1
|
Su Q, Gao Z, Zhang F, Wu Z, Ji Q, Zhu K, Gui L. Effect of miR-10a on the proliferation and differentiation of yak adipocyte precursors. J Appl Genet 2025; 66:435-447. [PMID: 39715988 DOI: 10.1007/s13353-024-00932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/14/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
The fat content of yak meat is significantly correlated with the meat quality, and an appropriate fat content helps to improve the texture of the meat. The involvement of miR-10a in regulating the differentiation and proliferation of various cell types has been reported. Therefore, in this study, the effects of miR-10a on lipid droplet accumulation were investigated by transfection of yak adipocyte precursors with an miR-10a inhibitor, followed by Oil Red O, BODIPY, EdU staining, and cell cycle analysis of the transfected and control cells. The relative expression of lipogenic marker genes was determined by RT-qPCR to clarify the effect of miR-10a on the differentiation and proliferation of yak adipocyte precursors. Mature adipocytes were collected for transcriptome analysis to identify differentially expressed target genes and the association of these genes with adipogenic pathways was investigated by GO and KEGG enrichment analyses. In addition, the phylogeny and expression profiles of miR-10a were analyzed in various yak tissues. The results showed that miR-10a could inhibit the differentiation and promote the proliferation of yak adipocyte precursors. Analysis of the RNA-Seq results showed that miR-10a inhibitor and inhibitor NC had six differentially expressed genes: FABP4, AKR1B7, IGF2, ROCK1, IFNB1, and PLA2G3. These genes were found to be involved in the regulation of adipogenesis, with IGF2 and IFNB1 being upregulated in the PI3K-Akt signaling pathway, which is activated upon stimulation by IGF2 and IFNB1 and inhibits the differentiation and promotes the proliferation of yak adipocytes precursor, which in turn affected adipogenesis. Moreover, phylogenetic analysis indicated that miR-10a evolved relatively recently in yak and sheep, while tissue expression profiles showed that miR-10a was highly expressed in yak lung tissues.
Collapse
Affiliation(s)
- Quyangangmao Su
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai Province, Xining, 810016, People's Republic of China
| | - Zhanhong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai Province, Xining, 810016, People's Republic of China
| | - Fengshuo Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai Province, Xining, 810016, People's Republic of China
| | - Zhenling Wu
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai Province, Xining, 810016, People's Republic of China
| | - Qiurong Ji
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai Province, Xining, 810016, People's Republic of China
| | - Kaina Zhu
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai Province, Xining, 810016, People's Republic of China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai Province, Xining, 810016, People's Republic of China.
| |
Collapse
|
2
|
Strøm TB, Asprusten E, Laerdahl JK, Øygard I, Hussain MM, Bogsrud MP, Leren TP. Missense mutation Q384K in the APOB gene affecting the large lipid transfer module of apoB reduces the secretion of apoB-100 in the liver without reducing the secretion of apoB-48 in the intestine. J Clin Lipidol 2023; 17:800-807. [PMID: 37718180 DOI: 10.1016/j.jacl.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Molecular genetic testing of patients with hypobetalipoproteinemia may identify a genetic cause that can form the basis for starting proper therapy. Identifying a genetic cause may also provide novel data on the structure-function relationship of the mutant protein. OBJECTIVE To identify a genetic cause of hypobetalipoproteinemia in a patient with levels of low density lipoprotein cholesterol at the detection limit of 0.1 mmol/l. METHODS DNA sequencing of the translated exons with flanking intron sequences of the genes adenosine triphosphate-binding cassette transporter 1, angiopoietin-like protein 3, apolipoprotein B, apolipoprotein A1, lecithin-cholesterol acyltransferase, microsomal triglyceride transfer protein and proprotein convertase subtilisin/kexin type 9. RESULTS The patient was homozygous for mutation Q384K (c.1150C>A) in the apolipoprotein B gene, and this mutation segregated with hypobetalipoproteinemia in the family. Residue Gln384 is located in the large lipid transfer module of apoB that has been suggested to be important for lipidation of apolipoprotein B through interaction with microsomal triglyceride transfer protein. Based on measurements of serum levels of triglycerides and apolipoprotein B-48 after an oral fat load, we conclude that the patient was able to synthesize apolipoprotein B-48 in the intestine in a seemingly normal fashion. CONCLUSION Our data indicate that mutation Q384K severely reduces the secretion of apolipoprotein B-100 in the liver without reducing the secretion of apolipoprotein B-48 in the intestine. Possible mechanisms for the different effects of this and other missense mutations affecting the large lipid transfer module on the two forms of apoB are discussed.
