1
|
Reynolds K, Zhang S, Sun B, Garland M, Ji Y, Zhou CJ. Genetics and signaling mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1588-1634. [PMID: 32666711 PMCID: PMC7883771 DOI: 10.1002/bdr2.1754] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Craniofacial development involves several complex tissue movements including several fusion processes to form the frontonasal and maxillary structures, including the upper lip and palate. Each of these movements are controlled by many different factors that are tightly regulated by several integral morphogenetic signaling pathways. Subject to both genetic and environmental influences, interruption at nearly any stage can disrupt lip, nasal, or palate fusion and result in a cleft. Here, we discuss many of the genetic risk factors that may contribute to the presentation of orofacial clefts in patients, and several of the key signaling pathways and underlying cellular mechanisms that control lip and palate formation, as identified primarily through investigating equivalent processes in animal models, are examined.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
2
|
Ohshima H, Amizuka N. Oral biosciences: The annual review 2019. J Oral Biosci 2020; 62:1-8. [PMID: 32109566 DOI: 10.1016/j.job.2020.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Journal of Oral Biosciences is devoted to the advancement and dissemination of fundamental knowledge concerning every aspect of oral biosciences. HIGHLIGHT This review features review articles in the fields of "Bone Cell Biology," "Microbiology," "Oral Heath," "Biocompatible Materials," "Mouth Neoplasm," and "Biological Evolution" in addition to the review articles by winners of the Lion Dental Research Award ("Role of nicotinic acetylcholine receptors for modulation of microcircuits in the agranular insular cortex" and "Phospholipase C-related catalytically inactive protein: A novel signaling molecule for modulating fat metabolism and energy expenditure") and the Rising Members Award ("Pain mechanism of oral ulcerative mucositis and the therapeutic traditional herbal medicine hangeshashinto," "Mechanisms underlying the induction of regulatory T cells by sublingual immunotherapy," and "Regulation of osteoclast function via Rho-Pkn3-c-Src pathways"), presented by the Japanese Association for Oral Biology. CONCLUSION These reviews in the Journal of Oral Biosciences have inspired the readers of the journal to broaden their knowledge regarding various aspects of oral biosciences. The current editorial review introduces these exciting review articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Science, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 Kita-ku, Sapporo 060-8586, Japan
| |
Collapse
|
3
|
Finding the Unicorn, a New Mouse Model of Midfacial Clefting. Genes (Basel) 2020; 11:genes11010083. [PMID: 31940751 PMCID: PMC7016607 DOI: 10.3390/genes11010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 11/17/2022] Open
Abstract
Human midfacial clefting is a rare subset of orofacial clefting and in severe cases, the cleft separates the nostrils splitting the nose into two independent structures. To begin to understand the morphological and genetic causes of midfacial clefting we recovered the Unicorn mouse line. Unicorn embryos develop a complete midfacial cleft through the lip, and snout closely modelling human midfacial clefting. The Unicorn mouse line has ethylnitrosourea (ENU)-induced missense mutations in Raldh2 and Leo1. The mutations segregate with the cleft face phenotype. Importantly, the nasal cartilages and surrounding bones are patterned and develop normal morphology, except for the lateral displacement because of the cleft. We conclude that the midfacial cleft arises from the failure of the medial convergence of the paired medial nasal prominences between E10.5 to E11.5 rather than defective cell proliferation and death. Our work uncovers a novel mouse model and mechanism for the etiology of midfacial clefting.
Collapse
|
4
|
Wu Z, Jung HS. How the diversity of the faces arises. J Oral Biosci 2019; 61:195-200. [PMID: 31751682 DOI: 10.1016/j.job.2019.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND The evolution of the face is crucial for each species to adapt to different diets, environments, and in some species, to promote social interaction. The diversity in the shapes of the face results from divergence in the process of facial development that begins during early embryonic development. HIGHLIGHTS Here we review the recent advancements in the understanding of the genetic, epigenetic, molecular, and cellular basis of facial diversity. We also review the robustness of facial development and how it relates to the evolution of the face. Finally, we discuss the current challenges in achieving a deeper understanding of facial diversity. CONCLUSION We have gained much knowledge with respect to cis-regulatory elements, gene expression, cellular behavior, and the physical forces in facial development in the past two decades. Significant interdisciplinary work is needed to integrate these varied pieces of information into a complete picture of how the diversity of faces arises.
Collapse
Affiliation(s)
- Zhaoming Wu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
5
|
Woronowicz KC, Schneider RA. Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw. EvoDevo 2019; 10:17. [PMID: 31417668 PMCID: PMC6691539 DOI: 10.1186/s13227-019-0131-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/22/2019] [Indexed: 01/16/2023] Open
Abstract
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA.,2Present Address: Department of Genetics, Harvard Medical School, Orthopaedic Research Laboratories, Children's Hospital Boston, Boston, MA 02115 USA
| | - Richard A Schneider
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA
| |
Collapse
|
6
|
Weng M, Chen Z, Xiao Q, Li R, Chen Z. A review of FGF signaling in palate development. Biomed Pharmacother 2018; 103:240-247. [DOI: 10.1016/j.biopha.2018.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 11/25/2022] Open
|
7
|
Schneider RA. Neural crest and the origin of species-specific pattern. Genesis 2018; 56:e23219. [PMID: 30134069 PMCID: PMC6108449 DOI: 10.1002/dvg.23219] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.
Collapse
Affiliation(s)
- Richard A. Schneider
- Department of Orthopedic SurgeryUniversity of California at San Francisco, 513 Parnassus AvenueS‐1161San Francisco, California
| |
Collapse
|
8
|
Cheng Y, Gao B, Wang H, Han N, Shao S, Wu S, Song G, Zhang YE, Zhu X, Lu X, Qu Y, Lei F. Evolution of beak morphology in the Ground Tit revealed by comparative transcriptomics. Front Zool 2017; 14:58. [PMID: 29299037 PMCID: PMC5740785 DOI: 10.1186/s12983-017-0245-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/28/2017] [Indexed: 11/10/2022] Open
Abstract
Background Beak morphology exhibits considerable adaptive plasticity in birds, which results in highly varied or specialized forms in response to variations in ecology and life history. As the only parid species endemic to the Qinghai-Tibet Plateau, the Ground Tit (Parus humilis) has evolved a distinctly long and curved beak from other parids. An integration of morphometrics, phylogenetics, transcriptomics and embryology allows us to address the evolutionary and developmental mechanisms of the adaptive beak structure observed in the Ground Tit. Results A morphometric approach quantified that the Ground Tit has a comparatively longer and more decurved upper beaks than other parids. We estimated that the ancestor of the Ground Tit likely had a short straight upper beak similar to most current recognized parid species using an ancestral state reconstruction. This morphological specialization is considered an adaptation to its ground-oriented behavior on the high plateau. To identify genetic mechanisms behind this adaptive change, a comparative transcriptomic analysis was applied between the Ground Tit and its closely related species, the Great Tit (Parus major). We detected that 623 genes were significantly differentially expressed in embryonic upper beaks between the two species, 17 of which were functionally annotated to correlate with bone development and morphogenesis, although genes related to bone development were not found to undergo accelerated evolution in the Ground Tit. RT-qPCR validation confirmed differential expression of five out of eight genes that were selected from the 17 genes. Subsequent functional assays in chicken embryos demonstrated that two of these genes, FGF13 and ITGB3, may affect beak morphology by modulating levels of osteoblasts and osteoclasts. Conclusions Our results provide preliminary evidence that development of the long decurved beak of the Ground Tit is likely regulated by transcriptional activities of multiple genes coordinating osteoblasts and osteoclasts. The integration of multiple approaches employed here sheds light on ecological and genetic mechanisms in the evolution of avian morphology.
Collapse
Affiliation(s)
- Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Bin Gao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Haitao Wang
- School of Life Sciences, Northeast Normal University, Changchun, 130024 China
| | - Naijian Han
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shimiao Shao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shaoyuan Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116 China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiaojia Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xin Lu
- Department of Ecology, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
9
|
Schock EN, Brugmann SA. Discovery, Diagnosis, and Etiology of Craniofacial Ciliopathies. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028258. [PMID: 28213462 DOI: 10.1101/cshperspect.a028258] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Seventy-five percent of congenital disorders present with some form of craniofacial malformation. The frequency and severity of these malformations makes understanding the etiological basis crucial for diagnosis and treatment. A significant link between craniofacial malformations and primary cilia arose several years ago with the determination that ∼30% of ciliopathies could be primarily defined by their craniofacial phenotype. The link between the cilium and the face has proven significant, as several new "craniofacial ciliopathies" have recently been diagnosed. Herein, we reevaluate public disease databases, report several new craniofacial ciliopathies, and propose several "predicted" craniofacial ciliopathies. Furthermore, we discuss why the craniofacial complex is so sensitive to ciliopathic dysfunction, addressing tissue-specific functions of the cilium as well as its role in signal transduction relevant to craniofacial development. As a whole, these analyses suggest a characteristic facial phenotype associated with craniofacial ciliopathies that can perhaps be used for rapid discovery and diagnosis of similar disorders in the future.
