1
|
Hara Y, Kumamoto T, Yoshizawa-Sugata N, Hirai K, Song X, Kawaji H, Ohtaka-Maruyama C. The spatial transcriptome of the late-stage embryonic and postnatal mouse brain reveals spatiotemporal molecular markers. Sci Rep 2025; 15:12299. [PMID: 40210990 PMCID: PMC11985494 DOI: 10.1038/s41598-025-95496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/21/2025] [Indexed: 04/12/2025] Open
Abstract
The neocortical development process includes cell proliferation, differentiation, migration, and maturation, supported by precise genetic regulation. To understand these processes at the cellular and molecular levels, it is necessary to characterize the fundamental anatomical structures by gene expression. However, markers established in the adult brain sometimes behave differently in the fetal brain, actively changing during development. The spatial transcriptome is a powerful analytical method that enables sequence analysis while retaining spatial information. However, a deeper understanding of these data requires computational estimation, including integration with single-cell transcriptome data and aggregation of spots at the single-cell cluster level. The application of such analysis to biomarker discovery has only begun recently, and its application to the developing fetal brain is largely unexplored. In this study, we performed a spatial transcriptome analysis of the developing mouse brain to investigate spatio-temporal regulation of gene expression during development. Using these data, we conducted an integrated study with publicly available mouse data sets. Our data-driven analysis identified novel molecular markers of the choroid plexus, piriform cortex, and thalamus. Furthermore, we identified a novel molecular marker that can determine the dorsal endopiriform nucleus (DEn) of the developmental stage in the claustrum/DEn complex.
Collapse
Affiliation(s)
- Yuichiro Hara
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Kitasato University School of Frontier Engineering, Sagamihara, Kanagawa, Japan
| | - Takuma Kumamoto
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Naoko Yoshizawa-Sugata
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Kumiko Hirai
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Xianghe Song
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Biological Science, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan.
- Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Bunkyo, Tokyo, Japan.
| | - Chiaki Ohtaka-Maruyama
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan.
- Department of Biological Science, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| |
Collapse
|
2
|
Calvo-Jiménez E, Stam K, Jossi A, Jossin Y. GRASPs link Reelin to the Golgi during neocortical development to control neuronal migration and dendritogenesis. Commun Biol 2025; 8:572. [PMID: 40188221 PMCID: PMC11972360 DOI: 10.1038/s42003-025-08014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
Reelin serves as a crucial regulator of brain organogenesis, playing a significant role in neuronal positioning and dendritogenesis. At subcellular level, it influences the translocation and remodeling of the Golgi apparatus. Despite its importance, the mechanisms by which Reelin governs the Golgi during neuronal migration and dendrite formation remain largely unknown. This study reveals that Reelin promotes de novo translation of Golgi Re-Assembly Stacking Proteins (GRASPs), which are essential for the functions of Reelin on cortical neurons. Downregulation of GRASPs in migrating excitatory neurons of the embryonic neocortex leads to disoriented cells during the multipolar phase of migration and an aberrant leading process length during locomotion. Postnatally, it results in mislocalized neurons displaying a disorganized Golgi structure and an improperly oriented, underdeveloped apical dendrite. Our findings position GRASPs and their role in Golgi morphology modulation as novel contributors to the Reelin-mediated processes during embryonic development of the mammalian neocortex.
Collapse
Affiliation(s)
- Elisa Calvo-Jiménez
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Kirsten Stam
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Angélique Jossi
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
3
|
Zhao L, Tao YC, Hu L, Liu XY, Zhang Q, Zhang L, Ding YQ, Song NN. Satb2 and Nr4a2 are required for the differentiation of cortical layer 6b. Cell Death Discov 2025; 11:126. [PMID: 40164579 PMCID: PMC11958660 DOI: 10.1038/s41420-025-02402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/15/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
Cortical layer 6 is divided into two sublayers, and layer 6b is situated above the white matter with distinct architecture from layer 6a. Layer 6b arises from the subplate and contains the earliest born neurons in the development of cerebral cortex. Although great progress has been made in understanding the cortical morphogenesis, there is a dearth of knowledge regarding the molecular mechanisms governing the development of layer 6b neurons. Here we report that transcription factor special AT-rich binding protein 2 (Satb2) and nuclear receptor subfamily 4 group A member 2 (Nr4a2) are required for the normal differentiation layer 6b neurons. Upon conditional deletion of Satb2 in the cortex (Satb2Emx1 CKO) or selectively inactivation of Satb2 in layer 6b neurons only (Satb2Nr4a2CreER CKO), the expressions of layer 6b-specific genes (i.e., Ctgf, Cplx3, Trh and Tnmd) were significantly reduced, whereas that of Nr4a2 was dramatically increased, underscoring that Satb2 is involved in the differentiation of layer 6b neurons in a cell-autonomous manner. On the other hand, when Nr4a2 was deleted in the cortex, the expressions of Trh and Tnmd were upregulated with unchanged expression of Ctgf and Cplx3. Notably, the defective differentiation resulting from the deletion of Satb2 remained in Satb2/Nr4a2 double CKO mice. In summary, our findings indicated that both Satb2 and Nr4a2 are required for the differentiation of layer 6b neurons possibly via different pathways.
Collapse
Affiliation(s)
- Li Zhao
- Laboratory Animal Center, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yun-Chao Tao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ling Hu
- Laboratory Animal Center, Fudan University, Shanghai, China
| | - Xi-Yue Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qiong Zhang
- Laboratory Animal Center, Fudan University, Shanghai, China
| | - Lei Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Yu-Qiang Ding
- Laboratory Animal Center, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Huashan Institute of Medicine (HS-IOM), Huashan Hospital, Fudan University, Shanghai, China.
| | - Ning-Ning Song
- Laboratory Animal Center, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Hanson MA, Bibi N, Safa A, Nagarajan D, Marshall AH, Johantges AC, Wester JC. Development of Differential Sublaminar Feedforward Inhibitory Circuits in CA1 Hippocampus Requires Satb2. J Neurosci 2025; 45:e0737242024. [PMID: 39753301 PMCID: PMC11841754 DOI: 10.1523/jneurosci.0737-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/30/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif. We found that the transcriptional regulator SATB2, which is necessary for pyramidal cell differentiation in the neocortex, is selectively expressed in superficial PCs during early postnatal development. To investigate its role in CA1, we conditionally knocked out Satb2 from pyramidal cells during embryonic development using both male and female Emx1IRES-Cre; Satb2flox/flox mice. Loss of Satb2 resulted in increased feedforward inhibition of CA3 Schaffer collateral input to superficial PCs, which matched that observed to deep PCs in control mice. Using paired whole-cell recordings between PCs and PV+ interneurons, we found this was due to an increase in the strength of unitary inhibitory synaptic connections from PV+ interneurons to mutant superficial PCs. Regulation of synapse strength was restricted to inhibitory synapses; excitatory synaptic connections from CA3 to CA1 PCs and CA1 PCs to PV+ interneurons were not affected by loss of Satb2 Finally, we show that SATB2 expression in superficial PCs is necessary to suppress the formation of synapses from PV+ interneurons during synaptogenesis. Thus, early postnatal expression of SATB2 in superficial PCs is necessary for the development of biased feedforward inhibition in CA1.
Collapse
Affiliation(s)
- Meretta A Hanson
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Noor Bibi
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Alireza Safa
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Devipriyanka Nagarajan
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Alec H Marshall
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Aidan C Johantges
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Jason C Wester
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| |
Collapse
|
5
|
Sudarsanam S, Guzman-Clavel L, Dar N, Ziak J, Shahid N, Jin XO, Kolodkin AL. Mef2c Controls Postnatal Callosal Axon Targeting by Regulating Sensitivity to Ephrin Repulsion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634300. [PMID: 39896513 PMCID: PMC11785193 DOI: 10.1101/2025.01.22.634300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Cortical connectivity is contingent on ordered emergence of neuron subtypes followed by the formation of subtype-specific axon projections. Intracortical circuits, including long-range callosal projections, are crucial for information processing, but mechanisms of intracortical axon targeting are still unclear. We find that the transcription factor Myocyte enhancer factor 2-c (Mef2c) directs the development of somatosensory cortical (S1) layer 4 and 5 pyramidal neurons during embryogenesis. During early postnatal development, Mef2c expression shifts to layer 2/3 callosal projection neurons (L2/3 CPNs), and we find a novel function for Mef2c in targeting homotopic contralateral cortical regions by S1-L2/3 CPNs. We demonstrate, using functional manipulation of EphA-EphrinA signaling in Mef2c-mutant CPNs, that Mef2c downregulates EphA6 to desensitize S1-L2/3 CPN axons to EphrinA5-repulsion at their contralateral targets. Our work uncovers dual roles for Mef2c in cortical development: regulation of laminar subtype specification during embryogenesis, and axon targeting in postnatal callosal neurons.
Collapse
Affiliation(s)
- Sriram Sudarsanam
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- These authors contributed equally
| | - Luis Guzman-Clavel
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- These authors contributed equally
| | - Nyle Dar
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jakub Ziak
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Naseer Shahid
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinyu O. Jin
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Senior author
- Lead contact
| |
Collapse
|
6
|
Toolan KP, McGrath BT, Brinkmeier ML, Camper SA, Bielas SL. Ash1l loss-of-function results in structural birth defects and altered cortical development. Brain 2025; 148:55-68. [PMID: 38943682 PMCID: PMC11706301 DOI: 10.1093/brain/awae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/16/2024] [Accepted: 06/09/2024] [Indexed: 07/01/2024] Open
Abstract
The histone methyltransferase ASH1L plays a crucial role in regulating gene expression across various organ systems during development, yet its role in brain development remains largely unexplored. Over 130 individuals with autism harbour heterozygous loss-of-function ASH1L variants, and population studies confirm it as a high-risk autism gene. Previous studies on Ash1l deficient mice have reported autistic-like behaviours and provided insights into the underlying neuropathophysiology. In this study, we used mice with a cre-inducible deletion of Ash1l exon 4, which results in a frame shift and premature stop codon (p.V1693Afs*2). Our investigation evaluated the impact of Ash1l loss-of-function on survival and craniofacial skeletal development. Using a tamoxifen-inducible cre strain, we targeted Ash1l knockout early in cortical development [Emx1-Cre-ERT2; embryonic Day (e) 10.5]. Immunohistochemistry was utilized to assess cortical lamination, while EdU incorporation aided in birthdating cortical neurons. Additionally, single-cell RNA sequencing was employed to compare cortical cell populations and identify genes with differential expression. At e18.5, the proportion of homozygous Ash1l germline knockout embryos appeared normal; however, no live Ash1l null pups were present at birth (e18.5: n = 77, P = 0.90; p0: n = 41, P = 0.00095). Notably, Ash1l-/- exhibited shortened nasal bones (n = 31, P = 0.017). In the cortical-specific knockout model, SATB2 neurons showed increased numbers (n = 6/genotype, P = 0.0001) and were distributed through the cortical plate. Birthdating revealed generation of ectopically placed deep layer neurons that express SATB2 (e13.5 injection: n = 4/genotype, P = 0.0126). Single cell RNA sequencing revealed significant differences in gene expression between control and mutant upper layer neurons, leading to distinct clustering. Pseudotime analysis indicated that the mutant cluster followed an altered cell differentiation trajectory. This study underscores the essential role of Ash1l in postnatal survival and normal craniofacial development. In the cortex, ASH1L exerts broad effects on gene expression and is indispensable for determining the fate of upper layer cortical neurons. These findings provide valuable insights into the potential mechanisms of ASH1L neuropathology, shedding light on its significance in neurodevelopmental disorders like autism.
Collapse
Affiliation(s)
- Kevin P Toolan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI48109, USA
| | - Brian T McGrath
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI48109, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI48109, USA
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI48109, USA
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Popp JM, Rhodes K, Jangi R, Li M, Barr K, Tayeb K, Battle A, Gilad Y. Cell type and dynamic state govern genetic regulation of gene expression in heterogeneous differentiating cultures. CELL GENOMICS 2024; 4:100701. [PMID: 39626676 DOI: 10.1016/j.xgen.2024.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024]
Abstract
Identifying the molecular effects of human genetic variation across cellular contexts is crucial for understanding the mechanisms underlying disease-associated loci, yet many cell types and developmental stages remain underexplored. Here, we harnessed the potential of heterogeneous differentiating cultures (HDCs), an in vitro system in which pluripotent cells asynchronously differentiate into a broad spectrum of cell types. We generated HDCs for 53 human donors and collected single-cell RNA sequencing data from over 900,000 cells. We identified expression quantitative trait loci in 29 cell types and characterized regulatory dynamics across diverse differentiation trajectories. This revealed novel regulatory variants for genes involved in key developmental and disease-related processes while replicating known effects from primary tissues and dynamic regulatory effects associated with a range of complex traits.
