1
|
Patel A, Rajgopal B, Jaiswal M. Various strategies to induce beta cell neogenesis: a comprehensive review for unravelling the potential future therapy for curing diabetes. Growth Factors 2025:1-28. [PMID: 40400239 DOI: 10.1080/08977194.2025.2508723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
Pancreatic endocrine cells are categorized in to 5 types (alpha, beta, delta, pancreatic polypeptide cells and epsilon), which expresses glucagon, insulin, somatostatin, pancreatic polypeptide, and ghrelin, respectively. Several studies including lineage tracing in Ins2Akita diabetic mice have been done to investigate the identities of pancreatic endocrine cells which concludes, alpha cells have enormous plasticity, which enables them to be reprogrammed by specific transcription factors into insulin secreting beta like cells. Gene therapy has provided the beneficial outcome. Pdx1, MaFA and PAX4 (the transcription factors) in alpha cells can be over expressed which results in reprogramming the targeted alpha cells into beta cells. This trans-differentiation may be induced by infusing an adeno-associated virus (AAV) loaded with distinct transcription factors in the duct of pancreas. Several researches have demonstrated the successful restoration of enhanced insulin secretion in diabetes induced mice. Additionally ductal neurogenin3 (Ngn3), Sglt2 inhibitors, Igfbp1, GLP1 and several clinical and non-clinical agents has been postulated as a basis of beta cell neogenesis. Alpha cell owing to its high plasticity, on prolonged exposure to GABA reprogrammed into beta-like cell due to downregulation of Arx expression by GABA. The various approaches for beta cell neogenesis open a new window towards the establishment of novel gene therapy accession to treat diabetes. However, broad studies are still needed to improve and optimize this treatment methodology. The potentiality of endogenous pancreatic alpha cell to beta cell conversion methods and its outcomes are invigorating. This accomplishment is presently being under trial in non-human primates.
Collapse
Affiliation(s)
- Anjali Patel
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, India
| | - B Rajgopal
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, India
| | - Manisha Jaiswal
- Rungta Institute of Pharmaceutical Education and Research, Bhilai, India
| |
Collapse
|
2
|
Sali S, Azzam L, Jaro T, Ali AAG, Mardini A, Al-Dajani O, Khattak S, Butler AE, Azeez JM, Nandakumar M. A perfect islet: reviewing recent protocol developments and proposing strategies for stem cell derived functional pancreatic islets. Stem Cell Res Ther 2025; 16:160. [PMID: 40165291 PMCID: PMC11959787 DOI: 10.1186/s13287-025-04293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
The search for an effective cell replacement therapy for diabetes has driven the development of "perfect" pancreatic islets from human pluripotent stem cells (hPSCs). These hPSC-derived pancreatic islet-like β cells can overcome the limitations for disease modelling, drug development and transplantation therapies in diabetes. Nevertheless, challenges remain in generating fully functional and mature β cells from hPSCs. This review underscores the significant efforts made by researchers to optimize various differentiation protocols aimed at enhancing the efficiency and quality of hPSC-derived pancreatic islets and proposes methods for their improvement. By emulating the natural developmental processes of pancreatic embryogenesis, specific growth factors, signaling molecules and culture conditions are employed to guide hPSCs towards the formation of mature β cells capable of secreting insulin in response to glucose. However, the efficiency of these protocols varies greatly among different human embryonic stem cell (hESC) and induced pluripotent stem cell (hiPSC) lines. This variability poses a particular challenge for generating patient-specific β cells. Despite recent advancements, the ultimate goal remains to develop a highly efficient directed differentiation protocol that is applicable across all genetic backgrounds of hPSCs. Although progress has been made, further research is required to optimize the protocols and characterization methods that could ensure the safety and efficacy of hPSC-derived pancreatic islets before they can be utilized in clinical settings.
Collapse
Affiliation(s)
- Sujitha Sali
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Leen Azzam
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Taraf Jaro
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Ahmed Ali Gebril Ali
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Ali Mardini
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Omar Al-Dajani
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Shahryar Khattak
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Alexandra E Butler
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain.
| | - Juberiya M Azeez
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Manjula Nandakumar
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| |
Collapse
|
3
|
Abbood MS, Al-Adsani AM, Al-Bustan SA. Ginger extract promotes pancreatic islets regeneration in streptozotocin-induced diabetic rats. Biosci Rep 2025; 45:BSR20241510. [PMID: 40014427 PMCID: PMC12096951 DOI: 10.1042/bsr20241510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/29/2025] [Accepted: 02/26/2025] [Indexed: 03/01/2025] Open
Abstract
Ginger (Zingiber officinale) exerts an antidiabetic effect by restoring pancreatic β-cells. The present study aimed to investigate the mechanism by which ginger extract induces the regeneration of functional β-cells in diabetic rats. Sprague-Dawley rats (n=27) were divided into three groups: normal rats given double distilled water (ddH2O) (NC, n=11), diabetic rats (injected with 60 mg/kg streptozotocin) given ddH2O (DC, n=8), and diabetic rats treated with aqueous ginger extract (DG, n=8). The effect of ginger extract intake on the differential expression of neurogenin-3 (Neurog3), V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (Mafb), insulin 2 (Ins2), and glucagon (Gcg) was assessed using quantitative real-time PCR after one and eight weeks of treatment. The pancreatic insulin source was determined using immunohistochemical analysis. After one week, ginger treatment significantly up-regulated the expression of both Neurog3 and Mafb in the DG rats compared with the DC rats. However, after eight weeks, the mRNA levels of these genes dropped significantly in parallel with the up-regulation of Ins2 and Gcg expression, resulting in increased serum insulin levels, weight, and lowered fasting blood glucose levels. Immunohistochemical analysis revealed a restored β-cell mass and islet architecture in the DG group. Ginger extract exerts an antidiabetic effect by acting on pancreatic progenitors and α-cells to restore β-cell mass in streptozotocininduced diabetic rats. These findings suggest that ginger extract could be a potential stimulator of β-cell neogenesis, which provides an alternative to meet the increasing demand for exogenous insulin in patients with diabetes.
Collapse
Affiliation(s)
- Manal S. Abbood
- Department of Biological Sciences, Faculty of Science, Kuwait University, Shadadiyah, Kuwait P.O. Box 5969, Safat 13060, Kuwait
| | - Amani M. Al-Adsani
- Department of Biological Sciences, Faculty of Science, Kuwait University, Shadadiyah, Kuwait P.O. Box 5969, Safat 13060, Kuwait
| | - Suzanne A. Al-Bustan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Shadadiyah, Kuwait P.O. Box 5969, Safat 13060, Kuwait
| |
Collapse
|
4
|
Brooks EP, Casey MR, Wells KL, Liu TY, Van Orman M, Sussel L. NKX2.2 and KLF4 cooperate to regulate α-cell identity. Genes Dev 2025; 39:242-260. [PMID: 39797760 PMCID: PMC11789634 DOI: 10.1101/gad.352193.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/12/2024] [Indexed: 01/13/2025]
Abstract
Transcription factors (TFs) are indispensable for maintaining cell identity through regulating cell-specific gene expression. Distinct cell identities derived from a common progenitor are frequently perpetuated by shared TFs, yet the mechanisms that enable these TFs to regulate cell-specific targets are poorly characterized. We report that the TF NKX2.2 is critical for the identity of pancreatic islet α cells by directly activating α-cell genes and repressing alternate islet cell fate genes. When compared with the known role of NKX2.2 in islet β cells, we demonstrate that NKX2.2 regulates α-cell genes, facilitated in part by α-cell-specific DNA binding at gene promoters. Furthermore, we have identified the reprogramming factor KLF4 as having enriched expression in α cells, where it co-occupies NKX2.2-bound α-cell promoters, is necessary for NKX2.2 promoter occupancy in α cells, and coregulates many NKX2.2 α-cell transcriptional targets. Overexpression of Klf4 in β cells is sufficient to manipulate chromatin accessibility, increase binding of NKX2.2 at α-cell-specific promoter sites, and alter expression of NKX2.2-regulated cell-specific targets. This study identifies KLF4 as a novel α-cell factor that cooperates with NKX2.2 to regulate α-cell identity.
Collapse
Affiliation(s)
- Elliott P Brooks
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - McKenna R Casey
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Tsung-Yun Liu
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Madeline Van Orman
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
5
|
Leclerc E, Pachkov M, Morisseau L, Tokito F, Legallais C, Jellali R, Nishikawa M, Abderrahmani A, Sakai Y. Investigation of the motif activity of transcription regulators in pancreatic β-like cell subpopulations differentiated from human induced pluripotent stem cells. Mol Omics 2024. [PMID: 39494575 DOI: 10.1039/d4mo00082j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Pancreatic β-cells are composed of different subtypes that play a key role in the control of insulin secretion and thereby control glucose homeostasis. In vitro differentiation of human induced pluripotent stem cells (hiPSCs) into 3D spheroids leads to the generation of β-cell subtypes and thus to the development of islet-like structures. Using this cutting-edge cell model, the aim of the study was to decipher the signaling signature that underlines β-cell subtypes, with a focus on the search for the activity of motifs of important transcription regulators (TRs). The investigation was performed using data from previous single-cell sequencing analysis introduced into the integrated system for motif activity response analysis (ISMARA) of transcription regulators. We extracted the matrix of important TRs activated in the β-cell subpopulation and bi-hormonal-like β-cells. Based on these TRs and their targets, we built specific regulatory networks for main cell subpopulations. Our data confirmed the transcriptomic heterogeneity of the β-cell subtype lineage and suggested a mechanism that could account for the differentiation of β-cell subtypes during pancreas development. We do believe that our findings could be instrumental for understanding the mechanisms that affect the balance of β-cell subtypes, leading to impaired insulin secretion in type 2 diabetes.
