1
|
Zhang X, Wang X, Yuan Z, Radford SJ, Liu C, Libutti SK, Zheng XFS. Amino acids-Rab1A-mTORC1 signaling controls whole-body glucose homeostasis. Cell Rep 2021; 34:108830. [PMID: 33730578 PMCID: PMC8062038 DOI: 10.1016/j.celrep.2021.108830] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Rab1A is a small GTPase known for its role in vesicular trafficking. Recent evidence indicates that Rab1A is essential for amino acids (aas) sensing and signaling to regulate mTORC1 in normal and cancer cells. However, Rab1A's in vivo function in mammals is not known. Here, we report the generation of tamoxifen (TAM)-induced whole body Rab1A knockout (Rab1A-/-) in adult mice. Rab1A-/- mice are viable but become hyperglycemic and glucose intolerant due to impaired insulin transcription and β-cell proliferation and maintenance. Mechanistically, Rab1A mediates AA-mTORC1 signaling, particularly branched chain amino acids (BCAA), to regulate the stability and localization of the insulin transcription factor Pdx1. Collectively, these results reveal a physiological role of aa-Rab1A-mTORC1 signaling in the control of whole-body glucose homeostasis in mammals. Intriguingly, Rab1A expression is reduced in β-cells of type 2 diabetes (T2D) patients, which is correlated with loss of insulin expression, suggesting that Rab1A downregulation contributes to T2D progression.
Collapse
Affiliation(s)
- Xin Zhang
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Xiaowen Wang
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Ziqiang Yuan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA; Department of Surgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Sarah J Radford
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Steven K Libutti
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA; Department of Surgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - X F Steven Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
2
|
Berger C, Zdzieblo D. Glucose transporters in pancreatic islets. Pflugers Arch 2020; 472:1249-1272. [PMID: 32394191 PMCID: PMC7462922 DOI: 10.1007/s00424-020-02383-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
The fine-tuning of glucose uptake mechanisms is rendered by various glucose transporters with distinct transport characteristics. In the pancreatic islet, facilitative diffusion glucose transporters (GLUTs), and sodium-glucose cotransporters (SGLTs) contribute to glucose uptake and represent important components in the glucose-stimulated hormone release from endocrine cells, therefore playing a crucial role in blood glucose homeostasis. This review summarizes the current knowledge about cell type-specific expression profiles as well as proven and putative functions of distinct GLUT and SGLT family members in the human and rodent pancreatic islet and further discusses their possible involvement in onset and progression of diabetes mellitus. In context of GLUTs, we focus on GLUT2, characterizing the main glucose transporter in insulin-secreting β-cells in rodents. In addition, we discuss recent data proposing that other GLUT family members, namely GLUT1 and GLUT3, render this task in humans. Finally, we summarize latest information about SGLT1 and SGLT2 as representatives of the SGLT family that have been reported to be expressed predominantly in the α-cell population with a suggested functional role in the regulation of glucagon release.
Collapse
Affiliation(s)
- Constantin Berger
- Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| | - Daniela Zdzieblo
- Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070, Würzburg, Germany.
- Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Neunerplatz 2, 97082, Würzburg, Germany.
| |
Collapse
|
3
|
Gallego FQ, Sinzato YK, Miranda CA, Iessi IL, Dallaqua B, Volpato GT, Scarano WR, SanMartín S, Damasceno DC. Pancreatic islet response to diabetes during pregnancy in rats. Life Sci 2018; 214:1-10. [PMID: 30366036 DOI: 10.1016/j.lfs.2018.10.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/31/2022]
Abstract
AIMS The objective of this study was to assess the mechanisms underlying pancreatic islet adaptation in diabetic mothers and their pups. Additionally, the influence of pancreatic adaptations on maternal reproductive performance was also investigated. MAIN METHODS Wistar rats were injected with streptozotocin for diabetes induction. At adulthood (3 months), all animals underwent an oral glucose tolerance test (OGTT) for glucose assessment as an inclusion criterion. Following, the animals were mated. At day 18 of pregnancy, the mothers were killed for blood collect ion to determine fasting insulin and glucagon concentrations. The pancreas was removed and processed for the immunohistochemical analysis of insulin, glucagon, somatostatin, Ki-67 and PDX-1, superoxide dismutase 1 (SOD-1), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA). The pregnant uterus was also collected for the evaluation of embryofetal loss. KEY FINDINGS The diabetic rats showed increased glucose, serum glucagon and insulin concentrations, and embryofetal loss rates. They also showed a reduction in pancreatic islets area and percentage of cells stained for insulin, increased the percentage of non-β cells (alpha e delta cells) stained for Ki-67, glucagon, and somatostatin. Moreover, the cells stained for somatostatin were spread across the islets and showed stronger staining for MDA and weaker staining for GSH-Px. SIGNIFICANCE Diabetes leads to adaptive responses from the endocrine pancreas in pregnancy that especially involves non-β cells, modifying the mantle-core structure. Nonetheless, these adaptations are not enough for glucose homeostasis and affect the maternal environment, which in turn impairs fetal development.
Collapse
Affiliation(s)
- Franciane Quintanilha Gallego
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Obstetrics and Mastology Post Graduate Course, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo State, Brazil
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Obstetrics and Mastology Post Graduate Course, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo State, Brazil
| | - Carolina Abreu Miranda
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Obstetrics and Mastology Post Graduate Course, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo State, Brazil
| | - Isabela Lovizutto Iessi
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Obstetrics and Mastology Post Graduate Course, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo State, Brazil
| | - Bruna Dallaqua
- DeVry Ruy Barbosa School (DeVry Brazil Group), Salvador, Bahia State, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Morphology, Botucatu Bioscience Institute, Univ Estadual Paulista_Unesp, Botucatu, São Paulo State, Brazil
| | | | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Obstetrics and Mastology Post Graduate Course, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo State, Brazil.
| |
Collapse
|
4
|
Functional interplay between the transcription factors USF1 and PDX-1 and protein kinase CK2 in pancreatic β-cells. Sci Rep 2017; 7:16367. [PMID: 29180680 PMCID: PMC5703852 DOI: 10.1038/s41598-017-16590-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022] Open
Abstract
Glucose homeostasis is regulated by insulin, which is produced in the β-cells of the pancreas. The synthesis of insulin is controlled by several transcription factors including PDX-1, USF1 and USF2. Both, PDX-1 and USF1 were identified as substrates for protein kinase CK2. Here, we have analysed the interplay of PDX-1, USF1 and CK2 in the regulation of PDX-1 gene transcription. We found that the PDX-1 promoter is dose-dependently transactivated by PDX-1 and transrepressed by USF1. With increasing glucose concentrations the transrepression of the PDX-1 promoter by USF1 is successively abrogated. PDX-1 binding to its own promoter was not influenced by glucose, whereas USF1 binding to the PDX-1 promoter was reduced. The same effect was observed after inhibition of the protein kinase activity by three different inhibitors or by using a phospho-mutant of USF1. Moreover, phosphorylation of USF1 by CK2 seems to strengthen the interaction between USF1 and PDX-1. Thus, CK2 is a negative regulator of the USF1-dependent PDX-1 transcription. Moreover, upon inhibition of CK2 in primary islets, insulin expression as well as insulin secretion were enhanced without affecting the viability of the cells. Therefore, inhibition of CK2 activity may be a promising approach to stimulate insulin production in pancreatic β-cells.
Collapse
|
5
|
Spaeth JM, Gupte M, Perelis M, Yang YP, Cyphert H, Guo S, Liu JH, Guo M, Bass J, Magnuson MA, Wright C, Stein R. Defining a Novel Role for the Pdx1 Transcription Factor in Islet β-Cell Maturation and Proliferation During Weaning. Diabetes 2017; 66:2830-2839. [PMID: 28705881 PMCID: PMC5652607 DOI: 10.2337/db16-1516] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 07/03/2017] [Indexed: 01/02/2023]
Abstract
The transcription factor encoded by the Pdx1 gene is a critical transcriptional regulator, as it has fundamental actions in the formation of all pancreatic cell types, islet β-cell development, and adult islet β-cell function. Transgenic- and cell line-based experiments have identified 5'-flanking conserved sequences that control pancreatic and β-cell type-specific transcription, which are found within areas I (bp -2694 to -2561), II (bp -2139 to -1958), III (bp -1879 to -1799), and IV (bp -6200 to -5670). Because of the presence in area IV of binding sites for transcription factors associated with pancreas development and islet cell function, we analyzed how an endogenous deletion mutant affected Pdx1 expression embryonically and postnatally. The most striking result was observed in male Pdx1ΔIV mutant mice after 3 weeks of birth (i.e., the onset of weaning), with only a small effect on pancreas organogenesis and no deficiencies in their female counterparts. Compromised Pdx1 mRNA and protein levels in weaned male mutant β-cells were tightly linked with hyperglycemia, decreased β-cell proliferation, reduced β-cell area, and altered expression of Pdx1-bound genes that are important in β-cell replication, endoplasmic reticulum function, and mitochondrial activity. We discuss the impact of these novel findings to Pdx1 gene regulation and islet β-cell maturation postnatally.
Collapse
Affiliation(s)
- Jason M Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Manisha Gupte
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Mark Perelis
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Yu-Ping Yang
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Holly Cyphert
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Shuangli Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Jin-Hua Liu
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Joseph Bass
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - Christopher Wright
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|
6
|
Yu SL, Han S, Kim HR, Park JW, Jin DI, Kang J. Phosphorylation of carboxypeptidase B1 protein regulates β-cell proliferation. Int J Mol Med 2017; 40:1397-1404. [PMID: 28949379 PMCID: PMC5627887 DOI: 10.3892/ijmm.2017.3141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/11/2017] [Indexed: 11/24/2022] Open
Abstract
A reduction in pancreatic islet β-cells leads to the onset of diabetes. Hence, the identification of the mechanisms inducing β-cell proliferation is important for developing a treatment course against the disease. It has been well established that post-translational modifications (PTMs) of proteins affect their functionality. In addition, PTMs have been suggested to play important roles in organ regeneration. Therefore, in this study, we investigated PTMs associated with pancreatic regeneration using two-dimensional electrophoresis. Four carboxypeptidase B1 (CPB1) proteins were identified at different isoelectric points, with the same molecular weight. The motif of CPB1 PTMs was identified by mass spectrophotometry, and the downregulation of CPB1 phosphorylation in pancreatectomy was confirmed. The dephosphorylation of CPB1 induced β-cell proliferation. We thus surmise that the altered PTM of CPB1 is associated with pancreatic regeneration.
