1
|
Liu R, Yang L, Feng J, Zhang S, Wu L, Du Y, Kong D, Xu Y, Peng T. M2e/NP Dual Epitope-Displaying Nanoparticles Enhance Cross-Protection of Recombinant HA Influenza Vaccine: A Universal Boosting Strategy. Vaccines (Basel) 2025; 13:412. [PMID: 40333315 PMCID: PMC12031538 DOI: 10.3390/vaccines13040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025] Open
Abstract
Background/Objectives: Vaccination remains the most effective means of preventing influenza virus infections. However, the continuous antigenic drift and shift of influenza viruses lead to a reduced efficacy of the existing vaccines, necessitating vaccines capable of broad protection. Methods: To address this, we developed a modular vaccine strategy pairing a clinical-stage adjuvanted recombinant hemagglutinin (HA) vaccine (SCVC101) with OMN, a heptameric nanoparticle displaying conserved influenza A virus T-cell epitopes from nucleoprotein (NP) and matrix 2 ectodomain (M2e). Results: OMN induced cross-reactive M2e-specific antibodies, binding to diverse influenza A subtypes. Critically, the co-administration of OMN with SCVC101 enhanced cellular immunity and cross-protection without diminishing HA-induced humoral responses. Conclusions: This dual-antigen delivery system enables annual HA component updates, aligned with WHO recommendations, while the conserved OMN nanoparticle acts as a universal booster, leveraging existing production infrastructure. This approach offers a promising strategy for improving the influenza vaccine's efficacy against emerging viral variants.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (R.L.); (L.Y.); (J.F.); (S.Z.)
| | - Lejun Yang
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (R.L.); (L.Y.); (J.F.); (S.Z.)
| | - Jin Feng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (R.L.); (L.Y.); (J.F.); (S.Z.)
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510663, China; (L.W.); (Y.X.)
| | - Songchen Zhang
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (R.L.); (L.Y.); (J.F.); (S.Z.)
| | - Liping Wu
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510663, China; (L.W.); (Y.X.)
| | - Yingying Du
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (R.L.); (L.Y.); (J.F.); (S.Z.)
| | - Dexin Kong
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (R.L.); (L.Y.); (J.F.); (S.Z.)
| | - Yuhua Xu
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510663, China; (L.W.); (Y.X.)
| | - Tao Peng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (R.L.); (L.Y.); (J.F.); (S.Z.)
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510663, China; (L.W.); (Y.X.)
| |
Collapse
|
2
|
Thian BYZ, Fatimah MNN, Wong CL, Ong HK, Mariatulqabtiah AR, Ho KL, Omar AR, Tan WS. Broadly cross-reactive immune responses in chickens immunized with chimeric virus-like particles of nodavirus displaying the M2e originated from avian and human influenza A viruses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105275. [PMID: 39341478 DOI: 10.1016/j.dci.2024.105275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/08/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Avian influenza A viruses (IAVs) pose a persistent threat to poultry industry worldwide, despite the presence of vaccines. Additionally, reverse-zoonosis transmission potentially introduces human-originated IAVs into poultry and complicates the efforts to control the spread of influenza. Current avian influenza vaccines are primarily based upon the rapidly mutating hemagglutinin (HA) and neuraminidase (NA) glycoproteins, which limit their efficacy against diverse strains of IAVs. Hence, the highly conserved ectodomains of matrix 2 protein (M2e) of IAVs are widely studied as alternatives to the HA and NA. However, the differences in the M2e amino acid sequences between avian and human IAVs generate antibodies that do not cross-react reciprocally with IAVs from other origins. To broaden and enhance the immunogenicity of M2e, we fused two copies each of the M2e derived from avian and human IAVs at the C-terminal end of the Macrobrachium rosenbergii nodavirus (MrNV) capsid protein (NvC). Transmission electron microscopic and dynamic light scattering analyses revealed that the chimeric protein self-assembled into virus-like particles (VLPs). Immunization of chickens with the chimeric VLPs demonstrated a robust induction of broadly reactive immune responses against both the M2e of avian and human IAVs. Additionally, the chimeric VLPs elicited the production of cytotoxic T lymphocytes (CTL), macrophages, as well as a well-balanced Th1 and Th2 population, indicating their potential in activating cell-mediated immune responses in chickens. Furthermore, the chimeric VLPs triggered the production of both Th1- and Th2-cytokines, attesting their potential in mounting a robust and balanced immune response in avian species. This study demonstrated the potential of these chimeric VLPs in stimulating and broadening cross-reactive immune responses in chickens against both avian and human IAVs.
Collapse
Affiliation(s)
- Bernard Yi Zhe Thian
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Mohd Nasir Nurul Fatimah
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Chuan Loo Wong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Hui Kian Ong
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Abdul Razak Mariatulqabtiah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Liang Y, Guo J, Li Z, Liu S, Zhang T, Sun S, Lu F, Zhai Y, Wang W, Ning C, Tan W. A novel method to assess antibody-dependent cell-mediated cytotoxicity against influenza A virus M2 in immunized murine models. BIOSAFETY AND HEALTH 2024; 6:178-185. [PMID: 40078727 PMCID: PMC11895015 DOI: 10.1016/j.bsheal.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 03/14/2025] Open
Abstract
The matrix protein 2 (M2) is a preferred target for developing a universal vaccine against the influenza A virus (IAV). This study aimed to develop a method for assessing antibody-dependent cell-mediated cytotoxicity (ADCC) associated with M2-based immunization in mice. We first established a stable cell line derived from mouse lymphoma cells (YAC-1) expressing M2 of H3N2. This cell line, designated as YAC-1-M2, was generated using a second-generation lentiviral tricistronic plasmid system to transduce the M2 gene into YAC-1 cells. The ADCC effect induced by polyclonal antibodies targeting matrix protein 2 ectodomain (M2e) was demonstrated by YAC-1-M2 cell lysis by natural killer cells (NK) derived from mice, in the presence of anti-M2 antibodies obtained from mice immunized with an mRNA vaccine based on M2e. This ADCC effect was found to be stronger compared to the effect induced by monoclonal antibodies (14C2) against M2. Moreover, the ADCC effect was enhanced as the effector-to-target ratio of NK to YAC-1-M2 cells increased. In conclusion, we established a novel method to detect ADCC of M2 of IAV, which paves the way for the development of an M2-based universal vaccine against IAV and an in-depth analysis of its mechanism of broad-spectrum immune protection in mice.
Collapse
Affiliation(s)
- Yinjie Liang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biosafety, National Health Commission of the People’s Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Junjia Guo
- Key Laboratory of Biosafety, National Health Commission of the People’s Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhen Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biosafety, National Health Commission of the People’s Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shiyuan Liu
- Key Laboratory of Biosafety, National Health Commission of the People’s Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- School of Public Health, Baotou Medical College, Baotou 014040, China
| | - Ting Zhang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Shucai Sun
- Key Laboratory of Biosafety, National Health Commission of the People’s Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Department of Nuclear Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Funa Lu
- Key Laboratory of Biosafety, National Health Commission of the People’s Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Department of Microbiology, School of Basic Medicine, Inner Mongolia Medical University, Hohhot 010110, China
| | - Yuqian Zhai
- Key Laboratory of Biosafety, National Health Commission of the People’s Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wenling Wang
- Key Laboratory of Biosafety, National Health Commission of the People’s Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Chuanyi Ning
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Wenjie Tan
- Key Laboratory of Biosafety, National Health Commission of the People’s Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
4
|
Han S, Lee P, Choi HJ. Non-Invasive Vaccines: Challenges in Formulation and Vaccine Adjuvants. Pharmaceutics 2023; 15:2114. [PMID: 37631328 PMCID: PMC10458847 DOI: 10.3390/pharmaceutics15082114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Given the limitations of conventional invasive vaccines, such as the requirement for a cold chain system and trained personnel, needle-based injuries, and limited immunogenicity, non-invasive vaccines have gained significant attention. Although numerous approaches for formulating and administrating non-invasive vaccines have emerged, each of them faces its own challenges associated with vaccine bioavailability, toxicity, and other issues. To overcome such limitations, researchers have created novel supplementary materials and delivery systems. The goal of this review article is to provide vaccine formulation researchers with the most up-to-date information on vaccine formulation and the immunological mechanisms available, to identify the technical challenges associated with the commercialization of non-invasive vaccines, and to guide future research and development efforts.
Collapse
Affiliation(s)
| | | | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.H.); (P.L.)
| |
Collapse
|
5
|
Hoang PT, Luong QXT, Cho S, Lee Y, Na K, Ayun RQ, Vo TTB, Kim T, Lee S. Enhancing neutralizing activity against influenza H1N1/PR8 by engineering a single-domain VL-M2 specific into a bivalent form. PLoS One 2022; 17:e0273934. [PMID: 36044435 PMCID: PMC9432714 DOI: 10.1371/journal.pone.0273934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Flu disease, with high mortality and morbidity, is caused by the influenza virus. Influenza infections are most effectively prevented through vaccination, but it requires annual reformulation due to the antigenic shift or drift of hemagglutinin and neuraminidase proteins. Increasing resistance to available anti-influenza drugs was also recently reported. The M2 surface protein of the influenza virus is an attractive target for universal vaccine development as it is highly conserved and multifunctional throughout the viral life cycle. This study aimed to discover a single-chain variable fragment (scFv) targeting the M2 protein of influenza A H1N1/PR8, showing neutralizing activity through plaque inhibition in virus replication. Several candidates were isolated using bio-panning, including scFv and single-domain VL target M2 protein, which was displayed on the yeast surface. The scFv/VL proteins were obtained with high yield and high purity through soluble expression in E. coli BL21 (DE3) pLysE strains. A single-domain VL-M2-specific antibody, NVLM10, exhibited the highest binding affinity to influenza virions and was engineered into a bivalent format (NVL2M10) to improve antigen binding. Both antibodies inhibited virus replication in a dose-dependent manner, determined using plaque reduction- and immunocytochemistry assays. Furthermore, bivalent anti-M2 single-domain VL antibodies significantly reduced the plaque number and viral HA protein intensity as well as viral genome (HA and NP) compared to the monovalent single-domain VL antibodies. This suggests that mono- or bivalent single-domain VL antibodies can exhibit neutralizing activity against influenza virus A, as determined through binding to virus particle activity.