Collapse
Affiliation(s)
- Eric Leclerc
- CNRS IRL 2820; Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
| | - Mikhail Pachkov
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Amphipôle, 1015 Lausanne, Switzerland
| | - Lisa Morisseau
- CNRS UMR 7338, Laboratoire de Biomécanique et Bioingénierie, Sorbonne universités, Université de Technologies de Compiègne, France
| | - Fumiya Tokito
- Department of Chemical System Engineering, Graduate School of Engineering, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Cecile Legallais
- CNRS UMR 7338, Laboratoire de Biomécanique et Bioingénierie, Sorbonne universités, Université de Technologies de Compiègne, France
| | - Rachid Jellali
- CNRS UMR 7338, Laboratoire de Biomécanique et Bioingénierie, Sorbonne universités, Université de Technologies de Compiègne, France
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Yasuyuki Sakai
- CNRS IRL 2820; Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba; Meguro-ku, Tokyo, 153-8505, Japan
- Department of Chemical System Engineering, Graduate School of Engineering, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
6
|
Ryu GR, Bae D, Uddin S, Meah MS, Ahmad W, Silvano KJ, Ahn G, Cha JY, Lee E, Song KH, Kim WY, Kim MG. Effect of transcription factor MEOX on insulin gene expression in glucagon-like peptide 1-secreting cells. In Vitro Cell Dev Biol Anim 2024; 60:1099-1108. [PMID: 39138833 DOI: 10.1007/s11626-024-00964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Currently, the supply of beta cells for islet transplantation in the treatment of type 1 diabetes is limited. Enteroendocrine cells (EECs) are believed to have high potential as stem cells because they share significant developmental similarities with beta cells. In a previous study, we derived EEC cells that secrete individual gut hormones from STC-1 cells. This study aimed to examine intestinal hormone secretion and expression, investigate the expression of developmental-related transcription factors, and analyze the effect of MEOX on insulin gene expression in isolated EECs. The expression and secretion of enteroendocrine hormones were evaluated in L6 and K34 cells from STC-1 cells. Expression patterns of beta cell- and development-related genes in L6 and K34 cells were compared with beta cells. Comparisons of the MEOX-induced expression of Ins in beta cells and GLP-1-secreting cells were investigated. Both L6 and K34 cells predominantly expressed Glp1 and Gip, respectively. The secretion pattern of GLP-1 in L6 cells was similar to that of GLUTag cells. Previous microarray analysis confirmed MEOX as developmentally relevant transcription factors expressed in beta cells. Overexpression of MEOX showed a tendency to increase Ins expression in L6 and GLUTag cells, but not in MIN6 cells. However, when PDX1 and MEOX were co-expressed in GLUTag cells, insulin expression was suppressed, similar to that observed in MIN6 cells. These findings suggest a potential role for MEOX in regulating the expression of the Ins gene in both beta cells and GLP-1-secreting cells. Further studies are warranted to elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Gyeong Ryul Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Dongryeoul Bae
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Shahab Uddin
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Science, Plant Molecular Biology and Biotechnology Research Center, Plant Biological Rhythm Research Center, Research Institute of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Mohammed Sohel Meah
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Waqas Ahmad
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Kris John Silvano
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gyeongik Ahn
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Science, Plant Molecular Biology and Biotechnology Research Center, Plant Biological Rhythm Research Center, Research Institute of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Science, Plant Molecular Biology and Biotechnology Research Center, Plant Biological Rhythm Research Center, Research Institute of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Esder Lee
- Division of Endocrinology & Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki-Ho Song
- Division of Endocrinology & Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Science, Plant Molecular Biology and Biotechnology Research Center, Plant Biological Rhythm Research Center, Research Institute of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
7
|
Kaplan SJ, Wong W, Yan J, Pulecio J, Cho HS, Li Q, Zhao J, Leslie-Iyer J, Kazakov J, Murphy D, Luo R, Dey KK, Apostolou E, Leslie CS, Huangfu D. CRISPR screening uncovers a long-range enhancer for ONECUT1 in pancreatic differentiation and links a diabetes risk variant. Cell Rep 2024; 43:114640. [PMID: 39163202 PMCID: PMC11406439 DOI: 10.1016/j.celrep.2024.114640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Functional enhancer annotation is critical for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants. However, unbiased enhancer discovery in disease-relevant contexts remains challenging. To identify enhancers pertinent to diabetes, we conducted a CRISPR interference (CRISPRi) screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system. Among the enhancers identified, we focused on an enhancer we named ONECUT1e-664kb, ∼664 kb from the ONECUT1 promoter. Previous studies have linked ONECUT1 coding mutations to pancreatic hypoplasia and neonatal diabetes. We found that homozygous deletion of ONECUT1e-664kb in hPSCs leads to a near-complete loss of ONECUT1 expression and impaired pancreatic differentiation. ONECUT1e-664kb contains a type 2 diabetes-associated variant (rs528350911) disrupting a GATA motif. Introducing the risk variant into hPSCs reduced binding of key pancreatic transcription factors (GATA4, GATA6, and FOXA2), supporting its causal role in diabetes. This work highlights the utility of unbiased enhancer discovery in disease-relevant settings for understanding monogenic and complex disease.
Collapse
Affiliation(s)
- Samuel Joseph Kaplan
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA; Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wilfred Wong
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jielin Yan
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julian Pulecio
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hyein S Cho
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Qianzi Li
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jiahui Zhao
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jayanti Leslie-Iyer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan Kazakov
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dylan Murphy
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Renhe Luo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kushal K Dey
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Effie Apostolou
- Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY 10065, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
8
|
Shahin NN, Shaker OG, Mahmoud MO. GOAT rs10096097 and CREB1 rs6740584 single nucleotide polymorphisms are associated with type 2 diabetes mellitus in Egyptians. Arch Pharm (Weinheim) 2024; 357:e2400011. [PMID: 38713912 DOI: 10.1002/ardp.202400011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024]
Abstract
Diabetes mellitus (DM) is a chronic disorder that affects nearly half a billion people around the world and causes millions of deaths annually. Treatment of diabetes or related complications represents an economic burden not only for developing countries but also for the developed ones. Hence, new efficient therapeutic and preventive strategies and screening tools are necessary. The current work aimed to assess the potential association of single nucleotide polymorphisms (SNPs) in ghrelin O-acyltransferase (GOAT) rs10096097, cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) rs6740584, and v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) rs62521874 genes with type 2 DM susceptibility in Egyptians. A total of 96 patients with type 2 DM along with 72 healthy individuals participated in this study. Genotyping was executed via real-time polymerase chain reaction (PCR), and the serum protein levels of GOAT, CREB, and MafA were measured by enzyme-linked immunosorbent assay (ELISA). Genotyping revealed a significant association of GOAT rs10096097 and CREB1 rs6740584 SNPs with type 2 diabetes risk, with significantly higher GOAT rs10096097 G allele and CREB1 rs6740584 T allele frequencies in diabetic patients than in controls. However, insignificant association was identified between the MafA rs62521874 SNP and diabetes in the examined sample of the Egyptian residents. Serum GOAT, CREB1, and MafA protein levels did not vary significantly between diabetic and control individuals. Yet, significant variation in serum GOAT and CREB1 levels was detected between CREB1 rs6740584 genotypes within the diabetic group, with CT and TT genotype carriers showing higher levels than AA genotype patients. GOAT rs10096097 and CREB1 rs6740584, but not MafA rs62521874, SNPs are associated with type 2 diabetes risk in the studied Egyptians.
Collapse
Affiliation(s)
- Nancy N Shahin
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed O Mahmoud
- Biochemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
9
|
Kaplan SJ, Wong W, Yan J, Pulecio J, Cho HS, Li Q, Zhao J, Leslie-Iyer J, Kazakov J, Murphy D, Luo R, Dey KK, Apostolou E, Leslie CS, Huangfu D. CRISPR Screening Uncovers a Long-Range Enhancer for ONECUT1 in Pancreatic Differentiation and Links a Diabetes Risk Variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591412. [PMID: 38746154 PMCID: PMC11092487 DOI: 10.1101/2024.04.26.591412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Functional enhancer annotation is a valuable first step for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants for investigation. However, unbiased enhancer discovery in physiologically relevant contexts remains a major challenge. To discover regulatory elements pertinent to diabetes, we conducted a CRISPR interference screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system. Among the enhancers uncovered, we focused on a long-range enhancer ∼664 kb from the ONECUT1 promoter, since coding mutations in ONECUT1 cause pancreatic hypoplasia and neonatal diabetes. Homozygous enhancer deletion in hPSCs was associated with a near-complete loss of ONECUT1 gene expression and compromised pancreatic differentiation. This enhancer contains a confidently fine-mapped type 2 diabetes associated variant (rs528350911) which disrupts a GATA motif. Introduction of the risk variant into hPSCs revealed substantially reduced binding of key pancreatic transcription factors (GATA4, GATA6 and FOXA2) on the edited allele, accompanied by a slight reduction of ONECUT1 transcription, supporting a causal role for this risk variant in metabolic disease. This work expands our knowledge about transcriptional regulation in pancreatic development through the characterization of a long-range enhancer and highlights the utility of enhancer discovery in disease-relevant settings for understanding monogenic and complex disease.
Collapse
|
10
|
Yin J, Huang Y, Wang K, Zhong Q, Liu Y, Ji Z, Liao Y, Ma Z, Bei W, Wang W. Ginseng extract improves pancreatic islet injury and promotes β-cell regeneration in T2DM mice. Front Pharmacol 2024; 15:1407200. [PMID: 38989151 PMCID: PMC11234855 DOI: 10.3389/fphar.2024.1407200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Panax ginseng C. A. Mey. (Araliaceae; Ginseng Radix et Rhizoma), a traditional plant commonly utilized in Eastern Asia, has demonstrated efficacy in treating neuro-damaging diseases and diabetes mellitus. However, its precise roles and mechanism in alleviating type 2 diabetes mellitus (T2DM) need further study. The objective of this study is to explore the pharmacological effects of ginseng extract and elucidate its potential mechanisms in protecting islets and promoting β-cell regeneration. Methods The T2DM mouse model was induced through streptozotocin combined with a high-fat diet. Two batches of mice were sacrificed on the 7th and 28th days following ginseng extract administration. Body weight, fasting blood glucose levels, and glucose tolerance were detected. Morphological changes in the pancreatic islets were examined via H & E staining. Levels of serum insulin, glucagon, GLP-1, and inflammatory factors were measured using ELISA. The ability of ginseng extract to promote pancreatic islet β-cell regeneration was evaluated through insulin & PCNA double immunofluorescence staining. Furthermore, the mechanism behind β-cells regeneration was explored through insulin & glucagon double immunofluorescence staining, accompanied by immunohistochemical staining and western blot analyses. Results and Discussion The present research revealed that ginseng extract alleviates symptoms of T2DM in mice, including decreased blood glucose levels and improved glucose tolerance. Serum levels of insulin, GLP-1, and IL-10 increased following the administration of ginseng extract, while levels of glucagon, TNF-α, and IL-1β decreased. Ginseng extract preserved normal islet morphology, increased nascent β-cell population, and inhibited inflammatory infiltration within the islets, moreover, it decreased α-cell proportion while increasing β-cell proportion. Mechanistically, ginseng extract might inhibit ARX and MAFB expressions, increase MAFA level to aid in α-cell to β-cell transformation, and activate AKT-FOXM1/cyclin D2 to enhance β-cell proliferation. Our study suggests that ginseng extract may be a promising therapy in treating T2DM, especially in those with islet injury.
Collapse
Affiliation(s)
- Jianying Yin
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yuanfeng Huang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ke Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Qin Zhong
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yuan Liu
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Zirui Ji
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yiwen Liao
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Zhiyuan Ma
- Baishan Institute of Science and Technology, Baishan, Jilin, China
| | - Weijian Bei
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Weixuan Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Yao Y, Liu P, Li Y, Wang W, Jia H, Bai Y, Yuan Z, Yang Z. Regulatory role of m 6A epitranscriptomic modifications in normal development and congenital malformations during embryogenesis. Biomed Pharmacother 2024; 173:116171. [PMID: 38394844 DOI: 10.1016/j.biopha.2024.116171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
The discovery of N6-methyladenosine (m6A) methylation and its role in translation has led to the emergence of a new field of research. Despite accumulating evidence suggesting that m6A methylation is essential for the pathogenesis of cancers and aging diseases by influencing RNA stability, localization, transformation, and translation efficiency, its role in normal and abnormal embryonic development remains unclear. An increasing number of studies are addressing the development of the nervous and gonadal systems during embryonic development, but only few are assessing that of the immune, hematopoietic, urinary, and respiratory systems. Additionally, these studies are limited by the requirement for reliable embryonic animal models and the difficulty in collecting tissue samples of fetuses during development. Multiple studies on the function of m6A methylation have used suitable cell lines to mimic the complex biological processes of fetal development or the early postnatal phase; hence, the research is still in the primary stage. Herein, we discuss current advances in the extensive biological functions of m6A methylation in the development and maldevelopment of embryos/fetuses and conclude that m6A modification occurs extensively during fetal development. Aberrant expression of m6A regulators is probably correlated with single or multiple defects in organogenesis during the intrauterine life. This comprehensive review will enhance our understanding of the pivotal role of m6A modifications involved in fetal development and examine future research directions in embryogenesis.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peiqi Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
12
|
Udagawa H, Funahashi N, Nishimura W, Uebanso T, Kawaguchi M, Asahi R, Nakajima S, Nammo T, Hiramoto M, Yasuda K. Glucocorticoid receptor-NECAB1 axis can negatively regulate insulin secretion in pancreatic β-cells. Sci Rep 2023; 13:17958. [PMID: 37863964 PMCID: PMC10589354 DOI: 10.1038/s41598-023-44324-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
The mechanisms of impaired glucose-induced insulin secretion from the pancreatic β-cells in obesity have not yet been completely elucidated. Here, we aimed to assess the effects of adipocyte-derived factors on the functioning of pancreatic β-cells. We prepared a conditioned medium using 3T3-L1 cell culture supernatant collected at day eight (D8CM) and then exposed the rat pancreatic β-cell line, INS-1D. We found that D8CM suppressed insulin secretion in INS-1D cells due to reduced intracellular calcium levels. This was mediated by the induction of a negative regulator of insulin secretion-NECAB1. LC-MS/MS analysis results revealed that D8CM possessed steroid hormones (cortisol, corticosterone, and cortisone). INS-1D cell exposure to cortisol or corticosterone increased Necab1 mRNA expression and significantly reduced insulin secretion. The increased expression of Necab1 and reduced insulin secretion effects from exposure to these hormones were completely abolished by inhibition of the glucocorticoid receptor (GR). NECAB1 expression was also increased in the pancreatic islets of db/db mice. We demonstrated that the upregulation of NECAB1 was dependent on GR activation, and that binding of the GR to the upstream regions of Necab1 was essential for this effect. NECAB1 may play a novel role in the adipoinsular axis and could be potentially involved in the pathophysiology of obesity-related diabetes mellitus.
