1
|
Yavitt FM, Khang A, Bera K, McNally DL, Blatchley MR, Gallagher AP, Klein OD, Castillo-Azofeifa D, Dempsey PJ, Anseth KS. Engineered epithelial curvature controls Paneth cell localization in intestinal organoids. CELL BIOMATERIALS 2025; 1:100046. [PMID: 40270579 PMCID: PMC12013698 DOI: 10.1016/j.celbio.2025.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The cellular organization within organoid models is important to regulate tissue specific function, yet few engineering approaches can control or direct cellular organization. Here, a photodegradable hydrogel is used to create softened regions that direct crypt formation within intestinal organoids, where the dimensions of the photosoftened regions generate predictable and defined crypt architectures. Guided by in vivo metrics of crypt morphology, this photopatterning method is used to control the width and length of in vitro organoid crypts, which ultimately defines the curvature of the epithelium. By tracking expression of differentiated Paneth cell markers in real-time, we show that epithelial curvature directs the localization of Paneth cells within engineered crypts, providing user-directed control over organoid functionality. We anticipate that our improved control over organoid architecture and thus Paneth cell localization will lead to more consistent in vitro organoid models for both mechanistic studies and translational applications.
Collapse
Affiliation(s)
- F. Max Yavitt
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Alex Khang
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kaustav Bera
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Delaney L. McNally
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Michael R. Blatchley
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Aaron P. Gallagher
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, 90089, USA
- School of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Ophir D. Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, 90089, USA
- Department of Pediatrics and Guerin Children’s, Cedars-Sinai Medical Center, Los Angeles, CA, 90505, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - David Castillo-Azofeifa
- Department of Regenerative Medicine, Genentech, Inc., South San Francisco, California, 94080, USA
| | - Peter J. Dempsey
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Denver, CO, 80045, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
2
|
Zhang S, Cao Y, Huang Y, Zhang X, Mou C, Qin T, Chen Z, Bao W. Abortive PDCoV infection triggers Wnt/β-catenin pathway activation, enhancing intestinal stem cell self-renewal and promoting chicken resistance. J Virol 2025; 99:e0013725. [PMID: 40135895 PMCID: PMC11998530 DOI: 10.1128/jvi.00137-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging coronavirus causing economic losses to swine industries worldwide. PDCoV can infect chickens under laboratory conditions, usually with no symptoms or mild symptoms, and may cause outbreaks in backyard poultry and wildfowl, posing a potential risk of significant economic loss to the commercial poultry industry. However, the reasons for such a subdued reaction after infection are not known. Here, using chicken intestinal organoid monolayers, we found that although PDCoV infects them nearly as well as porcine intestinal organoid monolayers, infection did not result in detectable amounts of progeny virus. In ex vivo and in vivo experiments using chickens, PDCoV infection failed to initiate interferon and inflammatory responses. Additionally, infection did not result in a disrupted intestinal barrier nor a reduced number of goblet cells and mucus secretion, as in pigs. In fact, the number of goblet cells increased as did the secreted mucus, thereby providing an enhanced protective barrier. Ex vivo PDCoV infection in chicken triggered activation of the Wnt/β-catenin pathway with the upregulation of Wnt/β-catenin pathway genes (Wnt3a, Lrp5, β-catenin, and TCF4) and Wnt target genes (Lgr5, cyclin D1, and C-myc). This activation stimulates the self-renewal of intestinal stem cells (ISCs), accelerating ISC-mediated epithelial regeneration by significant up-regulation of PCNA (transiently amplifying cells), BMI1 (ISCs), and Lyz (Paneth cells). Our data demonstrate that abortive infection of PDCoV in chicken cells activates the Wnt/β-catenin pathway, which facilitates the self-renewal and proliferation of ISCs, contributing to chickens' resistance to PDCoV infection.IMPORTANCEThe intestinal epithelium is the main target of PDCoV infection and serves as a physical barrier against pathogens. Additionally, ISCs are charged with tissue repair after injury, and promoting rapid self-renewal of intestinal epithelium will help to re-establish the physical barrier and maintain intestinal health. We found that PDCoV infection in chicken intestinal organoid monolayers resulted in abortive infection and failed to produce infectious virions, disrupt the intestinal barrier, reduce the number of goblet cells and mucus secretion, and induce innate immunity, but rather increased goblet cell numbers and mucus secretion. Abortive PDCoV infection activated the Wnt/β-catenin pathway, enhancing ISC renewal and accelerating the renewal and replenishment of shed PDCoV-infected intestinal epithelial cells, thereby enhancing chicken resistance to PDCoV infection. This study provides novel insights into the mechanisms underlying the mild or asymptomatic response to PDCoV infection in chickens, which is critical for understanding the virus's potential risks to the poultry industry.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanan Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanjie Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xueli Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Zhao X, Wang L, Fu YJ, Yu F, Li K, Wang YQ, Guo Y, Zhou S, Yang W. Inflammatory Microenvironment-Responsive Microsphere Vehicles Modulating Gut Microbiota and Intestinal Inflammation for Intestinal Stem Cell Niche Remodeling in Inflammatory Bowel Disease. ACS NANO 2025; 19:12063-12079. [PMID: 40125581 DOI: 10.1021/acsnano.4c17999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Intestinal stem cells (ISCs) engage in proliferation to maintain a stable stem cell population and differentiate into functional epithelial subpopulations. This intricate process is upheld by various signals derived from the host and gut microbiota, establishing an ISC niche. However, during inflammatory bowel disease (IBD), this signaling niche undergoes dramatic changes, leading to impaired ISC and hindered restoration of the damaged intestinal epithelial barrier. This study introduces intestinal inflammatory microenvironment-responsive microsphere vehicles designed to remodel the ISC niche, offering an approach to treat IBD. Using an advanced emulsion technique, these microsphere vehicles specifically target colonic inflammation sites, delivering a responsive release of MXene and l-arginine. This delivery system is formulated to modulate intestinal flora and immune responses effectively. l-arginine is converted into nitric oxide to regulate the gut microbiome, while MXene serves as a nanoimmunomodulator to stabilize immune homeostasis. Our findings demonstrate that the anti-inflammatory properties of the microspheres are key to promoting epithelial repair and remodeling of the ISC niche. This study highlights the role of antioxidant microspheres as anti-inflammatory agents that indirectly support ISC function and gut regeneration.
Collapse
Affiliation(s)
- Xing Zhao
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Liya Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ya-Jun Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Fei Yu
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610032, China
| | - Kai Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 , China
| | - Yu-Qiang Wang
- Department of Cardiovascular Surgery and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Jia K, Wu L, Li Z, Wei T, Fan T, Xiao G. Thymoquinone Ameliorates Gut Epithelial Injury by Suppressing the JNK Signaling Pathway Based on Its Anti-Oxidant Property. Food Sci Nutr 2025; 13:e70113. [PMID: 40129997 PMCID: PMC11932059 DOI: 10.1002/fsn3.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
Ulcerative colitis is one of the most common sorts of inflammatory bowel disease. This study investigates the protective effects of thymoquinone against sodium dodecyl sulfate (SDS)-induced intestinal damage and elucidates the underlying mechanisms using the Drosophila melanogaster model of ulcerative colitis. We found that Drosophila fed thymoquinone from larval to adult stages were resistant to SDS injury in adulthood. Thymoquinone pretreatment significantly restored the abnormal behaviors and intestinal morphological defects in Drosophila exposed to SDS. Moreover, thymoquinone protected the intestinal barrier function by inhibiting the overactivated c-Jun N-terminal kinase (JNK) pathway in the intestine induced by SDS. Further studies indicated that thymoquinone inhibits the JNK pathway by reducing intestinal reactive oxygen species (ROS) levels. This research provides novel pathological and mechanistic insights into the potential application of thymoquinone in developing functional foods or natural medicines, highlighting its significance in treating ulcerative colitis.
Collapse
Affiliation(s)
- Kaitong Jia
- China Light Industry Key Laboratory of Meat Microbial Control and UtilizationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Lei Wu
- China Light Industry Key Laboratory of Meat Microbial Control and UtilizationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Ziru Li
- China Light Industry Key Laboratory of Meat Microbial Control and UtilizationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Tian Wei
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional InterventionsHefei University of TechnologyHefeiChina
| | - Tingting Fan
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
- Engineering Research Center of Bio‐ProcessMinistry of Education, Hefei University of TechnologyHefeiChina
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and UtilizationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional InterventionsHefei University of TechnologyHefeiChina
- Engineering Research Center of Bio‐ProcessMinistry of Education, Hefei University of TechnologyHefeiChina
| |
Collapse
|
5
|
Haque PS, Goodman D, Kuusivuori-Robinson T, Coughlan C, Delgado-Deida Y, Onyiah JC, Zempleni J, Theiss AL. Obese Adipose Tissue Extracellular Vesicles Activate Mitochondrial Fatty Acid β-oxidation to Drive Colonic Stemness. Cell Mol Gastroenterol Hepatol 2025; 19:101504. [PMID: 40122519 DOI: 10.1016/j.jcmgh.2025.101504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND & AIMS Patients with obesity and mouse models of obesity exhibit abnormalities in intestinal epithelial cells, including enhanced stemness. Adipose tissue (AT) is the largest endocrine organ secreting cytokines, hormones, and extracellular vesicles (EVs). Here, we characterized EV protein cargo from obese and non-obese AT and demonstrate the role of obese adipose-derived EVs in enhancing colonic stemness. METHODS EVs were isolated from visceral AT from mice fed high-fat diet to induce obesity or control matched-diet. EV cargo was characterized by unbiased proteomics. Mouse colonoids were treated with EVs and analyzed for fatty acid β-oxidation (FAO), expression of stem marker genes, stem function, and β-catenin expression and acetylation. Mice deficient in adipocyte-specific Tsg101 expression were generated to alter adipocyte EV protein cargo, and colonic stemness was measured. RESULTS EVs secreted from obese visceral AT (Ob EVs) were significantly enriched with acyl-CoA dehydrogenase long chain (ACADL), an initiator enzyme of FAO. Compared with non-obese EVs, colonoids treated with Ob EVs exhibited increased exogenous ACADL protein expression, FAO, growth, persistence of stem/progenitor function, and increased β-catenin protein expression and acetylation that was abolished by FAO inhibition. Mice deficient in adipocyte-specific Tsg101 expression exhibited Ob EVs with altered protein expression profiles and were protected from obesity-induced enhanced colonic stemness. CONCLUSIONS The contents of Ob EVs are poised to fuel FAO and to promote obesity-induced stemness in the colon. Alteration of metabolism is a key mechanism of adipose-to-intestinal tissue communication elicited by EVs, thereby influencing basal colonic stem cell homeostasis during obesity.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Desiree Goodman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Thor Kuusivuori-Robinson
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Christina Coughlan
- Division of Neurology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Yaritza Delgado-Deida
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Joseph C Onyiah
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado.
| |
Collapse
|
6
|
Yagita-Sakamaki M, Ito T, Sakaguchi T, Shimma S, Li B, Okuzaki D, Motooka D, Nakamura S, Hase K, Fukusaki E, Kikuchi A, Nagasawa T, Kumanogoh A, Takeda K, Kayama H. Intestinal Foxl1+ cell-derived CXCL12 maintains epithelial homeostasis by modulating cellular metabolism. Int Immunol 2025; 37:235-250. [PMID: 39774647 DOI: 10.1093/intimm/dxae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Several mesenchymal cell populations are known to regulate intestinal stem cell (ISC) self-renewal and differentiation. However, the influences of signaling mediators derived from mesenchymal cells other than ISC niche factors on epithelial homeostasis remain poorly understood. Here, we show that host and microbial metabolites, such as taurine and gamma-aminobutyric acid (GABA), act on PDGFRαhigh Foxl1high sub-epithelial mesenchymal cells to regulate their transcription. In addition, we found that CXC chemokine ligand 12 (CXCL12) produced from Foxl1high sub-epithelial mesenchymal cells induces epithelial cell cycle arrest through modulation of the mevalonate-cholesterol synthesis pathway, which suppresses tumor progression in ApcMin/+ mice. We identified that Foxl1high sub-epithelial cells highly express CXCL12 among colonic mesenchymal cells. Foxl1-cre; Cxcl12f/f mice showed an increased number of Ki67+ colonic epithelial cells. CXCL12-induced Ca2+ mobilization facilitated phosphorylation of AMPK in intestinal epithelial cells, which inhibits the maturation of sterol regulatory element-binding proteins (SREBPs) that are responsible for mevalonate pathway activation. Furthermore, Cxcl12 deficiency in Foxl1-expressing cells promoted tumor development in the small and large intestines of ApcMin/+ mice. Collectively, these results demonstrate that CXCL12 secreted from Foxl1high mesenchymal cells manipulates intestinal epithelial cell metabolism, which links to the prevention of tumor progression in ApcMin/+ mice.