Collapse
Affiliation(s)
- Joshua M Popp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Katherine Rhodes
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Radhika Jangi
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mingyuan Li
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kenneth Barr
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Karl Tayeb
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Yoav Gilad
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
8
|
Collu R, Zarate YA, Xia W, Fish JL. Individuals with SATB2-associated syndrome have impaired vitamin and energy metabolism pathways. Metab Brain Dis 2024; 40:3. [PMID: 39541055 DOI: 10.1007/s11011-024-01465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024]
Abstract
Special AT-rich sequence-binding protein 2 (SATB2) is a master regulator of gene expression. Mutations of the SATB2 gene results in the SATB2-associated syndrome (SAS), a genetic disorder characterized by neurodevelopmental disabilities and autism-related phenotype. The importance of plasma as an indicator of SAS phenotypes is unknown. We aim to investigate if pathogenic variants in SATB2 are associated with alteration to relevant pathways in the plasma of SAS patients and identify key differentially regulated proteins which may serve as biomarkers to improve diagnostic and future pharmacological approaches. We used well-validated proteomic technologies to determine the proteomic profile of plasma from SAS patients compared to healthy control subjects. Bioinformatical analysis was performed to identify significant proteins and functionally enriched pathways. We identified differentially expressed proteins in the plasma of SAS patients that are significantly involved in metabolism-related pathways. Energy metabolism, glucose metabolism and vitamin metabolism pathways are significantly enriched in SAS patients as compared to healthy controls. Our study linked SATB2 mutations to the impairment of plasma proteins involved in different metabolic pathways in SAS patients.
Collapse
Affiliation(s)
- Roberto Collu
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA.
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Yuri A Zarate
- Division of Genetics and Metabolism, University of Kentucky, Lexington, KY, USA
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA.
| |
Collapse
|
9
|
Spyrou J, Aung KP, Vanyai H, Leventer RJ, Maljevic S, Lockhart PJ, Howell KB, Reid CA. Slc35a2 mosaic knockout impacts cortical development, dendritic arborisation, and neuronal firing. Neurobiol Dis 2024; 201:106657. [PMID: 39236911 DOI: 10.1016/j.nbd.2024.106657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE) is an important cause of drug-resistant epilepsy. A significant subset of individuals diagnosed with MOGHE display somatic mosaicism for loss-of-function variants in SLC35A2, which encodes the UDP-galactose transporter. We developed a mouse model to investigate how disruption of this transporter leads to a malformation of cortical development. We used in utero electroporation and CRISPR/Cas9 to knockout Slc35a2 in a subset of layer 2/3 cortical neuronal progenitors in the developing brains of male and female fetal mice to model mosaic expression. Mosaic Slc35a2 knockout was verified through next-generation sequencing and immunohistochemistry of GFP-labelled transfected cells. Histology of brain tissue in mosaic Slc35a2 knockout mice revealed the presence of upper layer-derived cortical neurons in the white matter. Reconstruction of single filled neurons identified altered dendritic arborisation with Slc35a2 knockout neurons having increased complexity. Whole-cell electrophysiological recordings revealed that Slc35a2 knockout neurons display reduced action potential firing, increased afterhyperpolarisation duration and reduced burst-firing when compared with control neurons. Mosaic Slc35a2 knockout mice also exhibited significantly increased epileptiform spiking and increased locomotor activity. We successfully generated a mouse model of mosaic Slc35a2 deficiency, which recapitulates features of the human phenotype, including impaired neuronal migration. We show that knockout in layer 2/3 cortical neuron progenitors is sufficient to disrupt neuronal excitability, increase epileptiform activity and cause hyperactivity in mosaic mice. Our mouse model provides an opportunity to further investigate the disease mechanisms that contribute to MOGHE and facilitate the development of precision therapies.
Collapse
Affiliation(s)
- James Spyrou
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Khaing Phyu Aung
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Hannah Vanyai
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Richard J Leventer
- Department of Neurology, Royal Children's Hospital, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Paul J Lockhart
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Katherine B Howell
- Department of Neurology, Royal Children's Hospital, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia.
| |
Collapse
|
10
|
Gao Y, van Velthoven CTJ, Lee C, Thomas ED, Bertagnolli D, Carey D, Casper T, Chakka AB, Chakrabarty R, Clark M, Desierto MJ, Ferrer R, Gloe J, Goldy J, Guilford N, Guzman J, Halterman CR, Hirschstein D, Ho W, James K, McCue R, Meyerdierks E, Nguy B, Pena N, Pham T, Shapovalova NV, Sulc J, Torkelson A, Tran A, Tung H, Wang J, Ronellenfitch K, Levi B, Hawrylycz MJ, Pagan C, Dee N, Smith KA, Tasic B, Yao Z, Zeng H. Continuous cell type diversification throughout the embryonic and postnatal mouse visual cortex development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.02.616246. [PMID: 39829740 PMCID: PMC11741437 DOI: 10.1101/2024.10.02.616246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The mammalian cortex is composed of a highly diverse set of cell types and develops through a series of temporally regulated events that build out the cell type and circuit foundation for cortical function. The mechanisms underlying the development of different cell types remain elusive. Single-cell transcriptomics provides the capacity to systematically study cell types across the entire temporal range of cortical development. Here, we present a comprehensive and high-resolution transcriptomic and epigenomic cell type atlas of the developing mouse visual cortex. The atlas was built from a single-cell RNA-sequencing dataset of 568,674 high-quality single-cell transcriptomes and a single-nucleus Multiome dataset of 194,545 high-quality nuclei providing both transcriptomic and chromatin accessibility profiles, densely sampled throughout the embryonic and postnatal developmental stages from E11.5 to P56. We computationally reconstructed a transcriptomic developmental trajectory map of all excitatory, inhibitory, and non-neuronal cell types in the visual cortex, identifying branching points marking the emergence of new cell types at specific developmental ages and defining molecular signatures of cellular diversification. In addition to neurogenesis, gliogenesis and early postmitotic maturation in the embryonic stage which gives rise to all the cell classes and nearly all subclasses, we find that increasingly refined cell types emerge throughout the postnatal differentiation process, including the late emergence of many cell types during the eye-opening stage (P11-P14) and the onset of critical period (P21), suggesting continuous cell type diversification at different stages of cortical development. Throughout development, we find cooperative dynamic changes in gene expression and chromatin accessibility in specific cell types, identifying both chromatin peaks potentially regulating the expression of specific genes and transcription factors potentially regulating specific peaks. Furthermore, a single gene can be regulated by multiple peaks associated with different cell types and/or different developmental stages. Collectively, our study provides the most detailed dynamic molecular map directly associated with individual cell types and specific developmental events that reveals the molecular logic underlying the continuous refinement of cell type identities in the developing visual cortex.
Collapse
Affiliation(s)
- Yuan Gao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Daniel Carey
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Rachel McCue
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Beagan Nguy
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nick Pena
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Alex Tran
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Justin Wang
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| |
Collapse
|
11
|
Abe P, Lavalley A, Morassut I, Santinha AJ, Roig-Puiggros S, Javed A, Klingler E, Baumann N, Prados J, Platt RJ, Jabaudon D. Molecular programs guiding arealization of descending cortical pathways. Nature 2024; 634:644-651. [PMID: 39261725 DOI: 10.1038/s41586-024-07895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
Layer 5 extratelencephalic (ET) neurons are present across neocortical areas and send axons to multiple subcortical targets1-6. Two cardinal subtypes exist7,8: (1) Slco2a1-expressing neurons (ETdist), which predominate in the motor cortex and project distally to the pons, medulla and spinal cord; and (2) Nprs1- or Hpgd-expressing neurons (ETprox), which predominate in the visual cortex and project more proximally to the pons and thalamus. An understanding of how area-specific ETdist and ETprox emerge during development is important because they are critical for fine motor skills and are susceptible to spinal cord injury and amyotrophic lateral sclerosis9-12. Here, using cross-areal mapping of axonal projections in the mouse neocortex, we identify the subtype-specific developmental dynamics of ET neurons. Whereas subsets of ETprox emerge by pruning of ETdist axons, others emerge de novo. We outline corresponding subtype-specific developmental transcriptional programs using single-nucleus sequencing. Leveraging these findings, we use postnatal in vivo knockdown of subtype-specific transcription factors to reprogram ET neuron connectivity towards more proximal targets. Together, these results show the functional transcriptional programs driving ET neuron diversity and uncover cell subtype-specific gene regulatory networks that can be manipulated to direct target specificity in motor corticofugal pathways.
Collapse
Affiliation(s)
- Philipp Abe
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Adrien Lavalley
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - Ilaria Morassut
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Antonio J Santinha
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sergi Roig-Puiggros
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Awais Javed
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Esther Klingler
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Natalia Baumann
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Julien Prados
- Bioinformatic Support Platform, University of Geneva, Geneva, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Basel Research Center for Child Health, Basel, Switzerland
- Department of Chemistry, University of Basel, Basel, Switzerland
- NCCR Molecular Systems Engineering, Basel, Switzerland
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
- Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland.
- Université Paris Cité, Imagine Institute, Paris, France.
| |
Collapse
|
12
|
Liu Y, Chen X, Ma Y, Song C, Ma J, Chen C, Su J, Ma L, Saiyin H. Endogenous mutant Huntingtin alters the corticogenesis via lowering Golgi recruiting ARF1 in cortical organoid. Mol Psychiatry 2024; 29:3024-3039. [PMID: 38654124 PMCID: PMC11449793 DOI: 10.1038/s41380-024-02562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Pathogenic mutant huntingtin (mHTT) infiltrates the adult Huntington's disease (HD) brain and impairs fetal corticogenesis. However, most HD animal models rarely recapitulate neuroanatomical alterations in adult HD and developing brains. Thus, the human cortical organoid (hCO) is an alternative approach to decode mHTT pathogenesis precisely during human corticogenesis. Here, we replicated the altered corticogenesis in the HD fetal brain using HD patient-derived hCOs. Our HD-hCOs had pathological phenotypes, including deficient junctional complexes in the neural tubes, delayed postmitotic neuronal maturation, dysregulated fate specification of cortical neuron subtypes, and abnormalities in early HD subcortical projections during corticogenesis, revealing a causal link between impaired progenitor cells and chaotic cortical neuronal layering in the HD brain. We identified novel long, oriented, and enriched polyQ assemblies of HTTs that hold large flat Golgi stacks and scaffold clathrin+ vesicles in the neural tubes of hCOs. Flat Golgi stacks conjugated polyQ assemblies by ADP-ribosylation factor 1 (ARF1). Inhibiting ARF1 activation with Brefeldin A (BFA) disassociated polyQ assemblies from Golgi. PolyQ assembles with mHTT scaffolded fewer ARF1 and formed shorter polyQ assembles with fewer and shorter Golgi and clathrin vesicles in neural tubes of HD-hCOs compared with those in hCOs. Inhibiting the activation of ARF1 by BFA in healthy hCOs replicated impaired junctional complexes in the neural tubes. Together, endogenous polyQ assemblies with mHTT reduced the Golgi recruiting ARF1 in the neuroepithelium, impaired the Golgi structure and activities, and altered the corticogenesis in HD-hCO.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyu Chen
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yunlong Ma
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Chenyun Song
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jixin Ma
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Cheng Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jianzhong Su
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Lixiang Ma
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
13
|
McRae HM, Leong MPY, Bergamasco MI, Garnham AL, Hu Y, Corbett MA, Whitehead L, El-Saafin F, Sheikh BN, Wilcox S, Hannan AJ, Gécz J, Smyth GK, Thomas T, Voss AK. Loss of PHF6 causes spontaneous seizures, enlarged brain ventricles and altered transcription in the cortex of a mouse model of the Börjeson-Forssman-Lehmann intellectual disability syndrome. PLoS Genet 2024; 20:e1011428. [PMID: 39405291 PMCID: PMC11478892 DOI: 10.1371/journal.pgen.1011428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Börjeson-Forssman-Lehmann syndrome (BFLS) is an X-linked intellectual disability and endocrine disorder caused by pathogenic variants of plant homeodomain finger gene 6 (PHF6). An understanding of the role of PHF6 in vivo in the development of the mammalian nervous system is required to advance our knowledge of how PHF6 mutations cause BFLS. Here, we show that PHF6 protein levels are greatly reduced in cells derived from a subset of patients with BFLS. We report the phenotypic, anatomical, cellular and molecular characterization of the brain in males and females in two mouse models of BFLS, namely loss of Phf6 in the germline and nervous system-specific deletion of Phf6. We show that loss of PHF6 resulted in spontaneous seizures occurring via a neural intrinsic mechanism. Histological and morphological analysis revealed a significant enlargement of the lateral ventricles in adult Phf6-deficient mice, while other brain structures and cortical lamination were normal. Phf6 deficient neural precursor cells showed a reduced capacity for self-renewal and increased differentiation into neurons. Phf6 deficient cortical neurons commenced spontaneous neuronal activity prematurely suggesting precocious neuronal maturation. We show that loss of PHF6 in the foetal cortex and isolated cortical neurons predominantly caused upregulation of genes, including Reln, Nr4a2, Slc12a5, Phip and ZIC family transcription factor genes, involved in neural development and function, providing insight into the molecular effects of loss of PHF6 in the developing brain.