Collapse
Affiliation(s)
- Haruhide Udagawa
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa, 253-8550, Japan
| | - Nobuaki Funahashi
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Wataru Nishimura
- Department of Molecular Biology, International University of Health and Welfare School of Medicine, Narita, Chiba, 286-8686, Japan
- Division of Anatomy, Bio-Imaging and Neuro-Cell Science, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Miho Kawaguchi
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Riku Asahi
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa, 253-8550, Japan
| | - Shigeru Nakajima
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa, 253-8550, Japan
| | - Takao Nammo
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Kazuki Yasuda
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan.
- Department of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| |
Collapse
|
13
|
Iftikhar A, Nausheen R, Khurshid M, Iqbal RK, Muzaffar H, Malik A, Ali Khan A, Batool F, Akhtar S, Yasin A, Anwar H. Pancreatic regenerative potential of manuka honey evidenced through pancreatic histology and levels of transcription factors in diabetic rat model. Heliyon 2023; 9:e20017. [PMID: 37809953 PMCID: PMC10559747 DOI: 10.1016/j.heliyon.2023.e20017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/18/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Background Diabetes mellitus is a commonly occurring metabolic disorder accompanied by high morbidity and alarming mortality. Besides various available therapies, induction of pancreatic regeneration has emerged as a promising strategy for alleviating the damaging effect of diabetes. Honey, a potent antioxidative and anti-inflammatory agent, has been reported in the literature archive to exhibit favourable results in the regeneration process of several organ systems. Design The current research work was intended to explore the potential role of manuka honey in pancreatic regeneration in alloxan-induced diabetic rats by accessing the pancreatic histology and levels of relevant transcription factors, including MAFA, PDX-1, INS-1, INS-2, NEUROG3, NKX6-1, and NEUROD. An equal number of rats were allocated to all four experimental groups: normal, negative control, positive control, and treatment group. Diabetes was induced in all groups except normal through a single intraperitoneal dose of alloxan monohydrate. No subsequent treatment was given to the negative control group, while the positive control and treatment groups were supplemented with metformin (150 mg/kg/day) and manuka honey (3 g/kg/day), respectively. Results Statistical comparison of glucose and insulin levels, oxidative stress indicators, changes in the architecture of pancreatic islets, and expression levels of regeneration-associated transcription factors advocated the potential role of manuka honey in ameliorating the alloxan-induced hyperglycaemia, hyperinsulinemia, oxidative stress, and necrotic changes in islets along with significant upregulation of relevant transcription factors. Conclusion This suggests to us the auspicious role of antioxidants in honey in pancreatic regeneration and advocates the favourable role of manuka honey in combating diabetes mellitus.
Collapse
Affiliation(s)
- Arslan Iftikhar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Nausheen
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Rana Khalid Iqbal
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Humaira Muzaffar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Farwah Batool
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Suhail Akhtar
- Department of Biochemistry, A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - Ayesha Yasin
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
14
|
Brooks EP, Sussel L. Not the second fiddle: α cell development, identity, and function in health and diabetes. J Endocrinol 2023; 258:e220297. [PMID: 37171828 PMCID: PMC10524258 DOI: 10.1530/joe-22-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Historic and emerging studies provide evidence for the deterioration of pancreatic α cell function and identity in diabetes mellitus. Increased access to human tissue and the availability of more sophisticated molecular technologies have identified key insights into how α cell function and identity are preserved in healthy conditions and how they become dysfunctional in response to stress. These studies have revealed evidence of impaired glucagon secretion, shifts in α cell electrophysiology, changes in α cell mass, dysregulation of α cell transcription, and α-to-β cell conversion prior to and during diabetes. In this review, we outline the current state of research on α cell identity in health and disease. Evidence in model organisms and humans suggests that in addition to β cell dysfunction, diabetes is associated with a fundamental dysregulation of α cell identity. Importantly, epigenetic studies have revealed that α cells retain more poised and open chromatin at key cell-specific and diabetes-dysregulated genes, supporting the model that the inherent epigenetic plasticity of α cells makes them susceptible to the transcriptional changes that potentiate the loss of identity and function seen in diabetes. Thus, additional research into the maintenance of α cell identity and function is critical to fully understanding diabetes. Furthermore, these studies suggest α cells could represent an alternative source of new β cells for diabetes treatment.
Collapse
Affiliation(s)
- Elliott P Brooks
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
15
|
Naina Marikar S, Al-Hasani K, Khurana I, Kaipananickal H, Okabe J, Maxwell S, El-Osta A. Pharmacological inhibition of human EZH2 can influence a regenerative β-like cell capacity with in vitro insulin release in pancreatic ductal cells. Clin Epigenetics 2023; 15:101. [PMID: 37309004 DOI: 10.1186/s13148-023-01491-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Therapeutic replacement of pancreatic endocrine β-cells is key to improving hyperglycaemia caused by insulin-dependent diabetes . Whilst the pool of ductal progenitors, which give rise to the endocrine cells, are active during development, neogenesis of islets is repressed in the human adult. Recent human donor studies have demonstrated the role of EZH2 inhibition in surgically isolated exocrine cells showing reactivation of insulin expression and the influence on the H3K27me3 barrier to β-cell regeneration. However, those studies fall short on defining the cell type active in transcriptional reactivation events. This study examines the role of the regenerative capacity of human pancreatic ductal cells when stimulated with pharmacological inhibitors of the EZH2 methyltransferase. RESULTS Human pancreatic ductal epithelial cells were stimulated with the EZH2 inhibitors GSK-126, EPZ6438, and triptolide using a 2- and 7-day protocol to determine their influence on the expression of core endocrine development marker NGN3, as well as β-cell markers insulin, MAFA, and PDX1. Chromatin immunoprecipitation studies show a close correspondence of pharmacological EZH2 inhibition with reduced H3K27me3 content of the core genes, NGN3, MAFA and PDX1. Consistent with the reduction of H3K27me3 by pharmacological inhibition of EZH2, we observe measurable immunofluorescence staining of insulin protein and glucose-sensitive insulin response. CONCLUSION The results of this study serve as a proof of concept for a probable source of β-cell induction from pancreatic ductal cells that are capable of influencing insulin expression. Whilst pharmacological inhibition of EZH2 can stimulate secretion of detectable insulin from ductal progenitor cells, further studies are required to address mechanism and the identity of ductal progenitor cell targets to improve likely methods designed to reduce the burden of insulin-dependent diabetes.
Collapse
Affiliation(s)
- Safiya Naina Marikar
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, VIC, 3004, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, VIC, 3004, Melbourne, Australia
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Keith Al-Hasani
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, VIC, 3004, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, VIC, 3004, Melbourne, Australia
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Ishant Khurana
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, VIC, 3004, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, VIC, 3004, Melbourne, Australia
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Harikrishnan Kaipananickal
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, VIC, 3004, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, VIC, 3004, Melbourne, Australia
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Jun Okabe
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, VIC, 3004, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, VIC, 3004, Melbourne, Australia
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Scott Maxwell
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, VIC, 3004, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, VIC, 3004, Melbourne, Australia
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, VIC, 3004, Melbourne, Australia.
- Department of Diabetes, Central Clinical School, Monash University, VIC, 3004, Melbourne, Australia.
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR.
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30‑32 Ngan Shing Street, Sha Tin, Hong Kong SAR.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR.
- Biomedical Laboratory Science, Department of Technology, Faculty of Health, University College Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Abarinov V, Levine JA, Churchill AJ, Hopwood B, Deiter CS, Guney MA, Wells KL, Schrunk JM, Guo Y, Hammelman J, Gifford DK, Magnuson MA, Wichterle H, Sussel L. Major β cell-specific functions of NKX2.2 are mediated via the NK2-specific domain. Genes Dev 2023; 37:490-504. [PMID: 37364986 PMCID: PMC10393193 DOI: 10.1101/gad.350569.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
The consolidation of unambiguous cell fate commitment relies on the ability of transcription factors (TFs) to exert tissue-specific regulation of complex genetic networks. However, the mechanisms by which TFs establish such precise control over gene expression have remained elusive-especially in instances in which a single TF operates in two or more discrete cellular systems. In this study, we demonstrate that β cell-specific functions of NKX2.2 are driven by the highly conserved NK2-specific domain (SD). Mutation of the endogenous NKX2.2 SD prevents the developmental progression of β cell precursors into mature, insulin-expressing β cells, resulting in overt neonatal diabetes. Within the adult β cell, the SD stimulates β cell performance through the activation and repression of a subset of NKX2.2-regulated transcripts critical for β cell function. These irregularities in β cell gene expression may be mediated via SD-contingent interactions with components of chromatin remodelers and the nuclear pore complex. However, in stark contrast to these pancreatic phenotypes, the SD is entirely dispensable for the development of NKX2.2-dependent cell types within the CNS. Together, these results reveal a previously undetermined mechanism through which NKX2.2 directs disparate transcriptional programs in the pancreas versus neuroepithelium.
