1
|
Su X, Kai L, Han X, Wang R, Yang X, Wang X, Yan J, Qian Q, Wang Z, Wang H. Equipotent bisphenol S and bisphenol F with widely differing modes of action exhibit additive effects in immunotoxicity: insights based on intrinsic immunity, apoptosis and regeneration, and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179405. [PMID: 40239502 DOI: 10.1016/j.scitotenv.2025.179405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/12/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Bisphenol S (BPS) and Bisphenol F (BPF), as alternatives to bisphenol A (BPA), are recognized for their endocrine-disrupting properties, but their combined immune toxicity mechanisms remain poorly understood. This study systematically evaluates the individual and joint immune toxicity effects of BPS and BPF through ADMET predictions, transgenic zebrafish models, and molecular docking analyses. The results indicate that equal effect concentration BPS and BPF act through distinct immune pathways: BPS primarily targets macrophages to mediate immune responses, while BPF significantly stimulates neutrophil proliferation and induces a stronger inflammatory response through chemokine signaling. Molecular docking studies show that BPF binds more stably to pro-apoptotic protein Mapk8 and oxidative stress-related protein Hsp90aa1, leading to significantly higher levels of apoptosis and reactive oxygen species (ROS) compared to BPS. The similarity of modes of action (MOA)between BPS and BPF based on relevant immune indicators calculated and experimentally is about 0.3; this quantitative result also proves that modes of action differ widely. Nonetheless, most of the indicators showed superimposed effects in the combined experiments, and it is noteworthy that the oxidative stress indicators (SOD, MDA) showed synergistic effects, suggesting that BPS and BPF, which have very different modes of action, are able to be risk assessed using an additive model with respect to immunity, but may exhibit synergistic risks with respect to oxidative stress. This research demonstrates that BPS and BPF induce immune toxicity via different molecular targets and pathways and highlights the need to account for their synergistic effects in risk assessments. These findings provide important insights into the immune toxicity mechanisms of BPA substitutes and the potential risks of combined exposures.
Collapse
Affiliation(s)
- Xincong Su
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Li Kai
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314000, China
| | - Xiaowen Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Rongzhi Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiao Yang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huili Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Lingjuan Y, Yu H, Lei Z. Network toxicology and molecular docking techniques to explore the mechanism of bisphenol A on obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-13. [PMID: 40252053 DOI: 10.1080/09603123.2025.2494735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
The study investigates how bisphenol A (BPA) exposure may lead to obesity (OB) by identifying molecular mechanisms and suggests a new research approach for examining the health effects of chemical toxins. Researchers identified 237 potential targets associated with BPA exposure and OB using CTD, STITCH, DrugBank, GeneCards, and OMIM databases. Analysis with STRING and Cytoscape revealed 10 key targets, including INS, IL-6, AKT1, and PPARG. Enrichment analysis via the DAVID database indicated that these targets are primarily involved in PI3K-Akt and Insulin signaling pathways. These findings indicate that BPA may contribute to the occurrence and development of OB by influencing apoptosis, proliferation, inflammatory signaling, and insulin resistance. Molecular docking showed strong binding of BPA to INS, IL-6, AKT1, and PPARG, with molecular dynamics simulations revealing a stable complex of BPA and PPARG. This study offers insights into BPA's role in OB and supports efforts to prevent and treat OB diseases linked to exposure to BPA-containing plastic products and certain BPA-inundated environments.
Collapse
Affiliation(s)
- Yang Lingjuan
- Innovation Management and High-tech Service center, Productivity Centre of Jiangsu Province, Nanjing, Jiangsu, China
| | - Huang Yu
- Preparation Center, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Zhang Lei
- Preparation Center, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| |
Collapse
|
3
|
Weng Z, Chen X, Jiao J, Fu Z, Liu Q, Xu J, Zhang H, Hou Q, Wang D, Li J, Wang S, Zhang Z, Chen Y, Meng S, Jiang Z, Gu A. PPARγ-SMAD6 axis-mediated inhibition of osteogenic differentiation is involved in BPS-induced osteoporosis. ENVIRONMENT INTERNATIONAL 2025; 198:109442. [PMID: 40215917 DOI: 10.1016/j.envint.2025.109442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/03/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025]
Abstract
Bisphenol S (BPS) is extensively utilized in personal care products, foods, and paper products, raising growing concerns about its potential environmental hazards. However, few studies have reported the effects of BPS exposure on bone homeostasis. In this study, using data from the National Health and Nutrition Examination Survey, we found a negative correlation between urinary BPS and bone mineral density (BMD). To further investigate the underlying mechanisms, C57BL/6 mice were exposed to a human-equivalent dose of BPS for 6 months. Micro-CT analysis demonstrated reduced femoral BMD in the mice, indicating that osteoporosis was caused by chronic exposure. RNA-seq analysis showed that BPS activated PPARγ in human primary mesenchymal stem cells (MSCs). Additionally, 3D molecular docking confirmed a direct interaction between BPS and PPARγ. Bioinformatics analysis identified SMAD6 as a downstream target of PPARγ. Mechanistically, the BPS-PPARγ interaction activated PPARγ, promoting SMAD6 transcription, which inhibited the osteogenic differentiation of MSCs. High-throughput virtual screening further revealed that olodanrigan effectively blocked the BPS-PPARγ interaction, and in vitro assays revealed that olodanrigan blocked the inhibition of osteogenic differentiation of MSCs induced by BPS. Additionally, olodanrigan supplementation inhibited PPARγ levels, thereby reversing BPS-induced osteoporosis. In summary, this study elucidates the role of the PPARγ-SMAD6 axis in mediating BPS-induced osteoporosis and highlights olodanrigan as a promising therapeutic intervention, offering new insights into the health risks posed by BPS and potential targets for treatment.
Collapse
Affiliation(s)
- Zhenkun Weng
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China; Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, China
| | - Xiu Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jian Jiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Zuqiang Fu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongchao Zhang
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, Nanjing 211166, China
| | - Qingzhi Hou
- School of Public Health and Management, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Dongmei Wang
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, China
| | - Jiong Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Shourui Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhen Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanlong Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Sining Meng
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhaoyan Jiang
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, Nanjing 211166, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
4
|
Tian R, Li JX, Lu N. Bisphenol S induced endothelial dysfunction via mitochondrial pathway in the vascular endothelial cells, and detoxification effect of albumin binding. Chem Biol Interact 2025; 407:111382. [PMID: 39793866 DOI: 10.1016/j.cbi.2025.111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/03/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
As a replacement of bisphenol A, bisphenol S (BPS) is commonly used in the wrappers and food containers of daily life. Epidemiological studies demonstrate a close link between BPS exposure and vascular diseases, where the biological activities of BPS remain scarcely known. Herein, the effects of BPS on endothelial function as well as the underlying mechanism were investigated in human umbilical vein endothelial cells (HUVECs) and mouse arteries. It was found that exposure of BPS dose-dependently induced endothelial dysfunction (i.e., decline of nitric oxide (NO) formation) in HUVECs, accompanied by the increase of reactive oxygen species (ROS) production and loss of mitochondria membrane potential. Mitochondria-specific antioxidant (Mito-Tempol) or superoxide scavenger (tiron) abolished the harmful effects of BPS, while superoxide dismutase (SOD)-specific siRNA exhibited negative influence, suggesting that mitochondrial ROS was responsible for BPS-induced endothelial dysfunction and SOD was a sensitive target of BPS. Consistently, plasma NO formation and endothelium-dependent vasodilation was significantly impaired in mice exposed to dietary BPS. In addition, the binding of bovine serum albumin (BSA, the most abundant protein in blood) to BPS considerably alleviated ROS formation and endothelial dysfunction in HUVECs. BPS primarily interacted with Sudlow site I of albumin to generate BSA-BPS complex through static mechanism, in which the hydrogen bonds and electrostatic forces played important roles. Altogether, dietary exposure to emerging BPS would disrupt vascular homeostasis via the induction of mitochondrial ROS formation and consequent endothelial dysfunction, highlighting the detoxification impact of albumin protein on the hazardous effects of environmental pollutants.
Collapse
Affiliation(s)
- Rong Tian
- College of Chemistry and Materials, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang, 330022, China
| | - Jia-Xin Li
- College of Chemistry and Materials, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang, 330022, China
| | - Naihao Lu
- College of Chemistry and Materials, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
5
|
Guo Y, Li B, Yan Y, Zhang N, Shao S, Yang L, Ouyang L, Wu P, Duan H, Zhou K, Hua Y, Wang C. Maternal exposure to bisphenol A induces congenital heart disease through mitochondrial dysfunction. FASEB J 2025; 39:e70351. [PMID: 39853827 DOI: 10.1096/fj.202402505r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Congenital heart disease (CHD) represents a major birth defect associated with substantial morbidity and mortality. Although environmental factors are acknowledged as potential contributors to CHD, the underlying mechanisms remain poorly understood. Bisphenol A (BPA), a common endocrine disruptor, has attracted significant attention due to its widespread use and associated health risks. This study examined the effects of maternal BPA exposure on fetal heart development in a murine model. The findings indicated that high-dose BPA exposure resulted in fetal growth restriction, myocardial wall thinning, and ventricular septal defects. Transcriptomic analysis revealed downregulation of genes associated with mitochondrial energy synthesis and cardiomyocyte development following high-dose BPA exposure. Functional assays demonstrated that high-dose BPA exposure impaired mitochondrial respiration reduced ATP production, disrupted mitochondrial membrane potential, and increased intracellular reactive oxygen species levels in fetal cardiomyocytes. These results elucidate the detrimental effects of BPA on fetal heart development and mitochondrial function, providing insights into potential mechanisms linking environmental chemical exposure to CHD.
Collapse
MESH Headings
- Benzhydryl Compounds/toxicity
- Animals
- Phenols/toxicity
- Female
- Pregnancy
- Mice
- Heart Defects, Congenital/chemically induced
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/pathology
- Maternal Exposure/adverse effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Membrane Potential, Mitochondrial/drug effects
- Mitochondria/drug effects
- Mitochondria/metabolism
- Reactive Oxygen Species/metabolism
- Endocrine Disruptors/toxicity
- Prenatal Exposure Delayed Effects
- Mice, Inbred C57BL
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Bisphenol A Compounds
Collapse
Affiliation(s)
- Yafei Guo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bowen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Yan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nanjun Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuran Shao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lixia Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lixue Ouyang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongyu Duan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Zhou Y, Tian L, Wang L, Wu W, Liang B, Xiong W, Zhang L, Li X, Chen J. Bisphenol S exposure interrupted human embryonic stem cell derived cardiomyocytes differentiation through ER-NF-κB/ERK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117576. [PMID: 39729939 DOI: 10.1016/j.ecoenv.2024.117576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024]
Abstract
Bisphenol S (BPS) has been put into production as a wide range of Bisphenol A (BPA) alternatives, while little is known regarding its cardiac developmental toxicity. To explore the effect of BPS on cardiomyocyte differentiation and its mechanism, our study established the human embryonic stem cell-cardiomyocyte differentiation model (hESC-CM), which was divided into early period of differentiation (DP1:1-8d), anaphase period of differentiation (DP2:9-16d) and whole stage of differentiation (DP3:1-16d) exposed to human-related levels of BPS. We found that the survival rate of cardiomyocytes was more sensitive to BPS at the early stage of differentiation than at the anaphase stage of differentiation, and exposure to higher than 30 µg/mL BPS throughout the differentiation period decreased the expression of cTnT. BPS may affect cardiomyocyte differentiation by activating ERβ-NF-κB/ERK signaling pathway, and the signaling pathway of each stage might be different. During DP1, 3 µg/mL of BPS may increase the inflammatory effect of cardiomyocytes mainly through the ERβ-NF-κB signaling pathway, thereby inhibiting cell proliferation, and leading to impaired cardiac function in early differentiation. During DP2, BPS may activate the ERβ-ERK signaling pathway, increase cardiomyocyte apoptosis, alter the establishment of the outer matrix, and thus affect myocardial differentiation. However, exposure to BPS throughout the differentiation stage may disrupt the immune response and cell differentiation, which in turn interrupts heart function. The benchmark dose lower confidence limit (BMDL) of the relative expression of cTnT mRNA exposed by BPS during DP3 was the lowest among all the BMDLs of a good fit, with BMDL5 of 1.96 × 10-2 µg/mL, which is lower than the current reported exposure levels of BPS in maternal serum (0.03-0.07 ng/mL) and maternal umbilical cord serum (0.03-0.12 ng/mL).
Collapse
Affiliation(s)
- Yongru Zhou
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Liang Wang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Wenjing Wu
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Baofang Liang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Wei Xiong
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
7
|
Wang C, Zhang S, Shao Z, Sun P, Zhang J, Zhang S, Kong J, Zhi H, Li L, Li M, Yu J, Liu Z, Lu X, Peng H, Tang S. Reproductive toxicity of bisphenol A and nitro-bisphenol A in male zebrafish at environmentally relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177905. [PMID: 39674150 DOI: 10.1016/j.scitotenv.2024.177905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/05/2024] [Accepted: 12/01/2024] [Indexed: 12/16/2024]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting pollutant that poses significant environmental challenges globally. However, the toxicity of nitro-BPA (NBPA), the primary transformation product of BPA, remains poorly understood. This study employs a multi-omics approach, integrating in silico and bioinformatics analyses, to investigate and compare the male reproductive toxicity of BPA and NBPA in male zebrafish exposed to environmentally relevant concentrations. After 21 days of exposure, we observed a significant increase in cumulative egg production over five days in the NBPA 200 nM group compared to pre-exposure levels. Conversely, the gonadosomatic index of NBPA 200 nM group was significantly reduced by approximately 41.65 %. Our findings indicate that the activation of ESRRγ and inhibition of NR5A2 are critical molecular initiating events linked to male reproductive toxicity. Additionally, both BPA and NBPA were found to disrupt several key events within the steroid hormone biosynthesis pathway. This disruption includes the downregulation of genes encoding cytochrome P450 (CYP450) and hydroxysteroid dehydrogenase enzymes, as well as alterations in the levels of steroid hormones such as cholesterol and 25-hydroxycholesterol. Our study identifies biomolecular targets of BPA and NBPA at environmentally relevant concentrations that induce reproductive toxicity, enhancing our understanding of NBPA toxicity and are anticipated to inform the development of effective mitigation strategies.
