1
|
Ji W, Zhu P, Wang Y, Zhang Y, Li Z, Yang H, Chen S, Jin Y, Duan G. The key mechanisms of multi-system responses triggered by central nervous system damage in hand, foot, and mouth disease severity. INFECTIOUS MEDICINE 2024; 3:100124. [PMID: 39314804 PMCID: PMC11417554 DOI: 10.1016/j.imj.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/10/2024] [Accepted: 07/23/2024] [Indexed: 09/25/2024]
Abstract
Hand, foot, and mouth disease (HFMD) is a prevalent infectious affliction primarily affecting children, with a small portion of cases progressing to neurological complications. Notably, in a subset of severe HFMD cases, neurological manifestations may result in significant sequelae and pose a risk of mortality. We systematically conducted literature retrieval from the databases PubMed (1957-2023), Embase (1957-2023), and Web of Science (1957-2023), in addition to consulting authoritative guidelines. Subsequently, we rigorously selected the most relevant articles within the scope of this review for comprehensive analysis. It is widely recognized that the severity of HFMD is attributed to a multifaceted array of pathophysiological mechanisms. The implication of multi-system dysfunction appears to be perturbances of the human defense system; therefore, it contributes to the severity of HFMD. In this review, we provide an overview and analysis of recent insights into the molecular mechanisms contributing to the severity of HFMD, with a particular focus on cytokine release syndrome, the involvement of the renin-angiotensin system, regional immunity, endothelial dysfunction, catecholamine storm, viral invasion, and the molecular mechanisms of neurological damage. We speculate that the domino effect of diverse physiological systems, initiated by damage to the central nervous system, serve as the primary mechanisms governing the severity of HFMD. Simultaneously, we emphasize the knowledge gaps and research urgently required to delineate a quick roadmap for ongoing and essential studies on HFMD.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yuexia Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Zijie Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| |
Collapse
|
2
|
Sun Y, Hao Y, Wu J, Qian S, Shen S, Yu Y. Analysis of miRNAs involved in mouse brain injury upon Coxsackievirus A6 infection. Front Cell Infect Microbiol 2024; 14:1405689. [PMID: 39239635 PMCID: PMC11374775 DOI: 10.3389/fcimb.2024.1405689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Coxsackievirus A6 (CV-A6) has emerged as the predominant epidemic strain responsible for hand, foot and mouth disease (HFMD). CV-A6 infection can result in severe clinical manifestations, including encephalitis, meningitis, and potentially life-threatening central nervous system disorders. Our previous research findings demonstrated that neonatal mice infected with CV-A6 exhibited limb weakness, paralysis, and ultimately succumbed to death. However, the underlying mechanism of CV-A6-induced nervous system injury remains elusive. Numerous reports have highlighted the pivotal role of miRNAs in various viral infections. Methods Separately established infection and control groups of mice were used to create miRNA profiles of the brain tissues before and after CV-A6 transfection, followed by experimental verification, prediction, and analysis of the results. Results At 2 days post-infection (dpi), 4 dpi, and 2dpi vs 4dpi, we identified 175, 198 and 78 significantly differentially expressed miRNAs respectively using qRT-PCR for validation purposes. Subsequently, we predicted target genes of these differentially expressed miRNAs and determined their potential targets through GO (Gene Ontology) enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. Finally, we verified the miRNA-mRNA pairing via double luciferase experiments while confirming functional enrichment of target genes through Western Blotting analyses. Discussion The results from this study suggest that transcriptional regulation, neuronal necrosis, pro-inflammatory cytokine release, and antiviral immunity are all implicated in the pathogenesis of central nervous system injury in mice infected with CV-A6. Brain injury resulting from CV-A6 infection may involve multiple pathways, including glial cell activation, neuronal necrosis, synaptic destruction, degenerative diseases of the nervous system. It can even encompass destruction of the blood-brain barrier, leading to central nervous system injury. The dysregulated miRNAs and signaling pathways discovered in this study provide valuable insights for further investigations into the pathogenesis of CV-A6.
Collapse
Affiliation(s)
- Yihao Sun
- Department of Biopharmacy, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- Viral Vaccine Research Laboratory I, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Yilin Hao
- Department of Biopharmacy, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Jie Wu
- Viral Vaccine Research Laboratory I, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Shasha Qian
- Viral Vaccine Research Laboratory I, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Shuo Shen
- Viral Vaccine Research Laboratory I, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Yuting Yu
- Department of Biopharmacy, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
3
|
Sahoo M, Singh R, Kumar P, Kumar Mariappan A, Munnuswamy P, Singh K, Mani S, Dhama K, Kondabattula G, Das T, Thakor JC, Kashyap G, Sahoo NR. Novel pathologic findings and viral antigen distribution in cattle and buffalo calves naturally infected with Foot-and-Mouth disease virus. Vet Q 2023; 43:1-13. [PMID: 37733477 PMCID: PMC10548843 DOI: 10.1080/01652176.2023.2260435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The Foot-and-Mouth disease is highly contagious acute viral disease of livestock inflicting huge economic loss to the farmers. The limited knowledge regarding the pathological lesions vis-a-vis distribution of the FMDV in lesser explored endocrine glands and important vital organs other than the target organs of infected calves prompted us to take the present investigation to have detailed insight into the pathogenesis. The systematic necropsy of 37 dead calves (cattle-28 and buffalo-9) was conducted, and thin representative tissue pieces from the affected organs were collected in 10% neutral buffered formalin (NBF) for pathological and immunohistochemical investigations. The genomic detection and its serotyping were done by RT-PCR and multiplex-PCR, respectively. Necropsy examination in all cases showed myocardial lesions resembling 'tigroid heart appearance'. Other organ specific lesions include vesiculo-ulcerative stomatitis, edema of the lungs, petechial hemorrhages, edema of the endocrines, and gastroenteritis. Histopathological examination showed varying sizes of vesicles and ulcerations in stratified squamous epithelium of the tongue, acute necrotizing myocarditis, lymphoid depletion in lymphoid tissues, hepatitis, pancreatitis, thymic hyperplasia, thyroiditis, adrenitis, and enteritis. Positive immunolabeling for viral antigens was observed in endocrine glands, lymphoid organs, lungs, liver, kidneys, and intestine, in addition to other typical locations. The thyroid, adrenal glands, and pancreas, in addition to the tongue and heart, are the tissue of choice for sampling in the field during epidemics. Further, the viral genome and serotype A was confirmed in the affected tissues. This study provides insights into novel tissue tropism and pathogenesis in young calves naturally infected with FMDV.
Collapse
Affiliation(s)
- Monalisa Sahoo
- ICAR-National Institute on Foot-and-Mouth Disease (NIFMD), Bhubaneswar, India
- Division of Pathology, ICAR- Indian veterinary Research Institute (IVRI), Izatnagar, India
| | - Rajendra Singh
- Veterinary Pathology, Institute of Veterinary Science and Animal Husbandry, Siksha "O" Anusandhan, Bhubaneswar, India
| | - Pawan Kumar
- Division of Pathology, ICAR- Indian veterinary Research Institute (IVRI), Izatnagar, India
| | - Asok Kumar Mariappan
- Division of Pathology, ICAR- Indian veterinary Research Institute (IVRI), Izatnagar, India
| | - Palanivelu Munnuswamy
- Division of Pathology, ICAR- Indian veterinary Research Institute (IVRI), Izatnagar, India
| | - Karampal Singh
- CADRAD, ICAR- Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Saminathan Mani
- CADRAD, ICAR- Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Kuldeep Dhama
- Veterinary Pathology, Institute of Veterinary Science and Animal Husbandry, Siksha "O" Anusandhan, Bhubaneswar, India
| | - Ganesh Kondabattula
- Quality control & Quality Assurance unit, ICAR-Indian Veterinary Research Institute (IVRI), Hebbal, India
| | - Tareni Das
- ICAR-National Institute on Foot-and-Mouth Disease (NIFMD), Bhubaneswar, India
| | | | - Gayatri Kashyap
- Division of Pathology, ICAR- Indian veterinary Research Institute (IVRI), Izatnagar, India
| | - Nihar Ranjan Sahoo
- ICAR-National Institute on Foot-and-Mouth Disease (NIFMD), Bhubaneswar, India
| |
Collapse
|
4
|
Zhu P, Ji W, Li D, Li Z, Chen Y, Dai B, Han S, Chen S, Jin Y, Duan G. Current status of hand-foot-and-mouth disease. J Biomed Sci 2023; 30:15. [PMID: 36829162 PMCID: PMC9951172 DOI: 10.1186/s12929-023-00908-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Hand-foot-and-mouth disease (HFMD) is a viral illness commonly seen in young children under 5 years of age, characterized by typical manifestations such as oral herpes and rashes on the hands and feet. These symptoms typically resolve spontaneously within a few days without complications. Over the past two decades, our understanding of HFMD has greatly improved and it has received significant attention. A variety of research studies, including epidemiological, animal, and in vitro studies, suggest that the disease may be associated with potentially fatal neurological complications. These findings reveal clinical, epidemiological, pathological, and etiological characteristics that are quite different from initial understandings of the illness. It is important to note that HFMD has been linked to severe cardiopulmonary complications, as well as severe neurological sequelae that can be observed during follow-up. At present, there is no specific pharmaceutical intervention for HFMD. An inactivated Enterovirus A71 (EV-A71) vaccine that has been approved by the China Food and Drug Administration (CFDA) has been shown to provide a high level of protection against EV-A71-related HFMD. However, the simultaneous circulation of multiple pathogens and the evolution of the molecular epidemiology of infectious agents make interventions based solely on a single agent comparatively inadequate. Enteroviruses are highly contagious and have a predilection for the nervous system, particularly in child populations, which contributes to the ongoing outbreak. Given the substantial impact of HFMD around the world, this Review synthesizes the current knowledge of the virology, epidemiology, pathogenesis, therapy, sequelae, and vaccine development of HFMD to improve clinical practices and public health efforts.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zijie Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Bowen Dai
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shujie Han
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
5
|
Xing J, Wang K, Wang G, Li N, Zhang Y. Recent advances in enterovirus A71 pathogenesis: a focus on fatal human enterovirus A71 infection. Arch Virol 2022; 167:2483-2501. [PMID: 36171507 DOI: 10.1007/s00705-022-05606-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Abstract
Enterovirus A71 (EV-A71) is one of the major pathogens responsible for hand, foot, and mouth disease (HFMD). Many HFMD outbreaks have been reported throughout the world in the past decades. Compared with other viruses, EV-A71 infection is more frequently associated with severe neurological complications and even death in children. EV-A71 can also infect adults and cause severe complications and death, although such cases are very uncommon. Although fatal cases of EV-A71 infection have been reported, the underlying mechanisms of EV-A71 infection, especially the mode of viral spread into the central nervous system (CNS) and mechanisms of pulmonary edema, which is considered to be the direct cause of death, have not yet been fully clarified, and more studies are needed. Here, we first summarize the pathological findings in various systems of patients with fatal EV-A71 infections, focussing in detail on gross changes, histopathological examination, tissue distribution of viral antigens and nucleic acids, systemic inflammatory cell infiltration, and tissue distribution of viral receptors and their co-localization with viral antigens. We then present our conclusions about viral dissemination, neuropathogenesis, and the mechanism of pulmonary edema in EV-A71 infection, based on pathological findings.