Collapse
Affiliation(s)
- Phuong Thi Hoang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Quynh Xuan Thi Luong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seungchan Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Daesang Cellgene, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Yongjun Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyungho Na
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ramadhani Qurrota Ayun
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Taehyun Kim
- Novelgen Co., Ltd., R&D center, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- * E-mail:
| |
Collapse
|
6
|
Universal influenza vaccine technologies and recombinant virosome production. METHODS IN MICROBIOLOGY 2022. [DOI: 10.1016/bs.mim.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Li Y, Xu M, Li Y, Gu W, Halimu G, Li Y, Zhang Z, Zhou L, Liao H, Yao S, Zhang H, Zhang C. A recombinant protein containing influenza viral conserved epitopes and superantigen induces broad-spectrum protection. eLife 2021; 10:e71725. [PMID: 34783655 PMCID: PMC8635977 DOI: 10.7554/elife.71725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/13/2021] [Indexed: 01/22/2023] Open
Abstract
Influenza pandemics pose public health threats annually for lacking vaccine that provides cross-protection against novel and emerging influenza viruses. Combining conserved antigens that induce cross-protective antibody responses with epitopes that activate cross-protective T cell responses might be an attractive strategy for developing a universal vaccine. In this study, we constructed a recombinant protein named NMHC that consists of influenza viral conserved epitopes and a superantigen fragment. NMHC promoted the maturation of bone marrow-derived dendritic cells and induced CD4+ T cells to differentiate into Th1, Th2, and Th17 subtypes. Mice vaccinated with NMHC produced high levels of immunoglobulins that cross-bound to HA fragments from six influenza virus subtypes with high antibody titers. Anti-NMHC serum showed potent hemagglutinin inhibition effects to highly divergent group 1 (H1 subtype) and group 2 (H3 subtype) influenza virus strains. Furthermore, purified anti-NMHC antibodies bound to multiple HAs with high affinities. NMHC vaccination effectively protected mice from infection and lung damage when exposed to two subtypes of H1N1 influenza virus. Moreover, NMHC vaccination elicited CD4+ and CD8+ T cell responses that cleared the virus from infected tissues and prevented virus spread. In conclusion, this study provides proof of concept that NMHC vaccination triggers B and T cell immune responses against multiple influenza virus infections. Therefore, NMHC might be a candidate universal broad-spectrum vaccine for the prevention and treatment of multiple influenza viruses.
Collapse
Affiliation(s)
- Yansheng Li
- Institute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Superantigen Research, Shenyang Bureau of Science and TechnologyShenyangChina
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- Key Laboratory of Superantigen Research, Shenyang Bureau of Science and TechnologyShenyangChina
| | - Yongqiang Li
- Institute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Superantigen Research, Shenyang Bureau of Science and TechnologyShenyangChina
| | - Wu Gu
- Institute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- Key Laboratory of Superantigen Research, Shenyang Bureau of Science and TechnologyShenyangChina
| | - Gulinare Halimu
- Institute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Superantigen Research, Shenyang Bureau of Science and TechnologyShenyangChina
| | - Yuqi Li
- Institute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Superantigen Research, Shenyang Bureau of Science and TechnologyShenyangChina
| | - Zhichun Zhang
- Institute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Superantigen Research, Shenyang Bureau of Science and TechnologyShenyangChina
| | - Libao Zhou
- Chengda Biotechnology Co. LtdLiaoningChina
| | - Hui Liao
- Chengda Biotechnology Co. LtdLiaoningChina
| | | | - Huiwen Zhang
- Institute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- Key Laboratory of Superantigen Research, Shenyang Bureau of Science and TechnologyShenyangChina
| | - Chenggang Zhang
- Institute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- Key Laboratory of Superantigen Research, Shenyang Bureau of Science and TechnologyShenyangChina
| |
Collapse
|
8
|
Calzas C, Mao M, Turpaud M, Viboud Q, Mettier J, Figueroa T, Bessière P, Mangin A, Sedano L, Hervé PL, Volmer R, Ducatez MF, Bourgault S, Archambault D, Le Goffic R, Chevalier C. Immunogenicity and Protective Potential of Mucosal Vaccine Formulations Based on Conserved Epitopes of Influenza A Viruses Fused to an Innovative Ring Nanoplatform in Mice and Chickens. Front Immunol 2021; 12:772550. [PMID: 34868036 PMCID: PMC8632632 DOI: 10.3389/fimmu.2021.772550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Current inactivated vaccines against influenza A viruses (IAV) mainly induce immune responses against highly variable epitopes across strains and are mostly delivered parenterally, limiting the development of an effective mucosal immunity. In this study, we evaluated the potential of intranasal formulations incorporating conserved IAV epitopes, namely the long alpha helix (LAH) of the stalk domain of hemagglutinin and three tandem repeats of the ectodomain of the matrix protein 2 (3M2e), as universal mucosal anti-IAV vaccines in mice and chickens. The IAV epitopes were grafted to nanorings, a novel platform technology for mucosal vaccination formed by the nucleoprotein (N) of the respiratory syncytial virus, in fusion or not with the C-terminal end of the P97 protein (P97c), a recently identified Toll-like receptor 5 agonist. Fusion of LAH to nanorings boosted the generation of LAH-specific systemic and local antibody responses as well as cellular immunity in mice, whereas the carrier effect of nanorings was less pronounced towards 3M2e. Mice vaccinated with chimeric nanorings bearing IAV epitopes in fusion with P97c presented modest LAH- or M2e-specific IgG titers in serum and were unable to generate a mucosal humoral response. In contrast, N-3M2e or N-LAH nanorings admixed with Montanide™ gel (MG) triggered strong specific humoral responses, composed of serum type 1/type 2 IgG and mucosal IgG and IgA, as well as cellular responses dominated by type 1/type 17 cytokine profiles. All mice vaccinated with the [N-3M2e + N-LAH + MG] formulation survived an H1N1 challenge and the combination of both N-3M2e and N-LAH nanorings with MG enhanced the clinical and/or virological protective potential of the preparation in comparison to individual nanorings. Chickens vaccinated parenterally or mucosally with N-LAH and N-3M2e nanorings admixed with Montanide™ adjuvants developed a specific systemic humoral response, which nonetheless failed to confer protection against heterosubtypic challenge with a highly pathogenic H5N8 strain. Thus, while the combination of N-LAH and N-3M2e nanorings with Montanide™ adjuvants shows promise as a universal mucosal anti-IAV vaccine in the mouse model, further experiments have to be conducted to extend its efficacy to poultry.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Chickens
- Cytokines/immunology
- Cytokines/metabolism
- Epitopes/immunology
- Female
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Immunity, Mucosal/drug effects
- Immunity, Mucosal/immunology
- Immunogenicity, Vaccine/immunology
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/chemistry
- Influenza Vaccines/immunology
- Influenza in Birds/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/virology
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Protective Agents/administration & dosage
- Survival Analysis
- Vaccination/methods
- Mice
Collapse
Affiliation(s)
- Cynthia Calzas
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
| | - Molida Mao
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
| | - Mathilde Turpaud
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
| | - Quentin Viboud
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
| | - Joelle Mettier
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
| | - Thomas Figueroa
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Unité Mixte de Recherche (UMR1225), Interactions Hótes-Agents Pathogénes-Ecole Nationale Vétérinaire de Toulouse (IHAP-ENVT)-University of Toulouse, Toulouse, France
| | - Pierre Bessière
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Unité Mixte de Recherche (UMR1225), Interactions Hótes-Agents Pathogénes-Ecole Nationale Vétérinaire de Toulouse (IHAP-ENVT)-University of Toulouse, Toulouse, France
| | - Antoine Mangin
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
- Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Laura Sedano
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
| | - Pierre-Louis Hervé
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
- Chemistry Department, Université du Québec à Montréal, Montreal, QC, Canada
| | - Romain Volmer
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Unité Mixte de Recherche (UMR1225), Interactions Hótes-Agents Pathogénes-Ecole Nationale Vétérinaire de Toulouse (IHAP-ENVT)-University of Toulouse, Toulouse, France
| | - Mariette F. Ducatez
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Unité Mixte de Recherche (UMR1225), Interactions Hótes-Agents Pathogénes-Ecole Nationale Vétérinaire de Toulouse (IHAP-ENVT)-University of Toulouse, Toulouse, France
| | - Steve Bourgault
- Chemistry Department, Université du Québec à Montréal, Montreal, QC, Canada
| | - Denis Archambault
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
| | - Ronan Le Goffic
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
| | - Christophe Chevalier
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
9
|
Combination of conserved recombinant proteins (NP & 3M2e) formulated with Alum protected BALB/c mice against influenza A/PR8/H1N1 virus challenge. Biotechnol Lett 2021; 43:2137-2147. [PMID: 34491470 DOI: 10.1007/s10529-021-03174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Influenza is one of the most important agents of pandemic outbreak causing substantial morbidity and mortality. Vaccination strategies of influenza must be adapted annually due to constant antigenic changes in various strains. Therefore, the present study was conducted to evaluate protective immunity of the conserved influenza proteins. METHODS For this purpose, three tandem repeats of M2e (3M2e) and NP were separately expressed in E. coli and were purified using column chromatography. Female Balb/c mice were injected intradermally with a combination of the purified 3M2e and NP alone or formulated with Alum (AlOH3) adjuvant in three doses. The mice were challenged by intranasal administration of H1N1 (A/PR/8/34) 2 weeks after the last vaccination. RESULTS The results demonstrated that recombinant NP and M2e proteins are immunogenic and could efficiently elicit immune responses in mice compared to non-immunized mice. The combination of 3M2e and NP supplemented with Alum stimulated both NP and M2e-specific antibodies, which were higher than those stimulated by each single antigen plus Alum. In addition, the secretion of IFN-γ and IL-4 as well as the induction of lymphocyte proliferation in mice received the mixture of these proteins with Alum was considerably higher than other groups. Moreover, the highest survival rate (86%) with the least body weight change was observed in the mice immunized with 3M2e and NP supplemented with Alum followed by the mice received NP supplemented with Alum (71%). CONCLUSION Accordingly, this regimen can be considered as an attractive candidate for global vaccination against influenza.
