1
|
Salim B, Mohamed NS, Ibrahim K, Alasmari S, Chatanga E, Ohari Y, Nonaka N, Alsaad MA, Almathen F, Nakao R. Comprehensive mitochondrial genomics of Fasciola gigantica from Sudan: insights into genetic diversity, evolutionary dynamics, and host adaptation. Front Vet Sci 2025; 12:1577469. [PMID: 40376098 PMCID: PMC12078297 DOI: 10.3389/fvets.2025.1577469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/04/2025] [Indexed: 05/18/2025] Open
Abstract
Introduction This study presents a comprehensive analysis of the complete mitochondrial genomes of Fasciola gigantica isolated from cattle, sheep, and goats in Sudan, aiming to provide new insights into genetic diversity, evolutionary dynamics, and host adaptation. Methods Mitochondrial genomes were sequenced using high-throughput Illumina MiSeq technology, yielding sequences of 14,483 bp, slightly longer than the reference genome (14,478 bp). A sliding window analysis was conducted to assess nucleotide diversity, and phylogenetic analyses were performed using complete mitochondrial sequences, including and excluding non-coding regions. Results Key genetic variations were observed, including a non-canonical start codon (GTG) in the ND5 gene and an alternative stop codon (TAA) in ND4. Length polymorphisms in ND4L and cox1 suggested potential mitochondrial efficiency adaptations. Non-coding regions showed minor length differences, with the long non-coding region extending by 20 bp and the short by 4 bp. Sliding window analysis identified ND4 and ND5 as the most variable genes, while cox1, nd1, and cox2 were the most conserved. Phylogenetic analysis showed distinct clustering of Sudanese F. gigantica isolates with strong bootstrap support. Excluding the D-loop preserved phylogenetic structure, while D-loop-specific analysis revealed high variability, particularly in the sheep isolate. Discussion These findings highlight significant genetic variation and evolutionary divergence among F. gigantica isolates in Sudan. The observed diversity, particularly within non-coding and variable coding regions, underscores the influence of regional evolutionary pressures and host-associated adaptations. This work enhances understanding of F. gigantica's genetic landscape and supports the development of more targeted molecular surveillance and control strategies for fascioliasis in endemic regions.
Collapse
Affiliation(s)
- Bashir Salim
- Camel Research Center, King Faisal University, Al-Hasa, Saudi Arabia
| | - Nouh S. Mohamed
- Molecular Biology Unit, Sirius Training and Research Center, Khartoum, Sudan
| | - Kamal Ibrahim
- Department of Parasitology, Central Veterinary Research Laboratory, Khartoum, Sudan
| | - Saeed Alasmari
- Department of Biology, Faculty of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Elisha Chatanga
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Yuma Ohari
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Nariaki Nonaka
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mohammad A. Alsaad
- Department of Microbiology and Parasitology, College of Medicine, Umm AL Qura University, Makkah, Saudi Arabia
| | - Faisal Almathen
- Department of Public Health and Animal Husbandry, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ryo Nakao
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Colella V, Young ND, Manzanell R, Atapattu U, Sumanam SB, Huggins LG, Koehler AV, Gasser RB. Dirofilaria asiatica sp. nov. (Spirurida: Onchocercidae) - Defined using a combined morphological-molecular approach. Int J Parasitol 2025:S0020-7519(25)00068-2. [PMID: 40209888 DOI: 10.1016/j.ijpara.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/25/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Parasitic nematodes of the family Onchocercidae (superfamily Filarioidea) have evolved alongside vertebrate hosts for millions of years. While morphological methods have played a central role in identifying species, many taxa remain cryptic and are challenging to differentiate, complicating diagnosis and the understanding of their epidemiology. Among the clinically relevant genera are Onchocerca and Dirofilaria, the latter being responsible for illnesses such as heartworm disease in canines and rare zoonotic infections in humans. Despite advances in our knowledge of the canine heartworm (Dirofilaria immitis), substantial gaps remain regarding other Dirofilaria spp. and genotypes, and their impact on both animal and human health. In this study, we conducted the first known comprehensive morphological and molecular characterisation of a novel Dirofilaria sp., Dirofilaria asiatica sp. nov., from Canis lupus familiaris in Sri Lanka. This new species, genetically consistent with a previously identified novel genotype of Dirofilaria, initially found in humans in Hong Kong, was described using a combined morphological and molecular approach. The findings reveal that D. asiatica sp. nov. differs significantly from other known species, including D. repens and D. immitis, and might be responsible for the majority of zoonotic Dirofilaria infections in southern and southeastern Asia. Furthermore, the identification of cryptic Dirofilaria spp. in both canine and human hosts emphasises the importance of molecular tools for specific identification, particularly when morphological information is inadequate. This study provides insights into the taxonomy and zoonotic potential of D. asiatica sp. nov., as well as its relationship with related species of onchocercids. This combined morphological and molecular approach establishes a framework for future investigations of filarioid nematodes, with implications for improving diagnosis and understanding of their epidemiology in both veterinary and medical contexts.
Collapse
Affiliation(s)
- Vito Colella
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ralph Manzanell
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ushani Atapattu
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sunita B Sumanam
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lucas G Huggins
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Anson V Koehler
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
3
|
Kulpa MR, Lefoulon E, Beckmen KB, Allen SE, Malmberg J, Crouse JA, Thompson DP, Benedict BM, Goldsmith DA, McCarthy S, Jones LC, Yabsley MJ, Crum JM, Kutz SJ, Verocai GG. A footworm in the door: revising Onchocerca phylogeny with previously unknown cryptic species in wild North American ungulates. Int J Parasitol 2025; 55:59-68. [PMID: 39515656 DOI: 10.1016/j.ijpara.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Onchocerca is an important genus of vector-borne filarial nematodes that infect both humans and animals worldwide. Many Onchocerca spp., most of medical and veterinary health relevance, are the focus of a variety of diagnostic and molecular research. However, despite the importance of these parasites, there is growing evidence of previously unexplored genetic diversity of these nematodes, particularly among wild ungulate hosts in North America. These understudied parasites prevent us from comprehending the evolutionary history of the genus Onchocerca, monitoring potential One Health threats, and improving our filarioid diagnostic capabilities. In order to fill these knowledge gaps, we identified five uncharacterized Onchocerca lineages and compared them with other well-known filarioid species using single and concatenated gene regions (i.e., nd5, cox1, 12S, 18S, 28S, hsp70, MyoHC, rbp1). Phylogenetic analyses revealed that the novel Onchocerca lineages of wild North American ungulates segregate into two clades. One clade comprised Onchocerca lineages II, IV, and V and other species found mainly in domestic animals and humans, and the second comprised Onchocerca lineages I and III and other species from a variety of hosts including cervids, bovids, and equids. The formation of two clearly separate clades supports the idea of at least two independent expansion events of ancestral Onchocerca spp. into the North American continent via the Bering land bridge. Cophylogenetic analysis shows evidence of ancestral Onchocerca spp. of Bovidae host-switching to wild Cervidae and giving rise to the novel Onchocerca spp. Lastly, pairwise analysis confirms informative molecular markers of diagnostic relevance in both mitochondrial and nuclear gene regions of filarioid nematodes. The overall information provides greater context to the genus Onchocerca and emphasizes the need to discover, characterize, and monitor neglected parasites, especially those of wildlife origin.
Collapse
Affiliation(s)
- Matthew R Kulpa
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Emilie Lefoulon
- Departments of Biology and Entomology, Eberly College, Pennsylvania State University, University Park, PA 16802, USA
| | - Kimberlee B Beckmen
- Division of Wildlife Conservation, Alaska Department of Fish and Game, 1300 College Road, Fairbanks, AK 99701, USA
| | - Samantha E Allen
- Veterinary Services, Wyoming Game and Fish Department, 1212 South Adams Street, Laramie, WY 82070, USA
| | - Jennifer Malmberg
- Department of Veterinary Sciences, University of Wyoming, 1174 Snowy Range Road, Laramie, WY 82070, USA
| | - John A Crouse
- Alaska Department of Fish and Game, Division of Wildlife Conservation, Kenai Moose Research Center, Soldotna, AK 99669, USA
| | - Daniel P Thompson
- Alaska Department of Fish and Game, Division of Wildlife Conservation, Kenai Moose Research Center, Soldotna, AK 99669, USA
| | - Bridgett M Benedict
- Alaska Department of Fish and Game, Division of Wildlife Conservation, Kenai Moose Research Center, Soldotna, AK 99669, USA; Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA
| | - Dayna A Goldsmith
- Faculty of Veterinary Medicine, University of Calgary, 3280 University Drive, NW, Calgary, AB T2N 1N4, Canada
| | - Sara McCarthy
- Wildlife Division, Newfoundland and Labrador Department of Fisheries, Forestry and Agriculture, Box 3014 stn B, NL A0P 1C0, Canada
| | - Lee C Jones
- Wildlife Health Office, Natural Resource Program Center, United States Fish and Wildlife Service, 10 E. Babcock, Bozeman, MT 59715, USA
| | - Michael J Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Wildlife Health Building, 589 D.W. Brooks Dr, Athens, GA 30602, USA; Warnell School of Forestry and Natural Resources, 180 E. Green Street. University of Georgia, Athens, GA 30602, USA; Center for Emerging Infectious Diseases, 203 D.W. Brooks Drive, Athens, GA 30602, USA
| | - James M Crum
- West Virginia Division of Natural Resources, Wildlife Resources Section, PO Box 67, Elkins, WV 26241, USA
| | - Susan J Kutz
- Faculty of Veterinary Medicine, University of Calgary, 3280 University Drive, NW, Calgary, AB T2N 1N4, Canada
| | - Guilherme G Verocai
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
4
|
Pietrzak D, Łuczak JW, Wiśniewski M. Beyond Tradition: Exploring Cutting-Edge Approaches for Accurate Diagnosis of Human Filariasis. Pathogens 2024; 13:447. [PMID: 38921745 PMCID: PMC11206659 DOI: 10.3390/pathogens13060447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Filariasis is recognised as a global public health threat, particularly in tropical and subtropical regions. It is caused by infection with a nematode parasite of the superfamily Filarioidea, including Wuchereria bancrofti, Brugia malayi, Onchocerca volvulus, and Onchocerca lupi. Three main types of filariasis have been classified: lymphatic filariasis, subcutaneous filariasis, and serous cavity filariasis. The symptoms exhibited by individuals afflicted with filariasis are diverse and contingent upon several variables, including the species of parasite, the host's health and immune response, and the stage of infection. While many classical parasitological techniques are considered indispensable tools for the diagnosis of parasitic infections in humans, alternative methods are being sought due to their limitations. Novel tests based on host-parasite interactions offer a rapid, simple, sensitive, and specific diagnostic tool in comparison to traditional parasitological methods. This article presents methods developed in the 21st century for the diagnosis of filariasis caused by invasion from W. bancrofti, B. malayi, O. volvulus, and O. lupi, as well as techniques that are currently in use. The development of modern diagnostic methods based on molecular biology constitutes a significant advancement in the fight against filariasis.