Collapse
Affiliation(s)
- Elizabeth N Schock
- Division of Plastic Surgery, Department of Surgery, and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
10
|
Hooper JE, Feng W, Li H, Leach SM, Phang T, Siska C, Jones KL, Spritz RA, Hunter LE, Williams T. Systems biology of facial development: contributions of ectoderm and mesenchyme. Dev Biol 2017; 426:97-114. [PMID: 28363736 PMCID: PMC5530582 DOI: 10.1016/j.ydbio.2017.03.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
The rapid increase in gene-centric biological knowledge coupled with analytic approaches for genomewide data integration provides an opportunity to develop systems-level understanding of facial development. Experimental analyses have demonstrated the importance of signaling between the surface ectoderm and the underlying mesenchyme are coordinating facial patterning. However, current transcriptome data from the developing vertebrate face is dominated by the mesenchymal component, and the contributions of the ectoderm are not easily identified. We have generated transcriptome datasets from critical periods of mouse face formation that enable gene expression to be analyzed with respect to time, prominence, and tissue layer. Notably, by separating the ectoderm and mesenchyme we considerably improved the sensitivity compared to data obtained from whole prominences, with more genes detected over a wider dynamic range. From these data we generated a detailed description of ectoderm-specific developmental programs, including pan-ectodermal programs, prominence- specific programs and their temporal dynamics. The genes and pathways represented in these programs provide mechanistic insights into several aspects of ectodermal development. We also used these data to identify co-expression modules specific to facial development. We then used 14 co-expression modules enriched for genes involved in orofacial clefts to make specific mechanistic predictions about genes involved in tongue specification, in nasal process patterning and in jaw development. Our multidimensional gene expression dataset is a unique resource for systems analysis of the developing face; our co-expression modules are a resource for predicting functions of poorly annotated genes, or for predicting roles for genes that have yet to be studied in the context of facial development; and our analytic approaches provide a paradigm for analysis of other complex developmental programs.
Collapse
Affiliation(s)
- Joan E Hooper
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Computational Bioscience Program, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Weiguo Feng
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Department of Craniofacial Biology, University of Colorado School of Dental Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Sonia M Leach
- Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA.
| | - Tzulip Phang
- Computational Bioscience Program, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Department of Medicine, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Charlotte Siska
- Computational Bioscience Program, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Richard A Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, 12800 E 17th Avenue, Aurora, CO 80045, USA.
| | - Lawrence E Hunter
- Computational Bioscience Program, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Trevor Williams
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Department of Craniofacial Biology, University of Colorado School of Dental Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
11
|
Kurosaka H, Wang Q, Sandell L, Yamashiro T, Trainor PA. Rdh10 loss-of-function and perturbed retinoid signaling underlies the etiology of choanal atresia. Hum Mol Genet 2017; 26:1268-1279. [PMID: 28169399 PMCID: PMC5390677 DOI: 10.1093/hmg/ddx031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/19/2017] [Indexed: 12/12/2022] Open
Abstract
Craniofacial development is a complex process that involves sequential growth and fusion of the facial prominences. When these processes fail, congenital craniofacial anomalies can occur. For example, choanal atresia (CA) is a congenital craniofacial anomaly in which the connection between the nasal airway and nasopharynx is completely blocked. CA occurs in approximately 1/5000 live births and is a frequent component of congenital disorders such as CHARGE, Treacher Collins, Crouzon and Pfeiffer syndromes. However, the detailed cellular and molecular mechanisms underpinning the etiology and pathogenesis of CA remain elusive. In this study, we discovered that mice with mutations in retinol dehydrogenase 10 (Rdh10), which perturbs Vitamin A metabolism and retinoid signaling, exhibit fully penetrant CA. Interestingly, we demonstrate Rdh10 is specifically required in non-neural crest cells prior to E10.5 for proper choanae formation, and that in the absence of Rdh10, Fgf8 is ectopically expressed in the nasal fin. Furthermore, we found that defects in choanae development are associated with decreased cell proliferation and increased cell death in the epithelium of the developing nasal cavity, which retards invagination of the nasal cavity, and thus appears to contribute to the pathogenesis of CA. Taken together, our findings demonstrate that RDH10 is essential during the early stages of facial morphogenesis for the formation of a functional nasal airway, and furthermore establish Rdh10 mutant mice as an important model system to study CA.
Collapse
Affiliation(s)
- Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Qi Wang
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Lisa Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Louisville, KY, USA
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA and.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
12
|
Kriangkrai R, Chareonvit S, Iseki S, Limwongse V. Pretreatment Effect of Folic Acid on 13-Cis-RA-Induced Cellular Damage of Developing Midfacial Processes in Cultured Rat Embryos. Open Dent J 2017; 11:200-212. [PMID: 28567144 PMCID: PMC5418950 DOI: 10.2174/1874210601711010200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/25/2017] [Accepted: 02/28/2017] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Excess treatment of 13-cis-RA (Accutane®) on pregnant women induces craniofacial malformation found in infants. However, the effect of folic acid on 13-cis-RA-induced cellular damages of developing midfacial processes is still unknown. The purpose of this study was to investigate the pretreatment effect of folic acid (FA) on 13-cis-RA-induced cellular damage in developing midfacial processes in rat embryos. MATERIALS AND METHODS The rat embryos at developing midfacial processes were performed by whole embryo culture in vitro, in the presence of 13-cis-RA (20 µM) with or without pre-treatment of FA (100 µM). The midfacial morphogenesis score, PCNA and TUNEL assay staining were evaluated for morphogenesis, cell proliferation and apoptosis of the midfacial processes, respectively. RESULTS The 13-cis-RA-treated embryos at 24h showed atrophy of midfacial processes with significantly decreased morphogenesis score and cell proliferation, and increased apoptotic cell death. In contrast, the embryos pre-treated with FA for 18h, followed by 13-cis-RA treatment for 24h (FA-RA) showed significantly greater morphogenesis score, increased cell proliferation and lower apoptotic cell death compared to those of the 13-cis-RA-treated embryos. CONCLUSION The results suggest that FA reduced the teratogenic effects of 13-cis-RA on midfacial process tissue. Future investigations regarding the anti-teratogenic mechanism of FA on the prevention of damages in midface processes induced by 13-cis-RA on pregnant woman are warranted.
Collapse
Affiliation(s)
- Rungarun Kriangkrai
- Department of Oral Biology, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| | - Suconta Chareonvit
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Visaka Limwongse
- Department of Oral Biology, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
13
|
Tak HJ, Park TJ, Piao Z, Lee SH. Separate development of the maxilla and mandible is controlled by regional signaling of the maxillomandibular junction during avian development. Dev Dyn 2016; 246:28-40. [PMID: 27756109 DOI: 10.1002/dvdy.24465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Syngnathia is a congenital craniofacial disorder characterized by bony or soft tissue fusion of upper and lower jaws. Previous studies suggested some causative signals, such as Foxc1 or Bmp4, cause the disruption of maxillomandibular identity, but their location and the interactive signals involved remain unexplored. We wanted to examine the embryonic origin of syngnathia based on the assumption that it may be located at the separation between the maxillary and mandibular processes. This region, known as the maxillomandibular junction (MMJ), is involved in segregation of cranial neural crest-derived mesenchyme into the presumptive upper and lower jaws. RESULTS Here we investigated the role of Fgf, Bmp, and retinoid signaling during development of MMJ in chicken embryos. By changing the levels of these signals with bead implants, we induced syngnathia with microstomia on the treated side, which showed increased Barx1 and neural cell adhesion molecule (NCAM) expression. Redistribution of proliferating cells was also observed at the proximal region to maxillary and mandibular arch around MMJ. CONCLUSIONS We propose that interactive molecular signaling by Fgfs, Bmps, and retinoids around MMJ is required for normal separation of the maxilla and mandible, as well as the proper positioning of beak commissure during early facial morphogenesis. Developmental Dynamics 246:28-40, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hye-Jin Tak
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea
| | - Tae-Jin Park
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea
| | - Zhenngu Piao
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital of Guangzhou Medical College, GuangZhou City, China
| | - Sang-Hwy Lee
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea.,Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, Seoul, Korea
| |
Collapse
|
14
|
Tussellino M, Ronca R, Carotenuto R, Pallotta MM, Furia M, Capriglione T. Chlorpyrifos exposure affects fgf8, sox9, and bmp4 expression required for cranial neural crest morphogenesis and chondrogenesis in Xenopus laevis embryos. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:630-640. [PMID: 27669663 DOI: 10.1002/em.22057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
Chlorpyrifos (CPF) is an organophosphate insecticide used primarily to control foliage and soil-borne insect pests on a variety of food and feed crops. In mammals, maternal exposure to CPF has been reported to induce dose-related abnormalities such as slower brain growth and cerebral cortex thinning. In lower vertebrates, for example, fish and amphibians, teratogenic activity of this compound is correlated with several anatomical alterations. Little is known about the effects of CPF on mRNA expression of genes involved in early development of the anatomical structures appearing abnormal in embryos. This study investigated the effects of exposure to different CPF concentrations (10, 15 and 20 mg/L) on Xenopus laevis embryos from stage 4/8 to stage 46. Some of the morphological changes we detected in CPF-exposed embryos included cranial neural crest cell (NCC)-derived structures. For this reason, we analyzed the expression of select genes involved in hindbrain patterning (egr2), cranial neural crest chondrogenesis, and craniofacial development (fgf8, bmp4, sox9, hoxa2 and hoxb2). We found that CPF exposure induced a reduction in transcription of all the genes involved in NCC-dependent chondrogenesis, with largest reductions in fgf8 and sox9; whereas, in hindbrain, we did not find any alterations in egr2 expression. Changes in the expression of fgf8, bmp4, and sox9, which are master regulators of several developmental pathways, have important implications. If these changes are confirmed to belong to a general pattern of alterations in vertebrates prenatally exposed to OP, they might be useful to assess damage during vertebrate embryo development. Environ. Mol. Mutagen. 57:589-604, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Margherita Tussellino
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Raffaele Ronca
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Rosa Carotenuto
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Maria M Pallotta
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Maria Furia
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Teresa Capriglione
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy.
