1
|
Zhao D, Ge A, Yan C, Liu X, Yang K, Yan Y, Hao M, Chen J, Daga P, Dai CC, Li C, Cao H. T helper cell 17/regulatory T cell balance regulates ulcerative colitis and the therapeutic role of natural plant components: a review. Front Med (Lausanne) 2025; 11:1502849. [PMID: 40196424 PMCID: PMC11973383 DOI: 10.3389/fmed.2024.1502849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/23/2024] [Indexed: 04/09/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory disease characterized by progressive mucosal damage. The incidence rate of UC is rising rapidly, which makes the burden of medical resources aggravated. In UC, due to various pathogenic factors such as mucosal immune system disorders, gene mutations and environmental factors disrupting the mucosal barrier function, the midgut pathogenic bacteria and exogenous antigens translocate into the lamina propria, thereby aggravating the inflammatory response and further damages the mucosal barrier. During the progression of UC, Th17 populations that cause inflammation generally increase, while Tregs that suppress Th17 activity decrease. Among them, Th17 mediates immune response, Treg mediates immunosuppression, and the coordinated balance of the two plays a key role in the inflammation and immune process of UC. Natural plant components can regulate biological processes such as immune inflammation from multiple levels of proinflammatory cytokines and signaling pathways. These characteristics have unique advantages and broad prospects in the treatment of UC. In immunomodulation, there is substantial clinical and experimental evidence for the modulatory role of natural plant products in restoring balance between Th17/Treg disturbances in UC. This review summarizes the previous studies on the regulation of Th17/Treg balance in UC by natural plant active ingredients, extracts, and traditional Chinese medicine prescriptions, and provides new evidence for the development and design of lead compounds and natural new drugs for the regulation of Th17/Treg balance in the future, and then provides ideas and evidence for future clinical intervention in the treatment of UC immune disorders and clinical trials.
Collapse
Affiliation(s)
- Da Zhao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Cong Yan
- Department of Urology, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University (Hunan Children’s Hospital), Changsha, China
| | - Xingci Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China
| | - Yexing Yan
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Junpeng Chen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Center for Cardiometabolic Science, Division of Environmental Medicine, Christina Lee Brown Envirome Insttitute, University of Louisville, Louisville, KY, United States
| | - Pawan Daga
- Department of Internal Medicine, University of Louisville, Louisville, KY, United States
| | - Charles C. Dai
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, James Clark Hall, College Park, MD, United States
| | - Changping Li
- School of Mechanical Engineering and Automation, Fuyao University of Science and Technology, Fuzhou, China
| | - Hui Cao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Lai Y, Qiu R, Zhou J, Ren L, Qu Y, Zhang G. Fecal Microbiota Transplantation Alleviates Airway Inflammation in Asthmatic Rats by Increasing the Level of Short-Chain Fatty Acids in the Intestine. Inflammation 2025:10.1007/s10753-024-02233-w. [PMID: 39775370 DOI: 10.1007/s10753-024-02233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/22/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
Asthma is a prevalent chronic inflammatory disorder of the respiratory tract that not only manifests with respiratory symptoms but also often involves intestinal flora disorders and gastrointestinal dysfunction. Recent studies have confirmed the close relationship between the gut and lungs, known as the "gut-lung axis" theory. Fecal microbiota transplantation (FMT), a method for restoring normal intestinal flora, has shown promise in treating common gastrointestinal diseases. The "gut-lung axis" theory suggests that FMT may have significant therapeutic potential for asthma. In this study, we established an Ovalbumin (OVA)-induced rat model of asthma to investigate the protective effect of FMT on airway inflammation and the restoration of intestinal short-chain fatty acids (SCFAs), aiming to explore its underlying mechanism. Rats in the Control group underwent fecal treatment via gavage (Control-FMT, C-FMT group), while rats in the Asthma group underwent fecal treatment via gavage after asthma induction (Asthma-FMT, A-FMT group). Following a two-week period of continuous intragastric administration, various measurements were conducted to assess pulmonary function, peripheral blood neutrophil, lymphocyte, and eosinophil content, lung tissue pathology, and collagen fiber deposition in the lungs. Additionally, neutrophil and eosinophil content in bronchoalveolar lavage fluid (BALF), expression levels of Interleukin-4 (IL-4), IL-5, IL-13, IL-17, IL-33, leukotrienes (LT), thymic stromal lymphopoietin (TSLP), prostaglandin D2 (PGD2) protein and mRNA in lung tissue, and SCFAs content in stool were evaluated. In the C-FMT group, lung function significantly improved, inflammatory cell content in peripheral blood and BALF decreased, lung tissue pathology and collagen fiber deposition significantly improved, the protein and mRNA levels of lung inflammatory factors IL-4, IL-5, IL-13, IL-17, IL-33, LT, TSLP, PGD2 were significantly decreased, and SCFAs such as acetate (C2), propionate (C3), butyrate (C4), isobutyric acid (I-C4), valeric acid (C5), and isovaleric acid (I-C5) content in stool significantly increased. However, the indexes in the A-FMT group did not show significant recovery, and the treatment effect on asthma symptoms in rats was inferior to that in the C-FMT group. Asthma induced intestinal flora disorders in rats, and FMT treatment improved the inflammatory response in asthmatic rat models and corrected their intestinal SCFAs disorders. Encouraging the recovery of intestinal SCFAs may play a significant role, and beneficial bacteria present in feces may improve asthma symptoms by promoting the remodeling of intestinal flora. This experiment provides further scientific evidence supporting the "gut-lung axis" theory.
Collapse
Affiliation(s)
- Yitian Lai
- College of Acupuncture-Moxibustion-Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ranran Qiu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Jingying Zhou
- College of Acupuncture-Moxibustion-Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ling Ren
- College of Acupuncture-Moxibustion-Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yizhuo Qu
- College of Acupuncture-Moxibustion-Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Guoshan Zhang
- College of Acupuncture-Moxibustion-Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
3
|
Ahmadi S, Hasani A, Khabbaz A, Poortahmasbe V, Hosseini S, Yasdchi M, Mehdizadehfar E, Mousavi Z, Hasani R, Nabizadeh E, Nezhadi J. Dysbiosis and fecal microbiota transplant: Contemplating progress in health, neurodegeneration and longevity. Biogerontology 2024; 25:957-983. [PMID: 39317918 DOI: 10.1007/s10522-024-10136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
The gut-brain axis plays an important role in mental health. The intestinal epithelial surface is colonized by billions of commensal and transitory bacteria, known as the Gut Microbiota (GM). However, potential pathogens continuously stimulate intestinal immunity when they find the place. The last two decades have witnessed several studies revealing intestinal bacteria as a key factor in the health-disease balance of the gut, as well as disease-emergent in other parts of the body. Various neurological processes, such as cognition, learning, and memory, could be affected by dysbiosis in GM. Additionally, the aging process and longevity are related to systemic inflammation caused by dysbiosis. Commensal GM affects brain development, behavior, and healthy aging suggesting that building changes in GM might be a potential therapeutic method. The innovation in GM dysbiosis is intervention by Fecal Microbiota Transplantation (FMT), which has been confirmed as a therapy for recurrent Clostridium difficile infections and is promising for other clinical disorders, such as Parkinson's disease, Multiple Sclerosis (MS), Alzheimer's disease, and depression. Additionally, FMT may be possible to promote healthy aging, and extend longevity. This review aims to connect dysbiosis, neurological disorders, and aging and the potential of FMT as a therapeutic strategy to treat these disorders, and to enhance the quality of life in the elderly.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aytak Khabbaz
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasbe
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Hosseini
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yasdchi
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mehdizadehfar
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Mousavi
- Department of Psychology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roqaiyeh Hasani
- School of Medicine, Istanbul Okan University, Tuzla, 34959, Istanbul, Turkey
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Nezhadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Liu L, Ma L, Liu H, Zhao F, Li P, Zhang J, Lü X, Zhao X, Yi Y. Targeted discovery of gut microbiome-remodeling compounds for the treatment of systemic inflammatory response syndrome. mSystems 2024; 9:e0078824. [PMID: 39235366 PMCID: PMC11494991 DOI: 10.1128/msystems.00788-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 09/06/2024] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a severe inflammatory response that can lead to organ dysfunction and death. Modulating the gut microbiome is a promising therapeutic approach for managing SIRS. This study assesses the therapeutic potential of the Xuanfei Baidu (XFBD) formula in treating SIRS. The results showed that XFBD administration effectively reduced mortality rates and inflammation in SIRS mice. Using 16S rRNA sequencing and fecal microbiota transplantation (FMT), we substantiated that the therapeutic effects of XFBD are partly attributed to gut microbiota modulation. We conducted in vitro experiments to accurately assess the gut microbiome remodeling effects of 51 compounds isolated from XFBD. These compounds exhibited varying abilities to induce a microbial structure that closely resembles that of the healthy control group. By quantifying their impact on microbial structure and clustering their regulatory patterns, we devised multiple gut microbiome remodeling compound (GMRC) cocktails. GMRC cocktail C, comprising aucubin, gentiopicroside, syringic acid, gallic acid, p-hydroxybenzaldehyde, para-hydroxybenzoic acid, and isoimperatorin, demonstrated superior efficacy in treating SIRS compared to a single compound or to other cocktails. Finally, in vitro experiments showcased that GMRC cocktail C effectively rebalanced bacteria composition in SIRS patients. This study underscores XFBD's therapeutic potential in SIRS and highlights the importance of innovative treatment approaches for this disease by targeting the gut microbiota.IMPORTANCEDeveloping effective treatment strategies for systemic inflammatory response syndrome (SIRS) is crucial due to its severe and often life-threatening nature. While traditional treatments like dexamethasone have shown efficacy, they also come with significant side effects and limitations. This study makes significant strides by demonstrating that the Xuanfei Baidu (XFBD) formula can substantially reduce mortality rates and inflammation in SIRS mice through effective modulation of the gut microbiota. By quantitatively assessing the impact of 51 compounds derived from XFBD on the gut microbiome, we developed a potent gut microbiome remodeling compound cocktail. This cocktail outperformed individual compounds and other mixtures in efficacy against SIRS. These findings highlight the potential of XFBD as a therapeutic solution for SIRS and underscore the critical role of innovative strategies targeting the gut microbiota in addressing this severe inflammatory condition.