Collapse
Affiliation(s)
- Seong-Lan Yu
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Seungyun Han
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Hong Rye Kim
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Woo Park
- Department of Pharmacology, SungKyunKwan University, Suwon 16419, Republic of Korea
| | - Dong Il Jin
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaeku Kang
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| |
Collapse
|
7
|
Bai C, Gao Y, Li X, Wang K, Xiong H, Shan Z, Zhang P, Wang W, Guan W, Ma Y. MicroRNAs can effectively induce formation of insulin-producing cells from mesenchymal stem cells. J Tissue Eng Regen Med 2017; 11:3457-3468. [DOI: 10.1002/term.2259] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 03/28/2016] [Accepted: 07/03/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Chunyu Bai
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Yuhua Gao
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Xiangchen Li
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Kunfu Wang
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Hui Xiong
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Zhiqiang Shan
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Ping Zhang
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Wenjie Wang
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Weijun Guan
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Yuehui Ma
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| |
Collapse
|
8
|
Role of microRNA-21 in the formation of insulin-producing cells from pancreatic progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:280-93. [DOI: 10.1016/j.bbagrm.2015.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/17/2015] [Accepted: 12/02/2015] [Indexed: 12/20/2022]
|
9
|
Semache M, Ghislain J, Zarrouki B, Tremblay C, Poitout V. Pancreatic and duodenal homeobox-1 nuclear localization is regulated by glucose in dispersed rat islets but not in insulin-secreting cell lines. Islets 2014; 6:e982376. [PMID: 25437380 PMCID: PMC4588559 DOI: 10.4161/19382014.2014.982376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The transcription factor Pancreatic and Duodenal Homeobox-1 (PDX-1) plays a major role in the development and function of pancreatic β-cells and its mutation results in diabetes. In adult β-cells, glucose stimulates transcription of the insulin gene in part by regulating PDX-1 expression, stability and activity. Glucose is also thought to modulate PDX-1 nuclear translocation but in vitro studies examining nucleo-cytoplasmic shuttling of endogenous or ectopically expressed PDX-1 in insulin-secreting cell lines have led to conflicting results. Here we show that endogenous PDX-1 undergoes translocation from the cytoplasm to the nucleus in response to glucose in dispersed rat islets but not in insulin-secreting MIN6, HIT-T15, or INS832/13 cells. Interestingly, however, we found that a PDX-1-GFP fusion protein can shuttle from the cytoplasm to the nucleus in response to glucose stimulation in HIT-T15 cells. Our results suggest that the regulation of endogenous PDX-1 sub-cellular localization by glucose is observed in primary islets and that care should be taken when interpreting data from insulin-secreting cell lines.
Collapse
Key Words
- ANOVA, analysis of variance
- BSA, bovine serum albumin
- DAPI, 4′, 6-diamidino-2-phenylindole
- DMEM, dulbecco's modified eagle medium
- EDTA, ethylenediaminetetraacetic acid
- GFP, green fluorescent protein
- HDAC, histone deacetylase
- HIT-T15
- INS832/13
- KRBH, krebs ringer bicarbonate hepes
- MIN6
- MODY, maturity-onset diabetes of the young
- PDX-1
- PDX-1, pancreatic and duodenal homeobox-1
- SEM, standard error of the mean
- SUMO, small ubiquitin-like modifier
- T2D, type 2 diabetes
- ZDF, zucker diabetic fatty
- glucose
- glucose-stimulated insulin secretion
- nucleo-cytoplasmic shuttling
- pancreatic β cells
Collapse
Affiliation(s)
- Meriem Semache
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
- Department of Biochemistry; University of Montreal; QC, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
| | - Bader Zarrouki
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
- Department of Medicine; University of Montreal; QC, Canada
| | | | - Vincent Poitout
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
- Department of Biochemistry; University of Montreal; QC, Canada
- Department of Medicine; University of Montreal; QC, Canada
- Correspondence to: Vincent Poitout;
| |
Collapse
|
10
|
Glucose regulates protein kinase CK2 in pancreatic β-cells and its interaction with PDX-1. Int J Biochem Cell Biol 2013; 45:2786-95. [DOI: 10.1016/j.biocel.2013.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/19/2013] [Accepted: 10/01/2013] [Indexed: 12/13/2022]
|
11
|
Semache M, Zarrouki B, Fontés G, Fogarty S, Kikani C, Chawki MB, Rutter J, Poitout V. Per-Arnt-Sim kinase regulates pancreatic duodenal homeobox-1 protein stability via phosphorylation of glycogen synthase kinase 3β in pancreatic β-cells. J Biol Chem 2013; 288:24825-33. [PMID: 23853095 DOI: 10.1074/jbc.m113.495945] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In pancreatic β-cells, glucose induces the binding of the transcription factor pancreatic duodenal homeobox-1 (PDX-1) to the insulin gene promoter to activate insulin gene transcription. At low glucose levels, glycogen synthase kinase 3β (GSK3β) is known to phosphorylate PDX-1 on C-terminal serine residues, which triggers PDX-1 proteasomal degradation. We previously showed that the serine/threonine Per-Arnt-Sim domain-containing kinase (PASK) regulates insulin gene transcription via PDX-1. However, the mechanisms underlying this regulation are unknown. In this study, we aimed to identify the role of PASK in the regulation of PDX-1 phosphorylation, protein expression, and stability in insulin-secreting cells and isolated rodent islets of Langerhans. We observed that glucose induces a decrease in overall PDX-1 serine phosphorylation and that overexpression of WT PASK mimics this effect. In vitro, PASK directly phosphorylates GSK3β on its inactivating phosphorylation site Ser(9). Overexpression of a kinase-dead (KD), dominant negative version of PASK blocks glucose-induced Ser(9) phosphorylation of GSK3β. Accordingly, GSK3β Ser(9) phosphorylation is reduced in islets from pask-null mice. Overexpression of WT PASK or KD GSK3β protects PDX-1 from degradation and results in increased PDX-1 protein abundance. Conversely, overexpression of KD PASK blocks glucose-induction of PDX-1 protein. We conclude that PASK phosphorylates and inactivates GSK3β, thereby preventing PDX-1 serine phosphorylation and alleviating GSK3β-mediated PDX-1 protein degradation in pancreatic β-cells.
Collapse
Affiliation(s)
- Meriem Semache
- Montreal Diabetes Research Center, CRCHUM, Quebec City H1W4A4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Valtat B, Riveline JP, Zhang P, Singh-Estivalet A, Armanet M, Venteclef N, Besseiche A, Kelly DP, Tronche F, Ferré P, Gautier JF, Bréant B, Blondeau B. Fetal PGC-1α overexpression programs adult pancreatic β-cell dysfunction. Diabetes 2013; 62:1206-16. [PMID: 23274887 PMCID: PMC3609553 DOI: 10.2337/db12-0314] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adult β-cell dysfunction, a hallmark of type 2 diabetes, can be programmed by adverse fetal environment. We have shown that fetal glucocorticoids (GCs) participate in this programming through inhibition of β-cell development. Here we have investigated the molecular mechanisms underlying this regulation. We showed that GCs stimulate the expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a coregulator of the GCs receptor (GR), and that the overexpression of PGC-1α represses genes important for β-cell development and function. More precisely, PGC-1α inhibited the expression of the key β-cell transcription factor pancreatic duodenal homeobox 1 (Pdx1). This repression required the GR and was mediated through binding of a GR/PGC-1α complex to the Pdx1 promoter. To explore PGC-1α function, we generated mice with inducible β-cell PGC-1α overexpression. Mice overexpressing PGC-1α exhibited at adult age impaired glucose tolerance associated with reduced insulin secretion, decreased β-cell mass, and β-cell hypotrophy. Interestingly, PGC-1α expression in fetal life only was sufficient to impair adult β-cell function whereas β-cell PGC-1α overexpression from adult age had no consequence on β-cell function. Altogether, our results demonstrate that the GR and PGC-1α participate in the fetal programming of adult β-cell function through inhibition of Pdx1 expression.
Collapse
Affiliation(s)
- Bérengère Valtat
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Jean-Pierre Riveline
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Ping Zhang
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Amrit Singh-Estivalet
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Mathieu Armanet
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Cell Therapy Unit, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Nicolas Venteclef
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Adrien Besseiche
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Daniel P. Kelly
- Sanford-Burnham Medical Research Institute, Orlando, Florida
| | - François Tronche
- Université Pierre et Marie Curie, Paris, France
- CNRS UMR INSERM 952-CNRS 7224, Paris, France
| | - Pascal Ferré
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Jean-François Gautier
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Department of Diabetes and Endocrinology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
- Université Paris Diderot, Paris, France
| | - Bernadette Bréant
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Bertrand Blondeau
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Corresponding author: Bertrand Blondeau,
| |
Collapse
|
13
|
Frogne T, Sylvestersen KB, Kubicek S, Nielsen ML, Hecksher-Sørensen J. Pdx1 is post-translationally modified in vivo and serine 61 is the principal site of phosphorylation. PLoS One 2012; 7:e35233. [PMID: 22509401 PMCID: PMC3324462 DOI: 10.1371/journal.pone.0035233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 03/14/2012] [Indexed: 11/19/2022] Open
Abstract
Maintaining sufficient levels of Pdx1 activity is a prerequisite for proper regulation of blood glucose homeostasis and beta cell function. Mice that are haploinsufficient for Pdx1 display impaired glucose tolerance and lack the ability to increase beta cell mass in response to decreased insulin signaling. Several studies have shown that post-translational modifications are regulating Pdx1 activity through intracellular localization and binding to co-factors. Understanding the signaling cues converging on Pdx1 and modulating its activity is therefore an attractive approach in diabetes treatment. We employed a novel technique called Nanofluidic Proteomic Immunoassay to characterize the post-translational profile of Pdx1. Following isoelectric focusing in nano-capillaries, this technology relies on a pan specific antibody for detection and it therefore allows the relative abundance of differently charged protein species to be examined simultaneously. In all eukaryotic cells tested we find that the Pdx1 protein separates into four distinct peaks whereas Pdx1 protein from bacteria only produces one peak. Of the four peaks in eukaryotic cells we correlate one of them to a phosphorylation Using alanine scanning and mass spectrometry we map this phosphorylation to serine 61 in both Min6 cells and in exogenous Pdx1 over-expressed in HEK293 cells. A single phosphorylation is also present in cultured islets but it remains unaffected by changes in glucose levels. It is present during embryogenesis but is not required for pancreas development.
