1
|
van Mazijk R, West AG, Verboom GA, Elliott TL, Bureš P, Muasya AM. Genome size variation in Cape schoenoid sedges (Schoeneae) and its ecophysiological consequences. AMERICAN JOURNAL OF BOTANY 2024; 111:e16315. [PMID: 38695147 DOI: 10.1002/ajb2.16315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 08/24/2024]
Abstract
PREMISE Increases in genome size in plants-often associated with larger, low-density stomata and greater water-use efficiency (WUE)-could affect plant ecophysiological and hydraulic function. Variation in plant genome size is often due to polyploidy, having occurred repeatedly in the austral sedge genus Schoenus in the Cape Floristic Region (CFR), while species in the other major schoenoid genus in the region, Tetraria, have smaller genomes. Comparing these genera is useful as they co-occur at the landscape level, under broadly similar bioclimatic conditions. We hypothesized that CFR Schoenus have greater WUE, with lower maximum stomatal conductance (gwmax) imposed by larger, less-dense stomata. METHODS We investigated relationships between genome size and stomatal parameters in a phylogenetic context, reconstructing a phylogeny of CFR-occurring Schoeneae (Cyperaceae). Species' stomatal and functional traits were measured from field-collected and herbarium specimens. Carbon stable isotopes were used as an index of WUE. Genome size was derived from flow-cytometric measurements of leafy shoots. RESULTS Evolutionary regressions demonstrated that stomatal size and density covary with genome size, positively and negatively, respectively, with genome size explaining 72-75% of the variation in stomatal size. Larger-genomed species had lower gwmax and C:N ratios, particularly in culms. CONCLUSIONS We interpret differences in vegetative physiology between the genera as evidence of more-conservative strategies in CFR Schoenus compared to the more-acquisitive Tetraria. Because Schoenus have smaller, reduced leaves, they likely rely more on culm photosynthesis than Tetraria. Across the CFR Schoeneae, ecophysiology correlates with genome size, but confounding sources of trait variation limit inferences about causal relationships between traits.
Collapse
Affiliation(s)
- Ruan van Mazijk
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Bolus Herbarium, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- C4 EcoSolutions, Tokai, Cape Town, 7945, South Africa
| | - Adam G West
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
| | - G Anthony Verboom
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Bolus Herbarium, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
| | - Tammy L Elliott
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Bolus Herbarium, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - A Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Bolus Herbarium, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
| |
Collapse
|
2
|
Pineda M, Barón M, Pérez-Bueno ML. Diverse projected climate change scenarios affect the physiology of broccoli plants to different extents. PHYSIOLOGIA PLANTARUM 2024; 176:e14269. [PMID: 38528313 DOI: 10.1111/ppl.14269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
Climate change caused by global warming involves crucial plant growth factors such as atmospheric CO2 concentration, ambient temperature or water availability. These stressors usually co-occur, causing intricate alterations in plant physiology and development. This work focuses on how elevated atmospheric CO2 levels, together with the concomitant high temperature, would affect the physiology of a relevant crop, such as broccoli. Particular attention has been paid to those defence mechanisms that contribute to plant fitness under abiotic stress. Results show that both photosynthesis and leaf transpiration were reduced in plants grown under climate change environments compared to those grown under current climate conditions. Furthermore, an induction of carbohydrate catabolism pointed to a redistribution from primary to secondary metabolism. This result could be related to a reinforcement of cell walls, as well as to an increase in the pool of antioxidants in the leaves. Broccoli plants, a C3 crop, grown under an intermediate condition showed activation of those adaptive mechanisms, which would contribute to coping with abiotic stress, as confirmed by reduced levels of lipid peroxidation relative to current climate conditions. On the contrary, the most severe climate change scenario exceeded the adaptive capacity of broccoli plants, as shown by the inhibition of growth and reduced vigour of plants. In conclusion, only a moderate increase in atmospheric CO2 concentration and temperature would not have a negative impact on broccoli crop yields.
Collapse
Affiliation(s)
- Mónica Pineda
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council, Granada, Spain
| | - Matilde Barón
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council, Granada, Spain
| | - María Luisa Pérez-Bueno
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council, Granada, Spain
- Department of Plant Physiology, Facultad de Farmacia, University of Granada, Granada, Spain
| |
Collapse
|
3
|
Driesen E, De Proft M, Saeys W. Drought stress triggers alterations of adaxial and abaxial stomatal development in basil leaves increasing water-use efficiency. HORTICULTURE RESEARCH 2023; 10:uhad075. [PMID: 37303614 PMCID: PMC10251137 DOI: 10.1093/hr/uhad075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/10/2023] [Indexed: 06/13/2023]
Abstract
The physiological control of stomatal opening by which plants adjust for water availability has been extensively researched. However, the impact of water availability on stomatal development has not received as much attention, especially for amphistomatic plants. Therefore, the acclimation of stomatal development in basil (Ocimum basilicum L.) leaves was investigated. Our results show that leaves developed under water-deficit conditions possess higher stomatal densities and decreased stomatal length for both the adaxial and abaxial leaf sides. Although the stomatal developmental reaction to water deficit was similar for the two leaf surfaces, it was proven that adaxial stomata are more sensitive to water stress than abaxial stomata, with more closed adaxial stomata under water-deficit conditions. Furthermore, plants with leaves containing smaller stomata at higher densities possessed a higher water use efficiency. Our findings highlight the importance of stomatal development as a tool for long-term acclimation to limit water loss, with minimal reduction in biomass production. This highlights the central role that stomata play in both the short (opening) and long-term (development) reaction of plants to water availability, making them key tools for efficient resource use and anticipation of future environmental changes.
Collapse
Affiliation(s)
| | - Maurice De Proft
- Department of Biosystems, KU Leuven, Willem De Croylaan 42, 3001 Leuven, Belgium
| | - Wouter Saeys
- Department of Biosystems, KU Leuven, Willem De Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
4
|
Jiao P, Liang Y, Chen S, Yuan Y, Chen Y, Hu H. Bna.EPF2 Enhances Drought Tolerance by Regulating Stomatal Development and Stomatal Size in Brassica napus. Int J Mol Sci 2023; 24:ijms24098007. [PMID: 37175713 PMCID: PMC10179174 DOI: 10.3390/ijms24098007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Drought stress severely affects global plant growth and production. The enhancement of plant water-use efficiency (WUE) and drought tolerance by the manipulation of the stomata is an effective strategy to deal with water shortage. However, increasing the WUE and drought tolerance by manipulation on the stomata has rarely been tested in Brassica napus. Here, we isolated Bna.EPF2, an epidermal patterning factor (EPF) in Brassica napus (ecotype Westar), and identified its role in drought performance. Bna.EPF2 overexpression lines had a reduction average of 19.02% in abaxial stomatal density and smaller stomatal pore size, leading to approximately 25% lower transpiration, which finally resulted in greater instantaneous WUE and enhanced drought tolerance. Interestingly, the reduction in stomatal density did not affect the CO2 assimilation or yield-related agronomic traits in Bna.EPF2 overexpression plants. Together with the complementation of Bna.EPF2 significantly decreasing the stomatal density of Arabidopsis epf2, and Bna.EPF2 being expressed in mature guard cells, these results suggest that Bna.EPF2 not only functions in stomatal density development, but also in stomatal dimension in Brassicas. Taken together, our results suggest that Bna.EPF2 improves WUE and drought tolerance by the regulation of stomatal density and stomatal size in Brassica without growth and yield penalty, and provide insight into the manipulation of this gene in the breeding of drought tolerant plants with increased production under water deficit conditions.
Collapse
Affiliation(s)
- Peipei Jiao
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Yuanlin Liang
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaoping Chen
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Yuan
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongqiang Chen
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Le Provost G, Gerardin T, Plomion C, Brendel O. Molecular plasticity to soil water deficit differs between sessile oak (Quercus Petraea (Matt.) Liebl.) high- and low-water use efficiency genotypes. TREE PHYSIOLOGY 2022; 42:2546-2562. [PMID: 35867420 DOI: 10.1093/treephys/tpac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Water use efficiency (WUE) is an important adaptive trait for soil water deficit. The molecular and physiological bases of WUE regulation in crops have been studied in detail in the context of plant breeding. Knowledge for most forest tree species lags behind, despite the need to identify populations or genotypes able to cope with the longer, more intense drought periods likely to result from climate warming. We aimed to bridge this gap in knowledge for sessile oak (Quercus petraea (Matt.) Liebl.), one of the most ecologically and economically important tree species in Europe, using a factorial design including trees with contrasted phenotypic values (low and high WUE) and two watering regimes (control and drought). By monitoring the ecophysiological response, we first qualified genotypes for their WUE (by using instantaneous and long-term measures). We then performed RNA-seq to quantify gene expression for the three most extreme genotypes exposed to the two watering regimes. By analyzing the interaction term, we were able to capture the molecular strategy of each group of plants for coping with drought. We identified putative candidate genes potentially involved in the regulation of transpiration rate in high-WUE phenotypes. Regardless of water availability, trees from the high-WUE phenotypic class overexpressed genes associated with drought responses, and in the control of stomatal density and distribution, and displayed a downregulation of genes associated with early stomatal closure and high transpiration rate. Fine physiological screening of sessile oaks with contrasting WUE, and their molecular characterization (i) highlighted subtle differences in transcription between low- and high-WUE genotypes, identifying key molecular players in the genetic control of this trait and (ii) revealed the genes underlying the molecular strategy that evolved in each group to potentially cope with water deficit, providing new insight into the within-species diversity in drought adaptation strategies.