Collapse
Affiliation(s)
- Luyao Liu
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Lin Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huan Liu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Zhao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Pu Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Air Force Medical University, China, Shaanxi
| | - Junhua Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Xin Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| |
Collapse
|
5
|
Jin B, Wang P, Liu P, Wang Y, Guo Y, Wang C, Jia Y, Zou R, Niu L. Genetic Connectivity of Gut Microbiota and Oral Ulcers: A Mendelian Randomization Study. Int Dent J 2024; 74:696-704. [PMID: 38458846 PMCID: PMC11287153 DOI: 10.1016/j.identj.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVES The aim of this study was to reveal the relationship, if any, between gut microbiota and oral ulcers. METHODS We performed a 2-sample Mendelian randomization (MR) study to estimate the roles of gut microbiota in mouth ulcers. The summary datasets of gut microbiota were from the largest genome-wide association study (GWAS) conducted by MiBioGen, and data of mouth ulcers were obtained from UK Biobank. Random effect inverse variance-weighted, weighted median, MR Egger, simple mode and weighted mode were used to estimate the relationship. Sensitivity analyses were conducted to assess the heterogeneity and pleiotropy of instrumental variables. MR Steiger filtering was also applied to orient the causal direction. RESULTS Three gut microbiota taxa were positively associated with mouth ulcers: Holdemania (odds ratio [OR] = 1.005, 95% confidence interval [CI]: 1.001-1.009, P = .019), Oxalobacter (OR = 1.004, 95% CI: 1.000-1.007, P = .032), and Ruminococcaceae UCG011 (OR = 1.006, 95% CI: 1.001-1.011, P = .029), while 4 gut microbiota taxa were negatively associated with mouth ulcers: Actinobacteria (OR = 0.992, 95% CI: 0.985-1.000, P = .042), Lactobacillales (OR = 0.995, 95% CI: 0.990-1.000, P = .034), Oscillospira (OR = 0.990, 95% CI: 0.984-0.997, P = .007) and Phascolarctobacterium (OR = 0.992, 95% CI: 0.986-0.997, P = .003). Sensitivity analyses validated the robustness of the association in between. CONCLUSIONS This MR study identified a strong association between the quality of gut microbiota and oral ulcers. The findings are likely to expand the therapeutic targets for mouth ulcers.
Collapse
Affiliation(s)
- Bilun Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Pengfei Wang
- Centre of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| | - Peiqi Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yi Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Chenxu Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yue Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
6
|
Khalifa HO, Shikoray L, Mohamed MYI, Habib I, Matsumoto T. Veterinary Drug Residues in the Food Chain as an Emerging Public Health Threat: Sources, Analytical Methods, Health Impacts, and Preventive Measures. Foods 2024; 13:1629. [PMID: 38890858 PMCID: PMC11172309 DOI: 10.3390/foods13111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Veterinary medications are necessary for both contemporary animal husbandry and food production, but their residues can linger in foods obtained from animals and pose a dangerous human risk. In this review, we aim to highlight the sources, occurrence, human exposure pathways, and human health effects of drug residues in food-animal products. Following the usage of veterinary medications, pharmacologically active compounds known as drug residues can be found in food, the environment, or animals. They can cause major health concerns to people, including antibiotic resistance development, the development of cancer, teratogenic effects, hypersensitivity, and disruption of normal intestinal flora. Drug residues in animal products can originate from variety of sources, including water or food contamination, extra-label drug use, and ignoring drug withdrawal periods. This review also examines how humans can be exposed to drug residues through drinking water, food, air, and dust, and discusses various analytical techniques for identifying these residues in food. Furthermore, we suggest some potential solutions to prevent or reduce drug residues in animal products and human exposure pathways, such as implementing withdrawal periods, monitoring programs, education campaigns, and new technologies that are crucial for safeguarding public health. This review underscores the urgency of addressing veterinary drug residues as a significant and emerging public health threat, calling for collaborative efforts from researchers, policymakers, and industry stakeholders to develop sustainable solutions that ensure the safety of the global food supply chain.
Collapse
Affiliation(s)
- Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 3351, Egypt
| | - Lamek Shikoray
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
| | - Mohamed-Yousif Ibrahim Mohamed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Ihab Habib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-0048, Japan
| |
Collapse
|
7
|
Hang Z, Rouyi C, Sen L. Genetic evidence strengthens the connection between gut microbiota and gingivitis: a two-sample Mendelian randomization study. Front Cell Infect Microbiol 2024; 14:1380209. [PMID: 38812751 PMCID: PMC11133616 DOI: 10.3389/fcimb.2024.1380209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction The oral cavity and gut tract, being interconnected and rich in microbiota, may have a shared influence on gingivitis. However, the specific role of distinct gut microbiota taxa in gingivitis remains unexplored. Utilizing Mendelian Randomization (MR) as an ideal method for causal inference avoiding reverse causality and potential confounding factors, we conducted a comprehensive two-sample MR study to uncover the potential genetic causal impact of gut microbiota on gingivitis. Methods Instrumental variables were chosen from single nucleotide polymorphisms (SNPs) strongly associated with 418 gut microbiota taxa, involving 14,306 individuals. Gingivitis, with 4,120 cases and 195,395 controls, served as the outcome. Causal effects were assessed using random-effect inverse variance-weighted, weighted median, and MR-Egger methods. For replication and meta-analysis, gingivitis data from IEU OpenGWAS were employed. Sensitivity analyses included Cochran's Q tests, funnel plots, leave-one-out analyses, and MR-Egger intercept tests. This study aimed to assess the genetic correlation between the genetically predicted gut microbiota and gingivitis using linkage disequilibrium score regression (LDSC). Results Three gut microbiota taxa (class Actinobacteria id.419, family Defluviitaleaceae id.1924, genus Defluviitaleaceae UCG011 id.11287) are predicted to causally contribute to an increased risk of gingivitis (P< 0.05). Additionally, four gut microbiota taxa (class Actinobacteria id.419, genus Escherichia Shigella id.3504, genus Ruminococcaceae UCG002 id.11360) potentially exhibit inhibitory causal effects on the risk of gingivitis (P< 0.05). No significant evidence of heterogeneity or pleiotropy is detected. Our findings indicate a suggestive genetic correlation between class Actinobacteria id.419, class Bacteroidia id.912, family Defluviitaleaceae id.1924, genus Escherichia Shigella id.3504 and gingivitis. Conclusion Our study establishes the genetic causal effect of 418 gut microbiota taxa on gingivitis, offering insights for clinical interventions targeting gingivitis. Subsequent research endeavors are essential to corroborate the findings of our present study.
Collapse
Affiliation(s)
- Zhou Hang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Chen Rouyi
- The 1 School of Medicine, School of Information and Engineering, The 1 Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Sen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Luo M, Zhu J, Jia J, Zhang H, Zhao J. Progress on network modeling and analysis of gut microecology: a review. Appl Environ Microbiol 2024; 90:e0009224. [PMID: 38415584 PMCID: PMC11207142 DOI: 10.1128/aem.00092-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
The gut microecological network is a complex microbial community within the human body that plays a key role in linking dietary nutrition and host physiology. To understand the complex relationships among microbes and their functions within this community, network analysis has emerged as a powerful tool. By representing the interactions between microbes and their associated omics data as a network, we can gain a comprehensive understanding of the ecological mechanisms that drive the human gut microbiota. In addition, the network-based approach provides a more intuitive analysis of the gut microbiota, simplifying the study of its complex dynamics and interdependencies. This review provides a comprehensive overview of the methods used to construct and analyze networks in the context of gut microecological background. We discuss various types of network modeling approaches, including co-occurrence networks, causal networks, dynamic networks, and multi-omics networks, and describe the analytical techniques used to identify important network properties. We also highlight the challenges and limitations of network modeling in this area, such as data scarcity and heterogeneity, and provide future research directions to overcome these limitations. By exploring these network-based methods, researchers can gain valuable insights into the intricate relationships and functional roles of microbial communities within the gut, ultimately advancing our understanding of the gut microbiota's impact on human health.
Collapse
Affiliation(s)
- Meng Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiajia Jia
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| |
Collapse
|
9
|
Saha MR, Dey P. Pharmacological benefits of Acacia against metabolic diseases: intestinal-level bioactivities and favorable modulation of gut microbiota. Arch Physiol Biochem 2024; 130:70-86. [PMID: 34411504 DOI: 10.1080/13813455.2021.1966475] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
CONTEXT Obesity-associated chronic metabolic disease is a leading contributor to mortality globally. Plants belonging to the genera Acacia are routinely used for the treatment of diverse metabolic diseases under different ethnomedicinal practices around the globe. OBJECTIVE The current review centres around the pharmacological evidence of intestinal-level mechanisms for metabolic health benefits by Acacia spp. RESULTS Acacia spp. increase the proportions of gut commensals (Bifidobacterium and Lactobacillus) and reduces the population of opportunistic pathobionts (Escherichia coli and Clostridium). Acacia gum that is rich in fibre, can also be a source of prebiotics to improve gut health. The intestinal-level anti-inflammatory activities of Acacia are likely to contribute to improvements in gut barrier function that would prevent gut-to-systemic endotoxin translocation and limit "low-grade" inflammation associated with metabolic diseases. CONCLUSION This comprehensive review for the first time has emphasised the intestinal-level benefits of Acacia spp. which could be instrumental in limiting the burden of metabolic disease.