Collapse
Affiliation(s)
- Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway (Drs Strøm, Bogsrud and Leren).
| | - Emil Asprusten
- Lipid Clinic, Oslo University Hospital, Oslo, Norway (Dr Asprusten)
| | - Jon K Laerdahl
- Department of Microbiology, Oslo University Hospital, Oslo, Norway (Dr Laerdahl); ELIXIR Norway, Department of Informatics, University of Oslo, Oslo, Norway (Dr Laerdahl)
| | - Irene Øygard
- Fagernes Medical Center, Fagernes, Norway (Dr Øygard)
| | - M Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA (Dr. Hussain)
| | - Martin Prøven Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway (Drs Strøm, Bogsrud and Leren)
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway (Drs Strøm, Bogsrud and Leren)
| |
Collapse
|
3
|
Abstract
Apolipoproteins are important structural components of plasma lipoproteins that influence vascular biology and atherosclerotic disease pathophysiology by regulating lipoprotein metabolism. Clinically important apolipoproteins related to lipid metabolism and atherogenesis include apolipoprotein B-100, apolipoprotein B-48, apolipoprotein A-I, apolipoprotein C-II, apolipoprotein C-III, apolipoprotein E and apolipoprotein(a). Apolipoprotein B-100 is the major structural component of VLDL, IDL, LDL and lipoprotein(a). Apolipoprotein B-48 is a truncated isoform of apolipoprotein B-100 that forms the backbone of chylomicrons. Apolipoprotein A-I provides the scaffolding for lipidation of HDL and has an important role in reverse cholesterol transport. Apolipoproteins C-II, apolipoprotein C-III and apolipoprotein E are involved in triglyceride-rich lipoprotein metabolism. Apolipoprotein(a) covalently binds to apolipoprotein B-100 to form lipoprotein(a). In this Review, we discuss the mechanisms by which these apolipoproteins regulate lipoprotein metabolism and thereby influence vascular biology and atherosclerotic disease. Advances in the understanding of apolipoprotein biology and their translation into therapeutic agents to reduce the risk of cardiovascular disease are also highlighted.
Collapse
|
4
|
Lo CC, Coschigano KT. ApoB48 as an Efficient Regulator of Intestinal Lipid Transport. Front Physiol 2020; 11:796. [PMID: 32733283 PMCID: PMC7360825 DOI: 10.3389/fphys.2020.00796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022] Open
Abstract
Fatty meals induce intestinal secretion of chylomicrons (CMs) containing apolipoprotein (Apo) B48. These CMs travel via the lymphatic system before entering the circulation. ApoB48 is produced after post-transcriptional RNA modification by Apobec-1 editing enzyme, exclusively in the small intestine of humans and most other mammals. In contrast, in the liver where Apobec-1 editing enzyme is not expressed (except in rats and mice), the unedited transcript encodes a larger protein, ApoB100, which is used in the formation of very low-density lipoproteins (VLDL) to transport liver-synthesized fat to peripheral tissues. Apobec-1 knockout (KO) mice lack the ability to perform ApoB RNA editing, and thus, express ApoB100 in the intestine. These mice, maintained on either a chow diet or high fat diet, have body weight gain and food intake comparable to their wildtype (WT) counterparts on the respective diet; however, they secrete larger triglyceride (TG)-rich lipoprotein particles and at a slower rate than the WT mice. Using a lymph fistula model, we demonstrated that Apobec-1 KO mice also produced fewer CMs and exhibited reduced lymphatic transport of TG in response to duodenal infusion of TG at a moderate dose; in contrast, the Apobec-1 KO and WT mice had similar lymphatic transport of TG when they received a high dose of TG. Thus, the smaller, energy-saving ApoB48 appears to play a superior role in comparison with ApoB100 in the control of intestinal lipid transport in response to dietary lipid intake, at least at low to moderate lipid levels.