Collapse
Affiliation(s)
| | - Theo Gerardin
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, France
| | | | - Oliver Brendel
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, France
| |
Collapse
|
6
|
A Rice R2R3-Type MYB Transcription Factor OsFLP Positively Regulates Drought Stress Response via OsNAC. Int J Mol Sci 2022; 23:ijms23115873. [PMID: 35682553 PMCID: PMC9180394 DOI: 10.3390/ijms23115873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022] Open
Abstract
Abiotic stresses adversely affect plant growth and the yield of crops worldwide. R2R3-MYB transcriptional factors have been found to be vital for plants to confer stress response. In Arabidopsis, FOUR LIPS (FLP, MYB124) and its paralogous MYB88 function redundantly regulated the symmetric division of guard mother cells (GMCs) and abiotic stress response. Here, OsFLP was identified as an R2R3-MYB transcriptional activator and localized in the nucleus. OsFLP was transiently induced by drought, salt stress and abscisic acid (ABA). Overexpression of OsFLP showed enhanced tolerance to drought and salt stresses. The stomatal density in OsFLP-OE plants was not changed, whereas the stomatal closure was sensitive to ABA treatment compared to wild-type plants. In contrast, OsFLP-RNAi plants had abnormal stomata and were sensitive to drought. Moreover, the transcripts of stomatal closure-related genes DST and peroxidase 24 precursor, which are identified as downstream of OsNAC1, were inhibited in OsFLP-RNAi plants. The yeast-one-hybrid assay indicated that OsFLP can specifically bind and positively regulate OsNAC1 and OsNAC6. Meanwhile, stress response genes, such as OsLEA3 and OsDREB2A, were up-regulated in OsFLP-OE plants. These findings suggested that OsFLP positively participates in drought stress, mainly through regulating regulators' transcripts of OsNAC1 and OsNAC6.
Collapse
|
7
|
Benkeblia N. Insights on Fructans and Resistance of Plants to Drought Stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.827758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Drought, one of the major abiotic stresses affecting plants, is characterized by a decrease of water availability, resulting in a decrease of the water potential (Ψ) of the cells. One of the strategies of plants in resisting to this low Ψ and related stresses is regulating their water-plant relation and the interplay between Ψsolutes and the turgor pressure (Ψp). This regulation avoids the dehydration induced by low Ψ and is resulting from the accumulation of specific molecules which induce higher tolerance to water deficit and also other mechanisms that prevent or repair cell damages. In plants, fructans, the non-structural carbohydrates (NSC), have other physiological functions than carbon reserve. Among these roles, fructans have been implicated in protecting plants against water deficit caused by drought. As an efficient strategy to survive to this abiotic stress, plants synthesize fructans in response to osmotic pressure in order to osmoregulate the cellular flux, therefore, protecting the membrane damage and maintaining Ψp. Although different studies have been conducted to elucidate the mechanisms behind this strategy, still the concept itself is not well-understood and many points remain unclear and need to be elucidated in order to understand the causal relation between water deficit and fructans accumulation during water scarcity. This understanding will be a key tool in developing strategies to enhance crop tolerance to stressful dry conditions, particularly under the changing climate prediction. This review aims to give new insights on the roles of fructans in the response and resistance of plants to water deficit and their fate under this severe environmental condition.
Collapse
|
8
|
Bucher SF, Auerswald K, Grün-Wenzel C, Higgins SI, Römermann C. Abiotic site conditions affect photosynthesis rates by changing leaf functional traits. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Chen C, Cui X, Zhang P, Wang Z, Zhang J. Expression of the pyrroline-5-carboxylate reductase (P5CR) gene from the wild grapevine Vitis yeshanensis promotes drought resistance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:188-201. [PMID: 34649022 DOI: 10.1016/j.plaphy.2021.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Proline accumulation is one of the most common reactions in plants under drought stress. Pyrroline-5-carboxylate reductase (P5CR) is the final enzyme and plays an important role in proline biosynthesis. The Chinese wild grapevine Vitis yeshanensis J.X. Chen accession 'Yanshan-1' is highly resistant to drought, but the genetic and molecular mechanisms associated with this resistance have not been elucidated. Here, we cloned a VyP5CR gene (Genbank ID: MZ226960) from 'Yanshan-1', and evaluated its transcriptional response to drought, NaCl, cold, as well as exogenous ABA, MeJA and SA. Tissue specific analysis showed that VyP5CR could be expressed in various organs and was highly expressed in roots. To gain insight into the roles of VyP5CR, we overexpressed VyP5CR in Arabidopsis thaliana (Arabidopsis). Transgenic Arabidopsis plants expressing VyP5CR showed enhanced survival rate, smaller stomata in response to severe drought, as well as stronger root growth on a medium containing mannitol. Under drought stress, VyP5CR-OE plants showed reduced levels of MDA, H2O2 and O2-, and higher proline content, SOD and POD activity. In addition, VyP5CR-OE plants showed increased induction of the drought-related genes COR15A, COR47, DREB2A, KIN1, NCED3 and RD29A. Taken together, these experiments reveal that VyP5CR can promote the drought tolerance of transgenic Arabidopsis. Besides, an interacting protein with VyP5CR, VyCSN5B (COP9 signalosome complex subunit 5b), was screened out by yeast two-hybrid and verified by bimolecular fluorescence complementation assay.
Collapse
Affiliation(s)
- Chengcheng Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaoyue Cui
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Pingying Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zheng Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
10
|
Tahjib-Ul-Arif M, Munemasa S, Nakamura T, Nakamura Y, Murata Y. Modulation of frequency and height of cytosolic calcium spikes by plasma membrane anion channels in guard cells. Biosci Biotechnol Biochem 2021; 85:2003-2010. [PMID: 34191003 DOI: 10.1093/bbb/zbab118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022]
Abstract
Cytosolic calcium ([Ca2+]cyt) elevation activates plasma membrane anion channels in guard cells, which is required for stomatal closure. However, involvement of the anion channels in the [Ca2+]cyt elevation remains unclear. We investigated the involvement using Arabidopsis thaliana anion channel mutants, slac1-4 slah3-3 and slac1-4 almt12-1. Extracellular calcium induced stomatal closure in the wild-type plants but not in the anion channel mutant plants whereas extracellular calcium induced [Ca2+]cyt elevation both in the wild-type guard cells and in the mutant guard cells. The peak height and the number of the [Ca2+]cyt spike were lower and larger in the slac1-4 slah3-3 than in the wild-type and the height and the number in the slac1-4 almt12-1 were much lower and much larger than in the wild-type. These results suggest that the anion channels are involved in the regulation of [Ca2+]cyt elevation in guard cells.
Collapse
Affiliation(s)
- Md Tahjib-Ul-Arif
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| |
Collapse
|
11
|
Wu W, Liao T, Du K, Wei H, Kang X. Transcriptome comparison of different ploidy reveals the mechanism of photosynthetic efficiency superiority of triploid poplar. Genomics 2021; 113:2211-2220. [PMID: 34022341 DOI: 10.1016/j.ygeno.2021.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/11/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022]
Abstract
Triploid poplars have obvious growth advantages, especially in leaf development and photosynthetic characteristics, but the molecular mechanism has not been revealed yet. In order to better understand the regulation mechanisms of leaf and chlorophyll development in the triploid poplars, we combined the leaf phenotypic data with the transcriptomic data of the 5th, 10th, and 25th leaves from triploid and diploid poplars, using weighted gene co-expression network analysis (WGCNA), and revealed that PpnGRF5-1 had a strong correlation with leaf development and net photosynthetic rate (Pn). PpnGRF5-1 overexpression transgenic plants showed that the leaf area, Pn, and chlorophyll concentration were significantly increased. Transcriptomic data analysis of the third leaf from PpnGRF5-1 overexpression transgenic plants showed that PpnGRF5-1 could up-regulate the expression levels of chlorophyll synthesis genes and down-regulate the transcription of chlorophyll degradation enzymes. Overall, our studies have greatly expanded our understanding of the molecular mechanisms regulating triploid growth dominance.
Collapse
Affiliation(s)
- Wenqi Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, PR China
| | - Ting Liao
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, PR China
| | - Kang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, PR China; National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, PR China; Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, United States
| | - Xiangyang Kang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, PR China; National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, PR China; Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
12
|
Herrmann A, Torii KU. Shouting out loud: signaling modules in the regulation of stomatal development. PLANT PHYSIOLOGY 2021; 185:765-780. [PMID: 33793896 PMCID: PMC8133662 DOI: 10.1093/plphys/kiaa061] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/31/2020] [Indexed: 05/18/2023]
Abstract
Stomata are small pores on the surface of land plants that facilitate gas exchange for photosynthesis while minimizing water loss. The function of stomata is pivotal for plant growth and survival. Intensive research on the model plant Arabidopsis (Arabidopsis thaliana) has discovered key peptide signaling pathways, transcription factors, and polarity components that together drive proper stomatal development and patterning. In this review, we focus on recent findings that have revealed co-option of peptide-receptor kinase signaling modules-utilized for diverse developmental processes and immune response. We further discuss an emerging connection between extrinsic signaling and intrinsic polarity modules. These findings have further enlightened our understanding of this fascinating developmental process.