Collapse
Affiliation(s)
- Manas Ranjan Saha
- Department of Life Science, Vidyasagar Primary Teachers Training Institute (B.Ed.), Malda, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
10
|
Xu J, Wang R, Liu W, Yin Z, Wu J, Yu X, Wang W, Zhang H, Li Z, Gao M, Zhu L, Zhan X. The specificity of ten non-digestible carbohydrates to enhance butyrate-producing bacteria and butyrate production in vitro fermentation. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
11
|
Li J, Ji Y, Chen N, Dai L, Deng H. Colitis-associated carcinogenesis: crosstalk between tumors, immune cells and gut microbiota. Cell Biosci 2023; 13:194. [PMID: 37875976 PMCID: PMC10594787 DOI: 10.1186/s13578-023-01139-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. One of the main causes of colorectal cancer is inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). Intestinal epithelial cells (IECs), intestinal mesenchymal cells (IMCs), immune cells, and gut microbiota construct the main body of the colon and maintain colon homeostasis. In the development of colitis and colitis-associated carcinogenesis, the damage, disorder or excessive recruitment of different cells such as IECs, IMCs, immune cells and intestinal microbiota play different roles during these processes. This review aims to discuss the various roles of different cells and the crosstalk of these cells in transforming intestinal inflammation to cancer, which provides new therapeutic methods for chemotherapy, targeted therapy, immunotherapy and microbial therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Yanhong Ji
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Na Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| |
Collapse
|
12
|
Xu M, Wu T, Li Z, Xin G. Influence of genetically predicted autoimmune diseases on NAFLD. Front Immunol 2023; 14:1229570. [PMID: 37767101 PMCID: PMC10520707 DOI: 10.3389/fimmu.2023.1229570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD), the emerging cause of end-stage liver disease, is the most common liver disease. Determining the independent risk factors of NAFLD and patients who need more monitoring is important. Methods Two-Sample Mendelian randomization (MR) was performed in the analysis to investigate the causal association of different autoimmune diseases with NAFLD using summary level data. Genome-wide association study (GWAS) of 5 autoimmune diseases including celiac disease (CeD), Crohn's disease (CD), multiple sclerosis (MS), rheumatoid arthritis (RA), and type 1 diabetes (T1D) were selected for Instrument variables (IVs). NAFLD was included as outcome. Result After adjusting for confounding factors, genetic predisposition of CeD (OR= 0.973, [0.949,0.997], IVW p-value=0.026), MS (OR= 1.048, [1.012,1.085], IVW p-value= 0.008), RA (OR= 1.036, [1.006,1.066], IVW p-value=0.019), T1D (OR= 1.039, [1.002,1.079], IVW p-value= 0.041) is causally associated with NAFLD. No causal effect was found between CD and NAFLD. Conclusion CeD itself may be a protective factor for NAFLD, the results of previous observational studies have been influenced by confounding factors, and the morbidity of NAFLD may be higher in patients with MS, RA, and T1D than in common populations, and monitoring the prevalence of NAFLD in these populations is considerable.
Collapse
|
13
|
Zang L, Baharlooeian M, Terasawa M, Shimada Y, Nishimura N. Beneficial effects of seaweed-derived components on metabolic syndrome via gut microbiota modulation. Front Nutr 2023; 10:1173225. [PMID: 37396125 PMCID: PMC10311452 DOI: 10.3389/fnut.2023.1173225] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metabolic syndrome comprises a group of conditions that collectively increase the risk of abdominal obesity, diabetes, atherosclerosis, cardiovascular diseases, and cancer. Gut microbiota is involved in the pathogenesis of metabolic syndrome, and microbial diversity and function are strongly affected by diet. In recent years, epidemiological evidence has shown that the dietary intake of seaweed can prevent metabolic syndrome via gut microbiota modulation. In this review, we summarize the current in vivo studies that have reported the prevention and treatment of metabolic syndrome via seaweed-derived components by regulating the gut microbiota and the production of short-chain fatty acids. Among the surveyed related articles, animal studies revealed that these bioactive components mainly modulate the gut microbiota by reversing the Firmicutes/Bacteroidetes ratio, increasing the relative abundance of beneficial bacteria, such as Bacteroides, Akkermansia, Lactobacillus, or decreasing the abundance of harmful bacteria, such as Lachnospiraceae, Desulfovibrio, Lachnoclostridium. The regulated microbiota is thought to affect host health by improving gut barrier functions, reducing LPS-induced inflammation or oxidative stress, and increasing bile acid production. Furthermore, these compounds increase the production of short-chain fatty acids and influence glucose and lipid metabolism. Thus, the interaction between the gut microbiota and seaweed-derived bioactive components plays a critical regulatory role in human health, and these compounds have the potential to be used for drug development. However, further animal studies and human clinical trials are required to confirm the functional roles and mechanisms of these components in balancing the gut microbiota and managing host health.
Collapse
Affiliation(s)
- Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
| | - Maedeh Baharlooeian
- Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Yasuhito Shimada
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
| |
Collapse
|
14
|
Luo S, Li W, Li Q, Zhang M, Wang X, Wu S, Li Y. Causal effects of gut microbiota on the risk of periodontitis: a two-sample Mendelian randomization study. Front Cell Infect Microbiol 2023; 13:1160993. [PMID: 37305424 PMCID: PMC10248501 DOI: 10.3389/fcimb.2023.1160993] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The oral cavity and the gut tract are interconnected, and both contain abundant natural microbiota. Gut microbiota may interact with oral flora and participate in the development of periodontitis. However, the specific role of certain gut microbiota taxa for periodontitis has not been investigated. Mendelian Randomization is an ideal method to explore causal relationships avoiding reverse causality and potential confounding factors. Thus, we conducted a two-sample Mendelian Randomization study to comprehensively reveal the potential genetic causal effect of gut microbiota on periodontitis. Methods SNPs strongly associated with 196 gut microbiota taxa (18,340 individuals) were selected as instrument variables, and periodontitis (17,353 periodontitis cases and 28,210 controls) was used as the outcome. The causal effect was analyzed via random effect inverse variance-weighted, weighted median, and MR-Egger. The sensitivity analyses were conducted using Cochran's Q tests, funnel plots, leave-one-out analyses, and MR-Egger intercept tests. Results Nine gut microbiota taxa (Prevotella 7, Lachnospiraceae UCG-008, Enterobacteriales, Pasteurellales, Enterobacteriaceae, Pasteurellaceae, Bacteroidales S24.7 group, Alistipes, and Eisenbergiella) are predicted to play a causal role in enhancing the risk of periodontitis (p< 0.05). Besides, two gut microbiota taxa (Butyricicoccus and Ruminiclostridium 6) have potentially inhibitive causal effects on the risk of periodontitis (p< 0.05). No significant estimation of heterogeneity or pleiotropy is detected. Conclusion Our study demonstrates the genetic causal effect of 196 gut microbiota taxa on periodontitis and provides guidance for the clinical intervention of periodontitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuyi Wu
- *Correspondence: Shuyi Wu, ; Yan Li,
| | - Yan Li
- *Correspondence: Shuyi Wu, ; Yan Li,
| |
Collapse
|
15
|
Analysis of the effect of hyaluronic acid on intestinal flora and its metabolites in diabetic mice via high-throughput sequencing and nontargeted metabolomics. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
16
|
Yang D, Wang Z, Chen Y, Guo Q, Dong Y. Interactions between gut microbes and NLRP3 inflammasome in the gut-brain axis. Comput Struct Biotechnol J 2023; 21:2215-2227. [PMID: 37035548 PMCID: PMC10074411 DOI: 10.1016/j.csbj.2023.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
The role of the gut-brain axis in maintaining the brain's and gut's homeostasis has been gradually recognized in recent years. The connection between the gut and the brain takes center stage. In this scenario, the nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome promotes inflammatory cell recruitment. It plays a crucial role in coordinating host physiology and immunity. Recent evidence shows how vital the gut-brain axis is for maintaining brain and gut homeostasis. However, more research is needed to determine the precise causal link between changed gut microbiota structure and NLRP3 activation in pathogenic circumstances. This review examines the connection between gut microbiota and the NLRP3 inflammasome. We describe how both dynamically vary in clinical cases and the external factors affecting both. Finally, we suggest that the crosstalk between the gut microbiota and NLRP3 is involved in signaling in the gut-brain axis, which may be a potential pathological mechanism for CNS diseases and intestinal disorders.
Collapse
Affiliation(s)
- Ding Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qingyun Guo
- Milu conservation research unit, Beijing Milu Ecological Research Center, Beijing 100163, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Corresponding author.
| |
Collapse
|
17
|
The Obesity Amelioration Effect in High-Fat-Diet Fed Mice of a Homogeneous Polysaccharide from Codonopsis pilosula. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165348. [PMID: 36014584 PMCID: PMC9415953 DOI: 10.3390/molecules27165348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
A homogeneous polysaccharide coded as CPP-1 was extracted and purified from the root of Codonopsis pilosula (Franch.) Nannf. by water extraction, ethanol precipitation, and column chromatography. Its structure was analyzed by HPGPC-ELSD, HPLC, GC-MS, FT-IR, and NMR techniques. The results indicated that CPP-1 was composed of mannose (Man), glucose (Glc), galactose (Gal), and arabinose (Ara) at a molar ratio of 5.86 : 51.69 : 34.34 : 8.08. The methylation analysis revealed that the main glycosidic linkage types of CPP-1 were (1→)-linked-Glc residue, (1→3)-linked-Glc residues, (1→4)-linked-Gal residue, (1→2,3,4)-linked-Glc residue, (1→)-linked-Man residue, (1→3,4)-linked-Glc residue, and (1→)-linked-Ara residue. In vivo efficacy trial illustrated that CPP-1 supplements could alleviate HFD-induced mice obesity significantly, as well as improve obesity-induced disorders of glucose metabolism, alleviate insulin resistance, and improve the effects of lipid metabolism. The findings indicate that this polysaccharide has the potential for the treatment of obesity.
Collapse
|
18
|
Li B, Yang B, Liu X, Zhao J, Ross RP, Stanton C, Zhang H, Chen W. Microbiota-assisted therapy for systemic inflammatory arthritis: advances and mechanistic insights. Cell Mol Life Sci 2022; 79:470. [PMID: 35932328 PMCID: PMC11072763 DOI: 10.1007/s00018-022-04498-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/22/2022]
Abstract
Research on the influence of gut microbiota on systemic inflammatory arthritis has exploded in the past decade. Gut microbiota changes may be a crucial regulatory component in systemic inflammatory arthritis. As a result of advancements in the field, microbiota-assisted therapy has evolved, but this discipline is still in its infancy. Consequently, we review the limitations of current systemic inflammatory arthritis treatment, analyze the connection between the microbiota and arthritis, and summarize the research progress of microbiota regulating systemic inflammatory arthritis and the further development aspects of microbiota-assisted therapy. Finally, the partial mechanisms of microbiota-assisted therapy of systemic inflammatory arthritis are being discussed. In general, this review summarizes the current progress, challenges, and prospects of microbiota-assisted therapy for systemic inflammatory arthritis and points out the direction for the development of microbiota-assisted therapy in the future.