Collapse
Affiliation(s)
- Helen M. McRae
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Melody P. Y. Leong
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Maria I. Bergamasco
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexandra L. Garnham
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Yifang Hu
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Mark A. Corbett
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lachlan Whitehead
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Farrah El-Saafin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Bilal N. Sheikh
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen Wilcox
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Jozef Gécz
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Gordon K. Smyth
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Tim Thomas
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anne K. Voss
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Habela CW, Liu S, Taga A, Dastgheyb R, Haughey N, Bergles D, Song H, Ming GL, Maragakis NJ. Altered development and network connectivity in a human neuronal model of 15q11.2 deletion-related neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613912. [PMID: 39345567 PMCID: PMC11429947 DOI: 10.1101/2024.09.19.613912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The chromosome 15q11.2 locus is deleted in 1.5% of patients with genetic epilepsy and confers a risk for intellectual disability and schizophrenia. Individuals with this deletion demonstrate increased cortical thickness, decreased cortical surface area and white matter abnormalities. Human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPC) from 15q11.2 deletion individuals exhibit early adhesion junction and migration abnormalities, but later neuronal development and function have not been fully assessed. Imaging studies indicating altered structure and network connectivity in the anterior brain regions and the cingulum suggest that in addition to alterations in progenitor dynamics, there may also be structural and functional changes within discrete networks of mature neurons. To explore this, we generated human forebrain cortical neurons from iPSCs derived from individuals with or without 15q11.2 deletion and used longitudinal imaging and multielectrode array analysis to evaluate neuronal development over time. 15q11.2 deleted neurons exhibited fewer connections and an increase in inhibitory neurons. Individual neurons had decreased neurite complexity and overall decreased neurite length. These structural changes were associated with a reduction in multiunit action potential generation, bursting and synchronization. The 15q11.2 deleted neurons also demonstrated specific functional deficits in glutamate and GABA mediated network activity and synchronization with a delay in the maturation of the inhibitory response to GABA. These data indicate that deletion of the 15q11.2 region is sufficient to impair the structural and functional maturation of cortical neuron networks which likely underlies the pathologic changes in humans with the 15q11.2 deletion.
Collapse
|
15
|
McCrimmon CM, Toker D, Pahos M, Lozano K, Lin JJ, Parent J, Tidball A, Zheng J, Molnár L, Mody I, Novitch BG, Samarasinghe RA. Modeling Cortical Versus Hippocampal Network Dysfunction in a Human Brain Assembloid Model of Epilepsy and Intellectual Disability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611739. [PMID: 39282353 PMCID: PMC11398483 DOI: 10.1101/2024.09.07.611739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Neurodevelopmental disorders often impair multiple cognitive domains. For instance, a genetic epilepsy syndrome might cause seizures due to cortical hyperexcitability and present with memory impairments arising from hippocampal dysfunction. This study examines how a single disorder differentially affects distinct brain regions by using human patient iPSC-derived cortical- and hippocampal-ganglionic eminence assembloids to model Developmental and Epileptic Encephalopathy 13 (DEE-13), a condition arising from gain-of-function mutations in the SCN8A gene. While cortical assembloids showed network hyperexcitability akin to epileptogenic tissue, hippocampal assembloids did not, and instead displayed network dysregulation patterns similar to in vivo hippocampal recordings from epilepsy patients. Predictive computational modeling, immunohistochemistry, and single-nucleus RNA sequencing revealed changes in excitatory and inhibitory neuron organization that were specific to hippocampal assembloids. These findings highlight the unique impacts of a single pathogenic variant across brain regions and establish hippocampal assembloids as a platform for studying neurodevelopmental disorders.
Collapse
|
16
|
Greig LC, Woodworth MB, Poulopoulos A, Lim S, Macklis JD. BEAM: A combinatorial recombinase toolbox for binary gene expression and mosaic genetic analysis. Cell Rep 2024; 43:114650. [PMID: 39159043 PMCID: PMC11415793 DOI: 10.1016/j.celrep.2024.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/25/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
We describe a binary expression aleatory mosaic (BEAM) system, which relies on DNA delivery by transfection or viral transduction along with nested recombinase activity to generate two genetically distinct, non-overlapping populations of cells for comparative analysis. Control cells labeled with red fluorescent protein (RFP) can be directly compared with experimental cells manipulated by genetic gain or loss of function and labeled with GFP. Importantly, BEAM incorporates recombinase-dependent signal amplification and delayed reporter expression to enable sharper delineation of control and experimental cells and to improve reliability relative to existing methods. We applied BEAM to a variety of known phenotypes to illustrate its advantages for identifying temporally or spatially aberrant phenotypes, for revealing changes in cell proliferation or death, and for controlling for procedural variability. In addition, we used BEAM to test the cortical protomap hypothesis at the individual radial unit level, revealing that area identity is cell autonomously specified in adjacent radial units.
Collapse
Affiliation(s)
- Luciano C Greig
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Mollie B Woodworth
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Alexandros Poulopoulos
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Stephanie Lim
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Bessa P, Newman AG, Yan K, Schaub T, Dannenberg R, Lajkó D, Eilenberger J, Brunet T, Textoris-Taube K, Kemmler E, Deng P, Banerjee P, Ravindran E, Preissner R, Rosário M, Tarabykin V. Semaphorin heterodimerization in cis regulates membrane targeting and neocortical wiring. Nat Commun 2024; 15:7059. [PMID: 39152101 PMCID: PMC11329519 DOI: 10.1038/s41467-024-51009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/22/2024] [Indexed: 08/19/2024] Open
Abstract
Disruption of neocortical circuitry and architecture in humans causes numerous neurodevelopmental disorders. Neocortical cytoarchitecture is orchestrated by various transcription factors such as Satb2 that control target genes during strict time windows. In humans, mutations of SATB2 cause SATB2 Associated Syndrome (SAS), a multisymptomatic syndrome involving epilepsy, intellectual disability, speech delay, and craniofacial defects. Here we show that Satb2 controls neuronal migration and callosal axonal outgrowth during murine neocortical development by inducing the expression of the GPI-anchored protein, Semaphorin 7A (Sema7A). We find that Sema7A exerts this biological activity by heterodimerizing in cis with the transmembrane semaphorin, Sema4D. We could also observe that heterodimerization with Sema7A promotes targeting of Sema4D to the plasma membrane in vitro. Finally, we report an epilepsy-associated de novo mutation in Sema4D (Q497P) that inhibits normal glycosylation and plasma membrane localization of Sema4D-associated complexes. These results suggest that neuronal use of semaphorins during neocortical development is heteromeric, and a greater signaling complexity exists than was previously thought.
Collapse
Affiliation(s)
- Paraskevi Bessa
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Andrew G Newman
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Kuo Yan
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Theres Schaub
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Rike Dannenberg
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Denis Lajkó
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Julia Eilenberger
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Theresa Brunet
- Department of Pediatric Neurology and Developmental Medicine and Ludwig Maximilians University Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, Ludwig Maximilians University Hospital, Ludwig Maximilians University, Munich, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kathrin Textoris-Taube
- Institute of Biochemistry, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
- Core Facility - High-Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Core Facility - High-Throughput Mass Spectrometry, Am Charitéplatz 1, Berlin, Germany
| | - Emanuel Kemmler
- Institute of Physiology, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| | - Penghui Deng
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Priyanka Banerjee
- Institute of Physiology, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| | - Ethiraj Ravindran
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Robert Preissner
- Institute of Physiology, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| | - Marta Rosário
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russian Federation.
| |
Collapse
|
18
|
Yang J, Li Y, Tang Y, Yang L, Guo C, Peng C. Spatial transcriptome reveals the region-specific genes and pathways regulated by Satb2 in neocortical development. BMC Genomics 2024; 25:757. [PMID: 39095712 PMCID: PMC11297773 DOI: 10.1186/s12864-024-10672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND It is known that the neurodevelopmental disorder associated gene, Satb2, plays important roles in determining the upper layer neuron specification. However, it is not well known how this gene regulates other neocortical regions during the development. It is also lack of comprehensive delineation of its spatially regulatory pathways in neocortical development. RESULTS In this work, we utilized spatial transcriptomics and immuno-staining to systematically investigate the region-specific gene regulation of Satb2 by comparing the Satb2+/+ and Satb2-/- mice at embryonic stages, including the ventricle zone (VZ) or subventricle zone (SVZ), intermediate zone (IZ) and cortical plate (CP) respectively. The staining result reveals that these three regions become moderately or significantly thinner in the Satb2-/- mice. In the cellular level, the cell number increases in the VZ/SVZ, whereas the cell number decreases in the CP. The spatial transcriptomics data show that many important genes and relevant pathways are dysregulated in Satb2-/- mice in a region-specific manner. In the VZ/SVZ, the key genes involved in neural precursor cell proliferation, including the intermediate progenitor marker Tbr2 and the lactate production related gene Ldha, are up-regulated in Satb2-/- mice. In the IZ, the key genes in regulating neuronal differentiation and migration, such as Rnd2, exhibit ectopic expressions in the Satb2-/- mice. In the CP, the lineage-specific genes, Tbr1 and Bcl11b, are abnormally expressed. The neuropeptide related gene Npy is down-regulated in Satb2-/- mice. Finally, we validated the abnormal expressions of key regulators by using immunofluorescence or qPCR. CONCLUSIONS In summary, our work provides insights on the region-specific genes and pathways which are regulated by Satb2 in neocortical development.
Collapse
Affiliation(s)
- Jianfen Yang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Yu Li
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Yiyuli Tang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Ling Yang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Chunming Guo
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Cheng Peng
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
19
|
Di Bella DJ, Domínguez-Iturza N, Brown JR, Arlotta P. Making Ramón y Cajal proud: Development of cell identity and diversity in the cerebral cortex. Neuron 2024; 112:2091-2111. [PMID: 38754415 PMCID: PMC11771131 DOI: 10.1016/j.neuron.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Since the beautiful images of Santiago Ramón y Cajal provided a first glimpse into the immense diversity and complexity of cell types found in the cerebral cortex, neuroscience has been challenged and inspired to understand how these diverse cells are generated and how they interact with each other to orchestrate the development of this remarkable tissue. Some fundamental questions drive the field's quest to understand cortical development: what are the mechanistic principles that govern the emergence of neuronal diversity? How do extrinsic and intrinsic signals integrate with physical forces and activity to shape cell identity? How do the diverse populations of neurons and glia influence each other during development to guarantee proper integration and function? The advent of powerful new technologies to profile and perturb cortical development at unprecedented resolution and across a variety of modalities has offered a new opportunity to integrate past knowledge with brand new data. Here, we review some of this progress using cortical excitatory projection neurons as a system to draw out general principles of cell diversification and the role of cell-cell interactions during cortical development.
