1
|
Ma P, Zhang G, Chen S, Miao C, Cao Y, Wang M, Liu W, Shen J, Tang PMK, Men Y, Ye L, Li C. Promotion effect of TGF-β-Zfp423-ApoD pathway on lip sensory recovery after nerve sacrifice caused by nerve collateral compensation. Int J Oral Sci 2023; 15:23. [PMID: 37286538 DOI: 10.1038/s41368-023-00230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023] Open
Abstract
Resection of oral and maxillofacial tumors is often accompanied by the inferior alveolar nerve neurectomy, resulting in abnormal sensation in lower lip. It is generally believed that spontaneous sensory recovery in this nerve injury is difficult. However, during our follow-up, patients with inferior alveolar nerve sacrifice showed different degrees of lower lip sensory recovery. In this study, a prospective cohort study was conducted to demonstrate this phenomenon and analyze the factors influencing sensory recovery. A mental nerve transection model of Thy1-YFP mice and tissue clearing technique were used to explore possible mechanisms in this process. Gene silencing and overexpression experiments were then conducted to detect the changes in cell morphology and molecular markers. In our follow-up, 75% of patients with unilateral inferior alveolar nerve neurectomy had complete sensory recovery of the lower lip 12 months postoperatively. Patients with younger age, malignant tumors, and preservation of ipsilateral buccal and lingual nerves had a shorter recovery time. The buccal nerve collateral sprouting compensation was observed in the lower lip tissue of Thy1-YFP mice. ApoD was demonstrated to be involved in axon growth and peripheral nerve sensory recovery in the animal model. TGF-β inhibited the expression of STAT3 and the transcription of ApoD in Schwann cells through Zfp423. Overall, after sacrificing the inferior alveolar nerve, the collateral compensation of the ipsilateral buccal nerve could innervate the sensation. And this process was regulated by TGF-β-Zfp423-ApoD pathway.
Collapse
Affiliation(s)
- Pingchuan Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Gaowei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Su Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Miao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meng Wang
- Department of Medical Record, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenwen Liu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Patrick Ming-Kuen Tang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine & Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yi Men
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Shao M, Zhang Q, Truong A, Shan B, Vishvanath L, Li L, Seale P, Gupta RK. ZFP423 controls EBF2 coactivator recruitment and PPARγ occupancy to determine the thermogenic plasticity of adipocytes. Genes Dev 2021; 35:1461-1474. [PMID: 34620682 PMCID: PMC8559675 DOI: 10.1101/gad.348780.121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022]
Abstract
Energy-storing white adipocytes maintain their identity by suppressing the energy-burning thermogenic gene program of brown and beige adipocytes. Here, we reveal that the protein-protein interaction between the transcriptional coregulator ZFP423 and brown fat determination factor EBF2 is essential for restraining the thermogenic phenotype of white adipose tissue (WAT). Disruption of the ZFP423-EBF2 protein interaction through CRISPR-Cas9 gene editing triggers widespread "browning" of WAT in adult mice. Mechanistically, ZFP423 recruits the NuRD corepressor complex to EBF2-bound thermogenic gene enhancers. Loss of adipocyte Zfp423 induces an EBF2 NuRD-to-BAF coregulator switch and a shift in PPARγ occupancy to thermogenic genes. This shift in PPARγ occupancy increases the antidiabetic efficacy of the PPARγ agonist rosiglitazone in obesity while diminishing the unwanted weight-gaining effect of the drug. These data indicate that ZFP423 controls EBF2 coactivator recruitment and PPARγ occupancy to determine the thermogenic plasticity of adipocytes and highlight the potential of therapeutically targeting transcriptional brakes to induce beige adipocyte biogenesis in obesity.
Collapse
Affiliation(s)
- Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Qianbin Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ashley Truong
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Bo Shan
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lin Li
- Department of Pediatrics, Children's Research Institute, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Internal Medicine, Children's Research Institute, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
3
|
Dokoshi T, Seidman JS, Cavagnero KJ, Li F, Liggins MC, Taylor BC, Olvera J, Knight R, Chang JT, Salzman NH, Gallo RL. Skin inflammation activates intestinal stromal fibroblasts and promotes colitis. J Clin Invest 2021; 131:147614. [PMID: 34720087 DOI: 10.1172/jci147614] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/16/2021] [Indexed: 01/01/2023] Open
Abstract
Inflammatory disorders of the skin are frequently associated with inflammatory bowel diseases (IBDs). To explore mechanisms by which these organs communicate, we performed single-cell RNA-Seq analysis on fibroblasts from humans and mice with IBD. This analysis revealed that intestinal inflammation promoted differentiation of a subset of intestinal stromal fibroblasts into preadipocytes with innate antimicrobial host defense activity. Furthermore, this process of reactive adipogenesis was exacerbated if mouse skin was inflamed as a result of skin wounding or infection. Since hyaluronan (HA) catabolism is activated during skin injury and fibroblast-to-adipocyte differentiation is dependent on HA, we tested the hypothesis that HA fragments could alter colon fibroblast function by targeted expression of human hyaluronidase-1 in basal keratinocytes from mouse skin. Hyaluronidase expression in the skin activated intestinal stromal fibroblasts, altered the fecal microbiome, and promoted excessive reactive adipogenesis and increased inflammation in the colon after challenge with dextran sodium sulfate. The response to digested HA was dependent on expression of TLR4 by preadipocytes. Collectively, these results suggest that the association between skin inflammation and IBD may be due to recognition by mesenchymal fibroblasts in the colon of HA released during inflammation of the skin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rob Knight
- Department of Pediatrics, UCSD, La Jolla, California, USA
| | | | - Nita H Salzman
- Departments of Pediatrics, Microbiology, and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
4
|
Stokman MF, Saunier S, Benmerah A. Renal Ciliopathies: Sorting Out Therapeutic Approaches for Nephronophthisis. Front Cell Dev Biol 2021; 9:653138. [PMID: 34055783 PMCID: PMC8155538 DOI: 10.3389/fcell.2021.653138] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive ciliopathy and a major cause of end-stage renal disease in children. The main forms, juvenile and adult NPH, are characterized by tubulointerstitial fibrosis whereas the infantile form is more severe and characterized by cysts. NPH is caused by mutations in over 20 different genes, most of which encode components of the primary cilium, an organelle in which important cellular signaling pathways converge. Ciliary signal transduction plays a critical role in kidney development and tissue homeostasis, and disruption of ciliary signaling has been associated with cyst formation, epithelial cell dedifferentiation and kidney function decline. Drugs have been identified that target specific signaling pathways (for example cAMP/PKA, Hedgehog, and mTOR pathways) and rescue NPH phenotypes in in vitro and/or in vivo models. Despite identification of numerous candidate drugs in rodent models, there has been a lack of clinical trials and there is currently no therapy that halts disease progression in NPH patients. This review covers the most important findings of therapeutic approaches in NPH model systems to date, including hypothesis-driven therapies and untargeted drug screens, approached from the pathophysiology of NPH. Importantly, most animal models used in these studies represent the cystic infantile form of NPH, which is less prevalent than the juvenile form. It appears therefore important to develop new models relevant for juvenile/adult NPH. Alternative non-orthologous animal models and developments in patient-based in vitro model systems are discussed, as well as future directions in personalized therapy for NPH.
Collapse
Affiliation(s)
- Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Alexandre Benmerah
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| |
Collapse
|
5
|
Molecular genetics of renal ciliopathies. Biochem Soc Trans 2021; 49:1205-1220. [PMID: 33960378 DOI: 10.1042/bst20200791] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022]
Abstract
Renal ciliopathies are a heterogenous group of inherited disorders leading to an array of phenotypes that include cystic kidney disease and renal interstitial fibrosis leading to progressive chronic kidney disease and end-stage kidney disease. The renal tubules are lined with epithelial cells that possess primary cilia that project into the lumen and act as sensory and signalling organelles. Mutations in genes encoding ciliary proteins involved in the structure and function of primary cilia cause ciliopathy syndromes and affect many organ systems including the kidney. Recognised disease phenotypes associated with primary ciliopathies that have a strong renal component include autosomal dominant and recessive polycystic kidney disease and their various mimics, including atypical polycystic kidney disease and nephronophthisis. The molecular investigation of inherited renal ciliopathies often allows a precise diagnosis to be reached where renal histology and other investigations have been unhelpful and can help in determining kidney prognosis. With increasing molecular insights, it is now apparent that renal ciliopathies form a continuum of clinical phenotypes with disease entities that have been classically described as dominant or recessive at both extremes of the spectrum. Gene-dosage effects, hypomorphic alleles, modifier genes and digenic inheritance further contribute to the genetic complexity of these disorders. This review will focus on recent molecular genetic advances in the renal ciliopathy field with a focus on cystic kidney disease phenotypes and the genotypes that lead to them. We discuss recent novel insights into underlying disease mechanisms of renal ciliopathies that might be amenable to therapeutic intervention.
Collapse
|
6
|
Casoni F, Croci L, Vincenti F, Podini P, Riba M, Massimino L, Cremona O, Consalez GG. ZFP423 regulates early patterning and multiciliogenesis in the hindbrain choroid plexus. Development 2020; 147:dev.190173. [PMID: 33046507 DOI: 10.1242/dev.190173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/05/2020] [Indexed: 12/28/2022]
Abstract
The choroid plexus (ChP) is a secretory tissue that produces cerebrospinal fluid (CSF) secreted into the ventricular system. It is a monolayer of secretory, multiciliated epithelial cells derived from neuroepithelial progenitors and overlying a stroma of mesenchymal cells of mesodermal origin. Zfp423, which encodes a Kruppel-type zinc-finger transcription factor essential for cerebellar development and mutated in rare cases of cerebellar vermis hypoplasia/Joubert syndrome and other ciliopathies, is expressed in the hindbrain roof plate, from which the IV ventricle ChP arises, and, later, in mesenchymal cells, which give rise to the stroma and leptomeninges. Mouse Zfp423 mutants display a marked reduction of the hindbrain ChP (hChP), which: (1) fails to express established markers of its secretory function and genes implicated in its development and maintenance (Lmx1a and Otx2); (2) shows a perturbed expression of signaling pathways previously unexplored in hChP patterning (Wnt3); and (3) displays a lack of multiciliated epithelial cells and a profound dysregulation of master genes of multiciliogenesis (Gmnc). Our results propose that Zfp423 is a master gene and one of the earliest known determinants of hChP development.