Collapse
Affiliation(s)
- Thomas Frogne
- Department of Beta-cell Regeneration, Hagedorn Research Institute, Gentofte, Denmark
| | | | - Stefan Kubicek
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Jacob Hecksher-Sørensen
- Department of Beta-cell Regeneration, Hagedorn Research Institute, Gentofte, Denmark
- * E-mail:
| |
Collapse
|
14
|
Stein R. Insulin Gene Transcription: Factors Involved in Cell Type–Specific and Glucose‐Regulated Expression in Islet β Cells are Also Essential During Pancreatic Development. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Rojas J, Arraiz N, Aguirre M, Velasco M, Bermúdez V. AMPK as Target for Intervention in Childhood and Adolescent Obesity. J Obes 2010; 2011:252817. [PMID: 21318055 PMCID: PMC3034972 DOI: 10.1155/2011/252817] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/25/2010] [Accepted: 10/15/2010] [Indexed: 02/07/2023] Open
Abstract
Childhood obesity is a major worldwide health problem. Intervention programs to ameliorate the rate of obesity have been designed and implemented; yet the epidemic has no end near in sight. AMP-activated protein kinase (AMPK) has become one of the most important key elements in energy control, appetite regulation, myogenesis, adipocyte differentiation, and cellular stress management. Obesity is a multifactorial disease, which has a very strong genetic component, especially epigenetic factors. The intrauterine milieu has a determinant impact on adult life, since the measures taken for survival are kept throughout life thanks to epigenetic modification. Nutrigenomics studies the influence of certain food molecules on the metabolome profile, raising the question of an individualized obesity therapy according to metabolic (and probably) genetic features. Metformin, an insulin sensitizing agent, its known to lower insulin resistance and enhance metabolic profile, with an additional weight reduction capacity, via activation of AMPK. Exercise is coadjutant for lifestyle modifications, which also activates AMPK in several ways contributing to glucose and fat oxidation. The following review examines AMPK's role in obesity, applying its use as a tool for childhood and adolescent obesity.
Collapse
Affiliation(s)
- Joselyn Rojas
- Endocrine and Metabolic Diseases Research Center, University of Zulia, School of Medicine, Final Avenida 20, Edificio Multidisciplinario, primer piso, Maracaibo 4004, Venezuela
| | - Nailet Arraiz
- Endocrine and Metabolic Diseases Research Center, University of Zulia, School of Medicine, Final Avenida 20, Edificio Multidisciplinario, primer piso, Maracaibo 4004, Venezuela
| | - Miguel Aguirre
- Endocrine and Metabolic Diseases Research Center, University of Zulia, School of Medicine, Final Avenida 20, Edificio Multidisciplinario, primer piso, Maracaibo 4004, Venezuela
| | - Manuel Velasco
- Clinical Pharmacologic Unit, Vargas Medical School, Central University of Venezuela, Caracas 1010, Venezuela
| | - Valmore Bermúdez
- Endocrine and Metabolic Diseases Research Center, University of Zulia, School of Medicine, Final Avenida 20, Edificio Multidisciplinario, primer piso, Maracaibo 4004, Venezuela
| |
Collapse
|
16
|
Claiborn KC, Sachdeva MM, Cannon CE, Groff DN, Singer JD, Stoffers DA. Pcif1 modulates Pdx1 protein stability and pancreatic β cell function and survival in mice. J Clin Invest 2010; 120:3713-21. [PMID: 20811152 DOI: 10.1172/jci40440] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 07/16/2010] [Indexed: 01/08/2023] Open
Abstract
The homeodomain transcription factor pancreatic duodenal homeobox 1 (Pdx1) is a major mediator of insulin transcription and a key regulator of the β cell phenotype. Heterozygous mutations in PDX1 are associated with the development of diabetes in humans. Understanding how Pdx1 expression levels are controlled is therefore of intense interest in the study and treatment of diabetes. Pdx1 C terminus-interacting factor-1 (Pcif1, also known as SPOP) is a nuclear protein that inhibits Pdx1 transactivation. Here, we show that Pcif1 targets Pdx1 for ubiquitination and proteasomal degradation. Silencing of Pcif1 increased Pdx1 protein levels in cultured mouse β cells, and Pcif1 heterozygosity normalized Pdx1 protein levels in Pdx1(+/-) mouse islets, thereby increasing expression of key Pdx1 transcriptional targets. Remarkably, Pcif1 heterozygosity improved glucose homeostasis and β cell function and normalized β cell mass in Pdx1(+/-) mice by modulating β cell survival. These findings indicate that in adult mouse β cells, Pcif1 limits Pdx1 protein accumulation and thus the expression of insulin and other gene targets important in the maintenance of β cell mass and function. They also provide evidence that targeting the turnover of a pancreatic transcription factor in vivo can improve glucose homeostasis.
Collapse
Affiliation(s)
- Kathryn C Claiborn
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
17
|
von Burstin J, Reichert M, Wescott MP, Rustgi AK. The pancreatic and duodenal homeobox protein PDX-1 regulates the ductal specific keratin 19 through the degradation of MEIS1 and DNA binding. PLoS One 2010; 5:e12311. [PMID: 20808819 PMCID: PMC2924401 DOI: 10.1371/journal.pone.0012311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 07/27/2010] [Indexed: 01/15/2023] Open
Abstract
Background Pancreas organogenesis is the result of well-orchestrated and balanced activities of transcription factors. The homeobox transcription factor PDX-1 plays a crucial role in the development and function of the pancreas, both in the maintenance of progenitor cells and in determination and maintenance of differentiated endocrine cells. However, the activity of homeobox transcription factors requires coordination with co-factors, such as PBX and MEIS proteins. PBX and MEIS proteins belong to the family of three amino acid loop extension (TALE) homeodomain proteins. In a previous study we found that PDX-1 negatively regulates the transcriptional activity of the ductal specific keratin 19 (Krt19). In this study, we investigate the role of different domains of PDX-1 and elucidate the functional interplay of PDX-1 and MEIS1 necessary for Krt19 regulation. Methodology/Principal Findings Here, we demonstrate that PDX-1 exerts a dual manner of regulation of Krt19 transcriptional activity. Deletion studies highlight that the NH2-terminus of PDX-1 is functionally relevant for the down-regulation of Krt19, as it is required for DNA binding of PDX-1 to the Krt19 promoter. Moreover, this effect occurs independently of PBX. Second, we provide insight on how PDX-1 regulates the Hox co-factor MEIS1 post-transcriptionally. We find specific binding of MEIS1 and MEIS2 to the Krt19 promoter using IP-EMSA, and siRNA mediated silencing of Meis1, but not Meis2, reduces transcriptional activation of Krt19 in primary pancreatic ductal cells. Over-expression of PDX-1 leads to a decreased level of MEIS1 protein, and this decrease is prevented by inhibition of the proteasome. Conclusions/Significance Taken together, our data provide evidence for a dual mechanism of how PDX-1 negatively regulates Krt19 ductal specific gene expression. These findings imply that transcription factors may efficiently regulate target gene expression through diverse, non-redundant mechanisms.
Collapse
Affiliation(s)
- Johannes von Burstin
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maximilian Reichert
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Melanie P. Wescott
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anil K. Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
Butkinaree C, Park K, Hart GW. O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1800:96-106. [PMID: 19647786 PMCID: PMC2815129 DOI: 10.1016/j.bbagen.2009.07.018] [Citation(s) in RCA: 345] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/14/2009] [Accepted: 07/18/2009] [Indexed: 02/03/2023]
Abstract
BACKGROUND Since its discovery in the early 1980s, O-linked-beta-N-acetylglucosamine (O-GlcNAc), a single sugar modification on the hydroxyl group of serine or threonine residues, has changed our views of protein glycosylation. While other forms of protein glycosylation modify proteins on the cell surface or within luminal compartments of the secretory machinery, O-GlcNAc modifies myriad nucleocytoplasmic proteins. GlcNAcylated proteins are involved in transcription, ubiquitination, cell cycle, and stress responses. GlcNAcylation is similar to protein phosphorylation in terms of stoichiometry, localization and cycling. To date, only two enzymes are known to regulate GlcNAcylation in mammals: O-GlcNAc transferase (OGT), which catalyzes the addition of O-GlcNAc, and beta-N-acetylglucosaminidase (O-GlcNAcase), a neutral hexosaminidase responsible for O-GlcNAc removal. OGT and O-GlcNAcase are regulated by RNA splicing, by nutrients, and by post-translational modifications. Their specificities are controlled by many transiently associated targeting subunits. As methods for detecting O-GlcNAc have improved our understanding of O-GlcNAc's functions has grown rapidly. SCOPE OF REVIEW In this review, the functions of GlcNAcylation in regulating cellular processes, its extensive crosstalk with protein phosphorylation, and regulation of OGT and O-GlcNAcase will be explored. MAJOR CONCLUSIONS GlcNAcylation rivals phosphorylation in terms of its abundance, protein distribution and its cycling on and off of proteins. GlcNAcylation has extensive crosstalk with phosphorylation to regulate signaling, transcription and the cytoskeleton in response to nutrients and stress. GENERAL SIGNIFICANCE Abnormal crosstalk between GlcNAcylation and phosphorylation underlies dysregulation in diabetes, including glucose toxicity, and defective GlcNAcylation is involved in neurodegenerative disease and cancer and most recently in AIDS.
