017] [Indexed: 01/01/2023] Open
Abstract
Chemotherapy continues to play an essential role in the management of many cancers including colon cancer, the third leading cause of death due to cancer in the United States. Many naturally occurring plant compounds have been demonstrated to possess anti-cancer cell activity and have the potential to supplement existing chemotherapy strategies. The plant metabolite andrographolide induces cell death in cancer cells and apoptosis is dependent upon the induction of endoplasmic reticulum stress (ER stress) leading to the unfolded protein response (UPR). The goal of the present study was to determine the mechanism by which andrographolide induces ER stress and to further evaluate its role in promoting cell death pathways. The T84 and COLO 205 cancer cell lines were used to demonstrate that andrographolide induces increased ROS levels, corresponding anti-oxidant response molecules, and reduced mitochondrial membrane potential. No increases in ROS levels were detected in control colon fibroblast cells. Andrographolide-induced cell death, UPR signaling, and CHOP, Bax, and caspase 3 apoptosis elements were all inhibited in the presence of the ROS scavenger NAC. Additionally, andrographolide-induced suppression of cyclins B1 and D1 were also reversed in the presence of NAC. Finally, Akt phosphorylation and phospho-mTOR levels that are normally suppressed by andrographolide were also expressed at normal levels in the absence of ROS. These data demonstrate that andrographolide induces ER stress leading to apoptosis through the induction of ROS and that elevated ROS also play an important role in down-regulating cell cycle progression and cell survival pathways as well.
Collapse
Affiliation(s)
- Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, U.S.A
| | - Vivekjyoti Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, U.S.A
| | - Steven Czinn
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, U.S.A
| | - Thomas Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, U.S.A
| |
Collapse
|
37
|
Vasta GR, Feng C, González-Montalbán N, Mancini J, Yang L, Abernathy K, Frost G, Palm C. Functions of galectins as 'self/non-self'-recognition and effector factors. Pathog Dis 2018; 75:3753447. [PMID: 28449072 DOI: 10.1093/femspd/ftx046] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
Carbohydrate structures on the cell surface encode complex information that through specific recognition by carbohydrate-binding proteins (lectins) modulates interactions between cells, cells and the extracellular matrix, or mediates recognition of potential microbial pathogens. Galectins are a family of ß-galactoside-binding lectins, which are evolutionary conserved and have been identified in most organisms, from fungi to invertebrates and vertebrates, including mammals. Since their discovery in the 1970s, their biological roles, initially understood as limited to recognition of endogenous carbohydrate ligands in embryogenesis and development, have expanded in recent years by the discovery of their roles in tissue repair and regulation of immune homeostasis. More recently, evidence has accumulated to support the notion that galectins can also bind glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity, thus establishing a new paradigm. Furthermore, some parasites 'subvert' the recognition roles of the vector/host galectins for successful attachment or invasion. These recent findings have revealed a striking functional diversification in this structurally conserved lectin family.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Chiguang Feng
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Nuria González-Montalbán
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Justin Mancini
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Lishi Yang
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Kelsey Abernathy
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Graeme Frost
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Cheyenne Palm
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| |
Collapse
|
38
|
Gratz N, Loh LN, Mann B, Gao G, Carter R, Rosch J, Tuomanen EI. Pneumococcal neuraminidase activates TGF-β signalling. MICROBIOLOGY-SGM 2017; 163:1198-1207. [PMID: 28749326 PMCID: PMC5817201 DOI: 10.1099/mic.0.000511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuraminidase A (NanA) is an important virulence factor that is anchored to the pneumococcal cell wall and cleaves sialic acid on host substrates. We noted that a secreted allele of NanA was over-represented in invasive pneumococcal isolates and promoted the development of meningitis when swapped into the genome of non-meningitis isolates replacing cell wall-anchored NanA. Both forms of recombinant NanA directly activated transforming growth factor (TGF)-β, increased SMAD signalling and promoted loss of endothelial tight junction ZO-1. However, in assays using whole bacteria, only the cell-bound NanA decreased expression of ZO-1 and showed NanA dependence of bacterial invasion of endothelial cells. We conclude that NanA secretion versus retention on the cell surface does not influence neurotropism of clinical isolates. However, we describe a new NanA-TGF-β signalling axis that leads to decreased blood-brain barrier integrity and enhances bacterial invasion.