Collapse
Affiliation(s)
- Filippo Casoni
- Università Vita-Salute San Raffaele, Milan, Italy .,Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Laura Croci
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | | | - Paola Podini
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Michela Riba
- Center for Omics Sciences, IRCCS, San Raffaele Hospital, Milan 20132, Italy
| | - Luca Massimino
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Ottavio Cremona
- Università Vita-Salute San Raffaele, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - G Giacomo Consalez
- Università Vita-Salute San Raffaele, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
7
|
Strain-Dependent Modifier Genes Determine Survival in Zfp423 Mice. G3-GENES GENOMES GENETICS 2020; 10:4241-4247. [PMID: 32967895 PMCID: PMC7642944 DOI: 10.1534/g3.120.401720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Zfp423 encodes a transcriptional regulatory protein that interacts with canonical signaling and lineage pathways. Mutations in mouse Zfp423 or its human ortholog ZNF423 are associated with a range of developmental abnormalities reminiscent of ciliopathies, including cerebellar vermis hypoplasia and other midline brain defects. Null mice have reduced viability in most strain backgrounds. Here we show complete lethality on a C57BL/6J background, dominant rescue in backcrosses to any of 13 partner strains, with strain-dependent survival frequencies, and evidence for a BALB/c-derived survival modifier locus on chromosome 5. Survival data indicate both perinatal and postnatal periods of lethality. Anatomical data from a hypomorphic gene trap allele observed on both C57BL/6J and BALB/c congenic backgrounds shows an aggregate effect of background on sensitivity to Zfp423 loss rather than a binary effect on viability.
Collapse
|
8
|
Shan B, Shao M, Zhang Q, Hepler C, Paschoal VA, Barnes SD, Vishvanath L, An YA, Jia L, Malladi VS, Strand DW, Gupta OT, Elmquist JK, Oh D, Gupta RK. Perivascular mesenchymal cells control adipose-tissue macrophage accrual in obesity. Nat Metab 2020; 2:1332-1349. [PMID: 33139957 PMCID: PMC7669663 DOI: 10.1038/s42255-020-00301-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Chronic low-grade white adipose tissue (WAT) inflammation is a hallmark of metabolic syndrome in obesity. Here, we demonstrate that a subpopulation of mouse WAT perivascular (PDGFRβ+) cells, termed fibro-inflammatory progenitors (FIPs), activate proinflammatory signalling cascades shortly after the onset of high-fat diet feeding and regulate proinflammatory macrophage accumulation in WAT in a TLR4-dependent manner. FIPs activation in obesity is mediated by the downregulation of zinc-finger protein 423 (ZFP423), identified here as a transcriptional corepressor of NF-κB. ZFP423 suppresses the DNA-binding capacity of the p65 subunit of NF-κB by inducing a p300-to-NuRD coregulator switch. Doxycycline-inducible expression of Zfp423 in PDGFRβ+ cells suppresses inflammatory signalling in FIPs and attenuates metabolic inflammation of visceral WAT in obesity. Inducible inactivation of Zfp423 in PDGFRβ+ cells increases FIP activity, exacerbates adipose macrophage accrual and promotes WAT dysfunction. These studies implicate perivascular mesenchymal cells as important regulators of chronic adipose-tissue inflammation in obesity and identify ZFP423 as a transcriptional break on NF-κB signalling.
Collapse
Affiliation(s)
- Bo Shan
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qianbin Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chelsea Hepler
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vivian A Paschoal
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Spencer D Barnes
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu A An
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Jia
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| | - Venkat S Malladi
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Douglas W Strand
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Olga T Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| | - Dayoung Oh
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Deshpande O, Lara RZ, Zhang OR, Concepcion D, Hamilton BA. ZNF423 patient variants, truncations, and in-frame deletions in mice define an allele-dependent range of midline brain abnormalities. PLoS Genet 2020; 16:e1009017. [PMID: 32925911 PMCID: PMC7515201 DOI: 10.1371/journal.pgen.1009017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/24/2020] [Accepted: 07/29/2020] [Indexed: 11/18/2022] Open
Abstract
Interpreting rare variants remains a challenge in personal genomics, especially for disorders with several causal genes and for genes that cause multiple disorders. ZNF423 encodes a transcriptional regulatory protein that intersects several developmental pathways. ZNF423 has been implicated in rare neurodevelopmental disorders, consistent with midline brain defects in Zfp423-mutant mice, but pathogenic potential of most patient variants remains uncertain. We engineered ~50 patient-derived and small deletion variants into the highly-conserved mouse ortholog and examined neuroanatomical measures for 791 littermate pairs. Three substitutions previously asserted pathogenic appeared benign, while a fourth was effectively null. Heterozygous premature termination codon (PTC) variants showed mild haploabnormality, consistent with loss-of-function intolerance inferred from human population data. In-frame deletions of specific zinc fingers showed mild to moderate abnormalities, as did low-expression variants. These results affirm the need for functional validation of rare variants in biological context and demonstrate cost-effective modeling of neuroanatomical abnormalities in mice.
Collapse
Affiliation(s)
- Ojas Deshpande
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, Rebecca and John Moores UCSD Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Medicine, Institute for Genomic Medicine, Rebecca and John Moores UCSD Cancer Center, University of California, San Diego School of Medicine, Gilman Drive, La Jolla, CA, United States of America
| | - Raquel Z. Lara
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, Rebecca and John Moores UCSD Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Medicine, Institute for Genomic Medicine, Rebecca and John Moores UCSD Cancer Center, University of California, San Diego School of Medicine, Gilman Drive, La Jolla, CA, United States of America
| | - Oliver R. Zhang
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, Rebecca and John Moores UCSD Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Medicine, Institute for Genomic Medicine, Rebecca and John Moores UCSD Cancer Center, University of California, San Diego School of Medicine, Gilman Drive, La Jolla, CA, United States of America
| | - Dorothy Concepcion
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, Rebecca and John Moores UCSD Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Medicine, Institute for Genomic Medicine, Rebecca and John Moores UCSD Cancer Center, University of California, San Diego School of Medicine, Gilman Drive, La Jolla, CA, United States of America
| | - Bruce A. Hamilton
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, Rebecca and John Moores UCSD Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Medicine, Institute for Genomic Medicine, Rebecca and John Moores UCSD Cancer Center, University of California, San Diego School of Medicine, Gilman Drive, La Jolla, CA, United States of America
| |
Collapse
|
10
|
Addison WN, Hall KC, Kokabu S, Matsubara T, Fu MM, Gori F, Baron R. Zfp423 Regulates Skeletal Muscle Regeneration and Proliferation. Mol Cell Biol 2019; 39:e00447-18. [PMID: 30692273 PMCID: PMC6447414 DOI: 10.1128/mcb.00447-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/07/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Satellite cells (SCs) are skeletal muscle stem cells that proliferate in response to injury and provide myogenic precursors for growth and repair. Zfp423 is a transcriptional cofactor expressed in multiple immature cell populations, such as neuronal precursors, mesenchymal stem cells, and preadipocytes, where it regulates lineage allocation, proliferation, and differentiation. Here, we show that Zfp423 regulates myogenic progression during muscle regeneration. Zfp423 is undetectable in quiescent SCs but becomes expressed during SC activation. After expansion, Zfp423 is gradually downregulated as committed SCs terminally differentiate. Mice with satellite-cell-specific Zfp423 deletion exhibit severely impaired muscle regeneration following injury, with aberrant SC expansion, defective cell cycle exit, and failure to transition efficiently from the proliferative stage toward commitment. Consistent with a cell-autonomous role of Zfp423, shRNA-mediated knockdown of Zfp423 in myoblasts inhibits differentiation. Surprisingly, forced expression of Zfp423 in myoblasts induces differentiation into adipocytes and arrests myogenesis. Affinity purification of Zfp423 in myoblasts identified Satb2 as a nuclear partner of Zfp423 that cooperatively enhances Zfp423 transcriptional activity, which in turn affects myoblast differentiation. In conclusion, by controlling SC expansion and proliferation, Zfp423 is essential for muscle regeneration. Tight regulation of Zfp423 expression is essential for normal progression of muscle progenitors from proliferation to differentiation.
Collapse
MESH Headings
- Adipocytes/cytology
- Animals
- Cell Differentiation/physiology
- Cell Proliferation/physiology
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Mesenchymal Stem Cells/cytology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Development/physiology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Regeneration/physiology
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/physiology
- Signal Transduction
- Stem Cells/cytology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Wound Healing
Collapse
Affiliation(s)
- William N Addison
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Katherine C Hall
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Martin M Fu
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Francesca Gori
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Massimino L, Flores-Garcia L, Di Stefano B, Colasante G, Icoresi-Mazzeo C, Zaghi M, Hamilton BA, Sessa A. TBR2 antagonizes retinoic acid dependent neuronal differentiation by repressing Zfp423 during corticogenesis. Dev Biol 2018; 434:231-248. [PMID: 29305158 PMCID: PMC7032051 DOI: 10.1016/j.ydbio.2017.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/26/2017] [Accepted: 12/28/2017] [Indexed: 01/14/2023]
Abstract
During cerebral cortex development, neural progenitors are required to elaborate a variety of cell differentiation signals to which they are continuously exposed. RA acid is a potent inducer of neuronal differentiation as it was found to influence cortical development. We report herein that TBR2, a transcription factor specific to Intermediate (Basal) Neural Progenitors (INPs), represses activation of the RA responsive element and expression of RA target genes in cell lines. This repressive action on RA signaling was functionally confirmed by the decrease of RA-mediated neuronal differentiation in neural stem cells stably overexpressing TBR2. In vivo mapping of RA activity in the developing cortex indicated that RA activity is detected in radial glial cells and subsequently downregulated in INPs, revealing a fine cell-type specific regulation of its signaling. Thus, TBR2 might be a molecular player in opposing RA signaling in INPs. Interestingly, this negative regulation is achieved at least in part by directly repressing the critical nuclear RA co-factor ZFP423. Indeed, we found ZFP423 to be expressed in the developing cortex and promote RA-dependent neuronal differentiation. These data indicate that TBR2 contributes to suppressing RA signaling in INPs, thereby enabling them to re-enter the cell cycle and delay neuronal differentiation.
Collapse
Affiliation(s)
- Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Lisbeth Flores-Garcia
- Departments of Cellular&Molecular Medicine and Medicine, Moores Cancer Center, and Institute for Genomic Medicine, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0644, USA
| | - Bruno Di Stefano
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cecilia Icoresi-Mazzeo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Bruce A Hamilton
- Departments of Cellular&Molecular Medicine and Medicine, Moores Cancer Center, and Institute for Genomic Medicine, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0644, USA
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
12
|
Bond HM, Scicchitano S, Chiarella E, Amodio N, Lucchino V, Aloisio A, Montalcini Y, Mesuraca M, Morrone G. ZNF423: A New Player in Estrogen Receptor-Positive Breast Cancer. Front Endocrinol (Lausanne) 2018; 9:255. [PMID: 29867779 PMCID: PMC5968090 DOI: 10.3389/fendo.2018.00255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/03/2018] [Indexed: 01/13/2023] Open
Abstract
Preventive therapy can target hormone-responsive breast cancer (BC) by treatment with selective estrogen receptor modulators (SERMs) and reduce the incidence of BC. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) with relevant predictive values, SNPs in the ZNF423 gene were associated with decreased risk of BC during SERM therapy, and SNPs in the Cathepsin O gene with an increased risk. ZNF423, which was not previously associated with BC is a multifunctional transcription factor known to have a role in development, neurogenesis, and adipogenesis and is implicated in other types of cancer. ZNF423 is transcriptionally controlled by the homolog ZNF521, early B cell factor transcription factor, epigenetic silencing of the promoter by CpG island hyper-methylation, and also by ZNF423 itself in an auto-regulatory loop. In BC cells, ZNF423 expression is found to be induced by estrogen, dependent on the binding of the estrogen receptor and calmodulin-like 3 to SNPs in ZNP423 intronic sites in proximity to consensus estrogen response elements. ZNF423 has also been shown to play a mechanistic role by trans-activating the tumor suppressor BRCA1 and thus modulating the DNA damage response. Even though recent extensive trial studies did not classify these SNPs with the highest predictive values, for inclusion in polygenic SNP analysis, the mechanism unveiled in these studies has introduced ZNF423 as a factor important in the control of the estrogen response. Here, we aim at providing an overview of ZNF423 expression and functional role in human malignancies, with a specific focus on its implication in hormone-responsive BC.