| |
Collapse
|
15
|
Bond SR, Abramyan J, Fu K, Naus CC, Richman JM. Pannexin 3 is required for late stage bone growth but not for initiation of ossification in avian embryos. Dev Dyn 2016; 245:913-24. [PMID: 27295565 DOI: 10.1002/dvdy.24425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/23/2016] [Accepted: 05/29/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Pannexin 3 (PANX3) is a channel-forming protein capable of stimulating osteogenesis in vitro. Here, we studied the in vivo roles of PANX3 in the chicken embryo using the RCAS retroviral system to over-express and knockdown expression during endochondral bone formation. RESULTS In the limbs, PANX3 RNA was first detected in the cartilage condensations and became restricted to the prehypertrophic cartilage of the epiphyses, diaphysis, and perichondrium. The increase in PANX3 was not sufficient to alter osteogenesis; however, knockdown with a virus containing an interference RNA construct caused a 20% reduction in bone volume. The control virus containing an shEGFP cassette did not affect development. Interestingly, the phenotype was restricted to later stages rather than to proliferation of the skeletogenic mesenchyme, formation of the cartilage condensation, or creation of the hypertrophic zones. In addition, there was also no change in readouts of Hedgehog, WNT, fibroblast growth factor, or bone morphogenetic protein signaling using either quantitative real-time polymerase chain reaction or radioactive in situ hybridization. CONCLUSIONS Based on the normal expression domains of PANX3 and the relatively late manifestation of the phenotype, it is possible that PANX3 hemichannels may be required to facilitate the transition of hypertrophic chondrocytes to osteoblasts, thereby achieving final bone size. Developmental Dynamics 245:913-924, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stephen R Bond
- Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Abramyan
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathy Fu
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joy M Richman
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Lovely CB, Swartz ME, McCarthy N, Norrie JL, Eberhart JK. Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish. Development 2016; 143:2000-11. [PMID: 27122171 DOI: 10.1242/dev.129379] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 04/12/2016] [Indexed: 02/03/2023]
Abstract
The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face.
Collapse
Affiliation(s)
- C Ben Lovely
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Mary E Swartz
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Neil McCarthy
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Johann K Eberhart
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
17
|
Karpinski BA, Bryan CA, Paronett EM, Baker JL, Fernandez A, Horvath A, Maynard TM, Moody SA, LaMantia AS. A cellular and molecular mosaic establishes growth and differentiation states for cranial sensory neurons. Dev Biol 2016; 415:228-241. [PMID: 26988119 DOI: 10.1016/j.ydbio.2016.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/02/2016] [Accepted: 03/13/2016] [Indexed: 02/06/2023]
Abstract
We compared apparent origins, cellular diversity and regulation of initial axon growth for differentiating cranial sensory neurons. We assessed the molecular and cellular composition of the developing olfactory and otic placodes, and cranial sensory ganglia to evaluate contributions of ectodermal placode versus neural crest at each site. Special sensory neuron populations-the olfactory and otic placodes, as well as those in vestibulo-acoustic ganglion- are entirely populated with cells expressing cranial placode-associated, rather than neural crest-associated markers. The remaining cranial sensory ganglia are a mosaic of cells that express placode-associated as well as neural crest-associated markers. We found two distinct populations of neural crest in the cranial ganglia: the first, as expected, is labeled by Wnt1:Cre mediated recombination. The second is not labeled by Wnt1:Cre recombination, and expresses both Sox10 and FoxD3. These populations-Wnt1:Cre recombined, and Sox10/Foxd3-expressing- are proliferatively distinct from one another. Together, the two neural crest-associated populations are substantially more proliferative than their placode-associated counterparts. Nevertheless, the apparently placode- and neural crest-associated populations are similarly sensitive to altered signaling that compromises cranial morphogenesis and differentiation. Acute disruption of either Fibroblast growth factor (Fgf) or Retinoic acid (RA) signaling alters axon growth and cell death, but does not preferentially target any of the three distinct populations. Apparently, mosaic derivation and diversity of precursors and early differentiating neurons, modulated uniformly by local signals, supports early cranial sensory neuron differentiation and growth.
Collapse
Affiliation(s)
- Beverly A Karpinski
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Corey A Bryan
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Elizabeth M Paronett
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Jennifer L Baker
- Center for the Advanced Study of Human Paleobiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Alejandra Fernandez
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Anelia Horvath
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Thomas M Maynard
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Anthony-S LaMantia
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| |
Collapse
|
18
|
Dickinson AJG. Using frogs faces to dissect the mechanisms underlying human orofacial defects. Semin Cell Dev Biol 2016; 51:54-63. [PMID: 26778163 DOI: 10.1016/j.semcdb.2016.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022]
Abstract
In this review I discuss how Xenopus laevis is an effective model to dissect the mechanisms underlying orofacial defects. This species has been particularly useful in studying the understudied structures of the developing face including the embryonic mouth and primary palate. The embryonic mouth is the first opening between the foregut and the environment and is critical for adult mouth development. The final step in embryonic mouth formation is the perforation of a thin layer of tissue covering the digestive tube called the buccopharyngeal membrane. When this tissue does not perforate in humans it can pose serious health risks for the fetus and child. The primary palate forms just dorsal to the embryonic mouth and in non-amniotes it functions as the roof of the adult mouth. Defects in the primary palate result in a median oral cleft that appears similar across the vertebrates. In humans, these median clefts are often severe and surgically difficult to repair. Xenopus has several qualities that make it advantageous for craniofacial research. The free living embryo has an easily accessible face and we have also developed several new tools to analyze the development of the region. Further, Xenopus is readily amenable to chemical screens allowing us to uncover novel gene-environment interactions during orofacial development, as well as to define underlying mechanisms governing such interactions. In conclusion, we are utilizing Xenopus in new and innovative ways to contribute to craniofacial research.
Collapse
Affiliation(s)
- Amanda J G Dickinson
- Department of Biology, Virginia Commonwealth University, 1000 West Main St., Richmond, VA 23284, United States.
| |
Collapse
|
19
|
Kiecker C. The chick embryo as a model for the effects of prenatal exposure to alcohol on craniofacial development. Dev Biol 2016; 415:314-325. [PMID: 26777098 DOI: 10.1016/j.ydbio.2016.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/28/2015] [Accepted: 01/13/2016] [Indexed: 12/15/2022]
Abstract
Prenatal exposure to ethanol results in fetal alcohol spectrum disorder (FASD), a syndrome characterised by a broad range of clinical manifestations including craniofacial dysmorphologies and neurological defects. The characterisation of the mechanisms by which ethanol exerts its teratogenic effects is difficult due to the pleiotropic nature of its actions. Different experimental model systems have been employed to investigate the aetiology of FASD. Here, I will review studies using these different model organisms that have helped to elucidate how ethanol causes the craniofacial abnormalities characteristic of FASD. In these studies, ethanol was found to impair the prechordal plate-an important embryonic signalling centre-during gastrulation and to negatively affect the induction, migration and survival of the neural crest, a cell population that generates the cartilage and most of the bones of the skull. At the cellular level, ethanol appears to inhibit Sonic hedgehog signalling, alter levels of retionoic acid activity, trigger a Ca(2+)-CamKII-dependent pathway that antagonises WNT signalling, affect cytoskeletal dynamics and increase oxidative stress. Embryos of the domestic chick Gallus gallus domesticus have played a central role in developing a working model for the effects of ethanol on craniofacial development because they are easily accessible and because key steps in craniofacial development are particularly well established in the avian embryo. I will finish this review by highlighting some potential future avenues of fetal alcohol research.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental Neurobiology, 4th Floor, Hodgkin Building, Guy's Hospital Campus, King's College London, UK.
| |
Collapse
|
20
|
Abramyan J, Thivichon-Prince B, Richman JM. Diversity in primary palate ontogeny of amniotes revealed with 3D imaging. J Anat 2015; 226:420-33. [PMID: 25904546 DOI: 10.1111/joa.12291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2015] [Indexed: 12/23/2022] Open
Abstract
The amniote primary palate encompasses the upper lip and the nasal cavities. During embryonic development, the primary palate forms from the fusion of the maxillary, medial nasal and lateral nasal prominences. In mammals, as the primary palate fuses, the nasal and oral cavities become completely separated. Subsequently, the tissue demarcating the future internal nares (choanae) thins and becomes the bucconasal membrane, which eventually ruptures and allows for the essential connection of the oral and nasal cavities to form. In reptiles (including birds), the other major amniote group, primary palate ontogeny is poorly studied with respect to prominence fusion, especially the formation of a bucconasal membrane. Using 3D optical projection tomography, we found that the prominences that initiate primary palate formation are similar between mammals and crocodilians but distinct from turtles and lizards, which are in turn similar to each other. Chickens are distinct from all non-avian lineages and instead resemble human embryos in this aspect. The majority of reptiles maintain a communication between the oral and nasal cavities via the choanae during primary palate formation. However, crocodiles appear to have a transient separation between the oral and nasal cavities. Furthermore, the three lizard species examined here, exhibit temporary closure of their external nares via fusion of the lateral nasal prominences with the frontonasal mass, subsequently reopening them just before hatching. The mechanism of the persistent choanal opening was examined in chicken embryos. The mesenchyme posterior/dorsal to the choana had a significant decline in proliferation index, whereas the mesenchyme of the facial processes remained high. This differential proliferation allows the choana to form a channel between the oral and nasal cavities as the facial prominences grow and fuse around it. Our data show that primary palate ontogeny has been modified extensively to support the array of morphological diversity that has evolved among amniotes.