Collapse
Affiliation(s)
- Chutikarn Butkinaree
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
19
|
Humphrey RK, Yu SM, Flores LE, Jhala US. Glucose regulates steady-state levels of PDX1 via the reciprocal actions of GSK3 and AKT kinases. J Biol Chem 2010; 285:3406-16. [PMID: 19833727 PMCID: PMC2823452 DOI: 10.1074/jbc.m109.006734] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 10/09/2009] [Indexed: 12/31/2022] Open
Abstract
The pancreatic beta cell is sensitive to even small changes in PDX1 protein levels; consequently, Pdx1 haploinsufficiency can inhibit beta cell growth and decrease insulin biosynthesis and gene expression, leading to compromised glucose-stimulated insulin secretion. Using metabolic labeling of primary islets and a cultured beta cell line, we show that glucose levels modulate PDX1 protein phosphorylation at a novel C-terminal GSK3 consensus that maps to serines 268 and 272. A decrease in glucose levels triggers increased turnover of the PDX1 protein in a GSK3-dependent manner, such that PDX1 phosphomutants are refractory to the destabilizing effect of low glucose. Glucose-stimulated activation of AKT and inhibition of GSK3 decrease PDX1 phosphorylation and delay degradation. Furthermore, direct pharmacologic inhibition of AKT destabilizes, and inhibition of GSK3 increases PDX1 protein stability. These studies define a novel functional role for the PDX1 C terminus in mediating the effects of glucose and demonstrate that glucose modulates PDX1 stability via the AKT-GSK3 axis.
Collapse
Affiliation(s)
- Rohan K. Humphrey
- From the Department of Pediatrics, University of California San Diego, La Jolla, California 92037
| | - Shu-Mei Yu
- From the Department of Pediatrics, University of California San Diego, La Jolla, California 92037
| | - Luis E. Flores
- From the Department of Pediatrics, University of California San Diego, La Jolla, California 92037
| | - Ulupi S. Jhala
- From the Department of Pediatrics, University of California San Diego, La Jolla, California 92037
| |
Collapse
|
20
|
Park J, Han D, Kim K, Kang Y, Kim Y. O-GlcNAcylation disrupts glyceraldehyde-3-phosphate dehydrogenase homo-tetramer formation and mediates its nuclear translocation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:254-62. [PMID: 19022411 DOI: 10.1016/j.bbapap.2008.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/25/2008] [Accepted: 10/16/2008] [Indexed: 11/30/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a typical glycolytic enzyme comprised of four identical 37 kDa subunits. In addition to its glycolytic function, GAPDH has a number of biological functions which are related to its subcellular localization. Generally, protein O-linked N-acetylglucosamine modification (O-GlcNAcylation) is considered, among other effects, to mediate the nuclear transportation of cytosolic proteins. To elucidate the effect of O-GlcNAcylation on GAPDH, we determined the location of the O-GlcNAcylation site by tandem mass spectrometry, and subsequently examined the biological significance of this derivatization. The site involved was identified to be Thr227 by beta-elimination and Michael addition. Transient transfection assays demonstrated that the T227A mutation induced the cytoplasmic accumulation of GAPDH, whereas the wild type was present in the cytoplasm and nuclei. Structural modeling, mutagenesis of Thr227 to Lys and Arg, and gel filtration chromatography of mutated and wild type GAPDH, together suggested that O-GlcNAcylation at Thr227 interrupts the hydrophobic interfaces formed between GAPDH monomers in its tetrameric state. The present study identified Thr227 as the major GAPDH O-GlcNAcylation site, which suggests that this modification mediates the nuclear translocation of GAPDH, presumably by disrupting the conformation of tetrameric GAPDH.
Collapse
Affiliation(s)
- Jungeun Park
- Department of Biomedical Sciences and Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Ku, Seoul 110-799 Republic of Korea
| | | | | | | | | |
Collapse
|
21
|
Pillich RT, Scarsella G, Risuleo G. Overexpression of the Pdx-1 homeodomain transcription factor impairs glucose metabolism in cultured rat hepatocytes. Molecules 2008; 13:2659-73. [PMID: 18971862 PMCID: PMC6245418 DOI: 10.3390/molecules13102659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 10/20/2008] [Accepted: 10/24/2008] [Indexed: 11/16/2022] Open
Abstract
The Pdx-1 transcription factor plays crucial functions both during pancreas development and in the adult β cells. Previous studies have indicated that ectopic Pdx-1 expression in liver or intestinal primary and immortalized cells is sufficient to promote activation of insulin gene expression. This work is focused on the molecular and physiological consequences of Pdx-1 overexpression in liver cells. We present evidence that Pdx-1 affects the level of expression of one of the four mammalian hexokinase isozymes. These are glucose phosphorylating enzymes involved in essential cellular functions such as glucose sensing, metabolic energy production and apoptosis. Specifically, our data show that over-expression of Pdx-1 in cultured hepatocytes is able to repress the expression of hexokinase 2 (Hxk 2) and the phenomenon is mediated via binding of Pdx-1 to a specific sequence on the Hxk 2 gene promoter. As a consequence, liver cells over-expressing Pdx-1 present interesting alterations concerning glucose metabolism.
Collapse
Affiliation(s)
- Rudolf Tito Pillich
- Dipartimento di Biologia Cellulare e dello Sviluppo, Sapienza Università di Roma, P.le Aldo Moro, 5 – 00185 Roma, Italy; E-mail: (R-T. P.), (G. S.)
| | - Gianfranco Scarsella
- Dipartimento di Biologia Cellulare e dello Sviluppo, Sapienza Università di Roma, P.le Aldo Moro, 5 – 00185 Roma, Italy; E-mail: (R-T. P.), (G. S.)
| | - Gianfranco Risuleo
- Dipartimento di Genetica e Biologia Molecolare, Sapienza Università di Roma, P.le Aldo Moro, 5 – 00185 Roma, Italy
- Author to whom correspondence should be addressed; E-mails: or ; Tel.: +39 0649912234; Fax: +39 064440812
| |
Collapse
|
22
|
Abstract
Production and secretion of insulin from the β-cells of the pancreas is very crucial in maintaining normoglycaemia. This is achieved by tight regulation of insulin synthesis and exocytosis from the β-cells in response to changes in blood glucose levels. The synthesis of insulin is regulated by blood glucose levels at the transcriptional and post-transcriptional levels. Although many transcription factors have been implicated in the regulation of insulin gene transcription, three β-cell-specific transcriptional regulators, Pdx-1 (pancreatic and duodenal homeobox-1), NeuroD1 (neurogenic differentiation 1) and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A), have been demonstrated to play a crucial role in glucose induction of insulin gene transcription and pancreatic β-cell function. These three transcription factors activate insulin gene expression in a co-ordinated and synergistic manner in response to increasing glucose levels. It has been shown that changes in glucose concentrations modulate the function of these β-cell transcription factors at multiple levels. These include changes in expression levels, subcellular localization, DNA-binding activity, transactivation capability and interaction with other proteins. Furthermore, all three transcription factors are able to induce insulin gene expression when expressed in non-β-cells, including liver and intestinal cells. The present review summarizes the recent findings on how glucose modulates the function of the β-cell transcription factors Pdx-1, NeuroD1 and MafA, and thereby tightly regulates insulin synthesis in accordance with blood glucose levels.
Collapse
|
23
|
Babu DA, Deering TG, Mirmira RG. A feat of metabolic proportions: Pdx1 orchestrates islet development and function in the maintenance of glucose homeostasis. Mol Genet Metab 2007; 92:43-55. [PMID: 17659992 PMCID: PMC2042521 DOI: 10.1016/j.ymgme.2007.06.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 06/14/2007] [Accepted: 06/15/2007] [Indexed: 01/30/2023]
Abstract
Emerging evidence over the past decade indicates a central role for transcription factors in the embryonic development of pancreatic islets and the consequent maintenance of normal glucose homeostasis. Pancreatic and duodenal homeobox 1 (Pdx1) is the best studied and perhaps most important of these factors. Whereas deletion or inactivating mutations of the Pdx1 gene causes whole pancreas agenesis in both mice and humans, even haploinsufficiency of the gene or alterations in its expression in mature islet cells causes substantial impairments in glucose tolerance and the development of a late-onset form of diabetes known as maturity onset diabetes of the young. The study of Pdx1 has revealed crucial phenotypic interrelationships of the varied cell types within the pancreas, particularly as these impinge upon cellular differentiation in the embryo and neogenesis and regeneration in the adult. In this review, we describe the actions of Pdx1 in the developing and mature pancreas and attempt to unify these actions with its known roles in modulating transcriptional complex formation and chromatin structure at the molecular genetic level.