Collapse
Affiliation(s)
- Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuyi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing, China
| | - Zijin Shao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Peijie Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Jiran Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Shaoping Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jian Kong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Zhi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mingshu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China.
| | - Hui Peng
- Department of Chemistry, School of Environment, University of Toronto, Toronto, Ontario, Canada
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Palacios-Valladares JR, Martinez-Jimenez YI, Morillon-Torres V, Rivera-Maya OB, Gómez R, Calderon-Aranda ES. Bisphenol A and Its Emergent Substitutes: State of the Art of the Impact of These Plasticizers on Oxidative Stress and Its Role in Vascular Dysfunction. Antioxidants (Basel) 2024; 13:1468. [PMID: 39765797 PMCID: PMC11673293 DOI: 10.3390/antiox13121468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
The "One Health approach" has evidenced the significant impact of xenobiotic exposure to health, and humans are a relevant target for their toxic effects. Bisphenol A (BPA) exerts a ubiquitous exposure source in all ecosystems. Given its endocrine-disrupting and harmful consequences on health, several countries have enforced new regulations to reduce exposure to BPA. Cardiovascular diseases (CVDs) are complex conditions that lead to higher mortality worldwide, where family history, lifestyle, and environmental factors, like BPA exposure, have a remarkable contribution. This chemical compound is the most widely used in plastic and epoxy resin manufacturing and has been associated with effects on human health. Therefore, new-generation bisphenols (NGBs) are replacing BPA use, arguing that they do not harm health. Nonetheless, the knowledge about whether NGBs are secure options is scanty. Although BPA's effects on several organs and systems have been documented, the role of BPA and NGBs in CVDs has yet to be explored. This review's goals are focused on the processes of endothelial activation (EA)-endothelial dysfunction (ED), a cornerstone of CVDs development, bisphenols' (BPs) effects on these processes through oxidant and antioxidant system alteration. Despite the scarce evidence on pro-oxidant effects associated with NGBs, our review demonstrated a comparable harmful effect on BPA. The results from the present review suggest that the biological mechanisms to explain BPs cardiotoxic effects are the oxidant stress ↔ inflammatory response ↔ EA ↔ ED → atherosclerotic plate → coagulation promotion. Other effects contributing to CVD development include altered lipid metabolism, ionic channels, and the activation of different intracellular pathways, which contribute to ED perpetuation in a concerted manner.
Collapse
Affiliation(s)
| | | | | | | | - Rocio Gómez
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.R.P.-V.); (Y.I.M.-J.); (V.M.-T.); (O.B.R.-M.)
| | - Emma S. Calderon-Aranda
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.R.P.-V.); (Y.I.M.-J.); (V.M.-T.); (O.B.R.-M.)
| |
Collapse
|
9
|
Yang D, Zhao D, Chen H, Cai Y, Liu Y, Guo F, Li F, Zhang Y, Xu Z, Xue J, Kannan K. Distribution, bioaccumulation and human exposure risk of bisphenol analogues, bisphenol A diglycidyl ether and its derivatives in the Dongjiang River basin, south China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175969. [PMID: 39222812 DOI: 10.1016/j.scitotenv.2024.175969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Bisphenols, bisphenol A diglycidyl ether (BADGE), and bisphenol F diglycidyl ether (BFDGE) are commonly used as raw materials or additives in the production of several industrial and consumer products. However, information regarding the occurrence and distribution of these industrial chemicals in freshwater ecosystem is limited. In this study, four bisphenols, six BADGEs, and three BFDGEs were determined in abiotic and biotic samples collected from the Dongjiang River basin in southern China. Among the four bisphenols, BPA was widely present in all samples analyzed including surface water (median: 1.81 ng/L), sediment (3.1 ng/g dw), aquatic plants (3.69 ng/g dw), algae (7.57 ng/g dw), zooplankton (6.17 ng/g dw), and fish muscle (5.28 ng/g dw). Among the nine BADGEs and BFDGEs analyzed, BADGE, BADGE•H2O, BADGE·HCl·H2O and BADGE•2H2O was found in all sample types. Although the median concentration of BADGE•2H2O in surface water was below LOQ, this compound was found at median concentrations of 2.61, 3.59, 1.03, 1.69, and 49.8 ng/g dw in sediment, plants, algae, zooplankton, and fish muscle, respectively. Significant positive linear correlations were found among logarithmic transformed concentrations of BPA, BADGE, BADGE•H2O, BADGE•HCl•H2O, and BADGE•2H2O in sediment. The bioconcentration factor (logBCF) values of BADGE, BADGE•H2O, BADGE•HCl, BADGE•HCl•H2O, BADGE•2H2O, and BADGE•2HCl in fish, plants, algae, and zooplankton were > 3.3 L/kg (wet weight), indicating that these chemicals possess moderate bioaccumulation potential. The estimated daily total intake of bisphenols and BADGEs through fish consumption was 75.1 ng/kg bw/day for urban adult residents. The study provides baseline information on the occurrence of bisphenols, BADGEs, and BFDGEs in a freshwater ecosystem.
Collapse
Affiliation(s)
- Danlin Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Daoming Zhao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Honglin Chen
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Fen Guo
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Feilong Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihao Xu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingchuan Xue
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, United States; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, NY 12237, United States
| |
Collapse
|
10
|
Alexandre-Santos B, Reis GDS, Medeiros GR, Stockler-Pinto MB, Oliveira NSC, Miranda-Alves L, Nóbrega ACLD, Magliano DC, Frantz EDC. Bisphenol S exposure induces cardiac remodeling and aggravates high-fat diet-induced cardiac hypertrophy in mice. ENVIRONMENTAL RESEARCH 2024; 261:119781. [PMID: 39142458 DOI: 10.1016/j.envres.2024.119781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Bisphenol S (BPS) is widely used in the manufacture products and increase the risk of cardiovascular diseases. The effect of the association between obesity and BPS on cardiac outcomes is still unknown. Male C57BL/6 mice were divided into standard chow diet (SC; 15 kJ/g), standard chow diet + BPS (SCB), high-fat diet (HF; 21 kJ/g), and high-fat diet + BPS (HFB). Over 12 weeks, the groups were exposed to BPS through drinking water (dose: 25 μg/kg/day) and/or a HF diet. We evaluated: body mass (BM), total cholesterol, systolic blood pressure (SBP), left ventricle (LV) mass, and cardiac remodeling. In the SCB group, BM, total cholesterol, and SBP increase were augmented in relation to the SC group. In the HF and HFB groups, these parameters were higher than in the SC and SCB groups. Cardiac hypertrophy was evidenced by augmented LV mass and wall thickness, and ANP protein expression in all groups in comparison to the SC group. Only the HFB group had a thicker LV wall than SCB and HF groups, and increased cardiomyocyte area when compared with SC and SCB groups. Concerning cardiac fibrosis, SCB, HF, and HFB groups presented higher interstitial collagen area, TGFβ, and α-SMA protein expression than the SC group. Perivascular collagen area was increased only in the HF and HFB groups than SC group. Higher IL-6, TNFα, and CD11c protein expression in all groups than the SC group evidenced inflammation. All groups had elevated CD36 and PPARα protein expression in relation to the SC group, but only HF and HFB groups promoted cardiac steatosis with increased perilipin 5 protein expression than the SC group. BPS exposure alone promoted cardiac remodeling with pathological concentric hypertrophy, fibrosis, and inflammation. Diet-induced remodeling is aggravated when associated with BPS, with marked hypertrophy, alongside fibrosis, inflammation, and lipid accumulation.
Collapse
Affiliation(s)
- Beatriz Alexandre-Santos
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Guilherme Dos Santos Reis
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Gabriela Rodrigues Medeiros
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Research Center on Nutrigenetics and Nutrigenomics, Faculty of Nutrition, Fluminense Federal University, Niteroi, RJ, Brazil
| | | | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology, Institute of Biomedical Science, Federal University of Rio de Janeiro, RJ, Brazil
| | | | - D'Angelo Carlo Magliano
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Experimental Endocrinology, Institute of Biomedical Science, Federal University of Rio de Janeiro, RJ, Brazil
| | - Eliete Dalla Corte Frantz
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
11
|
Ucheana IA, Omeka ME, Ezugwu AL, Agbasi JC, Egbueri JC, Abugu HO, Aralu CC. A targeted review on occurrence, remediation, and risk assessments of bisphenol A in Africa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1193. [PMID: 39532752 DOI: 10.1007/s10661-024-13337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Bisphenol A (BPA) is a vital raw material used to manufacture various household and commercial goods. However, BPA is a contaminant of emerging concern (CEC) and an endocrine-disrupting chemical (EDC) capable of migrating and bio-accumulating in environmental and biological compartments. At threshold levels, they become toxic causing adverse health and environmental issues. BPA's occurrence in food, food contact materials (FCMs), beverages, water, cosmetics, consumer goods, soil, sediments, and human/biological fluids across Africa was outlined. Unlike most reviews, it further collated data on BPA remediation techniques, including the human and ecological risk assessment studies conducted across Africa. A systematic scrutiny of the major indexing databases was employed extracting relevant data for this study. Results reveal that only 10 out of 54 countries have researched BPA in Africa. BPA levels in water were the most investigated, whereas levels in cosmetics and consumer goods were the least studied. Maximum BPA concentrations found in Africa were 3,590,000 ng/g (cosmetic and consumer goods), 154,820,000 ng/g (soils), 189 ng/mL (water), 1139 ng/g (food), and 208.55 ng/mL (biological fluids). The optimum percentage removal/degradation of BPA was within 70-100%. The potential health and ecological risk levels were assessed by comparing them with recommended limits and were found to fall within safe/low risks to unsafe/high risks. In conclusion, this study revealed that there is still little research on BPA in Africa. Levels detected in some matrices call for increased research, stricter health and environmental regulations, and surveillance.
Collapse
Affiliation(s)
- Ifeanyi Adolphus Ucheana
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Central Science Laboratory, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Michael Ekuru Omeka
- Department of Geology, University of Calabar, Etagbor, 540271, Cross River State, Nigeria
| | - Arinze Longinus Ezugwu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Johnson C Agbasi
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, 431124, Anambra State, Nigeria
| | - Johnbosco C Egbueri
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, 431124, Anambra State, Nigeria
| | - Hillary Onyeka Abugu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
| | - Chiedozie Chukwuemeka Aralu
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka, 420007, Anambra State, Nigeria
| |
Collapse
|
12
|
Zuo YB, Wen ZJ, Cheng MD, Jia DD, Zhang YF, Yang HY, Xu HM, Xin H, Zhang YF. The pro-atherogenic effects and the underlying mechanisms of chronic bisphenol S (BPS) exposure in apolipoprotein E-deficient mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117133. [PMID: 39342757 DOI: 10.1016/j.ecoenv.2024.117133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/23/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Atherosclerosis (AS) and its related cardiovascular diseases (CVDs) remain the most frequent cause of morbidity and mortality worldwide. Researches showed that bisphenol A (BPA) exposure might exacerbate AS progression. However, as an analogue of BPA, little is known about the cardiovascular toxicity of bisphenol S (BPS), especially whether BPS exposure has the pro-atherogenic effects in mammals is still unknown. Here, we firstly constructed an apolipoprotein E knockout (ApoE-/-) mouse model and cultured cells to investigate the risk of BPS on AS and explore the underlying mechanisms. Results showed that prolonged exposure to 50 μg/kg body weight (bw)/day BPS indeed aggravated AS lesions both in the en face aortas and aortic sinuses of ApoE-/- mice. Moreover, BPS were found to be implicated in the AS pathological process: 1) stimulates adhesion molecule expression to promote monocyte-endothelial cells (ECs) adhesion with 3.6 times more than the control group in vivo; 2) increases the distribution of vascular smooth muscle cells (VSMCs) with 9.3 times more than the control group in vivo, possibly through the migration of VSMCs; and 3) induces an inflammatory response by increasing the number of macrophages (MACs), with 3.7 times more than the control group in vivo, and the release of inflammatory mediators. Furthermore, we have identified eight significant AS-related genes induced by BPS, including angiopoietin-like protein 7 (Angptl17) and lipocalin-2 (Lcn2) in ECs; matrix metalloproteinase 9 (Mmp13), secreted phosphoprotein 1 (Spp1), and collagen type II alpha 1 (Col2a1) in VSMCs; and kininogen 1 (Kng1), integrin alpha X (Itgax), and MAC-expressed gene 1 (Mpeg1) in MACs. Overall, this study firstly found BPS exposure could exacerbate mammalian AS and might also provide a theoretical basis for elucidating BPS and its analogues induced AS and related CVDs.
Collapse
Affiliation(s)
- Ying-Bing Zuo
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China; Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao 266000, China
| | - Zeng-Jin Wen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Meng-Die Cheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China; Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao 266000, China
| | - Dong-Dong Jia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hong-Yu Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hai-Ming Xu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao 266000, China.