Collapse
Affiliation(s)
- Vladimir Abarinov
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Joshua A Levine
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | - Angela J Churchill
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | - Bryce Hopwood
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Cailin S Deiter
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Michelle A Guney
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jessica M Schrunk
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Yuchun Guo
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jennifer Hammelman
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
- Department of Neurology, Columbia University, New York, New York 10032, USA
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| | - Lori Sussel
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA;
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
17
|
Fu Q, Jiang H, Qian Y, Lv H, Dai H, Zhou Y, Chen Y, He Y, Gao R, Zheng S, Liang Y, Li S, Xu X, Xu K, Yang T. Single-cell RNA sequencing combined with single-cell proteomics identifies the metabolic adaptation of islet cell subpopulations to high-fat diet in mice. Diabetologia 2023; 66:724-740. [PMID: 36538064 PMCID: PMC9765371 DOI: 10.1007/s00125-022-05849-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022]
Abstract
AIMS/HYPOTHESIS Islets have complex heterogeneity and subpopulations. Cell surface markers representing alpha, beta and delta cell subpopulations are urgently needed for investigations to explore the compositional changes of each subpopulation in obesity progress and diabetes onset, and the adaptation mechanism of islet metabolism induced by a high-fat diet (HFD). METHODS Single-cell RNA sequencing (scRNA-seq) was applied to identify alpha, beta and delta cell subpopulation markers in an HFD-induced mouse model of glucose intolerance. Flow cytometry and immunostaining were used to sort and assess the proportion of each subpopulation. Single-cell proteomics was performed on sorted cells, and the functional status of each alpha, beta and delta cell subpopulation in glucose intolerance was deeply elucidated based on protein expression. RESULTS A total of 33,999 cells were analysed by scRNA-seq and clustered into eight populations, including alpha, beta and delta cells. For alpha cells, scRNA-seq revealed that the Ace2low subpopulation had downregulated expression of genes related to alpha cell function and upregulated expression of genes associated with beta cell characteristics in comparison with the Ace2high subpopulation. The impaired function and increased fragility of ACE2low alpha cells exposure to HFD was further suggested by single-cell proteomics. As for beta cells, the CD81high subpopulation may indicate an immature signature of beta cells compared with the CD81low subpopulation, which had robust function. We also found differential expression of Slc2a2 in delta cells and a potentially stronger cellular function and metabolism in GLUT2low delta cells than GLUT2high delta cells. Moreover, an increased proportion of ACE2low alpha cells and CD81low beta cells, with a constant proportion of GLUT2low delta cells, were observed in HFD-induced glucose intolerance. CONCLUSIONS/INTERPRETATION We identified ACE2, CD81 and GLUT2 as surface markers to distinguish, respectively, alpha, beta and delta cell subpopulations with heterogeneous maturation and function. The changes in the proportion and functional status of islet endocrine subpopulations reflect the metabolic adaptation of islets to high-fat stress, which weakened the function of alpha cells and enhanced the function of beta and delta cells to bring about glycaemic homeostasis. Our findings provide a fundamental resource for exploring the mechanisms maintaining each islet endocrine subpopulation's fate and function in health and disease. DATA AVAILABILITY The scRNA-seq analysis datasets from the current study are available in the Gene Expression Omnibus (GEO) repository under the accession number GSE203376.
Collapse
Affiliation(s)
- Qi Fu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hemin Jiang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Qian
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Lv
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Dai
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuncai Zhou
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Chen
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunqiang He
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Gao
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Zheng
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yucheng Liang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siqi Li
- BGI-Shenzhen, Shenzhen, China
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, China
| | - Xinyu Xu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kuanfeng Xu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Tao Yang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
18
|
Bele S, Wokasch AS, Gannon M. Epigenetic modulation of cell fate during pancreas development. TRENDS IN DEVELOPMENTAL BIOLOGY 2023; 16:1-27. [PMID: 38873037 PMCID: PMC11173269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Epigenetic modifications to DNA and its associated proteins affect cell plasticity and cell fate restrictions throughout embryonic development. Development of the vertebrate pancreas is characterized by initial is an over-lapping expression of a set of transcriptional regulators in a defined region of the posterior foregut endoderm that collectively promote pancreas progenitor specification and proliferation. As development progresses, these transcription factors segregate into distinct pancreatic lineages, with some being maintained in specific subsets of terminally differentiated pancreas cell types throughout adulthood. Here we describe the progressive stages and cell fate restrictions that occur during pancreas development and the relevant known epigenetic regulatory events that drive the dynamic expression patterns of transcription factors that regulate pancreas development. In addition, we highlight how changes in epigenetic marks can affect susceptibility to pancreas diseases (such as diabetes), adult pancreas cell plasticity, and the ability to derive replacement insulin-producing β cells for the treatment of diabetes.
Collapse
Affiliation(s)
- Shilpak Bele
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN, 37232, USA
| | - Anthony S. Wokasch
- Department of Cell and Developmental Biology, Vanderbilt University, 2213 Garland Avenue, Nashville, TN, 37232, USA
| | - Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, 2213 Garland Avenue, Nashville, TN, 37232, USA
- Department of Veterans Affairs Tennessee Valley Authority, Research Division, 1310 24 Avenue South, Nashville, TN, 37212, USA
- Department of Molecular Physiology and Biophysics, 2213 Garland Avenue, Nashville, TN, 37232, USA
| |
Collapse
|
19
|
Ebrahim N, Shakirova K, Dashinimaev E. PDX1 is the cornerstone of pancreatic β-cell functions and identity. Front Mol Biosci 2022; 9:1091757. [PMID: 36589234 PMCID: PMC9798421 DOI: 10.3389/fmolb.2022.1091757] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes has been a worldwide healthcare problem for many years. Current methods of treating diabetes are still largely directed at symptoms, aiming to control the manifestations of the pathology. This creates an overall need to find alternative measures that can impact on the causes of the disease, reverse diabetes, or make it more manageable. Understanding the role of key players in the pathogenesis of diabetes and the related β-cell functions is of great importance in combating diabetes. PDX1 is a master regulator in pancreas organogenesis, the maturation and identity preservation of β-cells, and of their role in normal insulin function. Mutations in the PDX1 gene are correlated with many pancreatic dysfunctions, including pancreatic agenesis (homozygous mutation) and MODY4 (heterozygous mutation), while in other types of diabetes, PDX1 expression is reduced. Therefore, alternative approaches to treat diabetes largely depend on knowledge of PDX1 regulation, its interaction with other transcription factors, and its role in obtaining β-cells through differentiation and transdifferentiation protocols. In this article, we review the basic functions of PDX1 and its regulation by genetic and epigenetic factors. Lastly, we summarize different variations of the differentiation protocols used to obtain β-cells from alternative cell sources, using PDX1 alone or in combination with various transcription factors and modified culture conditions. This review shows the unique position of PDX1 as a potential target in the genetic and cellular treatment of diabetes.
Collapse
Affiliation(s)
- Nour Ebrahim
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Ksenia Shakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia,*Correspondence: Erdem Dashinimaev,
| |
Collapse
|
20
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
21
|
Transcription Factor MAFB as a Prognostic Biomarker for the Lung Adenocarcinoma. Int J Mol Sci 2022; 23:ijms23179945. [PMID: 36077342 PMCID: PMC9456510 DOI: 10.3390/ijms23179945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
MAFB is a basic leucine zipper (bZIP) transcription factor specifically expressed in macrophages. We have previously identified MAFB as a candidate marker for tumor-associated macrophages (TAMs) in human and mouse models. Here, we analyzed single-cell sequencing data of patients with lung adenocarcinoma obtained from the GEO database (GSE131907). Analyzed data showed that general macrophage marker CD68 and macrophage scavenger receptor 1 (CD204) were expressed in TAM and lung tissue macrophage clusters, while transcription factor MAFB was expressed specifically in TAM clusters. Clinical records of 120 patients with lung adenocarcinoma stage I (n = 57), II (n = 21), and III (n = 42) were retrieved from Tsukuba Human Tissue Biobank Center (THB) in the University of Tsukuba Hospital, Japan. Tumor tissues from these patients were extracted and stained with anti-human MAFB antibody, and then MAFB-positive cells relative to the tissue area (MAFB+ cells/tissue area) were morphometrically quantified. Our results indicated that higher numbers of MAFB+ cells significantly correlated to increased local lymph node metastasis (nodal involvement), high recurrence rate, poor pathological stage, increased lymphatic permeation, higher vascular invasion, and pleural infiltration. Moreover, increased amounts of MAFB+ cells were related to poor overall survival and disease-free survival, especially in smokers. These data indicate that MAFB may be a suitable prognostic biomarker for smoker lung cancer patients.
Collapse
|
22
|
Merino B, Casanueva-Álvarez E, Quesada I, González-Casimiro CM, Fernández-Díaz CM, Postigo-Casado T, Leissring MA, Kaestner KH, Perdomo G, Cózar-Castellano I. Insulin-degrading enzyme ablation in mouse pancreatic alpha cells triggers cell proliferation, hyperplasia and glucagon secretion dysregulation. Diabetologia 2022; 65:1375-1389. [PMID: 35652923 PMCID: PMC9283140 DOI: 10.1007/s00125-022-05729-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/11/2022] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is characterised by hyperglucagonaemia and perturbed function of pancreatic glucagon-secreting alpha cells but the molecular mechanisms contributing to these phenotypes are poorly understood. Insulin-degrading enzyme (IDE) is present within all islet cells, mostly in alpha cells, in both mice and humans. Furthermore, IDE can degrade glucagon as well as insulin, suggesting that IDE may play an important role in alpha cell function in vivo. METHODS We have generated and characterised a novel mouse model with alpha cell-specific deletion of Ide, the A-IDE-KO mouse line. Glucose metabolism and glucagon secretion in vivo was characterised; isolated islets were tested for glucagon and insulin secretion; alpha cell mass, alpha cell proliferation and α-synuclein levels were determined in pancreas sections by immunostaining. RESULTS Targeted deletion of Ide exclusively in alpha cells triggers hyperglucagonaemia and alpha cell hyperplasia, resulting in elevated constitutive glucagon secretion. The hyperglucagonaemia is attributable in part to dysregulation of glucagon secretion, specifically an impaired ability of IDE-deficient alpha cells to suppress glucagon release in the presence of high glucose or insulin. IDE deficiency also leads to α-synuclein aggregation in alpha cells, which may contribute to impaired glucagon secretion via cytoskeletal dysfunction. We showed further that IDE deficiency triggers impairments in cilia formation, inducing alpha cell hyperplasia and possibly also contributing to dysregulated glucagon secretion and hyperglucagonaemia. CONCLUSIONS/INTERPRETATION We propose that loss of IDE function in alpha cells contributes to hyperglucagonaemia in type 2 diabetes.
Collapse
Affiliation(s)
- Beatriz Merino
- Unidad de Excelencia Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain
| | - Elena Casanueva-Álvarez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain
| | - Iván Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Carlos M González-Casimiro
- Unidad de Excelencia Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain
| | | | - Tamara Postigo-Casado
- Unidad de Excelencia Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain
| | - Malcolm A Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - Germán Perdomo
- Unidad de Excelencia Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain
| | - Irene Cózar-Castellano
- Unidad de Excelencia Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
23
|
Toren E, Liu Y, Bethea M, Wade A, Hunter CS. The Ldb1 transcriptional co-regulator is required for establishment and maintenance of the pancreatic endocrine lineage. FASEB J 2022; 36:e22460. [PMID: 35881062 PMCID: PMC9397370 DOI: 10.1096/fj.202200410r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Pancreatic islet cell development is regulated by transcription factors (TFs) that mediate embryonic progenitor differentiation toward mature endocrine cells. Prior studies from our lab and others showed that the islet-enriched TF, Islet-1 (Isl1), interacts with the broadly-expressed transcriptional co-regulator, Ldb1, to regulate islet cell maturation and postnhyperatal function (by embryonic day (E)18.5). However, Ldb1 is expressed in the developing pancreas prior to Isl1 expression, notably in multipotent progenitor cells (MPCs) marked by Pdx1 and endocrine progenitors (EPs) expressing Neurogenin-3 (Ngn3). MPCs give rise to the endocrine and exocrine pancreas, while Ngn3+ EPs specify pancreatic islet endocrine cells. We hypothesized that Ldb1 is required for progenitor identity in MPC and EP populations during development to impact islet appearance and function. To test this, we generated a whole-pancreas Ldb1 knockout, termed Ldb1ΔPanc , and observed severe developmental and postnatal pancreas defects including disorganized progenitor pools, a significant reduction of Ngn3-expressing EPs, Pdx1HI β-cells, and early hormone+ cells. Ldb1ΔPanc neonates presented with severe hyperglycemia, hypoinsulinemia, and drastically reduced hormone expression in islets, yet no change in total pancreas mass. This supports the endocrine-specific actions of Ldb1. Considering this, we also developed an endocrine-enriched model of Ldb1 loss, termed Ldb1ΔEndo . We observed similar dysglycemia in this model, as well as a loss of islet identity markers. Through in vitro and in vivo chromatin immunoprecipitation experiments, we found that Ldb1 occupies key Pdx1 and Ngn3 promoter domains. Our findings provide insight into novel regulation of endocrine cell differentiation that may be vital toward improving cell-based diabetes therapies.
