1
|
Marín O. Development of GABAergic Interneurons in the Human Cerebral Cortex. Eur J Neurosci 2025; 61:e70136. [PMID: 40356226 PMCID: PMC12069972 DOI: 10.1111/ejn.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
GABAergic interneurons are critical regulators of information processing in the cerebral cortex. They constitute a heterogeneous group of neurons with unique spatial and temporal capabilities to control information flow and influence neural network dynamics through inhibitory and disinhibitory mechanisms. Interneuron diversity is largely conserved between rodents and primates, which indicates that the addition of new types of GABAergic neurons is not the most critical innovation of the primate cortex. In contrast, interneurons are much more abundant and seem more widely interconnected in the cerebral cortex of primates than in rodents, suggesting selective evolutionary pressure in the mechanisms regulating the generation, survival and maturation of cortical interneurons. Recent studies are beginning to shed light on the cellular and molecular mechanisms controlling the development of cortical interneurons in humans, from their generation in the embryonic telencephalon to their early integration in cortical networks. These studies identified many features in the development of human cortical interneurons that are shared with other mammals, along with distinctive features that seem characteristic of the primate brain, such as a previously unrecognised protracted period of neurogenesis and migration that extends the earliest stages of interneuron development into the first months of postnatal life in humans.
Collapse
Affiliation(s)
- Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- Medical Research Council Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| |
Collapse
|
2
|
Do LNH, Delgado E, Lim CG, Bkhache M, Peluzzo AM, Hua Y, Oza M, Mohsin S, Chen H, Autieri MV, Kim S, Liu X. A neuro-lymphatic communication guides lymphatic development by CXCL12 and CXCR4 signaling. Development 2024; 151:dev202901. [PMID: 39470100 PMCID: PMC11634036 DOI: 10.1242/dev.202901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024]
Abstract
Lymphatic vessels grow through active sprouting and mature into a vascular complex that includes lymphatic capillaries and collecting vessels that ensure fluid transport. However, the signaling cues that direct lymphatic sprouting and patterning remain unclear. In this study, we demonstrate that chemokine signaling, specifically through CXCL12 and CXCR4, plays crucial roles in regulating lymphatic development. We show that LEC-specific Cxcr4-deficient mouse embryos and CXCL12 mutant embryos exhibit severe defects in lymphatic sprouting, migration and lymphatic valve formation. We also discovered that CXCL12, originating from peripheral nerves, directs the migration of dermal lymphatic vessels to align with nerves in developing skin. Deletion of Cxcr4 or blockage of CXCL12 and CXCR4 activity results in reduced VEGFR3 levels on the LEC surface. This, in turn, impairs VEGFC-mediated VEGFR3 signaling and downstream PI3K and AKT activities. Taken together, these data identify previously unknown chemokine signaling originating from peripheral nerves that guides dermal lymphatic sprouting and patterning. Our work identifies for the first time a neuro-lymphatics communication during mouse development and reveals a previously unreported mechanism by which CXCR4 modulates VEGFC, VEGFR3 and AKT signaling.
Collapse
Affiliation(s)
- Long Nguyen Hoang Do
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Esteban Delgado
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Casey G. Lim
- Center for Neural Development and Repair, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Meriem Bkhache
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Amanda M. Peluzzo
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yiming Hua
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Manisha Oza
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Sadia Mohsin
- Aging+Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael V. Autieri
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Seonhee Kim
- Center for Neural Development and Repair, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
3
|
Isci D, Kuppens A, Scalisi J, Cokaiko J, D'Uonnolo G, Wantz M, Szpakowska M, Chevigné A, Rogister B, Neirinckx V. Heterogeneous expression of the atypical chemokine receptor ACKR3 in glioblastoma patient-derived tissue samples and cell cultures. Sci Rep 2024; 14:21925. [PMID: 39300240 PMCID: PMC11412975 DOI: 10.1038/s41598-024-73064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive glial tumor of the adult brain, associated with invariably fatal outcome, and a deeper understanding of the underlying malignant mechanisms is necessary to address the current therapeutic failure. We previously demonstrated the role of the CXCL12/CXCR4 axis in GBM cell migration and resistance to ionizing radiation. The atypical chemokine receptor ACKR3, responsible for CXCL12 scavenging, was previously suggested as additional important player in the context of GBM. Following validation of the detection tools, we observed that ACKR3 is expressed within GBM patient tumor tissue, distributed in diverse cell types. In contrast to CXCR4, ACKR3 expression in patient-derived stem-like cells (GSCs) remains however low, while ACKR3 gene expression by tumor cells appears to be modulated by the in-vivo environment. Using overexpression models, we also showed that in vitro ACKR3 had no significant direct effect on cell proliferation or invasion. Altogether, these results suggest that in vitro ACKR3 plays a minor role in malignant GBM cell biology and that its expression is possibly regulated by in-vivo influences. The subtle and multifaceted functions ACKR3 could exert in GBM should therefore only be tackled within a comprehensive tumor microenvironment considering tumoral but also non-tumoral cells.
Collapse
Affiliation(s)
- Damla Isci
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Amandine Kuppens
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Joshua Scalisi
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Julie Cokaiko
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Giulia D'Uonnolo
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - May Wantz
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
- Neurology Department, University Hospital, University of Liège, Liège, Belgium
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium.
| |
Collapse
|
4
|
Nieto-Estevez V, Varma P, Mirsadeghi S, Caballero J, Gamero-Alameda S, Hosseini A, Silvosa MJ, Thodeson DM, Lybrand ZR, Giugliano M, Navara C, Hsieh J. Dual effects of ARX poly-alanine mutations in human cortical and interneuron development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577271. [PMID: 38328230 PMCID: PMC10849640 DOI: 10.1101/2024.01.25.577271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Infantile spasms, with an incidence of 1.6 to 4.5 per 10,000 live births, are a relentless and devastating childhood epilepsy marked by severe seizures but also leads to lifelong intellectual disability. Alarmingly, up to 5% of males with this condition carry a mutation in the Aristaless-related homeobox ( ARX ) gene. Our current lack of human-specific models for developmental epilepsy, coupled with discrepancies between animal studies and human data, underscores the gap in knowledge and urgent need for innovative human models, organoids being one of the best available. Here, we used human neural organoid models, cortical organoids (CO) and ganglionic eminences organoids (GEO) which mimic cortical and interneuron development respectively, to study the consequences of PAE mutations, one of the most prevalent mutation in ARX . ARX PAE produces a decrease expression of ARX in GEOs, and an enhancement in interneuron migration. That accelerated migration is cell autonomously driven, and it can be rescued by inhibiting CXCR4. We also found that PAE mutations result in an early increase in radial glia cells and intermediate progenitor cells, followed by a subsequent loss of cortical neurons at later timepoints. Moreover, ARX expression is upregulated in COs derived from patients at 30 DIV and is associated with alterations in the expression of CDKN1C . Furthermore, ARX PAE assembloids had hyperactivity which were evident at early stages of development. With effective treatments for infantile spasms and developmental epilepsies still elusive, delving into the role of ARX PAE mutations in human brain organoids represents a pivotal step toward uncovering groundbreaking therapeutic strategies.
Collapse
|
5
|
Ali G, Shin KC, Ahmed N, Habbab W, Alkhadairi G, Razzaq A, Bejaoui Y, El Hajj N, Mifsud B, Park Y, Stanton LW. Deletion in RMST lncRNA impairs hypothalamic neuronal development in a human stem cell-based model of Kallmann Syndrome. Cell Death Discov 2024; 10:330. [PMID: 39030180 PMCID: PMC11271498 DOI: 10.1038/s41420-024-02074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/21/2024] Open
Abstract
Rhabdomyosarcoma 2-associated transcript (RMST) long non-coding RNA has previously been shown to cause Kallmann syndrome (KS), a rare genetic disorder characterized by congenital hypogonadotropic hypogonadism (CHH) and olfactory dysfunction. In the present study, we generated large deletions of approximately 41.55 kb in the RMST gene in human pluripotent stem cells using CRISPR/Cas9 gene editing. To evaluate the impact of RMST deletion, these cells were differentiated into hypothalamic neurons that include 10-15% neurons that express gonadotrophin-releasing hormone (GnRH). We found that deletion in RMST did not impair the neurogenesis of GnRH neurons, however, the hypothalamic neurons were electro-physiologically hyperactive and had increased calcium influx activity compared to control. Transcriptomic and epigenetic analyses showed that RMST deletion caused altered expression of key genes involved in neuronal development, ion channels, synaptic signaling and cell adhesion. The in vitro generation of these RMST-deleted GnRH neurons provides an excellent cell-based model to dissect the molecular mechanism of RMST function in Kallmann syndrome and its role in hypothalamic neuronal development.
Collapse
Affiliation(s)
- Gowher Ali
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nisar Ahmed
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Wesal Habbab
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ghaneya Alkhadairi
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Aleem Razzaq
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Yosra Bejaoui
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nady El Hajj
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Borbala Mifsud
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- William Harvey Research Institute, Queen Mary University London, London, UK
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Lawrence W Stanton
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar.
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
6
|
Lim Y, Akula SK, Myers AK, Chen C, Rafael KA, Walsh CA, Golden JA, Cho G. ARX regulates cortical interneuron differentiation and migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578282. [PMID: 38895467 PMCID: PMC11185560 DOI: 10.1101/2024.01.31.578282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mutations in aristaless-related homeobox ( ARX ) are associated with neurodevelopmental disorders including developmental epilepsies, intellectual disabilities, and autism spectrum disorders, with or without brain malformations. Aspects of these disorders have been linked to abnormal cortical interneuron (cIN) development and function. To further understand ARX's role in cIN development, multiple Arx mutant mouse lines were interrogated. We found that ARX is critical for controlling cIN numbers and distribution, especially, in the developing marginal zone (MZ). Single cell transcriptomics and ChIP-seq, combined with functional studies, revealed ARX directly or indirectly regulates genes involved in proliferation and the cell cycle (e.g., Bub3 , Cspr3 ), fate specification (e.g., Nkx2.1 , Maf , Mef2c ), and migration (e.g., Nkx2.1 , Lmo1 , Cxcr4 , Nrg1 , ErbB4 ). Our data suggest that the MZ stream defects primarily result from disordered cell-cell communication. Together our findings provide new insights into the mechanisms underlying cIN development and migration and how they are disrupted in several disorders.
Collapse
|
7
|
Rubenstein JL, Nord AS, Ekker M. DLX genes and proteins in mammalian forebrain development. Development 2024; 151:dev202684. [PMID: 38819455 PMCID: PMC11190439 DOI: 10.1242/dev.202684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The vertebrate Dlx gene family encode homeobox transcription factors that are related to the Drosophila Distal-less (Dll) gene and are crucial for development. Over the last ∼35 years detailed information has accrued about the redundant and unique expression and function of the six mammalian Dlx family genes. DLX proteins interact with general transcriptional regulators, and co-bind with other transcription factors to enhancer elements with highly specific activity in the developing forebrain. Integration of the genetic and biochemical data has yielded a foundation for a gene regulatory network governing the differentiation of forebrain GABAergic neurons. In this Primer, we describe the discovery of vertebrate Dlx genes and their crucial roles in embryonic development. We largely focus on the role of Dlx family genes in mammalian forebrain development revealed through studies in mice. Finally, we highlight questions that remain unanswered regarding vertebrate Dlx genes despite over 30 years of research.