Collapse
Affiliation(s)
- Arvid Herrmann
- Howard Hughes Medical Institute and Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute and Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
13
|
Wang YH, Que F, Li T, Zhang RR, Khadr A, Xu ZS, Tian YS, Xiong AS. DcABF3, an ABF transcription factor from carrot, alters stomatal density and reduces ABA sensitivity in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110699. [PMID: 33288012 DOI: 10.1016/j.plantsci.2020.110699] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/14/2020] [Accepted: 10/02/2020] [Indexed: 05/27/2023]
Abstract
Abscisic acid-responsive element (ABRE)-binding factors (ABFs) are important transcription factors involved in various physiological processes in plants. Stomata are micro channels for water and gas exchange of plants. Previous researches have demonstrated that ABFs can modulate the stomatal development in some plants. However, little is known about stomata-related functions of ABFs in carrots. In our study, DcABF3, a gene encoding for ABF transcription factor, was isolated from carrot. The open reading frame of DcABF3 was 1329 bp, encoding 442 amino acids. Expression profiles of DcABF3 indicated that DcABF3 can respond to drought, salt or ABA treatment in carrots. Overexpressing DcABF3 in Arabidopsis led to the increase of stomatal density which caused severe water loss. Expression assay indicated that overexpression of DcABF3 caused high expression of stomatal development-related transcription factor genes, SPCH, FAMA, MUTE and SCRMs. Increased antioxidant enzyme activities and higher expression levels of stress-related genes were also found in transgenic lines after water deficit treatment. Changes in expression of ABA synthesis-related genes and AtABIs indicated the potential role of DcABF3 in ABA signaling pathway. Under the treatment of exogenous ABA, DcABF3-overexpression Arabidopsis seedlings exhibited increased root length and germination rate. Our findings demonstrated that heterologous overexpression of DcABF3 positively affected stomatal development and also reduced ABA sensitivity in transgenic Arabidopsis.
Collapse
Affiliation(s)
- Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ahmed Khadr
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yong-Sheng Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
14
|
Zhang Y, Cheng P, Wang Y, Li Y, Su J, Chen Z, Yu X, Shen W. Genetic elucidation of hydrogen signaling in plant osmotic tolerance and stomatal closure via hydrogen sulfide. Free Radic Biol Med 2020; 161:1-14. [PMID: 32987125 DOI: 10.1016/j.freeradbiomed.2020.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Although ample evidence showed that exogenous hydrogen gas (H2) controls a diverse range of physiological functions in both animals and plants, the selective antioxidant mechanism, in some cases, is questioned. Importantly, most of the experiments on the function of H2 in plants were based on pharmacological approaches due to the synthesis pathway(s) in plants are still unclear. Here, we observed that the seedling growth inhibition of Arabidopsis caused by low doses of mannitol could progressively recover by recuperation, accompanied with the increased hydrogenase activity and H2 synthesis. To investigate the functions of endogenous H2, a hydrogenase gene (CrHYD1) for H2 biosynthesis from Chlamydomonas reinhardtii was expressed in Arabidopsis. Transgenic plants could intensify higher H2 synthesis compared with wild type and Arabidopsis transformed with the empty vector, and exhibited enhanced osmotic tolerance in both germination and post-germination stages. In response to mannitol, transgenic plants enhanced L-Cys desulfhydrase (DES)-dependent hydrogen sulfide (H2S) synthesis in guard cells and thereafter stomatal closure. The application of des mutant further highlights H2S acting as a downstream molecule of endogenous H2 control of stomatal closure. These results thus open a new window for increasing plant tolerance to osmotic stress.
Collapse
Affiliation(s)
- Yihua Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiuchang Su
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziping Chen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuli Yu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
15
|
Lin Q, Wang S, Dao Y, Wang J, Wang K. Arabidopsis thaliana trehalose-6-phosphate phosphatase gene TPPI enhances drought tolerance by regulating stomatal apertures. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4285-4297. [PMID: 32242234 DOI: 10.1093/jxb/eraa173] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/01/2020] [Indexed: 05/03/2023]
Abstract
Transpiration occurs through stomata. The alteration of stomatal apertures in response to drought stress is an important process associated with water use efficiency (WUE). Trehalose-6-phosphate phosphatase (TPP) family genes have been reported to participate in adjustment of stomatal aperture. However, there have been no reports of the trehalose metabolism pathway genes improving WUE, and the upstream signalling pathway modulating these genes is not clear. Here, we demonstrate that a member of the TPP gene family, AtTPPI, confers drought resistance and improves WUE by decreasing stomatal apertures and improving root architecture. The reduced expression of AtTPPI caused a drought-sensitive phenotype, while its overexpression significantly increased drought tolerance. Abscisic acid (ABA)-induced stomatal closure experiments confirmed that AtTPPI mutation increased the stomatal aperture compared with that of wild-type plants; in contrast, overexpression plants had smaller stomatal apertures than those of wild-type plants. Moreover, AtTPPI mutation also caused stunted primary root length and compromised auxin transport, while overexpression plants had longer primary root lengths. Yeast one-hybrid assays showed that ABA-responsive element-binding factor1 (ABF1), ABF2, and ABF4 directly regulated AtTPPI expression. In summary, the way in which AtTPPI responds to drought stress suggests that AtTPPI-mediated stomatal regulation is an important mechanism to cope with drought stress and improve WUE.
Collapse
Affiliation(s)
- Qingfang Lin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Song Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yihang Dao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jianyong Wang
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Ma J, Qiu D, Gao H, Wen H, Wu Y, Pang Y, Wang X, Qin Y. Over-expression of a γ-tocopherol methyltransferase gene in vitamin E pathway confers PEG-simulated drought tolerance in alfalfa. BMC PLANT BIOLOGY 2020; 20:226. [PMID: 32429844 PMCID: PMC7238615 DOI: 10.1186/s12870-020-02424-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND α-Tocopherol is one of the most important vitamin E components present in plant. α-Tocopherol is a potent antioxidant, which can deactivate photoproduced reactive oxygen species (ROS) and prevent lipids from oxidation when plants suffer drought stress. γ-Tocopherol methyltransferase (γ-TMT) catalyzes the formation of α-tocopherol in the tocopherol biosynthetic pathway. Our previous studies showed that over-expression of γ-TMT gene can increase the accumulation of α-tocopherol in alfalfa (Medicago sativa). However, whether these transgenic plants confer increased drought tolerance and the underlying mechanism are still unknown. RESULTS In the present study, we further evaluate transgenic alfalfa lines, and found that over-expression of MsTMT led to an increase in α-tocopherol and total tocopherol level in the transgenic lines compared with the control plant. It was revealed that drought tolerance of the transgenic alfalfa was remarkably increased, with alleviated oxidative damage and accumulation of more osmolytic substances. The stomatal development in transgenic plants was significantly inhibited on both sides of leaves, which may be resulted from the repression of MsSPCHLESS (MsSPCH) gene. The reduced stomatal density of transgenic plants contributes to a lower stomatal conductance and higher water use efficiency (WUE). Moreover, both RNA-seq and qRT-PCR analyses indicate that regulatory mechanism of MsTMT in drought involved in both ABA-dependent and ABA-independent pathways. CONCLUSION Our results suggest that MsTMT gene plays a positive role in regulating alfalfa response to PEG-simulated drought stress, which might involve complex mechanisms, including ROS scavenging system, stomatal development and multiple phytohormone signaling pathways. This study will broaden our view on the function of γ-TMT gene and provide new strategy for genetic engineering in alfalfa breeding.
Collapse
Affiliation(s)
- Jiangtao Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Deyun Qiu
- Division of biomedical science and biochemistry, Research School of Biology, The Australian National University, Canberra, ACT 2601 Australia
| | - Hongwen Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hongyu Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yudi Wu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yongzhen Pang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xuemin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yuchang Qin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
17
|
Kang T, Yu CY, Liu Y, Song WM, Bao Y, Guo XT, Li B, Zhang HX. Subtly Manipulated Expression of ZmmiR156 in Tobacco Improves Drought and Salt Tolerance Without Changing the Architecture of Transgenic Plants. FRONTIERS IN PLANT SCIENCE 2020; 10:1664. [PMID: 31998347 PMCID: PMC6965348 DOI: 10.3389/fpls.2019.01664] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/26/2019] [Indexed: 05/23/2023]
Abstract
Plants in the juvenile state are more tolerant to adverse conditions. Constitutive expression of MicroRNA156 (miR156) prolonged the juvenile phase and increased resistance to abiotic stress, but also affected the architecture of transgenic plants. In this study, we investigated the possibility of subtle manipulation of miR156 expression in flowering plants, with the goal to increase tolerance to abiotic stress without altering the normal growth and development of transgenic plants. Transgenic tobacco plants expressing ZmmiR156 from maize were generated, driven either by the cauliflower mosaic virus (CaMV) 35S promoter or the stress-inducible ZmRab17 promoter. Expression of ZmmiR156 led to improved drought and salt tolerance in both 35S::MIR156 and Rab17::MIR156 transgenic plants, as shown by more vigorous growth, greater biomass production and higher antioxidant enzyme expression after a long period of drought or salt treatment, when compared to wild type and transgenic vector control plants. However, constitutive expression of ZmmiR156 also resulted in retarded growth, increased branching and delayed flowering of transgenic plants. These undesirable developmental changes could be mitigated by using the stress-inducible ZmRab17 promoter. Furthermore, under drought or salt stress conditions, expression of ZmmiR156 reduced the transcript level of NtSPL2 and NtSPL9, the genes potentially targeted by ZmmiR156, as well as that of CP1, CP2, and SAG12, the senescence-associated genes in tobacco. Collectively, our results indicate that ZmmiR156 can be temporally manipulated for the genetic improvement of plants resistant to various abiotic stresses.