Collapse
Affiliation(s)
- Nina Gratz
- Departments of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Lip Nam Loh
- Departments of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Beth Mann
- Departments of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Geli Gao
- Departments of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Robert Carter
- Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jason Rosch
- Departments of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Elaine I. Tuomanen
- Departments of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- *Correspondence: Elaine I. Tuomanen,
| |
Collapse
|
39
|
Schroeder JT, Bieneman AP. Activation of Human Basophils by A549 Lung Epithelial Cells Reveals a Novel IgE-Dependent Response Independent of Allergen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:855-865. [PMID: 28652400 PMCID: PMC5541892 DOI: 10.4049/jimmunol.1700055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/25/2017] [Indexed: 12/24/2022]
Abstract
Evidence for epithelial cell (EC)-derived cytokines (e.g., thymic stromal lymphopoietin [TSLP]) activating human basophils remains controversial. We therefore hypothesize that ECs can directly activate basophils via cell-to-cell interaction. Basophils in medium alone or with IL-3 ± anti-IgE were coincubated with TSLP, IL-33, or IL-25. Analogous experiments cocultured basophils (1-72 h) directly with EC lines. Supernatants were tested for mediators and cytokines. Abs targeting receptors were tested for neutralizing effects. Lactic acid (pH 3.9) treatment combined with passive sensitization tested the role of IgE. Overall, IL-33 augmented IL-13 secretion from basophils cotreated with IL-3, with minimal effects on histamine and IL-4. Conversely, basophils (but not mast cells) released histamine and marked levels of IL-4/IL-13 (10-fold) when cocultured with A549 EC and IL-3, without exogenous allergen or IgE cross-linking stimuli. The inability to detect IL-33 or TSLP, or to neutralize their activity, suggested a unique mode of basophil activation by A549 EC. Half-maximal rates for histamine (4 h) and IL-4 (5 h) secretion were slower than observed with standard IgE-dependent activation. Ig stripping combined with passive sensitization ± omalizumab showed a dependency for basophil-bound IgE, substantiated by a requirement for cell-to-cell contact, aggregation, and FcεRI-dependent signaling. A yet unidentified IgE-binding lectin associated with A549 EC is implicated after discovering that LacNAc suppressed basophil activation in cocultures. These findings point to a lectin-dependent activation of basophil requiring IgE but independent of allergen or secreted cytokine. Pending further investigation, we predict this unique mode of activation is linked to inflammatory conditions whereby IgE-dependent activation of basophils occurs despite the absence of any known allergen.
Collapse
Affiliation(s)
- John T Schroeder
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Anja P Bieneman
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| |
Collapse
|
40
|
Abebayehu D, Spence A, Boyan BD, Schwartz Z, Ryan JJ, McClure MJ. Galectin-1 promotes an M2 macrophage response to polydioxanone scaffolds. J Biomed Mater Res A 2017; 105:2562-2571. [PMID: 28544348 DOI: 10.1002/jbm.a.36113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/27/2017] [Accepted: 05/15/2017] [Indexed: 12/20/2022]
Abstract
Regulating soft tissue repair to prevent fibrosis and promote regeneration is central to creating a microenvironment conducive to soft tissue development. Macrophages play an important role in this process. The macrophage response can be modulated using biomaterials, altering cytokine and growth factor secretion to promote regeneration. Electrospun polydioxanone (PDO) fiber scaffolds promoted an M2 phenotype when macrophages were cultured on large diameter, highly porous scaffolds, but an M1 phenotype on smaller diameter fibers. In this study, we investigated whether incorporation of galectin-1, an immunosuppressive protein that enhances muscle regeneration, could promote the M2 response. Galectin-1 was incorporated into large and small fiber PDO scaffolds during electrospinning. Galectin-1 incorporation increased arginase-1 and reduced iNOS and IL-6 production in mouse bone-marrow derived macrophages compared with PDO alone for both scaffold types. Inhibition of ERK mitogen-activated protein kinase did not alter galectin-1 effects on arginase-1 and iNOS expression, but reversed IL-6 suppression, indicating that IL-6 is mediated by a different mechanism. Our results suggest that galectin-1 can be used to modulate macrophage commitment to a pro-regenerative M2 phenotype, which may positively impact tissue regeneration when using small diameter PDO scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2562-2571, 2017.