Collapse
Affiliation(s)
- Damian Pietrzak
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-786 Warsaw, Poland;
| | - Julia Weronika Łuczak
- Faculty of Animal Breeding, Bioengineering and Conservation, Warsaw University of Life Sciences—SGGW, 02-786 Warsaw, Poland;
| | - Marcin Wiśniewski
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-786 Warsaw, Poland;
| |
Collapse
|
5
|
Lightowlers MW, Gasser RB, Hemphill A, Romig T, Tamarozzi F, Deplazes P, Torgerson PR, Garcia HH, Kern P. Advances in the treatment, diagnosis, control and scientific understanding of taeniid cestode parasite infections over the past 50 years. Int J Parasitol 2021; 51:1167-1192. [PMID: 34757089 DOI: 10.1016/j.ijpara.2021.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023]
Abstract
In the past 50 years, enormous progress has been made in the diagnosis, treatment and control of taeniid cestode infections/diseases and in the scientific understanding thereof. Most interest in this group of parasites stems from the serious diseases that they cause in humans. It is through this lens that we summarize here the most important breakthroughs that have made a difference to the treatment of human diseases caused by these parasites, reduction in transmission of the taeniid species associated with human disease, or understanding of the parasites' biology likely to impact diagnosis or treatment in the foreseeable future. Key topics discussed are the introduction of anti-cestode drugs, including benzimidazoles and praziquantel, and the development of new imaging modalities that have transformed the diagnosis and post-treatment monitoring of human echinococcoses and neurocysticercosis. The availability of new anti-cestode drugs for use in dogs and a detailed understanding of the transmission dynamics of Echinococcus granulosus sensu lato have underpinned successful programs that have eliminated cystic echinococcosis in some areas of the world and greatly reduced the incidence of infection in others. Despite these successes, cystic and alveolar echinococcosis and neurocysticercosis continue to be prevalent in many parts of the world, requiring new or renewed efforts to prevent the associated taeniid infections. Major advances made in the development of practical vaccines against E. granulosus and Taenia solium will hopefully assist in this endeavour, as might the understanding of the parasites' biology that have come from an elucidation of the nuclear genomes of each of the most important taeniid species causing human diseases.
Collapse
Affiliation(s)
- Marshall W Lightowlers
- Department of Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia.
| | - Robin B Gasser
- Department of Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Thomas Romig
- University of Hohenheim, Parasitology Unit, Emil-Wolff-Strasse 34, 70599 Stuttgart, Germany
| | - Francesca Tamarozzi
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Verona, Italy
| | - Peter Deplazes
- Institute of Parasitology, Vetsuisse, and Medical Faculty, University of Zürich, Zürich, Switzerland
| | - Paul R Torgerson
- Section of Epidemiology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Hector H Garcia
- Infectious Diseases Laboratory Research-LID, Faculty of Science and Philosophy, Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia, Lima, Perú; Cysticercosis Unit, Instituto Nacional de Ciencias Neurológicas, Lima, Perú
| | - Peter Kern
- Ulm University Hospital, Division of Infectious Diseases, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
6
|
Assessing the suitability of mitochondrial and nuclear DNA genetic markers for molecular systematics and species identification of helminths. Parasit Vectors 2021; 14:233. [PMID: 33933158 PMCID: PMC8088577 DOI: 10.1186/s13071-021-04737-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic markers are employed widely in molecular studies, and their utility depends on the degree of sequence variation, which dictates the type of application for which they are suited. Consequently, the suitability of a genetic marker for any specific application is complicated by its properties and usage across studies. To provide a yardstick for future users, in this study we assess the suitability of genetic markers for molecular systematics and species identification in helminths and provide an estimate of the cut-off genetic distances per taxonomic level. METHODS We assessed four classes of genetic markers, namely nuclear ribosomal internal transcribed spacers, nuclear rRNA, mitochondrial rRNA and mitochondrial protein-coding genes, based on certain properties that are important for species identification and molecular systematics. For molecular identification, these properties are inter-species sequence variation; length of reference sequences; easy alignment of sequences; and easy to design universal primers. For molecular systematics, the properties are: average genetic distance from order/suborder to species level; the number of monophyletic clades at the order/suborder level; length of reference sequences; easy alignment of sequences; easy to design universal primers; and absence of nucleotide substitution saturation. Estimation of the cut-off genetic distances was performed using the 'K-means' clustering algorithm. RESULTS The nuclear rRNA genes exhibited the lowest sequence variation, whereas the mitochondrial genes exhibited relatively higher variation across the three groups of helminths. Also, the nuclear and mitochondrial rRNA genes were the best possible genetic markers for helminth molecular systematics, whereas the mitochondrial protein-coding and rRNA genes were suitable for molecular identification. We also revealed that a general gauge of genetic distances might not be adequate, using evidence from the wide range of genetic distances among nematodes. CONCLUSION This study assessed the suitability of DNA genetic markers for application in molecular systematics and molecular identification of helminths. We provide a novel way of analyzing genetic distances to generate suitable cut-off values for each taxonomic level using the 'K-means' clustering algorithm. The estimated cut-off genetic distance values, together with the summary of the utility and limitations of each class of genetic markers, are useful information that can benefit researchers conducting molecular studies on helminths.
Collapse
|
7
|
Kinkar L, Young ND, Sohn WM, Stroehlein AJ, Korhonen PK, Gasser RB. First record of a tandem-repeat region within the mitochondrial genome of Clonorchis sinensis using a long-read sequencing approach. PLoS Negl Trop Dis 2020; 14:e0008552. [PMID: 32845881 PMCID: PMC7449408 DOI: 10.1371/journal.pntd.0008552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background Mitochondrial genomes provide useful genetic markers for systematic and population genetic studies of parasitic helminths. Although many such genome sequences have been published and deposited in public databases, there is evidence that some of them are incomplete relating to an inability of conventional techniques to reliably sequence non-coding (repetitive) regions. In the present study, we characterise the complete mitochondrial genome—including the long, non-coding region—of the carcinogenic Chinese liver fluke, Clonorchis sinensis, using long-read sequencing. Methods The mitochondrial genome was sequenced from total high molecular-weight genomic DNA isolated from a pool of 100 adult worms of C. sinensis using the MinION sequencing platform (Oxford Nanopore Technologies), and assembled and annotated using an informatic approach. Results From > 93,500 long-reads, we assembled a 18,304 bp-mitochondrial genome for C. sinensis. Within this genome we identified a novel non-coding region of 4,549 bp containing six tandem-repetitive units of 719–809 bp each. Given that genomic DNA from pooled worms was used for sequencing, some variability in length/sequence in this tandem-repetitive region was detectable, reflecting population variation. Conclusions For C. sinensis, we report the complete mitochondrial genome, which includes a long (> 4.5 kb) tandem-repetitive region. The discovery of this non-coding region using a nanopore-sequencing/informatic approach now paves the way to investigating the nature and extent of length/sequence variation in this region within and among individual worms, both within and among C. sinensis populations, and to exploring whether this region has a functional role in the regulation of replication and transcription, akin to the mitochondrial control region in mammals. Although applied to C. sinensis, the technological approach established here should be broadly applicable to characterise complex tandem-repetitive or homo-polymeric regions in the mitochondrial genomes of a wide range of taxa. In the present study, we characterised the complete mitochondrial genome of Clonorchis sinensis—a carcinogenic liver fluke. To do this, we sequenced from total genomic DNA from multiple adult worms using a new method (Oxford Nanopore technology) to obtain data for long stretches of DNA, and then assembled these data to construct a mitochondrial genome of 18,304 bp, containing a > 4.5 kb-long tandem-repetitive region—not previously detected in this species. The results demonstrate that this method is effective at sequencing long and complex non-coding elements—not achievable using conventional techniques. The discovery of this long tandem-repetitive region in C. sinensis provides an opportunity to now explore its origin(s) and length/sequence diversity in populations of this species, and also to characterise its function(s). The technological approach employed here should have broad applicability to characterise previously-elusive non-coding mitochondrial genomic regions in a wide range of taxa.
Collapse
Affiliation(s)
- Liina Kinkar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (NDY); (RBG)
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Andreas J. Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (NDY); (RBG)
| |
Collapse
|
8
|
First report of Onchocerca lupi from Israel and confirmation of two genotypes circulating among canine, feline and human hosts. Parasitology 2020; 147:1723-1727. [PMID: 32829715 DOI: 10.1017/s0031182020001560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Onchocerca lupi is a parasitic filarioid and the causative agent of canine ocular onchocercosis, a zoonotic disease of domestic dogs with sporadic reports in humans. A 13-year-old dog with no travel history outside of Israel was presented to an ophthalmology veterinary clinic in Israel with severe right ocular and periocular disease. After surgical exploration, thin helminths were removed from the dorsal sclera of the eye and identified as Onchocerca lupi by polymerase chain reaction according to the cytochrome c oxidase subunit I (cox1), reduced nicotinamide adenine dinucleotide dehydrogenase subunit 5 (nad5) and 12S rRNA genes. Phylogenetic trees and haplotype networks of the cox1 and nad5 genes confirmed the circulation of two genotypes: genotype 1 with worms from dogs, cats and humans from both the Old and New Worlds, and genotype 2 with specimens from Portugal and Spain. The Israeli sequences clustered in genotype 1 and were identical to O. lupi from the USA. Evidence of two genotypes separated geographically sheds light on the phylogeography and evolution of this zoonotic pathogen, and suggests a diverse pathology observed in different regions of the world.