Collapse
Affiliation(s)
- Eliana Toren
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yanping Liu
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maigen Bethea
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alexa Wade
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
24
|
Abstract
The transcription factor MafB plays an essential role in β-cell differentiation during the embryonic stage in rodents. Although MafB disappears from β-cells after birth, it has been reported that MafB can be evoked in β-cells and is involved in insulin+β-cell number and islet architecture maintenance in adult mice under diabetic conditions. However, the underlying mechanism by which MafB protects β-cells remains unknown. To elucidate this, we performed RNA sequencing using an inducible diabetes model (A0BΔpanc mice) that we previously generated. We found that the deletion of Mafb can induce β-cell dedifferentiation, characterized by the upregulation of dedifferentiation markers, Slc5a10 and Cck, as well as several β-cell-disallowed genes, and by the downregulation of mature β-cell markers, Slc2a2 and Ucn3. However, there is no re-expression of well-known progenitor cell markers, Foxo1 and Neurog3. Further, the appearance of ALDH1A3+ cells and the disappearance of UCN3+ cells also verify the β-cell dedifferentiation state. Collectively, our results suggest that MafB can maintain β-cell identity under certain pathological conditions in adult mice, providing novel insight into the role of MafB in β-cell identity maintenance.
Collapse
|
25
|
Role of the Transcription Factor MAFA in the Maintenance of Pancreatic β-Cells. Int J Mol Sci 2022; 23:ijms23094478. [PMID: 35562869 PMCID: PMC9101179 DOI: 10.3390/ijms23094478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic β-cells are specialized to properly regulate blood glucose. Maintenance of the mature β-cell phenotype is critical for glucose metabolism, and β-cell failure results in diabetes mellitus. Recent studies provide strong evidence that the mature phenotype of β-cells is maintained by several transcription factors. These factors are also required for β-cell differentiation from endocrine precursors or maturation from immature β-cells during pancreatic development. Because the reduction or loss of these factors leads to β-cell failure and diabetes, inducing the upregulation or inhibiting downregulation of these transcription factors would be beneficial for studies in both diabetes and stem cell biology. Here, we discuss one such factor, i.e., the transcription factor MAFA. MAFA is a basic leucine zipper family transcription factor that can activate the expression of insulin in β-cells with PDX1 and NEUROD1. MAFA is indeed indispensable for the maintenance of not only insulin expression but also function of adult β-cells. With loss of MAFA in type 2 diabetes, β-cells cannot maintain their mature phenotype and are dedifferentiated. In this review, we first briefly summarize the functional roles of MAFA in β-cells and then mainly focus on the molecular mechanism of cell fate conversion regulated by MAFA.
Collapse
|
26
|
Second MAFA Variant Causing a Phosphorylation Defect in the Transactivation Domain and Familial Insulinomatosis. Cancers (Basel) 2022; 14:cancers14071798. [PMID: 35406570 PMCID: PMC8997416 DOI: 10.3390/cancers14071798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 12/21/2022] Open
Abstract
Adult-onset familial insulinomatosis is a rare disorder with recurrent, severe hypoglycemia caused by multiple insulin-secreting pancreatic tumors. The etiology was unclear until the variant p.Ser64Phe in the transcription factor MAFA, a key coordinator of β-cell insulin secretion, was defined as the cause in two families. We here describe detailed genetic, clinical, and family analyses of two sisters with insulinomatosis, aiming to identify further disease causes. Using exome sequencing, we detected a novel, heterozygous missense variant, p.Thr57Arg, in MAFA’s highly conserved transactivation domain. The impact of the affected region is so crucial that in vitro expression studies replacing Thr57 have already been performed, demonstrating a phosphorylation defect with the impairment of transactivation activity and degradation. However, prior to our study, the link to human disease was missing. Furthermore, mild hyperglycemia was observed in six additional, heterozygote family members, indicating that not only insulinomatosis but also MODY-like symptoms co-segregate with p.Thr57Arg. The pre-described MAFA variant, p.Ser64Phe, is located in the same domain, impairs the same phosphorylation cascade, and results in the same symptoms. We confirm MAFA phosphorylation defects are important causes of a characteristic syndrome, thus complementing the pathophysiological and diagnostic disease concept. Additionally, we verify the high penetrance and autosomal dominant inheritance pattern.
Collapse
|
27
|
Transcriptional control of pancreatic β-cell identity and plasticity during the pathogenesis of type 2 diabetes. J Genet Genomics 2022; 49:316-328. [DOI: 10.1016/j.jgg.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/21/2022]
|
28
|
Salinno C, Büttner M, Cota P, Tritschler S, Tarquis-Medina M, Bastidas-Ponce A, Scheibner K, Burtscher I, Böttcher A, Theis FJ, Bakhti M, Lickert H. CD81 marks immature and dedifferentiated pancreatic β-cells. Mol Metab 2021; 49:101188. [PMID: 33582383 PMCID: PMC7932895 DOI: 10.1016/j.molmet.2021.101188] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Islets of Langerhans contain heterogeneous populations of insulin-producing β-cells. Surface markers and respective antibodies for isolation, tracking, and analysis are urgently needed to study β-cell heterogeneity and explore the mechanisms to harness the regenerative potential of immature β-cells. METHODS We performed single-cell mRNA profiling of early postnatal mouse islets and re-analyzed several single-cell mRNA sequencing datasets from mouse and human pancreas and islets. We used mouse primary islets, iPSC-derived endocrine cells, Min6 insulinoma, and human EndoC-βH1 β-cell lines and performed FAC sorting, Western blotting, and imaging to support and complement the findings from the data analyses. RESULTS We found that all endocrine cell types expressed the cluster of differentiation 81 (CD81) during pancreas development, but the expression levels of this protein were gradually reduced in β-cells during postnatal maturation. Single-cell gene expression profiling and high-resolution imaging revealed an immature signature of β-cells expressing high levels of CD81 (CD81high) compared to a more mature population expressing no or low levels of this protein (CD81low/-). Analysis of β-cells from different diabetic mouse models and in vitro β-cell stress assays indicated an upregulation of CD81 expression levels in stressed and dedifferentiated β-cells. Similarly, CD81 was upregulated and marked stressed human β-cells in vitro. CONCLUSIONS We identified CD81 as a novel surface marker that labels immature, stressed, and dedifferentiated β-cells in the adult mouse and human islets. This novel surface marker will allow us to better study β-cell heterogeneity in healthy subjects and diabetes progression.
Collapse
Affiliation(s)
- Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Technische Universität München, School of Medicine, 81675, München, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Perla Cota
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Technische Universität München, School of Medicine, 81675, München, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Technical University of Munich, Department of Mathematics, 85748, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Technische Universität München, School of Medicine, 81675, München, Germany.
| |
Collapse
|
29
|
Sanavia T, Huang C, Manduchi E, Xu Y, Dadi PK, Potter LA, Jacobson DA, Di Camillo B, Magnuson MA, Stoeckert CJ, Gu G. Temporal Transcriptome Analysis Reveals Dynamic Gene Expression Patterns Driving β-Cell Maturation. Front Cell Dev Biol 2021; 9:648791. [PMID: 34017831 PMCID: PMC8129579 DOI: 10.3389/fcell.2021.648791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Newly differentiated pancreatic β cells lack proper insulin secretion profiles of mature functional β cells. The global gene expression differences between paired immature and mature β cells have been studied, but the dynamics of transcriptional events, correlating with temporal development of glucose-stimulated insulin secretion (GSIS), remain to be fully defined. This aspect is important to identify which genes and pathways are necessary for β-cell development or for maturation, as defective insulin secretion is linked with diseases such as diabetes. In this study, we assayed through RNA sequencing the global gene expression across six β-cell developmental stages in mice, spanning from β-cell progenitor to mature β cells. A computational pipeline then selected genes differentially expressed with respect to progenitors and clustered them into groups with distinct temporal patterns associated with biological functions and pathways. These patterns were finally correlated with experimental GSIS, calcium influx, and insulin granule formation data. Gene expression temporal profiling revealed the timing of important biological processes across β-cell maturation, such as the deregulation of β-cell developmental pathways and the activation of molecular machineries for vesicle biosynthesis and transport, signal transduction of transmembrane receptors, and glucose-induced Ca2+ influx, which were established over a week before β-cell maturation completes. In particular, β cells developed robust insulin secretion at high glucose several days after birth, coincident with the establishment of glucose-induced calcium influx. Yet the neonatal β cells displayed high basal insulin secretion, which decreased to the low levels found in mature β cells only a week later. Different genes associated with calcium-mediated processes, whose alterations are linked with insulin resistance and deregulation of glucose homeostasis, showed increased expression across β-cell stages, in accordance with the temporal acquisition of proper GSIS. Our temporal gene expression pattern analysis provided a comprehensive database of the underlying molecular components and biological mechanisms driving β-cell maturation at different temporal stages, which are fundamental for better control of the in vitro production of functional β cells from human embryonic stem/induced pluripotent cell for transplantation-based type 1 diabetes therapy.
Collapse
Affiliation(s)
- Tiziana Sanavia
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Chen Huang
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN, United States.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
| | - Elisabetta Manduchi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yanwen Xu
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Leah A Potter
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Mark A Magnuson
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Christian J Stoeckert
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guoqiang Gu
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
30
|
Szlachcic WJ, Ziojla N, Kizewska DK, Kempa M, Borowiak M. Endocrine Pancreas Development and Dysfunction Through the Lens of Single-Cell RNA-Sequencing. Front Cell Dev Biol 2021; 9:629212. [PMID: 33996792 PMCID: PMC8116659 DOI: 10.3389/fcell.2021.629212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
A chronic inability to maintain blood glucose homeostasis leads to diabetes, which can damage multiple organs. The pancreatic islets regulate blood glucose levels through the coordinated action of islet cell-secreted hormones, with the insulin released by β-cells playing a crucial role in this process. Diabetes is caused by insufficient insulin secretion due to β-cell loss, or a pancreatic dysfunction. The restoration of a functional β-cell mass might, therefore, offer a cure. To this end, major efforts are underway to generate human β-cells de novo, in vitro, or in vivo. The efficient generation of functional β-cells requires a comprehensive knowledge of pancreas development, including the mechanisms driving cell fate decisions or endocrine cell maturation. Rapid progress in single-cell RNA sequencing (scRNA-Seq) technologies has brought a new dimension to pancreas development research. These methods can capture the transcriptomes of thousands of individual cells, including rare cell types, subtypes, and transient states. With such massive datasets, it is possible to infer the developmental trajectories of cell transitions and gene regulatory pathways. Here, we summarize recent advances in our understanding of endocrine pancreas development and function from scRNA-Seq studies on developing and adult pancreas and human endocrine differentiation models. We also discuss recent scRNA-Seq findings for the pathological pancreas in diabetes, and their implications for better treatment.