Collapse
Affiliation(s)
- Daniel Abebayehu
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Andrew Spence
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Barbara D Boyan
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, Virginia.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Zvi Schwartz
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, Virginia.,Department of Periodontics, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Michael J McClure
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, Virginia.,Physical Medicine and Rehabilitation Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| |
Collapse
|
41
|
The Many Roles of Galectin-3, a Multifaceted Molecule, in Innate Immune Responses against Pathogens. Mediators Inflamm 2017; 2017:9247574. [PMID: 28607536 PMCID: PMC5457773 DOI: 10.1155/2017/9247574] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/08/2017] [Accepted: 04/18/2017] [Indexed: 01/06/2023] Open
Abstract
Galectins are a group of evolutionarily conserved proteins with the ability to bind β-galactosides through characteristic carbohydrate-recognition domains (CRD). Galectin-3 is structurally unique among all galectins as it contains a C-terminal CRD linked to an N-terminal protein-binding domain, being the only chimeric galectin. Galectin-3 participates in many functions, both intra- and extracellularly. Among them, a prominent role for Galectin-3 in inflammation has been recognized. Galectin-3 has also been shown to directly bind to pathogens and to have various effects on the functions of the cells of the innate immune system. Thanks to these two properties, Galectin-3 participates in several ways in the innate immune response against invading pathogens. Galectin-3 has been proposed to function not only as a pattern-recognition receptor (PRR) but also as a danger-associated molecular pattern (DAMP). In this review, we analyze the various roles that have been assigned to Galectin-3, both as a PRR and as a DAMP, in the context of immune responses against pathogenic microorganisms.
Collapse
|
42
|
Wu W, Zhang W, Booth JL, Hutchings DC, Wang X, White VL, Youness H, Cross CD, Zou MH, Burian D, Metcalf JP. Human primary airway epithelial cells isolated from active smokers have epigenetically impaired antiviral responses. Respir Res 2016; 17:111. [PMID: 27604339 PMCID: PMC5013564 DOI: 10.1186/s12931-016-0428-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/02/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cigarette smoking (CS) is the main risk factor for the development of chronic obstructive pulmonary disease (COPD) and most COPD exacerbations are caused by respiratory infections including influenza. Influenza infections are more severe in smokers. The mechanism of the increased risk and severity of infections in smokers is likely multifactorial, but certainly includes changes in immunologic host defenses. METHODS We investigated retinoic acid-inducible protein I (RIG-I) and interferon (IFN) induction by influenza A virus (IAV) in human bronchial epithelial cells (HBEC) isolated from smokers or nonsmokers. Subcultured HBEC cells were infected with A/Puerto Rico/8/1934 (PR8) IAV at an MOI of 1. After 24 h of infection, cells and supernatants were collected for qRT-PCR, immunoblot or ELISA to determine RIG-I, Toll-like receptor3 (TLR3) and IFN expression levels. RESULTS IAV exposure induced a vigorous IFN-β, IFN-λ 1 and IFN-λ 2/3 antiviral response in HBEC from nonsmokers and significant induction of RIG-I and TLR3. In cells from smokers, viral RIG-I and TLR3 mRNA induction was reduced 87 and 79 % compared to the response from nonsmokers. CS exposure history was associated with inhibition of viral induction of the IFN-β, IFN-λ1 and IFN-λ 2/3 mRNA response by 85, 96 and 95 %, respectively, from that seen in HBEC from nonsmokers. The demethylating agent 5-Aza-2-deoxycytidine reversed the immunosuppressive effects of CS exposure in HBEC since viral induction of all three IFNs was restored. IFN-β induction of RIG-I and TLR3 was also suppressed in the cells from smokers. CONCLUSION Our results suggest that active smoking reduces expression of antiviral cytokines in primary HBEC cells. This effect likely occurs via downregulation of RIG-I and TLR3 due to smoke-induced epigenetic modifications. Reduction in lung epithelial cell RIG-I and TLR3 responses may be a major mechanism contributing to the increased risk and severity of viral respiratory infections in smokers and to viral-mediated acute exacerbations of COPD.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wei Zhang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J Leland Booth
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Xiaoqiu Wang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vicky L White
- Civil Aerospace Medical Institute, Federal Aviation Administration, Oklahoma City, OK, USA
| | - Houssein Youness
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Cory D Cross
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ming-Hui Zou
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Dennis Burian
- Civil Aerospace Medical Institute, Federal Aviation Administration, Oklahoma City, OK, USA
| | - Jordan P Metcalf
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|