Collapse
|
10
|
Kwak C, Nguyen QT, Kim J, Kim TH, Poo H. Influenza Chimeric Protein (3M2e-3HA2-NP) Adjuvanted with PGA/Alum Confers Cross-Protection against Heterologous Influenza A Viruses. J Microbiol Biotechnol 2021; 31:304-316. [PMID: 33263336 PMCID: PMC9705887 DOI: 10.4014/jmb.2011.11029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
Abstract
Vaccination is the most effective way to prevent influenza virus infections. However, conventional vaccines based on hemagglutinin (HA) have to be annually updated because the HA of influenza viruses constantly mutates. In this study, we produced a 3M2e-3HA2-NP chimeric protein as a vaccine antigen candidate using an Escherichia coli expression system. The vaccination of chimeric protein (15 μg) conferred complete protection against A/Puerto Rico/8/1934 (H1N1; PR8) in mice. It strongly induced influenza virus-specific antibody responses, cytotoxic T lymphocyte activity, and antibody-dependent cellular cytotoxicity. To spare the dose and enhance the cross-reactivity of the chimeric, we used a complex of poly-γ-glutamic acid and alum (PGA/alum) as an adjuvant. PGA/alum-adjuvanted, low-dose chimeric protein (1 or 5 μg) exhibited higher cross-protective effects against influenza A viruses (PR8, CA04, and H3N2) compared with those of chimeric alone or alum-adjuvanted proteins in vaccinated mice. Moreover, the depletion of CD4+ T, CD8+ T, and NK cells reduced the survival rate and efficacy of the PGA/alum-adjuvanted chimeric protein. Collectively, the vaccination of PGA/alum-adjuvanted chimeric protein induced strong protection efficacy against homologous and heterologous influenza viruses in mice, which suggests that it may be a promising universal influenza vaccine candidate.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Alum Compounds/administration & dosage
- Animals
- Antibodies, Viral/immunology
- Cross Reactions
- Female
- Hemagglutinins, Viral
- Humans
- Immunity, Humoral
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Nucleocapsid Proteins/administration & dosage
- Nucleocapsid Proteins/genetics
- Nucleocapsid Proteins/immunology
- Polyglutamic Acid/administration & dosage
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Viral Matrix Proteins/administration & dosage
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
Collapse
Affiliation(s)
- Chaewon Kwak
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Quyen Thi Nguyen
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jaemoo Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tae-Hwan Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
| | - Haryoung Poo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
11
|
Park BR, Kim KH, Kotomina T, Kim MC, Kwon YM, Jeeva S, Jung YJ, Bhatnagar N, Isakova-Sivak I, Mezhenskaya D, Rudenko L, Wang BZ, Kang SM. Broad cross protection by recombinant live attenuated influenza H3N2 seasonal virus expressing conserved M2 extracellular domain in a chimeric hemagglutinin. Sci Rep 2021; 11:4151. [PMID: 33603072 PMCID: PMC7893060 DOI: 10.1038/s41598-021-83704-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Hemagglutinin (HA)-based current vaccines provide suboptimum cross protection. Influenza A virus contains an ion channel protein M2 conserved extracellular domain (M2e), a target for developing universal vaccines. Here we generated reassortant influenza virus rgH3N2 4xM2e virus (HA and NA from A/Switzerland/9715293/2013/(H3N2)) expressing chimeric 4xM2e-HA fusion proteins with 4xM2e epitopes inserted into the H3 HA N-terminus. Recombinant rgH3N2 4xM2e virus was found to retain equivalent growth kinetics as rgH3N2 in egg substrates. Intranasal single inoculation of mice with live rgH3N2 4xM2e virus was effective in priming the induction of M2e specific IgG antibody responses in mucosal and systemic sites as well as T cell responses. The rgH3N2 4xM2e primed mice were protected against a broad range of different influenza A virus subtypes including H1N1, H3N2, H5N1, H7N9, and H9N2. The findings support a new approach to improve the efficacy of current vaccine platforms by recombinant influenza virus inducing immunity to HA and cross protective M2e antigens.
Collapse
Affiliation(s)
- Bo Ryoung Park
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Ki-Hye Kim
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Tatiana Kotomina
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Min-Chul Kim
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
- CARESIDE Co., Ltd., Seongnam, Gyeonggi-do, Republic of Korea
| | - Young-Man Kwon
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Subbiah Jeeva
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Yu-Jin Jung
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Noopur Bhatnagar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Bao-Zhong Wang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Sang-Moo Kang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
12
|
Zhu P, Yi X, Zhang L, Liu Y, Wang S, Gu J, Zhu X, Yu X. Identification of H7N9 hemagglutinin novel protein epitopes that elicit strong antibody-dependent, cell-mediated cytotoxic activities with protection from influenza infection in mouse model. Cell Immunol 2020; 359:104255. [PMID: 33316647 DOI: 10.1016/j.cellimm.2020.104255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Antibody-dependent cell-mediated cytotoxicity (ADCC) is one of the mechanisms connecting humoral immunity and cellular immunity and has been well-demonstrated in recent studies. Neutralizing antibodies and antibodies can mediate ADCC effects and both build a strong defense against H7N9 influenza virus infection. In our previous study, we found that H7N9 patients' plasma displayed low neutralizing activities that were not sufficient for host protection; however, the plasma of some patients can mediate strong ADCC effects. METHODS Based on the plasma samples of H7N9 infected patients collected, we measured the ADCC activities of these samples and selected the best to locate the dominant epitopes on H7N9 hemagglutinin (HA) protein that can elicit antibodies and strong ADCC activities. We constructed a yeast surface-display H7N9 HA protein epitope library and screened this library against plasma samples with different potencies in mediating ADCC effects. RESULTS Two dominant epitopes were selected from the screening. Plasma samples with depleted antibodies that were specific to the epitopes showed reduced ADCC activities. The serum of mice immunized with the epitopes elicited strong ADCC activities. Three monoclonal antibodies were isolated which showed high ADCC effects in vitro. Vaccination with isolated ADCC activating epitopes can provide partial protection from influenza infection in mouse model. And mice with vaccinated with combination of epitopes and extracellular domain can provide full protection from influenza infection in the same mouse model. CONCLUSIONS In this study, the epitopes isolated on H7N9 HA were immunogenic and elicited antibodies and strong ADCC activities in mice. Although the protective effect of the epitopes is partial, the combination of epitopes and extracellular domain can provide 100% protection from influenza virus infection in the same mouse model. Our study provides information on the potential use of epitope vaccine design against H7N9 viral infection.
Collapse
Affiliation(s)
- Peipei Zhu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Xianghua Yi
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Long Zhang
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Yuting Liu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Siqi Wang
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Jun Gu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Xuyou Zhu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China.
| | - Xiaoting Yu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China.
| |
Collapse
|
13
|
Ninyio NN, Ho KL, Omar AR, Tan WS, Iqbal M, Mariatulqabtiah AR. Virus-like Particle Vaccines: A Prospective Panacea Against an Avian Influenza Panzootic. Vaccines (Basel) 2020; 8:E694. [PMID: 33227887 PMCID: PMC7712863 DOI: 10.3390/vaccines8040694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/04/2023] Open
Abstract
Epizootics of highly pathogenic avian influenza (HPAI) have resulted in the deaths of millions of birds leading to huge financial losses to the poultry industry worldwide. The roles of migratory wild birds in the harbouring, mutation, and transmission of avian influenza viruses (AIVs), and the lack of broad-spectrum prophylactic vaccines present imminent threats of a global panzootic. To prevent this, control measures that include effective AIV surveillance programmes, treatment regimens, and universal vaccines are being developed and analysed for their effectiveness. We reviewed the epidemiology of AIVs with regards to past avian influenza (AI) outbreaks in birds. The AIV surveillance programmes in wild and domestic birds, as well as their roles in AI control were also evaluated. We discussed the limitations of the currently used AI vaccines, which necessitated the development of a universal vaccine. We evaluated the current development of AI vaccines based upon virus-like particles (VLPs), particularly those displaying the matrix-2 ectodomain (M2e) peptide. Finally, we highlighted the prospects of these VLP vaccines as universal vaccines with the potential of preventing an AI panzootic.
Collapse
Affiliation(s)
- Nathaniel Nyakaat Ninyio
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.N.N.); (W.S.T.)
- Department of Microbiology, Faculty of Science, Kaduna State University, Kaduna 800241, Nigeria
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Abdul Rahman Omar
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.N.N.); (W.S.T.)
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Munir Iqbal
- The Pirbright Institute, Woking GU24 0NF, UK;
| | - Abdul Razak Mariatulqabtiah
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
14
|
Zykova AA, Blokhina EA, Kotlyarov RY, Stepanova LA, Tsybalova LM, Kuprianov VV, Ravin NV. Highly Immunogenic Nanoparticles Based on a Fusion Protein Comprising the M2e of Influenza A Virus and a Lipopeptide. Viruses 2020; 12:E1133. [PMID: 33036278 PMCID: PMC7601894 DOI: 10.3390/v12101133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
The highly conserved extracellular domain of the transmembrane protein M2 (M2e) of the influenza A virus is a promising target for the development of broad-spectrum vaccines. However, M2e is a poor immunogen by itself and must be linked to an appropriate carrier to induce an efficient immune response. In this study, we obtained recombinant mosaic proteins containing tandem copies of M2e fused to a lipopeptide from Neisseria meningitidis surface lipoprotein Ag473 and alpha-helical linkers and analyzed their immunogenicity. Six fusion proteins, comprising four or eight tandem copies of M2e flanked by alpha-helical linkers, lipopeptides, or a combination of both of these elements, were produced in Escherichia coli. The proteins, containing both alpha-helical linkers and lipopeptides at each side of M2e repeats, formed nanosized particles, but no particulate structures were observed in the absence of lipopeptides. Animal study results showed that proteins with lipopeptides induced strong M2e-specific antibody responses in the absence of external adjuvants compared to similar proteins without lipopeptides. Thus, the recombinant M2e-based proteins containing alpha-helical linkers and N. meningitidis lipopeptide sequences at the N- and C-termini of four or eight tandem copies of M2e peptide are promising vaccine candidates.
Collapse
Affiliation(s)
- Anna A. Zykova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.A.Z.); (E.A.B.); (R.Y.K.)
| | - Elena A. Blokhina
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.A.Z.); (E.A.B.); (R.Y.K.)
| | - Roman Y. Kotlyarov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.A.Z.); (E.A.B.); (R.Y.K.)
| | - Liudmila A. Stepanova
- Research Institute of Influenza, Russian Ministry of Health, 23805 St. Petersburg, Russia; (L.A.S.); (L.M.T.)
| | - Liudmila M. Tsybalova
- Research Institute of Influenza, Russian Ministry of Health, 23805 St. Petersburg, Russia; (L.A.S.); (L.M.T.)
| | - Victor V. Kuprianov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.A.Z.); (E.A.B.); (R.Y.K.)
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.A.Z.); (E.A.B.); (R.Y.K.)
| |
Collapse
|
15
|
An approach to the influenza chimeric subunit vaccine (3M2e-HA2-NP) provides efficient protection against lethal virus challenge. Biotechnol Lett 2020; 42:1147-1159. [PMID: 32152828 DOI: 10.1007/s10529-020-02822-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/26/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Vaccination is the most effective preventive strategy for influenza disease. As the virus undergoes high antigenic drift, it requires a constant reformulation to obtain high protection. RESULTS Immunogenicity of a purified chimeric protein containing conserved regions of influenza A/H1N1 viruses including the Hemagglutinin stalk domain, Nucleoprotein, and Matrix protein produced in a prokaryotic system was assessed in vitro and in vivo, alone or in combination with adjuvants by evaluating antibody responses, cytokine production, lymphocyte proliferative assay, and mortality rate after challenge. The animals that received the chimeric protein had specific antibody responses, elicited memory CD4 cells, cytokines of Th1 and Th2 cells and showed 75% protection against influenza virus lethal challenge. The animals injected with the chimeric protein supplemented with Alum showed improved immune responses, but they had 67% protection. In other words, although Alum adjuvant enriched the chimera specific immune responses potently, it could not enhance its protectivity. CONCLUSION Regarding the immunogenicity and protectivity of the chimeric protein construct against influenza, findings of the study suggested that the chimeric protein could be considered as a promising influenza vaccine candidate.
Collapse
|
16
|
Mathew NR, Angeletti D. Recombinant Influenza Vaccines: Saviors to Overcome Immunodominance. Front Immunol 2020; 10:2997. [PMID: 31998299 PMCID: PMC6966699 DOI: 10.3389/fimmu.2019.02997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/06/2019] [Indexed: 11/24/2022] Open
Abstract
It has been almost a decade since the 2009 influenza A virus pandemic hit the globe causing significant morbidity and mortality. Nonetheless, annual influenza vaccination, which elicits antibodies mainly against the head region of influenza hemagglutinin (HA), remains as the mainstay to combat and reduce symptoms of influenza infection. Influenza HA is highly antigenically variable, thus limiting vaccine efficacy. In addition, the variable HA head occupies the upper strata of the immunodominance hierarchy, thereby clouding the antibody response toward subdominant epitopes, which are usually conserved across different influenza strains. Isolation of monoclonal antibodies from individuals recognizing such epitopes has facilitated the development of recombinant vaccines that focus the adaptive immune response toward conserved, protective targets. Here, we review some significant leaps in recombinant vaccine development, which could possibly help to overcome B cell and antibody immunodominance and provide heterosubtypic immunity to influenza A virus.