Collapse
Affiliation(s)
- Tao Kang
- College of Agriculture, Ludong University, Yantai, China
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chun-Yan Yu
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Yantai, China
| | - Yue Liu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Yantai, China
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Wei-Meng Song
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Bao
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Tong Guo
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Yantai, China
| | - Bei Li
- College of Agriculture, Ludong University, Yantai, China
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Yantai, China
| | - Hong-Xia Zhang
- College of Agriculture, Ludong University, Yantai, China
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Yantai, China
| |
Collapse
|
18
|
Dunn J, Hunt L, Afsharinafar M, Meselmani MA, Mitchell A, Howells R, Wallington E, Fleming AJ, Gray JE. Reduced stomatal density in bread wheat leads to increased water-use efficiency. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4737-4748. [PMID: 31172183 PMCID: PMC6760291 DOI: 10.1093/jxb/erz248] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/24/2019] [Indexed: 05/02/2023]
Abstract
Wheat is a staple crop, frequently cultivated in water-restricted environments. Improving crop water-use efficiency would be desirable if grain yield can be maintained. We investigated whether a decrease in wheat stomatal density via the manipulation of epidermal patterning factor (EPF) gene expression could improve water-use efficiency. Our results show that severe reductions in stomatal density in EPF-overexpressing wheat plants have a detrimental outcome on yields. However, wheat plants with a more moderate reduction in stomatal density (i.e. <50% reduction in stomatal density on leaves prior to tillering) had yields indistinguishable from controls, coupled with an increase in intrinsic water-use efficiency. Yields of these moderately reduced stomatal density plants were also comparable with those of control plants under conditions of drought and elevated CO2. Our data demonstrate that EPF-mediated control of wheat stomatal development follows that observed in other grasses, and we identify the potential of stomatal density as a tool for breeding wheat plants that are better able to withstand water-restricted environments without yield loss.
Collapse
Affiliation(s)
- Jessica Dunn
- Molecular Biology & Biotechnology Department, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Lee Hunt
- Molecular Biology & Biotechnology Department, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Mana Afsharinafar
- Molecular Biology & Biotechnology Department, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Moaed Al Meselmani
- Molecular Biology & Biotechnology Department, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Alice Mitchell
- Molecular Biology & Biotechnology Department, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | | | | | - Andrew J Fleming
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
- Correspondence: or
| | - Julie E Gray
- Molecular Biology & Biotechnology Department, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
- Correspondence: or
| |
Collapse
|
19
|
Qi S, Lin Q, Feng X, Han H, Liu J, Zhang L, Wu S, Le J, Blumwald E, Hua X. IDD16 negatively regulates stomatal initiation via trans-repression of SPCH in Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1446-1457. [PMID: 30623555 PMCID: PMC6576023 DOI: 10.1111/pbi.13070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/20/2018] [Accepted: 11/23/2018] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, the initiation and proliferation of stomatal lineage cells is controlled by SPEECHLESS (SPCH). Phosphorylation of SPCH at the post-translational level has been reported to regulate stomatal development. Here we report that IDD16 acts as a negative regulator for stomatal initiation by directly regulating SPCH transcription. In Arabidopsis, IDD16 overexpression decreased abaxial stomatal density in a dose-dependent manner. Time course analysis revealed that the initiation of stomatal precursor cells in the IDD16-OE plants was severely inhibited. Consistent with these findings, the transcription of SPCH was greatly repressed in the IDD16-OE plants. In contrast, IDD16-RNAi transgenic line resulted in enhanced stomatal density, suggesting that IDD16 is an intrinsic regulator of stomatal development. ChIP analysis indicated that IDD16 could directly bind to the SPCH promoter. Furthermore, Arabidopsis plants overexpressing IDD16 exhibited significantly increased drought tolerance and higher integrated water use efficiency (WUE) due to reduction in leaf transpiration. Collectively, our results established that IDD16 negatively regulates stomatal initiation via trans-repression of SPCH, and thus provide a practical tool for increasing plant WUE through the manipulation of IDD16 expression.
Collapse
Affiliation(s)
- Shi‐Lian Qi
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhouFujianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qing‐Fang Lin
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xuan‐Jun Feng
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hui‐Ling Han
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Liu
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Liu Zhang
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Shuang Wu
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Jie Le
- Key Laboratory of Plant Molecular PhysiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Xue‐Jun Hua
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- College of Life SciencesZhejiang Sci‐Tech UniversityHangzhouZhejiangChina
| |
Collapse
|
20
|
He F, Wang H, Li H, Su Y, Li S, Yang Y, Feng C, Yin W, Xia X. PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1514-1528. [PMID: 29406575 PMCID: PMC6041450 DOI: 10.1111/pbi.12893] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/28/2017] [Accepted: 01/28/2018] [Indexed: 05/11/2023]
Abstract
Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3 ligase, was isolated from Populus euphratica, a model of stress adaptation in forest trees. PeCHYR1 was preferentially expressed in young leaves and was significantly induced by ABA (abscisic acid) and dehydration treatments. To study the potential biological functions of PeCHYR1, transgenic poplar 84K (Populus alba × Populus glandulosa) plants overexpressing PeCHYR1 were generated. PeCHYR1 overexpression significantly enhanced H2 O2 production and reduced stomatal aperture. Transgenic lines exhibited increased sensitivity to exogenous ABA and greater drought tolerance than that of WT (wild-type) controls. Moreover, up-regulation of PeCHYR1 promoted stomatal closure and decreased transpiration, resulting in strongly elevated WUE (water use efficiency). When exposed to drought stress, transgenic poplar maintained higher photosynthetic activity and biomass accumulation. Taken together, these results suggest that PeCHYR1 plays a crucial role in enhancing drought tolerance via ABA-induced stomatal closure caused by hydrogen peroxide (H2 O2 ) production in transgenic poplar plants.
Collapse
Affiliation(s)
- Fang He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Hou‐Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Hui‐Guang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yanyan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Shuang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yanli Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Cong‐Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
21
|
Molecular control of stomatal development. Biochem J 2018; 475:441-454. [PMID: 29386377 PMCID: PMC5791161 DOI: 10.1042/bcj20170413] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
Plants have evolved developmental plasticity which allows the up- or down-regulation of photosynthetic and water loss capacities as new leaves emerge. This developmental plasticity enables plants to maximise fitness and to survive under differing environments. Stomata play a pivotal role in this adaptive process. These microscopic pores in the epidermis of leaves control gas exchange between the plant and its surrounding environment. Stomatal development involves regulated cell fate decisions that ensure optimal stomatal density and spacing, enabling efficient gas exchange. The cellular patterning process is regulated by a complex signalling pathway involving extracellular ligand–receptor interactions, which, in turn, modulate the activity of three master transcription factors essential for the formation of stomata. Here, we review the current understanding of the biochemical interactions between the epidermal patterning factor ligands and the ERECTA family of leucine-rich repeat receptor kinases. We discuss how this leads to activation of a kinase cascade, regulation of the bHLH transcription factor SPEECHLESS and its relatives, and ultimately alters stomatal production.
Collapse
|
22
|
Bucher SF, König P, Menzel A, Migliavacca M, Ewald J, Römermann C. Traits and climate are associated with first flowering day in herbaceous species along elevational gradients. Ecol Evol 2018; 8:1147-1158. [PMID: 29375786 PMCID: PMC5773311 DOI: 10.1002/ece3.3720] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/10/2017] [Accepted: 11/20/2017] [Indexed: 01/17/2023] Open
Abstract
Phenological responses to changing temperatures are known as “fingerprints of climate change,” yet these reactions are highly species specific. To assess whether different plant characteristics are related to these species‐specific responses in flowering phenology, we observed the first flowering day (FFD) of ten herbaceous species along two elevational gradients, representing temperature gradients. On the same populations, we measured traits being associated with (1) plant performance (specific leaf area), (2) leaf biochemistry (leaf C, N, P, K, and Mg content), and (3) water‐use efficiency (stomatal pore area index and stable carbon isotopes concentration). We found that as elevation increased, FFD was delayed for all species with a highly species‐specific rate. Populations at higher elevations needed less temperature accumulation to start flowering than populations of the same species at lower elevations. Surprisingly, traits explained a higher proportion of variance in the phenological data than elevation. Earlier flowering was associated with higher water‐use efficiency, higher leaf C, and lower leaf P content. In addition to that, the intensity of shifts in FFD was related to leaf N and K. These results propose that traits have a high potential in explaining phenological variations, which even surpassed the effect of temperature changes in our study. Therefore, they have a high potential to be included in future analyses studying the effects of climate change and will help to improve predictions of vegetation changes.