Collapse
Affiliation(s)
- Wojciech J. Szlachcic
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Ziojla
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Dorota K. Kizewska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Marcelina Kempa
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Borowiak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
31
|
Benáková Š, Holendová B, Plecitá-Hlavatá L. Redox Homeostasis in Pancreatic β-Cells: From Development to Failure. Antioxidants (Basel) 2021; 10:antiox10040526. [PMID: 33801681 PMCID: PMC8065646 DOI: 10.3390/antiox10040526] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Redox status is a key determinant in the fate of β-cell. These cells are not primarily detoxifying and thus do not possess extensive antioxidant defense machinery. However, they show a wide range of redox regulating proteins, such as peroxiredoxins, thioredoxins or thioredoxin reductases, etc., being functionally compartmentalized within the cells. They keep fragile redox homeostasis and serve as messengers and amplifiers of redox signaling. β-cells require proper redox signaling already in cell ontogenesis during the development of mature β-cells from their progenitors. We bring details about redox-regulated signaling pathways and transcription factors being essential for proper differentiation and maturation of functional β-cells and their proliferation and insulin expression/maturation. We briefly highlight the targets of redox signaling in the insulin secretory pathway and focus more on possible targets of extracellular redox signaling through secreted thioredoxin1 and thioredoxin reductase1. Tuned redox homeostasis can switch upon chronic pathological insults towards the dysfunction of β-cells and to glucose intolerance. These are characteristics of type 2 diabetes, which is often linked to chronic nutritional overload being nowadays a pandemic feature of lifestyle. Overcharged β-cell metabolism causes pressure on proteostasis in the endoplasmic reticulum, mainly due to increased demand on insulin synthesis, which establishes unfolded protein response and insulin misfolding along with excessive hydrogen peroxide production. This together with redox dysbalance in cytoplasm and mitochondria due to enhanced nutritional pressure impact β-cell redox homeostasis and establish prooxidative metabolism. This can further affect β-cell communication in pancreatic islets through gap junctions. In parallel, peripheral tissues losing insulin sensitivity and overall impairment of glucose tolerance and gut microbiota establish local proinflammatory signaling and later systemic metainflammation, i.e., low chronic inflammation prooxidative properties, which target β-cells leading to their dedifferentiation, dysfunction and eventually cell death.
Collapse
Affiliation(s)
- Štěpánka Benáková
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
- First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
- Department of Mitochondrial Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Correspondence: ; Tel.: +420-296-442-285
| |
Collapse
|
32
|
Sun ZY, Yu TY, Jiang FX, Wang W. Functional maturation of immature β cells: A roadblock for stem cell therapy for type 1 diabetes. World J Stem Cells 2021; 13:193-207. [PMID: 33815669 PMCID: PMC8006013 DOI: 10.4252/wjsc.v13.i3.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease caused by the specific destruction of pancreatic islet β cells and is characterized as the absolute insufficiency of insulin secretion. Current insulin replacement therapy supplies insulin in a non-physiological way and is associated with devastating complications. Experimental islet transplantation therapy has been proven to restore glucose homeostasis in people with severe T1DM. However, it is restricted by many factors such as severe shortage of donor sources, progressive loss of donor cells, high cost, etc. As pluripotent stem cells have the potential to give rise to all cells including islet β cells in the body, stem cell therapy for diabetes has attracted great attention in the academic community and the general public. Transplantation of islet β-like cells differentiated from human pluripotent stem cells (hPSCs) has the potential to be an excellent alternative to islet transplantation. In stem cell therapy, obtaining β cells with complete insulin secretion in vitro is crucial. However, after much research, it has been found that the β-like cells obtained by in vitro differentiation still have many defects, including lack of adult-type glucose stimulated insulin secretion, and multi-hormonal secretion, suggesting that in vitro culture does not allows for obtaining fully mature β-like cells for transplantation. A large number of studies have found that many transcription factors play important roles in the process of transforming immature to mature human islet β cells. Furthermore, PDX1, NKX6.1, SOX9, NGN3, PAX4, etc., are important in inducing hPSC differentiation in vitro. The absent or deficient expression of any of these key factors may lead to the islet development defect in vivo and the failure of stem cells to differentiate into genuine functional β-like cells in vitro. This article reviews β cell maturation in vivo and in vitro and the vital roles of key molecules in this process, in order to explore the current problems in stem cell therapy for diabetes.
Collapse
Affiliation(s)
- Zi-Yi Sun
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Ting-Yan Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Fang-Xu Jiang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Wei Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China.
| |
Collapse
|
33
|
Sun ZY, Yu TY, Jiang FX, Wang W. Functional maturation of immature β cells: A roadblock for stem cell therapy for type 1 diabetes. World J Stem Cells 2021; 13:193-207. [PMID: 33815669 DOI: 10.4252/wjsc.v13.i3.193] [cited] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 01/26/2025] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease caused by the specific destruction of pancreatic islet β cells and is characterized as the absolute insufficiency of insulin secretion. Current insulin replacement therapy supplies insulin in a non-physiological way and is associated with devastating complications. Experimental islet transplantation therapy has been proven to restore glucose homeostasis in people with severe T1DM. However, it is restricted by many factors such as severe shortage of donor sources, progressive loss of donor cells, high cost, etc. As pluripotent stem cells have the potential to give rise to all cells including islet β cells in the body, stem cell therapy for diabetes has attracted great attention in the academic community and the general public. Transplantation of islet β-like cells differentiated from human pluripotent stem cells (hPSCs) has the potential to be an excellent alternative to islet transplantation. In stem cell therapy, obtaining β cells with complete insulin secretion in vitro is crucial. However, after much research, it has been found that the β-like cells obtained by in vitro differentiation still have many defects, including lack of adult-type glucose stimulated insulin secretion, and multi-hormonal secretion, suggesting that in vitro culture does not allows for obtaining fully mature β-like cells for transplantation. A large number of studies have found that many transcription factors play important roles in the process of transforming immature to mature human islet β cells. Furthermore, PDX1, NKX6.1, SOX9, NGN3, PAX4, etc., are important in inducing hPSC differentiation in vitro. The absent or deficient expression of any of these key factors may lead to the islet development defect in vivo and the failure of stem cells to differentiate into genuine functional β-like cells in vitro. This article reviews β cell maturation in vivo and in vitro and the vital roles of key molecules in this process, in order to explore the current problems in stem cell therapy for diabetes.
Collapse
Affiliation(s)
- Zi-Yi Sun
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Ting-Yan Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Fang-Xu Jiang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Wei Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China.
| |
Collapse
|
34
|
Takahashi S. Functional analysis of large MAF transcription factors and elucidation of their relationships with human diseases. Exp Anim 2021; 70:264-271. [PMID: 33762508 PMCID: PMC8390310 DOI: 10.1538/expanim.21-0027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The large MAF transcription factor group is a group of transcription factors with an acidic region, a basic region, and a leucine zipper region. Four types of MAF, MAFA, MAFB, c-MAF, and NRL, have been identified in humans and mice. In order to elucidate the functions of the large MAF transcription factor group in vivo, our research group created genetically modified MAFA-, MAFB-, and c-MAF-deficient mice and analyzed their phenotypes. MAFA is expressed in pancreatic β cells and is essential for insulin transcription and secretion. MAFB is essential for the development of pancreatic endocrine cells, formation of inner ears, podocyte function in the kidneys, and functional differentiation of macrophages. c-MAF is essential for lens formation and osteoblast differentiation. Furthermore, a single-base mutation in genes encoding the large MAF transcription factor group causes congenital renal disease, eye disease, bone disease, diabetes, and tumors in humans. This review describes the functions of large MAF transcription factors in vivo and their relationships with human diseases.
Collapse
Affiliation(s)
- Satoru Takahashi
- Department of Anatomy and Embryology, Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
35
|
Sequential progenitor states mark the generation of pancreatic endocrine lineages in mice and humans. Cell Res 2021; 31:886-903. [PMID: 33692492 DOI: 10.1038/s41422-021-00486-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
The pancreatic islet contains multiple hormone+ endocrine lineages (α, β, δ, PP and ε cells), but the developmental processes that underlie endocrinogenesis are poorly understood. Here, we generated novel mouse lines and combined them with various genetic tools to enrich all types of hormone+ cells for well-based deep single-cell RNA sequencing (scRNA-seq), and gene coexpression networks were extracted from the generated data for the optimization of high-throughput droplet-based scRNA-seq analyses. These analyses defined an entire endocrinogenesis pathway in which different states of endocrine progenitor (EP) cells sequentially differentiate into specific endocrine lineages in mice. Subpopulations of the EP cells at the final stage (EP4early and EP4late) show different potentials for distinct endocrine lineages. ε cells and an intermediate cell population were identified as distinct progenitors that independently generate both α and PP cells. Single-cell analyses were also performed to delineate the human pancreatic endocrinogenesis process. Although the developmental trajectory of pancreatic lineages is generally conserved between humans and mice, clear interspecies differences, including differences in the proportions of cell types and the regulatory networks associated with the differentiation of specific lineages, have been detected. Our findings support a model in which sequential transient progenitor cell states determine the differentiation of multiple cell lineages and provide a blueprint for directing the generation of pancreatic islets in vitro.
Collapse
|
36
|
Zhao Y, Chen H, Li C, Chen S, Xiao H. Corrigendum: Comparative Transcriptomics Reveals the Molecular Genetic Basis of Cave Adaptability in Sinocyclocheilus Fish Species. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.636503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Zhao Y, Chen H, Li C, Chen S, Xiao H. Comparative Transcriptomics Reveals the Molecular Genetic Basis of Cave Adaptability in Sinocyclocheilus Fish Species. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.589039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cavefish evolved a series of distinct survival mechanisms for adaptation to cave habitat. Such mechanisms include loss of eyesight and pigmentation, sensitive sensory organs, unique dietary preferences, and predation behavior. Thus, it is of great interest to understand the mechanisms underlying these adaptability traits of troglobites. The teleost genus Sinocyclocheilus (Cypriniformes: Cyprinidae) is endemic to China and has more than 70 species reported (including over 30 cavefish species). High species diversity and diverse phenotypes make the Sinocyclocheilus as an outstanding model for studying speciation and adaptive evolution. In this study, we conducted a comparative transcriptomics study on the brain tissues of two Sinocyclocheilus species (surface-dwelling species – Sinocyclocheilus malacopterus and semi-cave-dwelling species – Sinocyclocheilus rhinocerous living in the same water body. A total of 425,188,768 clean reads were generated, which contributed to 102,839 Unigenes. Bioinformatic analysis revealed a total of 3,289 differentially expressed genes (DEGs) between two species Comparing to S. malacopterus, 2,598 and 691 DEGs were found to be respectively, down-regulated and up-regulated in S. rhinocerous. Furthermore, it is also found tens of DEGs related to cave adaptability such as insulin secretion regulation (MafA, MafB, MafK, BRSK, and CDK16) and troglomorphic traits formation (CEP290, nmnat1, coasy, and pqbp1) in the cave-dwelling S. rhinocerous. Interestingly, most of the DEGs were found to be down-regulated in cavefish species and this trend of DEGs expression was confirmed through qPCR experiments. This study would provide an appropriate genetic basis for future studies on the formation of troglomorphic traits and adaptability characters of troglobites, and improve our understanding of mechanisms of cave adaptation.