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| |
Collapse
|
13
|
Wei J, Liu R, Yang Z, Liu H, Wang Y, Zhang J, Sun M, Shen C, Liu J, Yu P, Tang NJ. Association of metals and bisphenols exposure with lipid profiles and dyslipidemia in Chinese adults: Independent, combined and interactive effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174315. [PMID: 38942316 DOI: 10.1016/j.scitotenv.2024.174315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Although studies have assessed the association of metals and bisphenols with lipid metabolism, the observed results have been controversial, and limited knowledge exists about the combined and interactive effects of metals and bisphenols exposure on lipid metabolism. METHODS Plasma metals and serum bisphenols concentrations were evaluated in 888 participants. Multiple linear regression and logistic regression models were conducted to assess individual associations of 18 metals and 3 bisphenols with 5 lipid profiles and dyslipidemia risk, respectively. The dose-response relationships of targeted contaminants with lipid profiles and dyslipidemia risk were captured by applying a restriction cubic spline (RCS) function. The bayesian kernel machine regression (BKMR) model was used to assess the overall effects of metals and bisphenols mixture on lipid profiles and dyslipidemia risk. The interactive effects of targeted contaminants on interested outcomes were explored by constructing an interaction model. RESULTS Single-contaminant analyses revealed that exposure to iron (Fe), nickel (Ni), copper (Cu), arsenic (As), selenium (Se), strontium (Sr), and tin (Sn) was associated with elevated lipid levels. Cobalt (Co) showed a negative association with high density lipoprotein cholesterol (HDL-C). Bisphenol A (BPA) and bisphenol AF (BPAF) were associated with decreased HDL-C levels, with nonlinear associations observed. Vanadium (V), lead (Pb), and silver (Ag) displayed U-shaped dose-response relationships with most lipid profiles. Multi-contaminant analyses indicated positive trends between contaminants mixture and total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (non-HDL-C). The interaction analyses showed that Se-Fe exhibited synergistic effects on LDL-C and non-HDL-C, and Se-Sn showed a synergistic effect on HDL-C. CONCLUSIONS Our study suggested that exposure to metals and bisphenols was associated with changes in lipid levels, and demonstrated their combined and interactive effects.
Collapse
Affiliation(s)
- Jiemin Wei
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Ruifang Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Ze Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Hongbo Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Yiqing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Jingyun Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Meiqing Sun
- Wuqing District Center for Disease Control and Prevention, Tianjin 301700, China
| | - Changkun Shen
- Wuqing District Center for Disease Control and Prevention, Tianjin 301700, China
| | - Jian Liu
- Wuqing District Center for Disease Control and Prevention, Tianjin 301700, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
14
|
Chen Y, Xu C, Huang Y, Liu Z, Zou J, Zhu H. The Adverse Impact of Bisphenol A Exposure on Optimal Cardiovascular Health as Measured by Life's Essential 8 in U.S. Adults: Evidence from NHANES 2005 to 2016. Nutrients 2024; 16:3253. [PMID: 39408220 PMCID: PMC11478777 DOI: 10.3390/nu16193253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Cardiovascular diseases are the primary cause of global morbidity and mortality, with cardiovascular health (CVH) remaining well below the ideal level and showing minimal improvement in the U.S. population over recent years. Bisphenol A (BPA), a pervasive environmental contaminant, has emerged as a potential contributor to adverse cardiovascular outcomes. This cross-sectional study delves into the impact of BPA exposure on achieving optimal CVH, as assessed by the Life's Essential 8 metric, among U.S. adults. Methods: Analyzing data from 6635 participants in the National Health and Nutrition Examination Survey (NHANES) collected between 2005 and 2016, BPA exposure was quantified through urinary BPA levels, while optimal CVH was defined using the American Heart Association's Life's Essential 8 criteria, scoring between 80 and 100. Multivariable logistic regression and propensity score matching were employed to evaluate the association between BPA exposure and CVH. Results: This study reveals that individuals in the highest tertile of urinary BPA levels were 27% less likely to attain optimal CVH compared with those in the lowest tertile (OR, 0.73; 95% CI: 0.59-0.92). This negative association persisted across diverse demographics, including age, sex, and race, mirrored in the link between urinary BPA levels and health factor scores. Conclusions: The findings underscore the potential benefits of reducing BPA exposure in enhancing the prevalence of optimal CVH and mitigating the burden of cardiovascular disease. Given the widespread use of BPA, ongoing monitoring of BPA's impact on CVH is essential. Further studies are necessary to elucidate the long-term and causative connections between BPA and CVH. These insights contribute to understanding the complex interplay between environmental factors and CVH outcomes, informing targeted interventions to mitigate cardiovascular disease risk within the population.
Collapse
Affiliation(s)
- Yemei Chen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, China; (Y.C.); (Z.L.); (J.Z.)
- Department of Clinical Nutrition, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China;
| | - Chao Xu
- Department of Clinical Nutrition, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43 Renmin Avenue, Haikou 570208, China;
| | - Ying Huang
- Department of Clinical Nutrition, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China;
| | - Zhaoyan Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, China; (Y.C.); (Z.L.); (J.Z.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiupeng Zou
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, China; (Y.C.); (Z.L.); (J.Z.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, China; (Y.C.); (Z.L.); (J.Z.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
15
|
Rubinstein J, Pinney SM, Xie C, Wang HS. Association of same-day urinary phenol levels and cardiac electrical alterations: analysis of the Fernald Community Cohort. Environ Health 2024; 23:76. [PMID: 39300535 PMCID: PMC11412060 DOI: 10.1186/s12940-024-01114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Exposure to phenols has been linked in animal models and human populations to cardiac function alterations and cardiovascular diseases, although their effects on cardiac electrical properties in humans remains to be established. This study aimed to identify changes in electrocardiographic (ECG) parameters associated with environmental phenol exposure in adults of a midwestern large cohort known as the Fernald Community Cohort (FCC). METHODS During the day of the first comprehensive medical examination, urine samples were obtained, and electrocardiograms were recorded. Cross-sectional linear regression analyses were performed. RESULTS Bisphenol A (BPA) and bisphenol F (BPF) were both associated with a longer PR interval, an indication of delayed atrial-to-ventricle conduction, in females (p < 0.05) but not males. BPA combined with BPF was associated with an increase QRS duration, an indication of delayed ventricular activation, in females (P < 0.05) but not males. Higher triclocarban (TCC) level was associated with longer QTc interval, an indication of delayed ventricular repolarization, in males (P < 0.01) but not females. Body mass index (BMI) was associated with a significant increase in PR and QTc intervals and ventricular rate in females and in ventricular rate in males. In females, the combined effect of being in the top tertile for both BPA urinary concentration and BMI was an estimate of a 10% increase in PR interval. No associations were found with the other phenols. CONCLUSION Higher exposure to some phenols was associated with alterations of cardiac electrical properties in a sex specific manner in the Fernald cohort. Our population-based findings correlate directly with clinically relevant parameters that are associated with known pathophysiologic cardiac conditions in humans.
Collapse
Affiliation(s)
- Jack Rubinstein
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Susan M Pinney
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Changchun Xie
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Hong-Sheng Wang
- Department of Pharmacology, Physiology and Neurobiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
16
|
He B, Xu HM, Li SW, Zhang YF, Tian JW. Emerging regulatory roles of noncoding RNAs induced by bisphenol a (BPA) and its alternatives in human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124447. [PMID: 38942269 DOI: 10.1016/j.envpol.2024.124447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Bisphenols (BPs), including BPA, BPF, BPS, and BPAF, are synthetic phenolic organic compounds and endocrine-disrupting chemicals. These organics have been broadly utilized to produce epoxy resins, polycarbonate plastics, and other products. Mounting evidence has shown that BPs, especially BPA, may enter into the human body and participate in the development of human diseases mediated by nuclear hormone receptors. Moreover, BPA may negatively affect human health at the epigenetic level through processes such as DNA methylation and histone acetylation. Recent studies have demonstrated that, as part of epigenetics, noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and small nucleolar RNAs (snoRNAs), have vital impacts on BP-related diseases, such as reproductive system diseases, nervous system diseases, digestive system diseases, endocrine system diseases, and other diseases. Moreover, based on the bioinformatic analysis, changes in ncRNAs may be relevant to normal activities and functions and BP-induced diseases. Thus, we conducted a meta-analysis to identify more promising ncRNAs as biomarkers and therapeutic targets for BP exposure and relevant human diseases. In this review, we summarize the regulatory functions of ncRNAs induced by BPs in human diseases and latent molecular mechanisms, as well as identify prospective biomarkers and therapeutic targets for BP exposure and upper diseases.
Collapse
Affiliation(s)
- Bo He
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shu-Wei Li
- Department of Neurology, Qingdao Huangdao District Central Hospital, Qingdao 266555, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Jia-Wei Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
17
|
Costa SA, Severo M, Lopes C, Torres D. Association between bisphenol A exposure and cardiometabolic outcomes: A longitudinal approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135000. [PMID: 38909471 DOI: 10.1016/j.jhazmat.2024.135000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Increased cardiometabolic risk is associated with abnormalities in blood biomarkers profile and adiposity measurements. Some substances found in the food matrix and the environment, called endocrine-disrupting chemicals, may impair cardiometabolic health in the early and later stages of life. Bisphenol A (BPA) is a food contaminant that migrates from food contact materials and may act as an endocrine disruptor, negatively affecting human health. The present work aims to longitudinally assess the association between BPA exposure and cardiometabolic outcomes, considering data from Portuguese population-based birth cohort Generation XXI. Blood insulin (0.06stdβ; 95 %CI:0.03,0.09) and insulin resistance (0.05stdβ; 95 %CI:0.02,0.08) presented a significant longitudinal association with BPA daily exposure after adjustment for important variables and energy. The same findings were observed for fat mass (0.03stdβ; 95 %CI 0.01,0.06) and waist circumference (0.06stdβ; 95 %CI:0.04,0.08). For z-BMI, a significant cross-sectional (0.03stdβ; 95 %CI:0.01,0.04) and longitudinal (0.02stdβ; 95 %CI:0.00,0.04) association was found. This was the first study assessing the association between BPA exposure and health outcomes from childhood to adolescence. We found an association between BPA exposure and increased blood insulin level, insulin resistance, fat mass percentage, waist circumference and z-BMI. Our results point to the need to reduce exposure to BPA in the early stages of life.
Collapse
Affiliation(s)
- Sofia Almeida Costa
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal.
| | - Milton Severo
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Carla Lopes
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Departamento de Ciências da Saúde Pública e Forenses, e Educação Médica, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro Porto, Porto 4200-319, Portugal
| | - Duarte Torres
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| |
Collapse
|
18
|
Hemavarshini S, Kalyaan VLV, Gopinath S, Kamaraj M, Aravind J, Pandiaraj S, Wong LS. Bacterial bioremediation as a sustainable strategy for the mitigation of Bisphenol-A. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:386. [PMID: 39167247 DOI: 10.1007/s10653-024-02154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
In the era dominated by plastic, the widespread use of plastic in our daily lives has led to a growing accumulation of its degraded byproducts, such as microplastics and plastic additives like Bisphenol A (BPA). BPA is recognized as one of the earliest man-made substances that exhibit endocrine-disrupting properties. It is frequently employed in the manufacturing of epoxy resins, polycarbonates, dental fillings, food storage containers, infant bottles, and water containers. BPA is linked to a range of health issues including obesity, diabetes, chronic respiratory illnesses, cardiovascular diseases, and reproductive abnormalities. This study examines the bacterial bioremediation of the BPA, which is found in many sources and is known for its hazardous effects on the environment. The metabolic pathways for the breakdown of BPA in important bacterial strains were hypothesized based on the observed altered intermediate metabolites during the degradation of BPA. This review discusses the enzymes and genes involved in the bacterial degradation of BPA. The utilization of naturally occurring microorganisms is the most efficient and cost-effective method due to their selectivity of strains, ensuring sustainability.
Collapse
Affiliation(s)
- S Hemavarshini
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Ramapuram, Chennai, Tamil Nadu, 600089, India
| | - V L Vibash Kalyaan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Ramapuram, Chennai, Tamil Nadu, 600089, India
| | - S Gopinath
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Ramapuram, Chennai, Tamil Nadu, 600089, India
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Ramapuram, Chennai, Tamil Nadu, 600089, India.