Collapse
Affiliation(s)
- Chunmin C Lo
- The Diabetes Institute, Interdisciplinary Program in Molecular and Cellular Biology, and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Karen T Coschigano
- The Diabetes Institute, Interdisciplinary Program in Molecular and Cellular Biology, and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| |
Collapse
|
5
|
Jing Y, Hu T, Lin C, Xiong Q, Liu F, Yuan J, Zhao X, Wang R. Resveratrol downregulates PCSK9 expression and attenuates steatosis through estrogen receptor α-mediated pathway in L02 cells. Eur J Pharmacol 2019; 855:216-226. [PMID: 31085239 DOI: 10.1016/j.ejphar.2019.05.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) is a promising target for treating dyslipidemia and atherosclerosis. Circulating PCSK9 levels are closely related to hepatic steatosis severity and endogenous estrogen levels. Resveratrol (RSV) is a phytoestrogens that protects against atherosclerosis and hepatic steatosis. Thus, we sought to determine whether RSV had the activities to inhibit PCSK9 expression and to attenuate lipid accumulation in free fatty acid (FFA)-induced L02 cells via ERα pathway. In this study, RSV (10, 20 μM) were cultured with L02 cells in the presence of FFA (oleate:palmitate = 2:1). RSV significantly reduced the number of lipid droplets and intracellular TG in steatotic L02 cells, and Oil red O staining and Nile red staining had the same results. Western blot analysis showed that RSV significantly reduced apoB secretion and intracellular microsomal triglyceride transporter (MTP) expression under lipid-rich conditions. Treatment with RSV reduced expression of PCSK9 while maintaining LDL receptor (LDLR) expression and LDL uptake. RSV decreased SREBP-1c expression at both mRNA and protein levels. In addition, RSV significantly reduced the expression of liver X receptor α (LXRα) mRNA in L02 cells, but did not affect the expression of liver X receptor β (LXRβ) mRNA. The luciferase reporter assays suggested that RSV inhibited SREBP-mediated transcription of PCSK9. Finally, these results could be partly reversed by Estrogen receptor α (ERα) gene silencing. These results suggest that RSV attenuates steatosis and PCSK9 expression through down-regulation of SREBP-1c expression, at least in part through ERα-mediated pathway.
Collapse
Affiliation(s)
- Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Tianhui Hu
- Department of Gynaecology and Health, Huai'an Maternal and Child Health-Care Center, Huai'an, 2230003, China
| | - Chao Lin
- School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Fei Liu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Xiaojuan Zhao
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Rong Wang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| |
Collapse
|
6
|
Nascimento-Sales M, Fredo-da-Costa I, Borges Mendes ACB, Melo S, Ravache TT, Gomez TGB, Gaisler-Silva F, Ribeiro MO, Santos AR, Carneiro-Ramos MS, Christoffolete MA. Is the FVB/N mouse strain truly resistant to diet-induced obesity? Physiol Rep 2018; 5:5/9/e13271. [PMID: 28483861 PMCID: PMC5430125 DOI: 10.14814/phy2.13271] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/30/2017] [Accepted: 04/06/2017] [Indexed: 01/10/2023] Open
Abstract
C57Bl/6J mice are the gold standard animal model of diet‐induced obesity. These animals become obese with higher adiposity, blood fasting glucose, triglycerides, and total cholesterol when fed a high‐fat diet (HFD). Conversely, the FVB/N mouse line is thought to be resistant to diet‐induced obesity, with low or no weight gain and adiposity in response to a HFD. In this study, we investigated whether FVB/N mice are resistant or susceptible to metabolic disorder that is promoted by a HFD. Biometric parameters and blood chemistry were analyzed in C57Bl/6J and FVB/N mice that were fed a chow diet or HFD. Glucose and insulin sensitivity were assessed by performing the glucose tolerance test and measuring serum insulin/glucose and homeostasis model assessment‐insulin resistance. Metabolism‐related gene expression was investigated by real‐time reverse transcription polymerase chain reaction. Adipocyte morphology and liver steatosis were evaluated using standard histology. FVB/N mice had higher adiposity than C57Bl/6J mice that were fed a chow diet and were glucose intolerant. FVB/N mice that were fed a HFD presented higher insulin resistance and greater liver steatosis. Epididymal white adipose tissue exhibited severe inflammation in FVB/N mice that were fed a HFD. The FVB/N mouse strain is suitable for studies of diet‐induced obesity, and the apparent lack of a HFD‐induced response may reveal several strain‐specific events that are triggered by a HFD. Further studies of the FVB/N background may shed light on the complex multifactorial symptoms of obesity and metabolic syndrome.
Collapse
Affiliation(s)
| | - Izabelle Fredo-da-Costa
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | | | - Suzane Melo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Thais T Ravache
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil.,Universidade Presbiteriana Mackenzie, São Paulo, São Paulo, Brazil
| | - Thiago G B Gomez
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil.,Universidade Presbiteriana Mackenzie, São Paulo, São Paulo, Brazil
| | - Fernanda Gaisler-Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Miriam O Ribeiro
- Universidade Presbiteriana Mackenzie, São Paulo, São Paulo, Brazil
| | - Arnaldo R Santos
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Marcela S Carneiro-Ramos
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Marcelo A Christoffolete
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| |
Collapse
|
7
|
Abstract
Even though it is only a little over a decade from the discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9) as a plasma protein that associates with both high and low cholesterol syndromes, a rich body of knowledge has developed, and drugs inhibiting this target have been approved in many markets. While the majority of research in recent years has focused on the impact of therapeutic antagonism of this molecule, important lines of investigation have emerged characterizing its unique physiology as it relates to cholesterol metabolism and atherosclerosis. The PCSK9 story is unfolding rapidly but is far from complete. One chapter that is of particular interest is the possible direct link between PCSK9 and atherosclerosis. This review specifically examines this relationship drawing from data produced from experimental models of plaque biology and inflammation, atherosclerosis imaging studies, and observational epidemiology.