Collapse
Affiliation(s)
- Nimitha R Mathew
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Abstract
Influenza viruses remain a severe burden to human health because of their contribution to overall morbidity and mortality. Current seasonal influenza virus vaccines do not provide sufficient protection to alleviate the annual impact of influenza and cannot confer protection against potentially pandemic influenza viruses. The lack of protection is due to rapid changes of the viral epitopes targeted by the vaccine and the often suboptimal immunogenicity of current immunization strategies. Major efforts to improve vaccination approaches are under way. The development of a universal influenza virus vaccine may be possible by combining the lessons learned from redirecting the immune response toward conserved viral epitopes, as well as the use of adjuvants and novel vaccination platforms.
Collapse
Affiliation(s)
- Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; ,
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; ,
| |
Collapse
|
18
|
Sun W, Zheng A, Miller R, Krammer F, Palese P. An Inactivated Influenza Virus Vaccine Approach to Targeting the Conserved Hemagglutinin Stalk and M2e Domains. Vaccines (Basel) 2019; 7:vaccines7030117. [PMID: 31540436 PMCID: PMC6789539 DOI: 10.3390/vaccines7030117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Universal influenza virus vaccine candidates that focus on the conserved hemagglutinin (HA) stalk domain and the extracellular domain of the matrix protein 2 (M2e) have been developed to increase the breadth of protection against multiple strains. In this study, we report a novel inactivated influenza virus vaccine approach that combines these two strategies. We inserted a human consensus M2e epitope into the immunodominant antigenic site (Ca2 site) of three different chimeric HAs (cHAs). Sequential immunization with inactivated viruses containing these modified cHAs substantially enhanced M2e antibody responses while simultaneously boosting stalk antibody responses. The combination of additional M2e antibodies with HA stalk antibodies resulted in superior antibody-mediated protection in mice against challenge viruses expressing homologous or heterosubtypic hemagglutinin and neuraminidase compared to vaccination strategies that targeted the HA stalk or M2e epitopes in isolation.
Collapse
Affiliation(s)
- Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Allen Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Robert Miller
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
19
|
Ong HK, Yong CY, Tan WS, Yeap SK, Omar AR, Razak MA, Ho KL. An Influenza A Vaccine Based on the Extracellular Domain of Matrix 2 Protein Protects BALB/C Mice Against H1N1 and H3N2. Vaccines (Basel) 2019; 7:vaccines7030091. [PMID: 31430965 PMCID: PMC6789677 DOI: 10.3390/vaccines7030091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 01/27/2023] Open
Abstract
Current seasonal influenza A virus (IAV) vaccines are strain-specific and require annual reconstitution to accommodate the viral mutations. Mismatches between the vaccines and circulating strains often lead to high morbidity. Hence, development of a universal influenza A vaccine targeting all IAV strains is urgently needed. In the present study, the protective efficacy and immune responses induced by the extracellular domain of Matrix 2 protein (M2e) displayed on the virus-like particles of Macrobrachium rosenbergii nodavirus (NvC-M2ex3) were investigated in BALB/c mice. NvC-M2ex3 was demonstrated to be highly immunogenic even in the absence of adjuvants. Higher anti-M2e antibody titers corresponded well with increased survival, reduced immunopathology, and morbidity of the infected BALB/c mice. The mice immunized with NvC-M2ex3 exhibited lower H1N1 and H3N2 virus replication in the respiratory tract and the vaccine activated the production of different antiviral cytokines when they were challenged with H1N1 and H3N2. Collectively, these results suggest that NvC-M2ex3 could be a potential universal influenza A vaccine.
Collapse
Affiliation(s)
- Hui Kian Ong
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Chean Yeah Yong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Swee Keong Yeap
- Department of Marine Biotechnology, China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia
| | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Mariatulqabtiah Abdul Razak
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
20
|
Calzas C, Chevalier C. Innovative Mucosal Vaccine Formulations Against Influenza A Virus Infections. Front Immunol 2019; 10:1605. [PMID: 31379823 PMCID: PMC6650573 DOI: 10.3389/fimmu.2019.01605] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022] Open
Abstract
Despite efforts made to develop efficient preventive strategies, infections with influenza A viruses (IAV) continue to cause serious clinical and economic problems. Current licensed human vaccines are mainly inactivated whole virus particles or split-virion administered via the parenteral route. These vaccines provide incomplete protection against IAV in high-risk groups and are poorly/not effective against the constant antigenic drift/shift occurring in circulating strains. Advances in mucosal vaccinology and in the understanding of the protective anti-influenza immune mechanisms suggest that intranasal immunization is a promising strategy to fight against IAV. To date, human mucosal anti-influenza vaccines consist of live attenuated strains administered intranasally, which elicit higher local humoral and cellular immune responses than conventional parenteral vaccines. However, because of inconsistent protective efficacy and safety concerns regarding the use of live viral strains, new vaccine candidates are urgently needed. To prime and induce potent and long-lived protective immune responses, mucosal vaccine formulations need to ensure the immunoavailability and the immunostimulating capacity of the vaccine antigen(s) at the mucosal surfaces, while being minimally reactogenic/toxic. The purpose of this review is to compile innovative delivery/adjuvant systems tested for intranasal administration of inactivated influenza vaccines, including micro/nanosized particulate carriers such as lipid-based particles, virus-like particles and polymers associated or not with immunopotentiatory molecules including microorganism-derived toxins, Toll-like receptor ligands and cytokines. The capacity of these vaccines to trigger specific mucosal and systemic humoral and cellular responses against IAV and their (cross)-protective potential are considered.
Collapse
Affiliation(s)
- Cynthia Calzas
- VIM, UR892, Equipe Virus Influenza, INRA, University PARIS-SACLAY, Jouy-en-Josas, France
| | - Christophe Chevalier
- VIM, UR892, Equipe Virus Influenza, INRA, University PARIS-SACLAY, Jouy-en-Josas, France
| |
Collapse
|
21
|
Singh G, Zholobko O, Pillatzki A, Webb B, Nelson E, Voronov A, Ramamoorthy S. An amphiphilic invertible polymer as a delivery vehicle for a M2e-HA2-HA1 peptide vaccine against an Influenza A virus in pigs. Vaccine 2019; 37:4291-4301. [PMID: 31235376 DOI: 10.1016/j.vaccine.2019.06.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022]
Abstract
Influenza A viruses (IAVs) are a group of genetically diverse and economically important zoonotic pathogens. Despite decades of research, effective and broadly protective vaccines are yet to be developed. Recent breakthroughs in epitope-based immunization for influenza viruses identify certain conserved regions of the HA2 and M2e proteins as capable of inducing broad protection against multiple influenza strains. The M2e and HA2 peptides have been evaluated in mice but not as a combination in pigs, which play an important role in the transmission and evolution of IAV. Peptides are inherently weak immunogens; and effective delivery of peptide antigens is challenging. To enhance the delivery and immunogenicity of peptide-based vaccines, the conserved M2e and HA2 and a strain-specific HA1 epitope of Influenza A (H1N1) pdm09 were expressed as a chain in a bacterial expression system and entrapped in a novel amphiphilic invertible polymer made from polyethyelene glycol (PEG, molecular weight 600 g/mol) and polytetrahydrofuran (PTHF, molecular weight 650 g/mol), PEG600PTHF650. Piglets vaccinated with polymeric peptide vaccine mounted significantly stronger antibody responses against the peptide construct when compared to piglets immunized with the multi-epitope peptide alone. When vaccinated pigs were challenged with Influenza A (H1N1) pdm09, viral shedding in nasal secretions and lung lesion scores were significantly reduced when compared to the unvaccinated controls and pigs vaccinated with the peptide alone at six days post-challenge. Thus, the combination of the PEG600PTHF650 polymer and trimeric peptide construct enhanced delivery of the peptide antigen, acted as an adjuvant in stimulating strong antibody responses, reduced the effects of viral infection in vaccinated pigs.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Microbiological Sciences, N. Dakota State University, Fargo, ND, United States
| | - Oksana Zholobko
- Department of Coatings and Polymeric Materials, N. Dakota State University, Fargo, ND, United States
| | - Angela Pillatzki
- Animal Disease Research and Diagnostic Laboratory, S. Dakota State University, Brookings, SD, United States
| | - Brett Webb
- Veterinary Diagnostic Laboratory, N. Dakota State University, Fargo, ND, United States
| | - Eric Nelson
- Animal Disease Research and Diagnostic Laboratory, S. Dakota State University, Brookings, SD, United States
| | - Andriy Voronov
- Department of Coatings and Polymeric Materials, N. Dakota State University, Fargo, ND, United States
| | - Sheela Ramamoorthy
- Department of Microbiological Sciences, N. Dakota State University, Fargo, ND, United States.
| |
Collapse
|
22
|
Farahmand B, Taheri N, Shokouhi H, Soleimanjahi H, Fotouhi F. Chimeric protein consisting of 3M2e and HSP as a universal influenza vaccine candidate: from in silico analysis to preliminary evaluation. Virus Genes 2018; 55:22-32. [PMID: 30382564 DOI: 10.1007/s11262-018-1609-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/22/2018] [Indexed: 01/26/2023]
Abstract
The 23-amino acid ectodomain of influenza virus M2 protein (M2e) is highly conserved among human influenza virus variants and represents an attractive target for developing a universal vaccine. Although this peptide has limited potency and low immunogenicity, the degree of M2e density has been shown to be a critical factor influencing the magnitude of epitope-specific responses. The aim of this study was to design a chimer protein consisting of three tandem repeats of M2e peptide sequence fused to the Leishmania major HSP70 gene and evaluate its characteristics and immunogenicity. The structure of the deduced protein and its stability, aliphatic index, biocomputed half-life and the anticipated immunogenicity were analyzed by bioinformatics software. The oligonucleotides encoding 3M2e and chimer 3M2e-HSP70 were expressed in Escherichia coli and affinity purified. The immunogenicity of the purified recombinant proteins was preliminary examined in mouse model. It was predicted that fusion of HSP70 to the C-terminal of 3M2e peptide led to increased stability, hydropathicity, continuous B cell epitopes and antigenic propensity score of chimer protein. Also, the predominant 3M2e epitopes were not hidden in the chimer protein. The initial in vivo experiment showed that 3M2e-HSP chimer protein stimulates specific immune responses. In conclusion, the results of the current study suggest that 3M2e-HSP chimer protein would be an effective universal subunit vaccine candidate against influenza infection.