Collapse
Affiliation(s)
- John L. Rubenstein
- UCSF Department of Psychiatry and Behavioral Sciences, Department of UCSF Weill Institute for Neurosciences, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Alex S. Nord
- Department of Neurobiology, Physiology, and Behavior and Department of Psychiatry and 20 Behavioral Sciences, Center for Neuroscience, University of California Davis, Davis, CA 95618, USA
| | - Marc Ekker
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
8
|
Samus M, Rot A. Atypical chemokine receptors in cancer. Cytokine 2024; 176:156504. [PMID: 38266462 DOI: 10.1016/j.cyto.2024.156504] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Atypical chemokine receptors (ACKRs) are a group of seven-transmembrane spanning serpentine receptors that are structurally homologous to classical G-protein-coupled receptors and bind cognate chemokines with high affinities but do not signal via G-proteins or mediate cell migration. However, ACKRs efficiently modify the availability and function of chemokines in defined microanatomical environments, can signal via intracellular effectors other than G-proteins, and play complex roles in physiology and disease, including in cancer. In this review, we summarize the findings on the diverse contributions of individual ACKRs to cancer development, progression, and tumor-host interactions. We discuss how changes in ACKR expression within tumor affect cancer growth, tumor vascularization, leukocyte infiltration, and metastasis formation, ultimately resulting in differential disease outcomes. Across many studies, ACKR3 expression was shown to support tumor growth and dissemination, whereas ACKR1, ACKR2, and ACKR4 in tumors were more likely to contribute to tumor suppression. With few notable exceptions, the insights on molecular and cellular mechanisms of ACKRs activities in cancer remain sparse, and the intricacies of their involvement are not fully appreciated. This is particularly true for ACKR1, ACKR2 and ACKR4. A better understanding of how ACKR expression and functions impact cancer should pave the way for their future targeting by new and effective therapies.
Collapse
Affiliation(s)
- Maryna Samus
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Antal Rot
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK; Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich 80336, Germany.
| |
Collapse
|
9
|
Anastasiadou DP, Quesnel A, Duran CL, Filippou PS, Karagiannis GS. An emerging paradigm of CXCL12 involvement in the metastatic cascade. Cytokine Growth Factor Rev 2024; 75:12-30. [PMID: 37949685 DOI: 10.1016/j.cytogfr.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF1), has emerged as a pivotal regulator in the intricate molecular networks driving cancer progression. As an influential factor in the tumor microenvironment, CXCL12 plays a multifaceted role that spans beyond its traditional role as a chemokine inducing invasion and metastasis. Indeed, CXCL12 has been assigned functions related to epithelial-to-mesenchymal transition, cancer cell stemness, angiogenesis, and immunosuppression, all of which are currently viewed as specialized biological programs contributing to the "metastatic cascade" among other cancer hallmarks. Its interaction with its cognate receptor, CXCR4, initiates a cascade of events that not only shapes the metastatic potential of tumor cells but also defines the niches within the secondary organs that support metastatic colonization. Given the profound implications of CXCL12 in the metastatic cascade, understanding its mechanistic underpinnings is of paramount importance for the targeted elimination of rate-limiting steps in the metastatic process. This review aims to provide a comprehensive overview of the current knowledge surrounding the role of CXCL12 in cancer metastasis, especially its molecular interactions rationalizing its potential as a therapeutic target.
Collapse
Affiliation(s)
- Dimitra P Anastasiadou
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment & Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA
| | - Agathe Quesnel
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
| | - Camille L Duran
- Tumor Microenvironment & Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
| | - George S Karagiannis
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment & Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
10
|
Le VH, Orniacki C, Murcia-Belmonte V, Denti L, Schütz D, Stumm R, Ruhrberg C, Erskine L. CXCL12 promotes the crossing of retinal ganglion cell axons at the optic chiasm. Development 2024; 151:dev202446. [PMID: 38095299 PMCID: PMC10820821 DOI: 10.1242/dev.202446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024]
Abstract
Binocular vision requires the segregation of retinal ganglion cell (RGC) axons extending from the retina into the ipsilateral and contralateral optic tracts. RGC axon segregation occurs at the optic chiasm, which forms at the ventral diencephalon midline. Using expression analyses, retinal explants and genetically modified mice, we demonstrate that CXCL12 (SDF1) is required for axon segregation at the optic chiasm. CXCL12 is expressed by the meninges bordering the optic pathway, and CXCR4 by both ipsilaterally and contralaterally projecting RGCs. CXCL12 or ventral diencephalon meninges potently promoted axon outgrowth from both ipsilaterally and contralaterally projecting RGCs. Further, a higher proportion of axons projected ipsilaterally in mice lacking CXCL12 or its receptor CXCR4 compared with wild-type mice as a result of misrouting of presumptive contralaterally specified RGC axons. Although RGCs also expressed the alternative CXCL12 receptor ACKR3, the optic chiasm developed normally in mice lacking ACKR3. Our data support a model whereby meningeal-derived CXCL12 helps drive axon growth from CXCR4-expressing RGCs towards the diencephalon midline, enabling contralateral axon growth. These findings further our understanding of the molecular and cellular mechanisms controlling optic pathway development.
Collapse
Affiliation(s)
- Viet-Hang Le
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen,Foresterhill, Aberdeen AB25 2ZD, UK
| | - Clarisse Orniacki
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen,Foresterhill, Aberdeen AB25 2ZD, UK
| | - Verónica Murcia-Belmonte
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen,Foresterhill, Aberdeen AB25 2ZD, UK
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Laura Denti
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Dagmar Schütz
- Institute for Pharmacology/Toxicology, Jena University Hospital,Drackendorfer Str. 1, D-07747 Jena, Germany
| | - Ralf Stumm
- Institute for Pharmacology/Toxicology, Jena University Hospital,Drackendorfer Str. 1, D-07747 Jena, Germany
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen,Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
11
|
Atkins M, Wurmser M, Darmon M, Roche F, Nicol X, Métin C. CXCL12 targets the primary cilium cAMP/cGMP ratio to regulate cell polarity during migration. Nat Commun 2023; 14:8003. [PMID: 38049397 PMCID: PMC10695954 DOI: 10.1038/s41467-023-43645-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
Directed cell migration requires sustained cell polarisation. In migrating cortical interneurons, nuclear movements are directed towards the centrosome that organises the primary cilium signalling hub. Primary cilium-elicited signalling, and how it affects migration, remain however ill characterised. Here, we show that altering cAMP/cGMP levels in the primary cilium by buffering cAMP, cGMP or by locally increasing cAMP, influences the polarity and directionality of migrating interneurons, whereas buffering cAMP or cGMP in the apposed centrosome compartment alters their motility. Remarkably, we identify CXCL12 as a trigger that targets the ciliary cAMP/cGMP ratio to promote sustained polarity and directed migration. We thereby uncover cAMP/cGMP levels in the primary cilium as a major target of extrinsic cues and as the steering wheel of neuronal migration.
Collapse
Affiliation(s)
- Melody Atkins
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France.
| | - Maud Wurmser
- Institut de la Vision, Sorbonne Université, INSERM CNRS, F-75012, Paris, France
| | - Michèle Darmon
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Fiona Roche
- Institut de la Vision, Sorbonne Université, INSERM CNRS, F-75012, Paris, France
| | - Xavier Nicol
- Institut de la Vision, Sorbonne Université, INSERM CNRS, F-75012, Paris, France
| | - Christine Métin
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France.
| |
Collapse
|
12
|
Toudji I, Toumi A, Chamberland É, Rossignol E. Interneuron odyssey: molecular mechanisms of tangential migration. Front Neural Circuits 2023; 17:1256455. [PMID: 37779671 PMCID: PMC10538647 DOI: 10.3389/fncir.2023.1256455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Cortical GABAergic interneurons are critical components of neural networks. They provide local and long-range inhibition and help coordinate network activities involved in various brain functions, including signal processing, learning, memory and adaptative responses. Disruption of cortical GABAergic interneuron migration thus induces profound deficits in neural network organization and function, and results in a variety of neurodevelopmental and neuropsychiatric disorders including epilepsy, intellectual disability, autism spectrum disorders and schizophrenia. It is thus of paramount importance to elucidate the specific mechanisms that govern the migration of interneurons to clarify some of the underlying disease mechanisms. GABAergic interneurons destined to populate the cortex arise from multipotent ventral progenitor cells located in the ganglionic eminences and pre-optic area. Post-mitotic interneurons exit their place of origin in the ventral forebrain and migrate dorsally using defined migratory streams to reach the cortical plate, which they enter through radial migration before dispersing to settle in their final laminar allocation. While migrating, cortical interneurons constantly change their morphology through the dynamic remodeling of actomyosin and microtubule cytoskeleton as they detect and integrate extracellular guidance cues generated by neuronal and non-neuronal sources distributed along their migratory routes. These processes ensure proper distribution of GABAergic interneurons across cortical areas and lamina, supporting the development of adequate network connectivity and brain function. This short review summarizes current knowledge on the cellular and molecular mechanisms controlling cortical GABAergic interneuron migration, with a focus on tangential migration, and addresses potential avenues for cell-based interneuron progenitor transplants in the treatment of neurodevelopmental disorders and epilepsy.
Collapse
Affiliation(s)
- Ikram Toudji
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Asmaa Toumi
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Émile Chamberland
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Elsa Rossignol
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
13
|
Gonzalez-Meljem JM, Ivins S, Andoniadou CL, Le Tissier P, Scambler P, Martinez-Barbera JP. An expression and function analysis of the CXCR4/SDF-1 signalling axis during pituitary gland development. PLoS One 2023; 18:e0280001. [PMID: 36800350 PMCID: PMC9937476 DOI: 10.1371/journal.pone.0280001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/19/2022] [Indexed: 02/18/2023] Open
Abstract
The chemokine SDF-1 (CXCL12) and its receptor CXCR4 control several processes during embryonic development such as the regulation of stem cell proliferation, differentiation, and migration. However, the role of this pathway in the formation of the pituitary gland is not understood. We sought to characterise the expression patterns of CXCR4, SDF-1 and CXCR7 at different stages of pituitary gland development. Our expression profiling revealed that SDF-1 is expressed in progenitor-rich regions of the pituitary anterior lobe, that CXCR4 and CXCR7 have opposite expression domains and that CXCR4 expression is conserved between mice and human embryos. We then assessed the importance of this signalling pathway in the development and function of the murine pituitary gland through conditional deletion of CXCR4 in embryonic pituitary progenitors. Successful and specific ablation of CXCR4 expression in embryonic pituitary progenitors did not lead to observable embryonic nor postnatal defects but allowed the identification of stromal CXCR4+ cells not derived from HESX1+ progenitors. Further analysis of constitutive SDF-1, CXCR7 and CXCR4 mutants of the pathway indicates that CXCR4 expression in HESX1+ cells and their descendants is not essential for normal pituitary development in mice.