Collapse
Affiliation(s)
- Mayu Yagita-Sakamaki
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takayoshi Ito
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taiki Sakaguchi
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Bo Li
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Motooka
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shota Nakamura
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-0011, Japan
- The Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima 960-1296, Japan
- International Research and Development Centre for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takashi Nagasawa
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka 565-0871, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Mu Q, Ha A, Santos AJM, Lo YH, van Unen V, Miao Y, Tomaske M, Guzman VK, Alwahabi S, Yuan JJ, Deng L, Li L, Garcia KC, Kuo CJ. FZD5 controls intestinal crypt homeostasis and colonic Wnt surrogate agonist response. Dev Cell 2025; 60:342-351.e5. [PMID: 39579768 DOI: 10.1016/j.devcel.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/16/2024] [Accepted: 10/29/2024] [Indexed: 11/25/2024]
Abstract
The rapidly regenerating intestinal epithelium requires crypt intestinal stem cells (ISCs). Wnt/β-catenin signaling maintains crypt homeostasis and Lgr5+ ISCs, and WNT ligands bind Frizzled receptors (FZD1-10). Identifying specific FZD(s) essential for intestinal homeostasis has been elusive; however, bioengineered antagonists blocking Wnt binding to FZD5 and FZD8 deplete the gut epithelium in vivo, highlighting potential roles. Here, an epithelial-specific Fzd5 knockout (KO) elicited lethal pan-intestinal crypt and villus loss, whereas an Lgr5+ ISC-specific Fzd5 KO depleted Lgr5+ ISCs via premature differentiation and repressed Wnt target genes. Fzd5-null phenotypes were rescued by constitutive β-catenin activation in vivo and in both mouse and human enteroids. KO of Fzd5, not Fzd8, in enteroids ablated responsiveness to dual-specificity FZD5/FZD8-selective Wnt surrogate agonists, which ameliorated DSS-induced colitis in wild-type and Fzd8 KO mice. Overall, FZD5 is a dominant and essential regulator of crypt homeostasis, Lgr5+ ISCs, and intestinal response to Wnt surrogate agonists, with implications for therapeutic mucosal repair.
Collapse
Affiliation(s)
- Qinghui Mu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew Ha
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Antonio J M Santos
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuan-Hung Lo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vincent van Unen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Miao
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Madeline Tomaske
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Veronica K Guzman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samira Alwahabi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jenny J Yuan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lu Deng
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Liu Z, He Y, Wang Y, Ren K, Xia P, Xie B, Wei T. Oxidative stress caused by 3-monochloro-1,2-propanediol provokes intestinal stem cell hyperproliferation and the protective role of quercetin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117851. [PMID: 39914075 DOI: 10.1016/j.ecoenv.2025.117851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 03/03/2025]
Abstract
Recently, the contaminant 3-monochloropropane-1,2-diol (3-MCPD) found in food and the environment has garnered significant global attention due to its detrimental health effects on animals, including reproductive toxicity, neurotoxicity, and nephrotoxicity. However, the specific impacts and mechanisms of 3-MCPD on intestinal health remain elusive. Here, we employed the adult intestine of Drosophila melanogaster, a notable invertebrate model organism, to investigate the intestinal toxicity of 3-MCPD and its underlying mechanisms. Our findings revealed that exposure to 3-MCPD led to a decrease in the number of enterocyte cells and an elevation in apoptosis levels, ultimately disrupting the intestinal epithelial barrier and its function. This disruption subsequently triggered hyperproliferation and differentiation of intestinal stem cells (ISCs). Mechanistically, 3-MCPD induced oxidative stress in the Drosophila intestine, which was likely responsible for ISC hyperproliferation and intestinal damage. Intriguingly, quercetin, a natural antioxidant derived from dietary fruits and vegetables, alleviated 3-MCPD-induced intestinal toxicity by inhibiting the JNK pathway. Our findings uncover a mechanism whereby suppression of undesirable ISC hyperproliferation, caused by 3-MCPD-induced oxidative stress, maintains intestinal homeostasis, and provide a theoretical basis for exploiting quercetin, a natural antioxidant, as a dietary antidote against the intestinal hazards posed by environmental toxicants.
Collapse
Affiliation(s)
- Zongzhong Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yanfei He
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yuhan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Kefeng Ren
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Pengpeng Xia
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Binbin Xie
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Tian Wei
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| |
Collapse
|
9
|
Li C, Zhou Y, Jiang Y, Yin Z, Weiss HL, Wang Q, Evers BM. miR-27a-3p regulates intestinal cell proliferation and differentiation through Wnt/β-catenin signalling. Cell Prolif 2025; 58:e13757. [PMID: 39329245 PMCID: PMC11839187 DOI: 10.1111/cpr.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Intestinal stem cells differentiate into absorptive enterocytes, characterised by increased brush border enzymes such as intestinal alkaline phosphatase (IAP), making up the majority (95%) of the terminally differentiated cells in the villus. Loss of integrity of the intestinal epithelium plays a key role in inflammatory diseases and gastrointestinal infection. Here, we show that the intestinal microRNA (miR)-27a-3p is an important regulator of intestinal epithelial cell proliferation and enterocyte differentiation. Repression of endogenous miR-27a-3p leads to increased enterocyte differentiation and decreased intestinal epithelial cell proliferation in mouse and human small intestinal organoids. Mechanistically, miR-27a-3p regulates intestinal cell differentiation and proliferation at least in part through the regulation of retinoic acid receptor α (RXRα), a modulator of Wnt/β-catenin signalling. Repression of miR-27a-3p increases the expression of RXRα and concomitantly, decreases the expression of active β-catenin and cyclin D1. In contrast, overexpression of miR-27a-3p mimic decreases the expression of RXRα and increases the expression of active β-catenin and cyclin D1. Moreover, overexpression of the miR-27a-3p mimic results in impaired enterocyte differentiation and increases intestinal epithelial cell proliferation. These alterations were attenuated or blocked by Wnt inhibition. Our study demonstrates an miR-27a-3p/RXRα/Wnt/β-catenin pathway that is important for the maintenance of enterocyte homeostasis in the small intestine.
Collapse
Affiliation(s)
- Chang Li
- Markey Cancer Center, University of KentuckyLexingtonKentuckyUSA
| | - Yuning Zhou
- Markey Cancer Center, University of KentuckyLexingtonKentuckyUSA
| | - Yinping Jiang
- Markey Cancer Center, University of KentuckyLexingtonKentuckyUSA
| | - Zhijie Yin
- Markey Cancer Center, University of KentuckyLexingtonKentuckyUSA
| | - Heidi L. Weiss
- Markey Cancer Center, University of KentuckyLexingtonKentuckyUSA
| | - Qingding Wang
- Markey Cancer Center, University of KentuckyLexingtonKentuckyUSA
- Department of SurgeryUniversity of KentuckyLexingtonKentuckyUSA
| | - B. Mark Evers
- Markey Cancer Center, University of KentuckyLexingtonKentuckyUSA
- Department of SurgeryUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
10
|
Hörner M, Burkard N, Kelm M, Leist A, Selig T, Kollmann C, Meir M, Otto C, Germer C, Kretzschmar K, Flemming S, Schlegel N. Glial cell line derived neurotrophic factor (GDNF) induces mucosal healing via intestinal stem cell niche activation. Cell Prolif 2025; 58:e13758. [PMID: 39610047 PMCID: PMC11839185 DOI: 10.1111/cpr.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 11/30/2024] Open
Abstract
Mucosal healing is critical to maintain and restore intestinal homeostasis in inflammation. Previous data provide evidence that glial cell line-derived neurotrophic factor (GDNF) restores epithelial integrity by largely undefined mechanisms. Here, we assessed the role of GDNF for mucosal healing. In dextran sodium sulphate (DSS)-induced colitis in mice application of GDNF enhanced recovery as revealed by reduced disease activity index and histological inflammation scores. In biopsy-based wounding experiments GDNF application in mice improved healing of the intestinal mucosa. GDNF-induced epithelial recovery was also evident in wound assays from intestinal organoids and Caco2 cells. These observations were accompanied by an increased number of Ki67-positive cells in vivo after GDNF treatment, which were present along elongated proliferative areas within the crypts. In addition, the intestinal stem cell marker and R-spondin receptor LGR5 was significantly upregulated following GDNF treatment in all experimental models. The effects of GDNF on cell proliferation, LGR5 and Ki67 upregulation were blocked using the RET-specific inhibitor BLU-667. Downstream of RET-phosphorylation, activation of Src kinase was involved to mediate GDNF effects. GDNF promotes intestinal wound healing by promoting cell proliferation. This is mediated by RET-dependent activation of Src kinase with consecutive LGR5 upregulation, indicating activation of the stem cell niche.
Collapse
Affiliation(s)
- Marius Hörner
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Natalie Burkard
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Matthias Kelm
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Antonia Leist
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Thekla Selig
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Catherine Kollmann
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Michael Meir
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Christoph Otto
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Christoph‐Thomas Germer
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Kai Kretzschmar
- Mildred Scheel Early Career Centre for Cancer Research WuerzburgUniversity Hospital Wuerzburg, MSNZ/IZKFWuerzburgGermany
| | - Sven Flemming
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| | - Nicolas Schlegel
- Department of General, VisceralVascular and Pediatric Surgery University Hospital WuerzburgWuerzburgGermany
| |
Collapse
|
11
|
Lishai EA, Ponomarev DV, Zaparina OG, Pakharukova MY. Transcriptome analysis reveals significant discrepancies between two in vitro models of host-trematode interaction. Acta Trop 2025; 262:107534. [PMID: 39864722 DOI: 10.1016/j.actatropica.2025.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Cell models emulating an in vitro parasitic infection can greatly improve our understanding of helminthiases. Nonetheless, it remains challenging to select an appropriate in vitro model to study molecular pathogenesis of infections by trematodes having a complex life cycle. Therefore, adequate models are in high demand. The epidemiologically important foodborne trematode Opisthorchis felineus parasitizes bile ducts of fish-eating mammals, including humans. The human infection leads to chronic inflammation and biliary intraepithelial neoplasia, which is considered precancerous. This study was aimed at evaluating two useful in vitro research tools based on human cholangiocytes' (H69 cells') response to the trematode: coculture with live worms or incubation with parasite-derived excretory-secretory products (ESPs). We assessed H69 cells' proliferation, migration rate, cell cycle shift, and cytokine production. We also conducted genome-wide transcriptome analysis to identify affected cascades of regulatory signaling events. We demonstrated significant discrepancies between the two in vitro models of host-parasite interactions. Although differences between the two models in cell proliferation and cell migration rate were weak, there were substantial differences in the production and release of cytokines IL-6, IL-4, and TNF. A total of 144 genes in H69 cells were found to be differentially expressed after coculture with live worms, whereas 537 genes were differentially expressed after exposure to ESPs. Transcriptomic analysis revealed only 11 common upregulated genes and six common downregulated genes. Functional enrichment analysis of the gene sets also revealed some striking differences between the in vitro models. Our data will contribute to a deeper understanding of biliary neoplasia associated with liver fluke infection. This study underscores the importance of choosing an appropriate in vitro model to accurately emulate host-parasite interactions. The data also highlight the need for further investigation into the pathogenesis of the precancerous biliary lesions associated with liver fluke infection.