Collapse
Affiliation(s)
- Jingjun Xing
- Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Science, School of Medicine, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, 315211, Zhejiang Province, P. R. China
| | - Ke Wang
- The Affiliated Hospital of Medical School, Ningbo University, No. 247 Renmin Road, Jiangbei District, Ningbo, 315020, Zhejiang Province, P. R. China
| | - Geng Wang
- Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Science, School of Medicine, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, 315211, Zhejiang Province, P. R. China
| | - Na Li
- Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Science, School of Medicine, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, 315211, Zhejiang Province, P. R. China
| | - Yanru Zhang
- Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Science, School of Medicine, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, 315211, Zhejiang Province, P. R. China.
| |
Collapse
|
6
|
Yang X, Shui X, Dai X, Hao S, Ke F, Zhu L, Chen X. PLAC8 promotes EV71 infected inflammatory lesion by disturbing Th-cell-related cytokines release in neonatal mouse. Virology 2021; 564:39-45. [PMID: 34653773 DOI: 10.1016/j.virol.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
Enterovirus 71 can cause severe hand, foot, and mouth disease (HFMD) in children. However, little is known about the mechanism of inflammatory disorders caused by EV71 infection and why severe cases are mainly children aged under-three. In current study, using mRNA microarray assay, the differential expression of Placenta-specific 8 (PLAC8) was identified in mice brain. In addition, we found that PLAC8 expression was down-regulated with age in mice lung tissues and human peripheral blood. Then, we further proved that PLAC8 could promote inflammation progress and disturb Th1/Th2/Th17/Treg related cytokines release after EV71 infection using PLAC8 plasmid over-expressed neonatal mouse model. Our data suggest that PLAC8 might play a crucial role in Th cell differentiation and inflammatory damage caused by EV71 infection in infants. Thus, our findings would help understand the causes of severe inflammatory injury in infants during EV71 infection, and provide new insights into the prevention and control of severe HFMD.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Xiaochuan Shui
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Xiaoqing Dai
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Shiyong Hao
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Feng Ke
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Liru Zhu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Xuejiao Chen
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, 441053, China.
| |
Collapse
|
7
|
Lu MY, Lin YL, Kuo Y, Chuang CF, Wang JR, Liao F. Muscle Tissue Damage and Recovery After EV71 Infection Correspond to Dynamic Macrophage Phenotypes. Front Immunol 2021; 12:648184. [PMID: 34305887 PMCID: PMC8299204 DOI: 10.3389/fimmu.2021.648184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/28/2021] [Indexed: 12/01/2022] Open
Abstract
Enterovirus 71 (EV71) is a positive single-stranded RNA virus from the enterovirus genus of the Picornaviridae family. Most young children infected with EV71 develop mild symptoms of hand, foot and mouth disease, but some develop severe symptoms with neurological involvement. Limb paralysis from EV71 infection is presumed to arise mainly from dysfunction of motor neurons in the spinal cord. However, EV71 also targets and damages skeletal muscle, which may also contribute to the debilitating symptoms. In this study, we have delineated the impacts of EV71 infection on skeletal muscle using a mouse model. Mouse pups infected with EV71 developed limb paralysis, starting at day 3 post-infection and peaking at day 5-7 post-infection. At later times, mice recovered gradually but not completely. Notably, severe disease was associated with high levels of myositis accompanied by muscle calcification and persistent motor end plate abnormalities. Interestingly, macrophages exhibited a dynamic change in phenotype, with inflammatory macrophages (CD45+CD11b+Ly6Chi) appearing in the early stage of infection and anti-inflammatory/restorative macrophages (CD45+CD11b+Ly6Clow/-) appearing in the late stage. The presence of inflammatory macrophages was associated with severe inflammation, while the restorative macrophages were associated with recovery. Altogether, we have demonstrated that EV71 infection causes myositis, muscle calcification and structural defects in motor end plates. Subsequent muscle regeneration is associated with a dynamic change in macrophage phenotype.
Collapse
Affiliation(s)
- Mei-Yi Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Lin Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yali Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chi-Fen Chuang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jen-Ren Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Fang Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
Tee HK, Zainol MI, Sam IC, Chan YF. Recent advances in the understanding of enterovirus A71 infection: a focus on neuropathogenesis. Expert Rev Anti Infect Ther 2021; 19:733-747. [PMID: 33183118 DOI: 10.1080/14787210.2021.1851194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Hand, foot, and mouth disease caused by enterovirus A71 (EV-A71) is more frequently associated with neurological complications and deaths compared to other enteroviruses.Areas covered: The authors discuss current understanding of the neuropathogenesis of EV-A71 based on various clinical, human, and animal model studies. The authors discuss the important advancements in virus entry, virus dissemination, and neuroinvasion. The authors highlight the role of host immune system, host genetic factors, viral quasispecies, and heparan sulfate in EV-A71 neuropathogenesis.Expert opinion: Comparison of EV-A71 with EV-D68 and PV shows similarity in primary target sites and dissemination to the central nervous system. More research is needed to understand cellular tropisms, persistence of EV-A71, and other possible invasion routes. EV-A71 infection has varied clinical manifestations which may be attributed to multiple receptors usage. Future development of antivirals and vaccines should target neurotropic enteroviruses. Repurposing drug and immunomodulators used in combination could reduce the severity of EV-A71 infection. Only a few drugs have been tested in clinical trials, and in the absence of antiviral and vaccines (except China), active virus surveillance, good hand hygiene, and physical distancing should be advocated. A better understanding of EV-A71 neuropathogenesis is critical for antiviral and multivalent vaccines development.
Collapse
Affiliation(s)
- Han Kang Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Izwan Zainol
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Lin JY, Huang HI. Autophagy is induced and supports virus replication in Enterovirus A71-infected human primary neuronal cells. Sci Rep 2020; 10:15234. [PMID: 32943650 PMCID: PMC7499237 DOI: 10.1038/s41598-020-71970-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Enterovirus A71 (EV-A71), which belongs to the family Picornaviridae, can invade the central nervous system (CNS) and cause severe CNS complications or death. The EV-A71 antigen has been detected in the neurons in the brains of humans who died from EV-A71 infection. However, the effect of EV-A71 infection on human neuronal cells remains poorly understood. Human neural stem cells (NSCs) and IMR-32 neuroblastoma cells were differentiated into neuronal cells for this study. Although the neuronal cells were permissive to EV-A71 infection, EV-A71 infection did not induce an obvious cytopathic effect on the neuronal cells. EV-A71 infection did not induce apoptosis in neuronal cells. However, autophagy and autophagic flux were induced in EV-A71-infected neuronal cells. The production of autophagosomes was shown to be important for EV-A71 viral RNA (vRNA) replication in neuronal cells.
Collapse
Affiliation(s)
- Jhao-Yin Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan. .,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan. .,Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
10
|
Majer A, McGreevy A, Booth TF. Molecular Pathogenicity of Enteroviruses Causing Neurological Disease. Front Microbiol 2020; 11:540. [PMID: 32328043 PMCID: PMC7161091 DOI: 10.3389/fmicb.2020.00540] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enteroviruses are single-stranded positive-sense RNA viruses that primarily cause self-limiting gastrointestinal or respiratory illness. In some cases, these viruses can invade the central nervous system, causing life-threatening neurological diseases including encephalitis, meningitis and acute flaccid paralysis (AFP). As we near the global eradication of poliovirus, formerly the major cause of AFP, the number of AFP cases have not diminished implying a non-poliovirus etiology. As the number of enteroviruses linked with neurological disease is expanding, of which many had previously little clinical significance, these viruses are becoming increasingly important to public health. Our current understanding of these non-polio enteroviruses is limited, especially with regards to their neurovirulence. Elucidating the molecular pathogenesis of these viruses is paramount for the development of effective therapeutic strategies. This review summarizes the clinical diseases associated with neurotropic enteroviruses and discusses recent advances in the understanding of viral invasion of the central nervous system, cell tropism and molecular pathogenesis as it correlates with host responses.