Collapse
Affiliation(s)
- Jose Mario Gonzalez-Meljem
- Tecnologico de Monterrey, School of Engineering and Sciences, Mexico City, Mexico
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL-Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sarah Ivins
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL-Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Cynthia Lilian Andoniadou
- Division of Craniofacial Development and Stem Cell Biology, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Paul Le Tissier
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Scambler
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL-Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL-Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
14
|
Nunnelly LF, Campbell M, Lee DI, Dummer P, Gu G, Menon V, Au E. St18 specifies globus pallidus projection neuron identity in MGE lineage. Nat Commun 2022; 13:7735. [PMID: 36517477 PMCID: PMC9751150 DOI: 10.1038/s41467-022-35518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The medial ganglionic eminence (MGE) produces both locally-projecting interneurons, which migrate long distances to structures such as the cortex as well as projection neurons that occupy subcortical nuclei. Little is known about what regulates the migratory behavior and axonal projections of these two broad classes of neurons. We find that St18 regulates the migration and morphology of MGE neurons in vitro. Further, genetic loss-of-function of St18 in mice reveals a reduction in projection neurons of the globus pallidus pars externa. St18 functions by influencing cell fate in MGE lineages as we observe a large expansion of nascent cortical interneurons at the expense of putative GPe neurons in St18 null embryos. Downstream of St18, we identified Cbx7, a component of Polycomb repressor complex 1, and find that it is essential for projection neuron-like migration but not morphology. Thus, we identify St18 as a key regulator of projection neuron vs. interneuron identity.
Collapse
Affiliation(s)
- Luke F Nunnelly
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Melissa Campbell
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dylan I Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Patrick Dummer
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Edmund Au
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Columbia Translational Neuroscience Initiative Scholar, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
15
|
Venkataramanappa S, Saaber F, Abe P, Schütz D, Kumar PA, Stumm R. Cxcr4 and Ackr3 regulate allocation of caudal ganglionic eminence-derived interneurons to superficial cortical layers. Cell Rep 2022; 40:111157. [PMID: 35926459 DOI: 10.1016/j.celrep.2022.111157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/17/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
The function of the cerebral cortex depends on various types of interneurons (cortical interneurons [cINs]) and their appropriate allocation to the cortical layers. Caudal ganglionic eminence-derived cINs (cGE-cINs) are enriched in superficial layers. Developmental mechanisms directing cGE-cINs toward superficial layers remain poorly understood. We examine how developmental and final positioning of cGE-cINs are influenced by the Cxcl12, Cxcr4, Ackr3 module, the chief attractant system guiding medial ganglionic eminence-derived cINs (mGE-cINs). We find that Cxcl12 attracts cGE-cINs through Cxcr4 and supports their layer-specific positioning in the developing cortex. This requires the prevention of excessive Cxcr4 stimulation by Ackr3-mediated Cxcl12 sequestration. Postnatally, Ackr3 confines Cxcl12 action to the marginal zone. Unlike mGE-cINs, cGE-cINs continue to express Cxcr4 at early postnatal stages, which permits cGE-cINs to become positioned in the forming layer 1. Thus, chemoattraction by Cxcl12 guides cGE-cINs and holds them in superficial cortical layers.
Collapse
Affiliation(s)
| | - Friederike Saaber
- Institute of Pharmacology and Toxicology, University Hospital Jena, Jena, Germany
| | - Philipp Abe
- Institute of Pharmacology and Toxicology, University Hospital Jena, Jena, Germany
| | - Dagmar Schütz
- Institute of Pharmacology and Toxicology, University Hospital Jena, Jena, Germany
| | - Praveen Ashok Kumar
- Institute of Pharmacology and Toxicology, University Hospital Jena, Jena, Germany
| | - Ralf Stumm
- Institute of Pharmacology and Toxicology, University Hospital Jena, Jena, Germany.
| |
Collapse
|
16
|
CXCR4/CX43 Regulate Diabetic Neuropathic Pain via Intercellular Interactions between Activated Neurons and Dysfunctional Astrocytes during Late Phase of Diabetes in Rats and the Effects of Antioxidant N-Acetyl-L-Cysteine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8547563. [PMID: 35799894 PMCID: PMC9256426 DOI: 10.1155/2022/8547563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/15/2022] [Indexed: 12/12/2022]
Abstract
Growing evidence suggests that the interactions between astrocytes and neurons exert important functions in the central sensitization of the spinal cord dorsal horn in rodents with diabetes and neuropathic pain (DNP). However, it still remains unclear how signal transmission occurs in the spinal cord dorsal horn between astrocytes and neurons, especially in subjects with DNP. Chemokine CXC receptor 4 (CXCR4) plays critical roles in DNP, and connexin 43 (CX43), which is also primarily expressed by astrocytes, contributes to the development of neuropathy. We thus postulated that astrocytic and neuronal CXCR4 induces and produces inflammatory factors under persistent peripheral noxious stimulation in DNP, while intercellular CX43 can transmit inflammatory stimulation signals. The results showed that streptozotocin-induced type 1 diabetic rats developed heat hyperalgesia and mechanical allodynia. Diabetes led to persistent neuropathic pain. Diabetic rats developed peripheral sensitization at the early phase (2 weeks) and central sensitization at the late phase (5 weeks) after diabetes induction. Both CXCR4 and CX43, which are localized and coexpressed in neurons and astrocytes, were enhanced significantly in the dorsal horn of spinal cord in rats undergoing DNP during late phase of diabetes, and the CXCR4 antagonist AMD3100 reduced the expression of CX43. The nociceptive behavior was reversed, respectively, by AMD3100 at the early phase and by the antioxidant N-acetyl-L-cysteine (NAC) at the late phase. Furthermore, rats with DNP demonstrated downregulation of glial fibrillary acidic protein (GFAP) as well as upregulation of c-fos in the spinal cord dorsal horn at the late phase compared to the controls, and upregulation of GFAP and downregulation of c-fos were observed upon treatment with NAC. Given that GFAP and c-fos are, respectively, makers of astrocyte and neuronal activation, our findings suggest that CXCR4 as an inflammatory stimulation protein and CX43 as an intercellular signal transmission protein both may induce neurons excitability and astrocytes dysfunction in developing DNP.
Collapse
|
17
|
Llorca A, Deogracias R. Origin, Development, and Synaptogenesis of Cortical Interneurons. Front Neurosci 2022; 16:929469. [PMID: 35833090 PMCID: PMC9272671 DOI: 10.3389/fnins.2022.929469] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian cerebral cortex represents one of the most recent and astonishing inventions of nature, responsible of a large diversity of functions that range from sensory processing to high-order cognitive abilities, such as logical reasoning or language. Decades of dedicated study have contributed to our current understanding of this structure, both at structural and functional levels. A key feature of the neocortex is its outstanding richness in cell diversity, composed by multiple types of long-range projecting neurons and locally connecting interneurons. In this review, we will describe the great diversity of interneurons that constitute local neocortical circuits and summarize the mechanisms underlying their development and their assembly into functional networks.
Collapse
Affiliation(s)
- Alfredo Llorca
- Visual Neuroscience Laboratory, Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburg, United Kingdom
- *Correspondence: Alfredo Llorca
| | - Ruben Deogracias
- Neuronal Circuits Formation and Brain Disorders Laboratory, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
- Ruben Deogracias
| |
Collapse
|
18
|
Lepiemme F, Stoufflet J, Javier-Torrent M, Mazzucchelli G, Silva CG, Nguyen L. Oligodendrocyte precursors guide interneuron migration by unidirectional contact repulsion. Science 2022; 376:eabn6204. [PMID: 35587969 DOI: 10.1126/science.abn6204] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the forebrain, ventrally derived oligodendrocyte precursor cells (vOPCs) travel tangentially toward the cortex together with cortical interneurons. Here, we tested in the mouse whether these populations interact during embryogenesis while migrating. By coupling histological analysis of genetic models with live imaging, we show that although they are both attracted by the chemokine Cxcl12, vOPCs and cortical interneurons occupy mutually exclusive forebrain territories enriched in this chemokine. Moreover, first-wave vOPC depletion selectively disrupts the migration and distribution of cortical interneurons. At the cellular level, we found that by promoting unidirectional contact repulsion, first-wave vOPCs steered the migration of cortical interneurons away from the blood vessels to which they were both attracted, thereby allowing interneurons to reach their proper cortical territories.
Collapse
Affiliation(s)
- Fanny Lepiemme
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Julie Stoufflet
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Míriam Javier-Torrent
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Gabriel Mazzucchelli
- Laboratory of Mass Spectrometry, MolSys Research Unit, Liege University, Liege, Belgium
| | - Carla G Silva
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| |
Collapse
|
19
|
CXCR4/CXCL12 Activities in the Tumor Microenvironment and Implications for Tumor Immunotherapy. Cancers (Basel) 2022; 14:cancers14092314. [PMID: 35565443 PMCID: PMC9105267 DOI: 10.3390/cancers14092314] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Chemokines are small soluble proteins that control and regulate cell trafficking within and between tissues by binding to their receptors. Among them, CXCL12 and its receptor CXCR4 appeared with ancestral vertebrates, are expressed almost ubiquitously, and play essential roles in embryogenesis and organogenesis. In addition, CXCL12 and CXCR4 are involved in antigen recognition by T and B cells and in shaping the tumor microenvironment (TME), mainly towards dampening immune responses. New data indicate that CXCR4 interacts with the surface protein CD47 in a novel form of immunosurveillance, called ImmunoGenic Surrender (IGS). Following the co-internalization of CXCR4 and CD47 in tumor cells, macrophages phagocytose them and cross-present their antigens to the adaptive immune system, leading to tumor rejection in a fraction of mice. All of these specific activities of CXCL12 and CXCR4 in antigen presentation might be complementary to current immunotherapies. Abstract CXCR4 is a G-Protein coupled receptor that is expressed nearly ubiquitously and is known to control cell migration via its interaction with CXCL12, the most ancient chemokine. The functions of CXCR4/CXCL12 extend beyond cell migration and involve the recognition and disposal of unhealthy or tumor cells. The CXCR4/CXCL12 axis plays a relevant role in shaping the tumor microenvironment (TME), mainly towards dampening immune responses. Notably, CXCR4/CXCL12 cross-signal via the T and B cell receptors (TCR and BCR) and co-internalize with CD47, promoting tumor cell phagocytosis by macrophages in an anti-tumor immune process called ImmunoGenic Surrender (IGS). These specific activities in shaping the immune response might be exploited to improve current immunotherapies.
Collapse
|
20
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
21
|
Adiletta A, Pross A, Taricco N, Sgadò P. Embryonic Valproate Exposure Alters Mesencephalic Dopaminergic Neurons Distribution and Septal Dopaminergic Gene Expression in Domestic Chicks. Front Integr Neurosci 2022; 16:804881. [PMID: 35369647 PMCID: PMC8966611 DOI: 10.3389/fnint.2022.804881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/07/2022] [Indexed: 11/15/2022] Open
Abstract
In recent years, the role of the dopaminergic system in the regulation of social behavior is being progressively outlined, and dysfunctions of the dopaminergic system are increasingly associated with neurodevelopmental disorders, including autism spectrum disorder (ASD). To study the role of the dopaminergic (DA) system in an animal model of ASD, we investigated the effects of embryonic exposure to valproic acid (VPA) on the postnatal development of the mesencephalic DA system in the domestic chick. We found that VPA affected the rostro-caudal distribution of DA neurons, without changing the expression levels of several dopaminergic markers in the mesencephalon. We also investigated a potential consequence of this altered DA neuronal distribution in the septum, a social brain area previously associated to social behavior in several vertebrate species, describing alterations in the expression of genes linked to DA neurotransmission. These findings support the emerging hypothesis of a role of DA dysfunction in ASD pathogenesis. Together with previous studies showing impairments of early social orienting behavior, these data also support the use of the domestic chick model to investigate the neurobiological mechanisms potentially involved in early ASD symptoms.