Collapse
Affiliation(s)
- Ekaterina A Lishai
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk, 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia
| | - Dmitry V Ponomarev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Oxana G Zaparina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Maria Y Pakharukova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk, 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia.
| |
Collapse
|
12
|
Muttiah B, Law JX. Milk-derived extracellular vesicles and gut health. NPJ Sci Food 2025; 9:12. [PMID: 39885215 PMCID: PMC11782608 DOI: 10.1038/s41538-025-00375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
Milk is a nutrient-rich liquid produced by mammals, offering various health benefits due to its composition of proteins, fats, carbohydrates, vitamins, and minerals. Beyond traditional nutritional aspects, recent research has focused on extracellular vesicles (EVs) found in milk and their potential health benefits, especially for gastrointestinal (GI) health. Milk-derived EVs have been shown to influence gut microbiota, promote gut barrier integrity, support tissue repair and regeneration, modulate immune responses, and potentially aid in managing conditions like inflammatory bowel disease (IBD) and colorectal cancer. This review discusses the current understanding of milk-EVs' effects on gut health, highlighting their potential therapeutic applications and future research directions. These findings underscore the promising role of milk-derived EVs in advancing GI health and therapeutics, paving the way for innovative approaches in oral drug delivery and targeted treatments for GI disorders.
Collapse
Affiliation(s)
- Barathan Muttiah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Grommisch D, Lund H, Eenjes E, Julien A, Göritz C, Harris RA, Sandberg R, Hagemann-Jensen M, Genander M. Regionalized cell and gene signatures govern esophageal epithelial homeostasis. Dev Cell 2025; 60:320-336.e9. [PMID: 39426382 DOI: 10.1016/j.devcel.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/14/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024]
Abstract
Regionalized disease prevalence is a common feature of the gastrointestinal tract. Herein, we employed regionally resolved Smart-seq3 single-cell sequencing, generating a comprehensive cell atlas of the adult mouse esophagus. Characterizing the esophageal axis, we identify non-uniform distribution of epithelial basal cells, fibroblasts, and immune cells. In addition, we demonstrate a position-dependent, but cell subpopulation-independent, transcriptional signature, collectively generating a regionalized esophageal landscape. Combining in vivo models with organoid co-cultures, we demonstrate that proximal and distal basal progenitor cell states are functionally distinct. We find that proximal fibroblasts are more permissive for organoid growth compared with distal fibroblasts and that the immune cell profile is regionalized in two dimensions, where proximal-distal and epithelial-stromal gradients impact epithelial maintenance. Finally, we predict and verify how WNT, BMP, insulin growth factor (IGF), and neuregulin (NRG) signaling are differentially engaged along the esophageal axis. We establish a cellular and transcriptional framework for understanding esophageal regionalization, providing a functional basis for epithelial disease susceptibility.
Collapse
Affiliation(s)
- David Grommisch
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Harald Lund
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Evelien Eenjes
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anais Julien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Centre for Molecular Medicine, Karolinska Hospital, Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Maria Genander
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Singh P, Mohanty B. Neurotensin receptor agonist PD149163 modulates LPS-induced enterocyte apoptosis by downregulating TNFR pathway and executioner caspase 3 in endotoxemic mice: insights from in vivo and in silico study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03794-9. [PMID: 39812770 DOI: 10.1007/s00210-025-03794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
This study was designed to evaluate the dose-dependent efficacy of neurotensin receptor-1 (NTSR1) agonist PD149163 in the amelioration of the lipopolysaccharide (LPS)-induced apoptosis in the gastrointestinal tract (GIT) of mice. PD149163 is an analogue of NTS, a GIT tri-decapeptide with anti-inflammatory and anti-oxidative effects. Swiss-albino mice (female/8 weeks/25 ± 2.5 g) were divided into six groups: control; LPS, LPS + PD149163L, and LPS + PD149163H groups were treated with LPS (0.2 μmol/L/kgBW; 5 days), followed by exposure of PD149163 to LPS + PD149163L (10.6 μmol/L/kgBW), and LPS + PD149163H (21.2 μmol/L/kgBW) for 28 days. OnlyPD149163L (10.6 μmol/L/kgBW) and onlyPD149163H (21.2 μmol/L/kgBW) groups were maintained for 28 days. Both the LPS and PD149163 were given intraperitoneally. PD149163 treatment for 4 weeks alleviated the LPS-induced enterocyte apoptosis in a dose-dependent manner. LPS-induced excessive levels of caspase-3, tumour necrosis factor-α, and leptin (biomarkers of LPS-induced apoptosis) in plasma were decreased by PD149163H treatment. Moreover, LPS-induced gut oxidative stress was ameliorated by PD149163H supplementation, as evidenced by the decreased content of malondialdehyde, lipid-hydroperoxide and increased level of superoxide-dismutase, catalase. Furthermore, PD149163H mediated elevation of the plasma anti-apoptotic protein (B-cell leukaemia/lymphoma-2) along with the NTS level contributed to the modulation of LPS-induced enterocyte apoptosis, reflected in histopathology. In vivo results were substantiated with in silico molecular docking analysis that predicted the binding of PD149163-TLR4 complex, suggesting that PD149163 can act as a TLR4 modulator and inhibit the activation of TLR4. The role of PD149163 in ameliorating GIT apoptosis by its anti-apoptotic and antioxidative effects is suggested. Further research may provide significant insights into the therapeutic intervention of PD149163 in apoptosis-related diseases of GIT.
Collapse
Affiliation(s)
- Priya Singh
- Department of Zoology, University of Allahabad, Senate House, University Road, Old Katra, Prayagraj, Uttar Pradesh, 211002, India
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Senate House, University Road, Old Katra, Prayagraj, Uttar Pradesh, 211002, India.
| |
Collapse
|
15
|
Takashima S, Sharma R, Chang W, Calafiore M, Fu YY, Jansen SA, Ito T, Egorova A, Kuttiyara J, Arnhold V, Sharrock J, Santosa E, Chaudhary O, Geiger H, Iwasaki H, Liu C, Sun J, Robine N, Mazutis L, Lindemans CA, Hanash AM. STAT1 regulates immune-mediated intestinal stem cell proliferation and epithelial regeneration. Nat Commun 2025; 16:138. [PMID: 39746933 PMCID: PMC11697299 DOI: 10.1038/s41467-024-55227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
The role of the immune system in regulating tissue stem cells remains poorly understood, as does the relationship between immune-mediated tissue damage and regeneration. Graft vs. host disease (GVHD) occurring after allogeneic bone marrow transplantation (allo-BMT) involves immune-mediated damage to the intestinal epithelium and its stem cell compartment. To assess impacts of T-cell-driven injury on distinct epithelial constituents, we have performed single cell RNA sequencing on intestinal crypts following experimental BMT. Intestinal stem cells (ISCs) from GVHD mice have exhibited global transcriptomic changes associated with a substantial Interferon-γ response and upregulation of STAT1. To determine its role in crypt function, STAT1 has been deleted within murine intestinal epithelium. Following allo-BMT, STAT1 deficiency has resulted in reduced epithelial proliferation and impaired ISC recovery. Similarly, epithelial Interferon-γ receptor deletion has also attenuated proliferation and ISC recovery post-transplant. Investigating the mechanistic basis underlying this epithelial response, ISC STAT1 expression in GVHD has been found to correlate with upregulation of ISC c-Myc. Furthermore, activated T cells have stimulated Interferon-γ-dependent epithelial regeneration in co-cultured organoids, and Interferon-γ has directly induced STAT1-dependent c-Myc expression and ISC proliferation. These findings illustrate immunologic regulation of a core tissue stem cell program after damage and support a role for Interferon-γ as a direct contributor to epithelial regeneration.
Collapse
Affiliation(s)
- Shuichiro Takashima
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Hematology, NHO Kyushu Medical Center, Fukuoka, Fukuoka, 810-8563, Japan
| | | | - Winston Chang
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Immunology & Microbial Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marco Calafiore
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ya-Yuan Fu
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Suze A Jansen
- Division of Pediatrics, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 AB, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Takahiro Ito
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Anastasiya Egorova
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jason Kuttiyara
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Viktor Arnhold
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jessica Sharrock
- Immunology & Microbial Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Endi Santosa
- Immunology & Microbial Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ojasvi Chaudhary
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Hiromi Iwasaki
- Department of Hematology, NHO Kyushu Medical Center, Fukuoka, Fukuoka, 810-8563, Japan
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Joseph Sun
- Immunology & Microbial Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Linas Mazutis
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Institute of Biotechnology Vilnius University, Vilnius, LT-10257, Lithuania
| | - Caroline A Lindemans
- Division of Pediatrics, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 AB, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Alan M Hanash
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Immunology & Microbial Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
16
|
Seubert AC, Krafft M, Bopp S, Helal M, Bhandare P, Wolf E, Alemany A, Riedel A, Kretzschmar K. Spatial transcriptomics reveals molecular cues underlying the site specificity of the adult mouse oral mucosa and its stem cell niches. Stem Cell Reports 2024; 19:1706-1719. [PMID: 39547226 PMCID: PMC11751799 DOI: 10.1016/j.stemcr.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
The oral cavity is a multifunctional organ composed of structurally heterogeneous mucosal tissues that remain poorly characterized. Oral mucosal tissues are highly stratified and segmented along an epithelial-lamina propria axis. Here, we performed spatial transcriptomics (tomo-seq) on the tongue, cheeks, and palate of the adult mouse to understand the cues that maintain the oral mucosal sites. We define molecular markers of unique and shared cellular niches and differentiation programs across oral sites. Using a comparative approach, we identify fibroblast growth factor (FGF) pathway components as potential stem cell niche factors for oral epithelial stem cells. Using organoid-forming efficiency assays, we validated three FGF ligands (FGF1, FGF7, and FGF10) as site-specific niche factors in the dorsal and ventral tongue. Our dataset of the spatially resolved genes across major oral sites represents a comprehensive resource for unraveling the molecular mechanisms underlying the adult homeostasis of the oral mucosa and its stem cell niches.
Collapse
Affiliation(s)
- Anna C Seubert
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany
| | - Marion Krafft
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany
| | - Sarah Bopp
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany
| | - Moutaz Helal
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany
| | | | - Elmar Wolf
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Anna Alemany
- Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden, the Netherlands
| | - Angela Riedel
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany
| | - Kai Kretzschmar
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany.
| |
Collapse
|
17
|
Yu LE, Yang WC, Liang YC. Crosstalk Within the Intestinal Epithelium: Aspects of Intestinal Absorption, Homeostasis, and Immunity. Biomedicines 2024; 12:2771. [PMID: 39767678 PMCID: PMC11673925 DOI: 10.3390/biomedicines12122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Gut health is crucial in many ways, such as in improving human health in general and enhancing production in agricultural animals. To maximize the effect of a healthy gastrointestinal tract (GIT), an understanding of the regulation of intestinal functions is needed. Proper intestinal functions depend on the activity, composition, and behavior of intestinal epithelial cells (IECs). There are various types of IECs, including enterocytes, Paneth cells, enteroendocrine cells (EECs), goblet cells, tuft cells, M cells, and intestinal epithelial stem cells (IESCs), each with unique 3D structures and IEC distributions. Although the communication between IECs and other cell types, such as immune cells and neurons, has been intensively reviewed, communication between different IECs has rarely been addressed. The present paper overviews the networks among IECs that influence intestinal functions. Intestinal absorption is regulated by incretins derived from EECs that induce nutrient transporter activity in enterocytes. EECs, Paneth cells, tuft cells, and enterocytes release signals to activate Notch signaling, which modulates IESC activity and intestinal homeostasis, including proliferation and differentiation. Intestinal immunity can be altered via EECs, goblet cells, tuft cells, and cytokines derived from IECs. Finally, tools for investigating IEC communication have been discussed, including the novel 3D intestinal cell model utilizing enteroids that can be considered a powerful tool for IEC communication research. Overall, the importance of IEC communication, especially EECs and Paneth cells, which cover most intestinal functional regulating pathways, are overviewed in this paper. Such a compilation will be helpful in developing strategies for maintaining gut health.