Collapse
|
9
|
Kinkar L, Korhonen PK, Wang D, Zhu XQ, Chelomina GN, Wang T, Hall RS, Koehler AV, Harliwong I, Yang B, Fink JL, Young ND, Gasser RB. Marked mitochondrial genetic variation in individuals and populations of the carcinogenic liver fluke Clonorchis sinensis. PLoS Negl Trop Dis 2020; 14:e0008480. [PMID: 32813714 PMCID: PMC7437864 DOI: 10.1371/journal.pntd.0008480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/12/2020] [Indexed: 01/24/2023] Open
Abstract
Clonorchiasis is a neglected tropical disease caused by the Chinese liver fluke, Clonorchis sinensis, and is often associated with a malignant form of bile duct cancer (cholangiocarcinoma). Although some aspects of the epidemiology of clonorchiasis are understood, little is known about the genetics of C. sinensis populations. Here, we conducted a comprehensive genetic exploration of C. sinensis from endemic geographic regions using complete mitochondrial protein gene sets. Genomic DNA samples from C. sinensis individuals (n = 183) collected from cats and dogs in China (provinces of Guangdong, Guangxi, Hunan, Heilongjiang and Jilin) as well as from rats infected with metacercariae from cyprinid fish from the Russian Far East (Primorsky Krai region) were deep sequenced using the BGISEQ-500 platform. Informatic analyses of mitochondrial protein gene data sets revealed marked genetic variation within C. sinensis; significant variation was identified within and among individual worms from distinct geographical locations. No clear affiliation with a particular location or host species was evident, suggesting a high rate of dispersal of the parasite across endemic regions. The present work provides a foundation for future biological, epidemiological and ecological studies using mitochondrial protein gene data sets, which could aid in elucidating associations between particular C. sinensis genotypes/haplotypes and the pathogenesis or severity of clonorchiasis and its complications (including cholangiocarcinoma) in humans. Clonorchiasis is an important neglected tropical disease caused by the Chinese liver fluke, Clonorchis sinensis, which can induce malignant bile duct cancer (cholangiocarcinoma). Little precise information is available on the biology, epidemiology and population genetics of C. sinensis. For this reason, we explored here the genetic composition of C. sinensis populations in distinct endemic areas in China and Russia. Using a deep sequencing-informatic approach, we revealed marked mitochondrial genetic variation within and between individuals and populations of C. sinensis, with no particular affiliation with geographic or host origin. These molecular findings and the methodology established should underpin future genetic studies of C. sinensis causing human clonorchiasis and associated complications (cancer) as well as transmission patterns in endemic regions.
Collapse
Affiliation(s)
- Liina Kinkar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Daxi Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- BGI International, Shenzhen, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Galina N. Chelomina
- Department of Parasitology, Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, Vladivostok, Russia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ross S. Hall
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Anson V. Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (NDY); (RBG)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (NDY); (RBG)
| |
Collapse
|
10
|
Fu YT, Jin YC, Li F, Liu GH. Characterization of the complete mitochondrial genome of the echinostome Echinostoma miyagawai and phylogenetic implications. Parasitol Res 2019; 118:3091-3097. [PMID: 31418114 DOI: 10.1007/s00436-019-06417-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
Abstract
Echinostomes are important intestinal foodborne parasites. Despite their significance as pathogens, characterization of the molecular biology and phylogenetics of these parasites are limited. In the present study, we determined the entire mitochondrial (mt) genome of the echinostome Echinostoma miyagawai (Hunan isolate) and examined the phylogenetic relationship with selected members of the suborder Echinostomata. The complete mt genome of E. miyagawai (Hunan isolate) was 14,468 bp in size. This circular mt genome contained 12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and one non-coding region. The gene order and genomic content were identical with its congeners. Phylogenetic analyses (maximum parsimony, maximum likelihood, and Bayesian inference) based on the concatenated amino acid sequences of 12 protein-coding genes strongly supported monophyly for the genus Echinostoma; however, they rejected monophyly for the family Echinostomatidae and the genus Fasciola. The mt genomic data described in this study provides useful genetic markers for studying the population genetics, molecular biology, and phylogenetics of these echinostomes.
Collapse
Affiliation(s)
- Yi-Tian Fu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Yuan-Chun Jin
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Fen Li
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan Province, China. .,Hunan Co-Innovation Center of Animal Production Safety, Changsha, 410128, Hunan Province, China.
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan Province, China. .,Hunan Co-Innovation Center of Animal Production Safety, Changsha, 410128, Hunan Province, China.
| |
Collapse
|
11
|
Kinkar L, Korhonen PK, Cai H, Gauci CG, Lightowlers MW, Saarma U, Jenkins DJ, Li J, Li J, Young ND, Gasser RB. Long-read sequencing reveals a 4.4 kb tandem repeat region in the mitogenome of Echinococcus granulosus (sensu stricto) genotype G1. Parasit Vectors 2019; 12:238. [PMID: 31097022 PMCID: PMC6521400 DOI: 10.1186/s13071-019-3492-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023] Open
Abstract
Background Echinococcus tapeworms cause a severe helminthic zoonosis called echinococcosis. The genus comprises various species and genotypes, of which E. granulosus (sensu stricto) represents a significant global public health and socioeconomic burden. Mitochondrial (mt) genomes have provided useful genetic markers to explore the nature and extent of genetic diversity within Echinococcus and have underpinned phylogenetic and population structure analyses of this genus. Our recent work indicated a sequence gap (> 1 kb) in the mt genomes of E. granulosus genotype G1, which could not be determined by PCR-based Sanger sequencing. The aim of the present study was to define the complete mt genome, irrespective of structural complexities, using a long-read sequencing method. Methods We extracted high molecular weight genomic DNA from protoscoleces from a single cyst of E. granulosus genotype G1 from a sheep from Australia using a conventional method and sequenced it using PacBio Sequel (long-read) technology, complemented by BGISEQ-500 short-read sequencing. Sequence data obtained were assembled using a recently-developed workflow. Results We assembled a complete mt genome sequence of 17,675 bp, which is > 4 kb larger than the complete mt genomes known for E. granulosus genotype G1. This assembly includes a previously-elusive tandem repeat region, which is 4417 bp long and consists of ten near-identical 441–445 bp repeat units, each harbouring a 184 bp non-coding region and adjacent regions. We also identified a short non-coding region of 183 bp, which includes an inverted repeat. Conclusions We report what we consider to be the first complete mt genome of E. granulosus genotype G1 and characterise all repeat regions in this genome. The numbers, sizes, sequences and functions of tandem repeat regions remain to be studied in different isolates of genotype G1 and in other genotypes and species. The discovery of such ‘new’ repeat elements in the mt genome of genotype G1 by PacBio sequencing raises a question about the completeness of some published genomes of taeniid cestodes assembled from conventional or short-read sequence datasets. This study shows that long-read sequencing readily overcomes the challenges of assembling repeat elements to achieve improved genomes.
Collapse
Affiliation(s)
- Liina Kinkar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Pasi K Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Huimin Cai
- BGI Research, Shenzhen, Guangdong, China
| | - Charles G Gauci
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Marshall W Lightowlers
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - David J Jenkins
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga, Wagga, NSW, Australia
| | | | - Junhua Li
- BGI Research, Shenzhen, Guangdong, China
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
12
|
Satyaprakash K, Khan WA, Chaudhari SP, Shinde SV, Kurkure NV, Kolte SW. Pathological and molecular identification of porcine cysticercosis in Maharashtra, India. Acta Parasitol 2018; 63:784-790. [PMID: 30367761 DOI: 10.1515/ap-2018-0094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/07/2018] [Indexed: 11/15/2022]
Abstract
Porcine cysticercosis, caused by metacestodes of Taenia solium is an important emerging zoonotic disease with public health and economic significance. Pigs acquire the disease through consumption of Taenia solium eggs excreted by human tapeworm carriers. The present study was conducted to investigate the prevalence of porcine cysticercosis in Nagpur and Mumbai region of Maharashtra, India by P/M examination of carcasses followed by histopathology of affected organs in infected animals and molecular identification of cysts for confirmation. Out of 1000 pigs examined during slaughter, three pigs were found to be heavily affected with T. solium cysts giving a prevalence of 0.3%. Histological section of brain in infected animals revealed marked vascular congestion of meninges, mild neuronal degeneration, perivascular cuffing and gliosis while the liver showed the infiltration of mononuclear cell, predominantly eosinophils throughout the parenchyma. Some degree of calcification was observed in the cysts lodged in liver while calcification was not evident in case of cysts lodged in brain, tongue, diaphragm and skeletal muscle. Molecular identification by PCR using two sets of oligonucleotide primers against LSU rRNA gene and Mt-Cox1 gene of T. solium confirms the cysts to be that of T. solium. The molecular diagnostics methods have been considered for validation in conjunction with P/M inspections, parasitological and histopathological examinations. The study confirms the presence of porcine cysticercosis in the two regions and demands proper sanitary measures to minimize the risk of infection from zoonoses and food safety point of view.
Collapse
Affiliation(s)
- Kaushik Satyaprakash
- Department of Veterinary Public Health, Nagpur Veterinary College, Nagpur, Maharashtra 440006, India
| | - Waqar A Khan
- Department of Veterinary Public Health, Nagpur Veterinary College, Nagpur, Maharashtra 440006, India
| | - Sandeep P Chaudhari
- Department of Veterinary Public Health, Nagpur Veterinary College, Nagpur, Maharashtra 440006, India
| | - Shilpshree V Shinde
- Department of Veterinary Public Health, Nagpur Veterinary College, Nagpur, Maharashtra 440006, India
| | - Nitin V Kurkure
- Department of Veterinary Pathology, Nagpur Veterinary College, Nagpur, Maharashtra 440006, India
| | - Sunil W Kolte
- Department of Veterinary Parasitology, Nagpur Veterinary College, Nagpur, Maharashtra 440006, India
| |
Collapse
|
13
|
Abstract
Enterobiasis, caused by the nematode Enterobius vermicularis, is a common health problem among schoolchildren in Thailand. We provide the first molecular identification of this nematode from Thai schoolchildren and document genetic variation among E. vermicularis eggs using sequence analyses of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene and the nuclear ribosomal DNA second internal transcribed spacer (ITS2). A cross-sectional parasitological survey was conducted in schoolchildren (n = 491) in five regions of Thailand between May 2015 and December 2016. The diagnosis of Enterobius infection was made using the adhesive tape perianal swab technique. Enterobius eggs were recovered from 43 participants (8.75%). DNA was extracted from these eggs and the cox1 gene and partial ITS2 region amplified using the polymerase chain reaction (PCR). Nineteen amplified PCR products of the cox1 gene (441 bp) and 18 of the ITS2 region (623 bp) were subsequently sequenced. All sequences were identified as belonging to E. vermicularis based on database searches. Phylogenetic analysis and a median-joining network of available E. vermicularis cox1 sequences showed 66 haplotypes. We found haploclusters (types A and B) represented among the Thai sequences. Six haplotypes from Thailand fell into type A (of Nakano et al., 2006) (along with sequences from Japan and Korea) and five haplotypes into type B (with sequences from Japan, Iran, Czech Republic, Greece, Denmark and Sudan). The overall haplotype diversity (Hd) was 0.9888. Transmission of worms with type B haplotypes from primates to humans in Asia or from humans in Europe possibly occurs in Thailand.