Collapse
Affiliation(s)
- Alice Adiletta
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Alessandra Pross
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Lleida’s Institute for Biomedical Research Dr. Pifarre Foundation (IRBLleida), Lleida, Spain
| | - Nicolò Taricco
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Paola Sgadò
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- *Correspondence: Paola Sgadò,
| |
Collapse
|
22
|
Duval V, Alayrac P, Silvestre JS, Levoye A. Emerging Roles of the Atypical Chemokine Receptor 3 (ACKR3) in Cardiovascular Diseases. Front Endocrinol (Lausanne) 2022; 13:906586. [PMID: 35846294 PMCID: PMC9276939 DOI: 10.3389/fendo.2022.906586] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/27/2022] [Indexed: 11/14/2022] Open
Abstract
Chemokines, and their receptors play a crucial role in the pathophysiology of cardiovascular diseases (CVD). Chemokines classically mediate their effects by binding to G-protein-coupled receptors. The discovery that chemokines can also bind to atypical chemokine receptors (ACKRs) and initiate alternative signaling pathways has changed the paradigm regarding chemokine-related functions. Among these ACKRs, several studies have highlighted the exclusive role of ACKR3, previously known as C-X-C chemokine receptor type 7 (CXCR7), in CVD. Indeed, ACKR3 exert atheroprotective, cardioprotective and anti-thrombotic effects through a wide range of cells including endothelial cells, platelets, inflammatory cells, fibroblasts, vascular smooth muscle cells and cardiomyocytes. ACKR3 functions as a scavenger receptor notably for the pleiotropic chemokine CXCL12, but also as a activator of different pathways such as β-arrestin-mediated signaling or modulator of CXCR4 signaling through the formation of ACKR3-CXCR4 heterodimers. Hence, a better understanding of the precise roles of ACKR3 may pave the way towards the development of novel and improved therapeutic strategies for CVD. Here, we summarize the structural determinant characteristic of ACKR3, the molecules targeting this receptor and signaling pathways modulated by ACKR3. Finally, we present and discuss recent findings regarding the role of ACKR3 in CVD.
Collapse
Affiliation(s)
- Vincent Duval
- Université Paris Cité, Institut National de la Santé Et Recherche Médicale (INSERM), Paris Cardiovascular Research Center PARCC, Paris, France
| | - Paul Alayrac
- Université Paris Cité, Institut National de la Santé Et Recherche Médicale (INSERM), Paris Cardiovascular Research Center PARCC, Paris, France
| | - Jean-Sébastien Silvestre
- Université Paris Cité, Institut National de la Santé Et Recherche Médicale (INSERM), Paris Cardiovascular Research Center PARCC, Paris, France
| | - Angélique Levoye
- Université Paris Cité, Institut National de la Santé Et Recherche Médicale (INSERM), Paris Cardiovascular Research Center PARCC, Paris, France
- UFR Santé Médecine Biologie Humaine, Université Sorbonne Paris Nord, Bobigny, France
- *Correspondence: Angélique Levoye,
| |
Collapse
|
23
|
Malik S, Westcott JM, Brekken RA, Burrows FJ. CXCL12 in Pancreatic Cancer: Its Function and Potential as a Therapeutic Drug Target. Cancers (Basel) 2021; 14:cancers14010086. [PMID: 35008248 PMCID: PMC8750050 DOI: 10.3390/cancers14010086] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Pancreatic cancer is a challenging disease to treat effectively. Fibroblasts associated with pancreatic cancer contribute to disease progression by secreting factors that enhance tumor cell survival and help tumor cells avoid detection by the immune system. This overview focuses on a chemokine, CXCL12, produced by cancer-associated fibroblasts and how CXCL12 signaling enhances pancreatic cancer progression by contributing to various hallmarks of cancer including, but not limited to, tumor growth and evasion of immune response. These pro-oncogenic functions of CXCL12 make it an attractive target in pancreatic cancer. We discuss the different approaches in development to therapeutically target CXCL12 and finally propose a novel approach, the use of the farnesyl transferase inhibitor tipifarnib to inhibit CXCL12 expression in pancreatic fibroblasts. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a disease with limited therapeutic options and dismal long-term survival. The unique tumor environment of PDAC, consisting of desmoplastic stroma, immune suppressive cells, and activated fibroblasts, contributes to its resistance to therapy. Activated fibroblasts (cancer-associated fibroblasts and pancreatic stellate cells) secrete chemokines and growth factors that support PDAC growth, spread, chemoresistance, and immune evasion. In this review, we focus on one such chemokine, CXCL12, secreted by the cancer-associated fibroblasts and discuss its contribution to several of the classical hallmarks of PDAC and other tumors. We review the various therapeutic approaches in development to target CXCL12 signaling in PDAC. Finally, we propose an unconventional use of tipifarnib, a farnesyl transferase inhibitor, to inhibit CXCL12 production in PDAC.
Collapse
Affiliation(s)
| | - Jill M. Westcott
- Division of Surgical Oncology, Department of Surgery, and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Rolf A. Brekken
- Division of Surgical Oncology, Department of Surgery, and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Correspondence: (R.A.B.); (F.J.B.)
| | - Francis J. Burrows
- Kura Oncology, Inc., San Diego, CA 92130, USA;
- Correspondence: (R.A.B.); (F.J.B.)
| |
Collapse
|
24
|
Ehrlich AT, Semache M, Couvineau P, Wojcik S, Kobayashi H, Thelen M, Gross F, Hogue M, Le Gouill C, Darcq E, Bouvier M, Kieffer BL. Ackr3-Venus knock-in mouse lights up brain vasculature. Mol Brain 2021; 14:151. [PMID: 34583741 PMCID: PMC8477500 DOI: 10.1186/s13041-021-00862-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/17/2021] [Indexed: 01/09/2023] Open
Abstract
The atypical chemokine receptor 3, ACKR3, is a G protein-coupled receptor, which does not couple to G proteins but recruits βarrestins. At present, ACKR3 is considered a target for cancer and cardiovascular disorders, but less is known about the potential of ACKR3 as a target for brain disease. Further, mouse lines have been created to identify cells expressing the receptor, but there is no tool to visualize and study the receptor itself under physiological conditions. Here, we engineered a knock-in (KI) mouse expressing a functional ACKR3-Venus fusion protein to directly detect the receptor, particularly in the adult brain. In HEK-293 cells, native and fused receptors showed similar membrane expression, ligand induced trafficking and signaling profiles, indicating that the Venus fusion does not alter receptor signaling. We also found that ACKR3-Venus enables direct real-time monitoring of receptor trafficking using resonance energy transfer. In ACKR3-Venus knock-in mice, we found normal ACKR3 mRNA levels in the brain, suggesting intact gene transcription. We fully mapped receptor expression across 14 peripheral organs and 112 brain areas and found that ACKR3 is primarily localized to the vasculature in these tissues. In the periphery, receptor distribution aligns with previous reports. In the brain there is notable ACKR3 expression in endothelial vascular cells, hippocampal GABAergic interneurons and neuroblast neighboring cells. In conclusion, we have generated Ackr3-Venus knock-in mice with a traceable ACKR3 receptor, which will be a useful tool to the research community for interrogations about ACKR3 biology and related diseases.
Collapse
Affiliation(s)
- Aliza T Ehrlich
- Douglas Research Center, McGill University, Montréal, Canada.
- University of California, San Francisco, USA.
| | - Meriem Semache
- Institute for Research in Immunology and Cancer (IRIC) and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
- Domain Therapeutics North America, Montréal, Québec, H4S 1Z9, Canada
| | - Pierre Couvineau
- Institute for Research in Immunology and Cancer (IRIC) and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Stefan Wojcik
- Douglas Research Center, McGill University, Montréal, Canada
- University of Surrey, Guildford, UK
- Oxford Brookes University, Oxford, UK
| | - Hiroyuki Kobayashi
- Institute for Research in Immunology and Cancer (IRIC) and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Florence Gross
- Institute for Research in Immunology and Cancer (IRIC) and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
- Domain Therapeutics North America, Montréal, Québec, H4S 1Z9, Canada
| | - Mireille Hogue
- Institute for Research in Immunology and Cancer (IRIC) and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Christian Le Gouill
- Institute for Research in Immunology and Cancer (IRIC) and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Emmanuel Darcq
- Douglas Research Center, McGill University, Montréal, Canada
- INSERM U1114, University of Strasbourg, Strasbourg, France
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer (IRIC) and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada.
| | - Brigitte L Kieffer
- Douglas Research Center, McGill University, Montréal, Canada.
- INSERM U1114, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
25
|
Fleitas C, Marfull-Oromí P, Chauhan D, Del Toro D, Peguera B, Zammou B, Rocandio D, Klein R, Espinet C, Egea J. FLRT2 and FLRT3 Cooperate in Maintaining the Tangential Migratory Streams of Cortical Interneurons during Development. J Neurosci 2021; 41:7350-7362. [PMID: 34301831 PMCID: PMC8412983 DOI: 10.1523/jneurosci.0380-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 02/08/2023] Open
Abstract
Neuron migration is a hallmark of nervous system development that allows gathering of neurons from different origins for assembling of functional neuronal circuits. Cortical inhibitory interneurons arise in the ventral telencephalon and migrate tangentially forming three transient migratory streams in the cortex before reaching the final laminar destination. Although migration defects lead to the disruption of inhibitory circuits and are linked to aspects of psychiatric disorders such as autism and schizophrenia, the molecular mechanisms controlling cortical interneuron development and final layer positioning are incompletely understood. Here, we show that mouse embryos with a double deletion of FLRT2 and FLRT3 genes encoding cell adhesion molecules exhibit an abnormal distribution of interneurons within the streams during development, which in turn, affect the layering of somatostatin+ interneurons postnatally. Mechanistically, FLRT2 and FLRT3 proteins act in a noncell-autonomous manner, possibly through a repulsive mechanism. In support of such a conclusion, double knockouts deficient in the repulsive receptors for FLRTs, Unc5B and Unc5D, also display interneuron defects during development, similar to the FLRT2/FLRT3 mutants. Moreover, FLRT proteins are chemorepellent ligands for developing interneurons in vitro, an effect that is in part dependent on FLRT-Unc5 interaction. Together, we propose that FLRTs act through Unc5 receptors to control cortical interneuron distribution in a mechanism that involves cell repulsion.SIGNIFICANCE STATEMENT Disruption of inhibitory cortical circuits is responsible for some aspects of psychiatric disorders such as schizophrenia or autism. These defects include interneuron migration during development. A crucial step during this process is the formation of three transient migratory streams within the developing cortex that determine the timing of interneuron final positioning and the formation of functional cortical circuits in the adult. We report that FLRT proteins are required for the proper distribution of interneurons within the cortical migratory streams and for the final laminar allocation in the postnatal cortex. These results expand the multifunctional role of FLRTs during nervous system development in addition to the role of FLRTs in axon guidance and the migration of excitatory cortical neurons.