Collapse
Affiliation(s)
- John Abramyan
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Beatrice Thivichon-Prince
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Joy Marion Richman
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Shimomura T, Kawakami M, Okuda H, Tatsumi K, Morita S, Nochioka K, Kirita T, Wanaka A. Retinoic acid regulates Lhx8 expression via FGF-8b to the upper jaw development of chick embryo. J Biosci Bioeng 2015; 119:260-6. [DOI: 10.1016/j.jbiosc.2014.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 11/29/2022]
|
22
|
Horakova D, Cela P, Krejci P, Balek L, Moravcova Balkova S, Matalova E, Buchtova M. Effect of FGFR inhibitors on chicken limb development. Dev Growth Differ 2014; 56:555-72. [DOI: 10.1111/dgd.12156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Dana Horakova
- Department of Anatomy, Histology and Embryology; Faculty of Veterinary Medicine; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
| | - Petra Cela
- Institute of Animal Physiology and Genetics, v.v.i.; Academy of Sciences of the Czech Republic; Brno Czech Republic
- Department of Animal Physiology and Immunology; Institute of Experimental Biology; Masaryk University; Brno Czech Republic
| | - Pavel Krejci
- Department of Animal Physiology and Immunology; Institute of Experimental Biology; Masaryk University; Brno Czech Republic
- Department of Biology; Faculty of Medicine; Masaryk University; Brno Czech Republic
| | - Lukas Balek
- Department of Animal Physiology and Immunology; Institute of Experimental Biology; Masaryk University; Brno Czech Republic
- Department of Biology; Faculty of Medicine; Masaryk University; Brno Czech Republic
| | - Simona Moravcova Balkova
- Institute of Animal Physiology and Genetics, v.v.i.; Academy of Sciences of the Czech Republic; Brno Czech Republic
- Clinic of Stomatology, St. Anne's Faculty Hospital and Faculty of Medicine; Masaryk University; Brno Czech Republic
| | - Eva Matalova
- Institute of Animal Physiology and Genetics, v.v.i.; Academy of Sciences of the Czech Republic; Brno Czech Republic
- Department of Physiology; Faculty of Veterinary Medicine; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
| | - Marcela Buchtova
- Department of Anatomy, Histology and Embryology; Faculty of Veterinary Medicine; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
- Institute of Animal Physiology and Genetics, v.v.i.; Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|
23
|
Identification of genes related to beak deformity of chickens using digital gene expression profiling. PLoS One 2014; 9:e107050. [PMID: 25198128 PMCID: PMC4157856 DOI: 10.1371/journal.pone.0107050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/07/2014] [Indexed: 01/31/2023] Open
Abstract
Frequencies of up to 3% of beak deformity (normally a crossed beak) occur in some indigenous chickens in China, such as and Beijing-You. Chickens with deformed beaks have reduced feed intake, growth rate, and abnormal behaviors. Beak deformity represents an economic as well as an animal welfare problem in the poultry industry. Because the genetic basis of beak deformity remains incompletely understood, the present study sought to identify important genes and metabolic pathways involved in this phenotype. Digital gene expression analysis was performed on deformed and normal beaks collected from Beijing-You chickens to detect global gene expression differences. A total of >11 million cDNA tags were sequenced, and 5,864,499 and 5,648,877 clean tags were obtained in the libraries of deformed and normal beaks, respectively. In total, 1,156 differentially expressed genes (DEG) were identified in the deformed beak with 409 being up-regulated and 747 down-regulated in the deformed beaks. qRT-PCR using eight genes was performed to verify the results of DGE profiling. Gene ontology (GO) analysis highlighted that genes of the keratin family on GGA25 were abundant among the DEGs. Pathway analysis showed that many DEGs were linked to the biosynthesis of unsaturated fatty acids and glycerolipid metabolism. Combining the analyses, 11 genes (MUC, LOC426217, BMP4, ACAA1, LPL, ALDH7A1, GLA, RETSAT, SDR16C5, WWOX, and MOGAT1) were highlighted as potential candidate genes for beak deformity in chickens. Some of these genes have been identified previously, while others have unknown function with respect to thus phenotype. To the best of our knowledge, this is the first genome-wide study to investigate the transcriptome differences in the deformed and normal beaks of chickens. The DEGs identified here are worthy of further functional characterization.
Collapse
|
24
|
Lopez-Real RE, Budge JJR, Marder TB, Whiting A, Hunt PN, Przyborski SA. Application of synthetic photostable retinoids induces novel limb and facial phenotypes during chick embryogenesis in vivo. J Anat 2013; 224:392-411. [PMID: 24303996 PMCID: PMC4098675 DOI: 10.1111/joa.12147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 02/02/2023] Open
Abstract
We have recently developed a range of synthetic retinoid analogues which include the compounds EC23 and EC19. They are stable on exposure to light and are predicted to be resistant to the normal metabolic processes involved in the inactivation of retinoids in vivo. Based on the position of the terminal carboxylic acid groups in the compounds we suggest that EC23 is a structural analogue of all-trans retinoic acid (ATRA), and EC19 is an analogue of 13-cis retinoic acid. Their effects on the differentiation of pluripotent stem cells has been previously described in vitro and are consistent with this hypothesis. We present herein the first description of the effects of these molecules in vivo. Retinoids were applied to the anterior limb buds of chicken embryos in ovo via ion-exchange beads. We found that retinoid EC23 produces effects on the wing digits similar to ATRA, but does so at two orders of magnitude lower concentration. When larger quantities of EC23 are applied, a novel phenotype is obtained involving production of multiple digit 1s on the anterior limb. This corresponds to differential effects of ATRA and EC23 on sonic hedgehog (shh) expression in the developing limb bud. With EC23 application we also find digit 1 phenotypes similar to thumb duplications described in the clinical literature. EC23 and ATRA are shown to have effects on the entire proximal–distal axis of the limb, including hitherto undescribed effects on the scapula. This includes suppression of expression of the scapula marker Pax1. EC23 also produces effects similar to those of ATRA on the developing face, producing reductions of the upper beak at concentrations two orders of magnitude lower than ATRA. In contrast, EC19, which is structurally very similar to EC23, has novel, less severe effects on the face and rarely alters limb development. EC19 and ATRA are effective at similar concentrations. These results further demonstrate the ability of retinoids to influence embryonic development. Moreover, EC23 represents a useful new tool to investigate developmental processes and probe the mechanisms underlying congenital abnormalities in vertebrates including man.
Collapse
Affiliation(s)
- R E Lopez-Real
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | | | | | | | | | | |
Collapse
|
25
|
Celá P, Balková SM, Bryjová A, Horáková D, Míšek I, Richman J, Buchtová M. Expression, function and regulation of Evi-1 during embryonic avian development. Gene Expr Patterns 2013; 13:343-53. [DOI: 10.1016/j.gep.2013.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 06/15/2013] [Accepted: 06/19/2013] [Indexed: 12/14/2022]
|
26
|
Apaf1 apoptotic function critically limits Sonic hedgehog signaling during craniofacial development. Cell Death Differ 2013; 20:1510-20. [PMID: 23892366 DOI: 10.1038/cdd.2013.97] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 01/18/2023] Open
Abstract
Apaf1 is an evolutionarily conserved component of the apoptosome. In mammals, the apoptosome assembles when cytochrome c is released from mitochondria, binding Apaf1 in an ATP-dependent manner and activating caspase 9 to execute apoptosis. Here we identify and characterize a novel mouse mutant, yautja, and find it results from a leucine-to-proline substitution in the winged-helix domain of Apaf1. We show that this allele of Apaf1 is unique, as the yautja mutant Apaf1 protein is stable, yet does not possess apoptotic function in cell culture or in vivo assays. Mutant embryos die perinatally with defects in craniofacial and nervous system development, as well as reduced levels of apoptosis. We further investigated the defects in craniofacial development in the yautja mutation and found altered Sonic hedgehog (Shh) signaling between the prechordal plate and the frontonasal ectoderm, leading to increased mesenchymal proliferation in the face and delayed or absent ossification of the skull base. Taken together, our data highlight the time-sensitive link between Shh signaling and the regulation of apoptosis function in craniofacial development to sculpt the face. We propose that decreased apoptosis in the developing nervous system allows Shh-producing cells to persist and direct a lateral outgrowth of the upper jaw, resulting in the craniofacial defects we see. Finally, the novel yautja Apaf1 allele offers the first in vivo understanding of a stable Apaf1 protein that lacks a function, which should make a useful tool with which to explore the regulation of programmed cell death in mammals.