Collapse
Affiliation(s)
- Solveig Franziska Bucher
- Department of Plant Biodiversity Institute of Ecology and Evolution Friedrich Schiller University Jena Jena Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| | - Patrizia König
- Department of Plant Biodiversity Institute of Ecology and Evolution Friedrich Schiller University Jena Jena Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| | - Annette Menzel
- Department of Ecology and Ecosystem Management Technische Universität München Freising Germany.,Institute for Advanced Study Technische Universität München Garching Germany
| | - Mirco Migliavacca
- Biosphere-Atmosphere Interactions and Experimentation Max Planck Institute for Biogeochemistry Jena Germany
| | - Jörg Ewald
- Department of Forest Science and Forestry Weihenstephan-Triesdorf University of Applied Sciences Freising Germany
| | - Christine Römermann
- Department of Plant Biodiversity Institute of Ecology and Evolution Friedrich Schiller University Jena Jena Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| |
Collapse
|
23
|
Smirnakou S, Ouzounis T, Radoglou KM. Continuous Spectrum LEDs Promote Seedling Quality Traits and Performance of Quercus ithaburensis var. macrolepis. FRONTIERS IN PLANT SCIENCE 2017; 8:188. [PMID: 28261244 PMCID: PMC5306215 DOI: 10.3389/fpls.2017.00188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 01/30/2017] [Indexed: 05/27/2023]
Abstract
Regulation of the growth, development, and quality of plants by the control of light quality has attracted extensive attention worldwide. The aim of this study was to examine the effects of continuous LED spectrum for indoor plant pre-cultivation and to investigate the morphological and physiological responses of a common broadleaved tree species in Mediterranean environment, Quercus ithaburensis var. macrolepis at seedling developmental stage. Thus, the seedlings were pre-cultivated for 28 days, under five different LED light qualities: (1) Fluorescent (FL) as control light (2) L20AP67 (high in green and moderate in far-red), (3) AP673L (high in green and red), (4) G2 (highest in red and far-red), AP67 (high in blue, red, and far-red), and (5) NS1 (highest in blue and green and lowest in far-red) LEDs. Further examination was held at the nursery for 1 year, on several seedling quality traits. Indeed, AP67 and AP673L triggered higher leaf formation, while L20AP67 positively affected seedling shoot development. NS1 and AP67 LED pre-cultivated seedlings showed significantly higher root fibrosity than those of FL light. Furthermore, NS1 and AP673L LEDs induced fourfold increase on seedling root dry weight than FL light. Hence, evaluating the seedling nursery performance attributes, most of those photomorphogenetic responses previously obtained were still detectable. Even more so, LED pre-cultivated seedlings showed higher survival and faster growth indicating better adaptation even under natural light conditions, a fact further reinforced by the significantly higher Dickson's quality index acquired. In conclusion, the goal of each nursery management program is the production of high quality seedlings with those desirable traits, which in turn satisfy the specific needs for a particular reforestation site. Thus, the enhanced oak seedling quality traits formed under continuous LEDs spectrum especially of NS1 and AP673L pre-cultivation may potentially fulfill this goal.
Collapse
Affiliation(s)
- Sonia Smirnakou
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of ThraceNea Orestiada, Greece
| | - Theoharis Ouzounis
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen UniversityWageningen, Netherlands
| | - Kalliopi M. Radoglou
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of ThraceNea Orestiada, Greece
| |
Collapse
|
24
|
McAusland L, Vialet‐Chabrand S, Davey P, Baker NR, Brendel O, Lawson T. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. THE NEW PHYTOLOGIST 2016; 211:1209-20. [PMID: 27214387 PMCID: PMC4982059 DOI: 10.1111/nph.14000] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/24/2016] [Indexed: 05/18/2023]
Abstract
Both photosynthesis (A) and stomatal conductance (gs ) respond to changing irradiance, yet stomatal responses are an order of magnitude slower than photosynthesis, resulting in noncoordination between A and gs in dynamic light environments. Infrared gas exchange analysis was used to examine the temporal responses and coordination of A and gs to a step increase and decrease in light in a range of different species, and the impact on intrinsic water use efficiency was evaluated. The temporal responses revealed a large range of strategies to save water or maximize photosynthesis in the different species used in this study but also displayed an uncoupling of A and gs in most of the species. The shape of the guard cells influenced the rapidity of response and the overall gs values achieved, with different impacts on A and Wi . The rapidity of gs in dumbbell-shaped guard cells could be attributed to size, whilst in elliptical-shaped guard cells features other than anatomy were more important for kinetics. Our findings suggest significant variation in the rapidity of stomatal responses amongst species, providing a novel target for improving photosynthesis and water use.
Collapse
Affiliation(s)
- Lorna McAusland
- School of Biological SciencesUniversity of EssexColchesterCO4 3SQUK
| | | | - Philip Davey
- School of Biological SciencesUniversity of EssexColchesterCO4 3SQUK
| | - Neil R. Baker
- School of Biological SciencesUniversity of EssexColchesterCO4 3SQUK
| | - Oliver Brendel
- INRAUMR1137 ‘Ecologie et Ecophysiologie Forestières’F‐54280ChampenouxFrance
- UMR1137 ‘Ecologie et Ecophysiologie Forestières’Faculté des SciencesUniversité de LorraineF‐54500Vandoeuvre‐Les‐NancyFrance
| | - Tracy Lawson
- School of Biological SciencesUniversity of EssexColchesterCO4 3SQUK
| |
Collapse
|
25
|
Zheng X, Liu H, Ji H, Wang Y, Dong B, Qiao Y, Liu M, Li X. The Wheat GT Factor TaGT2L1D Negatively Regulates Drought Tolerance and Plant Development. Sci Rep 2016; 6:27042. [PMID: 27245096 PMCID: PMC4887992 DOI: 10.1038/srep27042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/13/2016] [Indexed: 01/18/2023] Open
Abstract
GT factors are trihelix transcription factors that specifically regulate plant development and stress responses. Recently, several GT factors have been characterized in different plant species; however, little is known about the role of GT factors in wheat. Here, we show that TaGT2L1A, TaGT2L1B, and TaGT2L1D are highly homologous in hexaploid wheat, and are localized to wheat chromosomes 2A, 2B, and 2D, respectively. These TaGT2L1 genes encode proteins containing two SANT domains and one central helix. All three homologs were ubiquitously expressed during wheat development and were responsive to osmotic stress. Functional analyses demonstrated that TaGT2L1D acts as a transcriptional repressor; it was able to suppress the expression of AtSDD1 in Arabidopsis by binding directly to the GT3 box in its promoter that negatively regulates drought tolerance. TaGT2L1D overexpression markedly increased the number of stomata and reduced drought tolerance in gtl1-3 plants. Notably, ectopic expression of TaGT2L1D also affected floral organ development and overall plant growth. These results demonstrate that TaGT2L1 is an ortholog of AtGTL1, and that it plays an evolutionarily conserved role in drought resistance by fine tuning stomatal density in wheat. Our data also highlight the role of TaGT2L1 in plant growth and development.
Collapse
Affiliation(s)
- Xin Zheng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haipei Liu
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, SA 5064, Australia
| | - Hongtao Ji
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Youning Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Baodi Dong
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, P. R. China
| | - Yunzhou Qiao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, P. R. China
| | - Mengyu Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, P. R. China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
26
|
Wang C, Liu S, Dong Y, Zhao Y, Geng A, Xia X, Yin W. PdEPF1 regulates water-use efficiency and drought tolerance by modulating stomatal density in poplar. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:849-60. [PMID: 26228739 PMCID: PMC11388919 DOI: 10.1111/pbi.12434] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 05/18/2023]
Abstract
Water deficiency is a critical environmental condition that is seriously reducing global plant production. Improved water-use efficiency (WUE) and drought tolerance are effective strategies to address this problem. In this study, PdEPF1, a member of the EPIDERMAL PATTERNING FACTOR (EPF) family, was isolated from the fast-growing poplar clone NE-19 [Populus nigra × (Populus deltoides × Populus nigra)]. Significantly, higher PdEPF1 levels were detected after induction by dehydration and abscisic acid. To explore the biological functions of PdEPF1, transgenic triploid white poplars (Populus tomentosa 'YiXianCiZhu B385') overexpressing PdEPF1 were constructed. PdEPF1 overexpression resulted in increased water deficit tolerance and greater WUE. We confirmed that the transgenic lines with greater instantaneous WUE had approximately 30% lower transpiration but equivalent CO2 assimilation. Lower transpiration was associated with a 28% reduction in abaxial stomatal density. PdEPF1 overexpression not only strongly enhanced WUE, but also greatly improved drought tolerance, as measured by the leaf relative water content and water potential, under limited water conditions. In addition, the growth of these oxPdEPF1 plants was less adversely affected by reduced water availability than plants with a higher stomatal density, indicating that plants with a low stomatal density may be well suited to grow in water-scarce environments. Taken together, our data suggest that PdEPF1 improves WUE and confers drought tolerance in poplar; thus, it could be used to breed drought-tolerant plants with increased production under conditions of water deficiency.