Collapse
Affiliation(s)
- Catherine Fleitas
- Lleida Biomedical Research Institute, University of Lleida, Lleida 25198, Spain
| | - Pau Marfull-Oromí
- Lleida Biomedical Research Institute, University of Lleida, Lleida 25198, Spain
| | - Disha Chauhan
- Lleida Biomedical Research Institute, University of Lleida, Lleida 25198, Spain
| | - Daniel Del Toro
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Blanca Peguera
- Lleida Biomedical Research Institute, University of Lleida, Lleida 25198, Spain
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Bahira Zammou
- Lleida Biomedical Research Institute, University of Lleida, Lleida 25198, Spain
| | - Daniel Rocandio
- Lleida Biomedical Research Institute, University of Lleida, Lleida 25198, Spain
| | - Rüdiger Klein
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Carme Espinet
- Lleida Biomedical Research Institute, University of Lleida, Lleida 25198, Spain
| | - Joaquim Egea
- Lleida Biomedical Research Institute, University of Lleida, Lleida 25198, Spain
- Serra Hunter Associate Professor, Government of Catalonia, 08007, Spain
| |
Collapse
|
26
|
Ridge LA, Kewbank D, Schütz D, Stumm R, Scambler PJ, Ivins S. Dual role for CXCL12 signaling in semilunar valve development. Cell Rep 2021; 36:109610. [PMID: 34433040 PMCID: PMC8411116 DOI: 10.1016/j.celrep.2021.109610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/29/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023] Open
Abstract
Cxcl12-null embryos have dysplastic, misaligned, and hyperplastic semilunar valves (SLVs). In this study, we show that CXCL12 signaling via its receptor CXCR4 fulfills distinct roles at different stages of SLV development, acting initially as a guidance cue to pattern cellular distribution within the valve primordia during the endocardial-to-mesenchymal transition (endoMT) phase and later regulating mesenchymal cell proliferation during SLV remodeling. Transient, anteriorly localized puncta of internalized CXCR4 are observed in cells undergoing endoMT. In vitro, CXCR4+ cell orientation in response to CXCL12 requires phosphatidylinositol 3-kinase (PI3K) signaling and is inhibited by suppression of endocytosis. This dynamic intracellular localization of CXCR4 during SLV development is related to CXCL12 availability, potentially enabling activation of divergent downstream signaling pathways at key developmental stages. Importantly, Cxcr7-/- mutants display evidence of excessive CXCL12 signaling, indicating a likely role for atypical chemokine receptor CXCR7 in regulating ligand bioavailability and thus CXCR4 signaling output during SLV morphogenesis.
Collapse
Affiliation(s)
- Liam A Ridge
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Dania Kewbank
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Dagmar Schütz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Ralf Stumm
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Peter J Scambler
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Sarah Ivins
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
27
|
Santagata S, Ieranò C, Trotta AM, Capiluongo A, Auletta F, Guardascione G, Scala S. CXCR4 and CXCR7 Signaling Pathways: A Focus on the Cross-Talk Between Cancer Cells and Tumor Microenvironment. Front Oncol 2021; 11:591386. [PMID: 33937018 PMCID: PMC8082172 DOI: 10.3389/fonc.2021.591386] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
The chemokine receptor 4 (CXCR4) and 7 (CXCR7) are G-protein-coupled receptors (GPCRs) activated through their shared ligand CXCL12 in multiple human cancers. They play a key role in the tumor/tumor microenvironment (TME) promoting tumor progression, targeting cell proliferation and migration, while orchestrating the recruitment of immune and stromal cells within the TME. CXCL12 excludes T cells from TME through a concentration gradient that inhibits immunoactive cells access and promotes tumor vascularization. Thus, dual CXCR4/CXCR7 inhibition will target different cancer components. CXCR4/CXCR7 antagonism should prevent the development of metastases by interfering with tumor cell growth, migration and chemotaxis and favoring the frequency of T cells in TME. Herein, we discuss the current understanding on the role of CXCL12/CXCR4/CXCR7 cross-talk in tumor progression and immune cells recruitment providing support for a combined CXCR4/CXCR7 targeting therapy. In addition, we consider emerging approaches that coordinately target both immune checkpoints and CXCL12/CXCR4/CXCR7 axis.
Collapse
Affiliation(s)
- Sara Santagata
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Caterina Ieranò
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Anna Maria Trotta
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Anna Capiluongo
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Federica Auletta
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Giuseppe Guardascione
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Stefania Scala
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| |
Collapse
|
28
|
Sigmund EC, Baur L, Schineis P, Arasa J, Collado-Diaz V, Vranova M, Stahl RAK, Thelen M, Halin C. Lymphatic endothelial-cell expressed ACKR3 is dispensable for postnatal lymphangiogenesis and lymphatic drainage function in mice. PLoS One 2021; 16:e0249068. [PMID: 33857173 PMCID: PMC8049313 DOI: 10.1371/journal.pone.0249068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
Atypical chemokine receptor ACKR3 (formerly CXCR7) is a scavenging receptor that has recently been implicated in murine lymphatic development. Specifically, ACKR3-deficiency was shown to result in lymphatic hyperplasia and lymphedema, in addition to cardiac hyperplasia and cardiac valve defects leading to embryonic lethality. The lymphatic phenotype was attributed to a lymphatic endothelial cell (LEC)-intrinsic scavenging function of ACKR3 for the vascular peptide hormone adrenomedullin (AM), which is also important during postnatal lymphangiogenesis. In this study, we investigated the expression of ACKR3 in the lymphatic vasculature of adult mice and its function in postnatal lymphatic development and function. We show that ACKR3 is widely expressed in mature lymphatics and that it exerts chemokine-scavenging activity in cultured murine skin-derived LECs. To investigate the role of LEC-expressed ACKR3 in postnatal lymphangiogenesis and function during adulthood, we generated and validated a lymphatic-specific, inducible ACKR3 knockout mouse. Surprisingly, in contrast to the reported involvement of ACKR3 in lymphatic development, our analyses revealed no contribution of LEC-expressed ACKR3 to postnatal lymphangiogenesis, lymphatic morphology and drainage function.
Collapse
Affiliation(s)
- Elena C. Sigmund
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Lilian Baur
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Philipp Schineis
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jorge Arasa
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Martina Vranova
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Marcus Thelen
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
29
|
Yang J, Yang X, Tang K. Interneuron development and dysfunction. FEBS J 2021; 289:2318-2336. [PMID: 33844440 DOI: 10.1111/febs.15872] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Understanding excitation and inhibition balance in the brain begins with the tale of two basic types of neurons, glutamatergic projection neurons and GABAergic interneurons. The diversity of cortical interneurons is contributed by multiple origins in the ventral forebrain, various tangential migration routes, and complicated regulations of intrinsic factors, extrinsic signals, and activities. Abnormalities of interneuron development lead to dysfunction of interneurons and inhibitory circuits, which are highly associated with neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and intellectual disability. In this review, we mainly discuss recent findings on the development of cortical interneuron and on neurodevelopmental disorders related to interneuron dysfunction.
Collapse
Affiliation(s)
- Jiaxin Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| | - Xiong Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| |
Collapse
|
30
|
Cui XY, Tjønnfjord GE, Kanse SM, Dahm AEA, Iversen N, Myklebust CF, Sun L, Jiang ZX, Ueland T, Campbell JJ, Ho M, Sandset PM. Tissue factor pathway inhibitor upregulates CXCR7 expression and enhances CXCL12-mediated migration in chronic lymphocytic leukemia. Sci Rep 2021; 11:5127. [PMID: 33664415 PMCID: PMC7933411 DOI: 10.1038/s41598-021-84695-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/16/2021] [Indexed: 11/09/2022] Open
Abstract
The infiltration of chronic lymphocytic leukemia (CLL) cells into lymphoid organs correlates with disease severity. CXCL12 is a key chemotactic factor for the trafficking of CLL. Tissue factor pathway inhibitor (TFPI) is a serine protease inhibitor and plays a role in CXCL12-mediated hematopoietic stem cell homing. We aim to explore the role of TFPI in CXCL12-mediated migration of CLL cells. In this study, plasma TFPI concentrations were measured by ELISA. CLL cells were isolated from patients and used for trans-endothelial migration (TEM) assays. Quantitative RT-PCR and Western blotting were used to detect the expression of CXCR7, CXCR4 and β-catenin. Immunofluorescence and co-immunoprecipitation was used to detect the binding of TFPI and glypican-3 (GPC3). We found that plasma TFPI levels in CLL patients were higher than in healthy controls, particularly in the patients with advanced disease. TFPI enhanced CXCL12-mediated TEM of CLL cells by increasing the expression of the CXCL12 receptor CXCR7, but not of the CXCL12 receptor CXCR4. The effect of TFPI on TEM was abolished by the CXCR7 inhibitor, CCX771, while the CXCR4 inhibitor AMD3100 strongly increased TEM. TFPI co-localized with GPC3 on the cell surface. An antibody to GPC3, HS20, decreased CXCR7 expression and abolished the effect of TFPI on TEM. TFPI activated β-catenin and the Wnt/β-catenin inhibitor IWP4 repressed the effect of TFPI on CXCR7 expression and TEM. We conclude that TFPI may contribute to organ infiltration in CLL patients.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cell Line, Tumor
- Cell Movement/genetics
- Chemokine CXCL12/genetics
- Female
- Gene Expression Regulation, Leukemic/genetics
- Glypicans/genetics
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lipoproteins/blood
- Male
- Middle Aged
- Receptors, CXCR/genetics
- Receptors, CXCR4/genetics
- Signal Transduction/genetics
- beta Catenin/genetics
Collapse
Affiliation(s)
- Xue Yan Cui
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, China.
- Department of Haematology, Oslo University Hospital Rikshospitalet, Nydalen, Box 4950, 0424, Oslo, Norway.
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Geir Erland Tjønnfjord
- Department of Haematology, Oslo University Hospital Rikshospitalet, Nydalen, Box 4950, 0424, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for B-Cell Malignancies, University of Oslo, Oslo, Norway
| | - Sandip M Kanse
- Institute of Basal Medical Sciences, University of Oslo, Oslo, Norway
| | - Anders Erik Astrup Dahm
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Haematology, Akershus University Hospital, Lørenskog, Norway
| | - Nina Iversen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Christiane Filion Myklebust
- Department of Haematology, Oslo University Hospital Rikshospitalet, Nydalen, Box 4950, 0424, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Ling Sun
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, China
| | - Zhong Xing Jiang
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, China
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Per Morten Sandset
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, China.
- Department of Haematology, Oslo University Hospital Rikshospitalet, Nydalen, Box 4950, 0424, Oslo, Norway.
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
31
|
Portella L, Bello AM, Scala S. CXCL12 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:51-70. [PMID: 34286441 DOI: 10.1007/978-3-030-62658-7_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor microenvironment (TME) is the local environment of tumor, composed of tumor cells and blood vessels, extracellular matrix (ECM), immune cells, and metabolic and signaling molecules. Chemokines and their receptors play a fundamental role in the crosstalk between tumor cells and TME, regulating tumor-related angiogenesis, specific leukocyte infiltration, and activation of the immune response and directly influencing tumor cell growth, invasion, and cancer progression. The chemokine CXCL12 is a homeostatic chemokine that regulates physiological and pathological process such as inflammation, cell proliferation, and specific migration. CXCL12 activates CXCR4 and CXCR7 chemokine receptors, and the entire axis has been shown to be dysregulated in more than 20 different tumors. CXCL12 binding to CXCR4 triggers multiple signal transduction pathways that regulate intracellular calcium flux, chemotaxis, transcription, and cell survival. CXCR7 binds with high-affinity CXCL12 and with lower-affinity CXCL11, which binds also CXCR3. Although CXCR7 acts as a CXCL12 scavenger through ligand internalization and degradation, it transduces the signal mainly through β-arrestin with a pivotal role in endothelial and neural cells. Recent studies demonstrate that TME rich in CXCL12 leads to resistance to immune checkpoint inhibitors (ICI) therapy and that CXCL12 axis inhibitors sensitize resistant tumors to ICI effect. Thus targeting the CXCL12-mediated axis may control tumor and tumor microenvironment exerting an antitumor dual action. Herein CXCL12 physiology, role in cancer biology and in composite TME, prognostic role, and the relative inhibitors are addressed.