Collapse
Affiliation(s)
- Heather M. Bond
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Heather M. Bond, ; Maria Mesuraca, ; Giovanni Morrone,
| | - Stefania Scicchitano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Nicola Amodio
- Laboratory of Medical Oncology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Valeria Lucchino
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Annamaria Aloisio
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Ylenia Montalcini
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Heather M. Bond, ; Maria Mesuraca, ; Giovanni Morrone,
| | - Giovanni Morrone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Heather M. Bond, ; Maria Mesuraca, ; Giovanni Morrone,
| |
Collapse
|
13
|
Secco B, Camiré É, Brière MA, Caron A, Billong A, Gélinas Y, Lemay AM, Tharp KM, Lee PL, Gobeil S, Guimond JV, Patey N, Guertin DA, Stahl A, Haddad É, Marsolais D, Bossé Y, Birsoy K, Laplante M. Amplification of Adipogenic Commitment by VSTM2A. Cell Rep 2017; 18:93-106. [PMID: 28052263 PMCID: PMC5551894 DOI: 10.1016/j.celrep.2016.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/31/2016] [Accepted: 12/06/2016] [Indexed: 11/05/2022] Open
Abstract
Despite progress in our comprehension of the mechanisms regulating adipose tissue development, the nature of the factors that functionally characterize adipose precursors is still elusive. Defining the early steps regulating adipocyte development is needed for the generation of tools to control adipose tissue size and function. Here, we report the discovery of V-set and transmembrane domain containing 2A (VSTM2A) as a protein expressed and secreted by committed preadipocytes. VSTM2A expression is elevated in the early phases of adipogenesis in vitro and adipose tissue development in vivo. We show that VSTM2A-producing cells associate with the vasculature and express the common surface markers of adipocyte progenitors. Overexpression of VSTM2A induces adipogenesis, whereas its depletion impairs this process. VSTM2A controls preadipocyte determination at least in part by modulating BMP signaling and PPARγ2 activation. We propose a model in which VSTM2A is produced to preserve and amplify the adipogenic capability of adipose precursors.
Collapse
Affiliation(s)
- Blandine Secco
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada
| | - Étienne Camiré
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada
| | - Marc-Antoine Brière
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada
| | - Alexandre Caron
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada
| | - Armande Billong
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada
| | - Yves Gélinas
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada
| | - Anne-Marie Lemay
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada
| | - Kevin M Tharp
- Program for Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter L Lee
- University of Massachusetts Medical School, Program in Molecular Medicine, Worcester, MA 01605, USA
| | - Stéphane Gobeil
- Centre hospitalier universitaire de Québec (CHU de Québec), Université Laval, Faculté de médecine, 2705 Boulevard Laurier, QC G1V 4G2, Canada
| | - Jean V Guimond
- CIUSSS du Centre-Sud-de-l'ile-de-Montréal, CLSC des Faubourgs, 66 rue Sainte-Catherine Est, Montréal, QC H2X 1K6, Canada
| | - Natacha Patey
- Centre Hospitalier Universitaire de Sainte-Justine (CHU de Sainte-Justine), Faculté de Médecine, Département de pathologie et biologie cellulaire, Université de Montréal, 3175 Chemin Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
| | - David A Guertin
- University of Massachusetts Medical School, Program in Molecular Medicine, Worcester, MA 01605, USA
| | - Andreas Stahl
- Program for Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Élie Haddad
- Centre Hospitalier Universitaire de Sainte-Justine (CHU de Sainte-Justine), Faculté de Médecine, Département de pédiatrie et Département de microbiologie, infectiologie et immunologie, Université de Montréal, 3175 Chemin Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
| | - David Marsolais
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada
| | - Yohan Bossé
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada
| | - Kivanc Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mathieu Laplante
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada.
| |
Collapse
|
14
|
Casoni F, Croci L, Bosone C, D'Ambrosio R, Badaloni A, Gaudesi D, Barili V, Sarna JR, Tessarollo L, Cremona O, Hawkes R, Warming S, Consalez GG. Zfp423/ZNF423 regulates cell cycle progression, the mode of cell division and the DNA-damage response in Purkinje neuron progenitors. Development 2017; 144:3686-3697. [PMID: 28893945 DOI: 10.1242/dev.155077] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/01/2017] [Indexed: 02/03/2023]
Abstract
The Zfp423/ZNF423 gene encodes a 30-zinc-finger transcription factor involved in key developmental pathways. Although null Zfp423 mutants develop cerebellar malformations, the underlying mechanism remains unknown. ZNF423 mutations are associated with Joubert Syndrome, a ciliopathy causing cerebellar vermis hypoplasia and ataxia. ZNF423 participates in the DNA-damage response (DDR), raising questions regarding its role as a regulator of neural progenitor cell cycle progression in cerebellar development. To characterize in vivo the function of ZFP423 in neurogenesis, we analyzed allelic murine mutants in which distinct functional domains are deleted. One deletion impairs mitotic spindle orientation, leading to premature cell cycle exit and Purkinje cell (PC) progenitor pool deletion. The other deletion impairs PC differentiation. In both mutants, cell cycle progression is remarkably delayed and DDR markers are upregulated in cerebellar ventricular zone progenitors. Our in vivo evidence sheds light on the domain-specific roles played by ZFP423 in different aspects of PC progenitor development, and at the same time strengthens the emerging notion that an impaired DDR may be a key factor in the pathogenesis of JS and other ciliopathies.
Collapse
Affiliation(s)
- Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy.,Università Vita-Salute San Raffaele, Milan 20132, Italy
| | - Laura Croci
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Camilla Bosone
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy.,Università Vita-Salute San Raffaele, Milan 20132, Italy
| | - Roberta D'Ambrosio
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Aurora Badaloni
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Davide Gaudesi
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Valeria Barili
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy.,Università Vita-Salute San Raffaele, Milan 20132, Italy
| | - Justyna R Sarna
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta AB T2N 1N4, Canada
| | - Lino Tessarollo
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Ottavio Cremona
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy.,Università Vita-Salute San Raffaele, Milan 20132, Italy
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta AB T2N 1N4, Canada
| | - Søren Warming
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy .,Università Vita-Salute San Raffaele, Milan 20132, Italy
| |
Collapse
|
15
|
Accurate Breakpoint Mapping in Apparently Balanced Translocation Families with Discordant Phenotypes Using Whole Genome Mate-Pair Sequencing. PLoS One 2017; 12:e0169935. [PMID: 28072833 PMCID: PMC5225008 DOI: 10.1371/journal.pone.0169935] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Familial apparently balanced translocations (ABTs) segregating with discordant phenotypes are extremely challenging for interpretation and counseling due to the scarcity of publications and lack of routine techniques for quick investigation. Recently, next generation sequencing has emerged as an efficacious methodology for precise detection of translocation breakpoints. However, studies so far have mainly focused on de novo translocations. The present study focuses specifically on familial cases in order to shed some light to this diagnostic dilemma. Whole-genome mate-pair sequencing (WG-MPS) was applied to map the breakpoints in nine two-way ABT carriers from four families. Translocation breakpoints and patient-specific structural variants were validated by Sanger sequencing and quantitative Real Time PCR, respectively. Identical sequencing patterns and breakpoints were identified in affected and non-affected members carrying the same translocations. PTCD1, ATP5J2-PTCD1, CADPS2, and STPG1 were disrupted by the translocations in three families, rendering them initially as possible disease candidate genes. However, subsequent mutation screening and structural variant analysis did not reveal any pathogenic mutations or unique variants in the affected individuals that could explain the phenotypic differences between carriers of the same translocations. In conclusion, we suggest that NGS-based methods, such as WG-MPS, can be successfully used for detailed mapping of translocation breakpoints, which can also be used in routine clinical investigation of ABT cases. Unlike de novo translocations, no associations were determined here between familial two-way ABTs and the phenotype of the affected members, in which the presence of cryptic imbalances and complex chromosomal rearrangements has been excluded. Future whole-exome or whole-genome sequencing will potentially reveal unidentified mutations in the patients underlying the discordant phenotypes within each family. In addition, larger studies are needed to determine the exact percentage for phenotypic risk in families with ABTs.
Collapse
|
16
|
Buckberry S, Bianco-Miotto T, Bent SJ, Clifton V, Shoubridge C, Shankar K, Roberts CT. Placental transcriptome co-expression analysis reveals conserved regulatory programs across gestation. BMC Genomics 2017; 18:10. [PMID: 28049421 PMCID: PMC5209944 DOI: 10.1186/s12864-016-3384-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 12/07/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Mammalian development in utero is absolutely dependent on proper placental development, which is ultimately regulated by the placental genome. The regulation of the placental genome can be directly studied by exploring the underlying organisation of the placental transcriptome through a systematic analysis of gene-wise co-expression relationships. RESULTS In this study, we performed a comprehensive analysis of human placental co-expression using RNA sequencing and intergrated multiple transcriptome datasets spanning human gestation. We identified modules of co-expressed genes that are preserved across human gestation, and also identifed modules conserved in the mouse indicating conserved molecular networks involved in placental development and gene expression patterns more specific to late gestation. Analysis of co-expressed gene flanking sequences indicated that conserved co-expression modules in the placenta are regulated by a core set of transcription factors, including ZNF423 and EBF1. Additionally, we identified a gene co-expression module enriched for genes implicated in the pregnancy pathology preeclampsia. By using an independnet transcriptome dataset, we show that these co-expressed genes are differentially expressed in preeclampsia. CONCLUSIONS This study represents a comprehensive characterisation of placental co-expression and provides insight into potential transcriptional regulators that govern conserved molecular programs fundamental to placental development.