- Life Science Division, Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia.
| | - J Aravind
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
| | - Saravanan Pandiaraj
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ling Shing Wong
- Life Science Division, Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia
| |
Collapse
|
19
|
Liu ZH, Xia Y, Ai S, Wang HL. Health risks of Bisphenol-A exposure: From Wnt signaling perspective. ENVIRONMENTAL RESEARCH 2024; 251:118752. [PMID: 38513750 DOI: 10.1016/j.envres.2024.118752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Human beings are routinely exposed to chronic and low dose of Bisphenols (BPs) due to their widely pervasiveness in the environment. BPs hold similar chemical structures to 17β-estradiol (E2) and thyroid hormone, thus posing threats to human health by rendering the endocrine system dysfunctional. Among BPs, Bisphenol-A (BPA) is the best-known and extensively studied endocrine disrupting compound (EDC). BPA possesses multisystem toxicity, including reproductive toxicity, neurotoxicity, hepatoxicity and nephrotoxicity. Particularly, the central nervous system (CNS), especially the developing one, is vulnerable to BPA exposure. This review describes our current knowledge of BPA toxicity and the related molecular mechanisms, with an emphasis on the role of Wnt signaling in the related processes. We also discuss the role of oxidative stress, endocrine signaling and epigenetics in the regulation of Wnt signaling by BPA exposure. In summary, dysfunction of Wnt signaling plays a key role in BPA toxicity and thus can be a potential target to alleviate EDCs induced damage to organisms.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yanzhou Xia
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Shu Ai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
20
|
El-Degwi BAA, Awad MES, Laimon W, Askar SA, El-Morsi DAW, Ahmed DAM. The potential Association of Bisphenol A exposure and type 1 diabetes mellitus among Dakahlia Governorate's children sample, Egypt. Toxicol Res (Camb) 2024; 13:tfae093. [PMID: 38912005 PMCID: PMC11188686 DOI: 10.1093/toxres/tfae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/12/2024] [Indexed: 06/25/2024] Open
Abstract
Background Bisphenol A (BPA) is an endocrine disrupter affecting glucose homeostasis. Objectives This study aimed to investigate BPA's relationship with Type 1 Diabetes Mellitus (T1DM) in Dakahlia Governorate's children, in Egypt. Subjects materials and methods The study had two parts: clinical and experimental. Clinical Study was conducted on 200 children, equally divided into control and T1DM groups. They underwent: demographic data, height, weight, body mass index, glycosylated HbA1C, random blood glucose, and urinary BPA measurements. Experimental Study was conducted on 60 adult albino rats. Rats were randomly divided into three equal groups: control group: received 0.5 mL of pure olive oil, group 1: received 20 mg/kg/day BPA, and group 2: received 100 mg/kg/day BPA orally for 6 weeks. Fasting and two hours postprandial glucose levels were measured at the beginning and end of the study. Histopathological examination and imaging study of the pancreas were done. Results In clinical study: HbA1C and random blood glucose levels in diabetic children showed a significant increase compared to control. Children in control group showed controlled HbA1C, while the T1DM group showed 86% with poor diabetic control. There was a significant increase in BPA level in the T1DM group compared to the control. Rats that received BPA showed a marked increase in fasting and two hours postprandial glucose levels, histopathological changes in the pancreas with more changes determined in the high dose group, and a significant decrease in the islets of Langerhans diameters with group 2 more affected. Conclusion So, BPA exposure could be considered a risk factor for T1DM in children.
Collapse
Affiliation(s)
- Basma Ahmed Ali El-Degwi
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University El Gomhouria Street, Mansoura 35516, Egypt
| | - Mahmoud El-Sayed Awad
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University El Gomhouria Street, Mansoura 35516, Egypt
| | - Wafaa Laimon
- Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics, Mansoura Faculty of Medicine, Mansoura University, Mansoura University Children's Hospital, El Gomhouria Sreet, Mansoura 35516, Egypt
| | - Samar A Askar
- Histology Department, Faculty of Medicine, Mansoura University, El Gomhouria Street, Mansoura, Egypt
| | - Doaa Abdel Wahab El-Morsi
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University El Gomhouria Street, Mansoura 35516, Egypt
- Medical Education Department, Faculty of Medicine, Delta University for Science and Technology, International Coastal Rd, Al Hafir WA Al Amal, Al Satamoni, Dakahlia Governorate, 7730103, Egypt
| | - Dalia Alsaied Moustafa Ahmed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University El Gomhouria Street, Mansoura 35516, Egypt
| |
Collapse
|
21
|
Rubinstein J, Pinney SM, Xie C, Wang HS. Association of same-day urinary phenol levels and cardiac electrical alterations: analysis of the Fernald Community Cohort. RESEARCH SQUARE 2024:rs.3.rs-4445657. [PMID: 38853936 PMCID: PMC11160919 DOI: 10.21203/rs.3.rs-4445657/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Exposure to phenols has been linked in animal models and human populations to cardiac function alterations and cardiovascular diseases, although their effects on cardiac electrical properties in humans remains to be established. This study aimed to identify changes in electrocardiographic (ECG) parameters associated with environmental phenol exposure in adults of a midwestern large cohort known as the Fernald Community Cohort (FCC). Methods During the day of the first comprehensive medical examination, urine samples were obtained, and electrocardiograms were recorded. Cross-sectional linear regression analyses were performed. Results Bisphenol A (BPA) and bisphenol F (BPF) were both associated with a longer PR interval, an indication of delayed atrial-to-ventricle conduction, in females (p < 0.05) but not males. BPA combined with BPF was associated with an increase QRS duration, an indication of delayed ventricular activation, in females (P < 0.05) but not males. Higher triclocarban (TCC) level was associated with longer QTc interval, an indication of delayed ventricular repolarization, in males (P < 0.01) but not females. Body mass index (BMI) was associated with a significant increase in PR and QTc intervals and ventricular rate in females and in ventricular rate in males. In females, the combined effect of being in the top tertile for both BPA urinary concentration and BMI was an estimate of a 10% increase in PR interval. No associations were found with the other phenols. Conclusion Higher exposure to some phenols was associated with alterations of cardiac electrical properties in a sex specific manner in the Fernald cohort. Our population-based findings correlate directly with clinically relevant parameters that are associated with known pathophysiologic cardiac conditions in humans.
Collapse
|
22
|
Chen J, Yang X, Li W, Lin Y, Lin R, Cai X, Yan B, Xie B, Li J. Endoplasmic reticulum stress-related gene expression causes the progression of dilated cardiomyopathy by inducing apoptosis. Front Genet 2024; 15:1366087. [PMID: 38699233 PMCID: PMC11063246 DOI: 10.3389/fgene.2024.1366087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Background: Previous studies have shown that endoplasmic reticulum stress (ERS) -induced apoptosis is involved in the pathogenesis of dilated cardiomyopathy (DCM). However, the molecular mechanism involved has not been fully characterized. Results: In total, eight genes were obtained at the intersection of 1,068 differentially expressed genes (DEGs) from differential expression analysis between DCM and healthy control (HC) samples, 320 module genes from weighted gene co-expression network analysis (WGCNA), and 2,009 endoplasmic reticulum stress (ERGs). These eight genes were found to be associated with immunity and angiogenesis. Four of these genes were related to apoptosis. The upregulation of MX1 may represent an autocompensatory response to DCM caused by a virus that inhibits viral RNA and DNA synthesis, while acting as an autoimmune antigen and inducing apoptosis. The upregulation of TESPA1 would lead to the dysfunction of calcium release from the endoplasmic reticulum. The upregulation of THBS4 would affect macrophage differentiation and apoptosis, consistent with inflammation and fibrosis of cardiomyocytes in DCM. The downregulation of MYH6 would lead to dysfunction of the sarcomere, further explaining cardiac remodeling in DCM. Moreover, the expression of genes affecting the immune micro-environment was significantly altered, including TGF-β family member. Analysis of the co-expression and competitive endogenous RNA (ceRNA) network identified XIST, which competitively binds seven target microRNAs (miRNAs) and regulates MX1 and THBS4 expression. Finally, bisphenol A and valproic acid were found to target MX1, MYH6, and THBS4. Conclusion: We have identified four ERS-related genes (MX1, MYH6, TESPA1, and THBS4) that are dysregulated in DCM and related to apoptosis. This finding should help deepen understanding of the role of endoplasmic reticulum stress-induced apoptosis in the development of DCM.
Collapse
Affiliation(s)
- Jinhao Chen
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Xu Yang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Weiwen Li
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Ying Lin
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Run Lin
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Xianzhen Cai
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Baoxin Yan
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Bin Xie
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jilin Li
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
23
|
Ma J, Ross L, Grube C, Wang HS. Toxicity of low dose bisphenols in human iPSC-derived cardiomyocytes and human cardiac organoids - Impact on contractile function and hypertrophy. CHEMOSPHERE 2024; 353:141567. [PMID: 38417488 DOI: 10.1016/j.chemosphere.2024.141567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Bisphenol A (BPA) and its analogs are common environmental chemicals with various adverse health impacts, including cardiac toxicity. In this study, we examined the long term effect of low dose BPA and three common BPA analogs, bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF), in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) based models. HiPSC-CMs and human cardiac organoids were exposed to these chemicals for 4-5 or 20 days. 1 nM BPA, BPS, and BPAF, but not BPF, resulted in suppressed myocyte contractility, retarded contraction kinetics, and aberrant Ca2+ transients in hiPSC-CMs. In cardiac organoids, BPAF and BPA, but not the other bisphenols, resulted in suppressed contraction and Ca2+ transients, and aberrant contraction kinetics. The order of toxicities was BPAF > BPA>∼BPS > BPF and the toxicities of BPAF and BPA were more pronounced under longer exposure. The impact of BPAF on myocyte contraction and Ca2+ handling was mediated by reduction of sarcoplasmic reticulum Ca2+ load and inhibition of L-type Ca2+ channel involving alternation of Ca2+ handling proteins. Impaired myocyte Ca2+ handling plays a key role in cardiac pathophysiology and is a characteristic of cardiac hypertrophy; therefore we examined the potential pro-hypertrophic cardiotoxicity of these bisphenols. Four to five day exposure to BPAF did not cause hypertrophy in normal hiPSC-CMs, but significantly exacerbated the hypertrophic phenotype in myocytes with existing hypertrophy induced by endothelin-1, characterized by increased cell size and elevated expression of the hypertrophic marker proBNP. This pro-hypertrophic cardiotoxicity was also occurred in cardiac organoids, with BPAF having the strongest toxicity, followed by BPA. Our findings demonstrate that long term exposures to BPA and some of its analogs cause contractile dysfunction and abnormal Ca2+ handling, and have potential pro-hypertrophic cardiotoxicity in human heart cells/tissues, and suggest that some bisphenol chemicals may be a risk factor for cardiac hypertrophy in human hearts.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA.
| | - Leah Ross
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA
| | - Christian Grube
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA
| |
Collapse
|
24
|
Hu C, Lu L, Guo C, Zhan T, Zhang X, Zhang H. Bisphenols and brominated bisphenols induced endothelial dysfunction via its disruption of endothelial nitric oxide synthase. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123600. [PMID: 38369087 DOI: 10.1016/j.envpol.2024.123600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Emerging literatures have concentrated on the association between cardiovascular diseases risk of typical endocrine disruptor bisphenols, which also put forward the further studies need respect to the potential mechanism. Herein, we investigated the endothelial dysfunction effects of bisphenols and brominated bisphenols involved in aortic pathological structure, endothelial nitric oxide synthase (eNOS) protein phosphorylation, synthase activity and nitric oxide (NO) production in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mice. Bisphenol A (BPA) and bisphenol S (BPS) increased NO production by 85.7% and 68.8% at 10-6 M level in vitro and 74.3%, 41.5% in vivo, respectively, while tetrabromobisphenol S (TBBPS) significantly inhibited NO by 55.7% at 10-6 M in vitro and 28.9% in vivo at dose of 20 mg/kg BW/d. Aortic transcriptome profiling revealed that the process of 'regulation of NO mediated signal transduction' was commonly induced. The mRNA and protein expression of phosphorylated eNOS at Ser1177 were promoted by BPA and BPS but decreased by TBBPA and TBBPS in HUVECs. Phosphorylation and enzymatic activity of eNOS were significantly increased by 43.4% and 13.8% with the treatment of BPA and BPS at 10-7 M, but decreased by 16.9% after exposure to TBBPS at 10-6 M in vitro. Moreover, only TBBPS was observed to increase aorta thickness significantly in mice and induce endothelial dysfunction. Our work suggests that bisphenols and brominated bisphenols may exert adverse outcome on vascular health differently in vitro and in vivo, and emphasizes areas of public health concern similar endocrine disruptors vulnerable on the vascular endothelial function.
Collapse
Affiliation(s)
- Chao Hu
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Liping Lu
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Hangzhou International Urbanology Research Center and Center for Zhejiang Urban Governance Studies, Hangzhou, 311121, China.
| | - Chunyan Guo
- Radiation Monitoring Technical Center, State Environmental Protection Key Laboratory of Radiation Environmental Monitoring, Ministry of Ecology and Environment, Hangzhou, 310012, China
| | - Tingjie Zhan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, 08854, United States
| | - Xiaofang Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Hangzhou International Urbanology Research Center and Center for Zhejiang Urban Governance Studies, Hangzhou, 311121, China
| |
Collapse
|
25
|
Qi T, Jing D, Zhang K, Shi J, Qiu H, Kan C, Han F, Wu C, Sun X. Environmental toxicology of bisphenol A: Mechanistic insights and clinical implications on the neuroendocrine system. Behav Brain Res 2024; 460:114840. [PMID: 38157990 DOI: 10.1016/j.bbr.2023.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol A (BPA) is a widely used environmental estrogen found in a variety of products, including food packaging, canned goods, baby bottle soothers, reusable cups, medical devices, tableware, dental sealants, and other consumer goods. This substance has been found to have detrimental effects on both the environment and human health, particularly on the reproductive, immune, embryonic development, nervous, endocrine, and respiratory systems. This paper aims to provide a comprehensive review of the effects of BPA on the neuroendocrine system, with a primary focus on its impact on the brain, neurons, oligodendrocytes, neural stem cell proliferation, DNA damage, and behavioral development. Additionally, the review explores the clinical implications of BPA, specifically examining its role in the onset and progression of various diseases associated with the neuroendocrine metabolic system. By delving into the mechanistic analysis and clinical implications, this review aims to serve as a valuable resource for studying the impacts of BPA exposure on organisms.
Collapse
Affiliation(s)
- Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Dongqing Jing
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Neurology 1, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chunyan Wu
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
26
|
Zhu M, Zeng R, Wu D, Li Y, Chen T, Wang A. Research progress of the effects of bisphenol analogues on the intestine and its underlying mechanisms: A review. ENVIRONMENTAL RESEARCH 2024; 243:117891. [PMID: 38072107 DOI: 10.1016/j.envres.2023.117891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Bisphenol A (BPA) and its analogues have prompted rising concerns, especially in terms of human safety, due to its broad use and ubiquity throughout the ecosystem. Numerous studies reported various adverse effects of bisphenols, including developmental disorders, reproductive toxicity, cardiovascular toxicity, and so on. There is increasing evidence that bisphenols can enter the gastrointestinal tract. Consequently, it is important to investigate their effects on the intestine. Several in vivo and in vitro studies have examined the impacts of bisphenols on the intestine. Here, we summarized the literature concerning intestinal toxicity of bisphenols over the past decade and presented compelling evidence of the link between bisphenol exposure and intestinal disorders. Experiment studies revealed that even at low levels, bisphenols could promote intestinal barrier dysregulation, disrupt the composition and diversity of intestinal microbiota as well as induce an immunological response. Moreover, possible underlying mechanisms of these effects were discussed. Because of a lack of empirical data, the potential risk of bisphenol exposure in humans is still unidentified, particularly regarding intestinal disorders. Thus, we propose to conduct additional epidemiological investigations and animal experiments to elucidate the associations between bisphenol exposure and human intestinal health and reveal underlying mechanisms to develop preventative and therapeutic techniques.