Collapse
Affiliation(s)
- Bowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - R Paul Ross
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Catherine Stanton
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.
| |
Collapse
|
19
|
Clostridium butyricum and Its Derived Extracellular Vesicles Modulate Gut Homeostasis and Ameliorate Acute Experimental Colitis. Microbiol Spectr 2022; 10:e0136822. [PMID: 35762770 PMCID: PMC9431305 DOI: 10.1128/spectrum.01368-22] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microbiological treatments are expected to have a role in the future management of inflammatory bowel disease (IBD). Clostridium butyricum (C. butyricum) is a probiotic microorganism that exhibits beneficial effects on various disease conditions. Although many studies have revealed that C. butyricum provides protective effects in mice with colitis, the way C. butyricum establishes beneficial results in the host remains unclear. In this study, we investigated the mechanisms by which C. butyricum modifies the gut microbiota, produces bacterial metabolites that may be involved, and, specifically, how microbial extracellular vesicles (EVs) positively influence IBD, using a dextran sulfate sodium (DSS)-induced colitis murine model in mice. First, we showed that C. butyricum provides a protective effect against colitis, as evidenced by the prevention of body weight loss, a reduction in the disease activity index (DAI) score, a shortened colon length, decreased histology score, and an improved gut barrier function, accompanied by reduced levels of pathogenic bacteria, including Escherichia/Shigella, and an increased relative abundance of butyrate-producing Clostridium sensu stricto-1 and Butyricicoccus. Second, we also confirmed that the gut microbiota and metabolites produced by C. butyricum played key roles in the attenuation of DSS-induced experimental colitis, as supported by the profound alleviation of colitis effects following fecal transplantation or fecal filtrate insertion supplied from C. butyricum-treated mice. Finally, C. butyricum-derived EVs protected the gut barrier function, improved gut microbiota homeostasis in ulcerative colitis, and contributed to overall colitis alleviation. IMPORTANCE This study indicated that C. butyricum provided a prevention effect against colitis mice, which involved protection of the intestinal barrier and positively regulating gut microbiota. Furthermore, we confirmed that the gut microbiota and metabolites that were induced by C. butyricum also contributed to the attenuation of DSS-induced colitis. Importantly, C. butyricum-derived EVs showed an effective impact in alleviating colitis.
Collapse
|
20
|
Yang C, Sung J, Long D, Alghoul Z, Merlin D. Prevention of Ulcerative Colitis by Autologous Metabolite Transfer from Colitogenic Microbiota Treated with Lipid Nanoparticles Encapsulating an Anti-Inflammatory Drug Candidate. Pharmaceutics 2022; 14:pharmaceutics14061233. [PMID: 35745805 PMCID: PMC9228491 DOI: 10.3390/pharmaceutics14061233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/25/2022] Open
Abstract
Modulating the gut microbiota composition is a potent approach to treat various chronic diseases, including obesity, metabolic syndrome, and ulcerative colitis (UC). However, the current methods, such as fecal microbiota transplantation, carry a risk of serious infections due to the transmission of multi-drug-resistant organisms. Here, we developed an organism-free strategy in which the gut microbiota is modulated ex vivo and microbiota-secreted metabolites are transferred back to the host. Using feces collected from the interleukin-10 (IL-10) knockout mouse model of chronic UC, we found that a drug candidate (M13)-loaded natural-lipid nanoparticle (M13/nLNP) modified the composition of the ex vivo-cultured inflamed gut microbiota and its secreted metabolites. Principal coordinate analysis (PCoA) showed that M13/nLNP shifted the inflamed microbiota composition toward the non-inflamed direction. This compositional modification induced significant changes in the chemical profiles of secreted metabolites, which proved to be anti-inflammatory against in vitro-cultured NF-κβ reporter cells. Further, when these metabolites were orally administered to mice, they established strong protection against the formation of chronic inflammation. Our study demonstrates that ex vivo modulation of microbiota using M13/nLNP effectively reshaped the microbial secreted metabolites and that oral transfer of these metabolites might be an effective and safe therapeutic approach for preventing chronic UC.
Collapse
Affiliation(s)
- Chunhua Yang
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (J.S.); (D.L.); (Z.A.); (D.M.)
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30302, USA
- Correspondence:
| | - Junsik Sung
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (J.S.); (D.L.); (Z.A.); (D.M.)
| | - Dingpei Long
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (J.S.); (D.L.); (Z.A.); (D.M.)
| | - Zahra Alghoul
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (J.S.); (D.L.); (Z.A.); (D.M.)
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Didier Merlin
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (J.S.); (D.L.); (Z.A.); (D.M.)
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30302, USA
| |
Collapse
|
21
|
Bieri U, Scharl M, Sigg S, Szczerba BM, Morsy Y, Rüschoff JH, Schraml PH, Krauthammer M, Hefermehl LJ, Eberli D, Poyet C. Prospective observational study of the role of the microbiome in BCG responsiveness prediction (SILENT-EMPIRE): a study protocol. BMJ Open 2022; 12:e061421. [PMID: 35437256 PMCID: PMC9016396 DOI: 10.1136/bmjopen-2022-061421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The human microbiota, the community of micro-organisms in different cavities, has been increasingly linked with inflammatory and neoplastic diseases. While investigation into the gut microbiome has been robust, the urinary microbiome has only recently been described. Investigation into the relationship between bladder cancer (BC) and the bladder and the intestinal microbiome may elucidate a pathophysiological relationship between the two. The bladder or the intestinal microbiome or the interplay between both may also act as a non-invasive biomarker for tumour behaviour. While these associations have not yet been fully investigated, urologists have been manipulating the bladder microbiome for treatment of BC for more than 40 years, treating high grade non-muscle invasive BC (NMIBC) with intravesical BCG immunotherapy. Neither the association between the microbiome sampled directly from bladder tissue and the response to BCG-therapy nor the association between response to BCG-therapy with the faecal microbiome has been studied until now. A prognostic tool prior to initiation of BCG-therapy is still needed. METHODS AND ANALYSIS In patients with NMIBC bladder samples will be collected during surgery (bladder microbiome assessment), faecal samples (microbiome assessment), instrumented urine and blood samples (biobank) will also be taken. We will analyse the microbial community by 16S rDNA gene amplicon sequencing. The difference in alpha diversity (diversity of species within each sample) and beta diversity (change in species diversity) between BCG-candidates will be assessed. Subgroup analysis will be performed which will lead to the development of a clinical prediction model estimating risk of BCG-response. ETHICS AND DISSEMINATION The study has been approved by the Cantonal Ethics Committee Zurich (2021-01783) and it is being conducted in accordance with the Declaration of Helsinki and Good Clinical Practice. Study results will be disseminated through peer-reviewed journals and national and international scientific conferences. TRIAL REGISTRATION NUMBER NCT05204199.
Collapse
Affiliation(s)
- Uwe Bieri
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Scharl
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Silvan Sigg
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Barbara Maria Szczerba
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Yasser Morsy
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Jan Hendrik Rüschoff
- Department of Pathology, and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Peter Hans Schraml
- Department of Pathology, and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Krauthammer
- Comprehensive Cancer Center Zürich, University Hospital Zurich, Zurich, Switzerland
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | | | - Daniel Eberli
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Cédric Poyet
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
McDavid A, Laniewski N, Grier A, Gill AL, Kessler HA, Huyck H, Carbonell E, Holden-Wiltse J, Bandyopadhyay S, Carnahan J, Dylag AM, Topham DJ, Falsey AR, Caserta MT, Pryhuber GS, Gill SR, Scheible KM. Aberrant newborn T cell and microbiota developmental trajectories predict respiratory compromise during infancy. iScience 2022; 25:104007. [PMID: 35310935 PMCID: PMC8931366 DOI: 10.1016/j.isci.2022.104007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/30/2021] [Accepted: 02/25/2022] [Indexed: 11/11/2022] Open
Abstract
Neonatal immune-microbiota co-development is poorly understood, yet age-appropriate recognition of - and response to - pathogens and commensal microbiota is critical to health. In this longitudinal study of 148 preterm and 119 full-term infants from birth through one year of age, we found that postmenstrual age or weeks from conception is a central factor influencing T cell and mucosal microbiota development. Numerous features of the T cell and microbiota functional development remain unexplained; however, by either age metric and are instead shaped by discrete perinatal and postnatal events. Most strikingly, we establish that prenatal antibiotics or infection disrupt the normal T cell population developmental trajectory, influencing subsequent respiratory microbial colonization and predicting respiratory morbidity. In this way, early exposures predict the postnatal immune-microbiota axis trajectory, placing infants at later risk for respiratory morbidity in early childhood.
Collapse
Affiliation(s)
- Andrew McDavid
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - Nathan Laniewski
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Alex Grier
- Genomics Research Center, University of Rochester, Rochester, NY, USA
| | - Ann L. Gill
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Haeja A. Kessler
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Heidie Huyck
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | | | - Jeanne Holden-Wiltse
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - Sanjukta Bandyopadhyay
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - Jennifer Carnahan
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Andrew M. Dylag
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - David J. Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Ann R. Falsey
- Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Mary T. Caserta
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | | | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
23
|
Wang DW, Pang XT, Zhang H, Gao HX, Leng YF, Chen FQ, Zhang R, Feng Y, Sun ZL. Gut microbial dysbiosis in rheumatoid arthritis: a systematic review protocol of case-control studies. BMJ Open 2022; 12:e052021. [PMID: 35365513 PMCID: PMC8977794 DOI: 10.1136/bmjopen-2021-052021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 02/26/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) has a huge societal impact due to the high prevalence, irreversible joint damage and systemic complications. Gut microbiota plays an important role in the pathogenesis and progression of RA by regulating the host immune system. Restoring intestinal homeostasis by altering the microbiota could be an attractive strategy for the prevention and treatment of RA. However, the signature features of microbial dysbiosis in RA are still controversial. Therefore, we aim to elucidate the characteristic change in the diversity and composition of gut microbiota in RA. METHODS AND ANALYSIS We will systematically search through PubMed, EMBASE, Web of Science and Cochrane Library, as well as dissertations and conference proceedings. The reference lists of all included studies will be also reviewed to retrieve additional relevant studies. The case-control studies that reported either the relative abundance of bacteria at the phylum or genus level or at least one of the alpha-diversity, beta-diversity indexes in both RA and healthy controls will be included. Eligible studies will be screened independently by two reviewers according to the inclusion criteria. The Newcastle-Ottawa Quality Assessment Scale will be used to assess the quality of the included studies. Data extraction, qualitative and quantitative analysis will be performed within the gut microbial dysbiosis in RA. The expected outcomes will be the identification of the specific changes in composition and diversity of the gut microbiota in patients with RA. The quality of evidence will be assessed by the Grading of Recommendations Assessment, Development and Evaluation framework. ETHICS AND DISSEMINATION Ethical approval is unnecessary as this review does not address the data and privacy of patients. The results will be published in a peer-reviewed scientific journal and conference presentations. PROSPERO REGISTRATION NUMBER CRD42021225229.