Collapse
Affiliation(s)
- Daniella A. Babu
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908 USA
| | - Tye G. Deering
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908 USA
| | - Raghavendra G. Mirmira
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908 USA
- Diabetes Center, Department of Medicine, University of Virginia, Charlottesville, VA 22908 USA
- To whom correspondence should be addressed: University of Virginia Health System, 450 Ray C. Hunt Drive, Box 801407, Charlottesville, VA 22908. E-mail: , Telephone: 434-924-9416, Fax: 434-982-3796
| |
Collapse
|
24
|
Han SI, Aramata S, Yasuda K, Kataoka K. MafA stability in pancreatic beta cells is regulated by glucose and is dependent on its constitutive phosphorylation at multiple sites by glycogen synthase kinase 3. Mol Cell Biol 2007; 27:6593-605. [PMID: 17682063 PMCID: PMC2099218 DOI: 10.1128/mcb.01573-06] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of insulin gene expression by glucose in pancreatic beta cells is largely dependent on a cis-regulatory element, termed RIPE3b/C1, in the insulin gene promoter. MafA, a member of the Maf family of basic leucine zipper (bZip) proteins, is a beta-cell-specific transcriptional activator that binds to the C1 element. Based on increased C1-binding activity, MafA protein levels appear to be up-regulated in response to glucose, but the underlying molecular mechanism for this is not well understood. In this study, we show evidence supporting that the amino-terminal region of MafA is phosphorylated at multiple sites by glycogen synthase kinase 3 (GSK3) in beta cells. Mutational analysis of MafA and pharmacological inhibition of GSK3 in MIN6 beta cells strongly suggest that the rate of MafA protein degradation is regulated by glucose, that MafA is constitutively phosphorylated by GSK3, and that phosphorylation is a prerequisite for rapid degradation of MafA under low-glucose conditions. Our data suggest a new glucose-sensing signaling pathway in islet beta cells that regulates insulin gene expression through the regulation of MafA protein stability.
Collapse
Affiliation(s)
- Song-Iee Han
- Laboratory of Molecular and Developmental Biology, Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | |
Collapse
|
25
|
Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 2007; 113:546-93. [PMID: 17306374 PMCID: PMC1934514 DOI: 10.1016/j.pharmthera.2006.11.007] [Citation(s) in RCA: 495] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 11/27/2006] [Indexed: 12/13/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a hormone that is encoded in the proglucagon gene. It is mainly produced in enteroendocrine L cells of the gut and is secreted into the blood stream when food containing fat, protein hydrolysate, and/or glucose enters the duodenum. Its particular effects on insulin and glucagon secretion have generated a flurry of research activity over the past 20 years culminating in a naturally occurring GLP-1 receptor (GLP-1R) agonist, exendin 4 (Ex-4), now being used to treat type 2 diabetes mellitus (T2DM). GLP-1 engages a specific guanine nucleotide-binding protein (G-protein) coupled receptor (GPCR) that is present in tissues other than the pancreas (brain, kidney, lung, heart, and major blood vessels). The most widely studied cell activated by GLP-1 is the insulin-secreting beta cell where its defining action is augmentation of glucose-induced insulin secretion. Upon GLP-1R activation, adenylyl cyclase (AC) is activated and cAMP is generated, leading, in turn, to cAMP-dependent activation of second messenger pathways, such as the protein kinase A (PKA) and Epac pathways. As well as short-term effects of enhancing glucose-induced insulin secretion, continuous GLP-1R activation also increases insulin synthesis, beta cell proliferation, and neogenesis. Although these latter effects cannot be currently monitored in humans, there are substantial improvements in glucose tolerance and increases in both first phase and plateau phase insulin secretory responses in T2DM patients treated with Ex-4. This review will focus on the effects resulting from GLP-1R activation in the pancreas.
Collapse
Affiliation(s)
- Máire E Doyle
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
26
|
Iguchi H, Sakai J. [SOX6 attenuates glucose-stimulated insulin secretion by repressing PDX1 transcriptional activity]. Nihon Yakurigaku Zasshi 2006; 128:219-24. [PMID: 17038784 DOI: 10.1254/fpj.128.219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Goicoa S, Alvarez S, Ricordi C, Inverardi L, Domínguez-Bendala J. Sodium butyrate activates genes of early pancreatic development in embryonic stem cells. CLONING AND STEM CELLS 2006; 8:140-9. [PMID: 17009890 DOI: 10.1089/clo.2006.8.140] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Embryonic stem (ES) cells can differentiate into any tissue, including pancreatic islet cell types. Protocols for the efficient generation of these cells in vitro could have therapeutic applications for type I diabetes. Here we describe a simple method for the differentiation of mouse ES cells into epithelial cells with a gene expression profile consistent with that expected of early pancreatic progenitors (PP). It is based on the addition of sodium butyrate, an agent known to induce chromatin rearrangements. Variations on the length of exposure to butyrate result in the generation of hepatocytes or PP-like cells. qRT-PCR indicates that butyrate induces mesendoderm/definitive endoderm, but not neuroectoderm differentiation. PPlike cells show a strong upregulation of Ipf1/Pdx1, p48, Isl-1 and Nkx6.1, but not Ngn3, NeuroD/ Beta2 or Pax4. PP-like cells also express the epithelial marker E-cadherin. Taken together, our observations suggest that butyrate stimulates early events of pancreatic specification, prior to the onset of endocrine differentiation. These findings are discussed in the context of the development of protocols for the in vitro differentiation of islets.
Collapse
Affiliation(s)
- Stacey Goicoa
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
28
|
Deramaudt TB, Sachdeva MM, Wescott MP, Chen Y, Stoffers DA, Rustgi AK. The PDX1 homeodomain transcription factor negatively regulates the pancreatic ductal cell-specific keratin 19 promoter. J Biol Chem 2006; 281:38385-95. [PMID: 17056599 DOI: 10.1074/jbc.m605891200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Keratin 19 is a member of the cytokeratin family that is critical for maintenance of cellular architecture and organization, especially of epithelia. The pancreas has three distinct cell types, ductal, acinar, and islet, each with different functions. Embryologically, the pancreatic and duodenal homeobox 1 (PDX1) homeodomain protein is critical for the initiation of all pancreatic lineages; however, the later differentiation of the endocrine pancreas is uniquely dependent upon high PDX1 expression, whereas PDX1 is down-regulated in the ductal and acinar cell lineages. We find that this down-regulation may be required for normal ductal expression of cytokeratin K19. The K19 promoter-reporter gene assay demonstrates that ectopic PDX1 inhibits K19 reporter gene activity in primary pancreatic ductal cells. This is reinforced by our findings that retrovirally mediated stable transduction of PDX1 in primary pancreatic ductal cells suppresses K19 expression, and short interfering RNA to PDX1 in Min6 insulinoma cells results in the induction of normally undetectable K19. Complementary functional and biochemical approaches led to the unexpected finding that a multimeric complex of PDX1 and two members of the TALE homeodomain factor family, MEIS1a and PBX1b, regulates K19 gene transcription through a specific cis-regulatory element (-341 to -325) upstream of the K19 transcription start site. These data suggest a unifying mechanism whereby PDX1, myeloid ecotropic viral insertion site (MEIS), and pre-B-cell leukemia transcription factor 1 (PBX) may regulate ductal and acinar lineage specification during pancreatic development. Specifically, concomitant PDX1 suppression and MEIS isoform expression result in proper ductal and acinar lineage specification. Furthermore, PDX1 may inhibit the ductal differentiation program in the pancreatic endocrine compartment, particularly beta cells.
Collapse
Affiliation(s)
- Therese B Deramaudt
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
29
|
Eto K, Kaur V, Thomas MK. Regulation of insulin gene transcription by the immediate-early growth response gene Egr-1. Endocrinology 2006; 147:2923-35. [PMID: 16543365 DOI: 10.1210/en.2005-1336] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Changes in extracellular glucose levels regulate the expression of the immediate-early response gene and zinc finger transcription factor early growth response-1 (Egr-1) in insulin-producing pancreatic beta-cells, but key target genes of Egr-1 in the endocrine pancreas have not been identified. We found that overexpression of Egr-1 in clonal (INS-1) beta-cells increased transcriptional activation of the rat insulin I promoter. In contrast, reductions in Egr-1 expression levels or function with the introduction of either small interfering RNA targeted to Egr-1 (siEgr-1) or a dominant-negative form of Egr-1 decreased insulin promoter activation, and siEgr-1 suppressed insulin gene expression. Egr-1 did not directly interact with insulin promoter sequences, and mutagenesis of a potential G box recognition sequence for Egr-1 did not impair the Egr-1 responsiveness of the insulin promoter, suggesting that regulation of insulin gene expression by Egr-1 is probably mediated through additional transcription factors. Overexpression of Egr-1 increased, and reduction of Egr-1 expression decreased, transcriptional activation of the glucose-responsive FarFlat minienhancer within the rat insulin I promoter despite the absence of demonstrable Egr-1-binding activity to FarFlat sequences. Notably, augmenting Egr-1 expression levels in insulin-producing cells increased the mRNA and protein expression levels of pancreas duodenum homeobox-1 (PDX-1), a major transcriptional regulator of glucose-responsive activation of the insulin gene. Increasing Egr-1 expression levels enhanced PDX-1 binding to insulin promoter sequences, whereas mutagenesis of PDX-1-binding sites reduced the capacity of Egr-1 to activate the insulin promoter. We propose that changes in Egr-1 expression levels in response to extracellular signals, including glucose, can regulate PDX-1 expression and insulin production in pancreatic beta-cells.