Collapse
Affiliation(s)
- Min Zhu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, 210036, Nanjing, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Ran Zeng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; School of Civil and Environmental Engineering, Harbin Institute of Technology, 518055, Shenzhen, China
| | - Dan Wu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, 210036, Nanjing, China
| | - Yuanyuan Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Ting Chen
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, 210036, Nanjing, China.
| | - Aijie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, 518055, Shenzhen, China.
| |
Collapse
|
27
|
Zhang X, Zhang X, Shi Y, Zhang Z, Wang J, Ru S, Tian H. Interacting with luteinizing hormone receptor provides a new elucidation of the mechanism of anti-androgenicity of bisphenol S. CHEMOSPHERE 2024; 350:141056. [PMID: 38158086 DOI: 10.1016/j.chemosphere.2023.141056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol S (BPS) exhibited inhibitory effects on androgen synthesis, but its target of action remains unclear. We investigated the effects of BPS exposure at environmentally relevant concentrations (1 μg/L, 10 μg/L and 100 μg/L) for 48 h on androgen synthesis in rat ovarian theca cells and explored the underlying mechanisms, target site and target molecule. The results showed that BPS exposure inhibited the transcript levels of steroidogenic genes and reduced the contents of androgen precursors, testosterone and dihydrotestosterone. BPS exposure decreased the phosphorylation levels of extracellular signal-related kinase 1/2 (ERK1/2), and the inhibitory effects of BPS on testosterone content and steroidogenic gene expression were blocked by ERK1/2 agonist LY2828360, suggesting that ERK1/2 signaling pathway mediates the inhibitory effects of BPS on androgen synthesis. BPS mainly accumulated on the cell membrane, impermeable BPS-bovine serum albumin exposure still inhibited androgen synthesis, BPS interacted with rat luteinizing hormone receptor (LHR) via formation of hydrogen bonds in the transmembrane region, and the inhibitory effects of BPS on ERK1/2 phosphorylation were blocked by luteinizing hormone (the natural agonist of LHR), indicating that LHR located on the cell membrane is the target of action of BPS. This paper provides a new elucidation of the mechanism of anti-androgenicity of BPS, especially for the non-genomic pathways.
Collapse
Affiliation(s)
- Xinda Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaorong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yijiao Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
28
|
Zhang W, Li Y, Wang T, Zhang X, Zhang J, Ji X, Lu L. Distribution and potential risk factors of bisphenol a in serum and urine among Chinese from 2004 to 2019. Front Public Health 2024; 12:1196248. [PMID: 38379678 PMCID: PMC10878132 DOI: 10.3389/fpubh.2024.1196248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/05/2024] [Indexed: 02/22/2024] Open
Abstract
Background Bisphenol A (BPA) is an oil-derived, large-market volume chemical with endocrine disrupting properties and reproductive toxicity. Moreover, BPA is frequently used in food contact materials, has been extensively researched recently, and widespread exposure in the general population has been reported worldwide. However, national information on BPA levels in general Chinese people is lacking. Methods This study collected and analyzed 145 (104 in urine and 41 in serum) research articles published between 2004 and 2021 to reflect the BPA internal exposure levels in Chinese populations. The Monte Carlo simulation method is employed to analyze and estimate the data in order to rectify the deviation caused by a skewed distribution. Results Data on BPA concentrations in urine and serum were collected from 2006 to 2019 and 2004 to 2019, respectively. Urinary BPA concentrations did not vary significantly until 2017, with the highest concentration occurring from 2018 to 2019 (2.90 ng/mL). The serum BPA concentration decreased to the nadir of 1.07 ng/mL in 2011 and gradually increased to 2.54 ng/mL. Nationally, 18 provinces were studied, with Guangdong (3.50 ng/mL), Zhejiang (2.57 ng/mL), and Fujian (2.15 ng/mL) having the highest urine BPA levels. Serum BPA was investigated in 15 provinces; Jiangsu (9.14 ng/mL) and Shandong (5.80 ng/mL) were relatively high. The results also indicated that males' urine and serum BPA levels were higher than females, while the BPA levels in children were also higher than in adults (p < 0.001). Furthermore, the volume of garbage disposal (r = 0.39, p < 0.05), household sewage (r = 0.34, p < 0.05), and waste incineration content (r = 0.35, p < 0.05) exhibited a strong positive connection with urine BPA levels in Chinese individuals. Conclusion Despite using a data consolidation approach, our study found that the Chinese population was exposed to significant amounts of BPA, and males having a higher level than females. Besides, the levels of BPA exposure are influenced by the volume of garbage disposal, household sewage, and waste incineration content.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoya Ji
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Lin Lu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
29
|
Duan S, Wu Y, Zhu J, Wang X, Zhang Y, Gu C, Fang Y. Development of interpretable machine learning models associated with environmental chemicals to predict all-cause and specific-cause mortality:A longitudinal study based on NHANES. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115864. [PMID: 38142591 DOI: 10.1016/j.ecoenv.2023.115864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Limited information is available on potential predictive value of environmental chemicals for mortality. Our study aimed to investigate the associations between 43 of 8 classes representative environmental chemicals in serum/urine and mortality, and further develop the interpretable machine learning models associated with environmental chemicals to predict mortality. A total of 1602 participants were included from the National Health and Nutrition Examination Survey (NHANES). During 154,646 person-months of follow-up, 127 deaths occurred. We found that machine learning showed promise in predicting mortality. CoxPH was selected as the optimal model for predicting all-cause mortality with time-dependent AUROC of 0.953 (95%CI: 0.951-0.955). Coxnet was the best model for predicting cardiovascular disease (CVD) and cancer mortality with time-dependent AUROCs of 0.935 (95%CI: 0.933-0.936) and 0.850 (95%CI: 0.844-0.857). Based on clinical variables, adding environmental chemicals could enhance the predictive ability of cancer mortality (P < 0.05). Some environmental chemicals contributed more to the models than traditional clinical variables. Combined the results of association and prediction models by interpretable machine learning analyses, we found urinary methyl paraben (MP) and urinary 2-napthol (2-NAP) were negatively associated with all-cause mortality, while serum cadmium (Cd) was positively associated with all-cause mortality. Urinary bisphenol A (BPA) was positively associated with CVD mortality.
Collapse
Affiliation(s)
- Siyu Duan
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Yafei Wu
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Junmin Zhu
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Xing Wang
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Yaheng Zhang
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Chenming Gu
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Ya Fang
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
30
|
Cambien G, Dupuis A, Belmouaz M, Bauwens M, Bacle A, Ragot S, Migeot V, Albouy M, Ayraud-Thevenot S. Bisphenol A and chlorinated derivatives of bisphenol A assessment in end stage renal disease patients: Impact of dialysis therapy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115880. [PMID: 38159342 DOI: 10.1016/j.ecoenv.2023.115880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/25/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Patients with end stage kidney disease treated by dialysis (ESKDD) process dialysis sessions to remove molecules usually excreted by kidneys. However, dialysis therapy could also contribute to endocrine disruptors (ED) burden. Indeed, materials like dialyzer filters, ultrapure dialysate and replacement fluid could exposed ESKDD patients to Bisphenol A (BPA) and chlorinated derivatives of BPA (ClxBPAs). Thus, our aim was to compare BPA and ClxBPAs exposure between ESKDD patients, patients with stage 5 chronic kidney disease (CKD5) not dialyzed and healthy volunteers. Then we describe the impact of a single dialysis session, according to dialysis modalities (hemodialysis therapy (HD) versus online hemodiafiltration therapy (HDF)) and materials used with pre-post BPA and ClxBPAs concentrations. The plasma levels of BPA and four ClxBPAs, were assessed for 64 ESKDD patients in pre and post dialysis samples (32 treated by HD and 32 treated by HDF) in 36 CKD5 patients and in 24 healthy volunteers. BPA plasma concentrations were 22.5 times higher for ESKDD patients in pre-dialysis samples versus healthy volunteers (2.208 ± 5.525 ng/mL versus 0.098 ± 0.169 ng/mL) (p < 0.001). BPA plasma concentrations were 16 times higher for CKD5 patients versus healthy volunteers, but it was not significant (1.606 ± 3.230 ng/mL versus 0.098 ± 0.169 ng/mL) (p > 0.05). BPA plasma concentrations for ESKDD patients in pre-dialysis samples were 1.4 times higher versus CKD5 patients (2.208 ± 5.525 ng/mL versus 1.606 ± 3.230 ng/mL) (p < 0.001). For healthy volunteers, ClxBPAs were never detected, or quantified while for CKD5 and ESKDD patients one ClxBPAs at least has been detected or quantified in 14 patients (38.8%) and 24 patients (37.5%), respectively. Dialysis therapy was inefficient to remove BPA either for HD (1.983 ± 6.042 ng/mL in pre-dialysis versus 3.675 ± 8.445 ng/mL in post-dialysis) or HDF (2.434 ± 5.042 ng/mL in pre-dialysis versus 7.462 ± 15.960 ng/mL in post dialysis) regarding pre-post BPA concentrations (p > 0.05). The same result was observed regarding ClxBPA analysis. Presence of polysulfone in dialyzer fibers overexposed ESKDD patients to BPA in pre-dialysis samples with 3.054 ± 6.770 for ESKDD patients treated with a polysulfone dialyzer versus 0.708 ± 0.638 (p = 0.040) for ESKDD patients treated without a polysulfone dialyzer and to BPA in post-dialysis samples with 6.629 ± 13.932 for ESKDD patients treated with a polysulfone dialyzer versus 3.982 ± 11.004 (p = 0.018) for ESKDD patients treated without a polysulfone dialyzer. This work is to our knowledge the first to investigate, the impact of a dialysis session and materials used on BPA and ClxBPAs plasma concentrations and to compare these concentrations to those found in CKD5 patients and in healthy volunteers.
Collapse
Affiliation(s)
- Guillaume Cambien
- Université de Poitiers, CNRS, EBI, F-86000 Poitiers, France; Université de Poitiers, CHU de Poitiers, INSERM, Centre d'investigation Clinique CIC1402, Axe santé Environnementale, Poitiers, France; CHU de Poitiers, Biology-Pharmacy-Public Health Department, F-86000 Poitiers, France.
| | - Antoine Dupuis
- Université de Poitiers, CNRS, EBI, F-86000 Poitiers, France; Université de Poitiers, CHU de Poitiers, INSERM, Centre d'investigation Clinique CIC1402, Axe santé Environnementale, Poitiers, France; CHU de Poitiers, Biology-Pharmacy-Public Health Department, F-86000 Poitiers, France.
| | - Mohamed Belmouaz
- CHU de Poitiers, Digestiv, Urology, Nephrology, Endocrinology Department, F-86000 Poitiers, France.
| | - Marc Bauwens
- CHU de Poitiers, Digestiv, Urology, Nephrology, Endocrinology Department, F-86000 Poitiers, France.
| | - Astrid Bacle
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France; Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, 35000, Rennes, France.
| | - Stéphanie Ragot
- Université de Poitiers, CHU de Poitiers, INSERM, Centre d'investigation Clinique CIC1402, Axe SCALE-EPI, Poitiers, France.
| | - Virginie Migeot
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France; CHU Rennes, Epidemiology and Public Health Department, F-35000 Rennes, France.
| | - Marion Albouy
- Université de Poitiers, CNRS, EBI, F-86000 Poitiers, France; Université de Poitiers, CHU de Poitiers, INSERM, Centre d'investigation Clinique CIC1402, Axe santé Environnementale, Poitiers, France; CHU de Poitiers, Biology-Pharmacy-Public Health Department, F-86000 Poitiers, France.
| | - Sarah Ayraud-Thevenot
- Université de Poitiers, CNRS, EBI, F-86000 Poitiers, France; Université de Poitiers, CHU de Poitiers, INSERM, Centre d'investigation Clinique CIC1402, Axe santé Environnementale, Poitiers, France; CHU de Poitiers, Biology-Pharmacy-Public Health Department, F-86000 Poitiers, France.
| |
Collapse
|
31
|
Shrivastav A, Swetanshu, Singh P. The Impact of Environmental Toxins on Cardiovascular Diseases. Curr Probl Cardiol 2024; 49:102120. [PMID: 37805022 DOI: 10.1016/j.cpcardiol.2023.102120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
Environmental toxins pose significant risks to human health and are considered major contributors to chronic diseases, particularly cardiovascular diseases (CVDs). Numerous studies have highlighted the detrimental impact of environmental toxicity on cardiovascular health. The primary sources of environmental toxins include pollutants containing particulate matter and organic substances, such as sulfate, nitrates, ammonium, elemental carbon, crystal elements, arsenic (As), mercury (Hg), cadmium (Cd), and Bisphenol A (BPA). Epidemiological research has closely monitored the link between environmental toxins and CVDs. Notably, aerosols and particulate matter, including PM10 and PM2.5, prevalent in ambient air pollution, have been implicated in various CVDs like ischemic heart disease, myocardial infarction, and dysrhythmia. Additionally, heavy metals such as lead and pesticides from environmental toxins are known to contribute to CVDs, even at low levels of exposure over extended periods. Mercury exposure, even at low concentrations, can adversely affect multiple organs, including the heart, kidneys, nervous system, and immune system. With Pb2+ ions exhibiting Ca2+-like properties, lead disrupts various pathways and can lead to cardiac and vascular lesions and functional impairments when blood lead concentrations exceed 100 µg% in adults and 60 µg% in children. Furthermore, cadmium exposure is higher in smokers, primarily due to tobacco use, and is associated with peripheral artery disease. Arsenic toxicity is well-documented, particularly its cardiotoxic effects, which can result in fatal and irreversible myocardial damage. Bisphenol A (BPA) has also been found in urine samples, underscoring its presence as an environmental toxin impacting human health.