Collapse
Affiliation(s)
- Dan-Wen Wang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Xiang-Tian Pang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Heng Zhang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Hai-Xia Gao
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yu-Fei Leng
- Animal Surgery Laboratory, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng-Qin Chen
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Rui Zhang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yun Feng
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Zhi-Ling Sun
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
24
|
Zhang H, Jiang F, Zhang J, Wang W, Li L, Yan J. Modulatory effects of polysaccharides from plants, marine algae and edible mushrooms on gut microbiota and related health benefits: A review. Int J Biol Macromol 2022; 204:169-192. [PMID: 35122806 DOI: 10.1016/j.ijbiomac.2022.01.166] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Naturally occurring carbohydrate polymers containing non-starch polysaccharides (NPs) are a class of biomacromolecules isolated from plants, marine algae, and edible mushrooms, and their biological activities has shown potential uses in the prevention and treatment of human diseases. Importantly, NPs serve as prebiotics to provide health benefits to the host through stimulating the proliferation of beneficial gut microbiota (GM) and enhancing the production of short-chain fatty acids (SCFAs). The composition and diversity of GM play a critical role in regulating host health and have been extensively studied in recent years. In this review, the extraction, isolation, purification, and structural characterization of NPs derived from plants, marine algae, and edible mushrooms are outlined. Importantly, the degradation and metabolism of these NPs in the intestinal tract, the effects of NPs on the microbial community and SCFAs generation, and the beneficial effects of NPs on host health by modulating GM are systematically highlighted. Overall, we hope that this review can provide some theoretical references and a new perspective for applications of NPs as prebiotics in functional food and drug development.
Collapse
Affiliation(s)
- Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China.
| | - Fuchun Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Jinsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Jingkun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
25
|
|
26
|
Alterations of the gut mycobiome in patients with MS. EBioMedicine 2021; 71:103557. [PMID: 34455391 PMCID: PMC8399064 DOI: 10.1016/j.ebiom.2021.103557] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/21/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The mycobiome is the fungal component of the gut microbiome and is implicated in several autoimmune diseases. However, its role in MS has not been studied. METHODS In this case-control observational study, we performed ITS sequencing and characterised the gut mycobiome in people with MS (pwMS) and healthy controls at baseline and after six months. FINDINGS The mycobiome had significantly higher alpha diversity and inter-subject variation in pwMS than controls. Saccharomyces and Aspergillus were over-represented in pwMS. Saccharomyces was positively correlated with circulating basophils and negatively correlated with regulatory B cells, while Aspergillus was positively correlated with activated CD16+ dendritic cells in pwMS. Different mycobiome profiles, defined as mycotypes, were associated with different bacterial microbiome and immune cell subsets in the blood. Initial treatment with dimethyl fumarate, a common immunomodulatory therapy which also has fungicidal activity, did not cause uniform gut mycobiome changes across all pwMS. INTERPRETATION There is an alteration of the gut mycobiome in pwMS, compared to healthy controls. Further study is required to assess any causal association of the mycobiome with MS and its direct or indirect interactions with bacteria and autoimmunity. FUNDING This work was supported by the Washington University in St. Louis Institute of Clinical and Translational Sciences, funded, in part, by Grant Number # UL1 TR000448 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award (Zhou Y, Piccio, L, Lovett-Racke A and Tarr PI); R01 NS102633-04 (Zhou Y, Piccio L); the Leon and Harriet Felman Fund for Human MS Research (Piccio L and Cross AH). Cantoni C. was supported by the National MS Society Career Transition Fellowship (TA-1805-31003) and by donations from Whitelaw Terry, Jr. / Valerie Terry Fund. Ghezzi L. was supported by the Italian Multiple Sclerosis Society research fellowship (FISM 2018/B/1) and the National Multiple Sclerosis Society Post-Doctoral Fellowship (FG- 1907-34474). Anne Cross was supported by The Manny & Rosalyn Rosenthal-Dr. John L. Trotter MS Center Chair in Neuroimmunology of the Barnes-Jewish Hospital Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Collapse
|
27
|
Yang C, Long D, Sung J, Alghoul Z, Merlin D. Orally Administered Natural Lipid Nanoparticle-Loaded 6-Shogaol Shapes the Anti-Inflammatory Microbiota and Metabolome. Pharmaceutics 2021; 13:1355. [PMID: 34575431 PMCID: PMC8472296 DOI: 10.3390/pharmaceutics13091355] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/10/2023] Open
Abstract
The past decade has seen increasing interest in microbiota-targeting therapeutic strategies that aim to modulate the gut microbiota's composition and/or function to treat chronic diseases, such as inflammatory bowel disease (IBD), metabolic symptoms, and obesity. While targeting the gut microbiota is an innovative means for treating IBD, it typically requires an extended treatment time, hampering its potential application. Herein, using an established natural-lipid nanoparticle (nLNP) platform, we demonstrate that nLNPs encapsulated with the drug candidate 6-shogaol (6S/nLNP) distinctly altered microbiota composition within one day of treatment, significantly accelerating a process that usually requires five days using free 6-shogaol (6S). In addition, the change in the composition of the microbiota induced by five-day treatment with 6S/nLNP was maintained for at least 15 days (from day five to day 20). The consequent alteration in the fecal metabolic profile stemming from this compositional change manifested as functional changes that enhanced the in vitro anti-inflammatory and wound-healing efficacy of macrophage cells (Raw 264.7) and epithelial cells (Caco-2 BBE1), respectively. Further, this metabolic compositional change, as reflected in an altered metabolic profile, promoted a robust anti-inflammatory effect in a DSS-induced mouse model of acute colitis. Our study demonstrates that, by near-instantly modulating microbiota composition and function, an nLNP-based drug-delivery platform might be a powerful tool for treating ulcerative colitis.
Collapse
Affiliation(s)
- Chunhua Yang
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (D.L.); (J.S.); (Z.A.); (D.M.)
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30302, USA
| | - Dingpei Long
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (D.L.); (J.S.); (Z.A.); (D.M.)
| | - Junsik Sung
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (D.L.); (J.S.); (Z.A.); (D.M.)
| | - Zahra Alghoul
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (D.L.); (J.S.); (Z.A.); (D.M.)
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Didier Merlin
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (D.L.); (J.S.); (Z.A.); (D.M.)
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30302, USA
| |
Collapse
|
28
|
Luo J, Liang S, Jin F. Gut microbiota in antiviral strategy from bats to humans: a missing link in COVID-19. SCIENCE CHINA. LIFE SCIENCES 2021; 64:942-956. [PMID: 33521857 PMCID: PMC7847806 DOI: 10.1007/s11427-020-1847-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/21/2020] [Indexed: 01/31/2023]
Abstract
Bats are a potential natural reservoir for SARS-CoV-2 virus and other viruses detrimental to humans. Accumulated evidence has shown that, in their adaptation to a flight-based lifestyle, remodeling of the gut microbiota in bats may have contributed to immune tolerance to viruses. This evidence from bats provides profound insights into the potential influence of gut microbiota in COVID-19 disease in humans. Here, we highlight recent advances in our understanding of the mechanisms by which the gut microbiota helps bats tolerate deadly viruses, and summarize the current clinical evidence on the influence of gut microbiota on the susceptibility to SARS-CoV-2 infection and risk of COVID-19 leading to a fatal outcome. In addition, we discuss the implications of gut microbiota-targeted approaches for preventing infection and reducing disease severity in COVID-19 patients.
Collapse
Affiliation(s)
- Jia Luo
- Department of Psychology, Sichuan Normal University, Chengdu, 610068, China
| | - Shan Liang
- Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
29
|
Zhang X, Yang Y, Zhang F, Yu J, Sun W, Wang R, Wu C. Traditional Chinese medicines differentially modulate the gut microbiota based on their nature (Yao-Xing). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153496. [PMID: 33714730 DOI: 10.1016/j.phymed.2021.153496] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Property theory is a unique principle guiding traditional Chinese medicine (TCM) that classifies various TCMs into four natures (hot, warm, cool, and cold) to reflect their medical actions on the human body. Despite successful application for thousands of years, characterizing the nature of medical TCMs by modern physiological indicators remains a challenge. PURPOSE In this study, we investigated the potential relationship between the nature of TCMs and their modulation of the gut microbiota. STUDY DESIGN We selected twelve TCMs with hot, warm, cool, or cold natures that possess antidiarrheal effects. Their aqueous extracts were orally administered to C57BL/6 mice at a clinical dose for 4 weeks. The gut microbiota was measured by 16S rRNA-based metagenomics, and the correlation between microbial composition/function and TCM nature was analyzed. RESULTS Antidiarrheal TCMs with different natures showed distinct impacts on the gut microbiota. Hot-natured TCMs had no influence on the gut microbiota, warm-natured TCMs had a moderate influence, cool-natured TCMs had a strong influence, and cold-natured TCMs substantially changed the structure of the gut microbial community. The abundance of Anaerotruncus, Tyzzerella and Ruminiclostridium steadily increased, while that of Ruminococcaceae_UCG-010, Parasutterella and Bifidobacterium continuously decreased as the herbal nature turned from cold to hot. Microbiome functional prediction for Cluster of Orthologous Groups (COG) of proteins and Kyoto Encyclopedia of Genes and Genomes (KEGG) categories showed that colder TCMs imposed a stronger influence on microbial functional repertoires. Specifically, the abundance of ABC transporters, key bacterial proteins involved in nutrient absorption and drug resistance, was gradually decreased by colder TCMs. CONCLUSION Our results demonstrated that the nature of TCMs could be reflected by their modulation of gut microbes. Cold TCMs may exert their antidiarrheal effects, at least partially, by modulating the gut microbiota, while hot TCMs may alleviate dysentery in other ways.