Collapse
Affiliation(s)
- Congpeng Wang
- Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Sha Liu
- Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yan Dong
- Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Liaoning Forestry Vocational- Technical College, Shenyang, China
| | - Ying Zhao
- Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Anke Geng
- Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Weilun Yin
- Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
27
|
Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity. Sci Rep 2016; 6:20212. [PMID: 26832070 PMCID: PMC4735794 DOI: 10.1038/srep20212] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 12/24/2015] [Indexed: 11/30/2022] Open
Abstract
Balancing stomata-dependent CO2 assimilation and transpiration is a key challenge for increasing crop productivity and water use efficiency under drought stress for sustainable crop production worldwide. Here, we show that cucumber and luffa plants with luffa as rootstock have intrinsically increased water use efficiency, decreased transpiration rate and less affected CO2 assimilation capacity following drought stress over those with cucumber as rootstock. Drought accelerated abscisic acid (ABA) accumulation in roots, xylem sap and leaves, and induced the transcript of ABA signaling genes, leading to a decreased stomatal aperture and transpiration in the plants grafted onto luffa roots as compared to plants grafted onto cucumber roots. Furthermore, stomatal movement in the plants grafted onto luffa roots had an increased sensitivity to ABA. Inhibition of ABA biosynthesis in luffa roots decreased the drought tolerance in cucumber and luffa plants. Our study demonstrates that the roots of luffa have developed an enhanced ability to sense the changes in root-zone moisture and could eventually deliver modest level of ABA from roots to shoots that enhances water use efficiency under drought stress. Such a mechanism could be greatly exploited to benefit the agricultural production especially in arid and semi-arid areas.
Collapse
|
28
|
Virdi AS, Singh S, Singh P. Abiotic stress responses in plants: roles of calmodulin-regulated proteins. FRONTIERS IN PLANT SCIENCE 2015; 6:809. [PMID: 26528296 PMCID: PMC4604306 DOI: 10.3389/fpls.2015.00809] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/16/2015] [Indexed: 05/20/2023]
Abstract
Intracellular changes in calcium ions (Ca(2+)) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca(2+)-sensing proteins and has been shown to be involved in transduction of Ca(2+) signals. After interacting with Ca(2+), CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Amardeep S. Virdi
- Texture Analysis Laboratory, Department of Food Science & Technology, Guru Nanak Dev UniversityAmritsar, India
| | - Supreet Singh
- Plant Molecular Biology Laboratory, Department of Biotechnology, Guru Nanak Dev UniversityAmritsar, India
| | - Prabhjeet Singh
- Plant Molecular Biology Laboratory, Department of Biotechnology, Guru Nanak Dev UniversityAmritsar, India
| |
Collapse
|
29
|
Xie Y, Mao Y, Zhang W, Lai D, Wang Q, Shen W. Reactive Oxygen Species-Dependent Nitric Oxide Production Contributes to Hydrogen-Promoted Stomatal Closure in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:759-773. [PMID: 24733882 PMCID: PMC4044830 DOI: 10.1104/pp.114.237925] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/12/2014] [Indexed: 05/20/2023]
Abstract
The signaling role of hydrogen gas (H2) has attracted increasing attention from animals to plants. However, the physiological significance and molecular mechanism of H2 in drought tolerance are still largely unexplored. In this article, we report that abscisic acid (ABA) induced stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering intracellular signaling events involving H2, reactive oxygen species (ROS), nitric oxide (NO), and the guard cell outward-rectifying K+ channel (GORK). ABA elicited a rapid and sustained H2 release and production in Arabidopsis. Exogenous hydrogen-rich water (HRW) effectively led to an increase of intracellular H2 production, a reduction in the stomatal aperture, and enhanced drought tolerance. Subsequent results revealed that HRW stimulated significant inductions of NO and ROS synthesis associated with stomatal closure in the wild type, which were individually abolished in the nitric reductase mutant nitrate reductase1/2 (nia1/2) or the NADPH oxidase-deficient mutant rbohF (for respiratory burst oxidase homolog). Furthermore, we demonstrate that the HRW-promoted NO generation is dependent on ROS production. The rbohF mutant had impaired NO synthesis and stomatal closure in response to HRW, while these changes were rescued by exogenous application of NO. In addition, both HRW and hydrogen peroxide failed to induce NO production or stomatal closure in the nia1/2 mutant, while HRW-promoted ROS accumulation was not impaired. In the GORK-null mutant, stomatal closure induced by ABA, HRW, NO, or hydrogen peroxide was partially suppressed. Together, these results define a main branch of H2-regulated stomatal movement involved in the ABA signaling cascade in which RbohF-dependent ROS and nitric reductase-associated NO production, and subsequent GORK activation, were causally involved.
Collapse
Affiliation(s)
- Yanjie Xie
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Mao
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Diwen Lai
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Qingya Wang
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
30
|
Castilhos G, Lazzarotto F, Spagnolo-Fonini L, Bodanese-Zanettini MH, Margis-Pinheiro M. Possible roles of basic helix-loop-helix transcription factors in adaptation to drought. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:1-7. [PMID: 24767109 DOI: 10.1016/j.plantsci.2014.02.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/09/2014] [Accepted: 02/25/2014] [Indexed: 05/04/2023]
Abstract
Water deficiency decreases plant growth and productivity. Several mechanisms are activated in response to dehydration that allows plants to cope with stress, including factors controlling stomatal aperture and ramified root system development. In addition, ABA metabolism is also implicated in the regulation of drought responses. The basic helix-loop-helix (bHLH) proteins, a large family of conserved transcription factors that regulates many cellular processes in eukaryotic organisms, are also involved in several responses that are important for plants to cope with drought stress. This review discusses distinct mechanisms related to drought-adaptive responses, especially the possible involvement of the bHLH transcription factors such as MUTE, implicated in stomatal development; RD22, [corrected] an ABA-responsive gene; EGL3 and GL3, involved in thichome and root hair development; and SPT, which play roles in repressing leaf expansion. Transcription factors are potential targets for new strategies to increase the tolerance of cultivars to drought stress. Recognition of gene regulatory networks in crops is challenging, and the manipulation of bHLH genes as well as components that mediate bHLH transcription factor responses in different pathways could be essential to achieve abiotic stress tolerance in plants through genetic manipulation.
Collapse
Affiliation(s)
- Graciela Castilhos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Dep. Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Lazzarotto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Dep. Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Leila Spagnolo-Fonini
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Helena Bodanese-Zanettini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Dep. Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Márcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Dep. Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
31
|
Wang WH, Chen J, Liu TW, Chen J, Han AD, Simon M, Dong XJ, He JX, Zheng HL. Regulation of the calcium-sensing receptor in both stomatal movement and photosynthetic electron transport is crucial for water use efficiency and drought tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:223-34. [PMID: 24187420 PMCID: PMC3883291 DOI: 10.1093/jxb/ert362] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Production per amount of water used (water use efficiency, WUE) is closely correlated with drought tolerance. Although stomatal aperture can regulate WUE, the underlying molecular mechanisms are still unclear. Previous reports revealed that stomatal closure was inhibited in the calcium-sensing receptor (CAS) antisense line of Arabidopsis (CASas). Here it is shown that decreased drought tolerance and WUE of CASas was associated with higher stomatal conductance due to improper regulation of stomatal aperture, rather than any change of stomatal density. CASas plants also had a lower CO2 assimilation rate that was attributed to a lower photosynthetic electron transport rate, leading to higher chlorophyll fluorescence. Gene co-expression combined with analyses of chlorophyll content and transcription levels of photosynthesis-related genes indicate that CAS is involved in the formation of the photosynthetic electron transport system. These data suggest that CAS regulates transpiration and optimizes photosynthesis by playing important roles in stomatal movement and formation of photosynthetic electron transport, thereby regulating WUE and drought tolerance.
Collapse
Affiliation(s)
- Wen-Hua Wang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Juan Chen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Ting-Wu Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Juan Chen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Ai-Dong Han
- Key Laboratory for Cell Biology of MOE, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Martin Simon
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Xue-Jun Dong
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | - Jun-Xian He
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
32
|
McAusland L, Davey PA, Kanwal N, Baker NR, Lawson T. A novel system for spatial and temporal imaging of intrinsic plant water use efficiency. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4993-5007. [PMID: 24043857 PMCID: PMC3830482 DOI: 10.1093/jxb/ert288] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Instrumentation and methods for rapid screening and selection of plants with improved water use efficiency are essential to address current issues of global food and fuel security. A new imaging system that combines chlorophyll fluorescence and thermal imaging has been developed to generate images of assimilation rate (A), stomatal conductance (gs), and intrinsic water use efficiency (WUEi) from whole plants or leaves under controlled environmental conditions. This is the first demonstration of the production of images of WUEi and the first to determine images of g s from themography at the whole-plant scale. Data are presented illustrating the use of this system for rapidly and non-destructively screening plants for alterations in WUEi by comparing Arabidopsis thaliana mutants (OST1-1) that have altered WUEi driven by open stomata, with wild-type plants. This novel instrument not only provides the potential to monitor multiple plants simultaneously, but enables intra- and interspecies variation to be taken into account both spatially and temporally. The ability to measure A, gs, and WUEi progressively was developed to facilitate and encourage the development of new dynamic protocols. Images illustrating the instrument's dynamic capabilities are demonstrated by analysing plant responses to changing photosynthetic photon flux density (PPFD). Applications of this system will augment the research community's need for novel screening methods to identify rapidly novel lines, cultivars, or species with improved A and WUEi in order to meet the current demands on modern agriculture and food production.