Collapse
Affiliation(s)
- Behrokh Farahmand
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, 69, Tehran, 1316943551, Iran
| | - Najmeh Taheri
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, 69, Tehran, 1316943551, Iran
| | - Hadiseh Shokouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, 69, Tehran, 1316943551, Iran
| | | | - Fatemeh Fotouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, 69, Tehran, 1316943551, Iran.
| |
Collapse
|
23
|
Su QD, He SH, Yi Y, Qiu F, Lu XX, Jia ZY, Meng QL, Fan XT, Tian RG, Audet J, Qiu XG, Bi SL. Intranasal vaccination with ebola virus GP amino acids 258-601 protects mice against lethal challenge. Vaccine 2018; 36:6053-6060. [PMID: 30195490 DOI: 10.1016/j.vaccine.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/06/2018] [Accepted: 09/01/2018] [Indexed: 02/06/2023]
Abstract
Ebola virus (EBOV) disease (EVD) leads to lethal hemorrhagic fever with a case fatality rate as high as 90%, thus posing a serious global public health concern. However, while several vaccines based on the EBOV glycoprotein have been confirmed to be effective in animal experiments, no licensed vaccines or effective treatments have been approved since the first outbreak was reported in 1976. In this study, we prepared the extracellular domain of the EBOV GP protein (designated as N20) by prokaryotic expression and purification via chromatography. Using CTA1-DD (designated as H45) as a mucosal adjuvant, we evaluated the immunogenicity of N20 by intranasal administration and the associated protective efficacy against mouse-adapted EBOV challenge in mice. We found that intranasal vaccination with H45-adjuvanted N20 could stimulate humoral immunity, as supported by GP-specific IgG titers; Th1 cellular immunity, based on IgG subclasses and IFN-γ/IL-4 secreting cells; and mucosal immunity, based on the presence of anti-EBOV IgA in vaginal lavages. We also confirmed that the vaccine could completely protect mice against a lethal mouse-adapted EBOV (MA-EBOV) challenge with few side effects (based on weight loss). In comparison, mice that received N20 or H45 alone succumbed to lethal MA-EBOV challenge. Therefore, mucosal vaccination with H45-adjuvanted N20 represents a potential vaccine candidate for the prevention of EBOV in an effective, safe, and convenient manner.
Collapse
Affiliation(s)
- Qiu-Dong Su
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Shi-Hua He
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yao Yi
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Feng Qiu
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Xue-Xin Lu
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Zhi-Yuan Jia
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Qing-Ling Meng
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Xue-Ting Fan
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Rui-Guang Tian
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China
| | - Jonathan Audet
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Xiang-Guo Qiu
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Depatment of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Sheng-Li Bi
- National Institute For Viral Disease Control and Prevention, Chinese Center For Disease Control and Prevention, Beijing, China.
| |
Collapse
|
24
|
Intranasal inoculate of influenza virus vaccine against lethal virus challenge. Vaccine 2018; 36:4354-4361. [PMID: 29880240 DOI: 10.1016/j.vaccine.2018.05.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 11/23/2022]
Abstract
Vaccine adjuvants are essential for enhancing immune responses during vaccination. However, only a limited number of safe and effective adjuvants, especially mucosal adjuvants, are available for use in vaccines. The development of a practically applicable mucosal adjuvant is therefore urgently needed. Here, we showed that the non-toxic CTA1-DD adjuvant, which combined the full enzymatic activity of the A1 subunit of cholera toxin (CT) with two immunoglobulin-binding domains of Staphylococcus aureus protein A (SpA), promoted mucosal and systemic humoral and cell-mediated immune responses following intranasal administration with H1N1 split vaccine in mice. We demonstrated that CTA1-DD-adjuvant vaccine provided 100% protection against mortality and greatly reduced morbidity in a mouse model. We also showed that addition of CTA1-DD to the vaccine elicited significantly higher hemagglutination inhibition titers and IgG antibodies in sera than alum adjuvant. Furthermore, CTA1-DD significantly promoted the production of mucosal secretory IgA in lung lavages and vaginal lavages. We also showed that CTA1-DD could be used as a mucosal adjuvant to enhance T cell responses. Our results clearly indicated that CTA1-DD contributed to the elicitation of a protective cell-mediated immune response required for efficacious vaccination against influenza virus, which suggested that this adjuvant could be explored further as a clinically safe mucosal vaccine adjuvant for respiratory diseases and other mucosal diseases.
Collapse
|
25
|
Firsov A, Tarasenko I, Mitiouchkina T, Shaloiko L, Kozlov O, Vinokurov L, Rasskazova E, Murashev A, Vainstein A, Dolgov S. Expression and Immunogenicity of M2e Peptide of Avian Influenza Virus H5N1 Fused to Ricin Toxin B Chain Produced in Duckweed Plants. Front Chem 2018; 6:22. [PMID: 29487846 PMCID: PMC5816751 DOI: 10.3389/fchem.2018.00022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/26/2018] [Indexed: 12/03/2022] Open
Abstract
The amino acid sequence of the extracellular domain of the virus-encoded M2 matrix protein (peptide M2e) is conserved among all subtypes of influenza A strains, enabling the development of a broad-range vaccine against them. We expressed M2e from avian influenza virus A/chicken/Kurgan/5/2005 (H5N1) in nuclear-transformed duckweed plants for further development of an avian influenza vaccine. The 30-amino acid N-terminal fragment of M2, including M2e (denoted M130), was selected for expression. The M2e DNA sequence fused in-frame to the 3' end of ricin toxin B chain (RTB) was cloned under control of the CaMV 35S promoter into pBI121. The resulting plasmid was used for duckweed transformation, and 23 independent transgenic duckweed lines were obtained. Asialofetuin-binding ELISA of protein samples from the transgenic plants using polyclonal anti-RTB antibodies confirmed the expression of the RTB-M130 fusion protein in 20 lines. Quantitative ELISA of crude protein extracts from these lines showed RTB-M130 accumulation ranging from 0.25-2.5 μg/g fresh weight (0.0006-0.01% of total soluble protein). Affinity chromatography with immobilized asialofetuin and western blot analysis of protein samples from the transgenic plants showed expression of fusion protein RTB-M130 in the aggregate form with a molecular mass of about 70 kDa. Mice were immunized orally with a preparation of total soluble protein from transgenic plants, receiving four doses of 7 μg duckweed-derived RTB-M130 each, with no additional adjuvant. Specific IgG against M2e was detected in immunized mice, and the endpoint titer of nti-M2e IgG was 1,024. It was confirmed that oral immunization with RTB-M130 induces production of specific antibodies against peptide M2e, one of the most conserved antigens of the influenza virus. These results may provide further information for the development of a duckweed-based expression system to produce a broad-range edible vaccine against avian influenza.
Collapse
Affiliation(s)
| | | | | | | | - Oleg Kozlov
- Institute of Bioorganic Chemistry (RAS), Moscow, Russia
| | | | | | | | - Alexander Vainstein
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Sergey Dolgov
- Institute of Bioorganic Chemistry (RAS), Moscow, Russia
| |
Collapse
|
26
|
Kim YJ, Lee YT, Kim MC, Lee YN, Kim KH, Ko EJ, Song JM, Kang SM. Cross-Protective Efficacy of Influenza Virus M2e Containing Virus-Like Particles Is Superior to Hemagglutinin Vaccines and Variable Depending on the Genetic Backgrounds of Mice. Front Immunol 2017; 8:1730. [PMID: 29276514 PMCID: PMC5727122 DOI: 10.3389/fimmu.2017.01730] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/23/2017] [Indexed: 12/30/2022] Open
Abstract
Influenza virus M2 extracellular domain (M2e) has been a target for developing cross-protective vaccines. However, the efficacy and immune correlates of M2e vaccination are poorly understood in the different host genetic backgrounds in comparison with influenza vaccines. We previously reported the cross-protective efficacy of virus-like particle (M2e5x VLP) vaccines containing heterologous tandem M2e repeats (M2e5x) derived from human, swine, and avian influenza viruses. In this study to gain better understanding of cross-protective influenza vaccines, we compared immunogenicity and efficacy of M2e5x VLP, H5 hemagglutinin VLP (HA VLP), and inactivated H3N2 virus (H3N2i) in wild-type strains of BALB/c and C57BL/6 mice, and CD4 and CD8 knockout (KO) mice. M2e5x VLP was superior to HA VLP in conferring cross-protection whereas H3N2i inactivated virus vaccine provided high efficacy of homologous protection. After M2e5x VLP vaccination and challenge, BALB/c mice induced higher IgG responses, lower lung viral loads, and less body weight loss when compared with those in C57BL/6 mice. M2e5x VLP but not H3N2i immune mice after primary challenges developed strong immunity against a secondary heterosubtypic virus as a model of future pandemics. M2e5x VLP and HA VLP vaccines were able to raise IgG isotypes in CD4 KO mice. T cells were found to contribute to cross-protection by playing a role in reducing lung viral loads. In conclusion, M2e5x VLP vaccination induced better cross-protection than HA VLP, and its efficacy varied depending on the genetic backgrounds of mice, supporting the important roles of T cells.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Young-Tae Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Min-Chul Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States.,Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Yu-Na Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States.,Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Ki-Hye Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Eun-Ju Ko
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Jae-Min Song
- Department of Global Medical Science, Sungshin Women's University, Seoul, South Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
27
|
Abstract
Viral structural proteins share a common nature of homotypic interactions that drive viral capsid formation. This natural process has been mimicked in vitro through recombinant technology to generate various virus-like particles (VLPs) and small subviral particles that exhibit similar structural and antigenic properties of their authentic viruses. Therefore, such self-assembled, polyvalent, and highly immunogenic VLPs and small subviral particles are excellent subunit vaccines against individual viruses, such as the VLP vaccines against the hepatitis B virus, human papilloma virus, and hepatitis E virus, which have already been in the markets. In addition, various antigens and epitopes can be fused with VLPs, small subviral particles, or protein polymers, forming chimeric mono-, bi-, or trivalent vaccines. Owing to their easy-production, un-infectiousness, and polyvalence, the recombinant, chimeric vaccines offer a new approach for development of safe, low-cost, and high efficient subunit vaccines against a single or more pathogens or diseases. While the first VLP-based combination vaccine against malaria has been approved for human use, many others are under development with promising future, which are summarized in this commentary.