Collapse
Affiliation(s)
- Xiaopo Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical TCMs, School of Pharmacy, Hainan Medical University, Haikou, 57199, PR China
| | - Yanan Yang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Fang Zhang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jiaqi Yu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Wanying Sun
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical TCMs, School of Pharmacy, Hainan Medical University, Haikou, 57199, PR China
| | - Ruiqi Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical TCMs, School of Pharmacy, Hainan Medical University, Haikou, 57199, PR China
| | - Chongming Wu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
30
|
Lv BM, Quan Y, Zhang HY. Causal Inference in Microbiome Medicine: Principles and Applications. Trends Microbiol 2021; 29:736-746. [PMID: 33895062 DOI: 10.1016/j.tim.2021.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022]
Abstract
Microorganisms that colonize the mammalian skin and cavity play critical roles in various physiological functions of the host. Numerous studies have revealed strong associations between the microbiota and multiple diseases. However, association does not mean causation. To clarify the mechanisms underlying microbiota-mediated diseases, research is moving from associative analyses to causation studies. In this article, we first introduce the principles of the computational methods for causal inference, and then discuss the applications of these methods in microbiome medicine. Furthermore, we examine the reliability of theoretically inferred causality by the interventionist framework. Finally, we show the potential of confirmed causality in microbiota-targeted therapy, especially in personalized dietary intervention. We conclude that a comprehensive understanding of the causal relationships between diets, microbiota, host targets, and diseases is critical to future microbiome medicine.
Collapse
Affiliation(s)
- Bo-Min Lv
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yuan Quan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China.
| |
Collapse
|
31
|
Xia C, Jiang C, Li W, Wei J, Hong H, Li J, Feng L, Wei H, Xin H, Chen T. A Phase II Randomized Clinical Trial and Mechanistic Studies Using Improved Probiotics to Prevent Oral Mucositis Induced by Concurrent Radiotherapy and Chemotherapy in Nasopharyngeal Carcinoma. Front Immunol 2021; 12:618150. [PMID: 33841399 PMCID: PMC8024544 DOI: 10.3389/fimmu.2021.618150] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Earlier evidence has proven that probiotic supplements can reduce concurrent chemoradiotherapy (CCRT)-induced oral mucositis (OM) in nasopharyngeal cancer (NPC). The incidence of severe OM (grade 3 or higher) was the primary endpoint in this study. We first enrolled 85 patients with locally advanced NPC who were undergoing CCRT. Of them, 77 patients were finally selected and randomized (1:1) to receive either a probiotic cocktail or placebo. To investigate the protective effects and the mechanism of probiotic cocktail treatment on OM induced by radiotherapy and chemotherapy, we randomly divided the rats into the control (C) group, the model (M) group, and the probiotic (P) group. After treatment, samples from the tongue, blood, and fecal and proximal colon tissues on various days (7th, 14th, and 21st days) were collected and tested for the inflammatory response, cell apoptosis, intestinal permeability, and intestinal microbial changes. We found that patients taking the probiotic cocktail showed significantly lower OM. The values of the incidence of 0, 1, 2, 3, and 4 grades of OM in the placebo group and in the probiotic cocktail group were reported to be 0, 14.7, 38.2, 32.4, and 14.7% and 13.9, 36.1, 25, 22.2, and 2.8%, respectively. Furthermore, patients in the probiotic cocktail group showed a decrease in the reduction rate of CD3+ T cells (75.5% vs. 81%, p < 0.01), CD4+ T cells (64.53% vs. 79.53%, p < 0.01), and CD8+ T cells (75.59 vs. 62.36%, p < 0.01) compared to the placebo group. In the rat model, the probiotic cocktail could ameliorate the severity of OM, decrease the inflammatory response, cause cell apoptosis and intestinal permeability, and restore the structure of gut microbiota to normalcy. In conclusion, the modified probiotic cocktail significantly reduces the severity of OM by enhancing the immune response of patients with NPC and modifying the structure of gut microbiota. Clinical Trial Registration: The Clinical Trial Registration should be the NCT03112837.
Collapse
Affiliation(s)
- Chaofei Xia
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Chunling Jiang
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China.,NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Wenyu Li
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hu Hong
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Jingao Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China.,NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Liu Feng
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China.,NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongbo Xin
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
32
|
Wang W, Zhai D, Bai Y, Xue K, Deng L, Ma L, Du T, Ye Z, Qu D, Xiang A, Chen G, Zhao Y, Wang L, Lu Z. Loss of QKI in macrophage aggravates inflammatory bowel disease through amplified ROS signaling and microbiota disproportion. Cell Death Discov 2021; 7:58. [PMID: 33758177 PMCID: PMC7988119 DOI: 10.1038/s41420-021-00444-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Accepted: 02/27/2021] [Indexed: 01/20/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a refractory chronic inflammatory illness of the gastrointestinal (GI) tract. Macrophage exerts an important role in IBD development. QKI, as an RNA binding protein, was related with inflammatory responses in bacterial infections by regulating the polarization of macrophages. Therefore, we suspected that QKI-regulated macrophages have the potential to play a certain role in IBD and the underlying mechanism. Our results demonstrated that the mice with macrophage-specific deletion of QKI induced with dextran sodium sulfate (DSS) are more susceptible to IBD development, exhibited a severe leaky gut barrier phenotype and higher intense oxidative stress, which are rescued by treating with butylated hydroxyanisole (BHA), an agonist of NRF2. Mechanically, we observed that Keap1 mRNA in the nucleus was exported to the cytoplasm after LPS stimuli in parallel with QKI reductions, and the removal of QKI by shRNA facilitated Keap1 mRNA nuclear exporting and expression in cytoplasm, consequently NRF2 activation in nucleus was weakened, and led to the impaired antioxidant abilities. In addition, mice models of fecal microbiota transplant (FMT) and the co-culturing of mice epithelia cells with feces derived from the DSS-treated QKI-deficit mice revealed consistently aggravated colitis along with a severe oxidative stress; 16S sequencing analysis substantiated the altered compositions of commensal bacteria too. Overall, the current study represents the first effort to explore the anti-oxidant role of QKI in the intestinal macrophage via post-transcriptional regulation of Keap1 mRNA localization and the relevant NRF2 antioxidant signaling, and the disproportional changes in the microbiota were attributable to the mediation of pathogenic damage in the IBD development of QKI-deficit mice.
Collapse
Affiliation(s)
- Wenwen Wang
- PLA Institute of State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, No. 17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Dongsheng Zhai
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yongquan Bai
- PLA Institute of State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, No. 17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Ke Xue
- Department of Dermatology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Lele Deng
- PLA Institute of State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, No. 17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Lirong Ma
- PLA Institute of State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, No. 17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Tianshu Du
- PLA Institute of Orthopaedics, Xijing Hospital, Air Force Medical University, No. 17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Zicheng Ye
- PLA Institute of State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, No. 17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Di Qu
- PLA Institute of State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, No. 17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - An Xiang
- PLA Institute of State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, No. 17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Guo Chen
- PLA Institute of State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, No. 17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Yi Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai Province, China.
| | - Li Wang
- PLA Institute of State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, No. 17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| | - Zifan Lu
- PLA Institute of State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, No. 17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| |
Collapse
|
33
|
Xu M, Cen M, Shen Y, Zhu Y, Cheng F, Tang L, Hu W, Dai N. Deoxycholic Acid-Induced Gut Dysbiosis Disrupts Bile Acid Enterohepatic Circulation and Promotes Intestinal Inflammation. Dig Dis Sci 2021; 66:568-576. [PMID: 32198567 DOI: 10.1007/s10620-020-06208-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND A Western diet is a risk factor for the development of inflammatory bowel disease (IBD). High levels of fecal deoxycholic acid (DCA) in response to a Western diet contribute to bowel inflammatory injury. However, the mechanism of DCA in the natural course of IBD development remains unanswered. AIMS The aim of this study is to investigate the effect of DCA on the induction of gut dysbiosis and its roles in the development of intestinal inflammation. METHODS Wild-type C57BL/6J mice were fed an AIN-93G diet, either supplemented with or without 0.2% DCA, and killed at 24 weeks. Distal ileum and colon tissues were assessed by histopathological analysis. Hepatic and ileal gene expression was examined by qPCR, and the gut microbiota was analyzed by high-throughput 16S rRNA gene sequencing. HPLC-MS was used for fecal bile acid quantification. RESULTS Mice fed the DCA-supplemented diet developed focal areas of ileal and colonic inflammation, accompanied by alteration of the composition of the intestinal microbiota and accumulation of fecal bile acids. DCA-induced dysbiosis decreased the deconjugation of bile acids, and this regulation was associated with the repressed expression of target genes in the enterohepatic farnesoid X receptor-fibroblast growth factor (FXR-FGF15) axis, leading to upregulation of hepatic de novo bile acid synthesis. CONCLUSIONS These results suggest that DCA-induced gut dysbiosis may act as a key etiologic factor in intestinal inflammation, associated with bile acid metabolic disturbance and downregulation of the FXR-FGF15 axis.
Collapse
Affiliation(s)
- Mengque Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Mengsha Cen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yuqin Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yubin Zhu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Fangli Cheng
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Linlin Tang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Weiling Hu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Ning Dai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| |
Collapse
|
34
|
Song Q, Wang Y, Huang L, Shen M, Yu Y, Yu Q, Chen Y, Xie J. Review of the relationships among polysaccharides, gut microbiota, and human health. Food Res Int 2021; 140:109858. [DOI: 10.1016/j.foodres.2020.109858] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/18/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022]
|
35
|
Bengoa AA, Dardis C, Gagliarini N, Garrote GL, Abraham AG. Exopolysaccharides From Lactobacillus paracasei Isolated From Kefir as Potential Bioactive Compounds for Microbiota Modulation. Front Microbiol 2020; 11:583254. [PMID: 33178165 PMCID: PMC7596202 DOI: 10.3389/fmicb.2020.583254] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
Microbiota coexists in true symbiosis with the host playing pivotal roles as a key element for well-being and health. Exopolysaccharides from lactic acid bacteria are an alternative as novel potential prebiotics that increase microbiota diversity. Considering this, the aim of the present work was to evaluate the capacity of the EPS produced by two L. paracasei strains isolated from kefir grains, to be metabolized in vitro by fecal microbiota producing short chain fatty acids. For this purpose, fecal samples from healthy children were inoculated in a basal medium with EPS and incubated in anaerobiosis at 37°C for 24, 48, and 72 h. DGGE profiles and the production of SCFA after fermentation were analyzed. Additionally, three selected samples were sequenced by mass sequencing analysis using Ion Torrent PGM. EPS produced by L. paracasei CIDCA 8339 (EPS8339) and CIDCA 83124 (EPS83124) are metabolized by fecal microbiota producing a significant increase in SCFA. EPS8339 fermentation led to an increment of propionate and butyrate, while fermentation of EPS83124 increased butyrate levels. Both EPS led to a profile of SCFA different from the ones obtained with inulin or glucose fermentation. DGGE profiles of 72 h fermentation demonstrated that both EPS showed a different band profile when compared to the controls; EPS profiles grouped in a cluster that have only 65% similarity with glucose or inulin profiles. Mass sequencing analysis demonstrated that the fermentation of EPS8339 leads to an increase in the proportion of the genera Victivallis, Acidaminococcus and Comamonas and a significant drop in the proportion of enterobacteria. In the same direction, the fermentation of EPS83124 also resulted in a marked reduction of Enterobacteriaceae with a significant increase in the genus Comamonas. It was observed that the changes in fecal microbiota and SCFA profile exerted by both polymers are different probably due to differences in their structural characteristics. It can be concluded that EPS synthesized by both L. paracasei strains, could be potentially used as bioactive compound that modify the microbiota increasing the production of propionic and butyric acid, two metabolites highly associated with beneficial effects both at the gastrointestinal and extra-intestinal level.