Collapse
Affiliation(s)
- Daniela J Di Bella
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Nuria Domínguez-Iturza
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Juliana R Brown
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
20
|
Loupe JM, Anderson AG, Rizzardi LF, Rodriguez-Nunez I, Moyers B, Trausch-Lowther K, Jain R, Bunney WE, Bunney BG, Cartagena P, Sequeira A, Watson SJ, Akil H, Cooper GM, Myers RM. Multiomic profiling of transcription factor binding and function in human brain. Nat Neurosci 2024; 27:1387-1399. [PMID: 38831039 DOI: 10.1038/s41593-024-01658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/19/2024] [Indexed: 06/05/2024]
Abstract
Transcription factors (TFs) orchestrate gene expression programs crucial for brain function, but we lack detailed information about TF binding in human brain tissue. We generated a multiomic resource (ChIP-seq, ATAC-seq, RNA-seq, DNA methylation) on bulk tissues and sorted nuclei from several postmortem brain regions, including binding maps for more than 100 TFs. We demonstrate improved measurements of TF activity, including motif recognition and gene expression modeling, upon identification and removal of high TF occupancy regions. Further, predictive TF binding models demonstrate a bias for these high-occupancy sites. Neuronal TFs SATB2 and TBR1 bind unique regions depleted for such sites and promote neuronal gene expression. Binding sites for TFs, including TBR1 and PKNOX1, are enriched for risk variants associated with neuropsychiatric disorders, predominantly in neurons. This work, titled BrainTF, is a powerful resource for future studies seeking to understand the roles of specific TFs in regulating gene expression in the human brain.
Collapse
Affiliation(s)
- Jacob M Loupe
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Lindsay F Rizzardi
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Biochemistry and Molecular Biology, The University of Alabama in Birmingham, Birmingham, AL, USA
| | | | - Belle Moyers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Rashmi Jain
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - William E Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Blynn G Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Preston Cartagena
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Adolfo Sequeira
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Stanley J Watson
- The Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Huda Akil
- The Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| |
Collapse
|
21
|
Reyes-Pinto R, Rojas MJ, Letelier JC, Marín GJ, Mpodozis J. Early Development of the Thalamo-Pallial Stage of the Tectofugal Visual Pathway in the Chicken (Gallus gallus). J Comp Neurol 2024; 532:e25657. [PMID: 38987912 DOI: 10.1002/cne.25657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
The tectofugal pathway is a highly conserved visual pathway in all amniotes. In birds and mammals, retinorecipient neurons located in the midbrain roof (optic tectum/superior colliculus) are the source of ascending projections to thalamic relays (nucleus rotundus/caudal pulvinar), which in turn project to specific pallial regions (visual dorsal ventricular ridge [vDVR]/temporal cortex) organized according to a columnar recurrent arrangement of interlaminar circuits. Whether or to which extent these striking hodological correspondences arise from comparable developmental processes is at present an open question, mainly due to the scarcity of data about the ontogeny of the avian tectofugal system. Most of the previous developmental studies of this system in birds have focused on the establishment of the retino-tecto-thalamic connectivity, overlooking the development of the thalamo-pallial-intrapallial circuit. In this work, we studied the latter in chicken embryos by means of immunohistochemical assays and precise ex vivo crystalline injections of biocytin and DiI. We found that the layered organization of the vDVR as well as the system of homotopic reciprocal connections between vDVR layers were present as early as E8. A highly organized thalamo-vDVR projection was also present at this stage. Our immunohistochemical assays suggest that both systems of projections emerge simultaneously even earlier. Combined with previous findings, these results reveal that, in striking contrast with mammals, the peripheral and central stages of the avian tectofugal pathway develop along different timelines, with a tecto-thalamo-intrapallial organization arising before and possibly independently of the retino-isthmo-tectal circuit.
Collapse
Affiliation(s)
- Rosana Reyes-Pinto
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - María-José Rojas
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Juan-Carlos Letelier
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gonzalo J Marín
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
22
|
Mestareehi A. Global Gene Expression Profiling and Bioinformatics Analysis Reveal Downregulated Biomarkers as Potential Indicators for Hepatocellular Carcinoma. ACS OMEGA 2024; 9:26075-26096. [PMID: 38911766 PMCID: PMC11191119 DOI: 10.1021/acsomega.4c01496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Objective: The study aimed to elucidate the significance of CLEC4G, CAMK2β, SLC22A1, CBFA2T3, and STAB2 in the prognosis of hepatocellular carcinoma (HCC) patients and their associated molecular biological characteristics. Additionally, the research sought to identify new potential biomarkers with therapeutic and diagnostic relevance for clinical applications. Methods and Materials: We utilized a publicly available high throughput phosphoproteomics and proteomics data set of HCC to focus on the analysis of 12 downregulated phosphoproteins in HCC. Our approach integrates bioinformatic analysis with pathway analysis, encompassing gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and the construction of a protein-protein interaction (PPI) network. Results: In total, we quantified 11547 phosphorylation sites associated with 4043 phosphoproteins from a cohort of 159 HCC patients. Within this extensive data set, our specific focus was on 19 phosphorylation sites displaying significant downregulation (log2 FC ≤ -2 with p-values < 0.0001). Remarkably, our investigation revealed distinct pathways exhibiting differential regulation across multiple dimensions, including the genomic, transcriptomic, proteomic, and phosphoproteomic levels. These pathways encompass a wide range of critical cellular processes, including cellular component organization, cell cycle control, signaling pathways, transcriptional and translational control, and metabolism. Furthermore, our bioinformatics analysis unveiled noteworthy insights into the subcellular localizations, biological processes, and molecular functions associated with these proteins and phosphoproteins. Within the context of the PPI network, we identified 12 key genes CLEC4G, STAB2, ADH1A, ADH1B, CAMK2B, ADH4, CHGB, PYGL, ADH1C, AKAP12, CBFA2T3, and SLC22A1 as the top highly interconnected hub genes. Conclusions: The findings related to CLEC4G, ADH1B, SLC22A1, CAMK2β, CBFA2T3, and STAB2 indicate their reduced expression in HCC, which is associated with an unfavorable prognosis. Furthermore, the results of KEGG and GO pathway analyses suggest that these genes may impact liver cancer by engaging various targets and pathways, ultimately promoting the progression of hepatocellular carcinoma. These results underscore the significant potential of CLEC4G, ADH1B, SLC22A1, CAMK2β, CBFA2T3, and STAB2 as key contributors to HCC development and advancement. This insight holds promise for identifying therapeutic targets and charting research avenues to enhance our understanding of the intricate molecular mechanisms underlying hepatocellular carcinoma.
Collapse
Affiliation(s)
- Aktham Mestareehi
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, P.O. Box 22, Amman 11622, Jordan
- School
of Medicine, The Ohio State University, Columbus, Ohio 43202, United States
- Department
of Pharmaceutical Sciences, School of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| |
Collapse
|
23
|
Borisova E, Newman AG, Couce Iglesias M, Dannenberg R, Schaub T, Qin B, Rusanova A, Brockmann M, Koch J, Daniels M, Turko P, Jahn O, Kaplan DR, Rosário M, Iwawaki T, Spahn CMT, Rosenmund C, Meierhofer D, Kraushar ML, Tarabykin V, Ambrozkiewicz MC. Protein translation rate determines neocortical neuron fate. Nat Commun 2024; 15:4879. [PMID: 38849354 PMCID: PMC11161512 DOI: 10.1038/s41467-024-49198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
The mammalian neocortex comprises an enormous diversity regarding cell types, morphology, and connectivity. In this work, we discover a post-transcriptional mechanism of gene expression regulation, protein translation, as a determinant of cortical neuron identity. We find specific upregulation of protein synthesis in the progenitors of later-born neurons and show that translation rates and concomitantly protein half-lives are inherent features of cortical neuron subtypes. In a small molecule screening, we identify Ire1α as a regulator of Satb2 expression and neuronal polarity. In the developing brain, Ire1α regulates global translation rates, coordinates ribosome traffic, and the expression of eIF4A1. Furthermore, we demonstrate that the Satb2 mRNA translation requires eIF4A1 helicase activity towards its 5'-untranslated region. Altogether, we show that cortical neuron diversity is generated by mechanisms operating beyond gene transcription, with Ire1α-safeguarded proteostasis serving as an essential regulator of brain development.
Collapse
Affiliation(s)
- Ekaterina Borisova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Andrew G Newman
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marta Couce Iglesias
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Rike Dannenberg
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Theres Schaub
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Bo Qin
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Alexandra Rusanova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Research Institute of Medical Genetics, Tomsk, Russia
| | - Marisa Brockmann
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Janina Koch
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marieatou Daniels
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul Turko
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Marta Rosário
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Takao Iwawaki
- Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Christian M T Spahn
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Matthew L Kraushar
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Mateusz C Ambrozkiewicz
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
24
|
Martins-Costa C, Wiegers A, Pham VA, Sidhaye J, Doleschall B, Novatchkova M, Lendl T, Piber M, Peer A, Möseneder P, Stuempflen M, Chow SYA, Seidl R, Prayer D, Höftberger R, Kasprian G, Ikeuchi Y, Corsini NS, Knoblich JA. ARID1B controls transcriptional programs of axon projection in an organoid model of the human corpus callosum. Cell Stem Cell 2024; 31:866-885.e14. [PMID: 38718796 DOI: 10.1016/j.stem.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/13/2024] [Accepted: 04/17/2024] [Indexed: 06/09/2024]
Abstract
Mutations in ARID1B, a member of the mSWI/SNF complex, cause severe neurodevelopmental phenotypes with elusive mechanisms in humans. The most common structural abnormality in the brain of ARID1B patients is agenesis of the corpus callosum (ACC), characterized by the absence of an interhemispheric white matter tract that connects distant cortical regions. Here, we find that neurons expressing SATB2, a determinant of callosal projection neuron (CPN) identity, show impaired maturation in ARID1B+/- neural organoids. Molecularly, a reduction in chromatin accessibility of genomic regions targeted by TCF-like, NFI-like, and ARID-like transcription factors drives the differential expression of genes required for corpus callosum (CC) development. Through an in vitro model of the CC tract, we demonstrate that this transcriptional dysregulation impairs the formation of long-range axonal projections, causing structural underconnectivity. Our study uncovers new functions of the mSWI/SNF during human corticogenesis, identifying cell-autonomous axonogenesis defects in SATB2+ neurons as a cause of ACC in ARID1B patients.
Collapse
Affiliation(s)
- Catarina Martins-Costa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Andrea Wiegers
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Vincent A Pham
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Jaydeep Sidhaye
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Balint Doleschall
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Thomas Lendl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Marielle Piber
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Angela Peer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Paul Möseneder
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Marlene Stuempflen
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, 153-8505 Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, 153-8505 Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Nina S Corsini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
25
|
Yu W, Srivastava R, Srivastava S, Ma Y, Shankar S, Srivastava RK. Oncogenic Role of SATB2 In Vitro: Regulator of Pluripotency, Self-Renewal, and Epithelial-Mesenchymal Transition in Prostate Cancer. Cells 2024; 13:962. [PMID: 38891096 PMCID: PMC11171950 DOI: 10.3390/cells13110962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Special AT-rich sequence binding protein-2 (SATB2) is a nuclear matrix protein that binds to nuclear attachment regions and is involved in chromatin remodeling and transcription regulation. In stem cells, it regulates the expression of genes required for maintaining pluripotency and self-renewal and epithelial-mesenchymal transition (EMT). In this study, we examined the oncogenic role of SATB2 in prostate cancer and assessed whether overexpression of SATB2 in human normal prostate epithelial cells (PrECs) induces properties of cancer stem cells (CSCs). The results demonstrate that SATB2 is highly expressed in prostate cancer cell lines and CSCs, but not in PrECs. Overexpression of SATB2 in PrECs induces cellular transformation which was evident by the formation of colonies in soft agar and spheroids in suspension. Overexpression of SATB2 in PrECs also resulted in induction of stem cell markers (CD44 and CD133), pluripotency-maintaining transcription factors (cMYC, OCT4, SOX2, KLF4, and NANOG), CADHERIN switch, and EMT-related transcription factors. Chromatin immunoprecipitation assay demonstrated that SATB2 can directly bind to promoters of BCL-2, BSP, NANOG, MYC, XIAP, KLF4, and HOXA2, suggesting SATB2 is capable of directly regulating pluripotency/self-renewal, cell survival, and proliferation. Since prostate CSCs play a crucial role in cancer initiation, progression, and metastasis, we also examined the effects of SATB2 knockdown on stemness. SATB2 knockdown in prostate CSCs inhibited spheroid formation, cell viability, colony formation, cell motility, migration, and invasion compared to their scrambled control groups. SATB2 knockdown in CSCs also upregulated the expression of E-CADHERIN and inhibited the expression of N-CADHERIN, SNAIL, SLUG, and ZEB1. The expression of SATB2 was significantly higher in prostate adenocarcinoma compared to normal tissues. Overall, our data suggest that SATB2 acts as an oncogenic factor where it is capable of inducing malignant changes in PrECs by inducing CSC characteristics.