Collapse
|
14
|
Wang D, Young ND, Koehler AV, Tan P, Sohn WM, Korhonen PK, Gasser RB. Mitochondrial genomic comparison of Clonorchis sinensis from South Korea with other isolates of this species. INFECTION GENETICS AND EVOLUTION 2017; 51:160-166. [DOI: 10.1016/j.meegid.2017.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/06/2017] [Accepted: 02/21/2017] [Indexed: 12/26/2022]
|
15
|
Pyziel AM, Laskowski Z, Demiaszkiewicz AW, Höglund J. Interrelationships of Dictyocaulus spp. in Wild Ruminants with Morphological Description of Dictyocaulus cervi n. sp. (Nematoda: Trichostrongyloidea) from Red Deer, Cervus elaphus. J Parasitol 2017; 103:506-518. [PMID: 28585897 DOI: 10.1645/16-75] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Lungworms from the genus Dictyocaulus cause parasitic bronchitis (dictyocaulosis) characterized by coughing and severe lung pathology in both domestic and wild ruminants. In this study we investigated the interrelationships of Dictyocaulus spp. from European bison (Bison bonasus L.), roe deer (Capreolus capreolus), and red deer (Cervus elaphus) by nucleotide sequence analysis spanning the 18S RNA gene (small subunit [SSU]) and internal transcribed spacer 2 (ITS2) regions of the ribosomal gene array as well as the mitochondrial cytochrome c oxidase subunit 1 (cox1). Molecular analyses of sequence data obtained partly with novel primers from between 10 and 50 specimens from each host were carried out. Bayesian inference analysis revealed that each host species was infected with different genotypes. Analysis of cox1 sequence data showed a diverse genetic background and high evolutionary potential of Dictyocaulus taxa. Data from lungworms of European bison revealed a distinct genotype of Dictyocaulus viviparus, whereas Dictyocaulus capreolus was only found in roe deer. In contrast, red deer were infected with a taxon with unique SSU, ITS2, and cox1 sequences. These results indicate the occurrence of a novel genotype from red deer, which differs significantly from the National Center for Biotechnology Information reference sequence of Dictyocaulus eckerti. The molecular evidence was consistent with a morphological study with description and imaging of Dictyocaulus cervi n. sp. recovered from red deer. Dictyocaulus cervi n. sp. can be distinguished from D. eckerti on the basis of the absence of cervical papillae, the occurrence of a single ring of 4 symmetrical submedian cephalic papillae, length of the tail in females, morphometry of the female reproductive system, and measurements of gubernacula in males. In conclusion, our findings further strengthen the idea that the genetic complexity and diversity among Dictyocaulus lungworms infecting wildlife ruminants is larger than previously believed and warrants further investigation.
Collapse
Affiliation(s)
- Anna M Pyziel
- W. Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Zdzisław Laskowski
- W. Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | | | - Johan Höglund
- W. Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| |
Collapse
|
16
|
Boonmekam D, Namchote S, Matsuda H, Kirinoki M, Miyamoto K, Sinuon M, Krailas D. Morphological and molecular identification of the liver fluke Opisthorchis viverrini in the first intermediate host Bithynia snails and its prevalence in Kampong Cham Province, Cambodia. Parasitol Int 2017; 66:319-323. [DOI: 10.1016/j.parint.2017.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
|
17
|
Schreeg ME, Marr HS, Tarigo JL, Cohn LA, Bird DM, Scholl EH, Levy MG, Wiegmann BM, Birkenheuer AJ. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny. PLoS One 2016; 11:e0165702. [PMID: 27832128 PMCID: PMC5104439 DOI: 10.1371/journal.pone.0165702] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 10/17/2016] [Indexed: 12/02/2022] Open
Abstract
The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon) are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi) with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis) and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae) while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward understanding the phylogenetic relationships within the group.
Collapse
Affiliation(s)
- Megan E. Schreeg
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Henry S. Marr
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Jaime L. Tarigo
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
- University of Georgia, College of Veterinary Medicine, Athens, Georgia, United States of America
| | - Leah A. Cohn
- University of Missouri, College of Veterinary Medicine, Columbia, Missouri, United States of America
| | - David M. Bird
- North Carolina State University, College of Agriculture and Life Sciences, Raleigh, North Carolina, United States of America
| | - Elizabeth H. Scholl
- North Carolina State University, College of Agriculture and Life Sciences, Raleigh, North Carolina, United States of America
| | - Michael G. Levy
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Brian M. Wiegmann
- North Carolina State University, College of Agriculture and Life Sciences, Raleigh, North Carolina, United States of America
| | - Adam J. Birkenheuer
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| |
Collapse
|
18
|
Molecular and phylogenetic analyses of the liver amphistome Explanatum explanatum (Creplin, 1847) Fukui, 1929 in ruminants from Bangladesh and Nepal based on nuclear ribosomal ITS2 and mitochondrial nad1 sequences. J Helminthol 2016; 91:497-503. [DOI: 10.1017/s0022149x16000420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractExplanatum explanatum flukes, liver amphistomes of ruminants, cause significant economic loss in the livestock industry by inducing severe liver damage. A total of 66 flukes from 26 buffaloes and 7 cattle in four different geographic areas of Bangladesh and 20 flukes from 10 buffaloes in the Chitwan district of Nepal were subjected for analysis. The sequences (442 bp) of the second internal transcribed spacer (ITS2) of ribosomal DNA and the variable fragments (657 bp) of mitochondrial nicotinamide dehydrogenase subunit 1 (nad1) of E. explanatum flukes from Bangladesh and Nepal were analysed. The aim of this study was molecular characterization of the flukes and to elucidate their origin and biogeography. In the ITS2 region, two genotypes were detected among the flukes from Bangladesh, while flukes from Nepal were of only one genotype. Phylogenetic analyses inferred from the nad1 gene revealed that at least four divergent populations (groups I–IV) are distributed in Bangladesh, whereas two divergent populations were found to be distributed in Nepal. Fst values (pairwise fixation index) suggest that Bangladeshi and Nepalese populations of group I to IV are significantly different from each other; but within groups III and IV, the populations from Bangladesh and Nepal were genetically close. This divergence in the nad1 gene indicates that each lineage of E. explanatum from diverse geography was co-adapted during the multiple domestication events of ruminants. This study, for the first time, provides molecular characterization of E. explanatum in Bangladesh and Nepal, and may provide useful information for elucidating its origin and dispersal route in Asia.
Collapse
|
19
|
Rostami S, Salavati R, Beech RN, Babaei Z, Sharbatkhori M, Harandi MF. Genetic variability of Taenia saginata inferred from mitochondrial DNA sequences. Parasitol Res 2015; 114:1365-76. [PMID: 25687521 DOI: 10.1007/s00436-015-4314-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/07/2015] [Indexed: 02/01/2023]
Abstract
Taenia saginata is an important tapeworm, infecting humans in many parts of the world. The present study was undertaken to identify inter- and intraspecific variation of T. saginata isolated from cattle in different parts of Iran using two mitochondrial CO1 and 12S rRNA genes. Up to 105 bovine specimens of T. saginata were collected from 20 slaughterhouses in three provinces of Iran. DNA were extracted from the metacestode Cysticercus bovis. After PCR amplification, sequencing of CO1 and 12S rRNA genes were carried out and two phylogenetic analyses of the sequence data were generated by Bayesian inference on CO1 and 12S rRNA sequences. Sequence analyses of CO1 and 12S rRNA genes showed 11 and 29 representative profiles respectively. The level of pairwise nucleotide variation between individual haplotypes of CO1 gene was 0.3-2.4% while the overall nucleotide variation among all 11 haplotypes was 4.6%. For 12S rRNA sequence data, level of pairwise nucleotide variation was 0.2-2.5% and the overall nucleotide variation was determined as 5.8% among 29 haplotypes of 12S rRNA gene. Considerable genetic diversity was found in both mitochondrial genes particularly in 12S rRNA gene.
Collapse
Affiliation(s)
- Sima Rostami
- Department of Medical Parasitology, School of Medicine, Kerman University of Medical Sciences, Kerman, 76169-14111, Iran
| | | | | | | | | | | |
Collapse
|
20
|
Jex AR, Littlewood DT, Gasser RB. Sequencing and annotation of mitochondrial genomes from individual parasitic helminths. Methods Mol Biol 2015; 1201:51-63. [PMID: 25388107 DOI: 10.1007/978-1-4939-1438-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mitochondrial (mt) genomics has significant implications in a range of fundamental areas of parasitology, including evolution, systematics, and population genetics as well as explorations of mt biochemistry, physiology, and function. Mt genomes also provide a rich source of markers to aid molecular epidemiological and ecological studies of key parasites. However, there is still a paucity of information on mt genomes for many metazoan organisms, particularly parasitic helminths, which has often related to challenges linked to sequencing from tiny amounts of material. The advent of next-generation sequencing (NGS) technologies has paved the way for low cost, high-throughput mt genomic research, but there have been obstacles, particularly in relation to post-sequencing assembly and analyses of large datasets. In this chapter, we describe protocols for the efficient amplification and sequencing of mt genomes from small portions of individual helminths, and highlight the utility of NGS platforms to expedite mt genomics. In addition, we recommend approaches for manual or semi-automated bioinformatic annotation and analyses to overcome the bioinformatic "bottleneck" to research in this area. Taken together, these approaches have demonstrated applicability to a range of parasites and provide prospects for using complete mt genomic sequence datasets for large-scale molecular systematic and epidemiological studies. In addition, these methods have broader utility and might be readily adapted to a range of other medium-sized molecular regions (i.e., 10-100 kb), including large genomic operons, and other organellar (e.g., plastid) and viral genomes.
Collapse
Affiliation(s)
- Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Corner Flemington Road & Park Drive, Parkville, VIC, 3010, Australia,
| | | | | |
Collapse
|
21
|
Tenora F. Taxonomic status of several sibling species - parasites in man and in other vertebrates. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun200755050235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
22
|
Jabbar A, Gasser RB. Mutation scanning analysis of genetic variation within and among Echinococcus species: implications and future prospects. Electrophoresis 2014; 34:1852-62. [PMID: 23977679 DOI: 10.1002/elps.201300078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult tapeworms of the genus Echinococcus (family Taeniidae) occur in the small intestines of carnivorous definitive hosts and are transmitted to particular intermediate mammalian hosts, in which they develop as fluid-filled larvae (cysts) in internal organs (usually lung and liver), causing the disease echinococcosis. Echinococcus species are of major medical importance and also cause losses to the meat and livestock industries, mainly due to the condemnation of infected offal. Decisions regarding the treatment and control of echinococcosis rely on the accurate identification of species and population variants (strains). Conventional, phenetic methods for specific identification have some significant limitations. Despite advances in the development of molecular tools, there has been limited application of mutation scanning methods to species of Echinococcus. Here, we briefly review key genetic markers used for the identification of Echinococcus species and techniques for the analysis of genetic variation within and among populations, and the diagnosis of echinococcosis. We also discuss the benefits of utilizing mutation scanning approaches to elucidate the population genetics and epidemiology of Echinococcus species. These benefits are likely to become more evident following the complete characterization of the genomes of E. granulosus and E. multilocularis.