Collapse
Affiliation(s)
- L. McAusland
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - P. A. Davey
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - N. Kanwal
- School of Computing and Engineering Science, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - N. R. Baker
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - T. Lawson
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Lü S, Zhao H, Des Marais DL, Parsons EP, Wen X, Xu X, Bangarusamy DK, Wang G, Rowland O, Juenger T, Bressan RA, Jenks MA. Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status. PLANT PHYSIOLOGY 2012; 159:930-44. [PMID: 22635115 PMCID: PMC3387718 DOI: 10.1104/pp.112.198697] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/16/2012] [Indexed: 05/19/2023]
Abstract
Mutation of the ECERIFERUM9 (CER9) gene in Arabidopsis (Arabidopsis thaliana) causes elevated amounts of 18-carbon-length cutin monomers and a dramatic shift in the cuticular wax profile (especially on leaves) toward the very-long-chain free fatty acids tetracosanoic acid (C₂₄) and hexacosanoic acid (C₂₆). Relative to the wild type, cer9 mutants exhibit elevated cuticle membrane thickness over epidermal cells and cuticular ledges with increased occlusion of the stomatal pore. The cuticular phenotypes of cer9 are associated with delayed onset of wilting in plants experiencing water deficit, lower transpiration rates, and improved water use efficiency measured as carbon isotope discrimination. The CER9 protein thus encodes a novel determinant of plant drought tolerance-associated traits, one whose deficiency elevates cutin synthesis, redistributes wax composition, and suppresses transpiration. Map-based cloning identified CER9, and sequence analysis predicted that it encodes an E3 ubiquitin ligase homologous to yeast Doa10 (previously shown to target endoplasmic reticulum proteins for proteasomal degradation). To further elucidate CER9 function, the impact of CER9 deficiency on interactions with other genes was examined using double mutant and transcriptome analyses. For both wax and cutin, cer9 showed mostly additive effects with cer6, long-chain acyl-CoA synthetase1 (lacs1), and lacs2 and revealed its role in early steps of both wax and cutin synthetic pathways. Transcriptome analysis revealed that the cer9 mutation affected diverse cellular processes, with primary impact on genes associated with diverse stress responses. The discovery of CER9 lays new groundwork for developing novel cuticle-based strategies for improving the drought tolerance and water use efficiency of crop plants.
Collapse
Affiliation(s)
- Shiyou Lü
- Division of Chemical and Life Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Atarés A, Moyano E, Morales B, Schleicher P, García-Abellán JO, Antón T, García-Sogo B, Perez-Martin F, Lozano R, Flores FB, Moreno V, del Carmen Bolarin M, Pineda B. An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii. PLANT CELL REPORTS 2011; 30:1865-79. [PMID: 21647638 PMCID: PMC3172414 DOI: 10.1007/s00299-011-1094-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/14/2011] [Accepted: 05/22/2011] [Indexed: 05/20/2023]
Abstract
Salinity and drought have a huge impact on agriculture since there are few areas free of these abiotic stresses and the problem continues to increase. In tomato, the most important horticultural crop worldwide, there are accessions of wild-related species with a high degree of tolerance to salinity and drought. Thus, the finding of insertional mutants with other tolerance levels could lead to the identification and tagging of key genes responsible for abiotic stress tolerance. To this end, we are performing an insertional mutagenesis programme with an enhancer trap in the tomato wild-related species Solanum pennellii. First, we developed an efficient transformation method which has allowed us to generate more than 2,000 T-DNA lines. Next, the collection of S. pennelli T(0) lines has been screened in saline or drought conditions and several presumptive mutants have been selected for their salt and drought sensitivity. Moreover, T-DNA lines with expression of the reporter uidA gene in specific organs, such as vascular bundles, trichomes and stomata, which may play key roles in processes related to abiotic stress tolerance, have been identified. Finally, the growth of T-DNA lines in control conditions allowed us the identification of different development mutants. Taking into account that progenies from the lines are being obtained and that the collection of T-DNA lines is going to enlarge progressively due to the high transformation efficiency achieved, there are great possibilities for identifying key genes involved in different tolerance mechanisms to salinity and drought.
Collapse
Affiliation(s)
- Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, CPI Ed. 8E, Camino de Vera s/n, 46022 Valencia, Spain
| | - Elena Moyano
- CEBAS-CSIC, Campus de Espinardo, Apdo. 164, 30100 Murcia, Spain
| | - Belén Morales
- CEBAS-CSIC, Campus de Espinardo, Apdo. 164, 30100 Murcia, Spain
| | - Peter Schleicher
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, CPI Ed. 8E, Camino de Vera s/n, 46022 Valencia, Spain
| | | | - Teresa Antón
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, CPI Ed. 8E, Camino de Vera s/n, 46022 Valencia, Spain
| | - Begoña García-Sogo
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, CPI Ed. 8E, Camino de Vera s/n, 46022 Valencia, Spain
| | - Fernando Perez-Martin
- Departamento de Biología Aplicada, E. Politécnica Superior, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Rafael Lozano
- Departamento de Biología Aplicada, E. Politécnica Superior, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | | | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, CPI Ed. 8E, Camino de Vera s/n, 46022 Valencia, Spain
| | | | - Benito Pineda
- Departamento de Biología Aplicada, E. Politécnica Superior, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
35
|
|
36
|
Yoo CY, Pence HE, Jin JB, Miura K, Gosney MJ, Hasegawa PM, Mickelbart MV. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. THE PLANT CELL 2010; 22:4128-41. [PMID: 21169508 PMCID: PMC3027182 DOI: 10.1105/tpc.110.078691] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 11/11/2010] [Accepted: 11/24/2010] [Indexed: 05/18/2023]
Abstract
A goal of modern agriculture is to improve plant drought tolerance and production per amount of water used, referred to as water use efficiency (WUE). Although stomatal density has been linked to WUE, the causal molecular mechanisms have yet to be determined. Arabidopsis thaliana GT-2 LIKE 1 (GTL1) loss-of-function mutations result in increased water deficit tolerance and higher integrated WUE by reducing daytime transpiration without a demonstrable reduction in biomass accumulation. gtl1 plants had higher instantaneous WUE that was attributable to ~25% lower transpiration and stomatal conductance but equivalent CO(2) assimilation. Lower transpiration was associated with higher STOMATAL DENSITY AND DISTRIBUTION1 (SDD1) expression and an ~25% reduction in abaxial stomatal density. GTL1 expression occurred in abaxial epidermal cells where the protein was localized to the nucleus, and its expression was downregulated by water stress. Chromatin immunoprecipitation analysis indicated that GTL1 interacts with a region of the SDD1 promoter that contains a GT3 box. An electrophoretic mobility shift assay was used to determine that the GT3 box is necessary for the interaction between GTL1 and the SDD1 promoter. These results establish that GTL1 negatively regulates WUE by modulating stomatal density via transrepression of SDD1.
Collapse
Affiliation(s)
- Chan Yul Yoo
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, Indiana 47907-2010
| | - Heather E. Pence
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, Indiana 47907-2010
| | - Jing Bo Jin
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Michael J. Gosney
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, Indiana 47907-2010
| | - Paul M. Hasegawa
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, Indiana 47907-2010
| | - Michael V. Mickelbart
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, Indiana 47907-2010
| |
Collapse
|
37
|
Xiao Y, Yu X, Chen J, Di P, Chen W, Zhang L. IiSDD1, a gene responsive to autopolyploidy and environmental factors in Isatis indigotica. Mol Biol Rep 2010; 37:987-94. [PMID: 19728150 DOI: 10.1007/s11033-009-9776-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 08/18/2009] [Indexed: 11/29/2022]
Abstract
In plants, stomata play a pivotal role in the regulation of gas exchange and are distributed throughout the aerial epidermis. SDD1, a gene isolated from Arabidopsis thaliana has been demonstrated to specialize in stomatal density and distribution. In our present study, a comprehensive survey of global gene expression performed by using an A. thaliana whole genome Affymetrix gene chip revealed SDD1 tends to be significantly lower in tetraploid Isatis indigotica than in diploid ones. To intensively investigate different SDD1 expression in response to polyploidy, a full-length cDNA clone (IiSDD1) encoding SDD1 was isolated from the traditional Chinese medicinal herb I. indigotica cDNA library. IiSDD1 shared a high level of identity with that from A. thaliana, containing some basic features of subtilases: D, H and S regions, as well as a substrate-binding site. Real-time quantitative PCR analysis indicated that IiSDD1 was constitutively expressed in all tested tissues, including roots, stems and leaves, both in tetraploid and diploid I. indigotica, and with the highest expression in leaves. In addition, IiSDD1 was also found to be down-regulated by signalling molecules for plant defence responses, such as abscisic acid (100 microM) and gibberellin (100 mg/L), as well as by environmental stresses including salt, darkness, coldness and drought. Our study, for the first time, indicates SDD1 participates not only in the defense/stress responsive pathways, but also probably involves in plants polyploidy evolution.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, 200003 Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
38
|
Chaerle L, Lenk S, Leinonen I, Jones HG, Van Der Straeten D, Buschmann C. Multi-sensor plant imaging: Towards the development of a stress-catalogue. Biotechnol J 2009; 4:1152-67. [PMID: 19557794 DOI: 10.1002/biot.200800242] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Agricultural production is limited by a wide range of abiotic (e.g. drought, waterlogging) and biotic (pests, diseases and weeds) stresses. The impact of these stresses can be minimized by appropriate management actions such as irrigation or chemical pesticide application. However, further optimization requires the ability to diagnose and quantify the different stresses at an early stage. Particularly valuable information of plant stress responses is provided by plant imaging, i.e. non-contact sensing with spatial resolving power: (i) thermal imaging, detecting changes in transpiration rate and (ii) fluorescence imaging monitoring alterations in photosynthesis and other physiological processes. These can be supplemented by conventional video imagery for study of growth. An efficient early warning system would need to discriminate between different stressors. Given the wide range of sensors, and the association of specific plant physiological responses with changes at particular wavelengths, this goal seems within reach. This is based on the organization of the individual sensor results in a matrix that identifies specific signatures for multiple stress types. In this report, we first review the diagnostic effectiveness of different individual imaging techniques and then extend this to the multi-sensor stress-identification approach.