Collapse
Affiliation(s)
- Sam Buckberry
- The Robinson Research Institute, The University of Adelaide, School of Paediatrics and Reproductive Health, Adelaide, 5005, Australia.,University of Western Australia, Harry Perkins Institute of Medical Research, Perth, 6009, Australia.,University of Western Australia, Australian Research Council Centre of Excellence in Plant Energy Biology, Perth, 6009, Australia
| | - Tina Bianco-Miotto
- The Robinson Research Institute, The University of Adelaide, School of Paediatrics and Reproductive Health, Adelaide, 5005, Australia.,The University of Adelaide, School of agriculture, food and wine, Adelaide, 5005, Australia
| | - Stephen J Bent
- The Robinson Research Institute, The University of Adelaide, School of Paediatrics and Reproductive Health, Adelaide, 5005, Australia
| | - Vicki Clifton
- The Robinson Research Institute, The University of Adelaide, School of Paediatrics and Reproductive Health, Adelaide, 5005, Australia
| | - Cheryl Shoubridge
- The Robinson Research Institute, The University of Adelaide, School of Paediatrics and Reproductive Health, Adelaide, 5005, Australia
| | - Kartik Shankar
- University of Arkansas for Medical Sciences, The Department of Pediatrics, Little Rock, 72202, USA
| | - Claire T Roberts
- The Robinson Research Institute, The University of Adelaide, School of Paediatrics and Reproductive Health, Adelaide, 5005, Australia.
| |
Collapse
|
17
|
Srivastava S, Molinari E, Raman S, Sayer JA. Many Genes-One Disease? Genetics of Nephronophthisis (NPHP) and NPHP-Associated Disorders. Front Pediatr 2017; 5:287. [PMID: 29379777 PMCID: PMC5770800 DOI: 10.3389/fped.2017.00287] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Nephronophthisis (NPHP) is a renal ciliopathy and an autosomal recessive cause of cystic kidney disease, renal fibrosis, and end-stage renal failure, affecting children and young adults. Molecular genetic studies have identified more than 20 genes underlying this disorder, whose protein products are all related to cilia, centrosome, or mitotic spindle function. In around 15% of cases, there are additional features of a ciliopathy syndrome, including retinal defects, liver fibrosis, skeletal abnormalities, and brain developmental disorders. Alongside, gene identification has arisen molecular mechanistic insights into the disease pathogenesis. The genetic causes of NPHP are discussed in terms of how they help us to define treatable disease pathways including the cyclic adenosine monophosphate pathway, the mTOR pathway, Hedgehog signaling pathways, and DNA damage response pathways. While the underlying pathology of the many types of NPHP remains similar, the defined disease mechanisms are diverse, and a personalized medicine approach for therapy in NPHP patients is likely to be required.
Collapse
Affiliation(s)
- Shalabh Srivastava
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Renal Unit, City Hospitals Sunderland and South Tyneside NHS Foundation Trust, Sunderland, United Kingdom
| | - Elisa Molinari
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shreya Raman
- Department of Histopathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - John A Sayer
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Renal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
18
|
Shao M, Hepler C, Vishvanath L, MacPherson KA, Busbuso NC, Gupta RK. Fetal development of subcutaneous white adipose tissue is dependent on Zfp423. Mol Metab 2017; 6:111-124. [PMID: 28123942 PMCID: PMC5220400 DOI: 10.1016/j.molmet.2016.11.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Zfp423 is a multi zinc-finger transcription factor expressed in preadipocytes and mature adipocytes in vivo. Our recent work has revealed a critical role for Zfp423 in maintaining the fate of white adipocytes in adult mice through suppression of the beige cell thermogenic gene program; loss of Zfp423 in mature adipocytes of adult mice results in a white-to-beige phenotypic switch. However, the exact requirements of Zfp423 in the fetal stages of early adipose development in vivo have not been clarified. METHOD Here, we utilize two models that confer adipose-specific Zfp423 inactivation during fetal adipose development (Adiponectin-Cre; Zfp423loxP/loxP and Adiponectin-rtTA; TRE-Cre; Zfp423loxP/loxP). We assess the impact of fetal adipose Zfp423 deletion on the initial formation of adipose tissue and evaluate the metabolic consequences of challenging these animals with high-fat diet feeding. RESULTS Deletion of Zfp423 during fetal adipose development results in a different phenotype than is observed when deleting Zfp423 in adipocytes of adult mice. Inactivation of Zfp423 during fetal adipose development results in arrested differentiation, specifically of inguinal white adipocytes, rather than a white-to-beige phenotypic switch that occurs when Zfp423 is inactivated in adult mice. This is likely explained by the observation that adiponectin driven Cre expression is active at an earlier stage of the adipocyte life cycle during fetal subcutaneous adipose development than in adult mice. Upon high-fat diet feeding, obese adipose Zfp423-deficient animals undergo a pathological adipose tissue expansion, associated with ectopic lipid deposition and systemic insulin resistance. CONCLUSIONS Our results reveal that Zfp423 is essential for the terminal differentiation of subcutaneous white adipocytes during fetal adipose tissue development. Moreover, our data highlight the striking adverse effects of pathological subcutaneous adipose tissue remodeling on visceral adipose function and systemic nutrient homeostasis in obesity. Importantly, these data reveal the distinct phenotypes that can occur when adiponectin driven transgenes are activated in fetal vs. adult adipose tissue.
Collapse
Affiliation(s)
- Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chelsea Hepler
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Karen A MacPherson
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Napoleon C Busbuso
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
19
|
Hong CJ, Hamilton BA. Zfp423 Regulates Sonic Hedgehog Signaling via Primary Cilium Function. PLoS Genet 2016; 12:e1006357. [PMID: 27727273 PMCID: PMC5065120 DOI: 10.1371/journal.pgen.1006357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022] Open
Abstract
Zfp423 encodes a 30-zinc finger transcription factor that intersects several canonical signaling pathways. Zfp423 mutations result in ciliopathy-related phenotypes, including agenesis of the cerebellar vermis in mice and Joubert syndrome (JBTS19) and nephronophthisis (NPHP14) in humans. Unlike most ciliopathy genes, Zfp423 encodes a nuclear protein and its developmental expression is complex, leading to alternative proposals for cellular mechanisms. Here we show that Zfp423 is expressed by cerebellar granule cell precursors, that loss of Zfp423 in these precursors leads to cell-intrinsic reduction in proliferation, loss of response to Shh, and primary cilia abnormalities that include diminished frequency of both Smoothened and IFT88 localization. Loss of Zfp423 alters expression of several genes encoding key cilium components, including increased expression of Tulp3. Tulp3 is a direct binding target of Zfp423 and reducing the overexpression of Tulp3 in Zfp423-deficient cells suppresses Smoothened translocation defects. These results define Zfp423 deficiency as a bona fide ciliopathy, acting upstream of Shh signaling, and indicate a mechanism intrinsic to granule cell precursors for the resulting cerebellar hypoplasia.
Collapse
Affiliation(s)
- Chen-Jei Hong
- Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, United States of America.,Department of Medicine, University of California, San Diego School of Medicine, La Jolla, California, United States of America.,Moores UCSD Cancer Center, University of California, San Diego School of Medicine, La Jolla, California, United States of America.,Institute for Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, California, United States of America
| | - Bruce A Hamilton
- Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, United States of America.,Department of Medicine, University of California, San Diego School of Medicine, La Jolla, California, United States of America.,Moores UCSD Cancer Center, University of California, San Diego School of Medicine, La Jolla, California, United States of America.,Institute for Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, California, United States of America
| |
Collapse
|
20
|
Abstract
The neuroendocrine hypothalamus is composed of the tuberal and anterodorsal hypothalamus, together with the median eminence/neurohypophysis. It centrally governs wide-ranging physiological processes, including homeostasis of energy balance, circadian rhythms and stress responses, as well as growth and reproductive behaviours. Homeostasis is maintained by integrating sensory inputs and effecting responses via autonomic, endocrine and behavioural outputs, over diverse time-scales and throughout the lifecourse of an individual. Here, we summarize studies that begin to reveal how different territories and cell types within the neuroendocrine hypothalamus are assembled in an integrated manner to enable function, thus supporting the organism's ability to survive and thrive. We discuss how signaling pathways and transcription factors dictate the appearance and regionalization of the hypothalamic primordium, the maintenance of progenitor cells, and their specification and differentiation into neurons. We comment on recent studies that harness such programmes for the directed differentiation of human ES/iPS cells. We summarize how developmental plasticity is maintained even into adulthood and how integration between the hypothalamus and peripheral body is established in the median eminence and neurohypophysis. Analysis of model organisms, including mouse, chick and zebrafish, provides a picture of how complex, yet elegantly coordinated, developmental programmes build glial and neuronal cells around the third ventricle of the brain. Such conserved processes enable the hypothalamus to mediate its function as a central integrating and response-control mediator for the homeostatic processes that are critical to life. Early indications suggest that deregulation of these events may underlie multifaceted pathological conditions and dysfunctional physiology in humans, such as obesity.
Collapse
Affiliation(s)
- Sarah Burbridge
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Iain Stewart
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW In the past decade a wealth of publications have established the central role of cilia and centrosomes in the pathogenesis of cystic kidney diseases, associated or not with extrarenal symptoms. This review outlines recent findings that have unexpectedly linked ciliary and centrosomal proteins to DNA damage and repair and have opened new perspectives for the comprehension of the pathogenesis of these diseases. RECENT FINDINGS Several ciliopathy proteins that contribute to the pathogenesis of cystic kidney diseases and ciliopathy-related phenotypes have been recently reported to participate in the elaborated pathways that control DNA replication and repair, suggesting that malfunction of these biological processes may be a common denominator of some ciliopathy-related diseases. SUMMARY In this review, the author briefly describes the established connections existing between cilia, centrosome, and cell cycle and provides basic information about DNA damage and repair. The author then examines more closely the single ciliopathy genes that have been associated with DNA repair pathways and their known biological functions.
Collapse
|
22
|
Signaroldi E, Laise P, Cristofanon S, Brancaccio A, Reisoli E, Atashpaz S, Terreni MR, Doglioni C, Pruneri G, Malatesta P, Testa G. Polycomb dysregulation in gliomagenesis targets a Zfp423-dependent differentiation network. Nat Commun 2016; 7:10753. [PMID: 26923714 PMCID: PMC4773478 DOI: 10.1038/ncomms10753] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
Malignant gliomas constitute one of the most significant areas of unmet medical need, owing to the invariable failure of surgical eradication and their marked molecular heterogeneity. Accumulating evidence has revealed a critical contribution by the Polycomb axis of epigenetic repression. However, a coherent understanding of the regulatory networks affected by Polycomb during gliomagenesis is still lacking. Here we integrate transcriptomic and epigenomic analyses to define Polycomb-dependent networks that promote gliomagenesis, validating them both in two independent mouse models and in a large cohort of human samples. We find that Polycomb dysregulation in gliomagenesis affects transcriptional networks associated with invasiveness and de-differentiation. The dissection of these networks uncovers Zfp423 as a critical Polycomb-dependent transcription factor whose silencing negatively impacts survival. The anti-gliomagenic activity of Zfp423 requires interaction with the SMAD proteins within the BMP signalling pathway, pointing to a novel synergic circuit through which Polycomb inhibits BMP signalling.