Collapse
Affiliation(s)
- Abdul Jabbar
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
23
|
Webster BL, Webster JP, Gouvras AN, Garba A, Lamine MS, Diaw OT, Seye MM, Tchuem Tchuenté LA, Simoonga C, Mubila L, Mwanga JR, Lwambo NJ, Kabatereine NB, Lange CN, Kariuki C, Mkoji GM, Rollinson D, Stothard JR. DNA 'barcoding' of Schistosoma mansoni across sub-Saharan Africa supports substantial within locality diversity and geographical separation of genotypes. Acta Trop 2013; 128:250-60. [PMID: 22935316 DOI: 10.1016/j.actatropica.2012.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 11/25/2022]
Abstract
Schistosoma mansoni is a widespread human helminth and causes intestinal schistosomiasis in 54 countries, mainly across Africa but also in Madagascar, the Arabian Peninsula and the neotropics. The geographical range of this parasite relies on the distribution of certain species of freshwater pulmonate snails of the genus Biomphalaria. Whilst S. mansoni is known to exhibit high population diversity the true extent of this diversity is still to be fully elucidated as sampling of this taxon progressively accrues. Here a DNA 'barcoding' approach is taken using sequence analysis of a 450bp region within the mitochondrial cox1 gene to assess the genetic diversity within a large number of S. mansoni larval stages collected from their natural human hosts across sub-Saharan Africa. Five hundred and sixty one individual parasite samples were examined from 22 localities and 14 countries. Considerable within-species diversity was found with 120 unique haplotypes splitting geographically into five discrete lineages. The highest diversity was found in East Africa with samples forming three of the five lineages. Less diversity was found in the Far and Central Western regions of Africa with haplotypes from the New World showing a close affinity to the Far Western African S. mansoni populations supporting the hypothesis of a colonisation of South America via the West African slave trade. The data are discussed in relation to parasite diversity and disease epidemiology.
Collapse
|
24
|
Rostami S, Salavati R, Beech RN, Sharbatkhori M, Babaei Z, Saedi S, Harandi MF. Cytochrome c oxidase subunit 1 and 12S ribosomal RNA characterization of Coenurus cerebralis from sheep in Iran. Vet Parasitol 2013; 197:141-51. [PMID: 23890823 DOI: 10.1016/j.vetpar.2013.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/29/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
Taenia multiceps is a widely distributed zoonotic tapeworm of canids. The larval stage of the parasite (Coenurus) occurs in sheep, goat and cattle and has been rarely reported from humans. This study investigated genetic variability of two mitochondrial genes in 102 isolates of T. multiceps. Metacestodes were collected from brains and hearts of sheep in Tehran and Qom provinces of Iran. DNA of each isolate was extracted and used for PCR amplification of cytochrome c oxidase subunit I (CO1) and 12S ribosomal DNA (12S rRNA) genes. All amplicons were sequenced and the sequence data were analyzed using NCBI Blast and BioEdit. Phylogenetic trees and pairwise calculations were obtained by using Mega5 software. In total 7 and 25 representative haplotypes were differentiated for CO1 and 12S rRNA genes, respectively. For CO1 sequences 11 segregation sites within 7 haplotypes were observed. For 12S rRNA sequences a total of 32 segregation sites were observed in 25 haplotypes. CO1 gene displayed lower diversity than 12S rRNA gene with an overall nucleotide variation of 3.0% for CO1 vs. 7.2% for 12S rRNA. Pairwise comparisons among 7 haplotypes in CO1 and 12S rRNA genes showed the level of nucleotide differences 0.3-2.5% and 0.2-4.0%, respectively. A high degree of genetic variation was found in the isolates of T. multiceps in Iran. Additional molecular studies are required on the parasite from other intermediate hosts.
Collapse
Affiliation(s)
- Sima Rostami
- Department of Parasitology, School of Medicine, Kerman University of Medical Sciences, Kerman 76169-14111, Iran
| | | | | | | | | | | | | |
Collapse
|
25
|
Gasser RB, Jabbar A, Mohandas N, Höglund J, Hall RS, Littlewood DTJ, Jex AR. Assessment of the genetic relationship between Dictyocaulus species from Bos taurus and Cervus elaphus using complete mitochondrial genomic datasets. Parasit Vectors 2012; 5:241. [PMID: 23110936 PMCID: PMC3503548 DOI: 10.1186/1756-3305-5-241] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dictyocaulus species are strongylid nematodes of major veterinary significance in ruminants, such as cattle and cervids, and cause serious bronchitis or pneumonia (dictyocaulosis or "husk"). There has been ongoing controversy surrounding the validity of some Dictyocaulus species and their host specificity. Here, we sequenced and characterized the mitochondrial (mt) genomes of Dictyocaulus viviparus (from Bos taurus) with Dictyocaulus sp. cf. eckerti from red deer (Cervus elaphus), used mt datasets to assess the genetic relationship between these and related parasites, and predicted markers for future population genetic or molecular epidemiological studies. METHODS The mt genomes were amplified from single adult males of D. viviparus and Dictyocaulus sp. cf. eckerti (from red deer) by long-PCR, sequenced using 454-technology and annotated using bioinformatic tools. Amino acid sequences inferred from individual genes of each of the two mt genomes were compared, concatenated and subjected to phylogenetic analysis using Bayesian inference (BI), also employing data for other strongylids for comparative purposes. RESULTS The circular mt genomes were 13,310 bp (D. viviparus) and 13,296 bp (Dictyocaulus sp. cf. eckerti) in size, and each contained 12 protein-encoding, 22 transfer RNA and 2 ribosomal RNA genes, consistent with other strongylid nematodes sequenced to date. Sliding window analysis identified genes with high or low levels of nucleotide diversity between the mt genomes. At the predicted mt proteomic level, there was an overall sequence difference of 34.5% between D. viviparus and Dictyocaulus sp. cf. eckerti, and amino acid sequence variation within each species was usually much lower than differences between species. Phylogenetic analysis of the concatenated amino acid sequence data for all 12 mt proteins showed that both D. viviparus and Dictyocaulus sp. cf. eckerti were closely related, and grouped to the exclusion of selected members of the superfamilies Metastrongyloidea, Trichostrongyloidea, Ancylostomatoidea and Strongyloidea. CONCLUSIONS Consistent with previous findings for nuclear ribosomal DNA sequence data, the present analyses indicate that Dictyocaulus sp. cf. eckerti (red deer) and D. viviparus are separate species. Barcodes in the two mt genomes and proteomes should serve as markers for future studies of the population genetics and/or epidemiology of these and related species of Dictyocaulus.
Collapse
Affiliation(s)
- Robin B Gasser
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Genetic diversity within Schistosoma haematobium: DNA barcoding reveals two distinct groups. PLoS Negl Trop Dis 2012; 6:e1882. [PMID: 23145200 PMCID: PMC3493392 DOI: 10.1371/journal.pntd.0001882] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/12/2012] [Indexed: 12/03/2022] Open
Abstract
Background Schistosomiasis in one of the most prevalent parasitic diseases, affecting millions of people and animals in developing countries. Amongst the human-infective species S. haematobium is one of the most widespread causing urogenital schistosomiasis, a major human health problem across Africa, however in terms of research this human pathogen has been severely neglected. Methodology/Principal Findings To elucidate the genetic diversity of Schistosoma haematobium, a DNA ‘barcoding’ study was performed on parasite material collected from 41 localities representing 18 countries across Africa and the Indian Ocean Islands. Surprisingly low sequence variation was found within the mitochondrial cytochrome oxidase subunit I (cox1) and the NADH-dehydrogenase subunit 1 snad1). The 61 haplotypes found within 1978 individual samples split into two distinct groups; one (Group 1) that is predominately made up of parasites from the African mainland and the other (Group 2) that is made up of samples exclusively from the Indian Ocean Islands and the neighbouring African coastal regions. Within Group 1 there was a dominance of one particular haplotype (H1) representing 1574 (80%) of the samples analyzed. Population genetic diversity increased in samples collected from the East African coastal regions and the data suggest that there has been movement of parasites between these areas and the Indian Ocean Islands. Conclusions/Significance The high occurrence of the haplotype (H1) suggests that at some point in the recent evolutionary history of S. haematobium in Africa the population may have passed through a genetic ‘bottleneck’ followed by a population expansion. This study provides novel and extremely interesting insights into the population genetics of S. haematobium on a large geographic scale, which may have consequence for control and monitoring of urogenital schistosomiasis. Schistosomiasis is a disease caused by parasitic blood flukes of the genus Schistosoma. Species that infect humans are prevalent in developing countries, having a major impact on public health and well-being as well as an impediment to socioeconomic development. More people are infected with Schistosoma haematobium than with all the other schistosome species combined, however mainly due to the inability to maintain S. haematobium in the laboratory system empirical studies on this parasite are minimal. The genetic variation of this Schistosoma species on a wide geographical scale has never been investigated. In this study, we have used a DNA ?barcoding? approach to document the genetic variation and population structure of S. haematobium sampled from 18 countries across Africa and the Indian ocean Islands. The study revealed a distinct genetic separation of S. haematobium from the Indian Ocean Islands and the closely neighbouring coastal regions from S. haematobium found throughout the African mainland, the latter of which exhibited extremely low levels of mitochondrial diversity within and between populations of parasites sampled. The data from this study provides a novel insight into the population genetics of S. haematobium and will have an impact on future research strategies.
Collapse
|
27
|
Ramesh A, Small ST, Kloos ZA, Kazura JW, Nutman TB, Serre D, Zimmerman PA. The complete mitochondrial genome sequence of the filarial nematode Wuchereria bancrofti from three geographic isolates provides evidence of complex demographic history. Mol Biochem Parasitol 2012; 183:32-41. [PMID: 22326389 PMCID: PMC3725818 DOI: 10.1016/j.molbiopara.2012.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 11/26/2022]
Abstract
Mitochondrial (mt) genome sequences have enabled comparison of population genetics and evolution for numerous free-living and parasitic nematodes. Here we define the complete mt genome of Wuchereria bancrofti through analysis of isolates from Papua New Guinea, India and West Africa. Sequences were assembled for each isolate and annotated with reference to the mt genome sequence for Brugia malayi. The length of the W. bancrofti mt genome is approximately 13,637 nucleotides, contains 2 ribosomal RNAs (rrns), 22 transfer RNAs (trns), 12 protein-coding genes, and is characterized by a 74.6% AT content. The W. bancrofti mt gene order is identical to that reported for Onchocerca volvulus, Dirofilaria immitis, Setaria digitata and B. malayi. In addition to using translational start codons identified previously in the mt protein-coding genes of other filarial nematodes, W. bancrofti appears to be unique in using TGT as a translational start codon. Similarly, use of incomplete stop codons in mt protein-coding genes appears to be more common in W. bancrofti than in other human filarial parasites. The complete mt genome sequence reported here provides new genetic markers for investigating phylogenetic and geographic relationships between isolates, and assessing population diversity within endemic regions. The sequence polymorphism enables new strategies to monitor the progress of public health interventions to control and eliminate this important human parasite. We illustrate the utility of this sequence and single nucleotide polymorphisms by inferring the divergence times between the three W. bancrofti isolates, suggesting predictions into their origin and migration.