Collapse
|
27
|
Hu D, Marcucio RS. Neural crest cells pattern the surface cephalic ectoderm during FEZ formation. Dev Dyn 2013; 241:732-40. [PMID: 22411554 DOI: 10.1002/dvdy.23764] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Multiple fibroblast growth factor (Fgf) ligands are expressed in the forebrain and facial ectoderm, and vascular endothelial growth factor (VEGF) is expressed in the facial ectoderm. Both pathways activate the MAP kinase cascade and can be suppressed by SU5402. We placed a bead soaked in SU5402 into the brain after emigration of neural crest cells was complete. RESULTS Within 24 hr we observed reduced pMEK and pERK staining that persisted for at least 48 hr. This was accompanied by significant apoptosis in the face. By day 15, the upper beaks were truncated. Molecular changes in the FNP were also apparent. Normally, Shh is expressed in the frontonasal ectodermal zone and controls patterned growth of the upper jaw. In treated embryos, Shh expression was reduced. Both the structural and molecular deficits were mitigated after transplantation of FNP-derived mesenchymal cells. CONCLUSIONS Thus, mesenchymal cells actively participate in signaling interactions of the face, and the absence of neural crest cells in neurocristopathies may not be merely structural.
Collapse
Affiliation(s)
- Diane Hu
- Department of Orthopaedic Surgery, San Francisco General Hospital, The University of California San Francisco, School of Medicine, San Francisco, California 94110, USA
| | | |
Collapse
|
28
|
Compagnucci C, Debiais-Thibaud M, Coolen M, Fish J, Griffin JN, Bertocchini F, Minoux M, Rijli FM, Borday-Birraux V, Casane D, Mazan S, Depew MJ. Pattern and polarity in the development and evolution of the gnathostome jaw: both conservation and heterotopy in the branchial arches of the shark, Scyliorhinus canicula. Dev Biol 2013; 377:428-48. [PMID: 23473983 DOI: 10.1016/j.ydbio.2013.02.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/26/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
The acquisition of jaws constitutes a landmark event in vertebrate evolution, one that in large part potentiated their success and diversification. Jaw development and patterning involves an intricate spatiotemporal series of reciprocal inductive and responsive interactions between the cephalic epithelia and the cranial neural crest (CNC) and cephalic mesodermal mesenchyme. The coordinated regulation of these interactions is critical for both the ontogenetic registration of the jaws and the evolutionary elaboration of variable jaw morphologies and designs. Current models of jaw development and evolution have been built on molecular and cellular evidence gathered mostly in amniotes such as mice, chicks and humans, and augmented by a much smaller body of work on the zebrafish. These have been partnered by essential work attempting to understand the origins of jaws that has focused on the jawless lamprey. Chondrichthyans (cartilaginous fish) are the most distant group to amniotes within extant gnathostomes, and comprise the crucial clade uniting amniotes and agnathans; yet despite their critical phylogenetic position, evidence of the molecular and cellular underpinnings of jaw development in chondrichthyans is still lacking. Recent advances in genome and molecular developmental biology of the lesser spotted dogfish shark, Scyliorhinus canicula, make it ideal for the molecular study of chondrichthyan jaw development. Here, following the 'Hinge and Caps' model of jaw development, we have investigated evidence of heterotopic (relative changes in position) and heterochronic (relative changes in timing) shifts in gene expression, relative to amniotes, in the jaw primordia of S. canicula embryos. We demonstrate the presence of clear proximo-distal polarity in gene expression patterns in the shark embryo, thus establishing a baseline molecular baüplan for branchial arch-derived jaw development and further validating the utility of the 'Hinge and Caps' model in comparative studies of jaw development and evolution. Moreover, we correlate gene expression patterns with the absence of a lambdoidal junction (formed where the maxillary first arch meets the frontonasal processes) in chondrichthyans, further highlighting the importance of this region for the development and evolution of jaw structure in advanced gnathostomes.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Department of Craniofacial Development, King's College London, Floor 27, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
KNIEF ULRICH, SCHIELZETH HOLGER, KEMPENAERS BART, ELLEGREN HANS, FORSTMEIER WOLFGANG. QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an Estrildid finch. Mol Ecol 2012; 21:3704-17. [DOI: 10.1111/j.1365-294x.2012.05661.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Kennedy AE, Dickinson AJG. Median facial clefts in Xenopus laevis: roles of retinoic acid signaling and homeobox genes. Dev Biol 2012; 365:229-40. [PMID: 22405964 DOI: 10.1016/j.ydbio.2012.02.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 12/28/2022]
Abstract
The upper lip and primary palate form an essential separation between the brain, nasal structures and the oral cavity. Surprisingly little is known about the development of these structures, despite the fact that abnormalities can result in various forms of orofacial clefts. We have uncovered that retinoic acid is a critical regulator of upper lip and primary palate development in Xenopus laevis. Retinoic acid synthesis enzyme, RALDH2, and retinoic acid receptor gamma (RARγ) are expressed in complementary and partially overlapping regions of the orofacial prominences that fate mapping revealed contribute to the upper lip and primary palate. Decreased RALDH2 and RARγ result in a median cleft in the upper lip and primary palate. To further understand how retinoic acid regulates upper lip and palate morphogenesis we searched for genes downregulated in response to RARγ inhibition in orofacial tissue, and uncovered homeobox genes lhx8 and msx2. These genes are both expressed in overlapping domains with RARγ, and together their loss of function also results in a median cleft in the upper lip and primary palate. Inhibition of RARγ and decreased Lhx8/Msx2 function result in decreased cell proliferation and failure of dorsal anterior cartilages to form. These results suggest a model whereby retinoic acid signaling regulates Lhx8 and Msx2, which together direct the tissue growth and differentiation necessary for the upper lip and primary palate morphogenesis. This work has the potential to better understand the complex nature of the upper lip and primary palate development which will lead to important insights into the etiology of human orofacial clefts.
Collapse
Affiliation(s)
- Allyson E Kennedy
- Virginia Commonwealth University, 1000 West Cary St., Department of Biology, Richmond, VA 23284, USA
| | | |
Collapse
|
31
|
Janesick A, Shiotsugu J, Taketani M, Blumberg B. RIPPLY3 is a retinoic acid-inducible repressor required for setting the borders of the pre-placodal ectoderm. Development 2012; 139:1213-24. [PMID: 22354841 DOI: 10.1242/dev.071456] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Retinoic acid signaling is a major component of the neural posteriorizing process in vertebrate development. Here, we identify a new role for the retinoic acid receptor (RAR) in the anterior of the embryo, where RAR regulates Fgf8 expression and formation of the pre-placodal ectoderm (PPE). RARα2 signaling induces key pre-placodal genes and establishes the posterolateral borders of the PPE. RAR signaling upregulates two important genes, Tbx1 and Ripply3, during early PPE development. In the absence of RIPPLY3, TBX1 is required for the expression of Fgf8 and hence, PPE formation. In the presence of RIPPLY3, TBX1 acts as a transcriptional repressor, and functions to restrict the positional expression of Fgf8, a key regulator of PPE gene expression. These results establish a novel role for RAR as a regulator of spatial patterning of the PPE through Tbx1 and RIPPLY3. Moreover, we demonstrate that Ripply3, acting downstream of RAR signaling, is a key player in establishing boundaries in the PPE.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | | | | | | |
Collapse
|
32
|
Sabado V, Barraud P, Baker CVH, Streit A. Specification of GnRH-1 neurons by antagonistic FGF and retinoic acid signaling. Dev Biol 2012; 362:254-62. [PMID: 22200593 PMCID: PMC4561506 DOI: 10.1016/j.ydbio.2011.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 11/25/2022]
Abstract
A small population of neuroendocrine cells in the rostral hypothalamus and basal forebrain is the key regulator of vertebrate reproduction. They secrete gonadotropin-releasing hormone (GnRH-1), communicate with many areas of the brain and integrate multiple inputs to control gonad maturation, puberty and sexual behavior. In humans, disruption of the GnRH-1 system leads to hypogonadotropic gonadism and Kallmann syndrome. Unlike other neurons in the central nervous system, GnRH-1 neurons arise in the periphery, however their embryonic origin is controversial, and the molecular mechanisms that control their initial specification are not clear. Here, we provide evidence that in chick GnRH-1 neurons originate in the olfactory placode, where they are specified shortly after olfactory sensory neurons. FGF signaling is required and sufficient to induce GnRH-1 neurons, while retinoic acid represses their formation. Both pathways regulate and antagonize each other and our results suggest that the timing of signaling is critical for normal GnRH-1 neuron formation. While Kallmann's syndrome has generally been attributed to a failure of GnRH-1 neuron migration due to impaired FGF signaling, our findings suggest that in at least some Kallmann patients these neurons may never be specified. In addition, this study highlights the intimate embryonic relationship between GnRH-1 neurons and their targets and modulators in the adult.