Collapse
Affiliation(s)
- Abhishek Shrivastav
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, India
| | - Swetanshu
- School of Biological and Life Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India; Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Pratichi Singh
- School of Biological and Life Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
32
|
Shaemi F, Nejati M, Sarrafnia H, Mahabady MK, Tamtaji Z, Taheri AT, Hamblin MR, Zolfaghari MR, Heydari A, Mirzaei H. Expression of selected long non-coding RNAs in gastric cancer cells treated with coumarin: Possible mechanisms for anti-cancer activity. Pathol Res Pract 2023; 252:154914. [PMID: 37992506 DOI: 10.1016/j.prp.2023.154914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Long non-coding RNAs (lncRNAs) can be utilized as prognostic indicators of gastric cancer since they can affect several cancer-related processes. Coumarin is a natural product with some useful anti-cancer properties. Here, we measured the expression of selected lncRNAs (RuPAR, SNHG6, CASC11, and their targets, miR-340-5p, p21, E-cadherin, and CDK1) in AGS gastric cancer cells treated with coumarin. MTT test has been utilized for assessing the AGS cells' cell viability after exposure to coumarin. The expression of the lncRNAs (RuPAR, SNHG6, and CASC11) and miR-340-5p was evaluated via qRT-PCR. Western blot analysis has been utilized to determine changes in p21, E-cadherin, and CDK1 expression. Coumarin decreased AGS viability in a dose-dependent manner. The coumarin treated cells had lower levels of the mRNAs known to be targets of lncRNAs SNHG6 and CASC11 compared to control. Additionally, the coumarin group had increased levels of lncRNA RuPAR expression when compared with the control group. Some lncRNA targets, including p21, E-cadherin, and CDK1, showed lower expression in the coumarin group compared to the control by Western blotting. Coumarin could be a promising pharmacological candidate to be included in gastric cancer treatment regimens because it modulates lncRNAs and their targets.
Collapse
Affiliation(s)
- Fatemeh Shaemi
- Department of Genetics, Faculty of Basic Science, Qom Branch, Islamic Azad University, Qom, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Haleh Sarrafnia
- Faculty of Biological Sciences, Islamic Azad University, Tehran-North Branch, Tehran, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolkarim Talebi Taheri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mohammad Reza Zolfaghari
- Department of Microbiology, Faculty of Basic Science, Qom Branch, Islamic Azad University, Qom, Iran.
| | - Azhdar Heydari
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
33
|
Chen YM, Liu ZY, Chen S, Lu XT, Huang ZH, Wusiman M, Huang BX, Lan QY, Wu T, Huang RZ, Huang SY, Lv LL, Jian YY, Zhu HL. Mitigating the impact of bisphenol A exposure on mortality: Is diet the key? A cohort study based on NHANES. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115629. [PMID: 37890258 DOI: 10.1016/j.ecoenv.2023.115629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
Bisphenol A (BPA) is a widespread environmental pollutant linked to detrimental effects on human health and reduced life expectancy following chronic exposure. This prospective cohort study aimed to examine the association between BPA exposure and mortality in American adults and to explore the potential mitigating effects of dietary quality on BPA-related mortality. This study utilized data from 8761 American adults in the 2003-2016 National Health and Nutrition Examination Survey (NHANES). Urinary BPA levels were employed to assess BPA exposure, and dietary quality was evaluated using the Healthy Eating Index-2015 (HEI-2015). All-cause, cardiovascular disease (CVD), and cancer mortality statuses were determined until December 31, 2019, resulting in a cumulative follow-up of 80,564 person-years. The results showed that the highest tertile of urinary BPA levels corresponded to a 36% increase in all-cause mortality and a 62% increase in CVD mortality compared to the lowest tertile. In contrast, the highest tertile of HEI-2015 scores was associated with a 29% reduction in all-cause mortality relative to the lowest tertile. Although no significant interaction was found between HEI-2015 scores and urinary BPA levels concerning mortality, the association between HEI-2015 scores and both all-cause and CVD mortality was statistically significant at low urinary BPA levels. Continuous monitoring of BPA exposure is crucial for evaluating its long-term adverse health effects. Improving dietary quality can lower all-cause mortality and decrease the risk of all-cause and CVD mortality at low BPA exposure levels. However, due to the limited protective effect of dietary quality against BPA exposure, minimizing BPA exposure remains a vital goal.
Collapse
Affiliation(s)
- Ye-Mei Chen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China; Department of Clinical Nutrition, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhao-Yan Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Si Chen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Ting Lu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zi-Hui Huang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China
| | - Maierhaba Wusiman
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China
| | - Bi-Xia Huang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qiu-Ye Lan
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tong Wu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China
| | - Rong-Zhu Huang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China
| | - Si-Yu Huang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China
| | - Lu-Lu Lv
- Yibicom Health Management Center, CVTE, Guangzhou, China
| | - Yue-Yong Jian
- Yibicom Health Management Center, CVTE, Guangzhou, China
| | - Hui-Lian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
34
|
Yu Y, Tong D, Yu Y, Tian D, Zhou W, Zhang X, Shi W, Liu G. Toxic effects of four emerging pollutants on cardiac performance and associated physiological parameters of the thick-shell mussel (Mytilus coruscus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122244. [PMID: 37482340 DOI: 10.1016/j.envpol.2023.122244] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/01/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Robust cardiac performance is critical for the health and even survival of an animal; however, it is sensitive to environmental stressors. At present, little is known about the cardiotoxicity of emerging pollutants to bivalve mollusks. Thus, in this study, the cardiotoxic effects of four emergent pollutants, carbamazepine (CBZ), bisphenol A (BPA), tetrabromobisphenol A (TBBPA), and tris(2-chloroethyl) phosphate (TCEP), on the thick-shell mussel, Mytilus coruscus, were evaluated by heartbeat monitoring and histological examinations. In addition, the impacts of these pollutants on parameters that closely related to cardiac function including neurotransmitters, calcium homeostasis, energy supply, and oxidative status were assessed. Our results demonstrated that 28-day exposure of the thick-shell mussel to these pollutants resulted in evident heart tissue lesions (indicated by hemocyte infiltration and myocardial fibrosis) and disruptions of cardiac performance (characterized by bradyrhythmia and arrhythmia). In addition to obstructing neurotransmitters and calcium homeostasis, exposure to pollutants also led to constrained energy supply and induced oxidative stress in mussel hearts. These findings indicate that although do differ somehow in their effects, these four pollutants may exert cardiotoxic impacts on mussels, which could pose severe threats to this important species and therefore deserves more attention.
Collapse
Affiliation(s)
- Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
35
|
Muncke J, Andersson AM, Backhaus T, Belcher SM, Boucher JM, Carney Almroth B, Collins TJ, Geueke B, Groh KJ, Heindel JJ, von Hippel FA, Legler J, Maffini MV, Martin OV, Peterson Myers J, Nadal A, Nerin C, Soto AM, Trasande L, Vandenberg LN, Wagner M, Zimmermann L, Thomas Zoeller R, Scheringer M. A vision for safer food contact materials: Public health concerns as drivers for improved testing. ENVIRONMENT INTERNATIONAL 2023; 180:108161. [PMID: 37758599 DOI: 10.1016/j.envint.2023.108161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023]
Abstract
Food contact materials (FCMs) and food contact articles are ubiquitous in today's globalized food system. Chemicals migrate from FCMs into foodstuffs, so called food contact chemicals (FCCs), but current regulatory requirements do not sufficiently protect public health from hazardous FCCs because only individual substances used to make FCMs are tested and mostly only for genotoxicity while endocrine disruption and other hazard properties are disregarded. Indeed, FCMs are a known source of a wide range of hazardous chemicals, and they likely contribute to highly prevalent non-communicable diseases. FCMs can also include non-intentionally added substances (NIAS), which often are unknown and therefore not subject to risk assessment. To address these important shortcomings, we outline how the safety of FCMs may be improved by (1) testing the overall migrate, including (unknown) NIAS, of finished food contact articles, and (2) expanding toxicological testing beyond genotoxicity to multiple endpoints associated with non-communicable diseases relevant to human health. To identify mechanistic endpoints for testing, we group chronic health outcomes associated with chemical exposure into Six Clusters of Disease (SCOD) and we propose that finished food contact articles should be tested for their impacts on these SCOD. Research should focus on developing robust, relevant, and sensitive in-vitro assays based on mechanistic information linked to the SCOD, e.g., through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision will improve prevention of chronic diseases that are associated with hazardous chemical exposures, including from FCMs.
Collapse
Affiliation(s)
- Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Anna-Maria Andersson
- Dept. of Growth and Reproduction, Rigshospitalet and Centre for Research and Research Training in Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Thomas Backhaus
- Dept of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Scott M Belcher
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | | | | | | - Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Ksenia J Groh
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Durham, NC, USA
| | - Frank A von Hippel
- Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Juliette Legler
- Dept. of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Netherlands
| | | | - Olwenn V Martin
- Plastic Waste Innovation Hub, Department of Arts and Science, University College London, UK
| | - John Peterson Myers
- Dept. of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA; Environmental Health Sciences, Charlottesville, VA, USA
| | - Angel Nadal
- IDiBE and CIBERDEM, Miguel Hernández University of Elche, Alicante, Spain
| | - Cristina Nerin
- Dept. of Analytical Chemistry, I3A, University of Zaragoza, Zaragoza, Spain
| | - Ana M Soto
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Centre Cavaillès, Ecole Normale Supérieure, Paris, France
| | - Leonardo Trasande
- College of Global Public Health and Grossman School of Medicine and Wagner School of Public Service, New York University, New York, NY, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Wagner
- Dept. of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - R Thomas Zoeller
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Scheringer
- RECETOX, Masaryk University, Brno, Czech Republic; Department of Environmental Systems Science, ETH Zurich, Switzerland.
| |
Collapse
|
36
|
Li X, Li H, Lai K, Miao J. The Effect of Glucose on the Interaction of Bisphenol A and Bovine Hemoglobin Characterized by Spectroscopic and Molecular Docking Techniques. Int J Mol Sci 2023; 24:14708. [PMID: 37834156 PMCID: PMC10572490 DOI: 10.3390/ijms241914708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The interaction mechanism of hemoglobin (Hb) with bisphenol A (BPA) in diabetic patients and the difference with healthy people have been studied using spectroscopic and molecular docking techniques at several glucose (Glc) concentration, with bovine hemoglobin (BHb) instead of Hb. It is found that Glc can interact with BHb-BPA and affect its molecular structure, resulting in an altered microenvironment for tyrosine (Tyr) and tryptophan (Trp) in BHb-BPA. It is also found that Glc can bind to BHb alone, and its effect on the molecular structure of BHb is weaker than that on the structure of BHb in BHb-BPA complex. The results of circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) indicate that Glc causes an increase in the content of the α-helix and a decrease in that of the β-sheet of BHb-BPA by 1.5-1.9% and 3.1%, respectively. The results of molecular docking show that Glc binds to BHb-BPA through hydrogen and hydrophobic bonds, and the position of binding differs from that of Glc binding to BHb alone, which may be attributed to the fact that BPA affects the protein molecular structure of BHb and has an effect on the binding of BHb to Glc. This study provides some theoretical basis for the mechanism of BPA toxicity in vivo for people with different blood glucose levels.
Collapse
Affiliation(s)
- Xianheng Li
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China; (X.L.); (H.L.)
| | - Huan Li
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China; (X.L.); (H.L.)
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China; (X.L.); (H.L.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Junjian Miao
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China; (X.L.); (H.L.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
37
|
Lu L, Shen L, Cui S, Huang Y, Gao Y, Zhu X, Lu S, Zhang C, Zhuang S. Angiogenic Activity and Mechanism for Bisphenols on Endothelial Cell and Mouse: Evidence of a Structural-Selective Effect. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11803-11813. [PMID: 37505069 DOI: 10.1021/acs.est.3c03883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Increased epidemiological evidence indicates the association of bisphenol exposure with human vascular disorders, while the underlying mechanism has not been clarified. Here, we sought to unveil the potential angiogenic effect and the underlying mechanism of bisphenols with different structural features using endothelial cells treated with an environmentally relevant concentration of bisphenols (range: 1 nM to 10 μM) and a C57BL/6 mouse model fed with doses of 0.002, 0.02, 2, and 20 mg/kg BW/day for 5 weeks. Bisphenol A (BPA) and bisphenol S (BPS) at a 1 nM level significantly increased tube formation by 45.1 and 30.2% and induced the microvessel sprouting, while tube length and microvessel sprouting were significantly inhibited by 37.2 and 55.7% after exposure to tetrabromobisphenol S (TBBPS) at 1 μM, respectively. Mechanistically, TBBPA and TBBPS significantly inhibited the interaction between phosphatidylinositol 3-kinase (PI3K) and thyroid receptor (TR), while BPA and BPS favored the interaction between PI3K and estrogen receptor (ER), resulting in abnormal PI3K signaling with consequent distinct angiogenic activity. BPA- and BPS-induced pro-angiogenic effects and TBBPS showed anti-angiogenic effects due to their distinct disruption on the TR/ER-PI3K pathway. Our work provided new evidence and mechanistic insight on the angiogenic activity of bisphenols and expanded the scope of endocrine disruptors with interference in vascular homeostasis.