Collapse
Affiliation(s)
- Akshaya Ramesh
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106-4983, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
De NV, Le TH. Human infections of fish-borne trematodes in Vietnam: Prevalence and molecular specific identification at an endemic commune in Nam Dinh province. Exp Parasitol 2011; 129:355-61. [DOI: 10.1016/j.exppara.2011.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/24/2011] [Accepted: 09/13/2011] [Indexed: 01/06/2023]
|
29
|
Betson M, Halstead FD, Nejsum P, Imison E, Khamis IS, Sousa-Figueiredo JC, Rollinson D, Stothard JR. A molecular epidemiological investigation of Ascaris on Unguja, Zanzibar using isoenyzme analysis, DNA barcoding and microsatellite DNA profiling. Trans R Soc Trop Med Hyg 2011; 105:370-9. [PMID: 21605883 DOI: 10.1016/j.trstmh.2011.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 11/20/2022] Open
Abstract
Ascariasis is of public health importance on the islands of Zanzibar (Unguja and Pemba). To shed light on the molecular epidemiology of this parasite, 68 Ascaris worms, obtained from 14 individuals in four Ungujan villages, were examined by isoenzyme analysis (ISA), DNA barcoding and microsatellite DNA profiling. ISA revealed genetic variation, which was confirmed by DNA barcoding. Nineteen worms recovered from individuals in Uganda were included for comparison. Sixteen unique DNA barcodes were identified, 15 on Unguja and three in Uganda with two shared between. These two barcodes were found in all four Ungujan villages. Worms from Tumbatu-Jongowe, an isolated village on an islet off Unguja, seemed particularly diverse. Within our barcodes, three exact matches were found with Chinese Ascaris retrieved from pigs, which is perhaps surprising given the present rarity of these animals on Unguja. Microsatellite profiling and population genetic analysis revealed further genetic diversity within our samples although population sub-structuring within Unguja was minor in comparison to that between Unguja and Uganda. As African Ascaris has not been subjected to detailed molecular scrutiny, this new diversity represents an important piece in its evolutionary jigsaw and such population markers are informative in monitoring worm dynamics during ongoing control.
Collapse
Affiliation(s)
- Martha Betson
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Genetic variation and relationships of four species of medically important echinostomes (Trematoda: Echinostomatidae) in South-East Asia. INFECTION GENETICS AND EVOLUTION 2010; 11:375-81. [PMID: 21129506 DOI: 10.1016/j.meegid.2010.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 09/19/2010] [Accepted: 11/22/2010] [Indexed: 11/20/2022]
Abstract
Multilocus enzyme electrophoresis (MEE) and DNA sequencing of the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene were used to genetically compare four species of echinostomes of human health importance. Fixed genetic differences among adults of Echinostoma revolutum, Echinostoma malayanum, Echinoparyphium recurvatum and Hypoderaeum conoideum were detected at 51-75% of the enzyme loci examined, while interspecific differences in CO1 sequence were detected at 16-32 (8-16%) of the 205 alignment positions. The results of the MEE analyses also revealed fixed genetic differences between E. revolutum from Thailand and Lao PDR at five (19%) of 27 loci, which could either represent genetic variation between geographically separated populations of a single species, or the existence of a cryptic (i.e. genetically distinct but morphologically similar) species. However, there was no support for the existence of cryptic species within E. revolutum based on the CO1 sequence between the two geographical areas sampled. Genetic variation in CO1 sequence was also detected among E. malayanum from three different species of snail intermediate host. Separate phylogenetic analyses of the MEE and DNA sequence data revealed that the two species of Echinostoma (E. revolutum and E. malayanum) did not form a monophyletic clade. These results, together with the large number of morphologically similar species with inadequate descriptions, poor specific diagnoses and extensive synonymy, suggest that the morphological characters used for species taxonomy of echinostomes in South-East Asia should be reconsidered according to the concordance of biology, morphology and molecular classification.
Collapse
|
31
|
Toward next-generation sequencing of mitochondrial genomes — Focus on parasitic worms of animals and biotechnological implications. Biotechnol Adv 2010; 28:151-9. [DOI: 10.1016/j.biotechadv.2009.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/28/2009] [Accepted: 11/04/2009] [Indexed: 11/21/2022]
|
32
|
Zhao G, Mo X, Zou F, Li J, Weng Y, Lin R, Xia C, Zhu X. Genetic variability among Schistosoma japonicum isolates from different endemic regions in China revealed by sequences of three mitochondrial DNA genes. Vet Parasitol 2009; 162:67-74. [PMID: 19303214 DOI: 10.1016/j.vetpar.2009.02.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/15/2009] [Accepted: 02/17/2009] [Indexed: 10/21/2022]
|
33
|
SAIJUNTHA W, SITHITHAWORN P, WONGKHAM S, LAHA T, CHILTON NB, PETNEY T, BARTON M, ANDREWS RH. Mitochondrial DNA sequence variation among geographical isolates of Opisthorchis viverrini in Thailand and Lao PDR, and phylogenetic relationships with other trematodes. Parasitology 2008; 135:1479-86. [PMID: 18937886 PMCID: PMC2582335 DOI: 10.1017/s0031182008005015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study compared the genetic variation among 14 different geographical isolates of Opisthorchis viverrini sensu lato from Thailand and Lao PDR using sequence data for 2 mitochondrial DNA genes, the subunit 1 of NADH dehydrogenase gene (nad1) and cytochrome c oxidase gene (cox1). Four different nad1 haplotypes were detected among isolates, all of which were identical at the amino acid sequence level. Nucleotide sequence variation among 14 isolates ranged from 0 to 0.3% for nad1. Two different cox1 haplotypes were detected among isolates. These two haplotypes differed at 2 nucleotide positions, one of which resulted in a change in the amino acid sequence. Nucleotide sequence variation among isolates for cox1 ranged from 0 to 0.5%. Comparison of cox1 sequences of O. viverrini to those of other trematodes revealed nucleotide differences of 13-31%. A phylogenetic analysis of the cox1 sequence data revealed strong statistical support for a clade containing O. viverrini and 2 other species of opisthorchid trematodes; O. felineus and Clonorchis sinsensis.
Collapse
Affiliation(s)
- W. SAIJUNTHA
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center (LFCRC), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - P. SITHITHAWORN
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center (LFCRC), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - S. WONGKHAM
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center (LFCRC), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - T. LAHA
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - N. B. CHILTON
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - T.N. PETNEY
- Institute of Zoology 1: Ecology and Parasitology, University of Karlsruhe, Kornblumen Strasse 13, Karlsruhe, Germany
| | - M. BARTON
- School of Pharmacy and Medical Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - R. H. ANDREWS
- School of Pharmacy and Medical Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| |
Collapse
|
34
|
Li MW, Lin RQ, Song HQ, Sani RA, Wu XY, Zhu XQ. Electrophoretic analysis of sequence variability in three mitochondrial DNA regions for ascaridoid parasites of human and animal health significance. Electrophoresis 2008; 29:2912-7. [PMID: 18546167 DOI: 10.1002/elps.200700752] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sequence variability in three mitochondrial DNA (mtDNA) regions, namely cytochrome c oxidase subunit 1 (cox1), NADH dehydrogenase subunits 1 and 4 (nad1 and nad4), among and within Toxocara canis, T. cati, T. malaysiensis, T. vitulorum and Toxascaris leonina from different geographical origins was examined by a mutation-scanning approach. A portion of the cox1 gene (pcox1), a portion of the nad1 and nad4 genes (pnad1 and pnad4) were amplified separately from individual ascaridoid nematodes by polymerase chain reaction and the amplicons analyzed by single-strand conformation polymorphism (SSCP). Representative samples displaying sequence variation in SSCP profiles were subjected to sequencing in order to define genetic markers for their specific identification and differentiation. While the intra-specific sequence variations within each of the five ascaridoid species were 0.2-3.7% for pcox1, 0-2.8% for pnad1 and 0-2.3% for pnad4, the inter-specific sequence differences were significantly higher, being 7.9-12.9% for pcox1, 10.7-21.1% for pnad1 and 12.9-21.7% for pnad4, respectively. Phylogenetic analyses based on the combined sequences of pcox1, pnad1 and pnad4 revealed that the recently described species T. malaysiensis was more closely related to T. cati than to T. canis. These findings provided mtDNA evidence for the validity of T. malaysiensis and also demonstrated clearly the usefulness and attributes of the mutation-scanning sequencing approach for studying the population genetic structures of these and other nematodes of socio-economic importance.
Collapse
Affiliation(s)
- Ming-Wei Li
- Laboratory of Parasitology, College of Veterinary Medicine, South China Agricultural University, Guangdong Province, The People's Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Parasites as probes for prehistoric human migrations? Trends Parasitol 2008; 24:112-5. [PMID: 18262843 DOI: 10.1016/j.pt.2007.11.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 10/26/2007] [Accepted: 11/27/2007] [Indexed: 11/23/2022]
Abstract
Host-specific parasites of humans are used to track ancient migrations. Based on archaeoparasitology, it is clear that humans entered the New World at least twice in ancient times. The archaeoparasitology of some intestinal parasites in the New World points to migration routes other than the Bering Land Bridge. Helminths have been found in mummies and coprolites in North and South America. Hookworms (Necator and Ancylostoma), whipworms (Trichuris trichiura) and other helminths require specific conditions for life-cycle completion. They could not survive in the cold climate of the northern region of the Americas. Therefore, humans would have lost some intestinal parasites while crossing Beringia. Evidence is provided here from published data of pre-Columbian sites for the peopling of the Americas through trans-oceanic or costal migrations.