Collapse
|
38
|
Deng Z, Matsumoto Y, Kuno A, Ojima M, Xiafukaiti G, Takahashi S. An Inducible Diabetes Mellitus Murine Model Based on MafB Conditional Knockout under MafA-Deficient Condition. Int J Mol Sci 2020; 21:ijms21165606. [PMID: 32764399 PMCID: PMC7460626 DOI: 10.3390/ijms21165606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/02/2023] Open
Abstract
Diabetes mellitus is an increasingly severe chronic metabolic disease that is occurring at an alarming rate worldwide. Various diabetic models, including non-obese diabetic mice and chemically induced diabetic models, are used to characterize and explore the mechanism of the disease’s pathophysiology, in hopes of detecting and identifying novel potential therapeutic targets. However, this is accompanied by disadvantages, such as specific conditions for maintaining the incidence, nonstable hyperglycemia induction, and potential toxicity to other organs. Murine MAFA and MAFB, two closely-linked islet-enriched transcription factors, play fundamental roles in glucose sensing and insulin secretion, and maintenance of pancreatic β-cell, respectively, which are highly homologous to human protein orthologs. Herein, to induce the diabetes mellitus model at a specific time point, we generated Pdx1-dependent Mafb-deletion mice under Mafa knockout condition (A0BΔpanc), via tamoxifen-inducible Cre-loxP system. After 16 weeks, metabolic phenotypes were characterized by intraperitoneal glucose tolerance test (IPGTT), urine glucose test, and metabolic parameters analysis. The results indicated that male A0BΔpanc mice had obvious impaired glucose tolerance, and high urine glucose level. Furthermore, obvious renal lesions, impaired islet structure and decreased proportion of insulin positive cells were observed. Collectively, our results indicate that A0BΔpanc mice can be an efficient inducible model for diabetes research.
Collapse
Affiliation(s)
- Zhaobin Deng
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (Z.D.); (Y.M.); (G.X.)
- School of Comprehensive Human Sciences, Doctoral Program in Biomedical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuka Matsumoto
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (Z.D.); (Y.M.); (G.X.)
- School of Medical Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (Z.D.); (Y.M.); (G.X.)
- PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (A.K.); (S.T.)
| | - Masami Ojima
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
| | - Gulibaikelamu Xiafukaiti
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (Z.D.); (Y.M.); (G.X.)
- School of Comprehensive Human Sciences, Doctoral Program in Biomedical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (Z.D.); (Y.M.); (G.X.)
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (A.K.); (S.T.)
| |
Collapse
|
39
|
Wang Y, Sun J, Lin Z, Zhang W, Wang S, Wang W, Wang Q, Ning G. m 6A mRNA Methylation Controls Functional Maturation in Neonatal Murine β-Cells. Diabetes 2020; 69:1708-1722. [PMID: 32404350 DOI: 10.2337/db19-0906] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/08/2020] [Indexed: 11/13/2022]
Abstract
The N 6-methyladenosine (m6A) RNA modification is essential during embryonic development of various organs. However, its role in embryonic and early postnatal islet development remains unknown. Mice in which RNA methyltransferase-like 3/14 (Mettl3/14) were deleted in Ngn3+ endocrine progenitors (Mettl3/14 nKO ) developed hyperglycemia and hypoinsulinemia at 2 weeks after birth. We found that Mettl3/14 specifically regulated both functional maturation and mass expansion of neonatal β-cells before weaning. Transcriptome and m6A methylome analyses provided m6A-dependent mechanisms in regulating cell identity, insulin secretion, and proliferation in neonatal β-cells. Importantly, we found that Mettl3/14 were dispensable for β-cell differentiation but directly regulated essential transcription factor MafA expression at least partially via modulating its mRNA stability. Failure to maintain this modification impacted the ability to fulfill β-cell functional maturity. In both diabetic db/db mice and patients with type 2 diabetes (T2D), decreased Mettl3/14 expression in β-cells was observed, suggesting its possible role in T2D. Our study unraveled the essential role of Mettl3/14 in neonatal β-cell development and functional maturation, both of which determined functional β-cell mass and glycemic control in adulthood.
Collapse
Affiliation(s)
- Yanqiu Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Sun
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Science, Peking University Health Science Center, Beijing, China
| | - Shu Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
β-Cell specific transcription factors in the context of diabetes mellitus and β-cell regeneration. Mech Dev 2020; 163:103634. [PMID: 32711047 DOI: 10.1016/j.mod.2020.103634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
All pancreatic cell populations arise from the standard gut endoderm layer in developing embryos, requiring a regulatory gene network to originate and maintain endocrine lineages and endocrine function. The pancreatic organogenesis is regulated by the temporal expression of transcription factors and plays a diverse role in the specification, development, differentiation, maturation, and functional maintenance. Altered expression and activity of these transcription factors are often associated with diabetes mellitus. Recent advancements in the stem cells and invitro derived islets to treat diabetes mellitus has attracted a great deal of interest in the understanding of factors regulating the development, differentiation, and functions of islets including transcription factors. This review discusses the myriad of transcription factors regulating the development of the pancreas, differentiation of β-islets, and how these factors regulated in normal and disease states. Exploring these factors in such critical context and exogenous or endogenous expression of development and differentiation-specific transcription factors with improved epigenetic plasticity/signaling axis in diabetic milieu would useful for the development of β-cells from other cell sources.
Collapse
|
41
|
Udagawa H, Hiramoto M, Kawaguchi M, Uebanso T, Ohara‐Imaizumi M, Nammo T, Nishimura W, Yasuda K. Characterization of the taste receptor-related G-protein, α-gustducin, in pancreatic β-cells. J Diabetes Investig 2020; 11:814-822. [PMID: 31957256 PMCID: PMC7378449 DOI: 10.1111/jdi.13214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 01/17/2023] Open
Abstract
AIMS/INTRODUCTION Taste receptors, T1rs and T2rs, and the taste-selective G-protein, α-gustducin, are expressed outside the taste-sensing system, such as enteroendocrine L cells. Here, we examined whether α-gustducin also affects nutrition sensing and insulin secretion by pancreatic β-cells. MATERIALS AND METHODS The expression of α-gustducin and taste receptors was evaluated in β-cell lines, and in rat and mouse islets either by quantitative polymerase chain reaction or fluorescence immunostaining. The effects of α-gustducin knockdown on insulin secretion and on cyclic adenosine monophosphate and intracellular Ca2+ levels in rat INS-1 cells were estimated. Sucralose (taste receptor agonist)-induced insulin secretion was investigated in INS-1 cells with α-gustducin suppression and in islets from mouse disease models. RESULTS The expression of Tas1r3 and α-gustducin was confirmed in β-cell lines and pancreatic islets. Basal levels of cyclic adenosine monophosphate, intracellular calcium and insulin secretion were significantly enhanced with α-gustducin knockdown in INS-1 cells. The expression of α-gustducin was decreased in high-fat diet-fed mice and in diabetic db/db mice. Sucralose-induced insulin secretion was not attenuated in INS-1 cells with α-gustducin knockdown or in mouse islets with decreased expression of α-gustducin. CONCLUSIONS α-Gustducin is involved in the regulation of cyclic adenosine monophosphate, intracellular calcium levels and insulin secretion in pancreatic β-cells in a manner independent of taste receptor signaling. α-Gustducin might play a novel role in β-cell physiology and the development of type 2 diabetes.
Collapse
Affiliation(s)
- Haruhide Udagawa
- Department of Metabolic DisorderDiabetes Research CenterResearch InstituteNational Center for Global Health and MedicineTokyoJapan
- Department of Cellular BiochemistryKyorin University School of MedicineTokyoJapan
| | - Masaki Hiramoto
- Department of BiochemistryTokyo Medical UniversityTokyoJapan
| | - Miho Kawaguchi
- Department of Metabolic DisorderDiabetes Research CenterResearch InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Takashi Uebanso
- Department of Preventive Environment and NutritionInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Mica Ohara‐Imaizumi
- Department of Cellular BiochemistryKyorin University School of MedicineTokyoJapan
| | - Takao Nammo
- Department of Metabolic DisorderDiabetes Research CenterResearch InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Wataru Nishimura
- Department of Molecular BiologyInternational University of Health and Welfare School of MedicineChibaJapan
- Division of AnatomyJichi Medical UniversityBio‐imaging and Neuro‐cell ScienceShimotsukeJapan
| | - Kazuki Yasuda
- Department of Metabolic DisorderDiabetes Research CenterResearch InstituteNational Center for Global Health and MedicineTokyoJapan
- Department of Diabetes, Endocrinology and MetabolismKyorin University School of MedicineTokyoJapan
| |
Collapse
|
42
|
Russell R, Carnese PP, Hennings TG, Walker EM, Russ HA, Liu JS, Giacometti S, Stein R, Hebrok M. Loss of the transcription factor MAFB limits β-cell derivation from human PSCs. Nat Commun 2020; 11:2742. [PMID: 32488111 PMCID: PMC7265500 DOI: 10.1038/s41467-020-16550-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Next generation sequencing studies have highlighted discrepancies in β-cells which exist between mice and men. Numerous reports have identified MAF BZIP Transcription Factor B (MAFB) to be present in human β-cells postnatally, while its expression is restricted to embryonic and neo-natal β-cells in mice. Using CRISPR/Cas9-mediated gene editing, coupled with endocrine cell differentiation strategies, we dissect the contribution of MAFB to β-cell development and function specifically in humans. Here we report that MAFB knockout hPSCs have normal pancreatic differentiation capacity up to the progenitor stage, but favor somatostatin- and pancreatic polypeptide–positive cells at the expense of insulin- and glucagon-producing cells during endocrine cell development. Our results describe a requirement for MAFB late in the human pancreatic developmental program and identify it as a distinguishing transcription factor within islet cell subtype specification. We propose that hPSCs represent a powerful tool to model human pancreatic endocrine development and associated disease pathophysiology. The MAF bZIP transcription factor B (MAFB) is present in postnatal human beta cells but its role is unclear. Here, the authors show that MAFB regulates endocrine pancreatic cell fate specification.
Collapse
Affiliation(s)
- Ronan Russell
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Phichitpol P Carnese
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Thomas G Hennings
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Emily M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Holger A Russ
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA.,Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Jennifer S Liu
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Simone Giacometti
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Matthias Hebrok
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
43
|
Dieterich LC, Tacconi C, Menzi F, Proulx ST, Kapaklikaya K, Hamada M, Takahashi S, Detmar M. Lymphatic MAFB regulates vascular patterning during developmental and pathological lymphangiogenesis. Angiogenesis 2020; 23:411-423. [PMID: 32307629 PMCID: PMC7311381 DOI: 10.1007/s10456-020-09721-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/07/2020] [Indexed: 12/27/2022]
Abstract
MAFB is a transcription factor involved in the terminal differentiation of several cell types, including macrophages and keratinocytes. MAFB is also expressed in lymphatic endothelial cells (LECs) and is upregulated by VEGF-C/VEGFR-3 signaling. Recent studies have revealed that MAFB regulates several genes involved in lymphatic differentiation and that global Mafb knockout mice show defects in patterning of lymphatic vessels during embryogenesis. However, it has remained unknown whether this effect is LEC-intrinsic and whether MAFB might also be involved in postnatal lymphangiogenesis. We established conditional, lymphatic-specific Mafb knockout mice and found comparable lymphatic patterning defects during embryogenesis as in the global MAFB knockout. Lymphatic MAFB deficiency resulted in increased lymphatic branching in the diaphragm at P7, but had no major effect on lymphatic patterning or function in healthy adult mice. By contrast, tumor-induced lymphangiogenesis was enhanced in mice lacking lymphatic MAFB. Together, these data reveal that LEC-expressed MAFB is involved in lymphatic vascular morphogenesis during embryonic and postnatal development as well as in pathological conditions. Therefore, MAFB could represent a target for therapeutic modulation of lymphangiogenesis.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Franziska Menzi
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Kübra Kapaklikaya
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland.