Collapse
Affiliation(s)
- Ming Tan
- a Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA.,b Department of Pediatrics , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Xi Jiang
- a Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA.,b Department of Pediatrics , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| |
Collapse
|
28
|
Tang X, Yang Y, Xia X, Zhang C, Yang X, Song Y, Dai X, Wang M, Zhou D. Recombinant Adenoviruses Displaying Matrix 2 Ectodomain Epitopes on Their Fiber Proteins as Universal Influenza Vaccines. J Virol 2017; 91:e02462-16. [PMID: 28100621 PMCID: PMC5355597 DOI: 10.1128/jvi.02462-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023] Open
Abstract
Influenza is a zoonotic disease that poses severe threats to public health and the global economy. Reemerging influenza pandemics highlight the demand for universal influenza vaccines. We developed a novel virus platform using extracellular domain IV of the matrix 2 protein (M2e), AdC68-F3M2e, by introducing three conserved M2e epitopes into the HI loop of the chimpanzee adenovirus (AdV) fiber protein. The M2e epitopes were expressed sufficiently on the AdV virion surface without affecting fiber trimerization. Additionally, one recombinant adenovirus, AdC68-F3M2e(H1-H5-H7), induced robust M2e-specific antibody responses in BALB/c mice after two sequential vaccinations and conferred efficient protection against homologous and heterologous influenza virus (IV) challenges. We found that the use of AdV with tandem M2e epitopes in fiber is a potential strategy for influenza prevention.IMPORTANCE Influenza epidemics and pandemics severely threaten public health. Universal influenza vaccines have increasingly attracted interest in recent years. Here, we describe a new strategy that incorporates triple M2e epitopes into the fiber protein of chimpanzee adenovirus 68. We optimized the process of inserting foreign genes into the AdC68 structural protein by one-step isothermal assembly and demonstrated that this 225-bp HI loop insertion could be well tolerated. Furthermore, two doses of adjuvant-free fiber-modified AdC68 could confer sufficient protection against homologous and heterologous influenza virus infections in mice. Our results show that AdC68-F3M2e could be pursued as a novel universal influenza vaccine.
Collapse
Affiliation(s)
- Xinying Tang
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yong Yang
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoli Xia
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chao Zhang
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xi Yang
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yufeng Song
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xinyi Dai
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Min Wang
- Department of Laboratory Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dongming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
29
|
Huang X, Wang X, Zhang J, Xia N, Zhao Q. Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines 2017; 2:3. [PMID: 29263864 PMCID: PMC5627247 DOI: 10.1038/s41541-017-0006-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
Recombinant virus-like particle-based vaccines are composed of viral structural proteins and mimic authentic native viruses but are devoid of viral genetic materials. They are the active components in highly safe and effective vaccines for the prevention of infectious diseases. Several expression systems have been used for virus-like particle production, ranging from Escherichia coli to mammalian cell lines. The prokaryotic expression system, especially Escherichia coli, is the preferred expression host for producing vaccines for global use. Hecolin, the first licensed virus-like particle vaccine derived from Escherichia coli, has been demonstrated to possess good safety and high efficacy. In this review, we focus on Escherichia coli-derived virus-like particle based vaccines and vaccine candidates that are used for prevention (immunization against microbial pathogens) or disease treatment (directed against cancer or non-infectious diseases). The native-like spatial or higher-order structure is essential for the function of virus-like particles. Thus, the tool box for analyzing the key physicochemical, biochemical and functional attributes of purified virus-like particles will also be discussed. In summary, the Escherichia coli expression system has great potentials for producing a range of proteins with self-assembling properties to be used as vaccine antigens given the proper epitopes were preserved when compared to those in the native pathogens or disease-related target molecules.
Collapse
Affiliation(s)
- Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Life Science, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| |
Collapse
|
30
|
Zheng D, Chen S, Qu D, Chen J, Wang F, Zhang R, Chen Z. Influenza H7N9 LAH-HBc virus-like particle vaccine with adjuvant protects mice against homologous and heterologous influenza viruses. Vaccine 2016; 34:6464-6471. [PMID: 27866773 DOI: 10.1016/j.vaccine.2016.11.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/15/2016] [Accepted: 11/07/2016] [Indexed: 01/31/2023]
Abstract
The long alpha-helix (LAH) region located in influenza virus hemagglutinin (HA) shows conservation among different influenza A strains, which could be used as a candidate target of influenza vaccines. Moreover, the hepatitis B virus core protein (HBc) is a carrier for heterologous epitopes in eliciting effective immune responses. We inserted the LAH region of H7N9 influenza virus into the HBc and prepared the LAH-HBc protein, which were capable of self-assembly into virus-like particles (VLP), by using E. coli expression system. Intranasal immunization of the LAH-HBc VLP in combination with chitosan adjuvant or CTB∗ adjuvant in mice could induce both humoral and cellular immune responses effectively and provide complete protection against lethal challenge of homologous H7N9 virus or heterologous H3N2 virus, as well as partial protection against lethal challenge of heterologous H1N1 virus. These results provide a proof of concept for LAH-HBc VLP vaccine that would be fast and easy to be produced and might be an ideal candidate as a rapid-response tool against a future influenza pandemic.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Chitosan/administration & dosage
- Cross Protection
- Disease Models, Animal
- Drug Carriers
- Epitopes/genetics
- Epitopes/immunology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hepatitis B Core Antigens/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Leukocytes, Mononuclear/immunology
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/prevention & control
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
Collapse
Affiliation(s)
- Dan Zheng
- Shanghai Institute of Biological Products, Shanghai 200052, China
| | - Shaoheng Chen
- Shanghai Institute of Biological Products, Shanghai 200052, China
| | - Di Qu
- Biosafety Level-3 Laboratory, Fudan University, Shanghai 200032, China
| | - Jianjun Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fuyan Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ran Zhang
- Medical College, Hunan Normal University, Changsha 410013, China
| | - Ze Chen
- Shanghai Institute of Biological Products, Shanghai 200052, China; Medical College, Hunan Normal University, Changsha 410013, China.
| |
Collapse
|
31
|
Kolpe A, Schepens B, Fiers W, Saelens X. M2-based influenza vaccines: recent advances and clinical potential. Expert Rev Vaccines 2016; 16:123-136. [DOI: 10.1080/14760584.2017.1240041] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Annasaheb Kolpe
- Medical Biotechnology Center, VIB, Ghent, B-9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bert Schepens
- Medical Biotechnology Center, VIB, Ghent, B-9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Walter Fiers
- Medical Biotechnology Center, VIB, Ghent, B-9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- Medical Biotechnology Center, VIB, Ghent, B-9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Rappazzo CG, Watkins HC, Guarino CM, Chau A, Lopez JL, DeLisa MP, Leifer CA, Whittaker GR, Putnam D. Recombinant M2e outer membrane vesicle vaccines protect against lethal influenza A challenge in BALB/c mice. Vaccine 2016; 34:1252-8. [PMID: 26827663 DOI: 10.1016/j.vaccine.2016.01.028] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/01/2015] [Accepted: 01/17/2016] [Indexed: 12/20/2022]
Abstract
Currently approved influenza vaccines predominantly protect through antibodies directed against the highly variable glycoprotein hemagglutinin (HA), necessitating annual redesign and formulation based on epidemiological prediction of predominant circulating strains. More conserved influenza protein sequences, such as the ectodomain of the influenza M2 protein, or M2e, show promise as a component of a universal influenza A vaccine, but require a Th1-biased immune response for activity. Recently, recombinant, bacterially derived outer membrane vesicles (OMVs) demonstrated potential as a platform to promote a Th1-biased immune response to subunit antigens. Here, we engineer three M2e-OMV vaccines and show that all elicit strong IgG titers, with high IgG2a:IgG1 ratios, in BALB/c mice. Additionally, the administration of one M2e-OMV construct containing tandem heterologous M2e peptides (M2e4xHet-OMV) resulted in 100% survival against lethal doses of the mouse-adapted H1N1 influenza strain PR8. Passive transfer of antibodies from M2e4xHet-OMV vaccinated mice to unvaccinated mice also resulted in 100% survival to challenge, indicating that protection is driven largely via antibody-mediated immunity. The potential mechanism through which M2e-OMVs initiated the immune response was explored and it was found that the constructs triggered TLR1/2, TLR4, and TLR5. Our data indicate that OMVs have potential as a platform for influenza A vaccine development due to their unique adjuvant profile and intrinsic pathogen-mimetic nature.
Collapse
Affiliation(s)
- C Garrett Rappazzo
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Hannah C Watkins
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Cassandra M Guarino
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Annie Chau
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jody L Lopez
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Matthew P DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Cynthia A Leifer
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - David Putnam
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
33
|
Lee YN, Kim MC, Lee YT, Kim YJ, Kang SM. Mechanisms of Cross-protection by Influenza Virus M2-based Vaccines. Immune Netw 2015; 15:213-21. [PMID: 26557805 PMCID: PMC4637342 DOI: 10.4110/in.2015.15.5.213] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/25/2015] [Accepted: 09/10/2015] [Indexed: 01/06/2023] Open
Abstract
Current influenza virus vaccines are based on strain-specific surface glycoprotein hemagglutinin (HA) antigens and effective only when the predicted vaccine strains and circulating viruses are well-matched. The current strategy of influenza vaccination does not prevent the pandemic outbreaks and protection efficacy is reduced or ineffective if mutant strains emerge. It is of high priority to develop effective vaccines and vaccination strategies conferring a broad range of cross protection. The extracellular domain of M2 (M2e) is highly conserved among human influenza A viruses and has been utilized to develop new vaccines inducing cross protection against different subtypes of influenza A virus. However, immune mechanisms of cross protection by M2e-based vaccines still remain to be fully elucidated. Here, we review immune correlates and mechanisms conferring cross protection by M2e-based vaccines. Molecular and cellular immune components that are known to be involved in M2 immune-mediated protection include antibodies, B cells, T cells, alveolar macrophages, Fc receptors, complements, and natural killer cells. Better understanding of protective mechanisms by immune responses induced by M2e vaccination will help facilitate development of broadly cross protective vaccines against influenza A virus.
Collapse
Affiliation(s)
- Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA. ; Animal and Plant Quarantine Agency, Anyang 14089, Korea
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Yu-Jin Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
34
|
Lee YN, Kim MC, Lee YT, Hwang HS, Lee J, Kim C, Kang SM. Cross Protection against Influenza A Virus by Yeast-Expressed Heterologous Tandem Repeat M2 Extracellular Proteins. PLoS One 2015; 10:e0137822. [PMID: 26366729 PMCID: PMC4569442 DOI: 10.1371/journal.pone.0137822] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 08/24/2015] [Indexed: 01/08/2023] Open
Abstract
The influenza M2 ectodomain (M2e) is well conserved across human influenza A subtypes, but there are few residue changes among avian and swine origin influenza A viruses. We expressed a tandem repeat construct of heterologous M2e sequences (M2e5x) derived from human, swine, and avian origin influenza A viruses using the yeast expression system. Intramuscular immunization of mice with AS04-adjuvanted M2e5x protein vaccines was effective in inducing M2e-specific antibodies reactive to M2e peptide and native M2 proteins on the infected cells with human, swine, or avian influenza virus, mucosal and systemic memory cellular immune responses, and cross-protection against H3N2 virus. Importantly, M2e5x immune sera were found to confer protection against different subtypes of H1N1 and H5N1 influenza A viruses in naïve mice. Also, M2e5x-immune complexes of virus-infected cells stimulated macrophages to secrete cytokines via Fc receptors, indicating a possible mechanism of protection. The present study provides evidence that M2e5x proteins produced in yeast cells could be developed as a potential universal influenza vaccine.