Collapse
Affiliation(s)
- Virginie Sabado
- Department of Craniofacial Development, King’s College London, Guy’s Campus, London, SE1 9RT, UK
| | - Perrine Barraud
- Department of Physiology, Development & Neuroscience, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
| | - Clare V. H. Baker
- Department of Physiology, Development & Neuroscience, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
| | - Andrea Streit
- Department of Craniofacial Development, King’s College London, Guy’s Campus, London, SE1 9RT, UK
| |
Collapse
|
33
|
Kwon HJ, Shin JO, Lee JM, Cho KW, Lee MJ, Cho SW, Jung HS. Retinoic acid modulates chondrogenesis in the developing mouse cranial base. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:574-83. [PMID: 21826789 DOI: 10.1002/jez.b.21432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 06/24/2011] [Accepted: 06/29/2011] [Indexed: 11/10/2022]
Abstract
The retinoic acid (RA) signaling pathway is known to play important roles during craniofacial development and skeletogenesis. However, the specific mechanism involving RA in cranial base development has not yet been clearly described. This study investigated how RA modulates endochondral bone development of the cranial base by monitoring the RA receptor RARγ, BMP4, and markers of proliferation, programmed cell death, chondrogenesis, and osteogenesis. We first examined the dynamic morphological and molecular changes in the sphenooccipital synchondrosis-forming region in the mouse embryo cranial bases at E12-E16. In vitro organ cultures employing beads soaked in RA and retinoid-signaling inhibitor citral were compared. In the RA study, the sphenooccipital synchondrosis showed reduced cartilage matrix and lower BMP4 expression while hypertrophic chondrocytes were replaced with proliferating chondrocytes. Retardation of chondrocyte hypertrophy was exhibited in citral-treated specimens, while BMP4 expression was slightly increased and programmed cell death was induced within the sphenooccipital synchondrosis. Our results demonstrate that RA modulates chondrocytes to proliferate, differentiate, or undergo programmed cell death during endochondral bone formation in the developing cranial base.
Collapse
Affiliation(s)
- Hyuk-Jae Kwon
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Research Center for Orofacial Hard Tissue Regeneration, Brain Korean 21 Project, Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Compagnucci C, Fish JL, Schwark M, Tarabykin V, Depew MJ. Pax6 regulates craniofacial form through its control of an essential cephalic ectodermal patterning center. Genesis 2011; 49:307-25. [PMID: 21309073 DOI: 10.1002/dvg.20724] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Normal patterning and morphogenesis of the complex skeletal structures of the skull requires an exquisite, reciprocal cross-talk between the embryonic cephalic epithelia and mesenchyme. The mesenchyme associated with the jaws and the optic and olfactory capsules is derived from a Hox-negative cranial neural crest (CNC) population that acts much as an equivalence group in its interactions with specific local cephalic epithelial signals. Craniofacial pattern and morphogenesis is therefore controlled in large part through the regulation of these local cephalic epithelial signals. Here, we demonstrate that Pax6 is essential to the formation and maturation of the complex cephalic ectodermal patterning centers that govern the development and morphogenesis of the upper jaws and associated nasal capsules. Previous examinations of the craniofacial skeletal defects associated with Pax6 mutations have suggested that they arise from an optic-associated blockage in the migration of a specific subpopulation of midbrain CNC to the lateral frontonasal processes. We have addressed an alternative explanation for the craniofacial skeletal defects. We show that in Pax6(SeyN/SeyN) mutants regional CNC is present by E9.25 while there is already specific disruption in the early ontogenetic elaboration of cephalic ectodermal expression, associated with the nascent lambdoidal junction, of secreted signaling factors (including Fgf8 and Bmp4) and transcription factors (including Six1 and Dlx5) essential for upper jaw and/or nasal capsular development. Pax6 therefore regulates craniofacial form, at stages when CNC has just arrived in the frontonasal region, through its control of surface cephalic ectodermal competence to form an essential craniofacial patterning center.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Department of Craniofacial Development, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Transient retinoic acid signaling confers anterior-posterior polarity to the inner ear. Proc Natl Acad Sci U S A 2010; 108:161-6. [PMID: 21173260 DOI: 10.1073/pnas.1010547108] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vertebrate hearing and balance are based in complex asymmetries of inner ear structure. Here, we identify retinoic acid (RA) as an extrinsic signal that acts directly on the ear rudiment to affect its compartmentalization along the anterior-posterior axis. A rostrocaudal wave of RA activity, generated by tissues surrounding the nascent ear, induces distinct responses from anterior and posterior halves of the inner ear rudiment. Prolonged response to RA by posterior otic tissue correlates with Tbx1 transcription and formation of mostly nonsensory inner ear structures. By contrast, anterior otic tissue displays only a brief response to RA and forms neuronal elements and most sensory structures of the inner ear.
Collapse
|
36
|
Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 2010; 137:2605-21. [DOI: 10.1242/dev.040048] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During vertebrate craniofacial development, neural crest cells (NCCs) contribute much of the cartilage, bone and connective tissue that make up the developing head. Although the initial patterns of NCC segmentation and migration are conserved between species, the variety of vertebrate facial morphologies that exist indicates that a complex interplay occurs between intrinsic genetic NCC programs and extrinsic environmental signals during morphogenesis. Here, we review recent work that has begun to shed light on the molecular mechanisms that govern the spatiotemporal patterning of NCC-derived skeletal structures – advances that are central to understanding craniofacial development and its evolution.
Collapse
Affiliation(s)
- Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- Faculté de Chirurgie Dentaire, 1, Place de l'Hôpital, 67000 Strasbourg, France
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
37
|
Higashihori N, Buchtová M, Richman JM. The function and regulation of TBX22 in avian frontonasal morphogenesis. Dev Dyn 2010; 239:458-73. [PMID: 20033915 DOI: 10.1002/dvdy.22182] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The frontonasal mass gives rise to the facial midline and fuses with the maxillary prominence to form the upper lip. Here we focus on the regulation and function of TBX22, a repressor dynamically expressed in the frontonasal mass. Both FGF and Noggin (a BMP antagonist) strongly induce gTBX22, however, each has opposite effects on morphogenesis - Noggin inhibits whereas FGF stimulates growth. To determine whether TBX22 mediates these effects, we used retroviruses to locally increase expression levels. RCAS::hTBX22 decreased proliferation, reduced expression of MSX2 and DLX5 and caused cleft lip. Decreased levels of endogenous gTBX22 were also observed but were not the primary cause of the phenotype as determined in rescue experiments. Our data suggest that genetic or environmental insults such as those affecting the BMP pathway could lead to a gain-of-function of TBX22 and predispose an individual to cleft lip.
Collapse
Affiliation(s)
- Norihisa Higashihori
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
38
|
Buchtová M, Kuo WP, Nimmagadda S, Benson SL, Geetha-Loganathan P, Logan C, Au-Yeung T, Chiang E, Fu K, Richman JM. Whole genome microarray analysis of chicken embryo facial prominences. Dev Dyn 2010; 239:574-91. [PMID: 19941351 DOI: 10.1002/dvdy.22135] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The face is one of the three regions most frequently affected by congenital defects in humans. To understand the molecular mechanisms involved, it is necessary to have a more complete picture of gene expression in the embryo. Here, we use microarrays to profile expression in chicken facial prominences, post neural crest migration and before differentiation of mesenchymal cells. Chip-wide analysis revealed that maxillary and mandibular prominences had similar expression profiles while the frontonasal mass chips were distinct. Of the 3094 genes that were differentially expressed in one or more regions of the face, a group of 56 genes was subsequently validated with quantitative polymerase chain reaction (QPCR) and a subset examined with in situ hybridization. Microarrays trends were consistent with the QPCR data for the majority of genes (81%). On the basis of QPCR and microarray data, groups of genes that characterize each of the facial prominences can be determined.
Collapse
Affiliation(s)
- Marcela Buchtová
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Koussoulakou DS, Margaritis LH, Koussoulakos SL. Antagonists of retinoic acid and BMP4 affect fetal mouse osteogenesis and odontoblast differentiation. ACTA ACUST UNITED AC 2010; 18:103-9. [PMID: 20303242 DOI: 10.1016/j.pathophys.2010.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 02/19/2010] [Indexed: 10/19/2022]
Abstract
Retinoic acid and bone morphogenetic protein (BMP4) are endogenous factors indispensable for the physiological development of vertebrates. The proximate aim of the present study was to investigate whether the natural compound citral (a retinoic acid synthesis inhibitor) and a monoclonal, anti-BMP4 antibody, administered to pregnant mice affect in the fetuses cranial osteogenesis and odontoblast differentiation. The present investigation was motivated by the fact that, retinoic acid inhibitors and BMP4 neutralizers may frequently contact human tissues (both intentional and unintentional, and/or unconsciously) inducing unanticipated effects. Our ultimate goal is the prevention of side effects and, future clinical implementation of the results. To this end, pregnant, white mice (balb-c Mus musculus) were intra-abdominally injected with either citral or anti-BMP4 antibody at the 9th gestational day. Newborns were processed within 5h, postnatal. Results were evaluated (a) macroscopically, (b) stereoscopically, following histochemical double staining of cartilage and osseous tissues and, (c) microscopically after (c(1)) histological staining of paraffin sections, and, (c(2)) immunohistochemical detection of apoptosis. Data indicate that in vivo administration of citral (biomimicking hypovitaminosis A) caused restriction/retardation of cranial chondrogenesis and osteogenesis. Apoptosis was not detected in teeth tissues. In vivo administration of anti-BMP4 antibody resulted in a transitory interference with the normal course of odontoblast differentiation and the production of pre-dentin, whereas, delay in the ossification also included the alveoli. Animals inspected in adulthood displayed a fairly normal phenotype. It is concluded that those two substances, under their concentrations experienced, are quite safe for the public.