Collapse
Affiliation(s)
- Elena Signaroldi
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milan 20139, Italy
| | - Pasquale Laise
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milan 20139, Italy
| | - Silvia Cristofanon
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milan 20139, Italy
| | - Arianna Brancaccio
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milan 20139, Italy
| | - Elisa Reisoli
- Trasferimento Genico, IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, Genoa 16132, Italy
| | - Sina Atashpaz
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milan 20139, Italy
| | - Maria Rosa Terreni
- Pathology Department, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan 20132, Italy
| | - Claudio Doglioni
- Pathology Department, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan 20132, Italy
| | - Giancarlo Pruneri
- Division of Pathology and Laboratory Medicine, European Institute of Oncology, via Ripamonti 435, Milan 20141, Italy
| | - Paolo Malatesta
- Trasferimento Genico, IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, Genoa 16132, Italy
- Department of Experimental Medicine (DiMES), University of Genoa, Via Leon Battista Alberti 2, Genoa 16132, Italy
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milan 20139, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Via Festa del Perdono 7, Milan 20122, Italy
| |
Collapse
|
23
|
ZNF423 and ZNF521: EBF1 Antagonists of Potential Relevance in B-Lymphoid Malignancies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:165238. [PMID: 26788497 PMCID: PMC4695665 DOI: 10.1155/2015/165238] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/25/2015] [Indexed: 12/26/2022]
Abstract
The development of the B-lymphoid cell lineage is tightly controlled by the concerted action of a network of transcriptional and epigenetic regulators. EBF1, a central component of this network, is essential for B-lymphoid specification and commitment as well as for the maintenance of the B-cell identity. Genetic alterations causing loss of function of these B-lymphopoiesis regulators have been implicated in the pathogenesis of B-lymphoid malignancies, with particular regard to B-cell acute lymphoblastic leukaemias (B-ALLs), where their presence is frequently detected. The activity of the B-cell regulatory network may also be disrupted by the aberrant expression of inhibitory molecules. In particular, two multi-zinc finger transcription cofactors named ZNF423 and ZNF521 have been characterised as potent inhibitors of EBF1 and are emerging as potentially relevant contributors to the development of B-cell leukaemias. Here we will briefly review the current knowledge of these factors and discuss the importance of their functional cross talk with EBF1 in the development of B-cell malignancies.
Collapse
|
24
|
Gergics P, Brinkmeier ML, Camper SA. Lhx4 deficiency: increased cyclin-dependent kinase inhibitor expression and pituitary hypoplasia. Mol Endocrinol 2015; 29:597-612. [PMID: 25668206 PMCID: PMC4399274 DOI: 10.1210/me.2014-1380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/06/2015] [Indexed: 12/30/2022] Open
Abstract
Defects in the Lhx4, Lhx3, and Pitx2 genes can cause combined pituitary hormone deficiency and pituitary hypoplasia in both humans and mice. Not much is known about the mechanism underlying hypoplasia in these mutants beyond generally increased cell death and poorly maintained proliferation. We identified both common and unique abnormalities in developmental regulation of key cell cycle regulator gene expression in each of these three mutants. All three mutants exhibit reduced expression of the proliferative marker Ki67 and the transitional marker p57. We discovered that expression of the cyclin-dependent kinase inhibitor 1a (Cdkn1a or p21) is expanded dorsally in the pituitary primordium of both Lhx3 and Lhx4 mutants. Uniquely, Lhx4 mutants exhibit reduced cyclin D1 expression and have auxiliary pouch-like structures. We show evidence for indirect and direct effects of LHX4 on p21 expression in αT3-1 pituitary cells. In summary, Lhx4 is necessary for efficient pituitary progenitor cell proliferation and restriction of p21 expression.
Collapse
Affiliation(s)
- Peter Gergics
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109
| | | | | |
Collapse
|
25
|
Leto K, Carulli D, Buffo A. Symposium in honor of Ferdinando Rossi: a passionate journey through the cerebellar mysteries. THE CEREBELLUM 2015; 13:791-4. [PMID: 25562085 DOI: 10.1007/s12311-014-0590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To remember our friend and colleague Ferdinando Rossi, prematurely passed away on 24th January 2014, a symposium was held during the ninth FENS meeting in Milan. It was focused on the development and plasticity of the cerebellum, the main topics of Ferdinando's research. From the talks of the invited speakers, Giacomo Consalez, Karl Schilling, Alain Chédotal, and Chris De Zeeuw, it clearly emerged that Ferdinando had a huge impact on the research of many scientists like them, as well as in the whole field of brain development and regeneration. With this symposium, we celebrated a brilliant scientist, devoted to Neuroscience with tireless passion and curiosity.
Collapse
|
26
|
Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV, Gallo RL. Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science 2015; 347:67-71. [PMID: 25554785 PMCID: PMC4318537 DOI: 10.1126/science.1260972] [Citation(s) in RCA: 325] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adipocytes have been suggested to be immunologically active, but their role in host defense is unclear. We observed rapid proliferation of preadipocytes and expansion of the dermal fat layer after infection of the skin by Staphylococcus aureus. Impaired adipogenesis resulted in increased infection as seen in Zfp423(nur12) mice or in mice given inhibitors of peroxisome proliferator-activated receptor γ. This host defense function was mediated through the production of cathelicidin antimicrobial peptide from adipocytes because cathelicidin expression was decreased by inhibition of adipogenesis, and adipocytes from Camp(-/-) mice lost the capacity to inhibit bacterial growth. Together, these findings show that the production of an antimicrobial peptide by adipocytes is an important element for protection against S. aureus infection of the skin.
Collapse
Affiliation(s)
- Ling-juan Zhang
- Division of Dermatology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Christian F Guerrero-Juarez
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA. Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Tissa Hata
- Division of Dermatology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Sagar P Bapat
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, San Diego, La Jolla, CA 92037, USA
| | - Raul Ramos
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA. Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA. Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Richard L Gallo
- Division of Dermatology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA.
| |
Collapse
|
27
|
Harder L, Puller AC, Horstmann MA. ZNF423: Transcriptional modulation in development and cancer. Mol Cell Oncol 2014; 1:e969655. [PMID: 27308357 DOI: 10.4161/23723548.2014.969655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/30/2022]
Abstract
Krüppel-like zinc finger proteins are versatile players in biology that have been implicated in mammalian development and disease. Among these proteins, ZNF423 and its mouse ortholog Zfp423 were initially implicated in midline patterning of the central nervous system but have emerged as critical transcriptional modulators in cancer. Epigenetically uncurbed ZNF423 interferes with lymphopoiesis by sequestration of the essential early B-cell factor 1 (EBF1) causing B-cell maturation arrest, a hallmark of acute lymphoblastic leukemia. Conversely, its presence in neuroblastoma, a primitive neuroectodermal tumor of childhood, allows retinoic acid-induced differentiation and is associated with a favorable outcome of neuroblastoma patients. Such opposing effects may be explained by the cellular context, but also by the multifunctionality of ZNF423 that is mediated by 30 zinc fingers forming various functional domains. This review summarizes current knowledge of ZNF423, focusing on its role in development and cancer.
Collapse
Affiliation(s)
- Lena Harder
- Research Institute Children's Cancer Center Hamburg and Clinic of Pediatric Hematology and Oncology; University Medical Center Hamburg-Eppendorf ; Hamburg, Germany
| | - Ann-Christin Puller
- Research Institute Children's Cancer Center Hamburg and Clinic of Pediatric Hematology and Oncology; University Medical Center Hamburg-Eppendorf ; Hamburg, Germany
| | - Martin A Horstmann
- Research Institute Children's Cancer Center Hamburg and Clinic of Pediatric Hematology and Oncology; University Medical Center Hamburg-Eppendorf ; Hamburg, Germany
| |
Collapse
|
28
|
Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. Dev Cell 2014; 31:374-382. [PMID: 25453832 DOI: 10.1016/j.devcel.2014.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/16/2014] [Accepted: 10/02/2014] [Indexed: 11/21/2022]
Abstract
The SoxD factor, Sox5, is expressed in ectodermal cells at times and places where BMP signaling is active, including the cells of the animal hemisphere at blastula stages and the neural plate border and neural crest at neurula stages. Sox5 is required for proper ectoderm development, and deficient embryos display patterning defects characteristic of perturbations of BMP signaling, including loss of neural crest and epidermis and expansion of the neural plate. We show that Sox5 is essential for activation of BMP target genes in embryos and explants, that it physically interacts with BMP R-Smads, and that it is essential for recruitment of Smad1/4 to BMP regulatory elements. Our findings identify Sox5 as the long-sought DNA-binding partner for BMP R-Smads essential to plasticity and pattern in the early ectoderm.
Collapse
|
29
|
Spina R, Filocamo G, Iaccino E, Scicchitano S, Lupia M, Chiarella E, Mega T, Bernaudo F, Pelaggi D, Mesuraca M, Pazzaglia S, Semenkow S, Bar EE, Kool M, Pfister S, Bond HM, Eberhart CG, Steinkühler C, Morrone G. Critical role of zinc finger protein 521 in the control of growth, clonogenicity and tumorigenic potential of medulloblastoma cells. Oncotarget 2014; 4:1280-92. [PMID: 23907569 PMCID: PMC3787157 DOI: 10.18632/oncotarget.1176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The stem cell-associated transcription co-factor ZNF521 has been implicated in the control of hematopoietic, osteo-adipogenic and neural progenitor cells. ZNF521 is highly expressed in cerebellum and in particular in the neonatal external granule layer that contains candidate medulloblastoma cells-of-origin, and in the majority of human medulloblastomas. Here we have explored its involvement in the control of human and murine medulloblastoma cells. The effect of ZNF521 on growth and tumorigenic potential of human medulloblastoma cell lines as well as primary Ptc1−/+ mouse medulloblastoma cells was investigated in a variety of in vitro and in vivo assays, by modulating its expression using lentiviral vectors carrying the ZNF521 cDNA, or shRNAs that silence its expression. Enforced overexpression of ZNF521 in DAOY medulloblastoma cells significantly increased their proliferation, growth as spheroids and ability to generate clones in single-cell cultures and semisolid media, and enhanced their migratory ability in wound-healing assays. Importantly, ZNF521-expressing cells displayed a greatly enhanced tumorigenic potential in nude mice. All these activities required the ZNF521 N-terminal motif that recruits the nucleosome remodeling and histone deacetylase complex, which might therefore represent an appealing therapeutic target. Conversely, silencing of ZNF521 in human UW228 medulloblastoma cells that display high baseline expression decreased their proliferation, clonogenicity, sphere formation and wound-healing ability. Similarly, Zfp521 silencing in mouse Ptc1−/+ medulloblastoma cells drastically reduced their growth and tumorigenic potential. Our data strongly support the notion that ZNF521, through the recruitment of the NuRD complex, contributes to the clonogenic growth, migration and tumorigenicity of medulloblastoma cells.