Collapse
Affiliation(s)
- Luigi Portella
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Anna Maria Bello
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy.
| |
Collapse
|
32
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Rajagopal S. Biased agonism at chemokine receptors. Cell Signal 2020; 78:109862. [PMID: 33249087 DOI: 10.1016/j.cellsig.2020.109862] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
In the human chemokine system, interactions between the approximately 50 known endogenous chemokine ligands and 20 known chemokine receptors (CKRs) regulate a wide range of cellular functions and biological processes including immune cell activation and homeostasis, development, angiogenesis, and neuromodulation. CKRs are a family of G protein-coupled receptors (GPCR), which represent the most common and versatile class of receptors in the human genome and the targets of approximately one third of all Food and Drug Administration-approved drugs. Chemokines and CKRs bind with significant promiscuity, as most CKRs can be activated by multiple chemokines and most chemokines can activate multiple CKRs. While these ligand-receptor interactions were previously regarded as redundant, it is now appreciated that many chemokine:CKR interactions display biased agonism, the phenomenon in which different ligands binding to the same receptor signal through different pathways with different efficacies, leading to distinct biological effects. Notably, these biased responses can be modulated through changes in ligand, receptor, and or the specific cellular context (system). In this review, we explore the biochemical mechanisms, functional consequences, and therapeutic potential of biased agonism in the chemokine system. An enhanced understanding of biased agonism in the chemokine system may prove transformative in the understanding of the mechanisms and consequences of biased signaling across all GPCR subtypes and aid in the development of biased pharmaceuticals with increased therapeutic efficacy and safer side effect profiles.
Collapse
Affiliation(s)
| | - Noelia Boldizsar
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | | | - Julia Gardner
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
33
|
Fumagalli A, Heuninck J, Pizzoccaro A, Moutin E, Koenen J, Séveno M, Durroux T, Junier MP, Schlecht-Louf G, Bachelerie F, Schütz D, Stumm R, Smit MJ, Guérineau NC, Chaumont-Dubel S, Marin P. The atypical chemokine receptor 3 interacts with Connexin 43 inhibiting astrocytic gap junctional intercellular communication. Nat Commun 2020; 11:4855. [PMID: 32978390 PMCID: PMC7519114 DOI: 10.1038/s41467-020-18634-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
The atypical chemokine receptor 3 (ACKR3) plays a pivotal role in directing the migration of various cellular populations and its over-expression in tumors promotes cell proliferation and invasiveness. The intracellular signaling pathways transducing ACKR3-dependent effects remain poorly characterized, an issue we addressed by identifying the interactome of ACKR3. Here, we report that recombinant ACKR3 expressed in HEK293T cells recruits the gap junction protein Connexin 43 (Cx43). Cx43 and ACKR3 are co-expressed in mouse brain astrocytes and human glioblastoma cells and form a complex in embryonic mouse brain. Functional in vitro studies show enhanced ACKR3 interaction with Cx43 upon ACKR3 agonist stimulation. Furthermore, ACKR3 activation promotes β-arrestin2- and dynamin-dependent Cx43 internalization to inhibit gap junctional intercellular communication in primary astrocytes. These results demonstrate a functional link between ACKR3 and gap junctions that might be of pathophysiological relevance. The atypical chemokine receptor 3 (ACKR3) is known to regulate cell migration, but the underlying mechanisms are unclear. Here, the authors show, from an interactome analysis, ACKR3 association with the gap junction protein Connexin 43 in vivo and ACKR3-mediated inhibition of astrocyte gap junctional communication.
Collapse
Affiliation(s)
- Amos Fumagalli
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Joyce Heuninck
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Anne Pizzoccaro
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Enora Moutin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Joyce Koenen
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92140, Clamart, France.,Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, 1081, HV, Amsterdam, The Netherlands
| | - Martial Séveno
- Biocampus Montpellier, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Marie-Pierre Junier
- CNRS UMR8246, Inserm U1130, Neuroscience Paris Seine-IBPS, Sorbonne Universités, Paris, France
| | - Géraldine Schlecht-Louf
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92140, Clamart, France
| | - Francoise Bachelerie
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92140, Clamart, France
| | - Dagmar Schütz
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747, Jena, Germany
| | - Ralf Stumm
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747, Jena, Germany
| | - Martine J Smit
- Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, 1081, HV, Amsterdam, The Netherlands
| | - Nathalie C Guérineau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
34
|
JNK Signaling Regulates Cellular Mechanics of Cortical Interneuron Migration. eNeuro 2020; 7:ENEURO.0132-20.2020. [PMID: 32737185 PMCID: PMC7642122 DOI: 10.1523/eneuro.0132-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/01/2020] [Accepted: 07/15/2020] [Indexed: 12/27/2022] Open
Abstract
Aberrant migration of inhibitory interneurons can alter the formation of cortical circuitry and lead to severe neurologic disorders including epilepsy, autism, and schizophrenia. However, mechanisms involved in directing the migration of interneurons remain incompletely understood. Using a mouse model, we performed live-cell confocal microscopy to explore the mechanisms by which the c-Jun NH2-terminal kinase (JNK) pathway coordinates leading process branching and nucleokinesis, two cell biological processes that are essential for the guided migration of cortical interneurons. Pharmacological inhibition of JNK signaling disrupts the kinetics of leading process branching, rate and amplitude of nucleokinesis, and leads to the rearward mislocalization of the centrosome and primary cilium to the trailing process. Genetic loss of Jnk from interneurons also impairs leading process branching and nucleokinesis, suggesting that important mechanics of interneuron migration depend on the intrinsic activity of JNK. These findings highlight key roles for JNK signaling in leading process branching, nucleokinesis, and the trafficking of centrosomes and cilia during interneuron migration, and further implicates JNK signaling as an important mediator of cortical development.
Collapse
|
35
|
Regulation of Neurogenesis in Mouse Brain by HMGB1. Cells 2020; 9:cells9071714. [PMID: 32708917 PMCID: PMC7407245 DOI: 10.3390/cells9071714] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The High Mobility Group Box 1 (HMGB1) is the most abundant nuclear nonhistone protein that is involved in transcription regulation. In addition, HMGB1 has previously been found as an extracellularly acting protein enhancing neurite outgrowth in cultured neurons. Although HMGB1 is widely expressed in the developing central nervous system of vertebrates and invertebrates, its function in the developing mouse brain is poorly understood. Here, we have analyzed developmental defects of the HMGB1 null mouse forebrain, and further examined our findings in ex vivo brain cell cultures. We find that HMGB1 is required for the proliferation and differentiation of neuronal stem cells/progenitor cells. Enhanced apoptosis is also found in the neuronal cells lacking HMGB1. Moreover, HMGB1 depletion disrupts Wnt/β-catenin signaling and the expression of transcription factors in the developing cortex, including Foxg1, Tbr2, Emx2, and Lhx6. Finally, HMGB1 null mice display aberrant expression of CXCL12/CXCR4 and reduced RAGE signaling. In conclusion, HMGB1 plays a critical role in mammalian neurogenesis and brain development.
Collapse
|
36
|
Pai ELL, Chen J, Fazel Darbandi S, Cho FS, Chen J, Lindtner S, Chu JS, Paz JT, Vogt D, Paredes MF, Rubenstein JLR. Maf and Mafb control mouse pallial interneuron fate and maturation through neuropsychiatric disease gene regulation. eLife 2020; 9:e54903. [PMID: 32452758 PMCID: PMC7282818 DOI: 10.7554/elife.54903] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022] Open
Abstract
Maf (c-Maf) and Mafb transcription factors (TFs) have compensatory roles in repressing somatostatin (SST+) interneuron (IN) production in medial ganglionic eminence (MGE) secondary progenitors in mice. Maf and Mafb conditional deletion (cDKO) decreases the survival of MGE-derived cortical interneurons (CINs) and changes their physiological properties. Herein, we show that (1) Mef2c and Snap25 are positively regulated by Maf and Mafb to drive IN morphological maturation; (2) Maf and Mafb promote Mef2c expression which specifies parvalbumin (PV+) INs; (3) Elmo1, Igfbp4 and Mef2c are candidate markers of immature PV+ hippocampal INs (HIN). Furthermore, Maf/Mafb neonatal cDKOs have decreased CINs and increased HINs, that express Pnoc, an HIN specific marker. Our findings not only elucidate key gene targets of Maf and Mafb that control IN development, but also identify for the first time TFs that differentially regulate CIN vs. HIN production.
Collapse
Affiliation(s)
- Emily Ling-Lin Pai
- Department of Psychiatry, University of California San FranciscoSan FranciscoUnited States
- Neuroscience Graduate Program, University of California San FranciscoSan FranciscoUnited States
| | - Jin Chen
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California San FranciscoSan FranciscoUnited States
| | - Siavash Fazel Darbandi
- Department of Psychiatry, University of California San FranciscoSan FranciscoUnited States
| | - Frances S Cho
- Neuroscience Graduate Program, University of California San FranciscoSan FranciscoUnited States
- Department of Neurology, University of California San FranciscoSan FranciscoUnited States
- Gladstone Institute of Neurological Disease, Gladstone InstitutesSan FranciscoUnited States
| | - Jiapei Chen
- Gladstone Institute of Neurological Disease, Gladstone InstitutesSan FranciscoUnited States
- Biomedical Sciences Graduate Program, University of California San FranciscoSan FranciscoUnited States
| | - Susan Lindtner
- Department of Psychiatry, University of California San FranciscoSan FranciscoUnited States
| | - Julia S Chu
- Department of Neurology, University of California San FranciscoSan FranciscoUnited States
| | - Jeanne T Paz
- Neuroscience Graduate Program, University of California San FranciscoSan FranciscoUnited States
- Department of Neurology, University of California San FranciscoSan FranciscoUnited States
- Gladstone Institute of Neurological Disease, Gladstone InstitutesSan FranciscoUnited States
- The Kavli Institute for Fundamental Neuroscience, University of California San FranciscoSan FranciscoUnited States
| | - Daniel Vogt
- Department of Pediatrics and Human Development, Michigan State UniversityGrand RapidsUnited States
| | - Mercedes F Paredes
- Neuroscience Graduate Program, University of California San FranciscoSan FranciscoUnited States
- Department of Neurology, University of California San FranciscoSan FranciscoUnited States
- The Kavli Institute for Fundamental Neuroscience, University of California San FranciscoSan FranciscoUnited States
| | - John LR Rubenstein
- Department of Psychiatry, University of California San FranciscoSan FranciscoUnited States
- The Kavli Institute for Fundamental Neuroscience, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
37
|
Groblewska M, Litman-Zawadzka A, Mroczko B. The Role of Selected Chemokines and Their Receptors in the Development of Gliomas. Int J Mol Sci 2020; 21:ijms21103704. [PMID: 32456359 PMCID: PMC7279280 DOI: 10.3390/ijms21103704] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Among heterogeneous primary tumors of the central nervous system (CNS), gliomas are the most frequent type, with glioblastoma multiforme (GBM) characterized with the worst prognosis. In their development, certain chemokine/receptor axes play important roles and promote proliferation, survival, metastasis, and neoangiogenesis. However, little is known about the significance of atypical receptors for chemokines (ACKRs) in these tumors. The objective of the study was to present the role of chemokines and their conventional and atypical receptors in CNS tumors. Therefore, we performed a thorough search for literature concerning our investigation via the PubMed database. We describe biological functions of chemokines/chemokine receptors from various groups and their significance in carcinogenesis, cancer-related inflammation, neo-angiogenesis, tumor growth, and metastasis. Furthermore, we discuss the role of chemokines in glioma development, with particular regard to their function in the transition from low-grade to high-grade tumors and angiogenic switch. We also depict various chemokine/receptor axes, such as CXCL8-CXCR1/2, CXCL12-CXCR4, CXCL16-CXCR6, CX3CL1-CX3CR1, CCL2-CCR2, and CCL5-CCR5 of special importance in gliomas, as well as atypical chemokine receptors ACKR1-4, CCRL2, and PITPMN3. Additionally, the diagnostic significance and usefulness of the measurement of some chemokines and their receptors in the blood and cerebrospinal fluid (CSF) of glioma patients is also presented.