Collapse
Affiliation(s)
- Michael D Shapiro
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology
| | - Sergio Fazio
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology
| |
Collapse
|
8
|
Vélez-Pérez JA, Olivares-Quiroz L. Jump transition observed in translocation time for ideal poly-X proteinogenic chains as a result of competing folding and anchoraging contributions. Phys Rev E 2017; 95:012407. [PMID: 28208414 DOI: 10.1103/physreve.95.012407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Indexed: 01/07/2023]
Abstract
In this work we analyze the translocation of homopolymer chains poly-X, where X represents any of the 20 naturally occurring amino acid residues, in terms of size N and single-helical propensity ω. We provide an analytical framework to calculate both the free energy F of translocation and the translocation time τ as a function of chain size N, energies U and ε of the unfolded and folded states, respectively. Our results show that free energy F has a characteristic bell-shaped barrier as function of the percentage of monomers translocated. Inclusion of single-helical propensity ω associated to monomer X and chain's native energy ε in the translocation model increases the energy barrier ΔF up to one order of magnitude as compared with the well-known Gaussian chain model. Computation of the mean first-passage time as function of chain size N shows that the translocation time τ exhibits a significant jump of several orders of magnitude at a critical chain size N. This jump markedly slows down translocation of chains larger than N. Existence of the transition jump of τ has been observed experimentally at least in poly(ethylene oxide) chains [R. P. Choudhury, P. Galvosas, and M. Schönhoff, J. Phys. Chem. B 112, 13245 (2008)]JPCBFK1520-610610.1021/jp804680q. Our results suggest the transition jump of τ as a function of N may be a very well spread feature throughout translocation of poly-X chains.
Collapse
Affiliation(s)
- José Antonio Vélez-Pérez
- Posgrado en Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados del IPN, Ap. Postal 14-740, 07000 México, DF, México
| | - Luis Olivares-Quiroz
- Colegio de Ciencia y Tecnologia and Posgrado en Ciencias de la Complejidad, Universidad Autonoma de la Ciudad de México, CP 09760 México City, México
| |
Collapse
|
9
|
Ganai AA, Farooqi H. Bioactivity of genistein: A review of in vitro and in vivo studies. Biomed Pharmacother 2015; 76:30-8. [PMID: 26653547 DOI: 10.1016/j.biopha.2015.10.026] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/20/2015] [Indexed: 01/06/2023] Open
|
10
|
Lee MR, Lee HY, Lee GH, Kim HK, Kim NY, Kim SH, Kim HR, Chae HJ. Ixeris dentata decreases ER stress and hepatic lipid accumulation through regulation of ApoB secretion. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:639-49. [PMID: 24871656 DOI: 10.1142/s0192415x14500414] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is caused by the hepatic accumulation of saturated fatty acids involving the ER stress mechanism. Secretion of apo lipid carrier proteins and their binding to hepatic TG and cholesterol are affected by ER stress. This study was designed to identify ER stress regulators with potential effects against hepatic lipid accumulation. Ixeris dentata (IXD) is a traditional herbal remedy for indigestion, hepatitis, and diabetes used in Korea, Japan, and China. To examine the regulatory effects of IXD against hepatic lipid accumulation and elucidate its suggested mechanism of ER stress, HepG2 hepatocytes were treated with IXD extract in the presence of palmitate. While palmitate induced an ER stress response in hepatocytes, as indicated by the upregulation of PERK, increased eukaryotic initiation factor 2α (eIF2α) phosphorylation, enhanced expression of GADD153/C/EBP homologous protein (CHOP), and reduced secretion of apoB resulting in hepatic cellular accumulation of triglycerides (TG) and cholesterol, IXD extract significantly inhibited the lipid accumulation and PERK/eIF2α/CHOP-axis of the ER stress response. The inhibition of the PERK/eIF2α/CHOP signaling pathway by IXD in palmitate-treated cells suggests that IXD regulates hepatic dyslipidemia through the regulation of ER stress.