Collapse
Affiliation(s)
- Kazuhiro Eto
- Laboratory of Molecular Endocrinology and Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
30
|
Zachara NE, Hart GW. Cell signaling, the essential role of O-GlcNAc! Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:599-617. [PMID: 16781888 DOI: 10.1016/j.bbalip.2006.04.007] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 04/20/2006] [Accepted: 04/24/2006] [Indexed: 11/28/2022]
Abstract
An increasing body of evidence points to a central regulatory role for glucose in mediating cellular processes and expands the role of glucose well beyond its traditional role(s) in energy metabolism. Recently, it has been recognized that one downstream effector produced from glucose is UDP-GlcNAc. Levels of UDP-GlcNAc, and the subsequent addition of O-linked beta-N-acetylglucosamine (O-GlcNAc) to Ser/Thr residues, is involved in regulating nuclear and cytoplasmic proteins in a manner analogous to protein phosphorylation. O-GlcNAc protein modification is essential for life in mammalian cells, highlighting the importance of this simple post-translational modification in basic cellular regulation. Recent research has highlighted key roles for O-GlcNAc serving as a nutrient sensor in regulating insulin signaling, the cell cycle, and calcium handling, as well as the cellular stress response.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins Singapore, 31 Biopolis Way, #02-01 The Nanos, 138669 Singapore
| | | |
Collapse
|
31
|
BINETTE TANYAM, DUFOUR JANNETTEM, KORBUTT GREGORYS. In Vitro Maturation of Neonatal Porcine Islets. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.2001.tb03822.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Boucher MJ, Selander L, Carlsson L, Edlund H. Phosphorylation marks IPF1/PDX1 protein for degradation by glycogen synthase kinase 3-dependent mechanisms. J Biol Chem 2006; 281:6395-403. [PMID: 16407209 DOI: 10.1074/jbc.m511597200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor IPF1/PDX1 plays a crucial role in both pancreas development and maintenance of beta-cell function. Targeted disruption of this transcription factor in beta-cells leads to diabetes, whereas reduced expression levels affect insulin expression and secretion. Therefore, it is essential to determine molecular mechanisms underlying the regulation of this key transcription factor on mRNA levels and, most importantly, on protein levels. Here we show that a minor portion of IPF1/PDX1 is phosphorylated on serine 61 and/or serine 66 in pancreatic beta-cells. This phosphorylated form of IPF1/PDX1 preferentially accumulates following proteasome inhibition, an effect that is prevented by inhibition of glycogen synthase kinase 3 (GSK3) activity. Oxidative stress, which is associated with the diabetic state, (i) increases IPF1/PDX1 Ser61 and/or Ser66 phosphorylation and (ii) increases the degradation rate and decreases the half-life of IPF-1/PDX-1 protein. In addition, we provide evidence that GSK3 activity participates in oxidative stress-induced effects on beta-cells. Thus, this current study uncovers a new mechanism that might contribute to diminished levels of IPF1/PDX1 protein and beta-cell dysfunction during the progression of diabetes.
Collapse
Affiliation(s)
- Marie-Josée Boucher
- Umeå Center for Molecular Medicine, University of Umeå, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
33
|
Hagman DK, Hays LB, Parazzoli SD, Poitout V. Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. J Biol Chem 2005; 280:32413-8. [PMID: 15944145 PMCID: PMC1361267 DOI: 10.1074/jbc.m506000200] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abnormalities in lipid metabolism have been proposed as contributing factors to both defective insulin secretion from the pancreatic beta cell and peripheral insulin resistance in type 2 diabetes. Previously, we have shown that prolonged exposure of isolated rat islets of Langerhans to excessive fatty acid levels impairs insulin gene transcription. This study was designed to assess whether palmitate alters the expression and binding activity of the key regulatory factors pancreas-duodenum homeobox-1 (PDX-1), MafA, and Beta2, which respectively bind to the A3, C1, and E1 elements in the proximal region of the insulin promoter. Nuclear extracts of isolated rat islets cultured with 0.5 mm palmitate exhibited reduced binding activity to the A3 and C1 elements but not the E1 element. Palmitate did not affect the overall expression of PDX-1 but reduced its nuclear localization. In contrast, palmitate blocked the stimulation of MafA mRNA and protein expression by glucose. Combined adenovirus-mediated overexpression of PDX-1 and MafA in islets completely prevented the inhibition of insulin gene expression by palmitate. These results demonstrate that prolonged exposure of islets to palmitate inhibits insulin gene transcription by impairing nuclear localization of PDX-1 and cellular expression of MafA.
Collapse
Affiliation(s)
- Derek K. Hagman
- From the Pacific Northwest Research Institute, Seattle, Washington 98122 and the
| | - Lori B. Hays
- From the Pacific Northwest Research Institute, Seattle, Washington 98122 and the
| | - Susan D. Parazzoli
- From the Pacific Northwest Research Institute, Seattle, Washington 98122 and the
| | - Vincent Poitout
- From the Pacific Northwest Research Institute, Seattle, Washington 98122 and the
- Department of Medicine, University of Washington, Seattle, Washington 98195
| |
Collapse
|
34
|
Iguchi H, Ikeda Y, Okamura M, Tanaka T, Urashima Y, Ohguchi H, Takayasu S, Kojima N, Iwasaki S, Ohashi R, Jiang S, Hasegawa G, Ioka RX, Magoori K, Sumi K, Maejima T, Uchida A, Naito M, Osborne TF, Yanagisawa M, Yamamoto TT, Kodama T, Sakai J. SOX6 attenuates glucose-stimulated insulin secretion by repressing PDX1 transcriptional activity and is down-regulated in hyperinsulinemic obese mice. J Biol Chem 2005; 280:37669-80. [PMID: 16148004 DOI: 10.1074/jbc.m505392200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In obesity-related insulin resistance, pancreatic islets compensate for insulin resistance by increasing secretory capacity. Here, we report the identification of sex-determining region Y-box 6 (SOX6), a member of the high mobility group box superfamily of transcription factors, as a co-repressor for pancreatic-duodenal homeobox factor-1 (PDX1). SOX6 mRNA levels were profoundly reduced by both a long term high fat feeding protocol in normal mice and in genetically obese ob/ob mice on a normal chow diet. Interestingly, we show that SOX6 is expressed in adult pancreatic insulin-producing beta-cells and that overexpression of SOX6 decreased glucose-stimulated insulin secretion, which was accompanied by decreased ATP/ADP ratio, Ca(2+) mobilization, proinsulin content, and insulin gene expression. In a complementary fashion, depletion of SOX6 by small interfering RNAs augmented glucose-stimulated insulin secretion in insulinoma mouse MIN6 and rat INS-1E cells. These effects can be explained by our mechanistic studies that show SOX6 acts to suppress PDX1 stimulation of the insulin II promoter through a direct protein/protein interaction. Furthermore, SOX6 retroviral expression decreased acetylation of histones H3 and H4 in chromatin from the promoter for the insulin II gene, suggesting that SOX6 may decrease PDX1 stimulation through changes in chromatin structure at specific promoters. These results suggest that perturbations in transcriptional regulation that are coordinated through SOX6 and PDX1 in beta-cells may contribute to the beta-cell adaptation in obesity-related insulin resistance.
Collapse
Affiliation(s)
- Haruhisa Iguchi
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Stanojevic V, Yao KM, Thomas MK. The coactivator Bridge-1 increases transcriptional activation by pancreas duodenum homeobox-1 (PDX-1). Mol Cell Endocrinol 2005; 237:67-74. [PMID: 15885879 DOI: 10.1016/j.mce.2005.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 03/07/2005] [Indexed: 11/30/2022]
Abstract
Well-orchestrated transcriptional regulation of pancreatic beta cells is essential for insulin production and glucose homeostasis. Pancreas duodenum homeobox-1 (PDX-1) is a key regulator of glucose-dependent insulin production and glucose metabolism. We find that PDX-1 interacts with the PDZ-domain coactivator Bridge-1 in yeast interaction trap assays. Rat Bridge-1 and PDX-1 interact directly in GST pull-down assays via Bridge-1 interactions with the amino-terminal transactivation domain of PDX-1. Bridge-1 also interacts with wild-type and mutant human PDX-1 (IPF-1) proteins and strongly interacts with the amino-terminal PDX-1 P63fsdelC (MODY4) mutant protein. Transcriptional activation by PDX-1 is increased by addition of Bridge-1 in multiple contexts, including synergistic activation of a Gal4 reporter by Gal4-Bridge-1 and Gal4-PDX-1 fusion proteins, activation of the somatostatin promoter TAAT1 enhancer, and synergistic activation of the rat insulin I promoter FarFlat enhancer by PDX-1, E12, and E47. We propose that the coactivator Bridge-1 modulates PDX-1 functions in the regulation of its target genes.
Collapse
Affiliation(s)
- Violeta Stanojevic
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Wellman 340, 50 Blossom Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
36
|
Abstract
Considerable progress has been made in the understanding of the sequential activation of signal transduction pathways and the expression of transcription factors during pancreas development. Much of this understanding has been obtained by analyses of the phenotypes of mice in which the expression of key genes has been disrupted (knockout mice). Knockout of the genes for Pdx1, Hlxb9, Isl1, or Hex results in an arrest of pancreas development at a very early stage (embryonic d 8-9). Disruption of genes encoding components of the Notch signaling pathway, e.g. Hes1 or neurogenin-3, abrogates development of the endocrine pancreas (islets of Langerhans). Disruption of transcription factor genes expressed more downstream in the developmental cascade (Beta2/NeuroD, Pax4, NKx2.2, and Nkx6.1) curtails the formation of insulin-producing beta-cells. An understanding of the importance of transcription factor genes during pancreas development has provided insights into the pathogenesis of diabetes, in which the mass of insulin-producing beta-cells is reduced.
Collapse
Affiliation(s)
- Joel F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Howard Hughes Medical Institute, Harvard Medical School, 55 Fruit Street, WEL320, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
37
|
Zhao L, Guo M, Matsuoka TA, Hagman DK, Parazzoli SD, Poitout V, Stein R. The islet beta cell-enriched MafA activator is a key regulator of insulin gene transcription. J Biol Chem 2005; 280:11887-94. [PMID: 15665000 DOI: 10.1074/jbc.m409475200] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The islet-enriched MafA, PDX-1, and BETA2 activators contribute to both beta cell-specific and glucose-responsive insulin gene transcription. To investigate how these factors impart activation, their combined impact upon insulin enhancer-driven expression was first examined in non-beta cell line transfection assays. Individual expression of PDX-1 and BETA2 led to little or no activation, whereas MafA alone did so modestly. MafA together with PDX-1 or BETA2 produced synergistic activation, with even higher insulin promoter activity found when all three proteins were present. Stimulation was attenuated upon compromising either MafA transactivation or DNA-binding activity. MafA interacted with endogenous PDX-1 and BETA2 in coimmunoprecipitation and in vitro GST pull-down assays, suggesting that regulation involved direct binding. Dominant-negative acting and small interfering RNAs of MafA also profoundly reduced insulin promoter activity in beta cell lines. In addition, MafA was induced in parallel with insulin mRNA expression in glucose-stimulated rat islets. Insulin mRNA levels were also elevated in rat islets by adenoviral-mediated expression of MafA. Collectively, these results suggest that MafA plays a key role in coordinating and controlling the level of insulin gene expression in islet beta cells.