Collapse
Affiliation(s)
- Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
- Correspondence: ; Tel.: +48-85-831-8785
| |
Collapse
|
38
|
Symmank J, Gölling V, Gerstmann K, Zimmer G. The Transcription Factor LHX1 Regulates the Survival and Directed Migration of POA-derived Cortical Interneurons. Cereb Cortex 2020; 29:1644-1658. [PMID: 29912395 DOI: 10.1093/cercor/bhy063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/17/2022] Open
Abstract
The delicate balance of excitation and inhibition is crucial for proper function of the cerebral cortex, relying on the accurate number and subtype composition of inhibitory gamma-aminobutyric (GABA)-expressing interneurons. Various intrinsic and extrinsic factors precisely orchestrate their multifaceted development including the long-range migration from the basal telencephalon to cortical targets as well as interneuron survival throughout the developmental period. Particularly expressed guidance receptors were described to channel the migration of cortical interneurons deriving from the medial ganglionic eminence (MGE) and the preoptic area (POA) along distinct routes. Hence, unveiling the regulatory genetic networks controlling subtype-specific gene expression profiles is key to understand interneuron-specific developmental programs and to reveal causes for associated disorders. In contrast to MGE-derived interneurons, little is known about the transcriptional networks in interneurons born in the POA. Here, we provide first evidence for the LIM-homeobox transcription factor LHX1 as a crucial key player in the post-mitotic development of POA-derived cortical interneurons. By transcriptional regulation of related genes, LHX1 modulates their survival as well as the subtype-specific expression of guidance receptors of the Eph/ephrin family, thereby affecting directional migration and layer distribution in the adult cortex.
Collapse
Affiliation(s)
- Judit Symmank
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Vanessa Gölling
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Katrin Gerstmann
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Geraldine Zimmer
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| |
Collapse
|
39
|
Shen W, Ba R, Su Y, Ni Y, Chen D, Xie W, Pleasure SJ, Zhao C. Foxg1 Regulates the Postnatal Development of Cortical Interneurons. Cereb Cortex 2020; 29:1547-1560. [PMID: 29912324 DOI: 10.1093/cercor/bhy051] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/23/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022] Open
Abstract
Abnormalities in cortical interneurons are closely associated with neurological diseases. Most patients with Foxg1 syndrome experience seizures, suggesting a possible role of Foxg1 in the cortical interneuron development. Here, by conditional deletion of Foxg1, which was achieved by crossing Foxg1fl/fl with the Gad2-CreER line, we found the postnatal distributions of somatostatin-, calretinin-, and neuropeptide Y-positive interneurons in the cortex were impaired. Further investigations revealed an enhanced dendritic complexity and decreased migration capacity of Foxg1-deficient interneurons, accompanied by remarkable downregulation of Dlx1 and CXCR4. Overexpression of Dlx1 or knock down its downstream Pak3 rescued the differentiation detects, demonstrated that Foxg1 functioned upstream of Dlx1-Pak3 signal pathway to regulate the postnatal development of cortical interneurons. Due to the imbalanced neural circuit, Foxg1 mutants showed increased seizure susceptibility. These findings will improve our understanding of the postnatal development of interneurons and help to elucidate the mechanisms underlying seizure in patients carrying Foxg1 mutations.
Collapse
Affiliation(s)
- Wei Shen
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Ru Ba
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Yan Su
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Yang Ni
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Dongsheng Chen
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Wei Xie
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Institute of Life Science, Southeast University, Nanjing, P. R. China
| | - Samuel J Pleasure
- Department of Neurology, Weill Institute for Neuroscience, Programs in Neuroscience and Developmental Stem Cell Biology, UCSF, San Francisco, CA, USA
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, P. R. China.,Center of Depression, Beijing Institute for Brain Disorders, Beijing 100069, People's Republic of China
| |
Collapse
|
40
|
Saaber F, Schütz D, Miess E, Abe P, Desikan S, Ashok Kumar P, Balk S, Huang K, Beaulieu JM, Schulz S, Stumm R. ACKR3 Regulation of Neuronal Migration Requires ACKR3 Phosphorylation, but Not β-Arrestin. Cell Rep 2020; 26:1473-1488.e9. [PMID: 30726732 DOI: 10.1016/j.celrep.2019.01.049] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/23/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphorylation of heptahelical receptors is thought to regulate G protein signaling, receptor endocytosis, and non-canonical signaling via recruitment of β-arrestins. We investigated chemokine receptor functionality under phosphorylation-deficient and β-arrestin-deficient conditions by studying interneuron migration in the embryonic cortex. This process depends on CXCL12, CXCR4, G protein signaling and on the atypical CXCL12 receptor ACKR3. We found that phosphorylation was crucial, whereas β-arrestins were dispensable for ACKR3-mediated control of CXCL12 levels in vivo. Cortices of mice expressing phosphorylation-deficient ACKR3 exhibited a major interneuron migration defect, which was accompanied by excessive activation and loss of CXCR4. Cxcl12-overexpressing mice mimicked this phenotype. Excess CXCL12 caused lysosomal CXCR4 degradation, loss of CXCR4 responsiveness, and, ultimately, similar motility defects as Cxcl12 deficiency. By contrast, β-arrestin deficiency caused only a subtle migration defect mimicked by CXCR4 gain of function. These findings demonstrate that phosphorylation regulates atypical chemokine receptor function without β-arrestin involvement in chemokine sequestration and non-canonical signaling.
Collapse
Affiliation(s)
- Friederike Saaber
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany
| | - Dagmar Schütz
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany
| | - Elke Miess
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany
| | - Philipp Abe
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany
| | - Srinidhi Desikan
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany
| | - Praveen Ashok Kumar
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany
| | - Sara Balk
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany
| | - Ke Huang
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S 1A8, ON, Canada
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany
| | - Ralf Stumm
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany.
| |
Collapse
|
41
|
Pai ELL, Vogt D, Clemente-Perez A, McKinsey GL, Cho FS, Hu JS, Wimer M, Paul A, Fazel Darbandi S, Pla R, Nowakowski TJ, Goodrich LV, Paz JT, Rubenstein JLR. Mafb and c-Maf Have Prenatal Compensatory and Postnatal Antagonistic Roles in Cortical Interneuron Fate and Function. Cell Rep 2020; 26:1157-1173.e5. [PMID: 30699346 PMCID: PMC6602795 DOI: 10.1016/j.celrep.2019.01.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/17/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022] Open
Abstract
Mafb and c-Maf transcription factor (TF) expression is enriched in medial ganglionic eminence (MGE) lineages, beginning in late-secondary progenitors and continuing into mature parvalbumin (PV+) and somatostatin (SST+) interneurons. However, the functions of Maf TFs in MGE development remain to be elucidated. Herein, Mafb and c-Maf were conditionally deleted, alone and together, in the MGE and its lineages. Analyses of Maf mutant mice revealed redundant functions of Mafb and c-Maf in secondary MGE progenitors, where they repress the generation of SST+ cortical and hippocampal interneurons. By contrast, Mafb and c-Maf have distinct roles in postnatal cortical interneuron (CIN) morphological maturation, synaptogenesis, and cortical circuit integration. Thus, Mafb and c-Maf have redundant and opposing functions at different steps in CIN development.
Collapse
Affiliation(s)
- Emily Ling-Lin Pai
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel Vogt
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA
| | - Alexandra Clemente-Perez
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Gabriel L McKinsey
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Frances S Cho
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Jia Sheng Hu
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matt Wimer
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Anirban Paul
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Siavash Fazel Darbandi
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ramon Pla
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeanne T Paz
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - John L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
42
|
Lounsbury N. Advances in CXCR7 Modulators. Pharmaceuticals (Basel) 2020; 13:ph13020033. [PMID: 32098047 PMCID: PMC7169404 DOI: 10.3390/ph13020033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
CXC chemokine receptor 7 (CXCR7) is a G-protein-coupled receptor that signals through the β-arrestin pathway. Its ligands include interferon-inducible T cell α chemoattractant (CXCL11) and stromal cell-derived factor-1 (CXCL12). It interacts with CXCR4, and the two are associated with various cancers, as well as other disease states such as coronary artery disease, stroke, inflammation and human immunodeficiency virus (HIV). Antibodies and small interfering RNA (siRNA) have shown the utility of antagonists of CXCR7 in these disease states. Although some small molecules were initially reported as antagonists due to their displayed activity, many function as agonists while still producing the desired pharmacologic effects. A potential reason for this contradiction is that effects may be due to elevated extracellular CXCL12 levels.
Collapse
Affiliation(s)
- Nicole Lounsbury
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL 33169, USA
| |
Collapse
|
43
|
Sjöberg E, Meyrath M, Chevigné A, Östman A, Augsten M, Szpakowska M. The diverse and complex roles of atypical chemokine receptors in cancer: From molecular biology to clinical relevance and therapy. Adv Cancer Res 2020; 145:99-138. [PMID: 32089166 DOI: 10.1016/bs.acr.2019.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemokines regulate directed cell migration, proliferation and survival and are key components in cancer biology. They exert their functions by interacting with seven-transmembrane domain receptors that signal through G proteins (GPCRs). A subgroup of four chemokine receptors known as the atypical chemokine receptors (ACKRs) has emerged as essential regulators of the chemokine functions. ACKRs play diverse and complex roles in tumor biology from tumor initiation to metastasis, including cancer cell proliferation, adherence to endothelium, epithelial-mesenchymal transition (EMT), extravasation from blood vessels, tumor-associated angiogenesis or protection from immunological responses. This chapter gives an overview on the established and emerging roles that the atypical chemokine receptors ACKR1, ACKR2, ACKR3 and ACKR4 play in the different phases of cancer development and dissemination, their clinical relevance, as well as on the hurdles to overcome in ACKRs targeting as cancer therapy.