Collapse
Affiliation(s)
| | | | - Yu-Chaun Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan; (L.-E.Y.); (W.-C.Y.)
| |
Collapse
|
18
|
Li Y, Zhu Z, He S, Tang J, Zhang Y, Yang Y, Dong Y, He L, Jia Y, Liu X. Shenling Baizhu Decoction treats ulcerative colitis of spleen-deficiency and dampness obstruction types by targeting 'gut microbiota and galactose metabolism-bone marrow' axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118599. [PMID: 39043352 DOI: 10.1016/j.jep.2024.118599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenlin Baizhu Decoction (SLBZD), which comes from 'Taiping Huimin Heji Ju Fang', belongs to a classical prescription for treating spleen deficiency and dampness obstruction (SQDDS)-type ulcerative colitis (UC) in traditional Chinese medicine. However, the mechanism of SLBZD in treating UC with SQDDS remains unclear. AIM OF THE STUDY This study aims to investigate the mechanism of SLBZD against SQDDS-type UC of based on the "gut microbiota and metabolism - bone marrow" axis to induce endogenous bone marrow mesenchymal stem cells (BMSCs) homing. MATERIALS AND METHODS Ultra-performance liquid chromatography-mass spectrometry was used to analysis of SLBZD qualitatively. The efficacy of SLBZD in SQDDS-type UC was evaluated based on the following indicators: the body weight, colon length, disease activity index (DAI) score, Haemotoxylin and Eosin (H&E) pathological sections, and intestinal permeability proteins (occluding and ZO-1). 16S rRNA gene sequencing and non-target metabolomics were performed to identify gut microbiota changes and its metabolites in feces, respectively. BMSCs in each group was collected, cultured, and analyzed. Optimal passaged BMSCs were injected by tail vein into UC rats of SQDDS types. BMSCs homing to the colonic mucosal tissue was observed by immunofluorescent. Finally, the repairing effect of BMSCs homing to the colonic mucosal tissue after SLBZD treatment was analyzed by transmission electron microscopy, qRT-PCR, and immunohistochemistry. RESULTS SLBZD effectively improved the colonic length and the body weight, reduced DAI and H&E scores, and increased the expression of the intestinal permeability proteins, including occluding and ZO-1, to treat SQDDS-type UC. After SLBZD treatment, the α-diversity and β-diversity of the gut microbiota were improved. The differential microbiota was screened as Aeromonadaceae, Lactobacillaceae, and Clostridiaceae at the family level, and Aeromonas, Lactobacillus, Clostridium_sensu_stricto_1 at the genus level. Meanwhile, the main metabolic pathway was the galactose metabolism pathway. SLBZD treatment timely corrected the aberrant levels of β-galactose in peripheral blood and bone marrow, senescence-associate-β-galactosidase in BMSCs, and galactose kinase-2, galactose mutase, and galactosidase beta-1 in peripheral blood to further elevate the expression levels of senescence-associated (SA) proteins (p16, p53, p21, and p27) in BMSCs. The Spearman's correlation analysis demonstrated the relationship between microbiota and metabolism, and the relationship between the galactose metabolism pathway and SA proteins. After BMSCs in each group injection via the tail vein, the pharmacodynamic effects were consistent with those of SLBZD in SQDDS-type UC rats. Furthermore, BMSCs have been homing to colonic mucosal tissue. BMSCs from the SLBZD treatment group had stronger restorative effects on intestinal permeability function due to increasing protein and mRNA expressions of occludin and ZO-1, and decreasing the proteins and mRNA expressions of SDF-1 and CXCR4 in colon. CONCLUSIONS SLBZD alleviated the damaged structure of gut microbiota and regulated their metabolism, specifically the galactose metabolism, to treat UC of SDDOS types. SLBZD treatment promotes endogenous BMSCs homing to colonic mucosal tissue to repaire the intestinal permeability. The current exploration revealed an underlying mechanism wherein SLBZD activates endogenous BMSCs by targeting 'the gut microbiota and its metabolism-bone marrow' axis and repairs colonic mucosal damage to treat SDDOS-type UC.
Collapse
Affiliation(s)
- Yongyu Li
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Zhongbo Zhu
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Shu He
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Jing Tang
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Yanmei Zhang
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Yujie Yang
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Yawei Dong
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Lanlan He
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Yuxin Jia
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Xiping Liu
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
19
|
Wang C, Qiu M, Wang S, Luo J, Huang L, Deng Q, Fang Z, Sun L, Gooneratne R. Gut-Microbiota-Derived Butyric Acid Overload Contributes to Ileal Mucosal Barrier Damage in Late Phase of Chronic Unpredictable Mild Stress Mice. Int J Mol Sci 2024; 25:12998. [PMID: 39684708 DOI: 10.3390/ijms252312998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Intestinal mucosal barrier damage is regarded as the critical factor through which chronic unpredictable mild stress (CUMS) leads to a variety of physical and mental health problems. However, the exact mechanism by which CUMS induces intestinal mucosal barrier damage is unclear. In this study, 14, 28, and 42 d CUMS model mice were established. The indicators related to ileal mucosal barrier damage (IMBD), the composition of the ileal microbiota and its amino acid (AA) and short-chain fatty acid (SCFA) metabolic functions, and free amino acid (FAA) and SCFA levels in the ileal lumen were measured before and after each stress period. The correlations between them are analyzed to investigate how CUMS induces intestinal mucosal barrier damage in male C57BL/6 mice. With the progression of CUMS, butyric acid (BA) levels decreased (14 and 28 d) and then increased (42 d), and IMBD progressively increased. In the late CUMS stage (42 d), the degree of IMBD is most severe and positively correlated with significantly increased BA levels (p < 0.05) in the ileal lumen and negatively correlated with significantly decreased FAAs, such as aspartic, glutamic, alanine, and glycine levels (p < 0.05). In the ileal lumen, the abundance of BA-producing bacteria (Muribaculaceae, Ruminococcus, and Butyricicoccus) and the gene abundance of specific AA degradation and BA production pathways and their related enzymes are significantly increased (p < 0.05). In addition, there is a significant decrease (p < 0.05) in the abundance of core bacteria (Prevotella, Lactobacillus, Turicibacter, Blautia, and Barnesiella) that rely on these specific AAs for growth and/or are sensitive to BA. These changes, in turn, promote further colonization of BA-producing bacteria, exacerbating the over-accumulation of BA in the ileal lumen. These results were validated by ileal microbiota in vitro culture experiments. In summary, in the late CUMS stages, IMBD is related to an excessive accumulation of BA caused by dysbiosis of the ileal microbiota and its overactive AA degradation.
Collapse
Affiliation(s)
- Chen Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mei Qiu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuo Wang
- College of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen 518107, China
| | - Jinjin Luo
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ling Huang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qi Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhijia Fang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lijun Sun
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand
| |
Collapse
|
20
|
Chen L, Xu X. Mouse Small Intestinal Organoid Cultures. Methods Mol Biol 2024. [PMID: 39570547 DOI: 10.1007/7651_2024_576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The intestinal epithelium is a highly dynamic and self-renewing tissue that is crucial for maintaining gut homeostasis. It can be cultured in vitro from isolated crypts to form three-dimensional (3D) intestinal organoids. These organoids have the ability to proliferate and differentiate into various epithelial cell lineages, offering a more physiologically relevant model compared to traditional two-dimensional (2D) culture systems. Mesenchymal cells, located near epithelial cells, regulate epithelial behavior through paracrine signaling and provide structural support. Building on recent advances in the biology of epithelial and mesenchymal cells, we have developed a coculture system that integrates intestinal organoids with mesenchymal cells. In this system, intestinal organoids are cultured in direct or indirect contact with mesenchymal cells, allowing for the simulation of signal exchange and interactions within the in vivo-like microenvironment. This coculture system not only preserves the 3D architecture of the organoids but also enhances their physiological relevance by introducing cellular complexity. The system is capable of long-term maintenance and is adaptable to a wide range of experimental manipulations. As such, this coculture model serves as a powerful tool for studying the interactions between the intestinal epithelium and its surrounding stroma, providing new insights into stem cell biology, tissue regeneration, and disease mechanisms. Here, we introduce the methods of mouse crypt isolation, intestinal organoid culture, and its coculture with mesenchymal cell.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
- Institute of Microphysiological Systems, Southeast University, Nanjing, China.
| | - Xiaoting Xu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| |
Collapse
|
21
|
Guha TK, Esplin ED, Horning AM, Chiu R, Paul K, Weimer AK, Becker WR, Laquindanum R, Mills MA, Glen Esplin D, Shen J, Monte E, White S, Karathanos TV, Cotter D, Bi J, Ladabaum U, Longacre TA, Curtis C, Greenleaf WJ, Ford JM, Snyder MP. Single-cell spatial mapping reveals alteration of cell type composition and tissue microenvironment during early colorectal cancer formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.622725. [PMID: 39605357 PMCID: PMC11601668 DOI: 10.1101/2024.11.20.622725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer mortality in the United States. Familial adenomatous polyposis (FAP) is a hereditary syndrome that raises the risk of developing CRC, with total colectomy as the only effective prevention. Even though FAP is rare (0.5% of all CRC cases), this disease model is well suited for studying the early stages of malignant transformation as patients form many polyps reflective of pre-cancer states. In order to spatially profile and analyze the pre-cancer and tumor microenvironment, we have performed single-cell multiplexed imaging for 52 samples: 12 normal mucosa,16 FAP mucosa,18 FAP polyps, 2 FAP adenocarcinoma, and 4 sporadic colorectal cancer (CRCs) using Co-detection by Indexing (CODEX) imaging platform. The data revealed significant changes in cell type composition occurring in early stage polyps and during the malignant transformation of polyps to CRC. We observe a decrease in CD4+/CD8+ T cell ratio and M1/M2 macrophage ratio along the FAP disease continuum. Advanced dysplastic polyps show a higher population of cancer associated fibroblasts (CAFs), which likely alter the pre-cancer microenvironment. Within polyps and CRCs, we observe strong nuclear expression of beta-catenin and higher number neo-angiogenesis events, unlike FAP mucosa and normal colon counterparts. We identify an increase in cancer stem cells (CSCs) within the glandular crypts of the FAP polyps and also detect Tregs, tumor associated macrophages (TAMs) and vascular endothelial cells supporting CSC survival and proliferation. We detect a potential immunosuppressive microenvironment within the tumor 'nest' of FAP adenocarcinoma samples, where tumor cells tend to segregate and remain distant from the invading immune cells. TAMs were found to infiltrate the tumor area, along with angiogenesis and tumor proliferation. CAFs were found to be enriched near the inflammatory region within polyps and CRCs and may have several roles in supporting tumor growth. Neighborhood analyses between adjacent FAP mucosa and FAP polyps show significant differences in spatial location of cells based on functionality. For example, in FAP mucosa, naive CD4+ T cells alone tend to localize near the fibroblast within the stromal compartment. However, in FAP polyp, CD4+T cells colocalize with the macrophages for T cell activation. Our data are expected to serve as a useful resource for understanding the early stages of neogenesis and the pre-cancer microenvironment, which may benefit early detection, therapeutic intervention and future prevention.
Collapse
Affiliation(s)
- Tuhin K Guha
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Edward D Esplin
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | | | | | - Kristina Paul
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Annika K Weimer
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Meredith A Mills
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305
| | - D Glen Esplin
- Animal Reference Pathology, Salt Lake City, UT 84107
| | - Jeanne Shen
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305
| | - Emma Monte
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Shannon White
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | | | - Daniel Cotter
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Joanna Bi
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Uri Ladabaum
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305
| | - Teri A Longacre
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305
| | - Christina Curtis
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305
| | - William J Greenleaf
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - James M Ford
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| |
Collapse
|
22
|
Shin JH, Park J, Lim J, Jeong J, Dinesh RK, Maher SE, Kim J, Park S, Hong JY, Wysolmerski J, Choi J, Bothwell ALM. Metastasis of colon cancer requires Dickkopf-2 to generate cancer cells with Paneth cell properties. eLife 2024; 13:RP97279. [PMID: 39535280 PMCID: PMC11560131 DOI: 10.7554/elife.97279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.