Collapse
Affiliation(s)
- Liping Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lilai Shen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shixuan Cui
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Yuchen Gao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoming Zhu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Shaoyong Lu
- Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, Texas 77058, United States
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| |
Collapse
|
38
|
Lee G, Kim S, Lee I, Kang H, Lee JP, Lee J, Choi YW, Park J, Choi G, Choi K. Association between environmental chemical exposure and albumin-to-creatinine ratio is modified by hypertension status in women of reproductive age. ENVIRONMENTAL RESEARCH 2023; 231:116234. [PMID: 37236389 DOI: 10.1016/j.envres.2023.116234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Chemicals have been identified as a potential risk factor of renal dysfunction. However, studies that consider both multiple chemicals and non-chemical risk factors, such as hypertension, are rare. In this study, we assessed the associations between exposure to several chemicals, including major metals, phthalates, and phenolic compounds, and the albumin-to-creatinine ratio (ACR). A group of Korean adult women in reproductive age (n = 438, aged between 20 and 49 years), who had previously been studied for association of several organic chemicals, was chosen for this purpose. We constructed multivariable linear regression models for individual chemicals and weighted-quantile sum (WQS) mixtures, by hypertension status. Among the study population, approximately 8.5% of the participants exhibited micro/macro-albuminuria (ACR ≥30 mg/g), and 18.5% and 3.9% exhibited prehypertension and hypertension, respectively. Blood cadmium and lead levels showed a stronger association with ACR only among women with prehypertension or hypertension. Among organic chemicals, depending on the statistial model, benzophenone-1 (BP-1) and mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) showed a significant association regardless of hypertension status, but most associations disappeared in the (pre)hypertensive group. These findings clearly indicate that hypertension status can modify and may potentiate the association of environmental chemicals with ACR. Our observations suggest that low-level environmental pollutant exposure may have potential adverse effects on kidney function among general adult women. Considering the prevalence of prehypertension in the general population, efforts to reduce exposure to cadmium and lead are necessary among adult women to minimize the risk of adverse kidney function.
Collapse
Affiliation(s)
- Gowoon Lee
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Sunmi Kim
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea; Chemical Analysis Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Inae Lee
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Habyeong Kang
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; College of Health Science, Korea University, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Young Wook Choi
- Department of Internal Medicine, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Jeongim Park
- Department of Natural Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Gyuyeon Choi
- Department of Obstetrics and Gynecology, Soonchunhyang University Hospital, Seoul, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Akash MSH, Rasheed S, Rehman K, Imran M, Assiri MA. Toxicological evaluation of bisphenol analogues: preventive measures and therapeutic interventions. RSC Adv 2023; 13:21613-21628. [PMID: 37476040 PMCID: PMC10354593 DOI: 10.1039/d3ra04285e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Bisphenol A (BPA) is a prominent endocrine-disrupting compound that shares structural similarities with estrogen. It is widely used, particularly in the production of food packaging, canned goods, and dental sealants. Of the eight bisphenol analogues, BPA is the most frequently utilized chemical in packaging food items, canned foods and dental sealants. However, chronic exposure to BPA can pose severe health risks, particularly in children. To ensure public safety, it is crucial to adopt proper precautionary measures to minimize BPA exposure. This article explores the toxic effects of bisphenols on various body systems and mechanisms, shedding light on their impact on the reproductive and endocrine system, obesity, albuminuria, and the generation of reactive oxygen species. Understanding the detrimental effects of bisphenols on these systems and mechanisms is vital for developing strategies to mitigate their harmful consequences. Furthermore, the article delves into the biotransformation processes of bisphenols, focusing on their occurrence in vertebrates, invertebrates, plants, and microorganisms. Investigating the biotransformation pathways provides valuable insights into the fate of bisphenols in various organisms and ecosystems. Lastly, the article emphasizes preventive measures to avoid bisphenol exposure and highlights the potential use of plant-based bioactive compounds for treatment strategies. By implementing effective preventive measures, such as utilizing BPA-free products and adopting safer alternatives, individuals can reduce their exposure to bisphenols. Additionally, exploring the potential of plant-based bioactive compounds as therapeutic agents offers promising avenues for addressing the adverse effects of bisphenols. The findings presented herein contribute to a better understanding of the novelty, significance, and potential implications of bisphenol research in the field, aiding in the development of safer practices and interventions to safeguard public health.
Collapse
Affiliation(s)
| | - Sumbal Rasheed
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University Multan Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Abha Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University Abha Saudi Arabia
| | - Mohammed A Assiri
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Abha Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University Abha Saudi Arabia
| |
Collapse
|
40
|
Zhang R, Guo J, Wang Y, Sun R, Dong G, Wang X, Du G. Prenatal bisphenol S exposure induces hepatic lipid deposition in male mice offspring through downregulation of adipose-derived exosomal miR-29a-3p. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131410. [PMID: 37088024 DOI: 10.1016/j.jhazmat.2023.131410] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The increased usage of bisphenol S (BPS) results in wide distribution in pregnant women. In this study, pregnant mice were given multiple-dose BPS during gestation. Results showed that prenatal BPS exposure (50 μg/kg/day) induced increased weight gain, dyslipidemia, higher liver triglyceride (TG), adipocyte hypertrophy, and hepatic lipid deposition in male offspring. Exosomes play important roles in regulating lipid metabolism. Here, serum exosomes and adipose miRNA sequencing of male offspring indicated a remarkable decrease in miR-29a-3p expression. To clarify whether adipocyte-derived exosomes mediate hepatic lipid deposition, exosomes were extracted from BPS-treated adipocytes and co-cultured with hepatocytes. These exosomes could be taken up by hepatocytes and promoted lipid deposition, and notably, exosomal miR-29a-3p was downregulated. Furthermore, miR-29a-3p knockdown in adipocyte-derived exosomes promoted hepatocyte lipid deposition, whereas overexpression led to the opposite effect. Also, the role of miR-29a-3p was demonstrated in hepatocytes by overexpressing or knocking it down. Subsequent studies have shown that miR-29a-3p can promote lipid deposition by directly targeting Col4a1. Taken together, prenatal BPS exposure could lead to lower miR-29a-3p yield in adipocyte-derived exosomes and decrease miR-29a-3p content transported to hepatocytes, which further negatively regulate Col4a1 and promote hepatic lipid deposition. Our findings provided clues to maternal environmental exposure-induced liver metabolic diseases.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Immunology, Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai 200136, China
| | - Jingyao Guo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yupeng Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rundong Sun
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guangzhu Dong
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Baijiahu Community Health Service Center, Moling Street, Jiangning District, Nanjing 211102, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guizhen Du
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
41
|
Di D, Zhang R, Zhou H, Wei M, Cui Y, Zhang J, Yuan T, Liu Q, Zhou T, Liu J, Wang Q. Exposure to phenols, chlorophenol pesticides, phthalate and PAHs and mortality risk: A prospective study based on 6 rounds of NHANES. CHEMOSPHERE 2023; 329:138650. [PMID: 37037349 DOI: 10.1016/j.chemosphere.2023.138650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVES Human exposure to various endocrine disrupting chemicals (EDCs) is widespread and long-lasting. The primary objective of this study was to prospectively evaluate the association of combined exposure of phenols, chlorophenol pesticides, phthalate and polycyclic aromatic hydrocarbons (PAHs) and mortality risk in a representative US population. METHODS The data on urinary levels of phenols, chlorophenol pesticides, phthalates, and PAH metabolites, were collected from participants aged ≥20 years in six rounds of the National Health and Nutrition Examination Survey (NHANES) (2003-2014). NHANES-linked death records up to December 31, 2015 were used to ascertain mortality status and cause of death. Cox proportional hazards and competing risk models were mainly used for chemical and mortality risk association analysis. The weighted quantile sum (WQS) regression and the least absolute shrinkage and selection operator regression were employed to estimate the association between EDC co-exposure and mortality risk. RESULTS High levels of mono-n-butyl phthalate, monobenzyl phthalate, and 1-napthol were significantly associated with increased risk of all cause, cardiovascular disease (CVD) and cancer mortality among all participants. WQS index was associated with the risks of all-cause (hazard ratio [HR] = 1.389, 95%CI: 1.155-1.669) and CVD mortality (HR = 1.925, 95%CI: 1.152-3.216). High co-exposure scores were associated with elevated all-cause (HR = 2.842, 95% CI: 1.2.094-3.858), CVD (HR = 1.855, 95% CI: 1.525-2.255), and cancer mortality risks (HR = 2.961, 95% CI: 1.468-5.972). The results of subgroup analysis, competing risk model, and sensitivity analysis were generally consistent with the findings from the main analyses, indicating the robustness of our findings. CONCLUSIONS This study provided the first epidemiological evidence that co-exposure to EDC at fairly low levels contributed to elevated mortality risk among US adults. The underlying mechanisms for the effects of EDC co-exposure on human health are worthy of future exploration.
Collapse
Affiliation(s)
- Dongsheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruyi Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haolong Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Muhong Wei
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Cui
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianli Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingting Yuan
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Liu
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingting Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junan Liu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
42
|
Ma J, Wang NY, Jagani R, Wang HS. Proarrhythmic toxicity of low dose bisphenol A and its analogs in human iPSC-derived cardiomyocytes and human cardiac organoids through delay of cardiac repolarization. CHEMOSPHERE 2023; 328:138562. [PMID: 37004823 PMCID: PMC10121900 DOI: 10.1016/j.chemosphere.2023.138562] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Bisphenol A (BPA) and its analogs are common environmental chemicals with many potential adverse health effects. The impact of environmentally relevant low dose BPA on human heart, including cardiac electrical properties, is not understood. Perturbation of cardiac electrical properties is a key arrhythmogenic mechanism. In particular, delay of cardiac repolarization can cause ectopic excitation of cardiomyocytes and malignant arrhythmia. This can occur as a result of genetic mutations (i.e., long QT (LQT) syndrome), or cardiotoxicity of drugs and environmental chemicals. To define the impact of low dose BPA on electrical properties of cardiomyocytes in a human-relevant model system, we examined the rapid effects of 1 nM BPA in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using patch-clamp and confocal fluorescence imaging. Acute exposure to BPA delayed repolarization and prolonged action potential duration (APD) in hiPSC-CMs through inhibition of the hERG K+ channel. In nodal-like hiPSC-CMs, BPA acutely increased pacing rate through stimulation of the If pacemaker channel. Existing arrhythmia susceptibility determines the response of hiPSC-CMs to BPA. BPA resulted in modest APD prolongation but no ectopic excitation in baseline condition, while rapidly promoted aberrant excitations and tachycardia-like events in myocytes that had drug-simulated LQT phenotype. In hiPSC-CM-based human cardiac organoids, the effects of BPA on APD and aberrant excitation were shared by its analog chemicals, which are often used in "BPA-free" products, with bisphenol AF having the largest effects. Our results reveal that BPA and its analogs have repolarization delay-associated pro-arrhythmic toxicity in human cardiomyocytes, particularly in myocytes that are prone to arrhythmias. The toxicity of these chemicals depends on existing pathophysiological conditions of the heart, and may be particularly pronounced in susceptible individuals. An individualized approach is needed in risk assessment and protection.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | | | - Ravikumar Jagani
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
43
|
Razak MR, Aris AZ, Yusoff FM, Yusof ZNB, Abidin AAZ, Kim SD, Kim KW. Risk assessment of bisphenol analogues towards mortality, heart rate and stress-mediated gene expression in cladocerans Moina micrura. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3567-3583. [PMID: 36450975 DOI: 10.1007/s10653-022-01442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/22/2022] [Indexed: 06/01/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting compound that causes several toxic effects on human and aquatic organisms. The restriction of BPA in several applications has increased the substituted toxic chemicals such as bisphenol F (BPF) and bisphenol S (BPS). A native tropical freshwater cladoceran, Moina micrura, was used as a bioindicator to assess the adverse effects of bisphenol analogues at molecular, organ, individual and population levels. Bisphenol analogues significantly upregulated the expressions of stress-related genes, which are the haemoglobin and glutathione S-transferase genes, but the sex determination genes such as doublesex and juvenile hormone analogue genes were not significantly different. The results show that bisphenol analogues affect the heart rate and mortality rate of M. micrura. The 48-h lethal concentration (LC50) values based on acute toxicity for BPA, BPF and BPS were 611.6 µg L-1, 632.0 µg L-1 and 819.1 µg L-1, respectively. The order of toxicity based on the LC50 and predictive non-effect concentration values were as follows: BPA > BPF > BPS. Furthermore, the incorporated method combining the responses throughout the organisation levels can comprehensively interpret the toxic effects of bisphenol analogues, thus providing further understanding of the toxicity mechanisms. Moreover, the output of this study produces a comprehensive ecotoxicity assessment, which provides insights for the legislators regarding exposure management and mitigation of bisphenol analogues in riverine ecosystems.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia.