Collapse
Affiliation(s)
- Anna Majer
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Alan McGreevy
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Timothy F Booth
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
11
|
Supasorn O, Tongtawe P, Srimanote P, Rattanakomol P, Thanongsaksrikul J. A nonstructural 2B protein of enterovirus A71 increases cytosolic Ca 2+ and induces apoptosis in human neuroblastoma SH-SY5Y cells. J Neurovirol 2020; 26:201-213. [PMID: 31933192 DOI: 10.1007/s13365-019-00824-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 11/29/2022]
Abstract
Enterovirus A71 (EV-A71) is one of the causative agents causing the hand-foot-mouth disease which associated with fatal neurological complications. Several sporadic outbreaks of EV-A71 infections have been recently reported from Asia-Pacific regions and potentially established endemicity in the area. Currently, there is no effective vaccine or antiviral drug for EV-A71 available. This may be attributable to the limited information about its pathogenesis. In this study, the recombinant nonstructural 2B protein of EV-A71 was successfully produced in human neuroblastoma SH-SY5Y cells and evaluated for its effects on induction of the cell apoptosis and the pathway involved. The EV-A71 2B-transfected SH-SY5Y cells showed significantly higher difference in the cell growth inhibition than the mock and the irrelevant protein controls. The transfected SH-SY5Y cells underwent apoptosis and showed the significant upregulation of caspase-9 (CASP9) and caspase-12 (CASP12) genes at 3- and 24-h post-transfection, respectively. Interestingly, the level of cytosolic Ca2+ was significantly elevated in the transfected SH-SY5Y cells at 6- and 12-h post-transfection. The caspase-9 is activated by mitochondrial signaling pathway while the caspase-12 is activated by ER signaling pathway. The results suggested that EV-A71 2B protein triggered transient increase of the cytosolic Ca2+ level and associated with ER-mitochondrial interactions that drive the caspase-dependent apoptosis pathways. The detailed mechanisms warrant further studies for understanding the implication of EV-A71 infection in neuropathogenesis. The gained knowledge is essential for the development of the effective therapeutics and antiviral drugs.
Collapse
Affiliation(s)
- Oratai Supasorn
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand
| | - Pongsri Tongtawe
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand
| | - Potjanee Srimanote
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand
| | - Patthaya Rattanakomol
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand
| | - Jeeraphong Thanongsaksrikul
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand.
| |
Collapse
|
12
|
Lin WY, Yu YJ, Jinn TR. Evaluation of the virucidal effects of rosmarinic acid against enterovirus 71 infection via in vitro and in vivo study. Virol J 2019; 16:94. [PMID: 31366366 PMCID: PMC6670152 DOI: 10.1186/s12985-019-1203-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/21/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Although enterovirus 71 (EV71) is an important public health threat, especially in the Asia-Pacific region, there are still no effective drugs or vaccines to treat and prevent EV71 infection. Therefore, it is critical to develop prophylactic and therapeutic agents against EV71. Rosmarinic acid (RA), a phytochemical, has been discovered to possess a broad spectrum of biological activities. METHODS The virucidal effects of RA on EV71 were determined by MTT, western blot, median cell culture infectious dose, apoptosis detection, plaque reduction, semi-quantitative real-time polymerase chain reaction, immunofluorescence detection, molecular docking analysis, and mouse protection assay. RESULTS RA showed a strong protective effect against EV71 infection in human rhabdomyosarcoma cells when the multiplicity of infection was 1, with a low IC50 value (4.33 ± 0.18 μM) and high therapeutic index (340). RA not only protected cells from EV71-induced cytopathic effects, but also from EV71-induced apoptosis. The results of time-of-addition analysis demonstrated that the inhibitory activity of RA was highest at the early stage of viral infection. Consistent with this, the infectivity of EV71 in the early stage of viral infection also was observed to be limited in neonatal mice treated with RA. Further, molecular docking predicts that RA could replace the natural pocket factor within the VP1 capsid-binding hydrophobic pocket. CONCLUSIONS This study suggests that RA has the potential to be developed as an antiviral agent against initial EV71 infection to prevent or reduce EV71-induced pathogenesis and complications, since RA can effectively reduce EV71 infection in the early stages of viral infection.
Collapse
Affiliation(s)
- Wen-Yu Lin
- School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan, Republic of China
| | - Yu-Jen Yu
- School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan, Republic of China
| | - Tzyy-Rong Jinn
- School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan, Republic of China.
| |
Collapse
|
13
|
Neutrophil extracellular traps induced by VP1 contribute to pulmonary edema during EV71 infection. Cell Death Discov 2019; 5:111. [PMID: 31285854 PMCID: PMC6609695 DOI: 10.1038/s41420-019-0193-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/18/2019] [Accepted: 05/25/2019] [Indexed: 12/19/2022] Open
Abstract
Pulmonary edema is a fatal complication of EV71-associated hand, foot, and mouth disease (HFMD). The pathogenesis of EV71-induced pulmonary edema remains largely unclear. In this study, we aimed to explore the roles of the capsid protein VP1 in the occurrence of EV71-induced pulmonary edema. The intranasal inoculation of recombinant VP1 protein caused lung inflammation with an elevation of inflammatory cytokines and neutrophils infiltration. Moreover, neutrophil extracellular traps (NETs) were observed in the lung parenchyma of the mice treated with VP1. VP1 directly induced the formation of NETs, which depended on PAD4. VP1 also damaged the lung barrier via the reduction of the tight junction protein occludin. Moreover, the EV71 attachment receptor vimentin was increased upon VP1 administration. In contrast, NETs decreased vimentin levels, suggesting a novel role for NETs in viral immune defense. These results evidenced a direct role of VP1 in EV71-induced pulmonary edema and demonstrated that NETs may be both harmful and beneficial in EV71 infection.
Collapse
|
14
|
Yang CH, Liang CT, Jiang ST, Chen KH, Yang CC, Cheng ML, Ho HY. A Novel Murine Model Expressing a Chimeric mSCARB2/hSCARB2 Receptor Is Highly Susceptible to Oral Infection with Clinical Isolates of Enterovirus 71. J Virol 2019; 93:e00183-19. [PMID: 30894476 PMCID: PMC6532076 DOI: 10.1128/jvi.00183-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/15/2019] [Indexed: 01/05/2023] Open
Abstract
Enterovirus 71 (EV71) infection is generally associated with hand-foot-and-mouth disease (HFMD) and may cause severe neurological disorders and even death. An effective murine oral infection model for studying the pathogenesis of various clinical EV71 isolates is lacking. We developed a transgenic (Tg) mouse that expresses an EV71 receptor, that is, human scavenger receptor class B member 2 (hSCARB2), in a pattern highly similar to that of endogenous murine SCARB2 (mSCARB2) protein. A FLAG-tagged SCARB2 cDNA fragment composed of exons 3 to 12 was inserted into a murine Scarb2 gene-containing bacterial artificial chromosome (BAC) clone, and the resulting transgene was used for establishment of chimeric receptor-expressing Tg mice. Tg mice intragastrically (i.g.) infected with clinical isolates of EV71 showed neurological symptoms, such as ataxia and paralysis, and fatality. There was an age-dependent decrease in susceptibility to viral infection. Pathological characteristics of the infected Tg mice resembled those of encephalomyelitis in human patients. Viral infection was accompanied by microglial activation. Clodronate treatment of the brain slices from Tg mice enhanced viral replication, while lipopolysaccharide treatment significantly inhibited it, suggesting an antiviral role for microglia during EV71 infection. Taken together, this Tg mouse provides a model that closely mimics natural infection for studying EV71 pathogenesis and for evaluating the efficacy of vaccines or other antiviral drugs.IMPORTANCE The availability of a murine model of EV71 infection is beneficial for the understanding of pathogenic mechanisms and the development and assessment of vaccines and antiviral drugs. However, the lack of a murine oral infection model thwarted the study of pathogenesis induced by clinically relevant EV71 strains that are transmitted via the oral-oral or oral-fecal route. Our Tg mice could be intragastrically infected with clinically relevant EV71 strains in an efficient way and developed neurological symptoms and pathological changes strikingly resembling those of human infection. Moreover, these mice showed an age-dependent change in susceptibility that is similar to the human case. This Tg mouse, when combined with the use of other genetically modified mice, potentially contributes to studying the relationship between developmental changes in immunity and susceptibility to virus.
Collapse
Affiliation(s)
- Cheng-Hung Yang
- Graduate Institute of Biomedical Science, Chang Gung University, Guishan, Taoyuan, Taiwan
| | - Chung-Tiang Liang
- Novo Nordisk Research Centre, Department of Animal Facility, Discovery Biology, Beijing, China
| | - Si-Tse Jiang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Hsing Chen
- Kidney Research Center, Chang Gung Memorial Hospital at Linkou, Guishan, Taoyuan, Taiwan
| | - Chun-Chiao Yang
- Graduate Institute of Biomedical Science, Chang Gung University, Guishan, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Graduate Institute of Biomedical Science, Chang Gung University, Guishan, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Guishan, Taoyuan, Taiwan
- Clinical Phenome Center, Chang Gung Memorial Hospital at Linkou, Guishan, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Yao Ho
- Graduate Institute of Biomedical Science, Chang Gung University, Guishan, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Guishan, Taoyuan, Taiwan
- Clinical Phenome Center, Chang Gung Memorial Hospital at Linkou, Guishan, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
15
|
Zhu J, Chen N, Zhou S, Zheng K, Sun L, Zhang Y, Cao L, Zhang X, Xiang Q, Chen Z, Wang C, Fan C, He Q. Severity of enterovirus A71 infection in a human SCARB2 knock-in mouse model is dependent on infectious strain and route. Emerg Microbes Infect 2018; 7:205. [PMID: 30518755 PMCID: PMC6281673 DOI: 10.1038/s41426-018-0201-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/10/2018] [Accepted: 10/25/2018] [Indexed: 11/30/2022]
Abstract
Enterovirus A71 (EV-A71) is a major etiological agent of human hand, foot and mouth disease, and it can cause severe neurological complications. Although several genotypes of EV-A71 strains are prevalent in different regions of the world, the genotype C4 has circulated in mainland China for more than 20 years. The pathogenicity of different EV-A71 clinical isolates varies and needs to be explored. In this study, hSCARB2 knock-in mice (N = 181) with a wide range of ages were tested for their susceptibility to two EV-A71 strains with the subgenotypes C4 and C2, and two infection routes (intracranial and venous) were compared. The clinical manifestations and pathology and their relationship to the measured viral loads in different tissues were monitored. We observed that 3 weeks is a crucial age, as mice younger than 3-week-old that were infected became extremely ill. However, mice older than 3 weeks displayed diverse clinical symptoms. Significant differences were observed in the pathogenicity of the two strains with respect to clinical signs, disease incidence, survival rate, and body weight change. We concluded that hSCARB2 knock-in mice are a sensitive model for investigating the clinical outcomes resulting from infection by different EV-A71 strains. The intracranial infection model appears to be suitable for evaluating EV-A71 neurovirulence, whereas the venous infection model is appropriate for studying the pathogenicity of EV-A71.