Collapse
Affiliation(s)
- Jae Hun Shin
- Integrative Science and Engineering Division, Underwood International College, Yonsei UniversityIncheonRepublic of Korea
- Institute of Advanced Bio-Industry Convergence, Yonsei UniversitySeoulRepublic of Korea
| | - Jooyoung Park
- Department of Biomedical Sciences, Korea University College of MedicineSeoulRepublic of Korea
| | - Jaechul Lim
- College of Veterinary Medicine, Seoul National UniversitySeoulRepublic of Korea
| | - Jaekwang Jeong
- Internal Medicine, Yale University School of MedicineNew HavenUnited States
| | - Ravi K Dinesh
- Department of Pathology, Stanford UniversityStanfordUnited States
| | - Stephen E Maher
- Department of Urology, Yale University School of MedicineNew HavenUnited States
| | - Jeonghyun Kim
- Institute of Advanced Bio-Industry Convergence, Yonsei UniversitySeoulRepublic of Korea
| | - Soyeon Park
- Institute of Advanced Bio-Industry Convergence, Yonsei UniversitySeoulRepublic of Korea
| | - Jun Young Hong
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei UniversitySeoulRepublic of Korea
| | - John Wysolmerski
- Internal Medicine, Yale University School of MedicineNew HavenUnited States
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of MedicineSeoulRepublic of Korea
| | - Alfred LM Bothwell
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical CenterOmahaUnited States
- Department of Immunobiology, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
23
|
An S, Huh H, Ko JS, Moon JS, Cho KY. Establishment and Characterization of Patient-Derived Intestinal Organoids from Pediatric Crohn's Disease Patients. Pediatr Gastroenterol Hepatol Nutr 2024; 27:355-363. [PMID: 39563842 PMCID: PMC11570352 DOI: 10.5223/pghn.2024.27.6.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024] Open
Abstract
Purpose This study aimed to establish and characterize patient-derived intestinal organoids (PDOs) from children with Crohn's disease (CD). Methods To generate PDOs, endoscopic biopsy specimens were obtained from non-inflamed duodenal bulbs of normal controls and CD patients. To verify the presence of PDOs, histological staining and quantitative reverse transcription polymerase chain reaction (RT-qPCR) analyses were performed. Results PDOs were successfully established in normal controls (n=2) and CD patients (n=2). Hematoxylin and eosin staining of formalin-fixed, paraffin-embedded PDO sections revealed crypt and villus structures, whereas immunofluorescence staining with EpCAM and DAPI confirmed the epithelial-specific architecture of the PDOs. RT-qPCR results revealed a significant increase in Lgr5, Si, and Chga gene expression and a decrease in Olfm4 and Muc2 expression in CD patients compared to normal controls, suggesting altered stem cell activity and mucosal barrier function (p<0.05). Conclusion We successfully established and characterized PDOs in children with CD, providing a valuable tool for understanding the pathophysiology of the disease and evaluating potential therapeutic approaches. The differential gene expression of PDOs in CD patients might be caused by the complex interplay between epithelial adaptation and inflammation in the intestinal epithelium.
Collapse
Affiliation(s)
- Sunghyun An
- Department of Pediatrics, Hallym University Industry Academic Cooperation Foundation, Seoul, Korea
| | - Homin Huh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Soo Moon
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Ky Young Cho
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| |
Collapse
|
24
|
Isildar B, Beydogan AB, Koyuturk E, Coskun Yazici ZM, Koyuturk M, Bolkent S. Effects of ∆-9 tetrahydrocannabinol on the small intestine altered by high fructose diet: A Histopathological study. Histochem Cell Biol 2024; 162:363-372. [PMID: 39110194 PMCID: PMC11393283 DOI: 10.1007/s00418-024-02311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/13/2024]
Abstract
The consumption of fructose is increasing day by day. Understanding the impact of increasing fructose consumption on the small intestine is crucial since the small intestine processes fructose into glucose. ∆9-Tetrahydrocannabinol (THC), a key cannabinoid, interacts with CB1 and CB2 receptors in the gastrointestinal tract, potentially mitigating inflammation. Therefore, this study aimed to investigate the effects of the high-fructose diet (HFD) on the jejunum of rats and the role of THC consumption in reversing these effects. Experiments were conducted on Sprague-Dawley rats, with the experimental groups as follows: control (C), HFD, THC, and HFD + THC. The HFD group received a 10% fructose solution in drinking water for 12 weeks. THC groups were administered 1.5 mg/kg/day of THC intraperitoneally for the last four weeks. Following sacrification, the jejunum was evaluated for mucus secretion capacity. IL-6, JNK, CB2 and PCNA expressions were assessed through immunohistochemical analysis and the ultrastructural alterations via transmission electron microscopy. The results showed that fructose consumption did not cause weight gain but triggered inflammation in the jejunum, disrupted the cell proliferation balance, and increased mucus secretion in rats. Conversely, THC treatment displayed suppressed inflammation and improved cell proliferation balance caused by HFD. Ultrastructural examinations showed that the zonula occludens structures deteriorated in the HFD group, along with desmosome shrinkage. Mitochondria were found to be increased due to THC application following HFD. In conclusion, the findings of this research reveal the therapeutic potential of THC in reversing HFD-related alterations and provide valuable insights for clinical application.
Collapse
Affiliation(s)
- Basak Isildar
- Department of Histology and Embryology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Alisa Bahar Beydogan
- Department of Medical Biology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ece Koyuturk
- Faculty of Medicine, Otto-Von-Guericke-Universität Magdeburg, Magdeburg, Germany.
| | - Zeynep Mine Coskun Yazici
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| | - Meral Koyuturk
- Department of Histology and Embryology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Sema Bolkent
- Department of Medical Biology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| |
Collapse
|
25
|
Kurokawa Y, Watanabe S, Yano T, Izumi T, Hidaka N, Yamaguchi T, Tanaka M. Valproic acid alleviates total-body irradiation-induced small intestinal mucositis in mice. Int J Radiat Biol 2024; 100:1642-1649. [PMID: 39437146 DOI: 10.1080/09553002.2024.2418514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Gastrointestinal (GI) injury is one of the serious problems of total-body irradiation (TBI). However, no fundamental treatment for TBI and other radiation-induced GI injury has yet been established. Valproic acid (VPA) administration reduces mortality in mice subjected to total-body irradiation (TBI) with X-rays. This study aimed to evaluate the effects of VPA on GI injury induced by TBI in mice. MATERIALS AND METHODS Mice were subjected to TBI with X-rays to induce GI injury. Changes in survival and weight were observed after VPA administration. The small intestine was then sampled at 0, 1, 3, 7, and 10 d after irradiation for histological and immunohistological evaluation and measurement of myeloperoxidase (MPO) activity and inflammatory cytokine levels (IL-1β). RESULTS VPA (200 and 600 mg/kg) increased survival rate and reduced weight loss in model mice. IL-1β expression 1 d after irradiation was significantly lower in the VPA group than that in the vehicle group. Furthermore, the increase in MPO activity at 3 and 7 d after irradiation was significantly suppressed by VPA administration. Histological examination (hematoxylin and eosin staining) revealed that 600 mg/kg VPA inhibited inflammatory cell infiltration. Immunostaining for the proliferating cell nuclear antigen involved in cell proliferation showed that VPA suppressed the irradiation-induced decrease in cell proliferative capacity. CONCLUSIONS Treatment with VPA in mice with GI injury caused by TBI suppressed inflammatory responses in small intestinal mucosal cells. These results suggest that VPA may be a useful therapeutic agent against TBI-induced small intestinal mucositis.
Collapse
Affiliation(s)
- Yukiro Kurokawa
- Division of Pharmacy, Ehime University Hospital, Toon, Ehime, Japan
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Shinichi Watanabe
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Takaaki Yano
- Division of Pharmacy, Ehime University Hospital, Toon, Ehime, Japan
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Tomoki Izumi
- Division of Pharmacy, Ehime University Hospital, Toon, Ehime, Japan
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Noriaki Hidaka
- Division of Pharmacy, Ehime University Hospital, Toon, Ehime, Japan
| | - Takumi Yamaguchi
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Mamoru Tanaka
- Division of Pharmacy, Ehime University Hospital, Toon, Ehime, Japan
| |
Collapse
|
26
|
Kayama H, Takeda K. Regulation of intestinal epithelial homeostasis by mesenchymal cells. Inflamm Regen 2024; 44:42. [PMID: 39327633 PMCID: PMC11426228 DOI: 10.1186/s41232-024-00355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
The gastrointestinal tract harbors diverse microorganisms in the lumen. Epithelial cells segregate the luminal microorganisms from immune cells in the lamina propria by constructing chemical and physical barriers through the production of various factors to prevent excessive immune responses against microbes. Therefore, perturbations of epithelial integrity are linked to the development of gastrointestinal disorders. Several mesenchymal stromal cell populations, including fibroblasts, myofibroblasts, pericytes, and myocytes, contribute to the establishment and maintenance of epithelial homeostasis in the gut through regulation of the self-renewal, proliferation, and differentiation of intestinal stem cells. Recent studies have revealed alterations in the composition of intestinal mesenchymal stromal cells in patients with inflammatory bowel disease and colorectal cancer. A better understanding of the interplay between mesenchymal stromal cells and epithelial cells associated with intestinal health and diseases will facilitate identification of novel biomarkers and therapeutic targets for gastrointestinal disorders. This review summarizes the key findings obtained to date on the mechanisms by which functionally distinct mesenchymal stromal cells regulate epithelial integrity in intestinal health and diseases at different developmental stages.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
27
|
Shin JH, Park J, Lim J, Jeong J, Dinesh RK, Maher SE, Kim J, Park S, Hong JY, Wysolmerski J, Choi J, Bothwell ALM. Metastasis of colon cancer requires Dickkopf-2 to generate cancer cells with Paneth cell properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589235. [PMID: 38659853 PMCID: PMC11042192 DOI: 10.1101/2024.04.12.589235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2-knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested Hepatocyte nuclear factor 4-alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.
Collapse
Affiliation(s)
- Jae Hun Shin
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon 21983, Korea
- Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea
| | - Jooyoung Park
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Jaechul Lim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jaekwang Jeong
- Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, U.S
| | - Ravi K. Dinesh
- Department of Pathology, Stanford University, Stanford, California 94305, U.S
| | - Stephen E. Maher
- Department of Urology, Yale University School of Medicine, New Haven, Connecticut 06520, U.S
| | - Jeonghyun Kim
- Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea
| | - Soyeon Park
- Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea
| | - Jun Young Hong
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - John Wysolmerski
- Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, U.S
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Alfred L. M. Bothwell
- Dept. of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, 505 S. 45 Street., Omaha, NE 68198, U.S
- Dept. of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, U.S
| |
Collapse
|
28
|
Fang L, Cheng Y, Fang D, Feng Z, Wang Y, Yu Y, Zhao J, Huang D, Zhai X, Liu C, Du J. CL429 enhances the renewal of intestinal stem cells by upregulating TLR2-YAP1. Int Immunopharmacol 2024; 138:112614. [PMID: 38972212 DOI: 10.1016/j.intimp.2024.112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
Intestinal stem cells (ISCs) play a crucial role in maintaining the equilibrium and regenerative potential of intestinal tissue, thereby ensuring tissue homeostasis and promoting effective tissue regeneration following injury. It has been proven that targeting Toll-like receptors (TLRs) can help prevent radiation-induced damage to the intestine. In this study, we established an intestinal injury model using IR and evaluated the effects of CL429 on ISC regeneration both in vivo and in vitro. Following radiation exposure, mice treated with CL429 showed a significant increase in survival rates (100% survival in the treated group compared to 54.54% in the control group). CL429 also showed remarkable efficacy in inhibiting radiation-induced intestinal damage and promoting ISC proliferation and regeneration. In addition, CL429 protected intestinal organoids against IR-induced injury. Mechanistically, RNA sequencing and Western blot analysis revealed the activation of the Wnt and Hippo signaling pathways by CL429. Specifically, we observed a significant upregulation of YAP1, a key transcription factor in the Hippo pathway, upon CL429 stimulation. Furthermore, knockdown of YAP1 significantly attenuated the radioprotective effect of CL429 on intestinal organoids, indicating that CL429-mediated intestinal radioprotection is dependent on YAP1. In addition, we investigated the relationship between TLR2 and YAP1 using TLR2 knockout mice, and our results showed that TLR2 knockout abolished the activation of CL429 on YAP1. Taken together, our study provides evidence supporting the role of CL429 in promoting ISC regeneration through activation of TLR2-YAP1. And further investigation of the interaction between TLRs and other signaling pathways may enhance our understanding of ISC regeneration after injury.