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Aisamuddin Ardi Zainal Abidin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Kyoung Woong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| |
Collapse
|
44
|
Baumgarten LG, Freitas AA, Santana ER, Winiarski JP, Dreyer JP, Vieira IC. Graphene and gold nanoparticle-based bionanocomposite for the voltammetric determination of bisphenol A in (micro)plastics. CHEMOSPHERE 2023; 334:139016. [PMID: 37224974 DOI: 10.1016/j.chemosphere.2023.139016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/02/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
The monitoring of endocrine disruptors in the environment is one of the main strategies in the investigation of potential risks associated with exposure to these chemicals. Bisphenol A is one of the most prevalent endocrine-disrupting compounds and is prone to leaching out from polycarbonate plastic in both freshwater and marine environments. Additionally, microplastics also can leach out bisphenol A during their fragmentation in the water environment. In the quest for a highly sensitive sensor to determine bisphenol A in different matrices, an innovative bionanocomposite material has been achieved. This material is composed of gold nanoparticles and graphene, and was synthesized using a green approach that utilized guava (Psidium guajava) extract for reduction, stabilization, and dispersion purposes. Transmission electron microscopy images revealed well-spread gold nanoparticles with an average diameter of 31 nm on laminated graphene sheets in the composite material. An electrochemical sensor was developed by depositing the bionanocomposite onto a glassy carbon surface, which displayed remarkable responsiveness towards bisphenol A. Experimental conditions such as the amount of graphene, extract: water ratio of bionanocomposite and pH of the supporting electrolyte were optimized to improve the electrochemical performance. The modified electrode displayed a marked improvement in current responses for the oxidation of bisphenol A as compared to the uncovered glassy carbon electrode. A calibration plot was established for bisphenol A in 0.1 mol L-1 Britton-Robinson buffer (pH 4.0), and the detection limit was determined to equal to 15.0 nmol L-1. Recovery data from 92 to 109% were obtained in (micro)plastics samples using the electrochemical sensor and were compared with UV-vis spectrometry, demonstrating its successful application with accurate responses.
Collapse
Affiliation(s)
- Luan Gabriel Baumgarten
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Aline Alves Freitas
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Edson Roberto Santana
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil.
| | - João Paulo Winiarski
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Juliana Priscila Dreyer
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Iolanda Cruz Vieira
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
45
|
Yujiao C, Meng Z, Shanshan L, Wei W, Yipeng W, Chenghong Y. Exposure to Bisphenol A induces abnormal fetal heart development by promoting ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114753. [PMID: 36933485 DOI: 10.1016/j.ecoenv.2023.114753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/16/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Bisphenol A (BPA), a common endocrine-disrupting chemical (EDC), has been revealed to be closely associated with the induction of abnormal heart development, obesity, prediabetes, and other metabolic disorders. However, the underlying mechanism of maternal BPA exposure on fetal heart development abnormalities is not clear. METHODS To explore the adverse effects of BPA and its potential mechanism on heart development, C57BL/6 J mice and human cardiac AC-16 cells were used to conduct in vivo and in vitro studies. For the in vivo study, mice were exposed to low-dose BPA (40 mg/(kg·bw)) and high-dose BPA (120 mg/(kg·bw)) for 18 d during pregnancy. In vitro study, human cardiac AC-16 cells were exposed to BPA of various concentrations (0.01, 0.1, 1, 10, and 100 µM) for 24 h. Cell viability and ferroptosis were evaluated using 2,5-diphenyl-2 H-tetrazolium bromide (MTT), immunofluorescence staining, and western blotting. RESULTS In BPA-treated mice, the alterations of fetal cardiac structure were observed. Increased NK2 homeobox 5(Nkx2.5) was detected in vivo with the induction of ferroptosis, revealing that BPA induced abnormal fetal heart development. Furthermore, the results showed that SLC7A11 and SLC3A2 decreased in low- and high-dose BPA-treated groups, suggesting that system Xc- mediated BPA-induced abnormal fetal heart development via inhibiting the expression of GPX4. Observing AC-16 cells confirmed that cell viability declined significantly with various concentrations of BPA. Moreover, BPA exposure suppressed GPX4 expression by inhibiting System Xc- (the decrease of SLC3A2 and SLC7A11). Collectively, system Xc- modulating cell ferroptosis might play important in abnormal fetal heart development induced by BPA exposure.
Collapse
Affiliation(s)
- Chen Yujiao
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zhang Meng
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Li Shanshan
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Wang Wei
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Wang Yipeng
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China.
| | - Yin Chenghong
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China.
| |
Collapse
|
46
|
Chen S, Tao Y, Wang P, Li D, Shen R, Fu G, Wei T, Zhang W. Association of urinary bisphenol A with cardiovascular and all-cause mortality: National Health and Nutrition Examination Survey (NHANES) 2003-2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51217-51227. [PMID: 36807039 DOI: 10.1007/s11356-023-25924-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/09/2023] [Indexed: 04/16/2023]
Abstract
Bisphenol A (BPA), one of the most widely consumed endocrine disrupting chemicals, has been found to be associated with a variety of diseases, especially cardiovascular diseases. However, few studies have investigated the association of BPA with long-term health outcomes. This study analyzed data from the National Health and Nutrition Examination Survey (NHANES) 2003-2016. The NHANES data were linked to mortality data (with a follow-up point of December 31, 2019). The urinary BPA concentration was estimated by adjusting for urinary creatinine (BPA/Cr, ng/mg). Complex sampling-weighted multivariate Cox proportional hazards models were used to compare the hazard ratios (HRs) of cardiovascular and all-cause mortality among participants with different urinary BPA concentrations. This study included 9243 adult participants. The median follow-up duration was 9.1 years. During this period, 1200 all-cause deaths occurred, of which 374 were cardiovascular deaths. Compared to the lowest BPA/Cr quartile group, the adjusted HRs of the highest BPA/Cr quartile group were 1.76 (95% CI, 1.23-2.52) for cardiovascular mortality and 1.21 (95% CI, 0.98-1.49) for all-cause mortality. In addition, there was a significant interaction between sex and BPA/Cr (P for interaction = 0.044) for the risk of cardiovascular mortality. The adjusted HR for cardiovascular mortality in female participants was 2.80 (95% CI, 1.56-5.02), while that in male participants was only 1.34 (95% CI, 0.79-2.24). Higher urinary BPA is associated with an increased risk of cardiovascular mortality among US adults. The effect of BPA on cardiovascular mortality may be more pronounced in women than in men.
Collapse
Affiliation(s)
- Shuaijie Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Cardiology, Lishui Hospital, College of Medicine, Zhejiang University, Lishui, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Yecheng Tao
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Duanbin Li
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Ruming Shen
- Department of Cardiology, Lishui Hospital, College of Medicine, Zhejiang University, Lishui, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Tiemin Wei
- Department of Cardiology, Lishui Hospital, College of Medicine, Zhejiang University, Lishui, China
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
- College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
47
|
Li T, Wang R, Yin R, Xu H, Han X, Du Q, Cheng J, Lin Z, Wang P. Effective Extraction of Bisphenol Compounds from Milk with Stable Zr(IV)-Based Metal-Organic Framework Particles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4272-4280. [PMID: 36857603 DOI: 10.1021/acs.jafc.2c09085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bisphenol compounds (BPs) have recently been the subject of growing interest due to their wide use in industrial and consumer products. Besides their adverse effects on human endocrine system, effective extraction of BPs and their elimination from complex sample matrix are still significant challenges in food analysis. Herein, a novel Zr(IV)-based metal-organic framework (MOF), named BUT-16, has been synthesized and utilized for the extraction and enrichment of BPs in milk samples. Bisphenol A (BPA), one of the highest production volume BPs, is used as a model molecule. The uptake capacity for BPA can reach up to 48 mg/g, and the adsorption rate is rapid (∼10 min), because of the larger surface area and cooperation of multiple functionalities of BUT-16. Employing BUT-16 in solid-phase extraction, coupled with ultra-performance liquid chromatography-tandem mass spectrometry detection, we generated a rapid, facile, and robust method for the enrichment and detection of trace BPA and its 12 substitutes in milk samples. After optimization, the limits of detection and quantification for BPs can be achieved as low as 0.05 and 0.2 ng/mL, respectively. Without the correction of the isotopic internal standard, the average recoveries of BPs at the different spiked concentrations varied from 63.8 to 120.6%, with a satisfactory precision (RSD ≤ 8.2%). Furthermore, the proposed method was successfully applied to the detection of BPs in real milk samples, and the results were in accordance with those of methods reported previously.
Collapse
Affiliation(s)
- Tong Li
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| | - Ruiguo Wang
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| | - Ruijie Yin
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Huhhot, Inner Mongolia 010080, P. R. China
| | - Hongyan Xu
- Inner Mongolia Yili Industrial Group Co.,Ltd, Huhhot, Inner Mongolia 010080, P. R. China
| | - Xiaoxu Han
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Huhhot, Inner Mongolia 010080, P. R. China
| | - Qiuling Du
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| | - Jie Cheng
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| | - Peilong Wang
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| |
Collapse
|
48
|
Della Rocca Y, Traini EM, Diomede F, Fonticoli L, Trubiani O, Paganelli A, Pizzicannella J, Marconi GD. Current Evidence on Bisphenol A Exposure and the Molecular Mechanism Involved in Related Pathological Conditions. Pharmaceutics 2023; 15:pharmaceutics15030908. [PMID: 36986769 PMCID: PMC10053246 DOI: 10.3390/pharmaceutics15030908] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Bisphenol A (BPA) is one of the so-called endocrine disrupting chemicals (EDCs) and is thought to be involved in the pathogenesis of different morbid conditions: immune-mediated disorders, type-2 diabetes mellitus, cardiovascular diseases, and cancer. The purpose of this review is to analyze the mechanism of action of bisphenol A, with a special focus on mesenchymal stromal/stem cells (MSCs) and adipogenesis. Its uses will be assessed in various fields: dental, orthopedic, and industrial. The different pathological or physiological conditions altered by BPA and the related molecular pathways will be taken into consideration.
Collapse
Affiliation(s)
- Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Enrico Matteo Traini
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Correspondence: (O.T.); (A.P.)
| | - Alessia Paganelli
- PhD Course in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41125 Modena, Italy
- Correspondence: (O.T.); (A.P.)
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University “G. d’ Annunzio” Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
49
|
Peng J, Du LL, Ma QL. Serum glycolipids mediate the relationship of urinary bisphenols with NAFLD: analysis of a population-based, cross-sectional study. Environ Health 2023; 21:124. [PMID: 36588154 PMCID: PMC9806917 DOI: 10.1186/s12940-022-00945-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Bisphenol A (BPA) and its substitutes bisphenol S (BPS) and bisphenol F (BPF) are endocrine-disrupting chemicals widely used in consumer products, which have been proposed to induce various human diseases. In western countries, one of the most common liver diseases is non-alcoholic fatty liver disease (NAFLD). However, studies on the associations of the three bisphenols with NAFLD in human beings are scarce. METHODS We included 960 participants aged ≥ 20 years from the NHANES 2013-16 who had available data on levels of urinary BPA, BPS and BPF. The hepatic steatosis index (HSI) > 36 was used to predict NAFLD. Logistic regression analysis and mediation effect analysis were used to evaluate the associations among bisphenols, glycolipid-related markers and NAFLD. RESULTS A total of 540 individuals (56.3%) were diagnosed with NAFLD, who had higher concentrations of BPA and BPS but not BPF than those without NAFLD. An increasing trend in NAFLD risks and HSI levels was observed among BPA and BPS tertiles (p for trend < 0.05). After adjustment for confounders, elevated levels of BPA or BPS but not BPF were significantly associated with NAFLD. The odds ratio for NAFLD was 1.581 (95% confidence intervals [CI]: 1.1-2.274, p = 0.013) comparing the highest with the lowest tertile of BPA and 1.799 (95%CI: 1.2462.597, p = 0.002) for BPS. Mediation effect analysis indicated that serum high-density lipoprotein cholesterol and glucose had a mediating effect on the relationships between bisphenols and NAFLD. CONCLUSIONS The present study showed that high exposure levels of BPA and BPS increased NAFLD incidence, which might be mediated through regulating glycolipids metabolism. Further studies on the role of bisphenols in NAFLD are warranted.
Collapse
Affiliation(s)
- Jia Peng
- Department of Cardiovascular Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Road, Kaifu District, Changsha, 410008 Hunan China
| | - Lei-Lei Du
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi-Lin Ma
- Department of Cardiovascular Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Road, Kaifu District, Changsha, 410008 Hunan China
| |
Collapse
|
50
|
Qin JY, Jia W, Ru S, Xiong JQ, Wang J, Wang W, Hao L, Zhang X. Bisphenols induce cardiotoxicity in zebrafish embryos: Role of the thyroid hormone receptor pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106354. [PMID: 36423468 DOI: 10.1016/j.aquatox.2022.106354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Bisphenols are frequently found in the environment and have been of emerging concern because of their adverse effects on aquatic animals and humans. In this study, we demonstrated that bisphenol A, S, and F (BPA, BPS, BPF) at environmental concentrations induced cardiotoxicity in zebrafish embryos. BPA decreased heart rate at 96 hpf (hours post fertilization) and increased the distance between the sinus venosus (SV) and bulbus arteriosus (BA), in zebrafish. BPF promoted heart pumping and stroke volume, shortened the SV-BAdistance, and increased body weight. Furthermore, we found that BPA increased the expression of the dio3b, thrβ, and myh7 genes but decreased the transcription of dio2. In contrast, BPF downregulated the expression of myh7 but upregulated that of thrβ. Molecular docking results showed that both BPA and BPF are predicted to bind tightly to the active pockets of zebrafish THRβ with affinities of -4.7 and -4.77 kcal/mol, respectively. However, BPS did not significantly affect dio3b, thrβ, and myh7 transcription and had a higher affinity for zebrafish THRβ (-2.13 kcal/mol). These findings suggest that although BPA, BPS, and BPF have similar structures, they may induce cardiotoxicity through different molecular mechanisms involving thyroid hormone systems. This investigation provides novel insights into the potential mechanism of cardiotoxicity from the perspective of thyroid disruption and offer a cautionary role for the use of BPA substitution.
Collapse
Affiliation(s)
- Jing-Yu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wenyi Jia
- College of urban and environmental sciences, Peking University, Beijing 100871, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liping Hao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|