Collapse
Affiliation(s)
- Junping Zhu
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Ning Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Shuya Zhou
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Kai Zheng
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Lin Sun
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Yuxiao Zhang
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Lina Cao
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Xiaoyan Zhang
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Qiaoyan Xiang
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Zhiyun Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Chenfei Wang
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China.
- Department of Medical Microbiology and Immunology, University of Turku, Turku, 20520, Finland.
| |
Collapse
|
16
|
Immunocompetent and Immunodeficient Mouse Models for Enterovirus 71 Pathogenesis and Therapy. Viruses 2018; 10:v10120674. [PMID: 30487421 PMCID: PMC6316343 DOI: 10.3390/v10120674] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022] Open
Abstract
Enterovirus 71 (EV71) is a global health threat. Children infected with EV71 could develop hand-foot-and-mouth disease (HFMD), encephalitis, paralysis, pulmonary edema, and death. At present, no effective treatment for EV71 is available. We reviewed here various mouse models for EV71 pathogenesis and therapy. Earlier studies relied on the use of mouse-adapted EV71 strains. To avoid artificial mutations arising de novo during the serial passages, recent studies used EV71 clinical isolates without adaptation. Several human receptors for EV71 were shown to facilitate viral entry in cell culture. However, in vivo infection with human SCARB2 receptor transgenic mice appeared to be more limited to certain strains and genotypes of EV71. Efficacy of oral infection in these transgenic models is extremely low. Intriguingly, despite the lack of human receptors, immunodeficient neonatal mouse models can still be infected with EV71 clinical isolates via oral or intraperitoneal routes. Crossbreeding between SCARB2 transgenic and stat1 knockout mice generated a more sensitive and user-friendly hybrid mouse model. Infected hybrid mice developed a higher incidence and earlier onset of CNS disease and death. Different pathogenesis profiles were observed in models deficient in various arms of innate or humoral immunity. These models are being actively used for antiviral research.
Collapse
|
17
|
Xing J, Wang K, Wei H, Wei D. Pathologic and molecular studies of enterovirus 71 infection in a fatal case from a recent epidemic in China: A case report. Medicine (Baltimore) 2018; 97:e13447. [PMID: 30508963 PMCID: PMC6283094 DOI: 10.1097/md.0000000000013447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Enterovirus 71 (EV71) is identified as the primary cause of hand, foot, and mouth disease (HFMD) and mainly infects the young infants. Though some fatal cases have been reported, the underlying mechanisms of EV71 infection remain elusive and more further pathologic and molecular studies of EV71 infection are needed. PATIENT CONCERNS A 26-month-old girl with a history of fever and lethargy for 3 days and intermittent seizures for 2 hours associated with rash on 4 limbs was brought to a hospital. DIAGNOSES The autopsy was performed to identify the cause of death for a medical dispute. The results of histologic examination, immunohistochemistry (IHC), nested reverse transcription polymerase chain reaction (RT-PCR), and viral isolation confirmed that this patient died of EV71 infection. INTERVENTIONS The patient was transferred to neonatal intensive care unit and was intubated and mechanically ventilated. The other treatment included cardiopulmonary resuscitation and intravenous injection of adrenaline. OUTCOMES The patient presented persistent coma and intermittent seizures and suddenly developed respiratory arrest and died 16 hours after admission. LESSONS Our results suggest that EV71 might invade into the central nervous system (CNS) through peripheral nerves which control the digestive tract in the early stage of infection. In addition, we successfully isolated one EV71 strain. Phylogenetic analysis showed that the isolated strain clustered in the C4a of C4 subgenotype. This case also highlights that rapid deterioration in HFMD cases is still a challenge to physicians and they must pay special attention to the infants with HFMD symptoms, particularly in EV71 epidemic areas for early diagnosis and treatment.
Collapse
Affiliation(s)
- Jingjun Xing
- Zhejiang Key Laboratory of Pathophysiology, Department of Pathology and Pathogen Biology, Medical School of Ningbo University
| | - Ke Wang
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang Province, China
| | - Hua Wei
- Zhejiang Key Laboratory of Pathophysiology, Department of Pathology and Pathogen Biology, Medical School of Ningbo University
| | - Dengming Wei
- Zhejiang Key Laboratory of Pathophysiology, Department of Pathology and Pathogen Biology, Medical School of Ningbo University
| |
Collapse
|
18
|
Factors associated with fatal outcome of children with enterovirus A71 infection: a case series. Epidemiol Infect 2018. [DOI: 10.1017/s0950268818000468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractEnterovirus A-71 (EV-A71) may be fatal, but the natural history, symptoms, and signs are poorly understood. This study aimed to examine the natural history of fatal EV-A71 infection and to identify the symptoms and signs of early warning of deterioration. This was a clinical observational study of fatal cases of EV-A71 infection treated at five Chinese hospitals between 1 January 2010 and 31 December 2012. We recorded and analysed 91 manifestations of EV-A71 infection in order to identify early prognosis indicators. There were 54 fatal cases. Median age was 21.5 months (Q1−Q3: 12–36). The median duration from onset to death was 78.5 h (range, 6 to 432). The multilayer perceptron analysis showed that ataxia respiratory, ultrahyperpyrexia, excessive tachycardia, refractory shock, absent pharyngeal reflex, irregular respiratory rhythm, hyperventilation, deep coma, pulmonary oedema and/or haemorrhage, excessive hypertension, tachycardia, somnolence, CRT extension, fatigue or sleepiness and age were associated with death. Autopsy findings (n = 2) showed neuronal necrosis, softening, perivascular cuffing, colloid and neuronophagia phenomenon in the brainstem. The fatal cases of enterovirus A71 had neurologic involvement, even at the early stage. Direct virus invasion through the neural pathway and subsequent brainstem damage might explain the rapid progression to death.
Collapse
|
19
|
Dong ZP, Wang Q, Zhang ZJ, Carr MJ, Li D, Shi WF. Murine model of acute myocarditis and cerebral cortical neuron edema induced by coxsackievirus B4. Zool Res 2018; 39:52-57. [PMID: 29511145 PMCID: PMC5869242 DOI: 10.24272/j.issn.2095-8137.2017.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Globally, coxsackievirus B4 (CV-B4) has been continuously isolated and evidence suggests an association with the development of pancreatitis and type I diabetes. In addition, CV-B4 is also associated with myocarditis and severe central nervous system (CNS) complications, which remain poorly studied and understood. In the present study, we established an Institute for Cancer Research (ICR) mouse model of CV-B4 infection and examined whether CV-B4 infection resulted in a predisposition to myocarditis and CNS infection. We found high survival in both the treatment and control group, with no significant differences in clinical outcomes observed. However, pathological lesions were evident in both brain and heart tissue of the CV-B4-infected mice. In addition, high viral loads were found in the neural and cardiac tissues as early as 2 days post infection. Expressions of IFN-γ and IL-6 in sera were significantly higher in CV-B4-infected mice compared to uninfected negative controls, suggesting the involvement of these cytokines in the development of histopathological lesions. Our murine model successfully reproduced the acute myocarditis and cerebral cortical neuron edema induced by CV-B4, and may be useful for the evaluation of vaccine candidates and potential antivirals against CV-B4 infection.
Collapse
Affiliation(s)
- Zhao-Peng Dong
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical University, Taian Shandong 271000, China
- Shanghai Jinshan Center for Disease Control and Prevention, Shanghai 201599, China
| | - Qian Wang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical University, Taian Shandong 271000, China
- School of Public Health, Taishan Medical University, Taian Shandong 271016, China
| | - Zhen-Jie Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical University, Taian Shandong 271000, China
| | - Michael J Carr
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8589, Japan
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Dong Li
- School of Public Health, Taishan Medical University, Taian Shandong 271016, China
| | - Wei-Feng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical University, Taian Shandong 271000, China.