Collapse
Affiliation(s)
- Li Zhao
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Liu A, Desai BM, Stoffers DA. Identification of PCIF1, a POZ domain protein that inhibits PDX-1 (MODY4) transcriptional activity. Mol Cell Biol 2004; 24:4372-83. [PMID: 15121856 PMCID: PMC400448 DOI: 10.1128/mcb.24.10.4372-4383.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hox factors are evolutionarily conserved homeodomain-containing transcription factors that activate and repress gene expression in a precise temporally and spatially regulated manner during development and differentiation. Pancreatic-duodenal homeobox 1 (PDX-1) is a Hox-type protein that is a critical requirement for normal pancreas development and for proper differentiation of the endocrine pancreas. In humans, PDX-1 gene mutation causes pancreatic agenesis and early- and late-onset type 2 diabetes. PDX-1 consists of an N-terminal transactivation domain, a homeodomain responsible for DNA binding and nuclear localization, and a conserved C terminus that is mutated in human diabetes but whose function is poorly understood. We have identified a novel POZ domain protein, PDX-1 C terminus-interacting factor 1 (PCIF1)/SPOP, that interacts with PDX-1 both in vitro and in vivo. PCIF1 is localized to the nucleus in a speckled pattern, and coexpression of PDX-1 alters the subnuclear distribution of PCIF1. Functionally, PCIF1 inhibits PDX-1 transactivation of established target gene promoters in a specific and dose-dependent manner that requires critical amino acids in the PDX-1 C terminus. PCIF1 is expressed in adult pancreatic insulin-producing beta cells, and overexpression of PCIF1 inhibits the rat insulin 1 and rat insulin 2 promoters in the MIN6 insulinoma beta cell line. The coexpression of PCIF1 with PDX-1 in beta cells and the ability of PCIF1 to repress PDX-1 transactivation suggest that modulation of PDX-1 function by PCIF1 may regulate normal beta cell differentiation.
Collapse
Affiliation(s)
- Aihua Liu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Penn Diabetes Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
39
|
Håkelien AM, Gaustad KG, Collas P. Transient alteration of cell fate using a nuclear and cytoplasmic extract of an insulinoma cell line. Biochem Biophys Res Commun 2004; 316:834-41. [PMID: 15033476 DOI: 10.1016/j.bbrc.2004.02.127] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Indexed: 10/26/2022]
Abstract
We report a transient modulation of cell fate in fibroblasts briefly exposed to an extract derived from the rat insulin-producing beta cell line, INS-1E. Primary fetal rat fibroblasts were reversibly permeabilized with Streptolysin O, incubated for 1h in a 15,000g INS-1E nuclear and cytoplasmic extract, resealed, and cultured. A first marker of change in cell fate was a reduction of cell and nuclear size within days of exposure to extract such that in some instances the fibroblasts resembled INS-1E cells. Second, two beta cell transcripts, Pdx-1 and insulin, were detected in the fibroblasts for up to 4 weeks. Third, (pro)insulin labeling was detected in 5-30% of the cells for a period of 8-14 days after incubation in extract. These phenotypes were absent from fibroblasts exposed to heat-treated INS-1E extracts, a human fibroblast cell line-derived extract or buffer. The results indicate that the extract of an insulinoma-derived cell line can promote at least a transient modification of cell fate towards a beta cell phenotype in non-beta cells. Because they are easily accessible, cell extracts may represent a practical source of material for investigating the mechanisms of alteration of a nuclear and cellular program.
Collapse
Affiliation(s)
- Anne-Mari Håkelien
- Institute of Medical Biochemistry, University of Oslo, Oslo 0317, Norway
| | | | | |
Collapse
|
40
|
Khoo S, Griffen SC, Xia Y, Baer RJ, German MS, Cobb MH. Regulation of insulin gene transcription by ERK1 and ERK2 in pancreatic beta cells. J Biol Chem 2003; 278:32969-77. [PMID: 12810726 DOI: 10.1074/jbc.m301198200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We show that the mitogen-activated protein kinases ERK1/2 are components of the mechanism by which glucose stimulates insulin gene expression. ERK1/2 activity is required for glucose-dependent transcription from both the full-length rat insulin I promoter and the glucose-sensitive isolated E2A3/4 promoter element in intact islets and beta cell lines. Dominant negative ERK2 and MEK inhibitors suppress glucose stimulation of the rat insulin I promoter and the E2A3/4 element. Overexpression of ERK2 is sufficient to stimulate transcription from the E2A3/4 element. The glucose-induced response is dependent upon ERK1/2 phosphorylation of a subset of transcription factors that include Beta2 (also known as NeuroD1) and PDX-1. Phosphorylation increases their functional activity and results in a cumulative transactivation of the promoter. Thus, ERK1/2 act at multiple points to transduce a glucose signal to insulin gene transcription.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cells, Cultured
- Cricetinae
- Dimerization
- Dose-Response Relationship, Drug
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression Regulation, Enzymologic
- Genes, Dominant
- Genetic Vectors
- Glucose/metabolism
- Glutathione Transferase/metabolism
- Insulin/metabolism
- Islets of Langerhans/metabolism
- Male
- Mice
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Mutagenesis, Site-Directed
- Phosphorylation
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Recombinant Proteins/metabolism
- Retroviridae/genetics
- Transcription, Genetic
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- Shih Khoo
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | |
Collapse
|
41
|
Gao Y, Miyazaki JI, Hart GW. The transcription factor PDX-1 is post-translationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 beta-cells. Arch Biochem Biophys 2003; 415:155-63. [PMID: 12831837 DOI: 10.1016/s0003-9861(03)00234-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pancreatic/duodenal homeobox-1 protein (PDX-1, also called STF-1, IPF-1) is a transcription factor that plays an important role in pancreatic function and development. Here, we have overexpressed and purified PDX-1 from baculovirus/sf-9 cells, transiently transfected Cos-7 cells and native Min6 cells and demonstrated that the protein is posttranslationally modified by O-linked N-acetylglucosamine (O-GlcNAc). The approaches we used include binding of the protein to the lectin WGA, labeling with galactosyltransferase and UDP-[(3)H]gal and probing with the O-GlcNAc-specific antibody, RL-2. PNGase F treatment and structural analysis indicate that the carbohydrate is beta-linked O-GlcNAc. Mapping of [(3)H]gal-labeled tryptic peptides indicates that PDX-1 has two major sites for O-GlcNAcylation. In Min6 cells, elevated glucose concentration leads to an increase in protein O-GlcNAcylation and this hyperglycosylation correlates with an increase in DNA binding activity of PDX-1 and insulin secretion. On the other hand, the GFAT inhibitor azaserine reduces intracellular O-GlcNAc levels and profoundly attenuates glucose-stimulated insulin secretion. These data suggest that O-GlcNAcylation may be involved in the regulation of PDX-1 DNA binding activity and in glucose-stimulated insulin secretion in beta-cells.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | | | | |
Collapse
|
42
|
Osterhoff M, Möhlig M, Schwanstecher M, Seufert J, Ortmann J, Schatz H, Pfeiffer AFH. Ca2+/calmodulin-dependent protein kinase II delta2 regulates gene expression of insulin in INS-1 rat insulinoma cells. Cell Calcium 2003; 33:175-84. [PMID: 12600804 DOI: 10.1016/s0143-4160(02)00227-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ca(2+)/calmodulin-dependent protein kinase II is a member of a broad family of ubiquitously expressed Ca(2+) sensing serine/threonine-kinases. Ca(2+)/calmodulin-dependent protein kinase II is highly expressed in insulin secreting cells and is associated with insulin secretory granules and has been proposed to play an important role in exocytosis or in insulin granule transport to release sites. To elucidate its function the antisense sequence of the major beta-cell subtype, Ca(2+)/calmodulin-dependent protein kinase II delta(2), was stably expressed in INS-1 rat insulinoma cells. This caused a loss of Ca(2+)/calmodulin-dependent protein kinase II delta(2) expression at the mRNA and protein level, while the expression of the 95% homologous Ca(2+)/calmodulin-dependent protein kinase II gamma and of beta-cell specific proteins such as the homeodomain factor pancreatic-duodenal homeobox factor-1 (PDX-1, also referred to as islet/duodenum homeobox-1, IDX-1, insulin promoter factor-1, IPF-1 and somatostatin transactivating factor-1, STF-1), the glucagon-like peptide-1 (GLP-1) receptor and K(ATP)-channels K(IR)6.2/SUR-1 (sulfonylurea receptor-1) was not altered. Unexpectedly, the cells showed a large reduction of insulin gene expression, which was due to reduced insulin gene transcription. Electrophoretic mobility shift assays of PDX-1 binding to the insulin promoter A1 and E2/A3A4 elements showed additional bands indicating alterations of PDX-1 complex formation. Stable over expression of Ca(2+)/calmodulin-dependent protein kinase II delta(2), by contrast, was associated with elevated expression of insulin mRNA. Therefore, we conclude that Ca(2+)/calmodulin-dependent protein kinase II delta(2) links fuel-dependent increases in intracellular Ca(2+) concentrations to transcriptional regulation of genes related to the metabolic control of insulin secretion.