- ETH Zurich, HCI H303, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland.
| |
Collapse
|
44
|
Yu XX, Xu CR. Understanding generation and regeneration of pancreatic β cells from a single-cell perspective. Development 2020; 147:147/7/dev179051. [PMID: 32280064 DOI: 10.1242/dev.179051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Understanding the mechanisms that underlie the generation and regeneration of β cells is crucial for developing treatments for diabetes. However, traditional research methods, which are based on populations of cells, have limitations for defining the precise processes of β-cell differentiation and trans-differentiation, and the associated regulatory mechanisms. The recent development of single-cell technologies has enabled re-examination of these processes at a single-cell resolution to uncover intermediate cell states, cellular heterogeneity and molecular trajectories of cell fate specification. Here, we review recent advances in understanding β-cell generation and regeneration, in vivo and in vitro, from single-cell technologies, which could provide insights for optimization of diabetes therapy strategies.
Collapse
Affiliation(s)
- Xin-Xin Yu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
45
|
Sachs S, Bastidas-Ponce A, Tritschler S, Bakhti M, Böttcher A, Sánchez-Garrido MA, Tarquis-Medina M, Kleinert M, Fischer K, Jall S, Harger A, Bader E, Roscioni S, Ussar S, Feuchtinger A, Yesildag B, Neelakandhan A, Jensen CB, Cornu M, Yang B, Finan B, DiMarchi RD, Tschöp MH, Theis FJ, Hofmann SM, Müller TD, Lickert H. Targeted pharmacological therapy restores β-cell function for diabetes remission. Nat Metab 2020; 2:192-209. [PMID: 32694693 DOI: 10.1038/s42255-020-0171-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/15/2020] [Indexed: 12/27/2022]
Abstract
Dedifferentiation of insulin-secreting β cells in the islets of Langerhans has been proposed to be a major mechanism of β-cell dysfunction. Whether dedifferentiated β cells can be targeted by pharmacological intervention for diabetes remission, and ways in which this could be accomplished, are unknown as yet. Here we report the use of streptozotocin-induced diabetes to study β-cell dedifferentiation in mice. Single-cell RNA sequencing (scRNA-seq) of islets identified markers and pathways associated with β-cell dedifferentiation and dysfunction. Single and combinatorial pharmacology further show that insulin treatment triggers insulin receptor pathway activation in β cells and restores maturation and function for diabetes remission. Additional β-cell selective delivery of oestrogen by Glucagon-like peptide-1 (GLP-1-oestrogen conjugate) decreases daily insulin requirements by 60%, triggers oestrogen-specific activation of the endoplasmic-reticulum-associated protein degradation system, and further increases β-cell survival and regeneration. GLP-1-oestrogen also protects human β cells against cytokine-induced dysfunction. This study not only describes mechanisms of β-cell dedifferentiation and regeneration, but also reveals pharmacological entry points to target dedifferentiated β cells for diabetes remission.
Collapse
Affiliation(s)
- Stephan Sachs
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
- Department of Medicine, Technical University of Munich, Munich, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Miguel A Sánchez-Garrido
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
- Department of Medicine, Technical University of Munich, Munich, Germany
| | - Maximilian Kleinert
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Katrin Fischer
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Sigrid Jall
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Alexandra Harger
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Erik Bader
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Sara Roscioni
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Siegfried Ussar
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Medicine, Technical University of Munich, Munich, Germany
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | | | | | | | - Marion Cornu
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | - Bin Yang
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Richard D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Matthias H Tschöp
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany.
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Department of Mathematics, Technical University of Munich, Munich, Germany.
| | - Susanna M Hofmann
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medical Clinic and Polyclinic IV, Ludwig Maximilian University of Munich, Munich, Germany.
| | - Timo D Müller
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany.
- Department of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
46
|
Melnik BC. Milk exosomal miRNAs: potential drivers of AMPK-to-mTORC1 switching in β-cell de-differentiation of type 2 diabetes mellitus. Nutr Metab (Lond) 2019; 16:85. [PMID: 31827573 PMCID: PMC6898964 DOI: 10.1186/s12986-019-0412-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) steadily increases in prevalence since the 1950's, the period of widespread distribution of refrigerated pasteurized cow's milk. Whereas breastfeeding protects against the development of T2DM in later life, accumulating epidemiological evidence underlines the role of cow's milk consumption in T2DM. Recent studies in rodent models demonstrate that during the breastfeeding period pancreatic β-cells are metabolically immature and preferentially proliferate by activation of mechanistic target of rapamycin complex 1 (mTORC1) and suppression of AMP-activated protein kinase (AMPK). Weaning determines a metabolic switch of β-cells from a proliferating, immature phenotype with low insulin secretion to a differentiated mature phenotype with glucose-stimulated insulin secretion, less proliferation, reduced mTORC1- but increased AMPK activity. Translational evidence presented in this perspective implies for the first time that termination of milk miRNA transfer is the driver of this metabolic switch. miRNA-148a is a key inhibitor of AMPK and phosphatase and tensin homolog, crucial suppressors of mTORC1. β-Cells of diabetic patients return to the postnatal phenotype with high mTORC1 and low AMPK activity, explained by continuous transfer of bovine milk miRNAs to the human milk consumer. Bovine milk miRNA-148a apparently promotes β-cell de-differentiation to the immature mTORC1-high/AMPK-low phenotype with functional impairments in insulin secretion, increased mTORC1-driven endoplasmic reticulum stress, reduced autophagy and early β-cell apoptosis. In contrast to pasteurized cow's milk, milk's miRNAs are inactivated by bacterial fermentation, boiling and ultra-heat treatment and are missing in current infant formula. Persistent milk miRNA signaling adds a new perspective to the pathogenesis of T2DM and explains the protective role of breastfeeding but the diabetogenic effect of continued milk miRNA signaling by persistent consumption of pasteurized cow's milk.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7A, D-49076 Osnabrück, Germany
| |
Collapse
|
47
|
The Long Noncoding RNA Paupar Modulates PAX6 Regulatory Activities to Promote Alpha Cell Development and Function. Cell Metab 2019; 30:1091-1106.e8. [PMID: 31607563 PMCID: PMC7205457 DOI: 10.1016/j.cmet.2019.09.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/05/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022]
Abstract
Many studies have highlighted the role of dysregulated glucagon secretion in the etiology of hyperglycemia and diabetes. Accordingly, understanding the mechanisms underlying pancreatic islet α cell development and function has important implications for the discovery of new therapies for diabetes. In this study, comparative transcriptome analyses between embryonic mouse pancreas and adult mouse islets identified several pancreatic lncRNAs that lie in close proximity to essential pancreatic transcription factors, including the Pax6-associated lncRNA Paupar. We demonstrate that Paupar is enriched in glucagon-producing α cells where it promotes the alternative splicing of Pax6 to an isoform required for activation of essential α cell genes. Consistently, deletion of Paupar in mice resulted in dysregulation of PAX6 α cell target genes and corresponding α cell dysfunction, including blunted glucagon secretion. These findings illustrate a distinct mechanism by which a pancreatic lncRNA can coordinate glucose homeostasis by cell-specific regulation of a broadly expressed transcription factor.
Collapse
|
48
|
Chang YH, Katoh MC, Abdellatif AM, Xiafukaiti G, Elzeftawy A, Ojima M, Mizuno S, Kuno A, Takahashi S. Uncovering the role of MAFB in glucagon production and secretion in pancreatic α-cells using a new α-cell-specific Mafb conditional knockout mouse model. Exp Anim 2019; 69:178-188. [PMID: 31787710 PMCID: PMC7220711 DOI: 10.1538/expanim.19-0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cre/loxP is a site-specific recombination system extensively used to enable the conditional deletion or activation of target genes in a spatial- and/or temporal-specific manner. A number of pancreatic-specific Cre driver mouse lines have been broadly established for studying the development, function and pathology of pancreatic cells. However, only a few models are currently available for glucagon-producing α-cells. Disagreement exists over the role of the MAFB transcription factor in glucagon expression during postnatal life, which might be due to the lack of α-cell-specific Cre driver mice. In the present study, we established a novel Gcg-Cre knock-in mouse line with the Cre transgene expressed under the control of the preproglucagon (Gcg) promoter without disrupting the endogenous Gcg gene expression. Then, we applied this newly developed Gcg-Cre mouse line to generate a new α-cell-specific Mafb conditional knockout mouse model (MafbΔGcg). Not only α-cell number but also glucagon production were significantly decreased in MafbΔGcg mice compared to control littermates, suggesting an indispensable role of MAFB in both α-cell development and function. Taken together, our newly developed Gcg-Cre mouse line, which was successfully utilized to uncover the role of MAFB in α-cells, is a useful tool for genetic manipulation in pancreatic α-cells, providing a new platform for future studies in this field.
Collapse
Affiliation(s)
- Yu-Hsin Chang
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Megumi C Katoh
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ahmed M Abdellatif
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, 60 Elgomhoria st, Mansoura 35516, Egypt
| | - Guli Xiafukaiti
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,School of Comprehensive Human Sciences, Doctoral Program in Biomedical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Abdelaziz Elzeftawy
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masami Ojima
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
49
|
Salinno C, Cota P, Bastidas-Ponce A, Tarquis-Medina M, Lickert H, Bakhti M. β-Cell Maturation and Identity in Health and Disease. Int J Mol Sci 2019; 20:E5417. [PMID: 31671683 PMCID: PMC6861993 DOI: 10.3390/ijms20215417] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
The exponential increase of patients with diabetes mellitus urges for novel therapeutic strategies to reduce the socioeconomic burden of this disease. The loss or dysfunction of insulin-producing β-cells, in patients with type 1 and type 2 diabetes respectively, put these cells at the center of the disease initiation and progression. Therefore, major efforts have been taken to restore the β-cell mass by cell-replacement or regeneration approaches. Implementing novel therapies requires deciphering the developmental mechanisms that generate β-cells and determine the acquisition of their physiological phenotype. In this review, we summarize the current understanding of the mechanisms that coordinate the postnatal maturation of β-cells and define their functional identity. Furthermore, we discuss different routes by which β-cells lose their features and functionality in type 1 and 2 diabetic conditions. We then focus on potential mechanisms to restore the functionality of those β-cell populations that have lost their functional phenotype. Finally, we discuss the recent progress and remaining challenges facing the generation of functional mature β-cells from stem cells for cell-replacement therapy for diabetes treatment.
Collapse
Affiliation(s)
- Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Perla Cota
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
| |
Collapse
|
50
|
Scharfmann R, Staels W, Albagli O. The supply chain of human pancreatic β cell lines. J Clin Invest 2019; 129:3511-3520. [PMID: 31478912 PMCID: PMC6715382 DOI: 10.1172/jci129484] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Patients with type 1 or type 2 diabetes have an insufficiency in their functional β cell mass. To advance diabetes treatment and to work toward a cure, a better understanding of how to protect the pancreatic β cells against autoimmune or metabolic assaults (e.g., obesity, gestation) will be required. Over the past decades, β cell protection has been extensively investigated in rodents both in vivo and in vitro using isolated islets or rodent β cell lines. Transferring these rodent data to humans has long been challenging, at least partly for technical reasons: primary human islet preparations were scarce and functional human β cell lines were lacking. In 2011, we described a robust protocol of targeted oncogenesis in human fetal pancreas and produced the first functional human β cell line, and in subsequent years additional lines with specific traits. These cell lines are currently used by more than 150 academic and industrial laboratories worldwide. In this Review, we first explain how we developed the human β cell lines and why we think we succeeded where others, despite major efforts, did not. Next, we discuss the use of such functional human β cell lines and share some perspectives on their use to advance diabetes research.
Collapse
Affiliation(s)
- Raphael Scharfmann
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| | - Willem Staels
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivier Albagli
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| |
Collapse
|