| |
Collapse
|
20
|
|
21
|
Fan P, Chen W, Yu P, Bao L, Xu L, Qin C. Comparative Analysis of Serum Proteins from Patients with Severe and Mild EV-A71-induced HFMD using iTRAQ-Coupled LC-MS/MS Screening. Proteomics Clin Appl 2017; 11. [DOI: 10.1002/prca.201700027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 09/01/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Peihu Fan
- Key Laboratory of Human Disease Comparative Medicine Ministry of Health; Institute of Laboratory Animal Sciences; Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center; Peking Union Medical College (PUMC); Beijing China
| | - Wei Chen
- Key Laboratory of Human Disease Comparative Medicine Ministry of Health; Institute of Laboratory Animal Sciences; Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center; Peking Union Medical College (PUMC); Beijing China
| | - Pin Yu
- Key Laboratory of Human Disease Comparative Medicine Ministry of Health; Institute of Laboratory Animal Sciences; Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center; Peking Union Medical College (PUMC); Beijing China
| | - Linlin Bao
- Key Laboratory of Human Disease Comparative Medicine Ministry of Health; Institute of Laboratory Animal Sciences; Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center; Peking Union Medical College (PUMC); Beijing China
| | - Lili Xu
- Key Laboratory of Human Disease Comparative Medicine Ministry of Health; Institute of Laboratory Animal Sciences; Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center; Peking Union Medical College (PUMC); Beijing China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine Ministry of Health; Institute of Laboratory Animal Sciences; Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center; Peking Union Medical College (PUMC); Beijing China
| |
Collapse
|
22
|
Fu Y, Zhang L, Zhang F, Tang T, Zhou Q, Feng C, Jin Y, Wu Z. Exosome-mediated miR-146a transfer suppresses type I interferon response and facilitates EV71 infection. PLoS Pathog 2017; 13:e1006611. [PMID: 28910400 PMCID: PMC5614653 DOI: 10.1371/journal.ppat.1006611] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/26/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022] Open
Abstract
Exosomes can transfer genetic materials between cells. Their roles in viral infections are beginning to be appreciated. Researches have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate recipient’s cellular response and result in productive infection of the recipient host. Here, we showed that EV71 infection resulted in upregulated exosome secretion and differential packaging of the viral genomic RNA and miR-146a into exosomes. We provided evidence showing that miR-146a was preferentially enriched in exosomes while the viral RNA was not in infected cells. Moreover, the exosomes contained replication-competent EV71 RNA in complex with miR-146a, Ago2, and GW182 and could mediate EV71 transmission independent of virus-specific receptor. The exosomal viral RNA could be transferred to and replicate in a new target cell while the exosomal miR-146a suppressed type I interferon response in the target cell, thus facilitating the viral replication. Additionally, we found that the IFN-stimulated gene factors (ISGs), BST-2/tetherin, were involved in regulating EV71-induced upregulation of exosome secretion. Importantly, in vivo study showed that exosomal viral RNA exhibited differential tissue accumulation as compared to the free virus particles. Together, our findings provide evidence that exosomes secreted by EV71-infected cells selectively packaged high level miR-146a that can be functionally transferred to and facilitate exosomal EV71 RNA to replicate in the recipient cells by suppressing type I interferon response. Exosomes are small membrane-encapsulated vesicles that secrete into the extracellular environment. Various proteins and RNA molecules have been identified in exosomes whose content reflects the physiological or pathological state of the host cells. Researches have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate recipient’s cellular responses and result in productive infection of the recipient host. Here, we showed that Enterovirus 71 (EV71), a non-enveloped, single-strand positive sense RNA virus that belongs to the family Picornaviridae and is a major etiologic agent of hand-foot and-mouth disease (HFMD), could stimulate exosome secretion and differential packaging of the viral genomic RNA and miR-146a into exosomes. The exosomal viral RNA could be transferred to and replicate in a new target cell while the exosomal miR-146a suppressed type I interferon response in the target cell, thus facilitating the viral replication. Importantly, in vivo study showed that exosomal viral RNA exhibited differential tissue accumulation as compared to the free virus particles. We postulate that the preferential packaging of miRNA-146a into exosome is a viral strategy of suppressing host innate immunity upon infection and the exosomal EV 71 RNA may play an important pathogenic role in the infection.
Collapse
Affiliation(s)
- Yuxuan Fu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Li Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Fang Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Ting Tang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Qi Zhou
- Nanjing Children's Hospital, Nanjing Medical University, Nanjing, PR China
| | - Chunhong Feng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Yu Jin
- Nanjing Children's Hospital, Nanjing Medical University, Nanjing, PR China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
- State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, PR China
- Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, PR China
- * E-mail:
| |
Collapse
|
23
|
Gu YY, Shi K, Yao S, Yang X, Liu YH, Tang L, Dang YW, Chen G, Feng ZB, Pan HB. Morphological characteristics of fatal pediatric hand, foot and mouth disease: A clinicopathological study with related receptors of EV71. Pathol Res Pract 2017; 213:1144-1151. [PMID: 28756983 DOI: 10.1016/j.prp.2017.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/01/2017] [Accepted: 07/02/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To investigate the pathological features of fatal pediatric hand foot and mouth disease (HFMD). METHODS The histopathological features of HFMD were first summarized from literature, and then confirmed by in-house autopsies. Furthermore, immunohistochemistry was conducted to detect the distribution and expression level of two enterovirus 71 (EV71) receptors scavenger receptor class B, member 2 (SCARB2), and P-selectin glycoprotein ligand-1 (PSGL1) in the samples of autopsies. RESULTS The main symptoms of HFMD included hand and foot rashes, as well as oral herpes. The fatal HFMD patients had typical histopathological change in the central nervous system, such as encephaledema and encephalitis. As for respiratory system, the fatal HFMD patients suffered acute pulmonary edema and congestion. SCARB2 positive signaling was distributed equally in bronchial and bronchiolar epithelial cells, alveolar epithelial cells and inflammatory cells of all HFMD patients, healthy children and adults without significant difference. PSGL-1 dispersed in bronchial and bronchiolar epithelial cells of healthy adults, but no PSGL-1 expression was detected in HFMD patients and healthy children. CONCLUSIONS Both of the central nervous and respiratory systems may be involved in the fatal HFMD patients. The EV71 receptor PSGL-1 might play essential parts in the pathogenesis of fatal HFMD, however, the hypothesis needs to be further investigated.
Collapse
Affiliation(s)
- Yong-Yao Gu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Ke Shi
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Sha Yao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Xia Yang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Yu-Hui Liu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Lan Tang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
| | - Hong-Bo Pan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
24
|
Protective Efficacies of Formaldehyde-Inactivated Whole-Virus Vaccine and Antivirals in a Murine Model of Coxsackievirus A10 Infection. J Virol 2017; 91:JVI.00333-17. [PMID: 28424287 DOI: 10.1128/jvi.00333-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/13/2017] [Indexed: 01/20/2023] Open
Abstract
Coxsackievirus A10 (CVA10) is one of the major pathogens associated with hand, foot, and mouth disease (HFMD). CVA10 infection can cause herpangina and viral pneumonia, which can be complicated by severe neurological sequelae. The morbidity and mortality of CVA10-associated HFMD have been increasing in recent years, particularly in the pan-Pacific region. There are limited studies, however, on the pathogenesis and immunology of CVA10-associated HFMD infections, and few antiviral drugs or vaccines have been reported. In the present study, a cell-adapted CVA10 strain was employed to inoculate intramuscularly 5-day-old ICR mice, which developed significant clinical signs, including reduced mobility, lower weight gain, and quadriplegia, with significant pathology in the brain, hind limb skeletal muscles, and lungs of infected mice in the moribund state. The severity of illness was associated with abnormally high expression of the proinflammatory cytokine interleukin 6 (IL-6). Antiviral assays demonstrated that ribavirin and gamma interferon administration could significantly inhibit CVA10 replication both in vitro and in vivo In addition, formaldehyde-inactivated CVA10 whole-virus vaccines induced immune responses in adult mice, and maternal neutralizing antibodies could be transmitted to neonatal mice, providing protection against CVA10 clinical strains. Furthermore, high-titer antisera were effective against CVA10 and could relieve early clinical symptoms and improve the survival rates of CVA10-challenged neonatal mice. In summary, we present a novel murine model to study CVA10 pathology that will be extremely useful in developing effective antivirals and vaccines to diminish the burden of HFMD-associated disease.IMPORTANCE Hand, foot, and mouth disease cases in infancy, arising from coxsackievirus A10 (CVA10) infections, are typically benign, resolving without any significant adverse events. Severe disease and fatalities, however, can occur in some children, necessitating the development of vaccines and antiviral therapies. The present study has established a newborn-mouse model of CVA10 that, importantly, recapitulates many aspects of human disease with respect to the neuropathology and skeletal muscle pathology. We found that high levels of the proinflammatory cytokine interleukin 6 correlated with disease severity and that ribavirin and gamma interferon could decrease viral titers in vitro and in vivo Whole-virus vaccines produced immune responses in adult mice, and immunized mothers conferred protection on neonates against challenge from CVA10 clinical strains. Passive immunization with high-titer antisera could also improve survival rates in newborn animals.