Collapse
Affiliation(s)
- Raffaella Spina
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Expression profiling and functional implications of a set of zinc finger proteins, ZNF423, ZNF470, ZNF521, and ZNF780B, in primary osteoarthritic articular chondrocytes. Mediators Inflamm 2014; 2014:318793. [PMID: 24976683 PMCID: PMC4058293 DOI: 10.1155/2014/318793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 01/27/2023] Open
Abstract
Articular chondrocytes are responsible for the maintenance of healthy articulations; indeed, dysregulation of their functions, including the production of matrix proteins and matrix-remodeling proteases, may result in fraying of the tissue and development of osteoarthritis (OA). To explore transcriptional mechanisms that contribute to the regulation of chondrocyte homeostasis and may be implicated in OA development, we compared the gene expression profile of a set of zinc finger proteins potentially linked to the control of chondrocyte differentiation and/or functions (ZNF423, ZNF470, ZNF521, and ZNF780B) in chondrocytes from patients affected by OA and from subjects not affected by OA. This analysis highlighted a significantly lower expression of the transcript encoding ZNF423 in chondrocytes from OA, particularly in elderly patients. Interestingly, this decrease was mirrored by the similarly reduced expression of PPARγ, a known target of ZNF423 with anti-inflammatory and chondroprotective properties. The ZNF521 mRNA instead was abundant in all primary chondrocytes studied; the RNAi-mediated silencing of this gene significantly altered the COL2A/COL1 expression ratio, associated with the maintenance of the differentiated phenotype, in chondrocytes cultivated in alginate beads. These results suggest a role for ZNF423 and ZNF521 in the regulation of chondrocyte homeostasis and warrant further investigations to elucidate their mechanism of action.
Collapse
|
31
|
Nakamura S, Igarashi M, Kinoshita M, Okano HJ, Okano H. Proposing a new RNA quadruplex structure: j-motif, with possible links to neural development. J Biochem 2014; 155:385-92. [PMID: 24596122 DOI: 10.1093/jb/mvu013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An RNA-binding protein, hnRNP K, has been studied extensively because of its involvement in neural development through the post-transcriptional regulation of its downstream target genes; however, its binding mode remains unclear. According to structural features of the binding sites, we have presumed the existence of possible unique structures 'j-motifs' that are similar to known i-motifs, the difference being that the initial cluster comprises successive U nucleic acids instead of C. It was suspected that the motifs could be recognized by hnRNP K to regulate the translation levels of target proteins, however, there were virtually no methods to verify their existence except computational methods: regular expression searches and theoretical molecular orbital (MO) calculations. Here, we first show a list of 16 genes having j-motif-like sequences we discovered under refined search conditions. The list was highly related to neural development from both subjective and objective aspects. Additionally, MO calculations revealed the similarity of non-canonical base pairs found in i- and j-motifs qualitatively, leading to a proposal of the possible existence of the j-motifs. When taken into consideration, it was indicated that the j-motifs could be formed and play some role in the neural development.
Collapse
Affiliation(s)
- Shingo Nakamura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555; Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582; Department of Science and Technology, Sophia University,7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554; and Division of Regenerative Medicine, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Mana Igarashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555; Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582; Department of Science and Technology, Sophia University,7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554; and Division of Regenerative Medicine, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, 105-8461, JapanPharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555; Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582; Department of Science and Technology, Sophia University,7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554; and Division of Regenerative Medicine, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Mika Kinoshita
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555; Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582; Department of Science and Technology, Sophia University,7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554; and Division of Regenerative Medicine, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hirotaka J Okano
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555; Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582; Department of Science and Technology, Sophia University,7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554; and Division of Regenerative Medicine, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hideyuki Okano
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555; Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582; Department of Science and Technology, Sophia University,7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554; and Division of Regenerative Medicine, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
32
|
Harder L, Eschenburg G, Zech A, Kriebitzsch N, Otto B, Streichert T, Behlich AS, Dierck K, Klingler B, Hansen A, Stanulla M, Zimmermann M, Kremmer E, Stocking C, Horstmann MA. Aberrant ZNF423 impedes B cell differentiation and is linked to adverse outcome of ETV6-RUNX1 negative B precursor acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2013; 210:2289-304. [PMID: 24081948 PMCID: PMC3804944 DOI: 10.1084/jem.20130497] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Differentiation arrest is a hallmark of acute leukemia. Genomic alterations in B cell differentiation factors such as PAX5, IKZF1, and EBF-1 have been identified in more than half of all cases of childhood B precursor acute lymphoblastic leukemia (ALL). Here, we describe a perturbed epigenetic and transcriptional regulation of ZNF423 in ALL as a novel mechanism interfering with B cell differentiation. Hypomethylation of ZNF423 regulatory sequences and BMP2 signaling result in transactivation of ZNF423α and a novel ZNF423β-isoform encoding a nucleosome remodeling and histone deacetylase complex-interacting domain. Aberrant ZNF423 inhibits the transactivation of EBF-1 target genes and leads to B cell maturation arrest in vivo. Importantly, ZNF423 expression is associated with poor outcome of ETV6-RUNX1-negative B precursor ALL patients. Our work demonstrates that ALL is more than a genetic disease and that epigenetics may uncover novel mechanisms of disease with prognostic implications.
Collapse
Affiliation(s)
- Lena Harder
- Research Institute Children's Cancer Center and Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cho YW, Hong CJ, Hou A, Gent PM, Zhang K, Won KJ, Hamilton BA. Zfp423 binds autoregulatory sites in p19 cell culture model. PLoS One 2013; 8:e66514. [PMID: 23762491 PMCID: PMC3675209 DOI: 10.1371/journal.pone.0066514] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 05/10/2013] [Indexed: 12/13/2022] Open
Abstract
Zfp423 is a 30 zinc finger transcription factor that forms regulatory complexes with EBF family members and factors targeted by canonical signaling pathways. Zfp423 mutations produce a range of developmental abnormalities in mice and humans related to the ciliopathies. Surprisingly, computational analysis of clustered Zfp423 and partner motifs in conserved genomic sequences predicts enrichment in Zfp423 and Ebf genes. In cell culture models selected for Zfp423 and EBF expression, we identify strong and reproducible occupancy of two Zfp423 intronic sites using chromatin immunoprecipitation with multiple independent antibodies. Both sites are significantly enriched in either quantitative PCR or massively parallel sequencing assays. A site in intron 5 acts as a classical enhancer in transient assays, but does not require the consensus motif for activity, suggesting a redundant or modulatory role for Zfp423 binding in this context. We speculate that Zfp423 may repress this enhancer as part of a developmental ratchet.
Collapse
Affiliation(s)
- Young-Wook Cho
- Departments of Medicine and Cellular and Molecular Medicine, Institute for Genomic Medicine and Moores UCSD Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Chen-Jei Hong
- Departments of Medicine and Cellular and Molecular Medicine, Institute for Genomic Medicine and Moores UCSD Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Aiju Hou
- Departments of Medicine and Cellular and Molecular Medicine, Institute for Genomic Medicine and Moores UCSD Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Peter M. Gent
- Departments of Medicine and Cellular and Molecular Medicine, Institute for Genomic Medicine and Moores UCSD Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Kuixing Zhang
- Departments of Medicine and Cellular and Molecular Medicine, Institute for Genomic Medicine and Moores UCSD Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Kyoung-Jae Won
- Department of Genetics, Institute for Diabetes, Obesity and Metabolism, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Bruce A. Hamilton
- Departments of Medicine and Cellular and Molecular Medicine, Institute for Genomic Medicine and Moores UCSD Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Taguchi YH. MicroRNA-mediated regulation of target genes in several brain regions is correlated to both microRNA-targeting-specific promoter methylation and differential microRNA expression. BioData Min 2013; 6:11. [PMID: 23725297 PMCID: PMC3693885 DOI: 10.1186/1756-0381-6-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/23/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Public domain databases nowadays provide multiple layers of genome-wide data e.g., promoter methylation, mRNA expression, and miRNA expression and should enable integrative modeling of the mechanisms of regulation of gene expression. However, researches along this line were not frequently executed. RESULTS Here, the public domain dataset of mRNA expression, microRNA (miRNA) expression and promoter methylation patterns in four regions, the frontal cortex, temporal cortex, pons and cerebellum, of human brain were sourced from the National Center for Biotechnology Informations gene expression omnibus, and reanalyzed computationally. A large number of miRNA-mediated regulation of target genes and miRNA-targeting-specific promoter methylation were identified in the six pairwise comparisons among the four brain regions. The miRNA-mediated regulation of target genes was found to be highly correlated with one or both of miRNA-targeting-specific promoter methylation and differential miRNA expression. Genes enriched for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were related to brain function and/or development were found among the target genes of miRNAs whose differential expression patterns were highly correlated with the miRNA-mediated regulation of their target genes. CONCLUSIONS The combinatorial analysis of miRNA-mediated regulation of target genes, miRNA-targeting-specific promoter methylation and differential miRNA expression can help reveal the brain region-specific contributions of miRNAs to brain function and development.
Collapse
Affiliation(s)
- Y-H Taguchi
- Department of Physics, Chuo University, Tokyo 112-8551, Japan.
| |
Collapse
|
35
|
|
36
|
Shulha HP, Crisci JL, Reshetov D, Tushir JS, Cheung I, Bharadwaj R, Chou HJ, Houston IB, Peter CJ, Mitchell AC, Yao WD, Myers RH, Chen JF, Preuss TM, Rogaev EI, Jensen JD, Weng Z, Akbarian S. Human-specific histone methylation signatures at transcription start sites in prefrontal neurons. PLoS Biol 2012; 10:e1001427. [PMID: 23185133 PMCID: PMC3502543 DOI: 10.1371/journal.pbio.1001427] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/12/2012] [Indexed: 11/18/2022] Open
Abstract
Cognitive abilities and disorders unique to humans are thought to result from adaptively driven changes in brain transcriptomes, but little is known about the role of cis-regulatory changes affecting transcription start sites (TSS). Here, we mapped in human, chimpanzee, and macaque prefrontal cortex the genome-wide distribution of histone H3 trimethylated at lysine 4 (H3K4me3), an epigenetic mark sharply regulated at TSS, and identified 471 sequences with human-specific enrichment or depletion. Among these were 33 loci selectively methylated in neuronal but not non-neuronal chromatin from children and adults, including TSS at DPP10 (2q14.1), CNTN4 and CHL1 (3p26.3), and other neuropsychiatric susceptibility genes. Regulatory sequences at DPP10 and additional loci carried a strong footprint of hominid adaptation, including elevated nucleotide substitution rates and regulatory motifs absent in other primates (including archaic hominins), with evidence for selective pressures during more recent evolution and adaptive fixations in modern populations. Chromosome conformation capture at two neurodevelopmental disease loci, 2q14.1 and 16p11.2, revealed higher order chromatin structures resulting in physical contact of multiple human-specific H3K4me3 peaks spaced 0.5-1 Mb apart, in conjunction with a novel cis-bound antisense RNA linked to Polycomb repressor proteins and downregulated DPP10 expression. Therefore, coordinated epigenetic regulation via newly derived TSS chromatin could play an important role in the emergence of human-specific gene expression networks in brain that contribute to cognitive functions and neurological disease susceptibility in modern day humans.