Collapse
Affiliation(s)
- Wei Yu
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
| | - Rashmi Srivastava
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | | | - Yiming Ma
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
| | - Sharmila Shankar
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care System, 2400 Canal Street, New Orleans, LA 70119, USA
| | - Rakesh K. Srivastava
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
- GLAX LLC, 3500 S Dupont Highway, Dover, DE 19901, USA
| |
Collapse
|
26
|
Popp JM, Rhodes K, Jangi R, Li M, Barr K, Tayeb K, Battle A, Gilad Y. Cell-type and dynamic state govern genetic regulation of gene expression in heterogeneous differentiating cultures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592174. [PMID: 38746382 PMCID: PMC11092595 DOI: 10.1101/2024.05.02.592174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Identifying the molecular effects of human genetic variation across cellular contexts is crucial for understanding the mechanisms underlying disease-associated loci, yet many cell-types and developmental stages remain underexplored. Here we harnessed the potential of heterogeneous differentiating cultures ( HDCs ), an in vitro system in which pluripotent cells asynchronously differentiate into a broad spectrum of cell-types. We generated HDCs for 53 human donors and collected single-cell RNA-sequencing data from over 900,000 cells. We identified expression quantitative trait loci in 29 cell-types and characterized regulatory dynamics across diverse differentiation trajectories. This revealed novel regulatory variants for genes involved in key developmental and disease-related processes while replicating known effects from primary tissues, and dynamic regulatory effects associated with a range of complex traits.
Collapse
|
27
|
Das D, Sonthalia S, Stein-O 'Brien G, Wahbeh MH, Feuer K, Goff L, Colantuoni C, Mahairaki V, Avramopoulos D. Insights for disease modeling from single-cell transcriptomics of iPSC-derived Ngn2-induced neurons and astrocytes across differentiation time and co-culture. BMC Biol 2024; 22:75. [PMID: 38566045 PMCID: PMC10985965 DOI: 10.1186/s12915-024-01867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Trans-differentiation of human-induced pluripotent stem cells into neurons via Ngn2-induction (hiPSC-N) has become an efficient system to quickly generate neurons a likely significant advance for disease modeling and in vitro assay development. Recent single-cell interrogation of Ngn2-induced neurons, however, has revealed some similarities to unexpected neuronal lineages. Similarly, a straightforward method to generate hiPSC-derived astrocytes (hiPSC-A) for the study of neuropsychiatric disorders has also been described. RESULTS Here, we examine the homogeneity and similarity of hiPSC-N and hiPSC-A to their in vivo counterparts, the impact of different lengths of time post Ngn2 induction on hiPSC-N (15 or 21 days), and the impact of hiPSC-N/hiPSC-A co-culture. Leveraging the wealth of existing public single-cell RNA-seq (scRNA-seq) data in Ngn2-induced neurons and in vivo data from the developing brain, we provide perspectives on the lineage origins and maturation of hiPSC-N and hiPSC-A. While induction protocols in different labs produce consistent cell type profiles, both hiPSC-N and hiPSC-A show significant heterogeneity and similarity to multiple in vivo cell fates, and both more precisely approximate their in vivo counterparts when co-cultured. Gene expression data from the hiPSC-N show enrichment of genes linked to schizophrenia (SZ) and autism spectrum disorders (ASD) as has been previously shown for neural stem cells and neurons. These overrepresentations of disease genes are strongest in our system at early times (day 15) in Ngn2-induction/maturation of neurons, when we also observe the greatest similarity to early in vivo excitatory neurons. We have assembled this new scRNA-seq data along with the public data explored here as an integrated biologist-friendly web-resource for researchers seeking to understand this system more deeply: https://nemoanalytics.org/p?l=DasEtAlNGN2&g=NES . CONCLUSIONS While overall we support the use of the investigated cellular models for the study of neuropsychiatric disease, we also identify important limitations. We hope that this work will contribute to understanding and optimizing cellular modeling for complex brain disorders.
Collapse
Affiliation(s)
- D Das
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 E. Broadway, Baltimore, MD, 21205, USA
| | - S Sonthalia
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - G Stein-O 'Brien
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 E. Broadway, Baltimore, MD, 21205, USA
| | - M H Wahbeh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 E. Broadway, Baltimore, MD, 21205, USA
| | - K Feuer
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 E. Broadway, Baltimore, MD, 21205, USA
| | - L Goff
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 E. Broadway, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - C Colantuoni
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - V Mahairaki
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 E. Broadway, Baltimore, MD, 21205, USA
| | - D Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 E. Broadway, Baltimore, MD, 21205, USA.
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
28
|
Hanson MA, Bibi N, Safa A, Nagarajan D, Marshall AH, Johantges AC, Wester JC. Development of differential sublaminar feedforward inhibitory circuits in CA1 hippocampus requires Satb2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576902. [PMID: 38328190 PMCID: PMC10849736 DOI: 10.1101/2024.01.23.576902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying PC differentiation and the development of this inhibitory circuit motif. We found that expression of the transcriptional regulator SATB2 is biased towards superficial PCs during early postnatal development and necessary to suppress PV+ interneuron synapse formation. In the absence of SATB2, the number of PV+ interneuron synaptic puncta surrounding superficial PCs increases during development to match deep PCs. This results in equivalent inhibitory current strength observed in paired whole-cell recordings, and equivalent feedforward inhibition of Schaffer collateral input. Thus, SATB2 is necessary for superficial PC differentiation and biased feedforward inhibition in CA1.
Collapse
|
29
|
Meka DP, Richter M, Rücker T, Voss H, Rissiek A, Krisp C, Kumar NH, Schwanke B, Fornasiero EF, Schlüter H, Calderon de Anda F. Protocol for differential multi-omic analyses of distinct cell types in the mouse cerebral cortex. STAR Protoc 2024; 5:102793. [PMID: 38157295 PMCID: PMC10792265 DOI: 10.1016/j.xpro.2023.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/05/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Here, we present a protocol for differential multi-omic analyses of distinct cell types in the developing mouse cerebral cortex. We describe steps for in utero electroporation, subsequent flow-cytometry-based isolation of developing mouse cortical cells, bulk RNA sequencing or quantitative liquid chromatography-tandem mass spectrometry, and bioinformatic analyses. This protocol can be applied to compare the proteomes and transcriptomes of developing mouse cortical cell populations after various manipulations (e.g., epigenetic). For complete details on the use and execution of this protocol, please refer to Meka et al. (2022).1.
Collapse
Affiliation(s)
- Durga Praveen Meka
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Melanie Richter
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Tabitha Rücker
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Hannah Voss
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anne Rissiek
- Cytometry und Cell Sorting Core Unit, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Krisp
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nisha Hemandhar Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Birgit Schwanke
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany; Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Hartmut Schlüter
- Diagnostic Center, Section Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Froylan Calderon de Anda
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
30
|
Wang N, Wan R, Tang K. Transcriptional regulation in the development and dysfunction of neocortical projection neurons. Neural Regen Res 2024; 19:246-254. [PMID: 37488873 PMCID: PMC10503610 DOI: 10.4103/1673-5374.379039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 07/26/2023] Open
Abstract
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas, and between the neocortex and other regions of the brain and spinal cord. Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination, proliferation, specification, differentiation, migration, survival, axonogenesis, and synaptogenesis. These processes are precisely regulated in a tempo-spatial manner by intrinsic factors, extrinsic signals, and neural activities. The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions (such as sensory information integration, motor coordination, and cognition) but also to prevent the onset and progression of neurodevelopmental disorders (such as intellectual disability, autism spectrum disorders, anxiety, and depression). This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.
Collapse
Affiliation(s)
- Ningxin Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Rong Wan
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| |
Collapse
|
31
|
Pal S, Lim JWC, Richards LJ. Diverse axonal morphologies of individual callosal projection neurons reveal new insights into brain connectivity. Curr Opin Neurobiol 2024; 84:102837. [PMID: 38271848 PMCID: PMC11265515 DOI: 10.1016/j.conb.2023.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
In the mature brain, functionally distinct areas connect to specific targets, mediating network activity required for function. New insights are still occurring regarding how specific connectivity occurs in the developing brain. Decades of work have revealed important insights into the molecular and genetic mechanisms regulating cell type specification in the brain. This work classified long-range projection neurons of the cerebral cortex into three major classes based on their primary target (e.g. subcortical, intracortical, and interhemispheric projections). However, painstaking single-cell mapping reveals that long-range projection neurons of the corpus callosum connect to multiple and overlapping ipsilateral and contralateral targets with often highly branched axons. In addition, their scRNA transcriptomes are highly variable, making it difficult to identify meaningful subclasses. This work has prompted us to reexamine how cortical projection neurons that comprise the corpus callosum are currently classified and how this stunning array of variability might be achieved during development.
Collapse
Affiliation(s)
- Suranjana Pal
- Department of Neuroscience, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA. https://twitter.com/PalSuranjana
| | - Jonathan W C Lim
- Department of Neuroscience, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Linda J Richards
- Department of Neuroscience, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
32
|
Abad C, Robayo MC, Muñiz-Moreno MDM, Bernardi MT, Otero MG, Kosanovic C, Griswold AJ, Pierson TM, Walz K, Young JI. Gatad2b, associated with the neurodevelopmental syndrome GAND, plays a critical role in neurodevelopment and cortical patterning. Transl Psychiatry 2024; 14:33. [PMID: 38238293 PMCID: PMC10796954 DOI: 10.1038/s41398-023-02678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 01/22/2024] Open
Abstract
GATAD2B (GATA zinc finger domain containing 2B) variants are associated with the neurodevelopmental syndrome GAND, characterized by intellectual disability (ID), infantile hypotonia, apraxia of speech, epilepsy, macrocephaly and distinct facial features. GATAD2B encodes for a subunit of the Nucleosome Remodeling and Histone Deacetylase (NuRD) complex. NuRD controls transcriptional programs critical for proper neurodevelopment by coupling histone deacetylase with ATP-dependent chromatin remodeling activity. To study mechanisms of pathogenesis for GAND, we characterized a mouse model harboring an inactivating mutation in Gatad2b. Homozygous Gatad2b mutants die perinatally, while haploinsufficient Gatad2b mice exhibit behavioral abnormalities resembling the clinical features of GAND patients. We also observed abnormal cortical patterning, and cellular proportions and cell-specific alterations in the developmental transcriptome in these mice. scRNAseq of embryonic cortex indicated misexpression of genes key for corticogenesis and associated with neurodevelopmental syndromes such as Bcl11b, Nfia and H3f3b and Sox5. These data suggest a crucial role for Gatad2b in brain development.
Collapse
Affiliation(s)
- Clemer Abad
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Maria C Robayo
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Maria Del Mar Muñiz-Moreno
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Maria T Bernardi
- IQUIBICEN - CONICET, School of Exact and Natural Sciences - University of Buenos Aires, Buenos Aires, Argentina
| | - Maria G Otero
- The Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Christina Kosanovic
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Tyler Mark Pierson
- The Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Guerin Children's, Departments of Pediatrics, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA, USA
- The Center for the Undiagnosed Patient, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Katherina Walz
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- IQUIBICEN - CONICET, School of Exact and Natural Sciences - University of Buenos Aires, Buenos Aires, Argentina
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan I Young
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
33
|
Gavrish M, Kustova A, Celis Suescún JC, Bessa P, Mitina N, Tarabykin V. Molecular mechanisms of corpus callosum development: a four-step journey. Front Neuroanat 2024; 17:1276325. [PMID: 38298831 PMCID: PMC10827913 DOI: 10.3389/fnana.2023.1276325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
The Corpus Callosum (CC) is a bundle of axons connecting the cerebral hemispheres. It is the most recent structure to have appeared during evolution of placental mammals. Its development is controlled by a very complex interplay of many molecules. In humans it contains almost 80% of all commissural axons in the brain. The formation of the CC can be divided into four main stages, each controlled by numerous intracellular and extracellular molecular factors. First, a newborn neuron has to specify an axon, leave proliferative compartments, the Ventricular Zone (VZ) and Subventricular Zone (SVZ), migrate through the Intermediate Zone (IZ), and then settle at the Cortical Plate (CP). During the second stage, callosal axons navigate toward the midline within a compact bundle. Next stage is the midline crossing into contralateral hemisphere. The last step is targeting a defined area and synapse formation. This review provides an insight into these four phases of callosal axons development, as well as a description of the main molecular players involved.