Collapse
|
25
|
Yang X, Xie J, Jia L, Liu N, Liang Y, Wu F, Liang B, Li Y, Wang J, Sheng C, Li H, Liu H, Ma Q, Yang C, Du X, Qiu S, Song H. Analysis of miRNAs Involved in Mouse Brain Damage upon Enterovirus 71 Infection. Front Cell Infect Microbiol 2017; 7:133. [PMID: 28469998 PMCID: PMC5395563 DOI: 10.3389/fcimb.2017.00133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/31/2017] [Indexed: 12/02/2022] Open
Abstract
Enterovirus 71 (EV71) infects the central nervous system (CNS) and causes brainstem encephalitis in children. MiRNAs have been found to play various functions in EV71 infection in human cell lines. To identify potential miRNAs involved in the inflammatory injury in CNS, our study, for the first time, performed a miRNA microarray assay in vivo using EV71 infected mice brains. Twenty differentially expressed miRNAs were identified (four up- and 16 down-regulated) and confirmed by qRT-PCR. The target genes of these miRNAs were analyzed using KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, revealing that the miRNAs were mainly involved in the regulation of inflammation and neural system function. MiR-150-5p, -3082-5p, -3473a, -468-3p, -669n, -721, -709, and -5107-5p that regulate MAPK and chemokine signaling were all down-regulated, which might result in increased cytokine production. In addition, miR-3473a could also regulate focal adhesion and leukocyte trans-endothelial migration, suggesting a role in virus-induced blood-brain barrier disruption. The miRNAs and pathways identified in this study could help to understand the intricate interactions between EV71 and the brain injury, offering new insight for the future research of the molecular mechanism of EV71 induced brainstem encephalitis.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Jing Xie
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Leili Jia
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Nan Liu
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Yuan Liang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Fuli Wu
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Beibei Liang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Yongrui Li
- The Key Laboratory of Pharmacology and Molecular Biology, Medical College, Henan University of Science and TechnologyLuoyang, China
| | - Jinyan Wang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Chunyu Sheng
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Hao Li
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Hongbo Liu
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Qiuxia Ma
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Chaojie Yang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Xinying Du
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Shaofu Qiu
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Hongbin Song
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| |
Collapse
|
26
|
A Neonatal Murine Model of Coxsackievirus A6 Infection for Evaluation of Antiviral and Vaccine Efficacy. J Virol 2017; 91:JVI.02450-16. [PMID: 28250116 DOI: 10.1128/jvi.02450-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/21/2017] [Indexed: 12/22/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a global health concern. Family Picornaviridae members, particularly enterovirus A71 (EVA71) and coxsackievirus A16 (CVA16), are the primary etiological agents of HFMD; however, a third enterovirus A species, CVA6, has been recently associated with epidemic outbreaks. Study of the pathogenesis of CVA6 infection and development of antivirals and vaccines are hindered by a lack of appropriate animal models. We have developed and characterized a murine model of CVA6 infection that was employed to evaluate the antiviral activities of different drugs and the protective efficacies of CVA6-inactivated vaccines. Neonatal mice were susceptible to CVA6 infection via intramuscular inoculation, and the susceptibility of mice to CVA6 infection was age and dose dependent. Five-day-old mice infected with 105.5 50% tissue culture infective doses of the CVA6 WF057R strain consistently exhibited clinical signs, including reduced mobility, lower weight gain, and quadriplegia with significant pathology in the brain, hind limb skeletal muscles, and lungs of the infected mice in the moribund state. Immunohistochemical analysis and quantitative reverse transcription-PCR (qRT-PCR) analyses showed high viral loads (11 log10/mg) in skeletal muscle, and elevated levels of interleukin-6 (IL-6; >2,000 pg/ml) were associated with severe viral pneumonia and encephalitis. Ribavirin and gamma interferon administered prophylactically diminished CVA6-associated pathology in vivo, and treatment with IL-6 accelerated the death of neonatal mice. Both specific anti-CVA6 serum and maternal antibody play important roles in controlling CVA6 infection and viral replication. Collectively, these findings indicate that this neonatal murine model will be invaluable in future studies to develop CVA6-specific antivirals and vaccines.IMPORTANCE Although coxsackievirus A6 (CVA6) infections are commonly mild and self-limiting, a small proportion of children may have serious complications, such as encephalitis, acute flaccid paralysis, and neurorespiratory syndrome, leading to fatalities. We have established a mouse model of CVA6 infection by inoculation of neonatal mice with a CVA6 clinical isolate that produced consistent pathological outcomes. Here, using this model of CVA6 infection, we found that high levels of IL-6 were associated with severe viral pneumonia and encephalitis, as in an evaluation of antiviral efficacy in vivo, IL-6 had no protective effect and instead accelerated death in neonatal mice. We demonstrated that, as antiviral drugs, both gamma interferon and ribavirin played important protective roles in the early stages of infection, with increased survival in treated neonatal mice challenged with CVA6. Moreover, active and passive immunization with the inactivated vaccines and anti-CVA6 serum also protected mice against homologous challenge infections.
Collapse
|
27
|
Yang SD, Li PQ, Li YM, Li W, Lai WY, Zhu CP, Tao JP, Deng L, Liu HS, Ma WC, Lu JM, Hong Y, Liang YT, Shen J, Hu DD, Gao YY, Zhou Y, Situ MX, Chen YL. Clinical manifestations of severe enterovirus 71 infection and early assessment in a Southern China population. BMC Infect Dis 2017; 17:153. [PMID: 28212620 PMCID: PMC5316173 DOI: 10.1186/s12879-017-2228-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/27/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV-A71) shows a potential of rapid death, but the natural history of the infection is poorly known. This study aimed to examine the natural history of EV-A71 infection. METHODS This was a prospective longitudinal observational study performed between January 1st and October 31st, 2012, at three hospitals in Guangdong, China. Subjects with positive EV-A71 RNA laboratory test results were included. Disease progression was documented with MRI, autopsies, and follow-up. Symptoms/signs with potential association with risk of death were analyzed. RESULTS Among the 288 patients, neurologic symptoms and signs were observed (emotional movement disorders, dyskinesia, involuntary movements, autonomic dysfunction, and disturbance of consciousness). Some of them occurred as initial symptoms. Myoclonic jerks/tremors were observed among >50% of the patients; nearly 40% of patients presented fatigue and 25% were with vomiting. Twenty-eight patients (9.7%) presented poor peripheral perfusion within 53.4 ± 26.1 h; 23 patients (8.0%) presented pulmonary edema and/or hemorrhage within 62.9 ± 28.6 h. Seventeen (5.9%) patients were in a coma. Seven (2.4%) patients died within 62.9 ± 28.6 h. Seventy-seven survivors underwent head and spinal cord MRI and 37.7% (29/77) showed abnormalities. Two fatal cases showed neuronal necrosis, softening, perivascular cuffing, colloid, and neuronophagia phenomenon in the brainstem. CONCLUSIONS Patients with EV-A71 infection showed high complexity of symptoms and onset timing. Death risk may be indicated by autokinetic eyeball, eyeball ataxia, severe coma, respiratory rhythm abnormality, absent pharyngeal reflex, ultrahyperpyrexia, excessive tachycardia, pulmonary edema and/or hemorrhage, and refractory shock and ataxic respiration. Early assessment of these symptoms/signs is important for proper management.
Collapse
Affiliation(s)
- Si-da Yang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Pei-Qing Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yi-Min Li
- Respiratory Research Institute, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Wei Li
- Dongguan Taiping People's Hospital, Dongguan, 523905, China
| | - Wen-Ying Lai
- Zhongshan People's Hospital, Zhongshan, 528403, China
| | - Cui-Ping Zhu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jian-Ping Tao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Li Deng
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Hong-Sheng Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wen-Cheng Ma
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jia-Ming Lu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yan Hong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yu-Ting Liang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jun Shen
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Dan-Dan Hu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yuan-Yuan Gao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yi Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Min-Xiong Situ
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yan-Ling Chen
- Dongguan Taiping People's Hospital, Dongguan, 523905, China
| |
Collapse
|
28
|
Feng M, Guo S, Fan S, Zeng X, Zhang Y, Liao Y, Wang J, Zhao T, Wang L, Che Y, Wang J, Ma N, Liu L, Yue L, Li Q. The Preferential Infection of Astrocytes by Enterovirus 71 Plays a Key Role in the Viral Neurogenic Pathogenesis. Front Cell Infect Microbiol 2016; 6:192. [PMID: 28066727 PMCID: PMC5174126 DOI: 10.3389/fcimb.2016.00192] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023] Open
Abstract
The pathological manifestations of fatal cases of human hand, foot, and mouth disease (HFMD) caused by enterovirus 71 (EV71) are characterized by inflammatory damage to the central nervous system (CNS). Here, the dynamic distribution of EV71 in the CNS and the subsequent pathological characteristics within different regions of neonatal rhesus macaque brain tissue were studied using a chimeric EV71 expressing green fluorescence protein. The results were compared with brain tissue obtained from the autopsies of deceased EV71-infected HFMD patients. These observations suggested that the virus was prevalent in areas around the blood vessels and nerve nuclei in the brain stem and showed a preference for astrocytes in the CNS. Interestingly, infected astrocytes within the in vivo and in vitro human and macaque systems exhibited increased expression of excitatory neurotransmitters and cytokines that also stimulated the neuronal secretion of the excitatory neurotransmitters noradrenalin and adrenalin, and this process most likely plays a role in the pathophysiological events that occur during EV71 infection.
Collapse
Affiliation(s)
- Min Feng
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Sujie Guo
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Shengtao Fan
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Xiaofeng Zeng
- School of Forensic Medicine, Kunming Medical University Kunming, China
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Yun Liao
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Jianbin Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Ting Zhao
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Lichun Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Yanchun Che
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Jingjing Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Na Ma
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Longding Liu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Lei Yue
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| |
Collapse
|
29
|
Huang HI, Chang YY, Lin JY, Kuo RL, Liu HP, Shih SR, Wu CC. Interactome analysis of the EV71 5' untranslated region in differentiated neuronal cells SH-SY5Y and regulatory role of FBP3 in viral replication. Proteomics 2016; 16:2351-62. [PMID: 27291656 DOI: 10.1002/pmic.201600098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/13/2016] [Accepted: 06/08/2016] [Indexed: 01/07/2023]
Abstract
Enterovirus 71 (EV71), a single-stranded RNA virus, is one of the most serious neurotropic pathogens in the Asia-Pacific region. Through interactions with host proteins, the 5' untranslated region (5'UTR) of EV71 is important for viral replication. To gain a protein profile that interact with the EV71 5'UTR in neuronal cells, we performed a biotinylated RNA-protein pull-down assay in conjunction with LC-MS/MS analysis. A total of 109 proteins were detected and subjected to Database for Annotation, Visualization and Integrated Discovery (DAVID) analyses. These proteins were found to be highly correlated with biological processes including RNA processing/splicing, epidermal cell differentiation, and protein folding. A protein-protein interaction network was constructed using the STRING online database to illustrate the interactions of those proteins that are mainly involved in RNA processing/splicing or protein folding. Moreover, we confirmed that the far-upstream element binding protein 3 (FBP3) was able to bind to the EV71 5'UTR. The redistribution of FBP3 in subcellular compartments was observed after EV71 infection, and the decreased expression of FBP3 in host neuronal cells markedly inhibited viral replication. Our results reveal various host proteins that potentially interact with the EV71 5'UTR in neuronal cells, and we found that FBP3 could serve as a positive regulator in host cells.
Collapse
Affiliation(s)
- Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ying-Ying Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Jhao-Yin Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Rei-Lin Kuo
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Clinical Virology Lab, Department of Medical Technology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan. .,Molecular Medicine Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan. .,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
30
|
Xing J, Liu D, Shen S, Su Z, Zhang L, Duan Y, Tong F, Liang Y, Wang H, Deng F, Hu Z, Zhou Y. Pathologic Studies of Fatal Encephalomyelitis in Children Caused by Enterovirus 71. Am J Clin Pathol 2016; 146:95-106. [PMID: 27357294 DOI: 10.1093/ajcp/aqw089] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Enterovirus 71 (EV71) is the major pathogen of hand, foot, and mouth disease and can cause death; however, its pathogenesis remains elusive. METHODS We performed a detailed systematic histopathologic examination and molecular studies on six autopsy cases of EV71 infection using H&E, immunohistochemistry, double immunofluorescence staining, and nested reverse transcription polymerase chain reaction. RESULTS Characteristic features of acute encephalomyelitis were observed. Viral antigens were mainly detected in neuronal cytoplasm and processes in the different brainstem nuclei and spinal cord, including the anterior and posterior horn cells. Viral antigens were also positive in the nerve roots of spinal cord and autonomic ganglia of intestines. CONCLUSIONS Our study revealed direct pathologic evidence supporting viral entry into the central nervous system (CNS) through peripheral nerves. In addition to the major motor pathway, EV71 can also enter the CNS via peripheral sensory and autonomic pathways in retrograde axonal transport.