Collapse
Affiliation(s)
- Despina S Koussoulakou
- Department of Cell Biology and Biophysics, Faculty of Biology, N. & K. University of Athens, Panepistimiopolis 15784, Greece
| | | | | |
Collapse
|
40
|
Song L, Li Y, Wang K, Wang YZ, Molotkov A, Gao L, Zhao T, Yamagami T, Wang Y, Gan Q, Pleasure DE, Zhou CJ. Lrp6-mediated canonical Wnt signaling is required for lip formation and fusion. Development 2009; 136:3161-71. [PMID: 19700620 DOI: 10.1242/dev.037440] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neither the mechanisms that govern lip morphogenesis nor the cause of cleft lip are well understood. We report that genetic inactivation of Lrp6, a co-receptor of the Wnt/beta-catenin signaling pathway, leads to cleft lip with cleft palate. The activity of a Wnt signaling reporter is blocked in the orofacial primordia by Lrp6 deletion in mice. The morphological dynamic that is required for normal lip formation and fusion is disrupted in these mutants. The expression of the homeobox genes Msx1 and Msx2 is dramatically reduced in the mutants, which prevents the outgrowth of orofacial primordia, especially in the fusion site. We further demonstrate that Msx1 and Msx2 (but not their potential regulator Bmp4) are the downstream targets of the Wnt/beta-catenin signaling pathway during lip formation and fusion. By contrast, a ;fusion-resistant' gene, Raldh3 (also known as Aldh1a3), that encodes a retinoic acid-synthesizing enzyme is ectopically expressed in the upper lip primordia of Lrp6-deficient embryos, indicating a region-specific role of the Wnt/beta-catenin signaling pathway in repressing retinoic acid signaling. Thus, the Lrp6-mediated Wnt signaling pathway is required for lip development by orchestrating two distinctively different morphogenetic movements.
Collapse
Affiliation(s)
- Lanying Song
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Aquino JB, Lallemend F, Marmigère F, Adameyko I, Golemis EA, Ernfors P. The retinoic acid inducible Cas-family signaling protein Nedd9 regulates neural crest cell migration by modulating adhesion and actin dynamics. Neuroscience 2009; 162:1106-19. [PMID: 19464348 PMCID: PMC2797478 DOI: 10.1016/j.neuroscience.2009.05.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 04/21/2009] [Accepted: 05/18/2009] [Indexed: 01/12/2023]
Abstract
Cell migration is essential for the development of numerous structures derived from embryonic neural crest cells (NCCs), however the underlying molecular mechanisms are incompletely understood. NCCs migrate long distances in the embryo and contribute to many different cell types, including peripheral neurons, glia and pigment cells. In the present work we report expression of Nedd9, a scaffolding protein within the integrin signaling pathway, in non-lineage-restricted neural crest progenitor cells. In particular, Nedd9 was found to be expressed in the dorsal neural tube at the time of neural crest delamination and in early migrating NCCs. To analyze the role of Nedd9 in neural crest development we performed loss- and gain-of-function experiments and examined the subsequent effects on delamination and migration in vitro and in vivo. Our results demonstrate that loss of Nedd9 activity in chick NCCs perturbs cell spreading and the density of focal complexes and actin filaments, properties known to depend on integrins. Moreover, a siRNA dose-dependent decrease in Nedd9 activity results in a graded reduction of NCC's migratory distance while forced overexpression increases it. Retinoic acid (RA) was found to regulate Nedd9 expression in NCCs. Our results demonstrate in vivo that Nedd9 promotes the migration of NCCs in a graded manner and suggest a role for RA in the control of Nedd9 expression levels.
Collapse
Affiliation(s)
- Jorge B. Aquino
- Unit of Molecular Neurobiology-MBB, Karolinska Institute, 171 77 Stockholm, SWEDEN
| | - François Lallemend
- Unit of Molecular Neurobiology-MBB, Karolinska Institute, 171 77 Stockholm, SWEDEN
| | - Frédéric Marmigère
- Unit of Molecular Neurobiology-MBB, Karolinska Institute, 171 77 Stockholm, SWEDEN
| | - Igor Adameyko
- Unit of Molecular Neurobiology-MBB, Karolinska Institute, 171 77 Stockholm, SWEDEN
| | - Erica A. Golemis
- Division of Basic Science, Fox Chase Cancer Center, 333 Cottman Ave. Philadelphia, PA 19111, USA
| | - Patrik Ernfors
- Unit of Molecular Neurobiology-MBB, Karolinska Institute, 171 77 Stockholm, SWEDEN
| |
Collapse
|
42
|
Geetha-Loganathan P, Nimmagadda S, Antoni L, Fu K, Whiting CJ, Francis-West P, Richman JM. Expression of WNT signalling pathway genes during chicken craniofacial development. Dev Dyn 2009; 238:1150-65. [PMID: 19334275 DOI: 10.1002/dvdy.21934] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A comprehensive expression analysis of WNT signalling pathway genes during several stages of chicken facial development was performed. Thirty genes were surveyed including: WNT1, 2B, 3A, 4, 5A, 5B, 6, 7A, 7B, 8B, 8C, 9A, 9B, 11, 11B, 16, CTNNB1, LEF1, FRZB1, DKK1, DKK2, FZD1-8, FZD10. The strictly canonical WNTs (2B, 7A, 9B, and 16) in addition to WNT4 WNT6 (both canonical and non-canonical) are epithelially expressed, whereas WNT5A, 5B, 11 are limited to the mesenchyme. WNT16 is limited to the invaginating nasal pit, respiratory epithelium, and lip fusion zone. Antagonists DKK1 and FRZB1 are expressed in the fusing primary palate but then are decreased at stage 28 when fusion is beginning. This suggests that canonical WNT signalling may be active during lip fusion. Mediators of canonical signalling, CTNNB1, LEF1, and the majority of the FZD genes are expressed ubiquitously. These data show that activation of the canonical WNT pathway is feasible in all regions of the face; however, the localization of ligands and antagonists confers specificity.
Collapse
Affiliation(s)
- Poongodi Geetha-Loganathan
- Department of Oral Health Sciences, Life Sciences Institute, The University of British Columbia, Vancouver BC, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Hu D, Marcucio RS. Unique organization of the frontonasal ectodermal zone in birds and mammals. Dev Biol 2009; 325:200-10. [PMID: 19013147 PMCID: PMC2662765 DOI: 10.1016/j.ydbio.2008.10.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/10/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
The faces of birds and mammals exhibit remarkable morphologic diversity, but how variation arises is not well-understood. We have previously demonstrated that a region of facial ectoderm, which we named the frontonasal ectodermal zone (FEZ), regulates proximo-distal extension and dorso-ventral polarity of the upper jaw in birds. In this work, we examined the equivalent ectoderm in murine embryos and determined that the FEZ is conserved in mice. However, our results revealed that fundamental differences in the organization and constituents of the FEZ in mice and chicks may underlie the distinct growth characteristics that distinguish mammalian and avian embryos during the earliest stages of development. Finally, current models suggest that neural crest cells regulate size and shape of the upper jaw, and that signaling by Bone morphogenetic proteins (Bmps) within avian neural crest helps direct this process. Here we show that Bmp expression patterns in neural crest cells are regulated in part by signals from the FEZ. The results of our work reconcile how a conserved signaling center that patterns growth of developing face may generate morphologic diversity among different animals. Subtle changes in the organization of gene expression patterns in the FEZ could underlie morphologic variation observed among and within species, and at extremes, variation could produce disease phenotypes.
Collapse
Affiliation(s)
- Diane Hu
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
44
|
Proteome alteration of U251 human astrocytoma cell after inhibiting retinoic acid synthesis. Mol Cell Biochem 2008; 323:185-93. [PMID: 19089318 DOI: 10.1007/s11010-008-9978-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 11/28/2008] [Indexed: 10/21/2022]
Abstract
Retinoic acid (Ra) is crucial for the patterning and neuronal differentiation in the central nervous system (CNS). Ra deficiency in animals disrupts the motor activities and memory abilities. The molecular mechanisms underlying these behavior abnormalities remain largely unknown. In the current study, we treated the astrocytoma cells with citral, an inhibitor of Ra synthesis. We analyzed the differences in the protein concentrations between the treated and untreated astrocytoma cells by two-dimensional gel electrophoresis (2-DE), Imagemaster software, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In total, 39 of 46 altered protein spots with significant mascot scores were identified representing 36 proteins, that were involved in significantly altered glutamate metabolism, lipid metabolism, mitochondrial function, and oxidative stress response by Ingenuity Pathway Analysis (IPA). Altered 3-phosphoglycerate dehydrogenase (PHGDH) was also observed in western blot. These data provide some clues for explaining the behavioral changes caused by Ra deficiency, and support the hypothesis that Ra signaling is associated with some symptoms of neurodegenerative disorders and schizophrenia.