Collapse
Affiliation(s)
- Maria Gavrish
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Angelina Kustova
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Juan C. Celis Suescún
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Paraskevi Bessa
- Charité Hospital, Institute of Cell Biology and Neurobiology, Berlin, Germany
| | - Natalia Mitina
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Victor Tarabykin
- Charité Hospital, Institute of Cell Biology and Neurobiology, Berlin, Germany
| |
Collapse
|
34
|
Plateau V, Baufreton J, Le Bon-Jégo M. Age-Dependent Modulation of Layer V Pyramidal Neuron Excitability in the Mouse Primary Motor Cortex by D1 Receptor Agonists and Antagonists. Neuroscience 2024; 536:21-35. [PMID: 37952579 DOI: 10.1016/j.neuroscience.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The primary motor cortex (M1) receives dopaminergic (DAergic) projections from the midbrain which play a key role in modulating motor and cognitive processes, such as motor skill learning. However, little is known at the level of individual neurons about how dopamine (DA) and its receptors modulate the intrinsic properties of the different neuronal subpopulations in M1 and if this modulation depends on age. Using immunohistochemistry, we first mapped the cells expressing the DA D1 receptor across the different layers in M1, and quantified the number of pyramidal neurons (PNs) expressing the D1 receptor in the different layers, in young and adult mice. This work reveals that the spatial distribution and the molecular profile of D1 receptor-expressing neurons (D1+) across M1 layers do not change with age. Then, combining whole-cell patch-clamp recordings and pharmacology, we explored ex vivo in young and adult mice the impact of activation or blockade of D1 receptors on D1+ PN intrinsic properties. While the bath application of the D1 receptor agonist induced an increase in the excitability of layer V PNs both in young and adult, we identified a distinct modulation of intrinsic electrical properties of layer V D1+ PNs by D1 receptor antagonist depending on the age of the animal.
Collapse
Affiliation(s)
- Valentin Plateau
- Université de Bordeaux, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France; CNRS UMR 5293, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France
| | - Jérôme Baufreton
- Université de Bordeaux, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France; CNRS UMR 5293, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France
| | - Morgane Le Bon-Jégo
- Université de Bordeaux, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France; CNRS UMR 5293, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France.
| |
Collapse
|
35
|
Li F, Yan C, Yao Y, Yang Y, Liu Y, Fan D, Zhao J, Tang Z. Transcription Factor SATB2 Regulates Skeletal Muscle Cell Proliferation and Migration via HDAC4 in Pigs. Genes (Basel) 2024; 15:65. [PMID: 38254955 PMCID: PMC10815226 DOI: 10.3390/genes15010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Skeletal muscle development remarkably affects meat production and growth rate, regulated by complex regulatory mechanisms in pigs. Specific AT sequence-binding protein 2 (SATB2) is a classic transcription factor and chromatin organizer, which holds a profound effect in the regulation of chromatin remodeling. However, the regulation role of SATB2 concerning skeletal muscle cell fate through chromatin remodeling in pigs remains largely unknown. Here, we observed that SATB2 was expressed higher in the lean-type compared to the obese-type pigs, which also enriched the pathways of skeletal muscle development, chromatin organization, and histone modification. Functionally, knockdown SATB2 led to decreases in the proliferation and migration markers at the mRNA and protein expression levels, respectively, while overexpression SATB2 had the opposite effects. Further, we found histone deacetylase 4 (HDAC4) was a key downstream target gene of SATB2 related to chromatin remodeling. The binding relationship between SATB2 and HDAC4 was confirmed by a dual-luciferase reporter system and ChIP-qPCR analysis. Besides, we revealed that HDAC4 promoted the skeletal muscle cell proliferation and migration at the mRNA and protein expression levels, respectively. In conclusion, our study indicates that transcription factor SATB2 binding to HDAC4 positively contributes to skeletal muscle cell proliferation and migration, which might mediate the chromatin remodeling to influence myogenesis in pigs. This study develops a novel insight into understanding the molecular regulatory mechanism of myogenesis, and provides a promising gene for genetic breeding in pigs.
Collapse
Affiliation(s)
- Fanqinyu Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (C.Y.); (Y.Y.); (Y.L.); (D.F.)
| | - Chao Yan
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (C.Y.); (Y.Y.); (Y.L.); (D.F.)
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China;
| | - Yilong Yao
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China;
| | - Yalan Yang
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (C.Y.); (Y.Y.); (Y.L.); (D.F.)
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China;
| | - Yanwen Liu
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (C.Y.); (Y.Y.); (Y.L.); (D.F.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Danyang Fan
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (C.Y.); (Y.Y.); (Y.L.); (D.F.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Junxing Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Zhonglin Tang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (C.Y.); (Y.Y.); (Y.L.); (D.F.)
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China;
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
36
|
Sepp M, Leiss K, Murat F, Okonechnikov K, Joshi P, Leushkin E, Spänig L, Mbengue N, Schneider C, Schmidt J, Trost N, Schauer M, Khaitovich P, Lisgo S, Palkovits M, Giere P, Kutscher LM, Anders S, Cardoso-Moreira M, Sarropoulos I, Pfister SM, Kaessmann H. Cellular development and evolution of the mammalian cerebellum. Nature 2024; 625:788-796. [PMID: 38029793 PMCID: PMC10808058 DOI: 10.1038/s41586-023-06884-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
The expansion of the neocortex, a hallmark of mammalian evolution1,2, was accompanied by an increase in cerebellar neuron numbers3. However, little is known about the evolution of the cellular programmes underlying the development of the cerebellum in mammals. In this study we generated single-nucleus RNA-sequencing data for around 400,000 cells to trace the development of the cerebellum from early neurogenesis to adulthood in human, mouse and the marsupial opossum. We established a consensus classification of the cellular diversity in the developing mammalian cerebellum and validated it by spatial mapping in the fetal human cerebellum. Our cross-species analyses revealed largely conserved developmental dynamics of cell-type generation, except for Purkinje cells, for which we observed an expansion of early-born subtypes in the human lineage. Global transcriptome profiles, conserved cell-state markers and gene-expression trajectories across neuronal differentiation show that cerebellar cell-type-defining programmes have been overall preserved for at least 160 million years. However, we also identified many orthologous genes that gained or lost expression in cerebellar neural cell types in one of the species or evolved new expression trajectories during neuronal differentiation, indicating widespread gene repurposing at the cell-type level. In sum, our study unveils shared and lineage-specific gene-expression programmes governing the development of cerebellar cells and expands our understanding of mammalian brain evolution.
Collapse
Affiliation(s)
- Mari Sepp
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Kevin Leiss
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Florent Murat
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- INRAE, LPGP, Rennes, France
| | - Konstantin Okonechnikov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Piyush Joshi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Evgeny Leushkin
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Lisa Spänig
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Noe Mbengue
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Céline Schneider
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Julia Schmidt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Nils Trost
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Maria Schauer
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Philipp Khaitovich
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Steven Lisgo
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, Budapest, Hungary
| | - Peter Giere
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Lena M Kutscher
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Simon Anders
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- BioQuant, Heidelberg University, Heidelberg, Germany
| | | | - Ioannis Sarropoulos
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
- Wellcome Sanger Institute, Cambridge, UK.
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
37
|
Baker MR, Lee AS, Rajadhyaksha AM. L-type calcium channels and neuropsychiatric diseases: Insights into genetic risk variant-associated genomic regulation and impact on brain development. Channels (Austin) 2023; 17:2176984. [PMID: 36803254 PMCID: PMC9980663 DOI: 10.1080/19336950.2023.2176984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/01/2023] [Indexed: 02/21/2023] Open
Abstract
Recent human genetic studies have linked a variety of genetic variants in the CACNA1C and CACNA1D genes to neuropsychiatric and neurodevelopmental disorders. This is not surprising given the work from multiple laboratories using cell and animal models that have established that Cav1.2 and Cav1.3 L-type calcium channels (LTCCs), encoded by CACNA1C and CACNA1D, respectively, play a key role in various neuronal processes that are essential for normal brain development, connectivity, and experience-dependent plasticity. Of the multiple genetic aberrations reported, genome-wide association studies (GWASs) have identified multiple single nucleotide polymorphisms (SNPs) in CACNA1C and CACNA1D that are present within introns, in accordance with the growing body of literature establishing that large numbers of SNPs associated with complex diseases, including neuropsychiatric disorders, are present within non-coding regions. How these intronic SNPs affect gene expression has remained a question. Here, we review recent studies that are beginning to shed light on how neuropsychiatric-linked non-coding genetic variants can impact gene expression via regulation at the genomic and chromatin levels. We additionally review recent studies that are uncovering how altered calcium signaling through LTCCs impact some of the neuronal developmental processes, such as neurogenesis, neuron migration, and neuron differentiation. Together, the described changes in genomic regulation and disruptions in neurodevelopment provide possible mechanisms by which genetic variants of LTCC genes contribute to neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Madelyn R. Baker
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, USA
| | - Andrew S. Lee
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Developmental Biology Program, Sloan Kettering Institute, New York, USA
| | - Anjali M. Rajadhyaksha
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, USA
| |
Collapse
|
38
|
Gonzalez-Ferrer J, Lehrer J, O’Farrell A, Paten B, Teodorescu M, Haussler D, Jonsson VD, Mostajo-Radji MA. Unraveling Neuronal Identities Using SIMS: A Deep Learning Label Transfer Tool for Single-Cell RNA Sequencing Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.529615. [PMID: 36909548 PMCID: PMC10002667 DOI: 10.1101/2023.02.28.529615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Large single-cell RNA datasets have contributed to unprecedented biological insight. Often, these take the form of cell atlases and serve as a reference for automating cell labeling of newly sequenced samples. Yet, classification algorithms have lacked the capacity to accurately annotate cells, particularly in complex datasets. Here we present SIMS (Scalable, Interpretable Machine Learning for Single-Cell), an end-to-end data-efficient machine learning pipeline for discrete classification of single-cell data that can be applied to new datasets with minimal coding. We benchmarked SIMS against common single-cell label transfer tools and demonstrated that it performs as well or better than state of the art algorithms. We then use SIMS to classify cells in one of the most complex tissues: the brain. We show that SIMS classifies cells of the adult cerebral cortex and hippocampus at a remarkably high accuracy. This accuracy is maintained in trans-sample label transfers of the adult human cerebral cortex. We then apply SIMS to classify cells in the developing brain and demonstrate a high level of accuracy at predicting neuronal subtypes, even in periods of fate refinement, shedding light on genetic changes affecting specific cell types across development. Finally, we apply SIMS to single cell datasets of cortical organoids to predict cell identities and unveil genetic variations between cell lines. SIMS identifies cell-line differences and misannotated cell lineages in human cortical organoids derived from different pluripotent stem cell lines. When cell types are obscured by stress signals, label transfer from primary tissue improves the accuracy of cortical organoid annotations, serving as a reliable ground truth. Altogether, we show that SIMS is a versatile and robust tool for cell-type classification from single-cell datasets.
Collapse
Affiliation(s)
- Jesus Gonzalez-Ferrer
- These authors contributed equally to this work
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
| | - Julian Lehrer
- These authors contributed equally to this work
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Applied Mathematics, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
| | - Ash O’Farrell
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
| | - Benedict Paten
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
| | - Mircea Teodorescu
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
| | - David Haussler
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
| | - Vanessa D. Jonsson
- Department of Applied Mathematics, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Co-senior authors
| | - Mohammed A. Mostajo-Radji
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Co-senior authors
| |
Collapse
|
39
|
Lynton Z, Suárez R, Fenlon LR. Brain plasticity following corpus callosum agenesis or loss: a review of the Probst bundles. Front Neuroanat 2023; 17:1296779. [PMID: 38020213 PMCID: PMC10657877 DOI: 10.3389/fnana.2023.1296779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
The corpus callosum is the largest axonal tract in the human brain, connecting the left and right cortical hemipheres. This structure is affected in myriad human neurodevelopmental disorders, and can be entirely absent as a result of congenital or surgical causes. The age when callosal loss occurs, for example via surgical section in cases of refractory epilepsy, correlates with resulting brain morphology and neuropsychological outcomes, whereby an earlier loss generally produces relatively improved interhemispheric connectivity compared to a loss in adulthood (known as the "Sperry's paradox"). However, the mechanisms behind these age-dependent differences remain unclear. Perhaps the best documented and most striking of the plastic changes that occur due to developmental, but not adult, callosal loss is the formation of large, bilateral, longitudinal ectopic tracts termed Probst bundles. Despite over 100 years of research into these ectopic tracts, which are the largest and best described stereotypical ectopic brain tracts in humans, much remains unclear about them. Here, we review the anatomy of the Probst bundles, along with evidence for their faciliatory or detrimental function, the required conditions for their formation, patterns of etiology, and mechanisms of development. We provide hypotheses for many of the remaining mysteries of the Probst bundles, including their possible relationship to preserved interhemispheric communication following corpus callosum absence. Future research into naturally occurring plastic tracts such as Probst bundles will help to inform the general rules governing axon plasticity and disorders of brain miswiring.