Collapse
Affiliation(s)
- Lan Fang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China
| | - Ying Cheng
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China
| | - Duo Fang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China
| | - Zhenlan Feng
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China
| | - Yuedong Wang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China
| | - Yike Yu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China
| | - Jianpeng Zhao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China
| | - Daqian Huang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China
| | - Xuanlu Zhai
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China.
| | - Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China.
| |
Collapse
|
29
|
Faizo NL. The intestinal stem cell as a target: A review. Medicine (Baltimore) 2024; 103:e39456. [PMID: 39183418 PMCID: PMC11346866 DOI: 10.1097/md.0000000000039456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Human intestinal epithelium handles several events that may affect health. It is composed of villi and crypts, which contain different types of cells. Each cell type plays an essential role in intestinal functions, including absorption, defense, self-renewal, and regeneration. Intestinal stem cells (ISCs), located at the base of intestinal crypts, play an important role in intestinal homeostasis and renewal. Any disruption in intestinal homeostasis, in which ISCs alter their function, may result in tumor growth. As Wnt and Notch signaling pathways are essential for ISCs homeostasis and for maintaining self-renewal, any defects in these pathways could increase the risk of developing colorectal cancer (CRC). Lgr5+ cells have been identified as intestinal stem cells expressing a leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), which is involved in the regulation of Wnt signaling. Several studies have reported upregulated expression of LGR5 in CRC. Hence, in this review, we discuss the relationship between LGR5, Wnt signaling, and Notch signaling and the development of CRC, as well as recent therapeutic strategies targeting LGR5, cancer stem cells (CSCs), and the aforementioned signaling pathways.
Collapse
Affiliation(s)
- Nisreen Lutfi Faizo
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Atewologun FA, Okesanya OJ, Okon II, Kayode HH, Ukoaka BM, Olaleke NO, Ogaya JB, Okikiola LA, Manirambona E, Lucero-Prisno Iii DE. Examining the potentials of stem cell therapy in reducing the burden of selected non-communicable diseases in Africa. Stem Cell Res Ther 2024; 15:253. [PMID: 39135088 PMCID: PMC11321202 DOI: 10.1186/s13287-024-03864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024] Open
Abstract
Stem cell therapy (SCT) is a promising solution for addressing health challenges in Africa, particularly non-communicable diseases (NCDs). With their regenerative potential, stem cells have the inherent capacity to differentiate into numerous cell types for tissue repair. Despite infrastructural, ethical, and legal challenges, SCT holds immense promise for managing chronic illnesses and deep-seated tissue injuries. The rising prevalence of NCDs in Africa highlights the need for innovative strategies and treatment options. SCT offers hope in combating conditions like burns, osteoarthritis, diabetes, Alzheimer's disease, stroke, heart failure and cancer, potentially reducing the burden of NCDs on the continent. Despite SCT's opportunities in Africa, there are significant obstacles. However, published research on SCT in Africa is scarce, but recent initiatives such as the Basic School on Neural Stem Cells (NSC) express interest in developing NSC research in Africa. SCT research in African regions, notably on neurogenesis, demonstrates a concentration on studying neurological processes in indigenous settings. While progress has been made in South Africa and Nigeria, issues such as brain drain and impediments to innovation remain. Clinical trials have investigated the efficacy of stem cell treatments, emphasising both potential benefits and limitations in implementing these therapies efficiently. Financing research, developing regulatory frameworks, and resolving affordability concerns are critical steps toward realizing the potential of stem cell treatment in Africa.
Collapse
Affiliation(s)
| | | | - Inibehe Ime Okon
- Department of Research, Medical Research Circle (MedReC), Democratic Republic of the Congo, Postal Code 50 Goma, Bukavu, Democratic Republic of Congo.
| | - Hassan Hakeem Kayode
- Department of Medical Laboratory Science, Federal Medical Centre, Bida, Niger State, Nigeria
| | | | - Noah Olabode Olaleke
- Obafemi Awolowo University Teaching Hospital Complex, Ile-Ife, Osun State, Nigeria
| | - Jerico Bautista Ogaya
- Department of Medical Technology, Far Eastern University, Manila, Philippines
- Center for University Research, University of Makati, Makati City, Philippines
| | - Lawal Azeez Okikiola
- Department of Biology, University of Texas at Tyler, Tyler, USA
- Department of Medical Laboratory Science, Kwara State University, Malete, Nigeria
| | - Emery Manirambona
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Don Eliseo Lucero-Prisno Iii
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
- Research and Innovation Office, Southern Leyte State University, Sogod, Southern Leyte, Philippines
| |
Collapse
|
31
|
Zhou P, Hu M, Li Q, Yang G. Both intrinsic and microenvironmental factors contribute to the regulation of stem cell quiescence. J Cell Physiol 2024; 239:e31325. [PMID: 38860372 DOI: 10.1002/jcp.31325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
Precise regulation of stem cell quiescence is essential for tissue development and homeostasis. Therefore, its aberrant regulation is intimately correlated with various human diseases. However, the detailed mechanisms of stem cell quiescence and its specific role in the pathogenesis of various diseases remain to be determined. Recent studies have revealed that the intrinsic and microenvironmental factors are the potential candidates responsible for the orderly switch between the dormant and activated states of stem cells. In addition, defects in signaling pathways related to internal and external factors of stem cells might contribute to the initiation and development of diseases by altering the dormancy of stem cells. In this review, we focus on the mechanisms underlying stem cell quiescence, especially the involvement of intrinsic and microenvironmental factors. In addition, we discuss the relationship between the anomalies of stem cell quiescence and related diseases, hopefully providing therapeutic insights for developing novel treatments.
Collapse
Affiliation(s)
- Ping Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Mingzheng Hu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guiwen Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
32
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
33
|
Viragova S, Li D, Klein OD. Activation of fetal-like molecular programs during regeneration in the intestine and beyond. Cell Stem Cell 2024; 31:949-960. [PMID: 38971147 PMCID: PMC11235077 DOI: 10.1016/j.stem.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/08/2024]
Abstract
Tissue regeneration after damage is generally thought to involve the mobilization of adult stem cells that divide and differentiate into progressively specialized progeny. However, recent studies indicate that tissue regeneration can be accompanied by reversion to a fetal-like state. During this process, cells at the injury site reactivate programs that operate during fetal development but are typically absent in adult homeostasis. Here, we summarize our current understanding of the molecular signals and epigenetic mediators that orchestrate "fetal-like reversion" during intestinal regeneration. We also explore evidence for this phenomenon in other organs and species and highlight open questions that merit future examination.
Collapse
Affiliation(s)
- Sara Viragova
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dong Li
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| |
Collapse
|
34
|
Kaji I, Thiagarajah JR, Goldenring JR. Modeling the cell biology of monogenetic intestinal epithelial disorders. J Cell Biol 2024; 223:e202310118. [PMID: 38683247 PMCID: PMC11058565 DOI: 10.1083/jcb.202310118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Monogenetic variants are responsible for a range of congenital human diseases. Variants in genes that are important for intestinal epithelial function cause a group of disorders characterized by severe diarrhea and loss of nutrient absorption called congenital diarrheas and enteropathies (CODEs). CODE-causing genes include nutrient transporters, enzymes, structural proteins, and vesicular trafficking proteins in intestinal epithelial cells. Several severe CODE disorders result from the loss-of-function in key regulators of polarized endocytic trafficking such as the motor protein, Myosin VB (MYO5B), as well as STX3, STXBP2, and UNC45A. Investigations of the cell biology and pathophysiology following loss-of-function in these genes have led to an increased understanding of both homeostatic and pathological vesicular trafficking in intestinal epithelial cells. Modeling different CODEs through investigation of changes in patient tissues, coupled with the development of animal models and patient-derived enteroids, has provided critical insights into the enterocyte differentiation and function. Linking basic knowledge of cell biology with the phenotype of specific patient variants is a key step in developing effective treatments for rare monogenetic diseases. This knowledge can also be applied more broadly to our understanding of common epithelial disorders.
Collapse
Affiliation(s)
- Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jay R. Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Congenital Enteropathy Program, Boston Children’s Hospital, Boston, MA, USA
- Harvard Digestive Disease Center, Boston, MA, USA
| | - James R. Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Nashville VA Medical Center, Nashville, TN, USA
| |
Collapse
|
35
|
Tez M. Viewing cancer as a chaotic ‘information processing system’. SYSTEMS RESEARCH AND BEHAVIORAL SCIENCE 2024. [DOI: 10.1002/sres.3034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/31/2024] [Indexed: 02/17/2025]
Abstract
AbstractThe effort to define life encompasses a wide range of disciplines, from biology and physics to spirituality. Traditionally, replies were restricted to specialized specialties, resulting in disjointed solutions. Cancer research has mostly concentrated on genetic and cellular factors. This essay aims to reframe the way we think about cancer by looking at it through the perspective of information processing. It investigates the cybernetic component of life, perceiving it as a unified system of information processing at all scales. Stem cell research reveals their complex heterogeneity and flexibility, which are critical for tissue repair and development. Initially thought to be harmful, chaotic gene expression is now acknowledged to provide cellular flexibility. Using chaos to improve adaptation contrasts with the unpredictability of evolution, showcasing the system's ability to learn and adapt. Creativity, disorder and chaos interact, opening up new avenues for new ideas. This viewpoint opposes the gene‐centric view of cancer and highlights the importance of understanding biological processes beyond genetic reductionism. The essay finishes by pushing for a paradigm change towards seeing cancer as an informational process rather than just a hereditary disease and encouraging a better knowledge of the information processing capabilities of cellular life.
Collapse
Affiliation(s)
- Mesut Tez
- Department of Surgery, University of Health Sciences Ankara City Hospital Ankara Turkey
| |
Collapse
|
36
|
Li C, Zhang P, Xie Y, Wang S, Guo M, Wei X, Zhang K, Cao D, Zhou R, Wang S, Song X, Zhu S, Pan W. Enterococcus-derived tyramine hijacks α 2A-adrenergic receptor in intestinal stem cells to exacerbate colitis. Cell Host Microbe 2024; 32:950-963.e8. [PMID: 38788722 DOI: 10.1016/j.chom.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by dysbiosis of the gut microbiota and dysfunction of intestinal stem cells (ISCs). However, the direct interactions between IBD microbial factors and ISCs are undescribed. Here, we identify α2A-adrenergic receptor (ADRA2A) as a highly expressed GPCR in ISCs. Through PRESTO-Tango screening, we demonstrate that tyramine, primarily produced by Enterococcus via tyrosine decarboxylase (tyrDC), serves as a microbial ligand for ADRA2A. Using an engineered tyrDC-deficient Enterococcus faecalis strain and intestinal epithelial cell-specific Adra2a knockout mice, we show that Enterococcus-derived tyramine suppresses ISC proliferation, thereby impairing epithelial regeneration and exacerbating DSS-induced colitis through ADRA2A. Importantly, blocking the axis with an ADRA2A antagonist, yohimbine, disrupts tyramine-mediated suppression on ISCs and alleviates colitis. Our findings highlight a microbial ligand-GPCR pair in ISCs, revealing a causal link between microbial regulation of ISCs and colitis exacerbation and yielding a targeted therapeutic approach to restore ISC function in colitis.
Collapse
Affiliation(s)
- Chaoliang Li
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Panrui Zhang
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yadong Xie
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shishan Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Meng Guo
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiaowei Wei
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Dan Cao
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Rongbin Zhou
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyang Song
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Wen Pan
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
37
|
Lin YJ, Li HM, Gao YR, Wu PF, Cheng B, Yu CL, Sheng YX, Xu HM. Environmentally relevant concentrations of benzophenones exposure disrupt intestinal homeostasis, impair the intestinal barrier, and induce inflammation in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123948. [PMID: 38614423 DOI: 10.1016/j.envpol.2024.123948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
The aim of this study is to investigate the adverse effects of benzophenones (BPs) on the intestinal tract of mice and the potential mechanism. F1-generation ICR mice were exposed to BPs (benzophenone-1, benzophenone-2, and benzophenone-3) by breastfeeding from birth until weaning, and by drinking water after weaning until maturity. The offspring mice were executed on postnatal day 56, then their distal colons were sampled. AB-PAS staining, HE staining, immunofluorescence, Transmission Electron Microscope, immunohistochemistry, Western Blot and RT-qPCR were used to study the effects of BPs exposure on the colonic tissues of offspring mice. The results showed that colonic microvilli appeared significantly deficient in the high-dose group, and the expression of tight junction markers Zo-1 and Occludin was significantly down-regulated and the number of goblet cells and secretions were reduced in all dose groups, and the expression of secretory cell markers MUC2 and KI67 were decreased, as well as the expression of intestinal stem cell markers Lgr5 and Bmi1, suggesting that BPs exposure caused disruption of intestinal barrier and imbalance in the composition of the intestinal stem cell pool. Besides, the expression of cellular inflammatory factors such as macrophage marker F4/80 and tumor necrosis factor TNF-α was elevated in the colonic tissues of all dose groups, and the inflammatory infiltration was observed, which means the exposure of BPs caused inflammatory effects in the intestinal tract of F1-generation mice. In addition, the contents of Notch/Wnt signaling pathway-related genes, such as Dll-4, Notch1, Hes1, Ctnnb1and Sfrp2 were significantly decreased in each high-dose group (P < 0.05), suggesting that BPs may inhibit the regulation of Notch/Wnt signaling pathway. In conclusion, exposure to BPs was able to imbalance colonic homeostasis, disrupt the intestinal barrier, and trigger inflammation in the offspring mice, which might be realized through interfering with the Notch/Wnt signaling pathway.