Collapse
Affiliation(s)
- Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, United States of America
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, United States of America
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, South Korea
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, United States of America
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, United States of America
| | - Jongsang Lee
- BEAMS Biotechnology Co. Ltd., Seongnam, Gyeonggi-do, South Korea
| | - Cheol Kim
- BEAMS Biotechnology Co. Ltd., Seongnam, Gyeonggi-do, South Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, United States of America
- * E-mail:
| |
Collapse
|
35
|
Bitrus Y, Andrew JN, Owolodun OA, Luka PD, Umaru DA. The reoccurrence of H5N1 outbreaks necessitates the development of safe and effective influenza vaccine technologies for the prevention and control of avian influenza in Sub-Saharan Africa. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/bmbr2015.0246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
36
|
Noh HJ, Chowdhury MYE, Cho S, Kim JH, Park HS, Kim CJ, Poo H, Sung MH, Lee JS, Lim YT. Programming of Influenza Vaccine Broadness and Persistence by Mucoadhesive Polymer-Based Adjuvant Systems. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26216889 DOI: 10.4049/jimmunol.1500492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of an anti-influenza vaccine with the potential for cross-protection against seasonal drift variants as well as occasionally emerging reassortant viruses is essential. In this study, we successfully generated a novel anti-influenza vaccine system combining conserved matrix protein 2 (sM2) and stalk domain of hemagglutinin (HA2) fusion protein (sM2HA2) and poly-γ-glutamic acid (γ-PGA)-based vaccine adjuvant systems that can act as a mucoadhesive delivery vehicle of sM2HA2 as well as a robust strategy for the incorporation of hydrophobic immunostimulatory 3-O-desacyl-4'-monophosphoryl lipid A (MPL) and QS21. Intranasal coadministration of sM2HA2 and the combination adjuvant γ-PGA/MPL/QS21 (CA-PMQ) was able to induce a high degree of protective mucosal, systemic, and cell-mediated immune responses. The sM2HA2/CA-PMQ immunization was able to prevent disease symptoms, confering complete protection against lethal infection with divergent influenza subtypes (H5N1, H1N1, H5N2, H7N3, and H9N2) that lasted for at least 6 mo. Therefore, our data suggest that mucosal administration of sM2HA2 in combination with CA-PMQ could be a potent strategy for a broad cross-protective influenza vaccine, and CA-PMQ as a mucosal adjuvant could be used for effective mucosal vaccines.
Collapse
Affiliation(s)
- Hyun Jong Noh
- Department of Chemical Engineering, Sungkyunkwan University Advanced Institute of Nanotechnology, Suwon 440-746, South Korea
| | - Mohammed Y E Chowdhury
- College of Veterinary Medicine (BK21 Plus Program), Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea; Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Chittagong 4202, Bangladesh
| | - Seonghun Cho
- College of Veterinary Medicine (BK21 Plus Program), Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea
| | - Jae-Hoon Kim
- College of Veterinary Medicine (BK21 Plus Program), Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea
| | - Hye Sun Park
- Korea Basic Science Institute, Chungbuk 363-883, South Korea
| | - Chul-Joong Kim
- College of Veterinary Medicine (BK21 Plus Program), Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea
| | - Haryoung Poo
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, South Korea; and
| | - Moon-Hee Sung
- Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul 136-702, South Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine (BK21 Plus Program), Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea;
| | - Yong Taik Lim
- Department of Chemical Engineering, Sungkyunkwan University Advanced Institute of Nanotechnology, Suwon 440-746, South Korea;
| |
Collapse
|
37
|
Mucosally administered Lactobacillus surface-displayed influenza antigens (sM2 and HA2) with cholera toxin subunit A1 (CTA1) Induce broadly protective immune responses against divergent influenza subtypes. Vet Microbiol 2015. [PMID: 26210951 DOI: 10.1016/j.vetmic.2015.07.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of a universal influenza vaccine that provides broad cross protection against existing and unforeseen influenza viruses is a critical challenge. In this study, we constructed and expressed conserved sM2 and HA2 influenza antigens with cholera toxin subunit A1 (CTA1) on the surface of Lactobacillus casei (pgsA-CTA1sM2HA2/L. casei). Oral and nasal administrations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and their isotypes (IgG1 & IgG2a) as well as mucosal IgA. The mucosal administration of pgsA-CTA1sM2HA2/L. casei may also significantly increase the levels of sM2- or HA2-specific cell-mediated immunity because increased release of both IFN-γ and IL-4 was observed. The recombinant pgsA-CTA1sM2HA2/L. casei provided better protection of BALB/c mice against 10 times the 50% mouse lethal doses (MLD50) of homologous A/EM/Korea/W149/06(H5N1) or A/Aquatic bird/Korea/W81/2005 (H5N2) and heterologous A/Puerto Rico/8/34(H1N1), or A/Chicken/Korea/116/2004(H9N2) or A/Philippines/2/08(H3N2) viruses, compared with L. casei harboring sM2HA2 and also the protection was maintained up to seven months after administration. These results indicate that recombinant L. casei expressing the highly conserved sM2, HA2 of influenza and CTA1 as a mucosal adjuvant could be a potential mucosal vaccine candidate or tool to protect against divergent influenza viruses for human and animal.
Collapse
|
38
|
Zeng W, Tan ACL, Horrocks K, Jackson DC. A lipidated form of the extracellular domain of influenza M2 protein as a self-adjuvanting vaccine candidate. Vaccine 2015; 33:3526-32. [PMID: 26049002 DOI: 10.1016/j.vaccine.2015.05.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 12/15/2022]
Abstract
The highly conserved extracellular domain of Matrix protein 2 (M2e) of influenza A virus has been previously investigated as a potential target for an universal influenza vaccine. In this study we prepared four lipopeptide influenza vaccine candidates in which the TLR2 agonist S-[2,3-bis(palmitoyloxy)propyl] cysteine, (Pam2Cys) was attached to either the N- or C-terminus of the M2e consensus sequence SLLTEVETPIRNEWGCRCNDSSDP and its analogue sequence with the two cysteine residues replaced with serine residues. The results of animal study show that each of these lipopeptides induced strong M2e-specific antibody responses in the absence of extraneous T helper cell epitope(s) which are normally incorporated in the previous studies or addition of extraneous adjuvant and that these antibodies are protective against lethal challenge with influenza virus. Comparison of different routes of inoculation demonstrated that intranasal administration of M2e lipopeptide induced higher titers of IgA and IgG2b antibodies in the bronchoalveolar lavage than did subcutaneous vaccination and was better at mitigating the severity of viral challenge. Finally, we show that anti-M2e antibody specificities absent from the antibody repertoire elicited by a commercially available influenza vaccine and by virus infection can be introduced by immunization with M2e-lipopeptide and boosted by viral challenge. Immunization with this lipidated form of the M2e epitope therefore offers a means of using a widely conserved epitope to generate protective antibodies which are not otherwise induced.
Collapse
Affiliation(s)
- Weiguang Zeng
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Victoria, Australia.
| | - Amabel C L Tan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Victoria, Australia
| | - Kylie Horrocks
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Victoria, Australia
| | - David C Jackson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Victoria, Australia
| |
Collapse
|
39
|
Production and evaluation of virus-like particles displaying immunogenic epitopes of porcine reproductive and respiratory syndrome virus (PRRSV). Int J Mol Sci 2015; 16:8382-96. [PMID: 25874763 PMCID: PMC4425087 DOI: 10.3390/ijms16048382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 12/15/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most significant infectious disease currently affecting the swine industry worldwide. Several inactivated and modified live vaccines (MLV) have been developed to curb PRRSV infections. However, the efficacy and safety of these vaccines are unsatisfactory, and hence, there is a strong demand for the development of new PRRS universal vaccines. Virus-like particle (VLP)-based vaccines are gaining increasing acceptance compared to subunit vaccines, as they present the antigens in a more veritable conformation and are readily recognized by the immune system. Hepatitis B virus core antigen (HBcAg) has been successfully used as a carrier for more than 100 viral sequences. In this study, hybrid HBcAg VLPs were generated by fusion of the conserved protective epitopes of PRRSV and expressed in E. coli. An optimized purification protocol was developed to obtain hybrid HBcAg VLP protein from the inclusion bodies. This hybrid HBcAg VLP protein self-assembled to 23-nm VLPs that were shown to block virus infection of susceptible cells when tested on MARC 145 cells. Together with the safety of non-infectious and non-replicable VLPs and the low cost of production through E. coli fermentation, this hybrid VLP could be a promising vaccine candidate for PRRS.
Collapse
|
40
|
Yong CY, Yeap SK, Ho KL, Omar AR, Tan WS. Potential recombinant vaccine against influenza A virus based on M2e displayed on nodaviral capsid nanoparticles. Int J Nanomedicine 2015; 10:2751-63. [PMID: 25897220 PMCID: PMC4396508 DOI: 10.2147/ijn.s77405] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Influenza A virus poses a major threat to human health, causing outbreaks from time to time. Currently available vaccines employ inactivated viruses of different strains to provide protection against influenza virus infection. However, high mutation rates of influenza virus hemagglutinin (H) and neuraminidase (N) glycoproteins give rise to vaccine escape mutants. Thus, an effective vaccine providing protection against all strains of influenza virus would be a valuable asset. The ectodomain of matrix 2 protein (M2e) was found to be highly conserved despite mutations of the H and N glycoproteins. Hence, one to five copies of M2e were fused to the carboxyl-terminal end of the recombinant nodavirus capsid protein derived from Macrobrachium rosenbergii. The chimeric proteins harboring up to five copies of M2e formed nanosized virus-like particles approximately 30 nm in diameter, which could be purified easily by immobilized metal affinity chromatography. BALB/c mice immunized subcutaneously with these chimeric proteins developed antibodies specifically against M2e, and the titer was proportional to the copy numbers of M2e displayed on the nodavirus capsid nanoparticles. The fusion proteins also induced a type 1 T helper immune response. Collectively, M2e displayed on the nodavirus capsid nanoparticles could provide an alternative solution to a possible influenza pandemic in the future.
Collapse
Affiliation(s)
- Chean Yeah Yong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Swee Keong Yeap
- Institute of Bioscience, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Abdul Rahman Omar
- Institute of Bioscience, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia ; Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia ; Institute of Bioscience, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
41
|
Deng L, Cho KJ, Fiers W, Saelens X. M2e-Based Universal Influenza A Vaccines. Vaccines (Basel) 2015; 3:105-36. [PMID: 26344949 PMCID: PMC4494237 DOI: 10.3390/vaccines3010105] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/23/2014] [Accepted: 01/30/2015] [Indexed: 12/13/2022] Open
Abstract
The successful isolation of a human influenza virus in 1933 was soon followed by the first attempts to develop an influenza vaccine. Nowadays, vaccination is still the most effective method to prevent human influenza disease. However, licensed influenza vaccines offer protection against antigenically matching viruses, and the composition of these vaccines needs to be updated nearly every year. Vaccines that target conserved epitopes of influenza viruses would in principle not require such updating and would probably have a considerable positive impact on global human health in case of a pandemic outbreak. The extracellular domain of Matrix 2 (M2e) protein is an evolutionarily conserved region in influenza A viruses and a promising epitope for designing a universal influenza vaccine. Here we review the seminal and recent studies that focused on M2e as a vaccine antigen. We address the mechanism of action and the clinical development of M2e-vaccines. Finally, we try to foresee how M2e-based vaccines could be implemented clinically in the future.
Collapse
Affiliation(s)
- Lei Deng
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Ghent, Belgium.