Collapse
Affiliation(s)
- Jingjun Xing
- From the Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Liu
- Department of Pathology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhengyuan Su
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Lin Zhang
- From the Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijie Duan
- From the Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Tong
- From the Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Liang
- From the Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yiwu Zhou
- From the Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Xie GC, Guo NJ, Grénman R, Wang H, Wang Y, Vuorenmma M, Zhang Q, Zhang S, Li HY, Pang LL, Li DD, Jin M, Sun XM, Kong XY, Duan ZJ. Susceptibility of human tonsillar epithelial cells to enterovirus 71 with normal cytokine response. Virology 2016; 494:108-18. [PMID: 27107253 DOI: 10.1016/j.virol.2016.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 11/23/2022]
Abstract
A recent histopathologic study implicated human tonsillar crypt epithelium as an important site for EV71 replication in EV71-caused fatal cases. This study aimed to confirm the susceptibility of human tonsillar epithelium to EV71. Two human tonsillar epithelial cell lines (UT-SCC-60A and UT-SCC-60B) were susceptive to EV71, and PI3K/AKT, p38, ERK1/2, and JNK1/2 signal pathways were activated. Interferon-α, IL-8, IL-1β, IL-6 and IL-12p40 were induced and regulated by PI3K/AKT, p38, ERK1/2, and JNK1/2 signal pathways. PI3K/AKT pathway activation appeared to suppress the induction of TNF-α, which induced cell survival by inhibiting GSK-3β. The activation of NF-κB was observed but inhibited by these pathways in EV71 infection. Furthermore, ERK1/2 and JNK1/2 were essential for efficient EV71 replication. Human tonsillar epithelial cells support EV71 replication and display innate antiviral immunity in vitro, indicating that human tonsillar epithelial cells may be novel targets for EV71 infection and replication in vivo.
Collapse
Affiliation(s)
- Guang-Cheng Xie
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ni-Jun Guo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Hunan Provincial People's Hospital, the First affiliated Hospital of Hunan Normal University, Changsha, China
| | - Reidar Grénman
- Department of Otorhinolaryngology-Head and Neck Surgery, Turku University and Turku University Hospital, Turku, Finland
| | - Hong Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Minna Vuorenmma
- Department of Otorhinolaryngology-Head and Neck Surgery, Turku University and Turku University Hospital, Turku, Finland
| | - Qing Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuang Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui-Ying Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li-Li Pang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dan-Di Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Miao Jin
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao-Man Sun
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiang-Yu Kong
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhao-Jun Duan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
32
|
A clinically authentic mouse model of enterovirus 71 (EV-A71)-induced neurogenic pulmonary oedema. Sci Rep 2016; 6:28876. [PMID: 27357918 PMCID: PMC4928123 DOI: 10.1038/srep28876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/09/2016] [Indexed: 12/18/2022] Open
Abstract
Enterovirus 71 (EV-A71) is a neurotropic virus that sporadically causes fatal neurologic illness among infected children. Animal models of EV-A71 infection exist, but they do not recapitulate in animals the spectrum of disease and pathology observed in fatal human cases. Specifically, neurogenic pulmonary oedema (NPE)—the main cause of EV-A71 infection-related mortality—is not observed in any of these models. This limits their utility in understanding viral pathogenesis of neurologic infections. We report the development of a mouse model of EV-A71 infection displaying NPE in severely affected animals. We inoculated one-week-old BALB/c mice with an adapted EV-A71 strain and identified clinical signs consistent with observations in human cases and other animal models. We also observed respiratory distress in some mice. At necropsy, we found their lungs to be heavier and incompletely collapsed compared to other mice. Serum levels of catecholamines and histopathology of lung and brain tissues of these mice strongly indicated onset of NPE. The localization of virally-induced brain lesions also suggested a potential pathogenic mechanism for EV-A71-induced NPE. This novel mouse model of virally-induced NPE represents a valuable resource for studying viral mechanisms of neuro-pathogenesis and pre-clinical testing of potential therapeutics and prophylactics against EV-A71-related neurologic complications.
Collapse
|
33
|
Wang Z, Nicholls JM, Liu F, Wang J, Feng Z, Liu D, Sun Y, Zhou C, Li Y, Li H, Qi S, Huang X, Sui J, Liao Q, Peiris M, Yu H, Wang Y. Pulmonary and central nervous system pathology in fatal cases of hand foot and mouth disease caused by enterovirus A71 infection. Pathology 2016; 48:267-74. [PMID: 27020504 DOI: 10.1016/j.pathol.2015.12.450] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/28/2015] [Accepted: 12/21/2015] [Indexed: 11/28/2022]
Abstract
In the past 17 years, neurological disease associated with enterovirus A71 (EV-A71) has increased dramatically in the Asia-Pacific region with a high fatality rate in young infants, often due to pulmonary oedema, however the mechanism of this oedema remains obscure. We analysed the brainstem, heart and lungs of 15 fatal cases of confirmed EV-A71 infection in order to understand the pathophysiological mechanism of death and pulmonary oedema. In keeping with other case studies, the main cause of death was neurogenic pulmonary oedema. In the brainstem, 11 cases showed inflammation and all cases showed parenchymal inflammation with seven cases showing moderate or severe clasmatodendrosis. No viral antigen was detected in sections of the brainstem in any of the cases. All fatal cases showed evidence of pulmonary oedema; however, there was absence of direct pulmonary viral damage or myocarditis-induced damage and EV-A71 viral antigen staining was negative. Though there was no increase in staining for Na/K-ATPase, 11 of the 15 cases showed a marked reduction in aquaporin-4 staining in the lung, and this reduction may contribute to the development of fatal pulmonary oedema.
Collapse
Affiliation(s)
- Zijun Wang
- Division of Laboratory Management, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - John M Nicholls
- Department of Pathology, Hong Kong University, Hong Kong Special Administrative Region, China
| | - Fengfeng Liu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Joshua Wang
- Department of Pathology, Hong Kong University, Hong Kong Special Administrative Region, China
| | - Zijian Feng
- Office of the Director, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Dongge Liu
- Pathology Department, Beijing Hospital, Beijing, China
| | - Yanni Sun
- Pathology Department, Beijing Capital Medical University Affiliated Xuanwu Hospital, Beijing, China
| | - Cheng Zhou
- Beijing IPE Center for Clinical Laboratory, Beijing, China
| | - Yunqian Li
- Pathology Department, Affiliated Hospital of Guilin Medical University, China
| | - Hai Li
- Institution for Infectious Disease Control and Prevention, Guangxi Provincial Centre for Disease Control and Prevention, Nanning, Guangxi, China
| | - Shunxiang Qi
- Institution for Infectious Disease Control and Prevention, Hebei Provincial Centre for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Xueyong Huang
- Institution for Infectious Disease Control and Prevention, Henan Provincial Centre for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Jilin Sui
- Division of Infectious Disease Control and Prevention, Changping District Centre for Disease Control and Prevention, Beijing, China
| | - Qiaohong Liao
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hongjie Yu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Yu Wang
- Office of the Director, Chinese Centre for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
34
|
Phyu WK, Ong KC, Wong KT. A Consistent Orally-Infected Hamster Model for Enterovirus A71 Encephalomyelitis Demonstrates Squamous Lesions in the Paws, Skin and Oral Cavity Reminiscent of Hand-Foot-and-Mouth Disease. PLoS One 2016; 11:e0147463. [PMID: 26815859 PMCID: PMC4729525 DOI: 10.1371/journal.pone.0147463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/31/2015] [Indexed: 11/26/2022] Open
Abstract
Enterovirus A71 (EV-A71) causes self-limiting, hand-foot-and-mouth disease (HFMD) that may rarely be complicated by encephalomyelitis. Person-to-person transmission is usually by fecal-oral or oral-oral routes. To study viral replication sites in the oral cavity and other tissues, and to gain further insights into virus shedding and neuropathogenesis, we developed a consistent, orally-infected, 2-week-old hamster model of HFMD and EV-A71 encephalomyelitis. Tissues from orally-infected, 2-week-old hamsters were studied by light microscopy, immunohistochemistry and in situ hybridization to detect viral antigens and RNA, respectively, and by virus titration. Hamsters developed the disease and died after 4–8 days post infection; LD50 was 25 CCID50. Macroscopic cutaneous lesions around the oral cavity and paws were observed. Squamous epithelium in the lip, oral cavity, paw, skin, and esophagus, showed multiple small inflammatory foci around squamous cells that demonstrated viral antigens/RNA. Neurons (brainstem, spinal cord, sensory ganglia), acinar cells (salivary gland, lacrimal gland), lymphoid cells (lymph node, spleen), and muscle fibres (skeletal, cardiac and smooth muscles), liver and gastric epithelium also showed varying amounts of viral antigens/RNA. Intestinal epithelium, Peyer’s patches, thymus, pancreas, lung and kidney were negative. Virus was isolated from oral washes, feces, brain, spinal cord, skeletal muscle, serum, and other tissues. Our animal model should be useful to study squamous epitheliotropism, neuropathogenesis, oral/fecal shedding in EV-A71 infection, person-to-person transmission, and to test anti-viral drugs and vaccines.