Collapse
Affiliation(s)
- M Osterhoff
- Deutsches Institut für Ernährungsforschung (DIfE), D-14558, Bergholz-Rehbrücke, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Taniguchi H, Yamato E, Tashiro F, Ikegami H, Ogihara T, Miyazaki J. beta-cell neogenesis induced by adenovirus-mediated gene delivery of transcription factor pdx-1 into mouse pancreas. Gene Ther 2003; 10:15-23. [PMID: 12525833 DOI: 10.1038/sj.gt.3301846] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
beta-cell neogenesis is expected to provide a new therapy for diabetes. Numerous studies have demonstrated that transcriptional regulation involving pdx-1 is essential for endocrine neogenesis in vivo and in vitro. Therefore, it is possible that ectopic expression of pdx-1 in the pancreas could induce endocrine neogenesis. To test this possibility, we performed safe and efficient gene delivery of the pdx-1 gene into the mouse pancreas through the common bile duct using adenoviral vectors, and examined the effects of the ectopic expression of pdx-1. Here we show that adenovirus-mediated expression of pdx-1 can activate the endogenous pdx-1 gene, leading to beta-cell neogenesis and ductal proliferation. This technique is similar to the endoscopic retrograde cholangiopancreatography, which has been already established as a safe procedure for humans. Thus, beta-cell neogenesis induced by adenovirus-mediated expression of pdx-1 provides a novel strategy for gene therapy for a cure for diabetes mellitus.
Collapse
Affiliation(s)
- H Taniguchi
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Campbell SC, Macfarlane WM. Regulation of the pdx1 gene promoter in pancreatic beta-cells. Biochem Biophys Res Commun 2002; 299:277-84. [PMID: 12437983 DOI: 10.1016/s0006-291x(02)02633-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the adult pancreas the expression of the transcription factor PDX1 is mainly restricted to the beta-cells of the islets of Langerhans. In this study we have identified a region of the pdx1 promoter between -2715 and -1960 which was essential to direct pancreatic islet-cell-specific expression of PDX1. We have also begun for the first time to understand the complex nutritional and hormonal regulation controlling PDX1 expression. The current study has established the fact that glucose, GLP-1, insulin, T(3), HB-EGF, and TNF-alpha all positively regulate the PDX1 gene promoter in pancreatic beta-cells. This study represents the first detailed exploration of the nutritional and hormonal regulation of this vital beta-cell gene.
Collapse
Affiliation(s)
- Susan C Campbell
- School of Cell and Molecular Biosciences, University of Newcastle upon Tyne, NE2 4HH, Newcastle upon Tyne, UK
| | | |
Collapse
|
45
|
Petersen HV, Jensen JN, Stein R, Serup P. Glucose induced MAPK signalling influences NeuroD1-mediated activation and nuclear localization. FEBS Lett 2002; 528:241-5. [PMID: 12297313 DOI: 10.1016/s0014-5793(02)03318-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The helix-loop-helix transcription factor NeuroD1 (also known as Beta2) is involved in beta-cell survival during development and insulin gene transcription in adults. Here we show NeuroD1 is primarily cytoplasmic at non-stimulating glucose concentrations (i.e. 3 mM) in MIN6 beta-cells and nuclear under stimulating conditions (i.e. 20 mM). Quantification revealed that NeuroD1 was in 40-45% of the nuclei at 3 mM and 80-90% at 20 mM. Treatment with the MEK inhibitor PD98059 or substitution of a serine for an alanine at a potential mitogen-activated protein kinase phosphorylation site (S274) in NeuroD1 significantly increased the cytoplasmic level at 20 mM glucose. The rise in NeuroD1-mediated transcription in response to glucose also correlated with the change in sub-cellular localization, a response attenuated by PD98059. The data strongly suggest that glucose-stimulation of the MEK-ERK signalling pathway influences NeuroD1 activity at least partially through effects on sub-cellular localization.
Collapse
Affiliation(s)
- Helle V Petersen
- Hagedorn Research Institute, Niels Steensensvej 6, DK-2820 Gentofte, Denmark.
| | | | | | | |
Collapse
|
46
|
Abstract
Insulin is expressed exclusively in the adult beta-cells of the islets of Langerhans. Pancreatic Duodenum Homeobox-1 (PDX-1) is a major regulator of transcription in these cells. It transactivates the insulin gene by binding to a specific DNA motif in its promoter region. Glucose, the main physiological regulator of insulin secretion, also regulates insulin gene transcription through PDX-1. While acute exposure to high glucose concentrations causes an increase in PDX-1 binding, and consequently in insulin mRNA levels, chronic hyperglycemia (toxic to the beta-cell) leads to a decrease in PDX-1 and insulin levels. PDX-1 is absolutely required for pancreas development. In view of the selective expression in adult beta-cells, pancreatic agenesis in both the pdx-1 null mouse and a human carrying a homozygous mutation of PDX-1 was an unexpected and remarkable finding. The homozygous clinical phenotype was neonatal diabetes mellitus (DM) and exocrine insufficiency. Heterozygosity for PDX-1 mutations was found in some individuals with a newly characterized subtype of maturity-onset diabetes of the young (MODY4) and in others with type 2 DM. This review underlines the unique role of PDX-1 in maintaining adult beta-cell-specific functions in normal and disease-related states.
Collapse
Affiliation(s)
- Danielle Melloul
- Department of Endocrinology, Hadassah University Hospital, General Health Services, Jerusalem, Israel.
| | | | | |
Collapse
|
47
|
Ozcan S, Mosley AL, Aryal BK. Functional expression and analysis of the pancreatic transcription factor PDX-1 in yeast. Biochem Biophys Res Commun 2002; 295:724-9. [PMID: 12099699 DOI: 10.1016/s0006-291x(02)00747-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The pancreas-specific transcription factor Pdx-1 is important for pancreas development and beta-cell specific gene expression in insulin-producing cells. We have expressed the mouse PDX-1 gene in the yeast Saccharomyces cerevisiae and characterized its functional domains. Pdx-1 functions as a strong activator in yeast and stimulates gene expression by more than 80-fold. The transcriptional activation domain of Pdx-1 is located within the first 144 amino-terminal amino acids. Pdx-1 is also able to bind and activate transcription from the A3 element of the human insulin gene promoter in yeast. Analysis of the effects of two-point mutations (Q59L and R197H) in the PDX-1 gene found in type II diabetes patients showed that both point mutations interfere with the ability of Pdx-1 to bind to DNA and to activate transcription in yeast.
Collapse
Affiliation(s)
- Sabire Ozcan
- Department of Molecular and Cellular Biochemistry, Chandler Medical Center, University of Kentucky, 800 Rose Street, Lexington 40536, USA.
| | | | | |
Collapse
|
48
|
Pedersen AA, Petersen HV, Videbaek N, Skak K, Michelsen BK. PDX-1 mediates glucose responsiveness of GAD(67), but not GAD(65), gene transcription in islets of Langerhans. Biochem Biophys Res Commun 2002; 295:243-8. [PMID: 12150938 DOI: 10.1016/s0006-291x(02)00674-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Glucose responsiveness is a fundamental metabolic feature of pancreatic beta-cells. Glucose-regulated transcription of the insulin gene is in part mediated via the homeobox transcription factor PDX-1. Another islet protein and diabetes autoantigen, glutamic acid decarboxylase (GAD), has been shown to be subject to regulation by glycemia. We have studied the mRNA level of two isoforms of GAD, GAD(65) and GAD(67), and found that GAD(67) but not GAD(65) mRNA steady-state level is regulated by glucose. By transfection of a rat GAD(67) promoter-driven luciferase reporter gene into primary rat islet cells, we demonstrate glucose-regulated expression of the reporter gene. We show that PDX-1 is able to bind to two TAAT-boxes in the GAD(67) promoter and that functional disruption of these two PDX-1 binding elements has an additive effect in severely impairing glucose responsiveness of the GAD(67) promoter. These data strongly suggest that PDX-1 is involved in glucose-regulated expression of GAD(67).
Collapse
Affiliation(s)
- Anette Amstrup Pedersen
- Department of Diabetes Autoimmunity, Hagedorn Research Institute, Niels Steensens Vej 6, Gentofte DK-2820, Denmark
| | | | | | | | | |
Collapse
|
49
|
Reimer MK, Ahrén B. Altered beta-cell distribution of pdx-1 and GLUT-2 after a short-term challenge with a high-fat diet in C57BL/6J mice. Diabetes 2002; 51 Suppl 1:S138-43. [PMID: 11815473 DOI: 10.2337/diabetes.51.2007.s138] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mechanisms involved in the islet adaptation to insulin resistance were examined in mice of the C57BL/6J strain challenged with a high-fat (58%) diet for 8 weeks. Basal hyperglycemia commenced after 1 week, whereas hyperinsulinemia evolved after 8 weeks. Glucose elimination after an intravenous glucose challenge (1 g/kg) was significantly delayed after 1, 4, and 8 weeks on the high-fat diet compared with normal-diet-fed mice. This result was associated with unchanged insulin responses. However, glucose-stimulated insulin secretion from isolated islets was increased in a compensatory fashion at all glucose levels over a wide range (3.3-22 mmol/l) after 8 weeks on the high-fat diet, whereas no compensatory hypersecretion of insulin was evident after 1 or 4 weeks, except at 22 mmol/l glucose. Immunohistochemistry revealed that the islet architecture of insulin and glucagon cells remained intact in islets from mice fed a high-fat diet. However, the nuclear translocation of the homeobox transcription factor, pdx-1, and the plasma membrane translocation of GLUT2 were both impaired in high-fat-fed animals after 1 week. In contrast, the expression of the full-length leptin receptor (ObRb) was not affected by high-fat feeding. The study thus shows that 8 weeks are required for the development of a compensatory hypersecretion of insulin after high-fat feeding in mice, and even then the in vivo insulin secretion is insufficient to normalize impaired glucose tolerance. The early-onset islet dysfunction is accompanied by impaired beta-cell trafficking of two factors, pdx-1 and GLUT-2, which are involved in beta-cell proliferation and glucose recognition. The mechanisms compromising this beta-cell trafficking remain to be established.
Collapse
|
50
|
|