Collapse
Affiliation(s)
- Ana Agustina Bengoa
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico-Tecnológico La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| | - Carolina Dardis
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico-Tecnológico La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| | - Nina Gagliarini
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico-Tecnológico La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| | - Graciela L Garrote
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico-Tecnológico La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| | - Analía G Abraham
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico-Tecnológico La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina.,Área Bioquímica y Control de Alimentos - Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
36
|
Esmaeil Amini M, Shomali N, Bakhshi A, Rezaei S, Hemmatzadeh M, Hosseinzadeh R, Eslami S, Babaie F, Aslani S, Torkamandi S, Mohammadi H. Gut microbiome and multiple sclerosis: New insights and perspective. Int Immunopharmacol 2020; 88:107024. [PMID: 33182024 DOI: 10.1016/j.intimp.2020.107024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The human gastrointestinal microbiota, also known as the gut microbiota living in the human gastrointestinal tract, has been shown to have a significant impact on several human disorders including rheumatoid arthritis, diabetes, obesity, and multiple sclerosis (MS). MS is an inflammatory disease characterized by the destruction of the spinal cord and nerve cells in the brain due to an attack of immune cells, causing a wide range of harmful symptoms related to inflammation in the central nervous system (CNS). Despite extensive studies on MS that have shown that many external and genetic factors are involved in its pathogenesis, the exact role of external factors in the pathophysiology of MS is still unclear. Recent studies on MS and experimental autoimmune encephalomyelitis (EAE), an animal model of encephalitis, have shown that intestinal microbiota may play a key role in the pathogenesis of MS. Therefore, modification of the intestinal microbiome could be a promising strategy for the future treatment of MS. In this study, the characteristics of intestinal microbiota, the relationship between intestine and brain despite the blood-brain barrier, various factors involved in intestinal microbiota modification, changes in intestinal microbial composition in MS, intestinal microbiome modification strategies, and possible use of intestinal microbiome and factors affecting it have been discussed.
Collapse
Affiliation(s)
- Mohammad Esmaeil Amini
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Navid Shomali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Bakhshi
- Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Somaye Rezaei
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Dietary Supplements & Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Babaie
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Torkamandi
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
37
|
Li K, Liu A, Zong W, Dai L, Liu Y, Luo R, Ge S, Dong G. Moderate exercise ameliorates osteoarthritis by reducing lipopolysaccharides from gut microbiota in mice. Saudi J Biol Sci 2020; 28:40-49. [PMID: 33424281 PMCID: PMC7783636 DOI: 10.1016/j.sjbs.2020.08.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/27/2022] Open
Abstract
Lipopolysaccharides (LPSs) released by gut microbiota are correlated with the pathophysiology of osteoarthritis (OA). Exercise remodels the composition of gut microbiota. The present study investigated the hypothesis that wheel-running exercise prevents knee OA induced by high-fat diet (HFD) via reducing LPS from intestinal microorganisms. Male C57BL/6 J mice were treated with sedentary or wheel-running exercise, standard diet (13.5% kcal) or HFD (60% kcal), berberine or not according to their grouping. Knee OA severity, blood and synovial fluid LPS, cecal microbiota, and TLR4 and MMP-13 expression levels were determined. Our findings reveal that HFD treatment decreased gut microbial diversity. Increase in endotoxin-producing bacteria, decrease in gut barrier-protecting bacteria, high LPS levels in the blood and synovial fluid, high TLR4 and MMP-13 expression levels, and severe cartilage degeneration were observed. By contrast, voluntary wheel running caused high gut microbial diversity. The gut microbiota were reshaped, LPS levels in the blood and synovial fluid and TLR4 and MMP-13 expression levels were low, and cartilage degeneration was ameliorated. Berberine treatment reduced LPS levels in the samples, but decreased the diversity of intestinal flora with similar changes to that caused by HFD. In conclusion, unlike taking drugs, exercising can remodel gut microbial ecosystems, reduce the circulating levels of LPS, and thereby contribute to the relief of chronic inflammation and OA. Our findings showed that moderate exercise is a potential therapeutic approach for preventing and treating obesity-related OA.
Collapse
Affiliation(s)
- Kefeng Li
- College of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Anli Liu
- Department of Acupuncture, Rizhao Hospital of Traditional Chinese Medicine, Rizhao 276800, China
| | - Wenhao Zong
- College of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Lulu Dai
- College of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Yang Liu
- College of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Renping Luo
- College of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Shulin Ge
- School of Physical Education, Shandong Normal University, Jinan 250014, China
| | - Guijun Dong
- College of Sports and Health, Shandong Sport University, Jinan 250102, China
| |
Collapse
|
38
|
Zhang S, Lv J, Ren X, Hao X, Zhou P, Wang Y. The efficacy and safety of fecal microbiota transplantation in the treatment of systemic sclerosis: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2020; 99:e21267. [PMID: 32664182 PMCID: PMC7360200 DOI: 10.1097/md.0000000000021267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is 1 of the most complex systemic autoimmune diseases.Accumulating evidence suggests that gut microbiota affect the development and function of the immune system and may play a role in the pathogenesis of autoimmune diseases. This new paradigm raises the possibility that many diseases result, at least partially, from microbiota-related dysfunction. This understanding invites the investigation of fecal microbiota transplantation (FMT) in the treatment of SSc. However, no study has specifically and systematically investigated the efficacy and safety of FMT in the treatment of SSc. Thus, this study will systematically and comprehensively appraise the efficacy and safety of FMT in the treatment of SSc. METHODS We will search the following sources without restrictions for date, language, or publication status: PubMed, Web of Science,Cochrane Central Register of Controlled Trials (CENTRAL) Cochrane Library, EMBASE and China National Knowledge Infrastructure. We will apply a combination of Medical Subject Heading (MeSH) and free-text terms incorporating database-specific controlled vocabularies and text words to implement search strategies. We will also search the ongoing trials registered in the World Health Organization's International Clinical Trials Registry Platform. Besides, the previous relevant reviews conducted on FMT for SSc and reference lists of included studies will also be searched. RESULTS This study will provide a reliable basis for the treatment of SSc with FMT. CONCLUSIONS The findings will be an available reference to evaluate the efficacy and safety of FMT in the treatment of SSc. REGISTRATION NUMBER INPLASY202060019.
Collapse
Affiliation(s)
| | - Jingjing Lv
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang City, Hebei
| | | | - Xinyu Hao
- Hebei University of Chinese Medicine
| | | | - Yangang Wang
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang City, Hebei
| |
Collapse
|
39
|
Pauliukaite R, Voitechovič E. Multisensor Systems and Arrays for Medical Applications Employing Naturally-Occurring Compounds and Materials. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3551. [PMID: 32585936 PMCID: PMC7349305 DOI: 10.3390/s20123551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022]
Abstract
The significant improvement of quality of life achieved over the last decades has stimulated the development of new approaches in medicine to take into account the personal needs of each patient. Precision medicine, providing healthcare customization, opens new horizons in the diagnosis, treatment and prevention of numerous diseases. As a consequence, there is a growing demand for novel analytical devices and methods capable of addressing the challenges of precision medicine. For example, various types of sensors or their arrays are highly suitable for simultaneous monitoring of multiple analytes in complex biological media in order to obtain more information about the health status of a patient or to follow the treatment process. Besides, the development of sustainable sensors based on natural chemicals allows reducing their environmental impact. This review is concerned with the application of such analytical platforms in various areas of medicine: analysis of body fluids, wearable sensors, drug manufacturing and screening. The importance and role of naturally-occurring compounds in the development of electrochemical multisensor systems and arrays are discussed.
Collapse
Affiliation(s)
- Rasa Pauliukaite
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania;
| | | |
Collapse
|
40
|
Haudum C, Lindheim L, Ascani A, Trummer C, Horvath A, Münzker J, Obermayer-Pietsch B. Impact of Short-Term Isoflavone Intervention in Polycystic Ovary Syndrome (PCOS) Patients on Microbiota Composition and Metagenomics. Nutrients 2020; 12:E1622. [PMID: 32492805 PMCID: PMC7656308 DOI: 10.3390/nu12061622] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) affects 5-20% of women of reproductive age worldwide and is associated with disorders of glucose metabolism. Hormone and metabolic signaling may be influenced by phytoestrogens, such as isoflavones. Their endocrine effects may modify symptom penetrance in PCOS. Equol is one of the most active isoflavone metabolites, produced by intestinal bacteria, and acts as a selective estrogen receptor modulator. METHOD In this interventional study of clinical and biochemical characterization, urine isoflavone levels were measured in PCOS and control women before and three days after a defined isoflavone intervention via soy milk. In this interventional study, bacterial equol production was evaluated using the log(equol: daidzein ratio) and microbiome, metabolic, and predicted metagenome analyses were performed. RESULTS After isoflavone intervention, predicted stool metagenomic pathways, microbial alpha diversity, and glucose homeostasis in PCOS improved resembling the profile of the control group at baseline. In the whole cohort, larger equol production was associated with lower androgen as well as fertility markers. CONCLUSION The dynamics in our metabolic, microbiome, and predicted metagenomic profiles underline the importance of external phytohormones on PCOS characteristics and a potential therapeutic approach or prebiotic in the future.