Collapse
Affiliation(s)
- Elin Sjöberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Max Meyrath
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
44
|
TrkB Signaling Influences Gene Expression in Cortistatin-Expressing Interneurons. eNeuro 2020; 7:ENEURO.0310-19.2019. [PMID: 31941661 PMCID: PMC7031852 DOI: 10.1523/eneuro.0310-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/14/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) signals through its cognate receptor tropomyosin receptor kinase B (TrkB) to promote the function of several classes of inhibitory interneurons. We previously reported that loss of BDNF-TrkB signaling in cortistatin (Cort)-expressing interneurons leads to behavioral hyperactivity and spontaneous seizures in mice. We performed bulk RNA sequencing (RNA-seq) from the cortex of mice with disruption of BDNF-TrkB signaling in cortistatin interneurons, and identified differential expression of genes important for excitatory neuron function. Using translating ribosome affinity purification and RNA-seq, we define a molecular profile for Cort-expressing inhibitory neurons and subsequently compare the translatome of normal and TrkB-depleted Cort neurons, revealing alterations in calcium signaling and axon development. Several of the genes enriched in Cort neurons and differentially expressed in TrkB-depleted neurons are also implicated in autism and epilepsy. Our findings highlight TrkB-dependent molecular pathways as critical for the maturation of inhibitory interneurons and support the hypothesis that loss of BDNF signaling in Cort interneurons leads to altered excitatory/inhibitory balance.
Collapse
|
45
|
Myers AK, Cunningham JG, Smith SE, Snow JP, Smoot CA, Tucker ES. JNK signaling is required for proper tangential migration and laminar allocation of cortical interneurons. Development 2020; 147:dev180646. [PMID: 31915148 PMCID: PMC6983726 DOI: 10.1242/dev.180646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
The precise migration of cortical interneurons is essential for the formation and function of cortical circuits, and disruptions to this key developmental process are implicated in the etiology of complex neurodevelopmental disorders, including schizophrenia, autism and epilepsy. We have recently identified the Jun N-terminal kinase (JNK) pathway as an important mediator of cortical interneuron migration in mice, regulating the proper timing of interneuron arrival into the cortical rudiment. In the current study, we demonstrate a vital role for JNK signaling at later stages of corticogenesis, when interneurons transition from tangential to radial modes of migration. Pharmacological inhibition of JNK signaling in ex vivo slice cultures caused cortical interneurons to rapidly depart from migratory streams and prematurely enter the cortical plate. Similarly, genetic loss of JNK function led to precocious stream departure ex vivo, and stream disruption, morphological changes and abnormal allocation of cortical interneurons in vivo These data suggest that JNK signaling facilitates the tangential migration and laminar deposition of cortical interneurons, and further implicates the JNK pathway as an important regulator of cortical development.
Collapse
Affiliation(s)
- Abigail K Myers
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Jessica G Cunningham
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Skye E Smith
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Biochemistry Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - John P Snow
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Catherine A Smoot
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Eric S Tucker
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| |
Collapse
|
46
|
Poon K. Behavioral Feeding Circuit: Dietary Fat-Induced Effects of Inflammatory Mediators in the Hypothalamus. Front Endocrinol (Lausanne) 2020; 11:591559. [PMID: 33324346 PMCID: PMC7726204 DOI: 10.3389/fendo.2020.591559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
Excessive dietary fat intake has extensive impacts on several physiological systems and can lead to metabolic and nonmetabolic disease. In animal models of ingestion, exposure to a high fat diet during pregnancy predisposes offspring to increase intake of dietary fat and causes increase in weight gain that can lead to obesity, and without intervention, these physiological and behavioral consequences can persist for several generations. The hypothalamus is a region of the brain that responds to physiological hunger and fullness and contains orexigenic neuropeptide systems that have long been associated with dietary fat intake. The past fifteen years of research show that prenatal exposure to a high fat diet increases neurogenesis of these neuropeptide systems in offspring brain and are correlated to behavioral changes that induce a pro-consummatory and obesogenic phenotype. Current research has uncovered several potential molecular mechanisms by which excessive dietary fat alters the hypothalamus and involve dietary fatty acids, the immune system, gut microbiota, and transcriptional and epigenetic changes. This review will examine the current knowledge of dietary fat-associated changes in the hypothalamus and the potential pathways involved in modifying the development of orexigenic peptide neurons that lead to changes in ingestive behavior, with a special emphasis on inflammation by chemokines.
Collapse
|
47
|
Hsing HW, Zhuang ZH, Niou ZX, Chou SJ. Temporal Differences in Interneuron Invasion of Neocortex and Piriform Cortex during Mouse Cortical Development. Cereb Cortex 2019; 30:3015-3029. [PMID: 31838488 DOI: 10.1093/cercor/bhz291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022] Open
Abstract
Establishing a balance between excitation and inhibition is critical for brain functions. However, how inhibitory interneurons (INs) generated in the ventral telencephalon integrate with the excitatory neurons generated in the dorsal telencephalon remains elusive. Previous studies showed that INs migrating tangentially to enter the neocortex (NCx), remain in the migratory stream for days before invading the cortical plate during late corticogenesis. Here we show that in developing mouse cortices, INs in the piriform cortex (PCx; the major olfactory cortex) distribute differently from those in the NCx. We provide evidence that during development INs invade and mature earlier in PCx than in NCx, likely owing to the lack of CXCR4 expression in INs from PCx compared to those in NCx. We analyzed IN distribution patterns in Lhx2 cKO mice, where projection neurons in the lateral NCx are re-fated to generate an ectopic PCx (ePCx). The PCx-specific IN distribution patterns found in ePCx suggest that properties of PCx projection neurons regulate IN distribution. Collectively, our results show that the timing of IN invasion in the developing PCx fundamentally differs from what is known in the NCx. Further, our results suggest that projection neurons instruct the PCx-specific pattern of IN distribution.
Collapse
Affiliation(s)
- Hsiang-Wei Hsing
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Zi-Hui Zhuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Zhen-Xian Niou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| |
Collapse
|
48
|
Koenen J, Bachelerie F, Balabanian K, Schlecht-Louf G, Gallego C. Atypical Chemokine Receptor 3 (ACKR3): A Comprehensive Overview of its Expression and Potential Roles in the Immune System. Mol Pharmacol 2019; 96:809-818. [PMID: 31040166 DOI: 10.1124/mol.118.115329] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/24/2019] [Indexed: 12/24/2022] Open
Abstract
Atypical chemokine receptor 3 (ACKR3), previously known as C-X-C chemokine receptor type 7 (CXCR7), has emerged as a key player in several biologic processes, particularly during development. Its CXCL11 and CXCL12 scavenging activity and atypical signaling properties, together with a new array of other nonchemokine ligands, have established ACKR3 as a main regulator of physiologic processes at steady state and during inflammation. Here, we present a comprehensive review of ACKR3 expression in mammalian tissues in search of a possible connection with the receptor function. Besides the reported roles of ACKR3 during development, we discuss the potential contribution of ACKR3 to the function of the immune system, focusing on the myeloid lineage.
Collapse
Affiliation(s)
- Joyce Koenen
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Université Paris-Sud and Université Paris-Saclay, Clamart, France (J.K., F.B., K.B., G.S.-L., C.G.) and Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.K.)
| | - Françoise Bachelerie
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Université Paris-Sud and Université Paris-Saclay, Clamart, France (J.K., F.B., K.B., G.S.-L., C.G.) and Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.K.)
| | - Karl Balabanian
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Université Paris-Sud and Université Paris-Saclay, Clamart, France (J.K., F.B., K.B., G.S.-L., C.G.) and Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.K.)
| | - Géraldine Schlecht-Louf
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Université Paris-Sud and Université Paris-Saclay, Clamart, France (J.K., F.B., K.B., G.S.-L., C.G.) and Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.K.)
| | - Carmen Gallego
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Université Paris-Sud and Université Paris-Saclay, Clamart, France (J.K., F.B., K.B., G.S.-L., C.G.) and Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.K.)
| |
Collapse
|
49
|
Heuninck J, Perpiñá Viciano C, Işbilir A, Caspar B, Capoferri D, Briddon SJ, Durroux T, Hill SJ, Lohse MJ, Milligan G, Pin JP, Hoffmann C. Context-Dependent Signaling of CXC Chemokine Receptor 4 and Atypical Chemokine Receptor 3. Mol Pharmacol 2019; 96:778-793. [PMID: 31092552 DOI: 10.1124/mol.118.115477] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are regulated by complex molecular mechanisms, both in physiologic and pathologic conditions, and their signaling can be intricate. Many factors influence their signaling behavior, including the type of ligand that activates the GPCR, the presence of interacting partners, the kinetics involved, or their location. The two CXC-type chemokine receptors, CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3), both members of the GPCR superfamily, are important and established therapeutic targets in relation to cancer, human immunodeficiency virus infection, and inflammatory diseases. Therefore, it is crucial to understand how the signaling of these receptors works to be able to specifically target them. In this review, we discuss how the signaling pathways activated by CXCR4 and ACKR3 can vary in different situations. G protein signaling of CXCR4 depends on the cellular context, and discrepancies exist depending on the cell lines used. ACKR3, as an atypical chemokine receptor, is generally reported to not activate G proteins but can broaden its signaling spectrum upon heteromerization with other receptors, such as CXCR4, endothelial growth factor receptor, or the α 1-adrenergic receptor (α 1-AR). Also, CXCR4 forms heteromers with CC chemokine receptor (CCR) 2, CCR5, the Na+/H+ exchanger regulatory factor 1, CXCR3, α 1-AR, and the opioid receptors, which results in differential signaling from that of the monomeric subunits. In addition, CXCR4 is present on membrane rafts but can go into the nucleus during cancer progression, probably acquiring different signaling properties. In this review, we also provide an overview of the currently known critical amino acids involved in CXCR4 and ACKR3 signaling.
Collapse
Affiliation(s)
- Joyce Heuninck
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Cristina Perpiñá Viciano
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Ali Işbilir
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Birgit Caspar
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Davide Capoferri
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Stephen J Briddon
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Thierry Durroux
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Stephen J Hill
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Martin J Lohse
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Graeme Milligan
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Jean-Philippe Pin
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Carsten Hoffmann
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| |
Collapse
|
50
|
Quinn KE, Mackie DI, Caron KM. Emerging roles of atypical chemokine receptor 3 (ACKR3) in normal development and physiology. Cytokine 2019; 109:17-23. [PMID: 29903572 DOI: 10.1016/j.cyto.2018.02.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/16/2023]
Abstract
The discovery that atypical chemokine receptors (ACKRs) can initiate alternative signaling pathways rather than classical G-protein coupled receptor (GPCR) signaling has changed the paradigm of chemokine receptors and their roles in modulating chemotactic responses. The ACKR family has grown over the years, with discovery of new functions and roles in a variety of pathophysiological conditions. However, the extent to which these receptors regulate normal physiology is still continuously expanding. In particular, atypical chemokine receptor 3 (ACKR3) has proven to be an important receptor in mediating normal biological functions, including cardiac development and migration of cortical neurons. In this review, we illustrate the versatile and intriguing role of ACKR3 in physiology.
Collapse
Affiliation(s)
- K E Quinn
- Department of Cell Biology and Physiology, 111 MasonFarm Rd., 6312B MBRB CB# 7545, The University of North Carolina, Chapel Hill, NC 27599-7545, USA
| | - D I Mackie
- Department of Cell Biology and Physiology, 111 MasonFarm Rd., 6312B MBRB CB# 7545, The University of North Carolina, Chapel Hill, NC 27599-7545, USA
| | - K M Caron
- Department of Cell Biology and Physiology, 111 MasonFarm Rd., 6312B MBRB CB# 7545, The University of North Carolina, Chapel Hill, NC 27599-7545, USA.
| |
Collapse
|