Collapse
Affiliation(s)
- Hennady P. Shulha
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jessica L. Crisci
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Denis Reshetov
- Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Moscow, Russian Federation
| | - Jogender S. Tushir
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Iris Cheung
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rahul Bharadwaj
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Hsin-Jung Chou
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Isaac B. Houston
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Cyril J. Peter
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Amanda C. Mitchell
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Wei-Dong Yao
- New England Primate Center, Southboro, Massachusetts, United States of America
| | - Richard H. Myers
- Department of Neurology, Boston University, Boston, Massachusetts, United States of America
| | - Jiang-fan Chen
- Department of Neurology, Boston University, Boston, Massachusetts, United States of America
| | - Todd M. Preuss
- Yerkes National Primate Research Center/Emory University, Atlanta, Georgia, United States of America
| | - Evgeny I. Rogaev
- Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Moscow, Russian Federation
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow, Russian Federation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
| | - Jeffrey D. Jensen
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Schahram Akbarian
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Departments of Psychiatry and Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| |
Collapse
|
37
|
Chaki M, Airik R, Ghosh AK, Giles RH, Chen R, Slaats GG, Wang H, Hurd TW, Zhou W, Cluckey A, Gee HY, Ramaswami G, Hong CJ, Hamilton BA, Cervenka I, Ganji RS, Bryja V, Arts HH, van Reeuwijk J, Oud MM, Letteboer SJF, Roepman R, Husson H, Ibraghimov-Beskrovnaya O, Yasunaga T, Walz G, Eley L, Sayer JA, Schermer B, Liebau MC, Benzing T, Le Corre S, Drummond I, Janssen S, Allen SJ, Natarajan S, O'Toole JF, Attanasio M, Saunier S, Antignac C, Koenekoop RK, Ren H, Lopez I, Nayir A, Stoetzel C, Dollfus H, Massoudi R, Gleeson JG, Andreoli SP, Doherty DG, Lindstrad A, Golzio C, Katsanis N, Pape L, Abboud EB, Al-Rajhi AA, Lewis RA, Omran H, Lee EYHP, Wang S, Sekiguchi JM, Saunders R, Johnson CA, Garner E, Vanselow K, Andersen JS, Shlomai J, Nurnberg G, Nurnberg P, Levy S, Smogorzewska A, Otto EA, Hildebrandt F. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell 2012; 150:533-48. [PMID: 22863007 DOI: 10.1016/j.cell.2012.06.028] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 02/01/2012] [Accepted: 06/25/2012] [Indexed: 01/03/2023]
Abstract
Nephronophthisis-related ciliopathies (NPHP-RC) are degenerative recessive diseases that affect kidney, retina, and brain. Genetic defects in NPHP gene products that localize to cilia and centrosomes defined them as "ciliopathies." However, disease mechanisms remain poorly understood. Here, we identify by whole-exome resequencing, mutations of MRE11, ZNF423, and CEP164 as causing NPHP-RC. All three genes function within the DNA damage response (DDR) pathway. We demonstrate that, upon induced DNA damage, the NPHP-RC proteins ZNF423, CEP164, and NPHP10 colocalize to nuclear foci positive for TIP60, known to activate ATM at sites of DNA damage. We show that knockdown of CEP164 or ZNF423 causes sensitivity to DNA damaging agents and that cep164 knockdown in zebrafish results in dysregulated DDR and an NPHP-RC phenotype. Our findings link degenerative diseases of the kidney and retina, disorders of increasing prevalence, to mechanisms of DDR.
Collapse
Affiliation(s)
- Moumita Chaki
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zerem A, Vinkler C, Michelson M, Leshinsky-Silver E, Lerman-Sagie T, Lev D. Mosaic marker chromosome 16 resulting in 16q11.2-q12.1 gain in a child with intellectual disability, microcephaly, and cerebellar cortical dysplasia. Am J Med Genet A 2011; 155A:2991-6. [DOI: 10.1002/ajmg.a.34316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 08/20/2011] [Indexed: 11/06/2022]
|
39
|
Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 2011; 12:722-34. [PMID: 21952300 DOI: 10.1038/nrm3198] [Citation(s) in RCA: 1067] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adipose tissue, which is primarily composed of adipocytes, is crucial for maintaining energy and metabolic homeostasis. Adipogenesis is thought to occur in two stages: commitment of mesenchymal stem cells to a preadipocyte fate and terminal differentiation. Cell shape and extracellular matrix remodelling have recently been found to regulate preadipocyte commitment and competency by modulating WNT and RHO-family GTPase signalling cascades. Adipogenic stimuli induce terminal differentiation in committed preadipocytes through the epigenomic activation of peroxisome proliferator-activated receptor-γ (PPARγ). The coordination of PPARγ with CCAAT/enhancer-binding protein (C/EBP) transcription factors maintains adipocyte gene expression. Improving our understanding of these mechanisms may allow us to identify therapeutic targets against metabolic diseases that are rapidly becoming epidemic globally.
Collapse
|
40
|
Alcaraz WA, Chen E, Valdes P, Kim E, Lo YH, Vo J, Hamilton BA. Modifier genes and non-genetic factors reshape anatomical deficits in Zfp423-deficient mice. Hum Mol Genet 2011; 20:3822-30. [PMID: 21729880 DOI: 10.1093/hmg/ddr300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Development of neural circuitry depends on the integration of signaling pathways to coordinate specification, proliferation and differentiation of cell types in the right number, in the right place, at the right time. Zinc finger protein 423 (Zfp423), a 30-zinc finger transcription factor, forms alternate complexes with components of several developmental signaling pathways, suggesting it as a point of signal integration during brain development. We previously showed that mice lacking Zfp423 have reduced proliferation of cerebellar precursor cells, resulting in complete loss of vermis and variable hypoplasia of cerebellar hemispheres. Here, we show that Zfp423(-/-) hemisphere malformations are shaped by both genetic and non-genetic factors, producing distinct phenotype distributions in different inbred genetic backgrounds. In genetic mapping studies, we identify four additive modifier loci (Amzn1-4) and seven synthetically interacting loci (Smzn1.1-3.1) that together explain approximately one-third of the phenotypic variance. Strain-specific sequence polymorphism and expression data provide a reduced list of functional variant candidate genes at each modifier locus. Environmental covariates add only modest explanatory power, suggesting an additional stochastic component. These results provide a comprehensive analysis of sources of phenotype variation in a model of hindbrain malformation.
Collapse
Affiliation(s)
- Wendy A Alcaraz
- Biomedical Sciences Graduate Program,, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0644, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Lancaster MA, Gopal DJ, Kim J, Saleem SN, Silhavy JL, Louie CM, Thacker BE, Williams Y, Zaki MS, Gleeson JG. Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome. Nat Med 2011; 17:726-31. [PMID: 21623382 PMCID: PMC3110639 DOI: 10.1038/nm.2380] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 04/19/2011] [Indexed: 01/15/2023]
Abstract
The ciliopathy Joubert syndrome is marked by cerebellar vermis hypoplasia, a phenotype for which the pathogenic mechanism is unclear. To investigate Joubert syndrome pathogenesis, we have examined mice with mutated Ahi1, the first identified Joubert syndrome-associated gene. These mice show cerebellar hypoplasia with a vermis-midline fusion defect early in development. This defect is concomitant with expansion of the roof plate and is also evident in a mouse mutant for another Joubert syndrome-associated gene, Cep290. Furthermore, fetal magnetic resonance imaging (MRI) of human subjects with Joubert syndrome reveals a similar midline cleft, suggesting parallel pathogenic mechanisms. Previous evidence has suggested a role for Jouberin (Jbn), the protein encoded by Ahi1, in canonical Wnt signaling. Consistent with this, we found decreased Wnt reporter activity at the site of hemisphere fusion in the developing cerebellum of Ahi1-mutant mice. This decrease was accompanied by reduced proliferation at the site of fusion. Finally, treatment with lithium, a Wnt pathway agonist, partially rescued this phenotype. Our findings implicate a defect in Wnt signaling in the cerebellar midline phenotype seen in Joubert syndrome that can be overcome with Wnt stimulation.
Collapse
Affiliation(s)
- Madeline A. Lancaster
- Laboratory for Neurogenetics, Howard Hughes Medical Institutes, Department of Pediatrics and Neurosciences, Institute for Genomic Medicine, University of California, San Diego
| | - Dipika J. Gopal
- Laboratory for Neurogenetics, Howard Hughes Medical Institutes, Department of Pediatrics and Neurosciences, Institute for Genomic Medicine, University of California, San Diego
| | - Joon Kim
- Laboratory for Neurogenetics, Howard Hughes Medical Institutes, Department of Pediatrics and Neurosciences, Institute for Genomic Medicine, University of California, San Diego
| | - Sahar N. Saleem
- Radiology Department, Kasr Al-Ainy Hospital, Cairo University, Cairo, Egypt
| | - Jennifer L. Silhavy
- Laboratory for Neurogenetics, Howard Hughes Medical Institutes, Department of Pediatrics and Neurosciences, Institute for Genomic Medicine, University of California, San Diego
| | - Carrie M. Louie
- Laboratory for Neurogenetics, Howard Hughes Medical Institutes, Department of Pediatrics and Neurosciences, Institute for Genomic Medicine, University of California, San Diego
| | - Bryan E. Thacker
- Laboratory for Neurogenetics, Howard Hughes Medical Institutes, Department of Pediatrics and Neurosciences, Institute for Genomic Medicine, University of California, San Diego
| | - Yuko Williams
- Laboratory for Neurogenetics, Howard Hughes Medical Institutes, Department of Pediatrics and Neurosciences, Institute for Genomic Medicine, University of California, San Diego
| | - Maha S. Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Joseph G. Gleeson
- Laboratory for Neurogenetics, Howard Hughes Medical Institutes, Department of Pediatrics and Neurosciences, Institute for Genomic Medicine, University of California, San Diego
| |
Collapse
|
42
|
A novel locus on proximal chromosome 18 associated with agenesis of the corpus callosum in mice. Mamm Genome 2010; 21:525-33. [DOI: 10.1007/s00335-010-9292-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/28/2010] [Indexed: 12/11/2022]
|
43
|
Cell Death as a Regulator of Cerebellar Histogenesis and Compartmentation. THE CEREBELLUM 2010; 10:373-92. [DOI: 10.1007/s12311-010-0222-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Masserdotti G, Badaloni A, Green YS, Croci L, Barili V, Bergamini G, Vetter ML, Consalez GG. ZFP423 coordinates Notch and bone morphogenetic protein signaling, selectively up-regulating Hes5 gene expression. J Biol Chem 2010; 285:30814-24. [PMID: 20547764 PMCID: PMC2945575 DOI: 10.1074/jbc.m110.142869] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Indexed: 02/03/2023] Open
Abstract
Zinc finger protein 423 encodes a 30 Zn-finger transcription factor involved in cerebellar and olfactory development. ZFP423 is a known interactor of SMAD1-SMAD4 and of Collier/Olf-1/EBF proteins, and acts as a modifier of retinoic acid-induced differentiation. In the present article, we show that ZFP423 interacts with the Notch1 intracellular domain in mammalian cell lines and in Xenopus neurula embryos, to activate the expression of the Notch1 target Hes5/ESR1. This effect is antagonized by EBF transcription factors, both in cultured cells and in Xenopus embryos, and amplified in vitro by BMP4, suggesting that ZFP423 acts to integrate BMP and Notch signaling, selectively promoting their convergence onto the Hes5 gene promoter.