Collapse
|
36
|
Long PCR amplification of the entire mitochondrial genome from individual helminths for direct sequencing. Nat Protoc 2008; 2:2339-44. [PMID: 17947975 DOI: 10.1038/nprot.2007.358] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exploring mitochondrial (mt) genomes has significant implications for various fundamental research areas, including mt biochemistry and physiology, and, importantly, such genomes provide a rich source of markers for population genetics and systematic studies. Although some progress has been made, there is a paucity of information on mt genomes for many metazoan organisms, particularly invertebrates such as parasitic helminths, which relates mainly to the technical limitations associated with sequencing from tiny amounts of material. In this article, we describe a practical long PCR approach for the amplification and subsequent sequencing of the entire mt genome from individual helminths, which overcomes these limitations. The protocol includes the isolation of genomic DNA, long PCR amplification, electrophoresis and sequencing, and takes approximately 1-3 weeks to carry out. The present user-friendly, cost-effective approach has demonstrated utility to the study of a range of parasites, and has the potential to be applied to a wide range of organisms.
Collapse
|
37
|
Jex AR, Hu M, Littlewood DTJ, Waeschenbach A, Gasser RB. Using 454 technology for long-PCR based sequencing of the complete mitochondrial genome from single Haemonchus contortus (Nematoda). BMC Genomics 2008; 9:11. [PMID: 18190685 PMCID: PMC2254599 DOI: 10.1186/1471-2164-9-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 01/11/2008] [Indexed: 11/17/2022] Open
Abstract
Background Mitochondrial (mt) genomes represent a rich source of molecular markers for a range of applications, including population genetics, systematics, epidemiology and ecology. In the present study, we used 454 technology (or the GS20, massively parallel picolitre reactor platform) to determine the complete mt genome of Haemonchus contortus (Nematoda: Trichostrongylidae), a parasite of substantial agricultural, veterinary and economic significance. We validate this approach by comparison with mt sequences from publicly available expressed sequence tag (EST) and genomic survey sequence (GSS) data sets. Results The complete mt genome of Haemonchus contortus was sequenced directly from long-PCR amplified template utilizing genomic DNA (~20–40 ng) from a single adult male using 454 technology. A single contig was assembled and compared against mt sequences mined from publicly available EST (NemBLAST) and GSS datasets. The comparison demonstrated that the 454 technology platform is reliable for the sequencing of AT-rich mt genomes from nematodes. The mt genome sequenced for Haemonchus contortus was 14,055 bp in length and was highly AT-rich (78.1%). In accordance with other chromadorean nematodes studied to date, the mt genome of H. contortus contained 36 genes (12 protein coding, 22 tRNAs, rrnL and rrnS) and was similar in structure, size and gene arrangement to those characterized previously for members of the Strongylida. Conclusion The present study demonstrates the utility of 454 technology for the rapid determination of mt genome sequences from tiny amounts of DNA and reveals a wealth of mt genomic data in current databases available for mining. This approach provides a novel platform for high-throughput sequencing of mt genomes from nematodes and other organisms.
Collapse
Affiliation(s)
- Aaron R Jex
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria, 3030, Australia.
| | | | | | | | | |
Collapse
|
38
|
Attwood SW, Fatih FA, Mondal MMH, Alim MA, Fadjar S, Rajapakse RPVJ, Rollinson D. A DNA sequence-based study of theSchistosoma indicum(Trematoda: Digenea) group: population phylogeny, taxonomy and historical biogeography. Parasitology 2007; 134:2009-20. [PMID: 17822572 DOI: 10.1017/s0031182007003411] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYPartial (DNA) sequences were collected for 2 mitochondrial loci (SrrnaandLrrna, therrnS andrrnL rRNA genes respectively) forSchistosoma indicumgroup species from 4 Southeast Asian countries. The samples included 7 populations, 4 of which were previously unstudied. In 11 cases the combination of locus and population was new. The aim of the study was to provide a phylogeny based on new independent data and multiple populations (earlier studies had mostly used a common set of field samples or laboratory lines) and to examine interrelationships and phylogeography within this species group. Paraphyly of theS. indicumgroup was confirmed, as was the basal position ofSchistosoma incognitumin theSchistosomaphylogeny. Southeast AsianSchistosoma spindaleandS. incognitumpopulations were shown to fall into their respective con-specific cohesive groupings. Estimated divergence times for these taxa were shown to be related to Pleistocene changes in sea level and the radiation of definitive host groups. A revised phylogeographical model is proposed in the light of these findings.
Collapse
Affiliation(s)
- S W Attwood
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Zarowiecki MZ, Huyse T, Littlewood DTJ. Making the most of mitochondrial genomes--markers for phylogeny, molecular ecology and barcodes in Schistosoma (Platyhelminthes: Digenea). Int J Parasitol 2007; 37:1401-18. [PMID: 17570370 DOI: 10.1016/j.ijpara.2007.04.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/19/2007] [Accepted: 04/24/2007] [Indexed: 11/27/2022]
Abstract
An increasing number of complete sequences of mitochondrial (mt) genomes provides the opportunity to optimise the choice of molecular markers for phylogenetic and ecological studies. This is particularly the case where mt genomes from closely related taxa have been sequenced; e.g., within Schistosoma. These blood flukes include species that are the causative agents of schistosomiasis, where there has been a need to optimise markers for species and strain recognition. For many phylogenetic and population genetic studies, the choice of nucleotide sequences depends primarily on suitable PCR primers. Complete mt genomes allow individual gene or other mt markers to be assessed relative to one another for potential information content, prior to broad-scale sampling. We assess the phylogenetic utility of individual genes and identify regions that contain the greatest interspecific variation for molecular ecological and diagnostic markers. We show that variable characters are not randomly distributed along the genome and there is a positive correlation between polymorphism and divergence. The mt genomes of African and Asian schistosomes were compared with the available intraspecific dataset of Schistosoma mansoni through sliding window analyses, in order to assess whether the observed polymorphism was at a level predicted from interspecific comparisons. We found a positive correlation except for the two genes (cox1 and nad1) adjoining the putative control region in S. mansoni. The genes nad1, nad4, nad5, cox1 and cox3 resolved phylogenies that were consistent with a benchmark phylogeny and in general, longer genes performed better in phylogenetic reconstruction. Considering the information content of entire mt genome sequences, partial cox1 would not be the ideal marker for either species identification (barcoding) or population studies with Schistosoma species. Instead, we suggest the use of cox3 and nad5 for both phylogenetic and population studies. Five primer pairs designed against Schistosoma mekongi and Schistosoma malayensis were tested successfully against Schistosoma japonicum. In combination, these fragments encompass 20-27% of the variation amongst the genomes (average total length approximately 14,000bp), thus providing an efficient means of encapsulating the greatest amount of variation within the shortest sequence. Comparative mitogenomics provides the basis of a rational approach to molecular marker selection and optimisation.
Collapse
Affiliation(s)
- M Z Zarowiecki
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | | | | |
Collapse
|
40
|
Hu M, Gasser RB. Mitochondrial genomes of parasitic nematodes – progress and perspectives. Trends Parasitol 2006; 22:78-84. [PMID: 16377245 DOI: 10.1016/j.pt.2005.12.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 10/13/2005] [Accepted: 12/08/2005] [Indexed: 10/25/2022]
Abstract
Mitochondria are subcellular organelles in which oxidative phosphorylation and other important biochemical functions take place within the cell. Within these organelles is a mitochondrial (mt) genome, which is distinct from, but cooperates with, the nuclear genome of the cell. Studying mt genomes has implications for various fundamental areas, including mt biochemistry, physiology and molecular biology. Importantly, the mt genome is a rich source of markers for population genetic and systematic studies. To date, more than 696 mt genomes have been sequenced for a range of metazoan organisms. However, few of these are from parasitic nematodes, despite their socioeconomic importance and the need for fundamental investigations into areas such as nematode genetics, systematics and ecology. In this article, we review knowledge and recent progress in mt genomics of parasitic nematodes, summarize applications of mt gene markers to the study of population genetics, systematics, epidemiology and evolution of key nematodes, and highlight some prospects and opportunities for future research.
Collapse
Affiliation(s)
- Min Hu
- Department of Veterinary Science, University of Melbourne, Werribee, Victoria 3030, Australia
| | | |
Collapse
|
41
|
Abstract
Neurocysticercosis is a major zoonotic larval cestode infection that has a worldwide distribution and is of significant public health importance. Knowledge of the genetic structure of Taenia solium can be applied to the epidemiology and transmission of this disease, since genetic variants may differ in infectivity and pathogenicity. Molecular epidemiological approaches can also enable detailed studies of transmission. On a global scale, mitochondrial markers have differentiated between T. solium isolates from Asia and isolates from Africa/Latin America. Intraspecific variation in T. solium has been detected to some extent, using RAPD markers to differentiate between T. solium populations from different regions within Mexico. Markers currently available for T. solium have not been used to analyse genetic variation at the community or local level. The development of highly polymorphic markers such as microsatellites in T. solium can provide the means to examine genetic heterogeneity of tapeworm infection at the household, community and regional level. Preliminary studies suggest it is possible to analyse population genetic variation in communities using a range of polymorphic markers.
Collapse
Affiliation(s)
- Gillian Campbell
- Cestode Zoonoses Research Group, Bioscience Research Institute and School of Environment and Life Sciences, Salford University, UK.
| | | | | | | | | |
Collapse
|
42
|
Giglione C, Meinnel T. Peptide deformylase as an emerging target for antiparasitic agents. Expert Opin Ther Targets 2005; 5:41-57. [PMID: 15992167 DOI: 10.1517/14728222.5.1.41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Peptide deformylases (PDFs) constitute a growing family of hydrolytic enzymes previously believed to be unique to Eubacteria. Recent data from our laboratory have demonstrated that PDF orthologues are present in many eukaryotes, including several parasites. In this report we aim to explain why PDF could be considered to be a potent target for human and veterinary antiparasitic treatments.
Collapse
Affiliation(s)
- C Giglione
- Institut des Sciences Végétales, UPR2355, Centre National de la Recherche Scientifique, Bâtiment 23, 1 Avenue de la Terrasse, F-91198 Gif-sur-Yvette Cedex, France
| | | |
Collapse
|
43
|
Le TH, McManus DP, Blair D. Codon usage and bias in mitochondrial genomes of parasitic platyhelminthes. THE KOREAN JOURNAL OF PARASITOLOGY 2005; 42:159-67. [PMID: 15591833 PMCID: PMC2717381 DOI: 10.3347/kjp.2004.42.4.159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sequences of the complete protein-coding portions of the mitochondrial (mt) genome were analysed for 6 species of cestodes (including hydatid tapeworms and the pork tapeworm) and 5 species of trematodes (blood flukes and liver- and lung-flukes). A near-complete sequence was also available for an additional trematode (the blood fluke Schistosoma malayensis). All of these parasites belong to a large flatworm taxon named the Neodermata. Considerable variation was found in the base composition of the protein-coding genes among these neodermatans. This variation was reflected in statistically-significant differences in numbers of each inferred amino acid between many pairs of species. Both convergence and divergence in nucleotide, and hence amino acid, composition was noted among groups within the Neodermata. Considerable variation in skew (unequal representation of complementary bases on the same strand) was found among the species studied. A pattern is thus emerging of diversity in the mt genome in neodermatans that may cast light on evolution of mt genomes generally.