Collapse
|
39
|
Saibo NJM, Lourenço T, Oliveira MM. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. ANNALS OF BOTANY 2009; 103:609-23. [PMID: 19010801 PMCID: PMC2707349 DOI: 10.1093/aob/mcn227] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/07/2008] [Accepted: 10/15/2008] [Indexed: 05/17/2023]
Abstract
BACKGROUND Environmental conditions, such as water supply, temperature and salinity, strongly affect plant growth and development. Extremes of these conditions (abiotic stresses) adversely affect many different mechanisms associated with plant responses and adaptation to stress: photosynthetic mechanisms, e.g. stomatal control of CO(2) diffusion, photosystem II repair, ribulose bisphosphate carboxylase/oxygenase (Rubisco) activity and scavenging of reactive oxygen species (ROS), are susceptible to damage, and photosynthetic efficiency can be greatly decreased. Responses and adaptations require differential gene expression, which is regulated by specific transcription factors (TFs). SCOPE The role and regulation of several TFs involved in abiotic stress response pathways are considered, with emphasis on new findings regarding expression of genes related to both stomatal and non-stomatal limitations to CO(2) photosynthetic assimilation. CONCLUSIONS Many TFs, belonging to different families (e.g. MYB, bZIP and DREB), have been related to abiotic stress responses; however, only a few are known to regulate the expression of photosynthesis-related genes in response to stress. Several TFs belonging to the MYB family play an important role in both stomatal and non-stomatal responses by regulation of stomatal numbers and sizes, and metabolic components, respectively. To obtain more insight into this area of potentially large agronomic impact, it is essential to identify and functionally characterize new TFs that mediate the stress responses regulating the expression of genes associated with photosynthesis and related metabolism.
Collapse
Affiliation(s)
- Nelson J M Saibo
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | | | | |
Collapse
|
40
|
Morison JIL, Baker NR, Mullineaux PM, Davies WJ. Improving water use in crop production. Philos Trans R Soc Lond B Biol Sci 2008; 363:639-58. [PMID: 17652070 PMCID: PMC2610175 DOI: 10.1098/rstb.2007.2175] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Globally, agriculture accounts for 80-90% of all freshwater used by humans, and most of that is in crop production. In many areas, this water use is unsustainable; water supplies are also under pressure from other users and are being affected by climate change. Much effort is being made to reduce water use by crops and produce 'more crop per drop'. This paper examines water use by crops, taking particularly a physiological viewpoint, examining the underlying relationships between carbon uptake, growth and water loss. Key examples of recent progress in both assessing and improving crop water productivity are described. It is clear that improvements in both agronomic and physiological understanding have led to recent increases in water productivity in some crops. We believe that there is substantial potential for further improvements owing to the progress in understanding the physiological responses of plants to water supply, and there is considerable promise within the latest molecular genetic approaches, if linked to the appropriate environmental physiology. We conclude that the interactions between plant and environment require a team approach looking across the disciplines from genes to plants to crops in their particular environments to deliver improved water productivity and contribute to sustainability.
Collapse
Affiliation(s)
- J I L Morison
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| | | | | | | |
Collapse
|
41
|
Abstract
Stomata play a pivotal role in the regulation of gas exchange in flowering plants and are distributed throughout the aerial epidermis. In leaves, the pattern of stomatal distribution is highly variable between species but is regulated by a mechanism that maintains a minimum of one cell spacing between stomata. In Arabidopsis, a number of the genetic components of this mechanism have been identified and include, SDD1, EPF1 and the putative receptors TMM and the ERECTA-gene family. A mitogen-activated protein (MAP) kinase signalling cascade is believed to act downstream of these putative receptors while a number of transcription factors including SPCH, MUTE and FAMA have been identified that control consecutive steps of stomatal development. The environment also has significant effects on stomatal development. In a number of species both light intensity and CO(2) concentrations have been shown to influence the frequency at which stomata develop on leaves. Long-distance signalling mechanisms have been implicated in these environmental responses with the conditions sensed by mature leaves determining the stomatal frequency in developing leaves. Thus, changes in the environment appear to act by modulating the developmental and patterning pathways to determine stomatal frequency.
Collapse
Affiliation(s)
- Stuart Casson
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
42
|
Chaerle L, Leinonen I, Jones HG, Van Der Straeten D. Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:773-84. [PMID: 17189594 DOI: 10.1093/jxb/erl257] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Thermal and chlorophyll fluorescence imaging are powerful tools for the study of spatial and temporal heterogeneity of leaf transpiration and photosynthetic performance. The relative advantages and disadvantages of these techniques are discussed. When combined, they can highlight pre-symptomatic responses not yet apparent in visual spectrum images and provide specific signatures for diagnosis of distinct diseases and abiotic stresses. In addition, their use for diagnosis and for selection for stomatal or photosynthetic mutants, these techniques can be applied for stress tolerance screening. For example, rapid screening for stomatal responses can be achieved by thermal imaging, while, combined with fluorescence imaging to study photosynthesis, they can potentially be used to derive leaf water use efficiency as a screening parameter. A particular advantage of imaging is that it allows continuous automated monitoring of dynamic spatial variation. Examples of applications include the study of growth and development of plant lines differing in stress resistance, yield, circadian clock-controlled responses, and the possible interactions between these parameters. In the future, such dual-imaging systems could be extended with complementary techniques such as hyperspectral and blue-green fluorescence imaging. This would result in an increased number of quantified parameters which will increase the power of stress diagnosis and the potential for screening of stress-tolerant genotypes.
Collapse
Affiliation(s)
- Laury Chaerle
- Unit of Plant Hormone Signalling and Bio-imaging, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | | | |
Collapse
|
43
|
Nilson SE, Assmann SM. The control of transpiration. Insights from Arabidopsis. PLANT PHYSIOLOGY 2007; 143:19-27. [PMID: 17210910 PMCID: PMC1761994 DOI: 10.1104/pp.106.093161] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 11/23/2006] [Indexed: 05/13/2023]
Affiliation(s)
- Sarah E Nilson
- Biology Department, Penn State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
44
|
Chaerle L, Pineda M, Romero-Aranda R, Van Der Straeten D, Barón M. Robotized thermal and chlorophyll fluorescence imaging of pepper mild mottle virus infection in Nicotiana benthamiana. PLANT & CELL PHYSIOLOGY 2006; 47:1323-36. [PMID: 16943218 DOI: 10.1093/pcp/pcj102] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
After infecting a susceptible host, pathogens spread throughout the plant. Depending on pathogen type and strain, the severity of symptoms varies greatly. In the case of pepper mild mottle virus (PMMoV) infection in Nicotiana benthamiana, newly developing leaves display visual symptoms (symptomatic leaves). In this study, two PMMoV strains were used, the Spanish strain (PMMoV-S) being more virulent than the Italian strain (PMMoV-I). Plants infected with PMMoV-I could recover from the virus-induced symptoms. Leaves that were fully developed at the start of PMMoV infection remained symptomless. In these asymptomatic leaves, an increase in temperature, initiating from the tissue adjacent to the main veins, was observed 7 d before the Chl fluorescence pattern changed. Virus immunolocalization on tissue prints matched well with the concomitant pattern of Chl fluorescence increase. The temperature increase, associated with the veins, was shown to be related to stomatal closure. Upon PMMoV-I infection, the appearance of thermal and Chl fluorescence symptoms as well as virus accumulation were delayed by 3 d compared with PMMoV-S-induced symptoms. The temperature increase of whole symptomatic leaves was also correlated with a decrease in stomatal aperture. In contrast to the persistent increase in symptomatic leaf temperature observed during PMMoV-S infection, the temperature of symptomatic leaves of PMMoV-I-infected plants decreased gradually during recovery. We propose that the earliest temperature increase is caused by a systemic plant response to the virus infection, involving the control of water loss. In conclusion, thermography has potential as an early reporter of an ongoing compatible infection process.
Collapse
Affiliation(s)
- Laury Chaerle
- Unit of Plant Hormone Signaling and Bioimaging, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|