Collapse
Affiliation(s)
- Giacomo Masserdotti
- From the Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- the Università Vita-Salute San Raffaele, 20132 Milan, Italy, and
| | - Aurora Badaloni
- From the Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Yangsook Song Green
- the Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84132
| | - Laura Croci
- From the Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valeria Barili
- From the Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- the Università Vita-Salute San Raffaele, 20132 Milan, Italy, and
| | - Giorgio Bergamini
- From the Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- the Università Vita-Salute San Raffaele, 20132 Milan, Italy, and
| | - Monica L. Vetter
- the Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84132
| | | |
Collapse
|
45
|
Abstract
Differentiation of preadipocytes to adipocytes is controlled by the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma), but little is known about earlier transcriptional events in mesenchymal stem cells that define the adipocyte lineage. A recent report (Gupta et al., 2010) identifies the zinc finger protein Zfp423 as a determining factor in preadipocyte commitment.
Collapse
Affiliation(s)
- Michael Schupp
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
46
|
Gupta RK, Arany Z, Seale P, Mepani RJ, Ye L, Conroe HM, Roby YA, Kulaga H, Reed RR, Spiegelman BM. Transcriptional control of preadipocyte determination by Zfp423. Nature 2010; 464:619-23. [PMID: 20200519 PMCID: PMC2845731 DOI: 10.1038/nature08816] [Citation(s) in RCA: 401] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 01/11/2010] [Indexed: 01/17/2023]
Abstract
The worldwide epidemic of obesity has increased the urgency to develop a deeper understanding of physiological systems related to energy balance and energy storage, including the mechanisms controlling the development of fat cells (adipocytes). The differentiation of committed preadipocytes to adipocytes is controlled by PPARgamma and several other transcription factors, but the molecular basis for preadipocyte determination is not understood. Using a new method for the quantitative analysis of transcriptional components, we identified the zinc-finger protein Zfp423 as a factor enriched in preadipose versus non-preadipose fibroblasts. Ectopic expression of Zfp423 in non-adipogenic NIH 3T3 fibroblasts robustly activates expression of Pparg in undifferentiated cells and permits cells to undergo adipocyte differentiation under permissive conditions. Short hairpin RNA (shRNA)-mediated reduction of Zfp423 expression in 3T3-L1 cells blunts preadipocyte Pparg expression and diminishes the ability of these cells to differentiate. Furthermore, both brown and white adipocyte differentiation is markedly impaired in Zfp423-deficient mouse embryos. Zfp423 regulates Pparg expression, in part, through amplification of the BMP signalling pathway, an effect dependent on the SMAD-binding capacity of Zfp423. This study identifies Zfp423 as a transcriptional regulator of preadipocyte determination.
Collapse
Affiliation(s)
- Rana K. Gupta
- Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 USA
| | - Zoltan Arany
- Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 USA
| | - Patrick Seale
- Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 USA
| | - Rina J. Mepani
- Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 USA
| | - Li Ye
- Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 USA
| | - Heather M. Conroe
- Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 USA
| | - Yang A. Roby
- Center for Sensory Biology, Department of Molecular Biology and Genetics, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heather Kulaga
- Center for Sensory Biology, Department of Molecular Biology and Genetics, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Randall R. Reed
- Center for Sensory Biology, Department of Molecular Biology and Genetics, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bruce M. Spiegelman
- Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 USA
| |
Collapse
|
47
|
Abstract
Alterations in various developmental pathways are common themes in cancer. The early B-cell factors (EBF) are a family of four highly conserved DNA-binding transcription factors with an atypical zinc-finger and helix-loop-helix motif. They are involved in the differentiation and maturation of several cell lineages including B-progenitor lymphoblasts, neuronal precursors, and osteoblast progenitors. During B-cell development, EBF1 is required for the expression of Pax5, an essential factor for the production of antibody-secreting cells. Accumulating evidence indicates that genomic deletion of the EBF1 gene contributes to the pathogenesis, drug resistance, and relapse of B-progenitor acute lymphoblastic leukemia (ALL). Epigenetic silencing and genomic deletion of the EBF3 locus in chromosome 10q are very frequent in glioblastoma (GBM). Strikingly, the frequency of EBF3 loss in GBM is similar to that of the loss of Pten, a key suppressor of gliomagenesis. Cancer-specific somatic mutations were detected in EBF3 in GBM and in both EBF1 and EBF3 in pancreatic ductal adenocarcinoma. These missense mutations occur in the DNA-binding domain or the conserved IPT/TIG domain, suggesting that they might disrupt the functions of these two proteins. Functional studies revealed that EBF3 represses the expression of genes required for cell proliferation [e.g., cyclins and cyclin-dependent kinases (CDK)] and survival (e.g., Mcl-1 and Daxx) but activates those involved in cell cycle arrest (e.g., p21 and p27), leading to growth suppression and apoptosis. Therefore, EBFs represent new tumor suppressors whose inactivation blocks normal development and contributes to tumorigenesis of diverse types of human cancer.
Collapse
Affiliation(s)
- Daiqing Liao
- Department of Anatomy and Cell Biology, UF Shands Cancer Center, University of Florida, Gainesville, FL 32611-3633, USA.
| |
Collapse
|
48
|
Blitz IL, Cho KWY. Finding partners: how BMPs select their targets. Dev Dyn 2009; 238:1321-31. [PMID: 19441058 DOI: 10.1002/dvdy.21984] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The bone morphogenetic protein (BMP) signaling pathway is a conserved and evolutionarily ancient regulatory module affecting a large variety of cellular behaviors. The evolutionary flexibility in using BMP responses presumably arose by co-option of a canonical BMP signaling cascade to regulate the transcription of diverse batteries of target genes. This begs the question of how seemingly interchangeable BMP signaling components elicit widely different outputs in different cell types, an important issue in the context of understanding how BMP signaling integrates with gene regulatory networks to control development. Because a molecular understanding of how BMP signaling activates different batteries of target genes is an essential prerequisite to comprehending the roles of BMPs in regulating cellular responses, here we review the current knowledge of how BMP-regulated target genes are selected by the signal transduction machinery. We highlight recent studies suggesting the evolutionary conservation of BMP target gene regulation signaling by Schnurri family zinc finger proteins. Developmental Dynamics 238:1321-1331, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Ira L Blitz
- Department of Developmental and Cell Biology and the Developmental Biology Center, University of California, Irvine, California, USA.
| | | |
Collapse
|
49
|
Huang S, Laoukili J, Epping MT, Koster J, Hölzel M, Westerman BA, Nijkamp W, Hata A, Asgharzadeh S, Seeger RC, Versteeg R, Beijersbergen RL, Bernards R. ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. Cancer Cell 2009; 15:328-40. [PMID: 19345331 PMCID: PMC2693316 DOI: 10.1016/j.ccr.2009.02.023] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 01/20/2009] [Accepted: 02/25/2009] [Indexed: 02/03/2023]
Abstract
Retinoids play key roles in differentiation, growth arrest, and apoptosis and are increasingly being used in the clinic for the treatment of a variety of cancers, including neuroblastoma. Here, using a large-scale RNA interference-based genetic screen, we identify ZNF423 (also known as Ebfaz, OAZ, or Zfp423) as a component critically required for retinoic acid (RA)-induced differentiation. ZNF423 associates with the RARalpha/RXRalpha nuclear receptor complex and is essential for transactivation in response to retinoids. Downregulation of ZNF423 expression by RNA interference in neuroblastoma cells results in a growth advantage and resistance to RA-induced differentiation, whereas overexpression of ZNF423 leads to growth inhibition and enhanced differentiation. Finally, we show that low ZNF423 expression is associated with poor disease outcome in neuroblastoma patients.
Collapse
Affiliation(s)
- Sidong Huang
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - Jamila Laoukili
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Mirjam T. Epping
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - Jan Koster
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Michael Hölzel
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - Bart A. Westerman
- Division of Molecular Genetics, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - Wouter Nijkamp
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - Akiko Hata
- Molecular Cardiology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Shahab Asgharzadeh
- Department of Pediatrics, Division of Hematology-Oncology, Childrens Hospital Los Angeles and Saban Research Institute, University of Southern California, Los Angeles, CA 90027, USA
| | - Robert C. Seeger
- Department of Pediatrics, Division of Hematology-Oncology, Childrens Hospital Los Angeles and Saban Research Institute, University of Southern California, Los Angeles, CA 90027, USA
| | - Rogier Versteeg
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Roderick L. Beijersbergen
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - René Bernards
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| |
Collapse
|
50
|
Cheng LE, Reed RR. Zfp423/OAZ participates in a developmental switch during olfactory neurogenesis. Neuron 2007; 54:547-57. [PMID: 17521568 PMCID: PMC2866517 DOI: 10.1016/j.neuron.2007.04.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 03/09/2007] [Accepted: 04/23/2007] [Indexed: 01/06/2023]
Abstract
The coordination of gene expression is critical for cell differentiation and the subsequent establishment of tissue function. We show here that a multiple zinc finger transcription factor, Zfp423/OAZ, is transiently expressed in newly differentiating olfactory-receptor neurons (ORNs) and has a key role in coordinating the expression of immature and mature stage-specific genes. OAZ deletion in mice impairs aspects of ORN differentiation, particularly the patterns of axonal projection to the olfactory bulb. OAZ gain-of-function experiments show that sustained OAZ expression throughout ORN maturation arrests ORN development at an immature stage and alters OR gene expression. Importantly, reintroducing OAZ expression in mature ORNs suppresses mature marker expression and reactivates immature-specific markers. Together, these experiments suggest that OAZ participates in a developmental switch regulating the transition from differentiation to maturation in ORNs.
Collapse
Affiliation(s)
- Li E Cheng
- Department of Molecular Biology and Genetics, Center for Sensory Biology, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|