Collapse
Affiliation(s)
- Thanh Hoa Le
- Molecular Parasitology Laboratory, Australian Centre for International and Tropical Health and Nutrition, The Queensland Institute of Medical Research and the University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
44
|
Mabru D, Douet JP, Mouton A, Dupré C, Ricard JM, Médina B, Castroviejo M, Chevalier G. PCR-RFLP using a SNP on the mitochondrial Lsu-rDNA as an easy method to differentiate Tuber melanosporum (Perigord truffle) and other truffle species in cans. Int J Food Microbiol 2004; 94:33-42. [PMID: 15172483 DOI: 10.1016/j.ijfoodmicro.2003.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Revised: 10/15/2003] [Accepted: 12/01/2003] [Indexed: 10/26/2022]
Abstract
Canned truffle products labeled Tuber melanosporum, the famous Perigord truffle, may contain other less tasty and cheaper truffle species. To protect consumers from fraud, a PCR DNA-based method was used to unequivocally identify the nature of the product. Several rapid and simple cell lysis procedures, used in conjunction with a commercially available DNA purification kit, were evaluated for their effectiveness in recovering DNA from canned truffle. In parallel, a marker for T. melanosporum was tested on the mitochondrial rDNA. These two techniques were then combined to differentiate T. melanosporum from other truffle species like T. aestivum, T. brumale or T. indicum up to the legal threshold in canned products. These findings not only allow a comparison of the effectiveness of the different DNA extraction methods but also provide a preliminary indication of the specificity and sensitivity of the detection with the mitochondrial marker that might be attainable for truffle species in a quantitative PCR-based analysis method.
Collapse
Affiliation(s)
- D Mabru
- I.N.R.A., UMR 1095 INRA-UBP Amélioration et santé des plantes, Site de Crouelle, 234 avenue du Brézet, 63039 Clermont-Ferrand Cedex 2, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bardonnet K, Benchikh-Elfegoun MC, Bart JM, Harraga S, Hannache N, Haddad S, Dumon H, Vuitton DA, Piarroux R. Cystic echinococcosis in Algeria: cattle act as reservoirs of a sheep strain and may contribute to human contamination. Vet Parasitol 2003; 116:35-44. [PMID: 14519325 DOI: 10.1016/s0304-4017(03)00255-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In Algeria, cystic echinococcosis (CE) is a serious economic and public health problem. The common sheep/dog cycle is usually considered as the major source of human contamination. But to date the main strain of Echinococcus granulosus involved in the human contamination and the role of other hosts are still unknown. This paper reports an original work performed in northern Algeria combining field observations and molecular analysis. In a first step, examination of 6237 carcasses in slaughterhouses showed high infection and fertility rates in cattle and dromedaries. Then, in a second step, we used a molecular biology approach to identify the E. granulosus strain(s) involved. Forty-six samples from various origins were collected. They were analysed using comparison of PCR-amplified DNA sequences with one genomic (BG 1/3) and two mitochondrial (COI and NDI) targets. Results show the presence of a "sheep" strain of E. granulosus in North Algeria circulating between cattle and ovines and infectious to humans, whereas in South Algeria, a "camel" strain and a "sheep" strain were found to circulate in camels and in sheep, respectively. This study also reports an ambiguous genotype which resembled the "sheep" strain genotype (Gl) on the basis of the partial COI gene sequence, whereas on the basis of the partial NDI gene sequence, it was similar either to the "sheep" strain (Gl) or to the "camel" strain (G6). Besides its basic interest, our study confirms the role of other hosts (mainly cattle) in leading to transmission to humans and suggests that control measures should not only target sheep.
Collapse
Affiliation(s)
- K Bardonnet
- WHO Collaborating Centre for Prevention and Treatment of Human Echinococcosis and Health and Rural Environment Research Unit, University of Franche-Comte (SERF), School of Medicine and Pharmacy, 25 030 Cedex, Besançon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hu M, Chilton NB, Gasser RB. Long PCR-based amplification of the entire mitochondrial genome from single parasitic nematodes. Mol Cell Probes 2003; 16:261-7. [PMID: 12270267 DOI: 10.1006/mcpr.2002.0422] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial genome sequences provide useful markers for investigating population genetic structures because of their maternal inheritance and high evolutionary rates. There is, however, a paucity of information on mitochondrial genomes for many parasitic organisms, including nematodes, which appears to relate mainly to technical limitations and (for modestly funded laboratories) the cost associated with full mitochondrial genome sequencing. In this article, we describe a simple, relatively inexpensive long-PCR approach for the amplification (using two sets of primers) of the entire mitochondrial genome from individual parasitic nematodes for subsequent sequencing, which overcomes these limitations. We employed two species of human hookworm (Ancylostoma duodenale and Necator americanus; order Strongylida) to establish the long-PCR conditions, and then extended its use to a number of other species of parasitic nematode of the class Secernentea (orders Strongylida, Ascaridida and Rhabditida). The long-PCR method for the amplification of the entire mitochondrial genome from single nematodes, coupled with direct sequencing of amplicons, provides a useful tool for the comparative analysis of genome organisation and evolution of a range of nematode groups. It also creates a platform for molecular ecological and population genetic studies.
Collapse
Affiliation(s)
- M Hu
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | | | |
Collapse
|
47
|
Dalton JP, Brindley PJ, Knox DP, Brady CP, Hotez PJ, Donnelly S, O'Neill SM, Mulcahy G, Loukas A. Helminth vaccines: from mining genomic information for vaccine targets to systems used for protein expression. Int J Parasitol 2003; 33:621-40. [PMID: 12782060 DOI: 10.1016/s0020-7519(03)00057-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The control of helminth diseases of people and livestock continues to rely on the widespread use of anti-helminthic drugs. However, concerns with the appearance of drug resistant parasites and the presence of pesticide residues in food and the environment, has given further incentive to the goal of discovering molecular vaccines against these pathogens. The exponential rate at which gene and protein sequence information is accruing for many helminth parasites requires new methods for the assimilation and analysis of the data and for the identification of molecules capable of inducing immunological protection. Some promising vaccine candidates have been discovered, in particular cathepsin L proteases from Fasciola hepatica, aminopeptidases from Haemonchus contortus, and aspartic proteases from schistosomes and hookworms, all of which are secreted into the host tissues or into the parasite intestine where they play important roles in host-parasite interactions. Since secreted proteins, in general, are exposed to the immune system of the host they represent obvious candidates at which vaccines could be targeted. Therefore, in this article, we consider the potential values and uses of algorithms for characterising cDNAs amongst the collated helminth genomic information that encode secreted proteins, and methods for their selective isolation and cloning. We also review the variety of prokaryotic and eukaryotic cell expression systems that have been employed for the production and downstream purification of recombinant proteins in functionally active form, and provide an overview of the parameters that must be considered if these recombinant proteins are to be commercialised as vaccine therapeutics in humans and/or animals.
Collapse
Affiliation(s)
- John P Dalton
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Neurocysticercosis, cystic echinococcosis and alveolar echinococcosis are the three major zoonotic larval cestodiases worldwide and threatening human life. Early therapeutic treatment based on early differential diagnosis at the early stage of infection and epidemiological surveillance with the expectation for control and prevention are the keys for improvement of quality of human life. Recent advances in (1). differential serodiagnosis of these three diseases, (2). molecular identification of human taeniid species and (3). polymorphism of mitochodrial DNA highly informative for future molecular epidemiology are reviewed in this article.
Collapse
Affiliation(s)
- Akira Ito
- Department of Parasitology, Asahikawa Medical College, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan.
| |
Collapse
|
49
|
Bardonnet K, Piarroux R, Dia L, Schneegans F, Beurdeley A, Godot V, Vuitton DA. Combined eco-epidemiological and molecular biology approaches to assess Echinococcus granulosus transmission to humans in Mauritania: occurrence of the 'camel' strain and human cystic echinococcosis. Trans R Soc Trop Med Hyg 2002; 96:383-6. [PMID: 12497974 DOI: 10.1016/s0035-9203(02)90369-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Mauritania lies between West-Central Africa where human cystic echinococcosis (CE) is considered extremely rare and West Maghreb where CE accounts for a real public health problem. Until 1992, Mauritania was considered as human CE-free even through CE seemed well known in livestock. In 1992, the introduction of ultrasonography led to the diagnosis of the first human CE cases. In 1997, a veterinary study revealed that dogs living around Nouakchott were commonly infected by Echinococcus granulosus. To assess E. granulosus transmission and to identify the most relevant animal reservoir responsible for human CE emerging in Mauritania, a simultaneous eco-epidemiological and molecular biology approach was performed. The fieldwork included sample collection and investigation of relationship between intermediate hosts, definitive hosts and humans. Typing of E. granulosus strains was performed using comparison of polymerase chain reaction (PCR)-amplified DNA sequences with one nuclear (BG 1/3) and 2 mitochondrial (COI, NDI) targets. Results show that the 'camel' strain is actually infectious to humans and circulates between intermediate hosts including camels and cattle. It is suggested that preventive measures at slaughtering places could reduce human contamination.
Collapse
Affiliation(s)
- K Bardonnet
- WHO Collaborating Centre for Prevention and Treatment of Human Echinococcosis, Research Unit Health and Rural Environment, University of Franche-Comté (SERF), School of Medicine and Pharmacy, 25 030 Besançon, France.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Complete or near-complete mitochondrial genomes are now available for 11 species or strains of parasitic flatworms belonging to the Trematoda and the Cestoda. The organization of these genomes is not strikingly different from those of other eumetazoans, although one gene (atp8) commonly found in other phyla is absent from flatworms. The gene order in most flatworms has similarities to those seen in higher protostomes such as annelids. However, the gene order has been drastically altered in Schistosoma mansoni, which obscures this possible relationship. Among the sequenced taxa, base composition varies considerably, creating potential difficulties for phylogeny reconstruction. Long non-coding regions are present in all taxa, but these vary in length from only a few hundred to approximately 10000 nucleotides. Among Schistosoma spp., the long non-coding regions are rich in repeats and length variation among individuals is known. Data from mitochondrial genomes are valuable for studies on species identification, phylogenies and biogeography.
Collapse
Affiliation(s)
- Thanh H Le
- Molecular Parasitology Laboratory, Australian Centre for International and Tropical Health and Nutrition, The Queensland Institute of Medical Research and The University of Queensland, Brisbane, Queensland 4029, Australia
| | | | | |
Collapse
|