Collapse
Affiliation(s)
- Win Kyaw Phyu
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
35
|
Jiang L, Fan R, Sun S, Fan P, Su W, Zhou Y, Gao F, Xu F, Kong W, Jiang C. A new EV71 VP3 epitope in norovirus P particle vector displays neutralizing activity and protection in vivo in mice. Vaccine 2015; 33:6596-603. [PMID: 26529072 DOI: 10.1016/j.vaccine.2015.10.104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/13/2015] [Accepted: 10/24/2015] [Indexed: 12/16/2022]
Abstract
Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16), as the main agents causing hand, foot and mouth disease (HFMD), have become a serious public health concern in the Asia-Pacific region. Recently, various neutralizing B cell epitopes of EV71 were identified as targets for promising vaccine candidates. Structural studies of Picornaviridae indicated that potent immunodominant epitopes typically lie in the hypervariable loop of capsid surfaces. However, cross-neutralizing antibodies and cross-protection between EV71 and CVA16 have not been observed. Therefore, we speculated that divergent sequences of the two viruses are key epitopes for inducing protective neutralizing responses. In this study, we selected 10 divergent epitope candidates based on alignment of the EV71 and CVA16 P1 amino acid sequences using the Multalin interface page, and these epitopes are conserved among all subgenotypes of EV71. Simultaneously, by utilizing the norovirus P particle as a novel vaccine delivery carrier, we identified the 71-6 epitope (amino acid 176-190 of VP3) as a conformational neutralizing epitope against EV71 in an in vitro micro-neutralization assay as well as an in vivo protection assay in mice. Altogether, these results indicated that the incorporation of the 71-6 epitope into the norovirus P domain can provide a promising candidate for an effective synthetic peptide-based vaccine against EV71.
Collapse
Affiliation(s)
- Liping Jiang
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China
| | - Rongjun Fan
- Harbin Center for Disease Control and Prevention, Harbin 150056, PR China
| | - Shiyang Sun
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China
| | - Peihu Fan
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China
| | - Weiheng Su
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, PR China
| | - Yan Zhou
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China
| | - Feng Gao
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China
| | - Fei Xu
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China
| | - Wei Kong
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China
| | - Chunlai Jiang
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China.
| |
Collapse
|
36
|
Schein CH, Ye M, Paul AV, Oberste MS, Chapman N, van der Heden van Noort GJ, Filippov DV, Choi KH. Sequence specificity for uridylylation of the viral peptide linked to the genome (VPg) of enteroviruses. Virology 2015; 484:80-85. [PMID: 26074065 PMCID: PMC4567471 DOI: 10.1016/j.virol.2015.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/17/2015] [Accepted: 05/22/2015] [Indexed: 12/16/2022]
Abstract
Enteroviruses (EV) uridylylate a peptide, VPg, as the first step in their replication. VPgpUpU, found free in infected cells, serves as the primer for RNA elongation. The abilities of four polymerases (3D(pol)), from EV-species A-C, to uridylylate VPgs that varied by up to 60% of their residues were compared. Each 3D(pol) was able to uridylylate all five VPgs using polyA RNA as template, while showing specificity for its own genome encoded peptide. All 3D(pol) uridylylated a consensus VPg representing the physical chemical properties of 31 different VPgs. Thus the residues required for uridylylation and the enzymatic mechanism must be similar in diverse EV. As VPg-binding sites differ in co-crystal structures, the reaction is probably done by a second 3D(pol) molecule. The conservation of polymerase residues whose mutation reduces uridylylation but not RNA elongation is compared.
Collapse
Affiliation(s)
- Catherine H Schein
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Alachua, FL 32616, United States.
| | - Mengyi Ye
- Dept. Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Aniko V Paul
- Dept. Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States
| | - M Steven Oberste
- Division of Viral Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS G-17, Atlanta, GA 30333, United States
| | - Nora Chapman
- Dept. Pathology and Microbiology, University of Nebraska Medical Center, NE 68198, United States
| | | | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Kyung H Choi
- Dept. Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
37
|
Chang CY, Li JR, Ou YC, Chen WY, Liao SL, Raung SL, Hsiao AL, Chen CJ. Enterovirus 71 infection caused neuronal cell death and cytokine expression in cultured rat neural cells. IUBMB Life 2015; 67:789-800. [PMID: 26399559 DOI: 10.1002/iub.1434] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/08/2015] [Indexed: 11/10/2022]
Abstract
Fatal enterovirus type-71 (EV71) cases are associated with central nervous system infection characterized by inflammatory cell infiltration and activation, cytokine overproduction, and neuronal cell death. Although EV71 antigen has been detected in neurons and glia, the molecular mechanisms underlying EV71-associated neuroinflammation and neuronal cell death are not fully understood. Using cultured rodent neural cell models, we found that EV71 infection preferentially caused cell death in neurons but not brain-resident immune cells astrocytes and microglia. Neurons, astrocytes, and microglia responded to EV71 infection by releasing distinct profiles of cytokines, including nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, regulated on activation normal T cell expressed and secreted (RANTES), and glutamate. EV71 infection-induced neuronal cell death correlated well with the elevated production of NO, TNF-α, IL-1β, and glutamate as well as activation of microglia. Exogenous addition studies further demonstrated the neurotoxic potential of NO, TNF-α, IL-1β, and glutamate. EV71 infection-induced cytokine expression was accompanied by activation of protein tyrosine phosphorylation, mitogen-activated protein kinases (MAPKs), and NF-κB. Intriguingly, EV71 susceptibility was accompanied by infection-elevated neuronal human scavenger receptor class B member 2 expression in cultured neural cells with age-dependent manner. Biochemical and pharmacological studies revealed that after EV71 infection, microglia and accompanied cytokines play an active role in triggering bystander damage to neurons involving the tyrosine kinase/MAPKs/NF-κB signaling cascade. These data suggest that bystander damage caused by activated glia particularly the microglia could be an alternative mechanism of EV71-associated neuronal cell death. However, its clinical importance and implication require further investigation.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng-Yuan Hospital, Taichung, Taiwan
- Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yen-Chuan Ou
- Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shue-Ling Raung
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - An-Lu Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
38
|
Ong KC, Wong KT. Understanding Enterovirus 71 Neuropathogenesis and Its Impact on Other Neurotropic Enteroviruses. Brain Pathol 2015; 25:614-24. [PMID: 26276025 PMCID: PMC8029433 DOI: 10.1111/bpa.12279] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 01/27/2023] Open
Abstract
Enterovirus A71 (EV-A71) belongs to the species group A in the Enterovirus genus within the Picornaviridae family. EV-A71 usually causes self-limiting hand, foot and mouth disease or herpangina but rarely causes severe neurological complications such as acute flaccid paralysis and encephalomyelitis. The pathology and neuropathogenesis of these neurological syndromes is beginning to be understood. EV-A71 neurotropism for motor neurons in the spinal cord and brainstem, and other neurons, is mainly responsible for central nervous system damage. This review on the general aspects, recent developments and advances of EV-A71 infection will focus on neuropathogenesis and its implications on other neurotropic enteroviruses, such as poliovirus and the newly emergent Enterovirus D68. With the imminent eradication of poliovirus, EV-A71 is likely to replace it as an important neurotropic enterovirus of worldwide importance.
Collapse
Affiliation(s)
- Kien Chai Ong
- Department of Biomedical ScienceFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Kum Thong Wong
- Department of PathologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| |
Collapse
|
39
|
Wen X, Cheng A, Wang M, Jia R, Zhu D, Chen S, Liu M, Sun K, Yang Q, Wu Y, Chen X. Recent advances from studies on the role of structural proteins in enterovirus infection. Future Microbiol 2015; 10:1529-42. [DOI: 10.2217/fmb.15.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Enteroviruses are a large group of small nonenveloped viruses that cause common and debilitating illnesses affecting humans and animals worldwide. The capsid composed by viral structural proteins packs the RNA genome. It is becoming apparent that structural proteins of enteroviruses play versatile roles in the virus–host interaction in the viral life cycle, more than just a shell. Furthermore, structural proteins to some extent may be associated with viral virulence and pathogenesis. Better understanding the roles of structural proteins in enterovirus infection may lead to the development of potential antiviral strategies. Here, we discuss recent advances from studies on the role of structural proteins in enterovirus infection and antiviral therapeutics targeted structural proteins.
Collapse
Affiliation(s)
- Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Engineering & Technology Center for Laboratory Animals of Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| |
Collapse
|
40
|
Muehlenbachs A, Bhatnagar J, Zaki SR. Tissue tropism, pathology and pathogenesis of enterovirus infection. J Pathol 2015; 235:217-28. [PMID: 25211036 DOI: 10.1002/path.4438] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 02/04/2023]
Abstract
Enteroviruses are very common and cause infections with a diverse array of clinical features. Enteroviruses are most frequently considered by practising pathologists in cases of aseptic meningitis, encephalitis, myocarditis and disseminated infections in neonates and infants. Congenital infections have been reported and transplacental transmission is thought to occur. Although skin biopsies during hand, foot and mouth disease are infrequently obtained, characteristic dermatopathological findings can be seen. Enteroviruses have been implicated in lower respiratory tract infections. This review highlights histopathological features of enterovirus infection and discusses diagnostic modalities for formalin-fixed paraffin-embedded tissues and their associated pitfalls. Immunohistochemistry can detect enterovirus antigen within cells of affected tissues; however, assays can be non-specific and detect other viruses. Molecular methods are increasingly relied upon but, due to the high frequency of asymptomatic enteroviral infections, clinical-pathological correlation is needed to determine significance. Of note, diagnostic assays on central nervous system or cardiac tissues from immunocompetent patients with prolonged disease courses are most often negative. Histopathological, immunohistochemical and molecular studies performed on clinical specimens also provide insight into enteroviral tissue tropism and pathogenesis.
Collapse
Affiliation(s)
- Atis Muehlenbachs
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
41
|
Distribution of enterovirus 71 RNA in inflammatory cells infiltrating different tissues in fatal cases of hand, foot, and mouth disease. Arch Virol 2014; 160:81-90. [DOI: 10.1007/s00705-014-2233-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
|