Collapse
Affiliation(s)
- Yu-Jia Lin
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hong-Mei Li
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yan-Rong Gao
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ping-Fan Wu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Bin Cheng
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Chen-Long Yu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yu-Xin Sheng
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hai-Ming Xu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
38
|
Wang K, Liu Y, Li H, Liang X, Hao M, Yuan D, Ding L. Claudin-7 is essential for the maintenance of colonic stem cell homoeostasis via the modulation of Wnt/Notch signalling. Cell Death Dis 2024; 15:284. [PMID: 38654000 PMCID: PMC11039680 DOI: 10.1038/s41419-024-06658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Intestinal stem cells (ISCs) play a crucial role in the continuous self-renewal and recovery of the intestinal epithelium. In previous studies, we have revealed that the specific absence of Claudin-7 (Cldn-7) in intestinal epithelial cells (IECs) can lead to the development of spontaneous colitis. However, the mechanisms by which Cldn-7 maintains homeostasis in the colonic epithelium remain unclear. Therefore, in the present study, we used IEC- and ISC-specific Cldn-7 knockout mice to investigate the regulatory effects of Cldn-7 on colonic Lgr5+ stem cells in the mediation of colonic epithelial injury and repair under physiological and inflammatory conditions. Notably, our findings reveal that Cldn-7 deletion disrupts the self-renewal and differentiation of colonic stem cells alongside the formation of colonic organoids in vitro. Additionally, these Cldn-7 knockout models exhibited heightened susceptibility to experimental colitis, limited epithelial repair and regeneration, and increased differentiation toward the secretory lineage. Mechanistically, we also established that Cldn-7 facilitates the proliferation, differentiation, and organoid formation of Lgr5+ stem cells through the maintenance of Wnt and Notch signalling pathways in the colonic epithelium. Overall, our study provides new insights into the maintenance of ISC function and colonic epithelial homoeostasis.
Collapse
Affiliation(s)
- Kun Wang
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yin Liu
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Huimin Li
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaoqing Liang
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mengdi Hao
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dajin Yuan
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Ding
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
39
|
Bao L, Fu L, Su Y, Chen Z, Peng Z, Sun L, Gonzalez FJ, Wu C, Zhang H, Shi B, Shi YB. Amino acid transporter SLC7A5 regulates cell proliferation and secretary cell differentiation and distribution in the mouse intestine. Int J Biol Sci 2024; 20:2187-2201. [PMID: 38617535 PMCID: PMC11008275 DOI: 10.7150/ijbs.94297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/16/2024] [Indexed: 04/16/2024] Open
Abstract
The intestine is critical for not only processing nutrients but also protecting the organism from the environment. These functions are mainly carried out by the epithelium, which is constantly being self-renewed. Many genes and pathways can influence intestinal epithelial cell proliferation. Among them is mTORC1, whose activation increases cell proliferation. Here, we report the first intestinal epithelial cell (IEC)-specific knockout (ΔIEC) of an amino acid transporter capable of activating mTORC1. We show that the transporter, SLC7A5, is highly expressed in mouse intestinal crypt and Slc7a5ΔIEC reduces mTORC1 signaling. Surprisingly, adult Slc7a5ΔIEC intestinal crypts have increased cell proliferation but reduced mature Paneth cells. Goblet cells, the other major secretory cell type in the small intestine, are increased in the crypts but reduced in the villi. Analyses with scRNA-seq and electron microscopy have revealed dedifferentiation of Paneth cells in Slc7a5ΔIEC mice, leading to markedly reduced secretory granules with little effect on Paneth cell number. Thus, SLC7A5 likely regulates secretory cell differentiation to affect stem cell niche and indirectly regulate cell proliferation.
Collapse
Affiliation(s)
- Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, MD, USA
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine. No.277, Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, MD, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging and Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhaoyi Peng
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, MD, USA
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine. No.277, Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine. No.277, Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, MD, USA
| |
Collapse
|
40
|
Choi J, Augenlicht LH. Intestinal stem cells: guardians of homeostasis in health and aging amid environmental challenges. Exp Mol Med 2024; 56:495-500. [PMID: 38424189 PMCID: PMC10985084 DOI: 10.1038/s12276-024-01179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 03/02/2024] Open
Abstract
The intestinal epithelium is the first line of defense and acts as an interface between the vast microbial world within the gastrointestinal tract and the body's internal milieu. The intestinal epithelium not only facilitates nutrient absorption but also plays a key role in defending against pathogens and regulating the immune system. Central to maintaining a healthy epithelium are intestinal stem cells (ISCs), which are essential for replenishing the intestinal epithelium throughout an individual's lifespan. Recent research has unveiled the intricate interplay between ISCs and their niche, which includes various cell types, extracellular components, and signaling molecules. In this review, we delve into the most recent advances in ISC research, with a focus on the roles of ISCs in maintaining mucosal homeostasis and how ISC functionality is influenced by the niche environment. In this review, we explored the regulatory mechanisms that govern ISC behavior, emphasizing the dynamic adaptability of the intestinal epithelium in the face of various challenges. Understanding the intricate regulation of ISCs and the impact of aging and environmental factors is crucial for advancing our knowledge and developing translational approaches. Future studies should investigate the interactive effects of different risk factors on intestinal function and develop strategies for improving the regenerative capacity of the gut.
Collapse
Affiliation(s)
- Jiahn Choi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Leonard H Augenlicht
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
41
|
Yang Y, Hou G, Ji F, Zhou H, Lv R, Hu C. Maternal Supplementation with Ornithine Promotes Placental Angiogenesis and Improves Intestinal Development of Suckling Piglets. Animals (Basel) 2024; 14:689. [PMID: 38473074 DOI: 10.3390/ani14050689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The blood vessels of the placenta are crucial for fetal growth. Here, lower vessel density and ornithine (Orn) content were observed in placentae for low-birth-weight fetuses versus normal-birth-weight fetuses at day 75 of gestation. Furthermore, the Orn content in placentae decreased from day 75 to 110 of gestation. To investigate the role of Orn in placental angiogenesis, 48 gilts (Bama pig) were allocated into four groups. The gilts in the control group were fed a basal diet (CON group), while those in the experimental groups were fed a basal diet supplemented with 0.05% Orn (0.05% Orn group), 0.10% Orn (0.10% Orn group), and 0.15% Orn (0.15% Orn group), respectively. The results showed that 0.15% Orn and 0.10% Orn groups exhibited increased birth weight of piglets compared with the CON group. Moreover, the 0.15% Orn group was higher than the CON group in the blood vessel densities of placenta. Mechanistically, Orn facilitated placental angiogenesis by regulating vascular endothelial growth factor-A (VEGF-A). Furthermore, maternal supplementation with 0.15% Orn during gestation increased the jejunal and ileal villi height and the concentrations of colonic propionate and butyrate in suckling piglets. Collectively, these results showed that maternal supplementation with Orn promotes placental angiogenesis and improves intestinal development of suckling piglets.
Collapse
Affiliation(s)
- Yun Yang
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanyu Hou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Hanlin Zhou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Renlong Lv
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chengjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
42
|
Kim G, Chen Z, Li J, Luo J, Castro-Martinez F, Wisniewski J, Cui K, Wang Y, Sun J, Ren X, Crawford SE, Becerra SP, Zhu J, Liu T, Wang S, Zhao K, Wu C. Gut-liver axis calibrates intestinal stem cell fitness. Cell 2024; 187:914-930.e20. [PMID: 38280375 PMCID: PMC10923069 DOI: 10.1016/j.cell.2024.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/25/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/β-catenin signaling pathway. Furthermore, we found that microbial danger signals resulting from intestinal inflammation can be sensed by the liver, leading to the repression of PEDF production through peroxisome proliferator-activated receptor-α (PPARα). This repression liberates ISC proliferation to accelerate tissue repair in the gut. Additionally, treating mice with fenofibrate, a clinical PPARα agonist used for hypolipidemia, enhances colitis susceptibility due to PEDF activity. Therefore, we have identified a distinct role for PEDF in calibrating ISC expansion for intestinal homeostasis through reciprocal interactions between the gut and liver.
Collapse
Affiliation(s)
- Girak Kim
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Felipe Castro-Martinez
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jan Wisniewski
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jialei Sun
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaobai Ren
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Susan E Crawford
- Department of Surgery, North Shore University Research Institute, University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - S Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jimin Zhu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Zhu M, Zeng R, Wu D, Li Y, Chen T, Wang A. Research progress of the effects of bisphenol analogues on the intestine and its underlying mechanisms: A review. ENVIRONMENTAL RESEARCH 2024; 243:117891. [PMID: 38072107 DOI: 10.1016/j.envres.2023.117891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Bisphenol A (BPA) and its analogues have prompted rising concerns, especially in terms of human safety, due to its broad use and ubiquity throughout the ecosystem. Numerous studies reported various adverse effects of bisphenols, including developmental disorders, reproductive toxicity, cardiovascular toxicity, and so on. There is increasing evidence that bisphenols can enter the gastrointestinal tract. Consequently, it is important to investigate their effects on the intestine. Several in vivo and in vitro studies have examined the impacts of bisphenols on the intestine. Here, we summarized the literature concerning intestinal toxicity of bisphenols over the past decade and presented compelling evidence of the link between bisphenol exposure and intestinal disorders. Experiment studies revealed that even at low levels, bisphenols could promote intestinal barrier dysregulation, disrupt the composition and diversity of intestinal microbiota as well as induce an immunological response. Moreover, possible underlying mechanisms of these effects were discussed. Because of a lack of empirical data, the potential risk of bisphenol exposure in humans is still unidentified, particularly regarding intestinal disorders. Thus, we propose to conduct additional epidemiological investigations and animal experiments to elucidate the associations between bisphenol exposure and human intestinal health and reveal underlying mechanisms to develop preventative and therapeutic techniques.
Collapse
Affiliation(s)
- Min Zhu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, 210036, Nanjing, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Ran Zeng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; School of Civil and Environmental Engineering, Harbin Institute of Technology, 518055, Shenzhen, China
| | - Dan Wu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, 210036, Nanjing, China
| | - Yuanyuan Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Ting Chen
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, 210036, Nanjing, China.
| | - Aijie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, 518055, Shenzhen, China.
| |
Collapse
|
44
|
Ding Q, Zu X, Chen W, Xin J, Xu X, Lv Y, Wei X, Wang J, Wei Y, Li Z, Cai J, Du J, Zhang W. Astragalus polysaccharide promotes the regeneration of intestinal stem cells through HIF-1 signalling pathway. J Cell Mol Med 2024; 28:e18058. [PMID: 38098246 PMCID: PMC10844761 DOI: 10.1111/jcmm.18058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 02/08/2024] Open
Abstract
Ionizing radiation (IR)-induced intestinal injury is usually accompanied by high lethality. Intestinal stem cells (ISCs) are critical and responsible for the regeneration of the damaged intestine. Astragalus polysaccharide (APS), one of the main active ingredients of Astragalus membranaceus (AM), has a variety of biological functions. This study was aimed to investigate the potential effects of APS on IR-induced intestine injury via promoting the regeneration of ISCs. We have established models of IR-induced intestinal injury and our results showed that APS played great radioprotective effects on the intestine. APS improved the survival rate of irradiated mice, reversed the radiation damage of intestinal tissue, increased the survival rate of intestinal crypts, the number of ISCs and the expression of intestinal tight junction-related proteins after IR. Moreover, APS promoted the cell viability while inhibited the apoptosis of MODE-K. Through organoid experiments, we found that APS promoted the regeneration of ISCs. Remarkably, the results of network pharmacology, RNA sequencing and RT-PCR assays showed that APS significantly upregulated the HIF-1 signalling pathway, and HIF-1 inhibitor destroyed the radioprotection of APS. Our findings suggested that APS promotes the regeneration of ISCs through HIF-1 signalling pathway, and it may be an effective radioprotective agent for IR-induced intestinal injury.