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| | - Ki Joon Cho
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Ghent, Belgium.
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| | - Walter Fiers
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Ghent, Belgium.
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| | - Xavier Saelens
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Ghent, Belgium.
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| |
Collapse
|
42
|
|
43
|
Ingrole RS, Tao W, Tripathy JN, Gill HS. Synthesis and Immunogenicity Assessment of Elastin-Like Polypeptide-M2e Construct as an Influenza Antigen. ACTA ACUST UNITED AC 2014; 4:1450004. [PMID: 25825595 DOI: 10.1142/s1793984414500044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The 23 amino acid-long extracellular domain of the influenza virus transmembrane protein M2 (M2e) has remained highly conserved since the 1918 pandemic, and is thus considered a good candidate for development of a universal influenza A vaccine. However, M2e is poorly immunogenic. In this study we assessed the potential of increasing immunogenicity of M2e by constructing a nanoscale-designed protein polymer containing the M2e sequence and an elastin-like polypeptide (ELP) nanodomain consisting of alanine and tyrosine guest residues (ELP(A2YA2)24). The ELP nanodomain was included to increase antigen size, and to exploit the inherent thermal inverse phase transition behavior of ELPs to purify the protein polymer. The ELP(A2YA2)24 + M2e nanodomained molecule was recombinantly synthesized. Characterization of its inverse phase transition behavior demonstrated that attachment of M2e to ELP(A2YA2)24 increased its transition temperature compared to ELP(A2YA2)24. Using a dot blot test we determined that M2e conjugated to ELP is recognizable by M2e-specific antibodies, suggesting that the conjugation process does not adversely affect the immunogenic property of M2e. Further, upon vaccinating mice with ELP(A2YA2)24 + M2e it was found that indeed the nanodomained protein enhanced M2e-specific antibodies in mouse serum compared to free M2e peptide and ELP(A2YA2)24. The immune serum could also recognize M2 expressed on influenza virions. Overall, this data suggests the potential of using molecules containing M2e-ELP nano-domains to develop a universal influenza vaccine.
Collapse
Affiliation(s)
- Rohan S Ingrole
- Department of Chemical Engineering Texas Tech University, 6th and Canton Lubbock, Texas 79409, USA
| | - Wenqian Tao
- Department of Chemical Engineering Texas Tech University, 6th and Canton Lubbock, Texas 79409, USA
| | - Jatindra N Tripathy
- Center for Biotechnology and Genomics Texas Tech University Lubbock, Texas 79409, USA
| | - Harvinder S Gill
- Department of Chemical Engineering Texas Tech University, 6th and Canton Lubbock, Texas 79409, USA
| |
Collapse
|
44
|
Tan M, Jiang X. Subviral particle as vaccine and vaccine platform. Curr Opin Virol 2014; 6:24-33. [PMID: 24662314 PMCID: PMC4072748 DOI: 10.1016/j.coviro.2014.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 01/01/2023]
Abstract
Recombinant subvirual particles retain similar antigenic features of their authentic viral capsids and thus have been applied as nonreplicating subunit vaccines against viral infection and illness. Additionally, the self-assembled, polyvalent subviral particles are excellent platforms to display foreign antigens for immune enhancement for vaccine development. These subviral particle-based vaccines are noninfectious and thus safer than the conventional live attenuated and inactivated vaccines. While several VLP vaccines are available in the markets, numerous others, including dual vaccines against more than one pathogen, are under clinical or preclinical development. This article provides an update of these efforts.
Collapse
Affiliation(s)
- Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
45
|
Chowdhury MYE, Li R, Kim JH, Park ME, Kim TH, Pathinayake P, Weeratunga P, Song MK, Son HY, Hong SP, Sung MH, Lee JS, Kim CJ. Mucosal vaccination with recombinant Lactobacillus casei-displayed CTA1-conjugated consensus matrix protein-2 (sM2) induces broad protection against divergent influenza subtypes in BALB/c mice. PLoS One 2014; 9:e94051. [PMID: 24714362 PMCID: PMC3979752 DOI: 10.1371/journal.pone.0094051] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/11/2014] [Indexed: 01/31/2023] Open
Abstract
To develop a safe and effective mucosal vaccine against pathogenic influenza viruses, we constructed recombinant Lactobacillus casei strains that express conserved matrix protein 2 with (pgsA-CTA1-sM2/L. casei) or without (pgsA-sM2/L. casei) cholera toxin subunit A1 (CTA1) on the surface. The surface localization of the fusion protein was verified by cellular fractionation analyses, flow cytometry and immunofluorescence microscopy. Oral and nasal inoculations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and mucosal IgA. However, the conjugation of cholera toxin subunit A1 induced more potent mucosal, humoral and cell-mediated immune responses. In a challenge test with 10 MLD50 of A/EM/Korea/W149/06(H5N1), A/Puerto Rico/8/34(H1N1), A/Aquatic bird /Korea/W81/2005(H5N2), A/Aquatic bird/Korea/W44/2005(H7N3), and A/Chicken/Korea/116/2004(H9N2) viruses, the recombinant pgsA-CTA1-sM2/L. casei provided better protection against lethal challenges than pgsA-sM2/L. casei, pgsA/L. casei and PBS in mice. These results indicate that mucosal immunization with recombinant L. casei expressing CTA1-conjugated sM2 protein on its surface is an effective means of eliciting protective immune responses against diverse influenza subtypes.
Collapse
Affiliation(s)
- Mohammed Y. E. Chowdhury
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
- Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Rui Li
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Hoon Kim
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | - Min-Eun Park
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | - Tae-Hwan Kim
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | - Prabuddha Pathinayake
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | - Prasanna Weeratunga
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | - Man Ki Song
- Laboratory Science Division, International Vaccine Institute, Seoul, Republic of Korea
| | - Hwa-Young Son
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | | | | | - Jong-Soo Lee
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
- * E-mail: (CJK); (JSL)
| | - Chul-Joong Kim
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
- * E-mail: (CJK); (JSL)
| |
Collapse
|
46
|
Wan Y, Ren X, Ren Y, Wang J, Hu Z, Xie X, Xu J. As a genetic adjuvant, CTA improves the immunogenicity of DNA vaccines in an ADP-ribosyltransferase activity- and IL-6-dependent manner. Vaccine 2014; 32:2173-80. [DOI: 10.1016/j.vaccine.2014.02.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/30/2023]
|
47
|
Zheng M, Luo J, Chen Z. Development of universal influenza vaccines based on influenza virus M and NP genes. Infection 2014; 42:251-62. [PMID: 24178189 DOI: 10.1007/s15010-013-0546-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/15/2013] [Indexed: 01/01/2023]
Abstract
PURPOSE Vaccination is the safest and most effective measure against influenza virus infections. However, traditional influenza vaccines cannot respond effectively to an unforeseen epidemic or pandemic caused by a virus with antigenic drifts or antigenic shifts. Therefore, developing a universal influenza vaccine (UIV) that induces broad-spectrum and long-term immunity has become a major trend in influenza vaccine research and development. METHODS This article reviews the development of UIVs based on these conserved influenza virus proteins. RESULTS AND CONCLUSION The matrix protein (M1, M2) and nucleoprotein (NP) of influenza viruses have highly conserved sequences, and they become the major target antigens of current UIV studies.
Collapse
Affiliation(s)
- M Zheng
- Shanghai Institute of Biological Products, Shanghai, 200052, China
| | | | | |
Collapse
|
48
|
Li J, Arévalo MT, Chen Y, Posadas O, Smith JA, Zeng M. Intranasal immunization with influenza antigens conjugated with cholera toxin subunit B stimulates broad spectrum immunity against influenza viruses. Hum Vaccin Immunother 2014; 10:1211-20. [PMID: 24632749 DOI: 10.4161/hv.28407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Frequent mutation of influenza viruses keep vaccinated and non-vaccinated populations vulnerable to new infections, causing serious burdens to public health and the economy. Vaccination with universal influenza vaccines would be the best way to effectively protect people from infection caused by mismatched or unforeseen influenza viruses. Presently, there is no FDA approved universal influenza vaccine. In this study, we expressed and purified a fusion protein comprising of influenza matrix 2 protein ectodomain peptides, a centralized influenza hemagglutinin stem region, and cholera toxin subunit B. Vaccination of BALB/c mice with this novel artificial antigen resulted in potent humoral immune responses, including induction of specific IgA and IgG, and broad protection against infection by multiple influenza viruses. Furthermore, our results demonstrated that when used as a mucosal antigen, cholera toxin subunit B improved antigen-stimulated T cell and memory B cell responses.
Collapse
Affiliation(s)
- Junwei Li
- Center of Excellence for Infectious Diseases; Paul L. Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso, TX USA
| | - Maria T Arévalo
- Center of Excellence for Infectious Diseases; Paul L. Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso, TX USA
| | - Yanping Chen
- Center of Excellence for Infectious Diseases; Paul L. Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso, TX USA
| | - Olivia Posadas
- Center of Excellence for Infectious Diseases; Paul L. Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso, TX USA
| | - Jacob A Smith
- Center of Excellence for Infectious Diseases; Paul L. Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso, TX USA
| | - Mingtao Zeng
- Center of Excellence for Infectious Diseases; Paul L. Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso, TX USA
| |
Collapse
|
49
|
Monto AS, Ohmit SE. Seasonal influenza vaccines: evolutions and future trends. Expert Rev Vaccines 2014; 8:383-9. [DOI: 10.1586/erv.09.9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Lee YT, Kim KH, Ko EJ, Lee YN, Kim MC, Kwon YM, Tang Y, Cho MK, Lee YJ, Kang SM. New vaccines against influenza virus. Clin Exp Vaccine Res 2013; 3:12-28. [PMID: 24427759 PMCID: PMC3890446 DOI: 10.7774/cevr.2014.3.1.12] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 11/15/2013] [Accepted: 11/20/2013] [Indexed: 12/23/2022] Open
Abstract
Vaccination is one of the most effective and cost-benefit interventions that prevent the mortality and reduce morbidity from infectious pathogens. However, the licensed influenza vaccine induces strain-specific immunity and must be updated annually based on predicted strains that will circulate in the upcoming season. Influenza virus still causes significant health problems worldwide due to the low vaccine efficacy from unexpected outbreaks of next epidemic strains or the emergence of pandemic viruses. Current influenza vaccines are based on immunity to the hemagglutinin antigen that is highly variable among different influenza viruses circulating in humans and animals. Several scientific advances have been endeavored to develop universal vaccines that will induce broad protection. Universal vaccines have been focused on regions of viral proteins that are highly conserved across different virus subtypes. The strategies of universal vaccines include the matrix 2 protein, the hemagglutinin HA2 stalk domain, and T cell-based multivalent antigens. Supplemented and/or adjuvanted vaccination in combination with universal target antigenic vaccines would have much promise. This review summarizes encouraging scientific advances in the field with a focus on novel vaccine designs.
Collapse
Affiliation(s)
- Young-Tae Lee
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Yu-Na Lee
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Min-Chul Kim
- Animal and Plant Quarantine Agency, Anyang, Korea
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Yinghua Tang
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Min-Kyoung Cho
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | | | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|