Collapse
Affiliation(s)
- Zorana Lynton
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Rodrigo Suárez
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Laura R. Fenlon
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
40
|
Weber AI, Parthasarathy S, Borisova E, Epifanova E, Preußner M, Rusanova A, Ambrozkiewicz MC, Bessa P, Newman A, Müller L, Schaal H, Heyd F, Tarabykin V. Srsf1 and Elavl1 act antagonistically on neuronal fate choice in the developing neocortex by controlling TrkC receptor isoform expression. Nucleic Acids Res 2023; 51:10218-10237. [PMID: 37697438 PMCID: PMC10602877 DOI: 10.1093/nar/gkad703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023] Open
Abstract
The seat of higher-order cognitive abilities in mammals, the neocortex, is a complex structure, organized in several layers. The different subtypes of principal neurons are distributed in precise ratios and at specific positions in these layers and are generated by the same neural progenitor cells (NPCs), steered by a spatially and temporally specified combination of molecular cues that are incompletely understood. Recently, we discovered that an alternatively spliced isoform of the TrkC receptor lacking the kinase domain, TrkC-T1, is a determinant of the corticofugal projection neuron (CFuPN) fate. Here, we show that the finely tuned balance between TrkC-T1 and the better known, kinase domain-containing isoform, TrkC-TK+, is cell type-specific in the developing cortex and established through the antagonistic actions of two RNA-binding proteins, Srsf1 and Elavl1. Moreover, our data show that Srsf1 promotes the CFuPN fate and Elavl1 promotes the callosal projection neuron (CPN) fate in vivo via regulating the distinct ratios of TrkC-T1 to TrkC-TK+. Taken together, we connect spatio-temporal expression of Srsf1 and Elavl1 in the developing neocortex with the regulation of TrkC alternative splicing and transcript stability and neuronal fate choice, thus adding to the mechanistic and functional understanding of alternative splicing in vivo.
Collapse
Affiliation(s)
- A Ioana Weber
- Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 6, 14195, Berlin, Germany
| | - Srinivas Parthasarathy
- Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ekaterina Borisova
- Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009, Tomsk, Russia
| | - Ekaterina Epifanova
- Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Marco Preußner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 6, 14195, Berlin, Germany
| | - Alexandra Rusanova
- Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009, Tomsk, Russia
| | - Mateusz C Ambrozkiewicz
- Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Paraskevi Bessa
- Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Andrew G Newman
- Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Lisa Müller
- Heinrich Heine Universität Düsseldorf, Institute of Virology, Medical Faculty, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Heiner Schaal
- Heinrich Heine Universität Düsseldorf, Institute of Virology, Medical Faculty, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 6, 14195, Berlin, Germany
| | - Victor Tarabykin
- Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 603950, Nizhny Novgorod Oblast, Russia
| |
Collapse
|
41
|
Altounian M, Bellon A, Mann F. Neuronal miR-17-5p contributes to interhemispheric cortical connectivity defects induced by prenatal alcohol exposure. Cell Rep 2023; 42:113020. [PMID: 37610874 DOI: 10.1016/j.celrep.2023.113020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Structural and functional deficits in brain connectivity are reported in patients with fetal alcohol spectrum disorders (FASDs), but whether and how prenatal alcohol exposure (PAE) affects axonal development of neurons and disrupts wiring between brain regions is unknown. Here, we develop a mouse model of moderate alcohol exposure during prenatal brain wiring to study the effects of PAE on corpus callosum (CC) development. PAE induces aberrant navigation of interhemispheric CC axons that persists even after exposure ends, leading to ectopic termination in the contralateral cortex. The neuronal miR-17-5p and its target ephrin type A receptor 4 (EphA4) mediate the effect of alcohol on the contralateral targeting of CC axons. Thus, altered microRNA-mediated regulation of axonal guidance may have implications for interhemispheric cortical connectivity and associated behaviors in FASD.
Collapse
Affiliation(s)
| | - Anaïs Bellon
- Aix Marseille University, INSERM, INMED, Marseille, France
| | - Fanny Mann
- Aix Marseille University, CNRS, IBDM, Marseille, France.
| |
Collapse
|
42
|
Leyva-Díaz E. CUT homeobox genes: transcriptional regulation of neuronal specification and beyond. Front Cell Neurosci 2023; 17:1233830. [PMID: 37744879 PMCID: PMC10515288 DOI: 10.3389/fncel.2023.1233830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
CUT homeobox genes represent a captivating gene class fulfilling critical functions in the development and maintenance of multiple cell types across a wide range of organisms. They belong to the larger group of homeobox genes, which encode transcription factors responsible for regulating gene expression patterns during development. CUT homeobox genes exhibit two distinct and conserved DNA binding domains, a homeodomain accompanied by one or more CUT domains. Numerous studies have shown the involvement of CUT homeobox genes in diverse developmental processes such as body axis formation, organogenesis, tissue patterning and neuronal specification. They govern these processes by exerting control over gene expression through their transcriptional regulatory activities, which they accomplish by a combination of classic and unconventional interactions with the DNA. Intriguingly, apart from their roles as transcriptional regulators, they also serve as accessory factors in DNA repair pathways through protein-protein interactions. They are highly conserved across species, highlighting their fundamental importance in developmental biology. Remarkably, evolutionary analysis has revealed that CUT homeobox genes have experienced an extraordinary degree of rearrangements and diversification compared to other classes of homeobox genes, including the emergence of a novel gene family in vertebrates. Investigating the functions and regulatory networks of CUT homeobox genes provides significant understanding into the molecular mechanisms underlying embryonic development and tissue homeostasis. Furthermore, aberrant expression or mutations in CUT homeobox genes have been associated with various human diseases, highlighting their relevance beyond developmental processes. This review will overview the well known roles of CUT homeobox genes in nervous system development, as well as their functions in other tissues across phylogeny.
Collapse
|
43
|
Lenz J, Brehm A. Conserved mechanisms of NuRD function in hematopoetic gene expression. Enzymes 2023; 53:7-32. [PMID: 37748838 DOI: 10.1016/bs.enz.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The Nucleosome Remodeling and Deacetylating Complex (NuRD) is ubiquitously expressed in all metazoans. It combines nucleosome remodeling and histone deacetylating activities to generate inaccessible chromatin structures and to repress gene transcription. NuRD is involved in the generation and maintenance of a wide variety of lineage-specific gene expression programs during differentiation and in differentiated cells. A close cooperation with a large number of lineage-specific transcription factors is key to allow NuRD to function in many distinct differentiation contexts. The molecular nature of this interplay between transcription factors and NuRD is complex and not well understood. This review uses hematopoiesis as a paradigm to highlight recent advances in our understanding of how transcription factors and NuRD cooperate at the molecular level during differentiation. A comparison of vertebrate and invertebrate systems serves to identify the conserved and fundamental concepts guiding functional interactions between transcription factors and NuRD. We also discuss how the transcription factor-NuRD axis constitutes a potential therapeutic target for the treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Jonathan Lenz
- Institute for Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University Marburg, Marburg, Germany
| | - Alexander Brehm
- Institute for Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
44
|
Beltrán SM, Bobo J, Habib A, Kodavali CV, Edwards L, Mamindla P, Taylor RE, LeDuc PR, Zinn PO. Characterization of neural mechanotransduction response in human traumatic brain injury organoid model. Sci Rep 2023; 13:13536. [PMID: 37598247 PMCID: PMC10439953 DOI: 10.1038/s41598-023-40431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
The ability to model physiological systems through 3D neural in-vitro systems may enable new treatments for various diseases while lowering the need for challenging animal and human testing. Creating such an environment, and even more impactful, one that mimics human brain tissue under mechanical stimulation, would be extremely useful to study a range of human-specific biological processes and conditions related to brain trauma. One approach is to use human cerebral organoids (hCOs) in-vitro models. hCOs recreate key cytoarchitectural features of the human brain, distinguishing themselves from more traditional 2D cultures and organ-on-a-chip models, as well as in-vivo animal models. Here, we propose a novel approach to emulate mild and moderate traumatic brain injury (TBI) using hCOs that undergo strain rates indicative of TBI. We subjected the hCOs to mild (2 s[Formula: see text]) and moderate (14 s[Formula: see text]) loading conditions, examined the mechanotransduction response, and investigated downstream genomic effects and regulatory pathways. The revealed pathways of note were cell death and metabolic and biosynthetic pathways implicating genes such as CARD9, ENO1, and FOXP3, respectively. Additionally, we show a steeper ascent in calcium signaling as we imposed higher loading conditions on the organoids. The elucidation of neural response to mechanical stimulation in reliable human cerebral organoid models gives insights into a better understanding of TBI in humans.
Collapse
Affiliation(s)
- Susana M Beltrán
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, PA, USA
| | - Justin Bobo
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, PA, USA
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, 15213, PA, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, 15232, PA, USA
| | - Chowdari V Kodavali
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, 15213, PA, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, 15232, PA, USA
| | - Lincoln Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, 15213, PA, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, 15232, PA, USA
| | - Priyadarshini Mamindla
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, 15232, PA, USA
| | - Rebecca E Taylor
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, PA, USA
| | - Philip R LeDuc
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, PA, USA.
| | - Pascal O Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, 15213, PA, USA.
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, 15232, PA, USA.
| |
Collapse
|
45
|
Appiah B, Fullio CL, Ossola C, Bertani I, Restelli E, Cheffer A, Polenghi M, Haffner C, Garcia‐Miralles M, Zeis P, Treppner M, Bovio P, Schlichtholz L, Mas‐Sanchez A, Zografidou L, Winter J, Binder H, Grün D, Kalebic N, Taverna E, Vogel T. DOT1L activity affects neural stem cell division mode and reduces differentiation and ASNS expression. EMBO Rep 2023; 24:e56233. [PMID: 37382163 PMCID: PMC10398646 DOI: 10.15252/embr.202256233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Cortical neurogenesis depends on the balance between self-renewal and differentiation of apical progenitors (APs). Here, we study the epigenetic control of AP's division mode by focusing on the enzymatic activity of the histone methyltransferase DOT1L. Combining lineage tracing with single-cell RNA sequencing of clonally related cells, we show at the cellular level that DOT1L inhibition increases neurogenesis driven by a shift of APs from asymmetric self-renewing to symmetric neurogenic consumptive divisions. At the molecular level, DOT1L activity prevents AP differentiation by promoting transcription of metabolic genes. Mechanistically, DOT1L inhibition reduces activity of an EZH2/PRC2 pathway, converging on increased expression of asparagine synthetase (ASNS), a microcephaly associated gene. Overexpression of ASNS in APs phenocopies DOT1L inhibition, and also increases neuronal differentiation of APs. Our data suggest that DOT1L activity/PRC2 crosstalk controls AP lineage progression by regulating asparagine metabolism.