Collapse
Affiliation(s)
- Christoph Haudum
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| | - Lisa Lindheim
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
| | - Angelo Ascani
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
| | - Christian Trummer
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
| | - Angela Horvath
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University Graz, 8010 Graz, Austria;
| | - Julia Münzker
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
- Department of Medicine, Integrated Research and Treatment Centre for Adiposity Diseases, University of Leipzig, 04103 Leipzig, Germany
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| |
Collapse
|
41
|
Dong Y, Yan H, Zhao X, Lin R, Lin L, Ding Y, Liu L, Ren L, Xing Q, Ji J. Gu-Ben-Fang-Xiao Decoction Ameliorated Murine Asthma in Remission Stage by Modulating Microbiota-Acetate-Tregs Axis. Front Pharmacol 2020; 11:549. [PMID: 32431609 PMCID: PMC7212778 DOI: 10.3389/fphar.2020.00549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Dysbiosis of gut microbiota is a critical factor in the pathogenesis of asthma. Manipulating gut microbiota is a promising therapeutic intervention in asthma, and is being extensively studied. Gu-Ben-Fang-Xiao Decoction (GBFXD), derived from traditional Chinese medicine, is an effective and safe therapeutic formula for asthma in remission stage (ARS). Herein, we showed that GBFXD treatment remarkably alleviated ARS by improving respiratory function and lung histopathology. Asthmatic mice displayed a dysbiosis of gut microbiota, represented by significantly increased abundance of Bacteroidetes and decreased abundance of Firmicutes in gut, while GBFXD treatment reversed the gut dysbiosis in asthmatic mice at phylum, family, and genus levels. Moreover, our data showed that GBFXD treatment increased the abundance of short-chain fatty acid (SCFA)-producing bacteria in asthmatic mice, such as Firmicutes, Lachnospiraceae, and Bifidobacteriaceae, which consequently led to elevated levels of SCFAs. Furthermore, GBFXD treatment significantly enhanced the regulatory T cell differentiation via SCFAs, particularly acetate, in asthmatic mice. More critically, the protective effect of GBFXD was shown to be transmissible among asthmatic mice through co-housing microbiota transplantation. Antibiotic cocktail and acetate replenishment experiments also further substantiated the importance of SCFA-producing gut microbiota in GBFXD action. We, thus, demonstrated for the first time that gut microbiota dysbiosis existed in ARS. GBFXD could ameliorate ARS through the microbiota-acetate-Tregs axis.
Collapse
Affiliation(s)
- Yingmei Dong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Yan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xia Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Lin
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Ding
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liwei Liu
- The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China
| | - Lishun Ren
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiongqiong Xing
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
42
|
Lin X, Ren X, Xiao X, Yang Z, Yao S, Wong GW, Liu Z, Wang C, Su Z, Li J. Important Role of Immunological Responses to Environmental Exposure in the Development of Allergic Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:934-948. [PMID: 32935487 PMCID: PMC7492518 DOI: 10.4168/aair.2020.12.6.934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/16/2022]
Abstract
Allergic asthma is a public health problem that affects human health and socioeconomic development. Studies have found that the prevalence of asthma has significantly increased in recent years, which has become particularly pronounced in developed countries. With rapid urbanization in China in the last 3 decades, the prevalence of asthma has increased significantly in urban areas. As changes in genetic backgrounds of human populations are limited, environmental exposure may be a major factor that is responsible for the increased prevalence of asthma. This review focuses on environmental components of farms and rural areas that may have protective effects in reducing the development of asthma. Farm and rural related microorganism- and pathogen-associated molecular patterns are considered to be important environmental factors that modulate host's innate and adaptive immune system to induce protection effects later in life. Environmental microbial-related immunotherapy will also be discussed as the future research direction for the prevention of allergic asthma.
Collapse
Affiliation(s)
- Xinliu Lin
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xia Ren
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojun Xiao
- Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhaowei Yang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Siyang Yao
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gary Wk Wong
- Departments of Pediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Zhigang Liu
- Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Charles Wang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Zhong Su
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
43
|
Role of Probiotics in Non-alcoholic Fatty Liver Disease: Does Gut Microbiota Matter? Nutrients 2019; 11:nu11112837. [PMID: 31752378 PMCID: PMC6893593 DOI: 10.3390/nu11112837] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic consequence of metabolic syndrome, which often also includes obesity, diabetes, and dyslipidemia. The connection between gut microbiota (GM) and NAFLD has attracted significant attention in recent years. Data has shown that GM affects hepatic lipid metabolism and influences the balance between pro/anti-inflammatory effectors in the liver. Although studies reveal the association between GM dysbiosis and NAFLD, decoding the mechanisms of gut dysbiosis resulting in NAFLD remains challenging. The potential pathophysiology that links GM dysbiosis to NAFLD can be summarized as: (1) disrupting the balance between energy harvest and expenditure, (2) promoting hepatic inflammation (impairing intestinal integrity, facilitating endotoxemia, and initiating inflammatory cascades with cytokines releasing), and (3) altered biochemistry metabolism and GM-related metabolites (i.e., bile acid, short-chain fatty acids, aromatic amino acid derivatives, branched-chain amino acids, choline, ethanol). Due to the hypothesis that probiotics/synbiotics could normalize GM and reverse dysbiosis, there have been efforts to investigate the therapeutic effect of probiotics/synbiotics in patients with NAFLD. Recent randomized clinical trials suggest that probiotics/synbiotics could improve transaminases, hepatic steatosis, and reduce hepatic inflammation. Despite these promising results, future studies are necessary to understand the full role GM plays in NAFLD development and progression. Additionally, further data is needed to unravel probiotics/synbiotics efficacy, safety, and sustainability as a novel pharmacologic approaches to NAFLD.
Collapse
|
44
|
Tian Y, Jennings J, Gong Y, Sang Y. Viral Infections and Interferons in the Development of Obesity. Biomolecules 2019; 9:biom9110726. [PMID: 31726661 PMCID: PMC6920831 DOI: 10.3390/biom9110726] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity is now a prevalent disease worldwide and has a multi-factorial etiology. Several viruses or virus-like agents including members of adenoviridae, herpesviridae, slow virus (prion), and hepatitides, have been associated with obesity; meanwhile obese patients are shown to be more susceptible to viral infections such as during influenza and dengue epidemics. We examined the co-factorial role of viral infections, particularly of the persistent cases, in synergy with high-fat diet in induction of obesity. Antiviral interferons (IFNs), as key immune regulators against viral infections and in autoimmunity, emerge to be a pivotal player in the regulation of adipogenesis. In this review, we examine the recent evidence indicating that gut microbiota uphold intrinsic IFN signaling, which is extensively involved in the regulation of lipid metabolism. However, the prolonged IFN responses during persistent viral infections and obesogenesis comprise reciprocal causality between virus susceptibility and obesity. Furthermore, some IFN subtypes have shown therapeutic potency in their anti-inflammation and anti-obesity activity.
Collapse
|
45
|
Kalinkovich A, Livshits G. A cross talk between dysbiosis and gut-associated immune system governs the development of inflammatory arthropathies. Semin Arthritis Rheum 2019; 49:474-484. [PMID: 31208713 DOI: 10.1016/j.semarthrit.2019.05.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/09/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Emerging evidence suggests that dysbiosis, imbalanced gut microbial community, might be a key player in the development of various diseases, including inflammatory arthropathies, such as rheumatoid arthritis, spondyloarthritis (mainly, ankylosing spondylitis and psoriatic arthritis), and osteoarthritis. Yet, the underlying mechanisms and corresponding interactions remain poorly understood. METHODS We conducted a critical and extensive literature review to explore the association between dysbiosis and the development of inflammatory arthropathies. We also reviewed the literature to assess the perspectives that ameliorate inflammatory arthropathies by manipulating the microbiota with probiotics, prebiotics or fecal microbiota transplantation. RESULTS Some bacterial species (e.g. Prevotella, Citrobacter rodentium, Collinsella aerofaciens, Segmented filamentous bacteria) participate in the creation of the pro-inflammatory immune status, presumably via epitope mimicry, modification of self-antigens, enhanced cell apoptosis mechanisms, and destruction of tight junction proteins and intestinal barrier integrity, all leading to the development and maintainance of inflammatory arthropathies. Whether dysbiosis is an epiphenomenon or is an active driver of these disorders remains unclear, yet, recent observations clearly suggest that dysbiosis precedes and triggers their development implying a causative relationship between dysbiosis and inflammatory arthropathies. The underlying mechanisms include dysbiosis-mediated changes in the functional activity of the intestinal immune cell subsets, such as innate lymphoid cells, mucosa-associated invariant T cells, invariant natural killer T cells, T-follicular helper and T-regulatory cells. In turn, disturbed functionality of the gut-associated immune system is shown to promote the overgrowth of many bacteria, thus establishing a detrimental vicious circle of actively maintaining arthritis. CONCLUSIONS Analysis of the data described in the review supports the notion that a close, dynamic and tightly regulated cross talk between dysbiosis and the gut-associated immune system governs the development of inflammatory arthropathies.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gregory Livshits
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
46
|
Sun Y, Li L, Xie R, Wang B, Jiang K, Cao H. Stress Triggers Flare of Inflammatory Bowel Disease in Children and Adults. Front Pediatr 2019; 7:432. [PMID: 31709203 PMCID: PMC6821654 DOI: 10.3389/fped.2019.00432] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 10/07/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic inflammatory disease characterized by chronic and relapsing manifestations. It is noteworthy that the prevalence of IBD is gradually increasing in both children and adults. Currently, the pathogenesis of IBD remains to be completely elucidated. IBD is believed to occur through interactions among genetics, environmental factors, and the gut microbiota. However, the relapsing and remitting course of IBD underlines the importance of other modifiers, such as psychological stress. Growing evidence from clinical and experimental studies suggests that stress acts as a promoting or relapsing factor for IBD. Importantly, recent studies have reported an increasing incidence of anxiety or depression in both children and adults with IBD. In this article, we review the mechanisms by which stress affects IBD, such as via impaired intestinal barrier function, disturbance of the gut microbiota, intestinal dysmotility, and immune and neuroendocrine dysfunction. With regard to both children and adults, we provide recent evidence to describe how stress can affect IBD at various stages. Furthermore, we emphasize the importance of mental healing and discuss the value of approaches targeting stress in clinical management to develop enhanced strategies for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Yue Sun
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Lu Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Runxiang Xie
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|