Collapse
|
45
|
Szabo-Rogers HL, Geetha-Loganathan P, Whiting CJ, Nimmagadda S, Fu K, Richman JM. Novel skeletogenic patterning roles for the olfactory pit. Development 2008; 136:219-29. [PMID: 19056832 DOI: 10.1242/dev.023978] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The position of the olfactory placodes suggests that these epithelial thickenings might provide morphogenetic information to the adjacent facial mesenchyme. To test this, we performed in ovo manipulations of the nasal placode in the avian embryo. Extirpation of placodal epithelium or placement of barriers on the lateral side of the placode revealed that the main influence is on the lateral nasal, not the frontonasal, mesenchyme. These early effects were consistent with the subsequent deletion of lateral nasal skeletal derivatives. We then showed in rescue experiments that FGFs are required for nasal capsule morphogenesis. The instructive capacity of the nasal pit epithelium was tested in a series of grafts to the face and trunk. Here, we showed for the first time that nasal pits are capable of inducing bone, cartilage and ectopic PAX7 expression, but these effects were only observed in the facial grafts. Facial mesenchyme also supported the initial projection of the olfactory nerve and differentiation of the olfactory epithelium. Thus, the nasal placode has two roles: as a signaling center for the lateral nasal skeleton and as a source of olfactory neurons and sensory epithelium.
Collapse
Affiliation(s)
- Heather L Szabo-Rogers
- Department of Oral Health Sciences, Life Sciences Institute, The University of British Columbia, Vancouver BC, V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Hu D, Marcucio RS. A SHH-responsive signaling center in the forebrain regulates craniofacial morphogenesis via the facial ectoderm. Development 2008; 136:107-16. [PMID: 19036802 DOI: 10.1242/dev.026583] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Interactions among the forebrain, neural crest and facial ectoderm regulate development of the upper jaw. To examine these interactions, we activated the Sonic hedgehog (SHH) pathway in the brain. Beginning 72 hours after activation of the SHH pathway, growth within the avian frontonasal process (FNP) was exaggerated in lateral regions and impaired in medial regions. This growth pattern is similar to that in mice and superimposed a mammalian-like morphology on the upper jaw. Jaw growth is controlled by signals from the frontonasal ectodermal zone (FEZ), and the divergent morphologies that characterize birds and mammals are accompanied by changes in the FEZ. In chicks there is a single FEZ spanning the FNP, but in mice both median nasal processes have a FEZ. In treated chicks, the FEZ was split into right and left domains that resembled the pattern present in mice. Additionally, we observed that, in the brain, fibroblast growth factor 8 (Fgf8) was downregulated, and signals in or near the nasal pit were altered. Raldh2 expression was expanded, whereas Fgf8, Wnt4, Wnt6 and Zfhx1b were downregulated. However, Wnt9b, and activation of the canonical WNT pathway, were unaltered in treated embryos. At later time points the upper beak was shortened owing to hypoplasia of the skeleton, and this phenotype was reproduced when we blocked the FGF pathway. Thus, the brain establishes multiple signaling centers within the developing upper jaw. Changes in organization of the brain that occur during evolution or as a result of disease can alter these centers and thereby generate morphological variation.
Collapse
Affiliation(s)
- Diane Hu
- Department of Orthopedic Surgery, San Francisco General Hospital, University of California at San Francisco, School of Medicine, San Francisco, CA 94110, USA
| | | |
Collapse
|
47
|
Aoto J, Nam CI, Poon MM, Ting P, Chen L. Synaptic signaling by all-trans retinoic acid in homeostatic synaptic plasticity. Neuron 2008; 60:308-20. [PMID: 18957222 PMCID: PMC2634746 DOI: 10.1016/j.neuron.2008.08.012] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 06/16/2008] [Accepted: 08/15/2008] [Indexed: 11/30/2022]
Abstract
Normal brain function requires that the overall synaptic activity in neural circuits be kept constant. Long-term alterations of neural activity lead to homeostatic regulation of synaptic strength by a process known as synaptic scaling. The molecular mechanisms underlying synaptic scaling are largely unknown. Here, we report that all-trans retinoic acid (RA), a well-known developmental morphogen, unexpectedly mediates synaptic scaling in response to activity blockade. We show that activity blockade increases RA synthesis in neurons and that acute RA treatment enhances synaptic transmission. The RA-induced increase in synaptic strength is occluded by activity blockade-induced synaptic scaling. Suppression of RA synthesis prevents synaptic scaling. This form of RA signaling operates via a translation-dependent but transcription-independent mechanism, causes an upregulation of postsynaptic glutamate receptor levels, and requires RARalpha receptors. Together, our data suggest that RA functions in homeostatic plasticity as a signaling molecule that increases synaptic strength by a protein synthesis-dependent mechanism.
Collapse
Affiliation(s)
- Jason Aoto
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200
| | - Christine I. Nam
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200
| | - Michael M. Poon
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200
| | - Pamela Ting
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200
| | - Lu Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720-3200
| |
Collapse
|
48
|
Higashihori N, Song Y, Richman JM. Expression and regulation of the decoy bone morphogenetic protein receptor BAMBI in the developing avian face. Dev Dyn 2008; 237:1500-8. [PMID: 18386821 DOI: 10.1002/dvdy.21529] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Here, we examine the expression and regulation of the gene BAMBI, a kinase-deficient decoy receptor capable of interacting with type I bone morphogenetic protein (BMP) receptors in avian embryos. Initially, expression was limited to the endoderm during neurula and pharyngula stages. From embryonic day 3.5 (stage 20) and onward, BAMBI expression almost perfectly overlapped with known expression patterns for BMP4, particularly in the face and limbs. We performed bead implant experiments in the face to see which signals could be repressing or promoting expression of BAMBI. Our data point to retinoids and BMPs as being major positive regulators of BAMBI expression; however, fibroblast growth factor 2 acts to repress BAMBI. Furthermore, retinoic acid is likely to act directly on BAMBI as induction occurs in the presence of cycloheximide. The data suggested that BAMBI could be used to regulate Bmp signaling during tissue interactions that are an integral part of facial morphogenesis.
Collapse
Affiliation(s)
- Norihisa Higashihori
- Department of Oral Health Sciences, Life Sciences Institute, The University of British Columbia, Vancouver BC, Canada
| | | | | |
Collapse
|
49
|
Wang G, Scott SA. Retinoid signaling is involved in governing the waiting period for axons in chick hindlimb. Dev Biol 2008; 321:216-26. [PMID: 18602384 PMCID: PMC2596718 DOI: 10.1016/j.ydbio.2008.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/12/2008] [Accepted: 06/12/2008] [Indexed: 01/01/2023]
Abstract
During embryonic development in chick, axons pause in a plexus region for approximately 1 day prior to invading the limb. We have previously shown that this "waiting period" is governed by maturational changes in the limb. Here we provide a detailed description of the spatiotemporal pattern of Raldh2 expression in lumbosacral motoneurons and in the limb, and show that retinoid signaling in the limb contributes significantly to terminating the waiting period. Raldh2, indicative of retinoid signaling, first appears in hindlimb mesenchyme near the end of the waiting period. Transcripts are more abundant in connective tissue associated with predominantly fast muscles than predominantly slow muscles, but are not expressed in muscle cells themselves. The tips of ingrowing axons are always found in association with domains of Raldh2, but development of Raldh2 expression is not regulated by the axons. Instead, retinoid signaling appears to regulate axon entry into the limb. Supplying exogenous retinoic acid to proximal limb during the waiting period caused both motor and sensory axons to invade the limb prematurely and altered the normal stereotyped pattern of axon ingrowth without obvious effects on limb morphogenesis or motoneuron specification. Conversely, locally decreasing retinoid synthesis reduced axon growth into the limb. Retinoic acid significantly enhanced motor axon growth in vitro, suggesting that retinoic acid may directly promote axon growth into the limb in vivo. In addition, retinoid signaling may indirectly affect the waiting period by regulating the maturation of other gate keeping or guidance molecules in the limb. Together these findings reveal a novel function of retinoid signaling in governing the timing and patterning of axon growth into the limb.
Collapse
Affiliation(s)
- Guoying Wang
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 N 1900 East, Salt Lake City, UT 84108
| | - Sheryl A. Scott
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 N 1900 East, Salt Lake City, UT 84108
| |
Collapse
|
50
|
Depew MJ, Compagnucci C. Tweaking the hinge and caps: testing a model of the organization of jaws. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:315-35. [PMID: 18027841 DOI: 10.1002/jez.b.21205] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Historically, examinations of gnathostome skulls have indicated that for essentially the entirety of their existence, jaws have been characterized by a high degree of fidelity to an initial basic structural design that will then go on to manifest an amazing array of end-point phenotypes. These two traits-bauplan fidelity and elaboration of design-are inter-connected and striking, and beg a number of questions, including: Are all jaws made in the same manner and if not how not? To begin to tackle such questions, we herein operationally define jaws as two appositional, hinged cranial units for which polarity and potential modularity are characteristics, and then address what is necessary for them to form, including delineating both the sources of cells and tissues that will formally yield the jaws as well as what informs their ontogeny (e.g., sources of positional information and factors directing the interpretation of developmental cues). Following on this, we briefly describe a predictive, testable model of jaw development (the "Hinge and Caps" model) and present evidence that the Satb2+cell population in the developing jaw primordia of mice defines a developmentally and evolutionarily significant jaw module such as would be predicted by the model.
Collapse
Affiliation(s)
- Michael J Depew
- Department of Craniofacial Development, Guy's Hospital, King's College London, London, United Kingdom.
| | | |
Collapse
|