Collapse
Affiliation(s)
- Qianqian Ding
- School of PharmacyAnhui University of Traditional Chinese MedicineHefeiChina
| | - Xianpeng Zu
- School of PharmacyNaval Medical UniversityShanghaiChina
| | - Wei Chen
- School of PharmacyNaval Medical UniversityShanghaiChina
| | - Jiayun Xin
- School of PharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Xike Xu
- School of PharmacyNaval Medical UniversityShanghaiChina
| | - Yanhui Lv
- School of PharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Xintong Wei
- School of PharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Jie Wang
- School of PharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Yanping Wei
- School of PharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Zhanhong Li
- School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Jianming Cai
- Faculty of Naval MedicineNaval Medicine UniversityShanghaiChina
| | - Jicong Du
- Faculty of Naval MedicineNaval Medicine UniversityShanghaiChina
| | - Weidong Zhang
- School of PharmacyAnhui University of Traditional Chinese MedicineHefeiChina
- School of PharmacyNaval Medical UniversityShanghaiChina
| |
Collapse
|
45
|
Zhang T, Cheng T, Geng S, Mao K, Li X, Gao J, Han J, Sang Y. Synbiotic Combination between Lactobacillus paracasei VL8 and Mannan-Oligosaccharide Repairs the Intestinal Barrier in the Dextran Sulfate Sodium-Induced Colitis Model by Regulating the Intestinal Stem Cell Niche. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2214-2228. [PMID: 38237048 DOI: 10.1021/acs.jafc.3c08473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Previously, Lactobacillus paracasei VL8, a lactobacillus strain isolated from the traditional Finnish fermented dairy product Viili, demonstrated immunomodulatory and antibacterial effects. The prebiotic mannan-oligosaccharide (MOS) further promoted its antibacterial activity and growth performance, holding promise for maintaining intestinal health. However, this has not been verified in vivo. In this study, we elucidated the process by which L. paracasei VL8 and its synbiotc combination (SYN) with MOS repair the intestinal barrier function in dextran sodium sulfate (DSS)-induced colitis mice. SYN surpasses VL8 or MOS alone in restoring goblet cells and improving the tight junction structure. Omics analysis on gut microbiota reveals SYN's ability to restore Lactobacillus spp. abundance and promote tryptophan metabolism. SYN intervention also inhibits the DSS-induced hyperactivation of the Wnt/β-catenin pathway. Tryptophan metabolites from Lactobacillus induce intestinal organoid differentiation. Co-housing experiments confirm microbiota transferability, replicating intestinal barrier repair. In conclusion, our study highlights the potential therapeutic efficacy of the synbiotic combination of Lactobacillus paracasei VL8 and MOS in restoring the damaged intestinal barrier and offers new insights into the complex crosstalk between the gut microbiota and intestinal stem cells.
Collapse
Affiliation(s)
- Tuo Zhang
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei CN 071000, China
| | - Tiantian Cheng
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei CN 071000, China
| | - Shuo Geng
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei CN 071000, China
| | - Kemin Mao
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei CN 071000, China
| | - Xiyu Li
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei CN 071000, China
| | - Jie Gao
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei CN 071000, China
| | - Jun Han
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei CN 071000, China
| | - Yaxin Sang
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei CN 071000, China
| |
Collapse
|
46
|
Degrelle SA, Liu F, Laloe D, Richard C, Le Bourhis D, Rossignol MN, Hue I. Understanding bovine embryo elongation: a transcriptomic study of trophoblastic vesicles. Front Physiol 2024; 15:1331098. [PMID: 38348224 PMCID: PMC10859461 DOI: 10.3389/fphys.2024.1331098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Background: During the process of elongation, the embryo increases in size within the uterus, while the extra-embryonic tissues (EETs) develop and differentiate in preparation for implantation. As it grows, the ovoid embryo transforms into a tubular form first and then a filamentous form. This process is directed by numerous genes and pathways, the expression of which may be altered in the case of developmental irregularities such as when the conceptus is shorter than expected or when the embryo develops after splitting. In bovines, efforts to understand the molecular basis of elongation have employed trophoblastic vesicles (TVs)-short tubular EET pieces that lack an embryo-which also elongate in vivo. To date, however, we lack molecular analyses of TVs at the ovoid or filamentous stages that might shed light on the expression changes involved. Methods: Following in vivo development, we collected bovine conceptuses from the ovoid (D12) to filamentous stages (D18), sectioned them into small pieces with or without their embryonic disc (ED), and then, transferred them to a receptive bovine uterus to assess their elongation abilities. We also grew spherical blastocysts in vitro up to D8 and subjected them to the same treatment. Then, we assessed the differences in gene expression between different samples and fully elongating controls at different stages of elongation using a bovine array (10 K) and an extended qPCR array comprising 224 genes across 24 pathways. Results: In vivo, TVs elongated more or less depending on the stage at which they had been created and the time spent in utero. Their daily elongation rates differed from control EET, with the rates of TVs sometimes resembling those of earlier-stage EET. Overall, the molecular signatures of TVs followed a similar developmental trajectory as intact EET from D12-D18. However, within each stage, TVs and intact EET displayed distinct expression dynamics, some of which were shared with other short epithelial models. Conclusion: Differences between TVs and EET likely result from multiple factors, including a reduction in the length and signaling capabilities of TVs, delayed elongation from inadequate uterine signals, and modified crosstalk between the conceptus and the uterus. These findings confirm that close coordination between uterine, embryonic, and extra-embryonic tissues is required to orchestrate proper elongation and, based on the partial differentiation observed, raise questions about the presence/absence of certain developmental cues or even their asynchronies.
Collapse
Affiliation(s)
- Séverine A. Degrelle
- Université Paris-Saclay, Université Versailles Saint-Quentin en Yvelines, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Biologie de la Reproduction, Environnement, Epigénétique et Développment, Jouy en Josas, France
- Inovarion, Paris, France
| | - Fulin Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Denis Laloe
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, Jouy en Josas, France
| | - Christophe Richard
- Université Paris-Saclay, Université Versailles Saint-Quentin en Yvelines, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Biologie de la Reproduction, Environnement, Epigénétique et Développment, Jouy en Josas, France
| | | | - Marie-Noëlle Rossignol
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, Jouy en Josas, France
| | - Isabelle Hue
- Université Paris-Saclay, Université Versailles Saint-Quentin en Yvelines, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Biologie de la Reproduction, Environnement, Epigénétique et Développment, Jouy en Josas, France
| |
Collapse
|
47
|
Wang J, Chang CY, Yang X, Zhou F, Liu J, Bargonetti J, Zhang L, Xie P, Feng Z, Hu W. p53 suppresses MHC class II presentation by intestinal epithelium to protect against radiation-induced gastrointestinal syndrome. Nat Commun 2024; 15:137. [PMID: 38167344 PMCID: PMC10762193 DOI: 10.1038/s41467-023-44390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Radiation-induced gastrointestinal syndrome is a major complication and limiting factor for radiotherapy. Tumor suppressor p53 has a protective role in radiation-induced gastrointestinal toxicity. However, its underlying mechanism remains unclear. Here we report that regulating the IL12-p40/MHC class II signaling pathway is a critical mechanism by which p53 protects against radiation-induced gastrointestinal syndrome. p53 inhibits the expression of inflammatory cytokine IL12-p40, which in turn suppresses the expression of MHC class II on intestinal epithelial cells to suppress T cell activation and inflammation post-irradiation that causes intestinal stem cell damage. Anti-IL12-p40 neutralizing antibody inhibits inflammation and rescues the defects in intestinal epithelial regeneration post-irradiation in p53-deficient mice and prolongs mouse survival. These results uncover that the IL12-p40/MHC class II signaling mediates the essential role of p53 in ensuring intestinal stem cell function and proper immune reaction in response to radiation to protect mucosal epithelium, and suggest a potential therapeutic strategy to protect against radiation-induced gastrointestinal syndrome.
Collapse
Affiliation(s)
- Jianming Wang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Chun-Yuan Chang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Xue Yang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Fan Zhou
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Juan Liu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Jill Bargonetti
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Lanjing Zhang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
- Department of Biological Sciences, Rutgers University, Newark, NJ, 07102, USA
- Department of Pathology, Penn Medicine Princeton Medical Center, Plainsboro, NJ, 08536, USA
| | - Ping Xie
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA.
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
48
|
Wu H, Mu C, Xu L, Yu K, Shen L, Zhu W. Host-microbiota interaction in intestinal stem cell homeostasis. Gut Microbes 2024; 16:2353399. [PMID: 38757687 PMCID: PMC11110705 DOI: 10.1080/19490976.2024.2353399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
Intestinal stem cells (ISCs) play a pivotal role in gut physiology by governing intestinal epithelium renewal through the precise regulation of proliferation and differentiation. The gut microbiota interacts closely with the epithelium through myriad of actions, including immune and metabolic interactions, which translate into tight connections between microbial activity and ISC function. Given the diverse functions of the gut microbiota in affecting the metabolism of macronutrients and micronutrients, dietary nutrients exert pronounced effects on host-microbiota interactions and, consequently, the ISC fate. Therefore, understanding the intricate host-microbiota interaction in regulating ISC homeostasis is imperative for improving gut health. Here, we review recent advances in understanding host-microbiota immune and metabolic interactions that shape ISC function, such as the role of pattern-recognition receptors and microbial metabolites, including lactate and indole metabolites. Additionally, the diverse regulatory effects of the microbiota on dietary nutrients, including proteins, carbohydrates, vitamins, and minerals (e.g. iron and zinc), are thoroughly explored in relation to their impact on ISCs. Thus, we highlight the multifaceted mechanisms governing host-microbiota interactions in ISC homeostasis. Insights gained from this review provide strategies for the development of dietary or microbiota-based interventions to foster gut health.
Collapse
Affiliation(s)
- Haiqin Wu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Chunlong Mu
- Food Informatics, AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Laipeng Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Kaifan Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Le Shen
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
49
|
Peng Z, Bao L, Shi B, Shi YB. Protein arginine methyltransferase 1 is required for the maintenance of adult small intestinal and colonic epithelial cell homeostasis. Int J Biol Sci 2024; 20:554-568. [PMID: 38169732 PMCID: PMC10758107 DOI: 10.7150/ijbs.89958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
The vertebrate adult intestinal epithelium has a high self-renewal rate driven by intestinal stem cells (ISCs) in the crypts, which play central roles in maintaining intestinal integrity and homeostasis. However, the underlying mechanisms remain elusive. Here we showed that protein arginine methyltransferase 1 (PRMT1), a major arginine methyltransferase that can also function as a transcription co-activator, was highly expressed in the proliferating cells of adult mouse intestinal crypts. Intestinal epithelium-specific knockout of PRMT1, which ablates PRMT1 gene starting during embryogenesis, caused distinct, region-specific effects on small intestine and colon: increasing and decreasing the goblet cell number in the small intestinal and colonic crypts, respectively, leading to elongation of the crypts in small intestine but not colon, while increasing crypt cell proliferation in both regions. We further generated a tamoxifen-inducible intestinal epithelium-specific PRMT1 knockout mouse model and found that tamoxifen-induced knockout of PRMT1 in the adult mice resulted in the same region-specific intestinal phenotypes. Thus, our studies have for the first time revealed that the epigenetic enzyme PRMT1 has distinct, region-specific roles in the maintenance of intestinal epithelial architecture and homeostasis, although PRMT1 may influence intestinal development.
Collapse
Affiliation(s)
- Zhaoyi Peng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an JiaoTong University, No. 277, West Yanta Road, Xi'an, Shaanxi 710061, P.R. China
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, MD, USA
| | - Lingyu Bao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an JiaoTong University, No. 277, West Yanta Road, Xi'an, Shaanxi 710061, P.R. China
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, MD, USA
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an JiaoTong University, No. 277, West Yanta Road, Xi'an, Shaanxi 710061, P.R. China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, MD, USA
| |
Collapse
|
50
|
Chorawala MR, Postwala H, Prajapati BG, Shah Y, Shah A, Pandya A, Kothari N. Impact of the microbiome on colorectal cancer development. COLORECTAL CANCER 2024:29-72. [DOI: 10.1016/b978-0-443-13870-6.00021-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|