Collapse
Affiliation(s)
- Bismark Appiah
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Present address:
Institute of Medical Bioinformatics and Systems Medicine, Medical Center–University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Camila L Fullio
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | | | | | | | - Arquimedes Cheffer
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | | | - Christiane Haffner
- Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
| | - Marta Garcia‐Miralles
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Patrice Zeis
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS‐MCB)FreiburgGermany
| | - Martin Treppner
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical CenterAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Freiburg Center for Data Analysis and ModelingAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Patrick Bovio
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Laura Schlichtholz
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Aina Mas‐Sanchez
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Institute of Molecular Biology (IMB) gGmbHMainzGermany
| | - Lea Zografidou
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Jennifer Winter
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University MainzMainzGermany
- German Resilience CentreUniversity Medical Center MainzMainzGermany
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical CenterAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Freiburg Center for Data Analysis and ModelingAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Dominic Grün
- Würzburg Institute of Systems ImmunologyMax Planck Research Group at Julius‐Maximilians‐University WürzburgWürzburgGermany
- Helmholtz Institute for RNA‐based Infection Research (HIRI), Helmholtz‐Center for Infection Research (HZI)WürzburgGermany
| | | | | | - Tanja Vogel
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Center for Basics in NeuroModulation (NeuroModul Basics), Medical FacultyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS), Albert‐Ludwigs‐University FreiburgFreiburgGermany
| |
Collapse
|
46
|
Felske T, Tocco C, Péron S, Harb K, Alfano C, Galante C, Berninger B, Studer M. Lmo4 synergizes with Fezf2 to promote direct in vivo reprogramming of upper layer cortical neurons and cortical glia towards deep-layer neuron identities. PLoS Biol 2023; 21:e3002237. [PMID: 37552690 PMCID: PMC10409279 DOI: 10.1371/journal.pbio.3002237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
In vivo direct neuronal reprogramming relies on the implementation of an exogenous transcriptional program allowing to achieve conversion of a particular neuronal or glial cell type towards a new identity. The transcription factor (TF) Fezf2 is known for its role in neuronal subtype specification of deep-layer (DL) subcortical projection neurons. High ectopic Fezf2 expression in mice can convert both upper-layer (UL) and striatal projection neurons into a corticofugal fate, even if at low efficiency. In this study, we show that Fezf2 synergizes with the nuclear co-adaptor Lmo4 to further enhance reprogramming of UL cortical pyramidal neurons into DL corticofugal neurons, at both embryonic and early postnatal stages. Reprogrammed neurons express DL molecular markers and project toward subcerebral targets, including thalamus, cerebral peduncle (CP), and spinal cord (SC). We also show that co-expression of Fezf2 with the reprogramming factors Neurog2 and Bcl2 in early postnatal mouse glia promotes glia-to-neuron conversion with partial hallmarks of DL neurons and with Lmo4 promoting further morphological complexity. These data support a novel role for Lmo4 in synergizing with Fezf2 during direct lineage conversion in vivo.
Collapse
Affiliation(s)
| | - Chiara Tocco
- Université Côte d’Azur, CNRS, Inserm, iBV, Nice, France
| | - Sophie Péron
- Research Group “Adult Neurogenesis and Cellular Reprogramming”, Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Kawssar Harb
- Université Côte d’Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Chiara Galante
- Research Group “Adult Neurogenesis and Cellular Reprogramming”, Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
| | - Benedikt Berninger
- Research Group “Adult Neurogenesis and Cellular Reprogramming”, Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Focus Program Translational Neuroscience, Johannes Gutenberg University, Mainz, Germany
| | | |
Collapse
|
47
|
Schellino R, Besusso D, Parolisi R, Gómez-González GB, Dallere S, Scaramuzza L, Ribodino M, Campus I, Conforti P, Parmar M, Boido M, Cattaneo E, Buffo A. hESC-derived striatal progenitors grafted into a Huntington's disease rat model support long-term functional motor recovery by differentiating, self-organizing and connecting into the lesioned striatum. Stem Cell Res Ther 2023; 14:189. [PMID: 37507794 PMCID: PMC10386300 DOI: 10.1186/s13287-023-03422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Huntington's disease (HD) is a motor and cognitive neurodegenerative disorder due to prominent loss of striatal medium spiny neurons (MSNs). Cell replacement using human embryonic stem cells (hESCs) derivatives may offer new therapeutic opportunities to replace degenerated neurons and repair damaged circuits. METHODS With the aim to develop effective cell replacement for HD, we assessed the long-term therapeutic value of hESC-derived striatal progenitors by grafting the cells into the striatum of a preclinical model of HD [i.e., adult immunodeficient rats in which the striatum was lesioned by monolateral injection of quinolinic acid (QA)]. We examined the survival, maturation, self-organization and integration of the graft as well as its impact on lesion-dependent motor alterations up to 6 months post-graft. Moreover, we tested whether exposing a cohort of QA-lesioned animals to environmental enrichment (EE) could improve graft integration and function. RESULTS Human striatal progenitors survived up to 6 months after transplantation and showed morphological and neurochemical features typical of human MSNs. Donor-derived interneurons were also detected. Grafts wired in both local and long-range striatal circuits, formed domains suggestive of distinct ganglionic eminence territories and displayed emerging striosome features. Moreover, over time grafts improved complex motor performances affected by QA. EE selectively increased cell differentiation into MSN phenotype and promoted host-to-graft connectivity. However, when combined to the graft, the EE paradigm used in this study was insufficient to produce an additive effect on task execution. CONCLUSIONS The data support the long-term therapeutic potential of ESC-derived human striatal progenitor grafts for the replacement of degenerated striatal neurons in HD and suggest that EE can effectively accelerate the maturation and promote the integration of human striatal cells.
Collapse
Affiliation(s)
- Roberta Schellino
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy.
| | - Dario Besusso
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Roberta Parolisi
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Gabriela B Gómez-González
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Sveva Dallere
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Linda Scaramuzza
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Marta Ribodino
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Ilaria Campus
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Paola Conforti
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Malin Parmar
- Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 22184, Lund, Sweden
| | - Marina Boido
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy.
| |
Collapse
|
48
|
Mann B, Crawford JC, Reddy K, Lott J, Youn YH, Gao G, Guy C, Chou CH, Darnell D, Trivedi S, Bomme P, Loughran AJ, Thomas PG, Han YG, Tuomanen EI. Bacterial TLR2/6 Ligands Block Ciliogenesis, Derepress Hedgehog Signaling, and Expand the Neocortex. mBio 2023; 14:e0051023. [PMID: 37052506 PMCID: PMC10294647 DOI: 10.1128/mbio.00510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Microbial components have a range of direct effects on the fetal brain. However, little is known about the cellular targets and molecular mechanisms that mediate these effects. Neural progenitor cells (NPCs) control the size and architecture of the brain and understanding the mechanisms regulating NPCs is crucial to understanding brain developmental disorders. We identify ventricular radial glia (vRG), the primary NPC, as the target of bacterial cell wall (BCW) generated during the antibiotic treatment of maternal pneumonia. BCW enhanced proliferative potential of vRGs by shortening the cell cycle and increasing self-renewal. Expanded vRGs propagated to increase neuronal output in all cortical layers. Remarkably, Toll-like receptor 2 (TLR2), which recognizes BCW, localized at the base of primary cilia in vRGs and the BCW-TLR2 interaction suppressed ciliogenesis leading to derepression of Hedgehog (HH) signaling and expansion of vRGs. We also show that TLR6 is an essential partner of TLR2 in this process. Surprisingly, TLR6 alone was required to set the number of cortical neurons under healthy conditions. These findings suggest that an endogenous signal from TLRs suppresses cortical expansion during normal development of the neocortex and that BCW antagonizes that signal through the TLR2/cilia/HH signaling axis changing brain structure and function. IMPORTANCE Fetal brain development in early gestation can be impacted by transplacental infection, altered metabolites from the maternal microbiome, or maternal immune activation. It is less well understood how maternal microbial subcomponents that cross the placenta, such as bacterial cell wall (BCW), directly interact with fetal neural progenitors and neurons and affect development. This scenario plays out in the clinic when BCW debris released during antibiotic therapy of maternal infection traffics to the fetal brain. This study identifies the direct interaction of BCW with TLR2/6 present on the primary cilium, the signaling hub on fetal neural progenitor cells (NPCs). NPCs control the size and architecture of the brain and understanding the mechanisms regulating NPCs is crucial to understanding brain developmental disorders. Within a window of vulnerability before the appearance of fetal immune cells, the BCW-TLR2/6 interaction results in the inhibition of ciliogenesis, derepression of Sonic Hedgehog signaling, excess proliferation of neural progenitors, and abnormal cortical architecture. In the first example of TLR signaling linked to Sonic Hedgehog, BCW/TLR2/6 appears to act during fetal brain morphogenesis to play a role in setting the total cell number in the neocortex.
Collapse
Affiliation(s)
- Beth Mann
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kavya Reddy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Josi Lott
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yong Ha Youn
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Geli Gao
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ching-Heng Chou
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Daniel Darnell
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Sanchit Trivedi
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Perrine Bomme
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Allister J. Loughran
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Young-Goo Han
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Elaine I. Tuomanen
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
49
|
Han JS, Fishman-Williams E, Decker SC, Hino K, Reyes RV, Brown NL, Simó S, Torre AL. Notch directs telencephalic development and controls neocortical neuron fate determination by regulating microRNA levels. Development 2023; 150:dev201408. [PMID: 37272771 PMCID: PMC10309580 DOI: 10.1242/dev.201408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
The central nervous system contains a myriad of different cell types produced from multipotent neural progenitors. Neural progenitors acquire distinct cell identities depending on their spatial position, but they are also influenced by temporal cues to give rise to different cell populations over time. For instance, the progenitors of the cerebral neocortex generate different populations of excitatory projection neurons following a well-known sequence. The Notch signaling pathway plays crucial roles during this process, but the molecular mechanisms by which Notch impacts progenitor fate decisions have not been fully resolved. Here, we show that Notch signaling is essential for neocortical and hippocampal morphogenesis, and for the development of the corpus callosum and choroid plexus. Our data also indicate that, in the neocortex, Notch controls projection neuron fate determination through the regulation of two microRNA clusters that include let-7, miR-99a/100 and miR-125b. Our findings collectively suggest that balanced Notch signaling is crucial for telencephalic development and that the interplay between Notch and miRNAs is essential for the control of neocortical progenitor behaviors and neuron cell fate decisions.
Collapse
Affiliation(s)
- Jisoo S. Han
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | | | - Steven C. Decker
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Raenier V. Reyes
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Nadean L. Brown
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
50
|
Garrett L, Trümbach D, Spielmann N, Wurst W, Fuchs H, Gailus-Durner V, Hrabě de Angelis M, Hölter SM. A rationale for considering heart/brain axis control in neuropsychiatric disease. Mamm Genome 2023; 34:331-350. [PMID: 36538124 PMCID: PMC10290621 DOI: 10.1007/s00335-022-09974-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Neuropsychiatric diseases (NPD) represent a significant global disease burden necessitating innovative approaches to pathogenic understanding, biomarker identification and therapeutic strategy. Emerging evidence implicates heart/brain axis malfunction in NPD etiology, particularly via the autonomic nervous system (ANS) and brain central autonomic network (CAN) interaction. This heart/brain inter-relationship harbors potentially novel NPD diagnosis and treatment avenues. Nevertheless, the lack of multidisciplinary clinical approaches as well as a limited appreciation of molecular underpinnings has stymied progress. Large-scale preclinical multi-systemic functional data can therefore provide supplementary insight into CAN and ANS interaction. We here present an overview of the heart/brain axis in NPD and establish a unique rationale for utilizing a preclinical cardiovascular disease risk gene set to glean insights into heart/brain axis control in NPD. With a top-down approach focusing on genes influencing electrocardiogram ANS function, we combined hierarchical clustering of corresponding regional CAN expression data and functional enrichment analysis to reveal known and novel molecular insights into CAN and NPD. Through 'support vector machine' inquiries for classification and literature validation, we further pinpointed the top 32 genes highly expressed in CAN brain structures altering both heart rate/heart rate variability (HRV) and behavior. Our observations underscore the potential of HRV/hyperactivity behavior as endophenotypes for multimodal disease biomarker identification to index aberrant executive brain functioning with relevance for NPD. This work heralds the potential of large-scale preclinical functional genetic data for understanding CAN/ANS control and introduces a stepwise design leveraging preclinical data to unearth novel heart/brain axis control genes in NPD.
Collapse
Affiliation(s)
- Lillian Garrett
- German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- German Research Center for Environmental Health, Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dietrich Trümbach
- German Research Center for Environmental Health, Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- German Research Center for Environmental Health, Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nadine Spielmann
- German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang Wurst
- German Research Center for Environmental Health, Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Deutsches Institut Für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Helmut Fuchs
- German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Sabine M Hölter
- German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany.
- German Research Center for Environmental Health, Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.
- Technische Universität München, Freising-Weihenstephan, Germany.
- Helmholtz Center Munich, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|