Collapse
Affiliation(s)
- Mi-Rin Lee
- Department of Pharmacology and Institute of Cardiovascular Research, Medical School, Chonbuk National University, Jeonju, Chonbuk, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Taher J, Baker CL, Cuizon C, Masoudpour H, Zhang R, Farr S, Naples M, Bourdon C, Pausova Z, Adeli K. GLP-1 receptor agonism ameliorates hepatic VLDL overproduction and de novo lipogenesis in insulin resistance. Mol Metab 2014; 3:823-33. [PMID: 25506548 PMCID: PMC4264039 DOI: 10.1016/j.molmet.2014.09.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/07/2014] [Accepted: 09/11/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/OBJECTIVES Fasting dyslipidemia is commonly observed in insulin resistant states and mechanistically linked to hepatic overproduction of very low density lipoprotein (VLDL). Recently, the incretin hormone glucagon-like peptide-1 (GLP-1) has been implicated in ameliorating dyslipidemia associated with insulin resistance and reducing hepatic lipid stores. Given that hepatic VLDL production is a key determinant of circulating lipid levels, we investigated the role of both peripheral and central GLP-1 receptor (GLP-1R) agonism in regulation of VLDL production. METHODS The fructose-fed Syrian golden hamster was employed as a model of diet-induced insulin resistance and VLDL overproduction. Hamsters were treated with the GLP-1R agonist exendin-4 by intraperitoneal (ip) injection for peripheral studies or by intracerebroventricular (ICV) administration into the 3rd ventricle for central studies. Peripheral studies were repeated in vagotomised hamsters. RESULTS Short term (7-10 day) peripheral exendin-4 enhanced satiety and also prevented fructose-induced fasting dyslipidemia and hyperinsulinemia. These changes were accompanied by decreased fasting plasma glucose levels, reduced hepatic lipid content and decreased levels of VLDL-TG and -apoB100 in plasma. The observed changes in fasting dyslipidemia could be partially explained by reduced respiratory exchange ratio (RER) thereby indicating a switch in energy utilization from carbohydrate to lipid. Additionally, exendin-4 reduced mRNA markers associated with hepatic de novo lipogenesis and inflammation. Despite these observations, GLP-1R activity could not be detected in primary hamster hepatocytes, thus leading to the investigation of a potential brain-liver axis functioning to regulate lipid metabolism. Short term (4 day) central administration of exendin-4 decreased body weight and food consumption and further prevented fructose-induced hypertriglyceridemia. Additionally, the peripheral lipid-lowering effects of exendin-4 were negated in vagotomised hamsters implicating the involvement of parasympathetic signaling. CONCLUSION Exendin-4 prevents fructose-induced dyslipidemia and hepatic VLDL overproduction in insulin resistance through an indirect mechanism involving altered energy utilization, decreased hepatic lipid synthesis and also requires an intact parasympathetic signaling pathway.
Collapse
Affiliation(s)
- Jennifer Taher
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Christopher L. Baker
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carmelle Cuizon
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hassan Masoudpour
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rianna Zhang
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah Farr
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Mark Naples
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Celine Bourdon
- Physiology and Experimental Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Zdenka Pausova
- Physiology and Experimental Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Khosrow Adeli
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
- Corresponding author. Molecular Structure and Function, The Hospital for Sick Children, 555 University Ave, Atrium Room 3652, Toronto, ON M5G 1X8, Canada. Tel.: +1 416 813 8682; fax: +1 416 813 6257.
| |
Collapse
|
12
|
Amit A, Chaudhary R, Yadav A, Suman SS, Narayan S, Das V, Pandey K, Singh S, Singh BK, Ali V, Das P, Bimal S. Evaluation of Leishmania donovani disulfide isomerase as a potential target of cellular immunity against visceral leishmaniasis. Cell Immunol 2014; 289:76-85. [DOI: 10.1016/j.cellimm.2014.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 11/01/2013] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
|
13
|
Abstract
The liver plays a unique, central role in regulating lipid metabolism. In addition to influencing hepatic function and disease, changes in specific pathways of fatty acid (FA) metabolism have wide-ranging effects on the metabolism of other nutrients, extra-hepatic physiology, and the development of metabolic diseases. The high prevalence of nonalcoholic fatty liver disease (NAFLD) has led to increased efforts to characterize the underlying biology of hepatic energy metabolism and FA trafficking that leads to disease development. Recent advances have uncovered novel roles of metabolic pathways and specific enzymes in generating lipids important for cellular processes such as signal transduction and transcriptional activation. These studies have also advanced our understanding of key branch points involving FA partitioning between metabolic pathways and have identified new roles for lipid droplets in these events. This review covers recent advances in our understanding of FA trafficking and its regulation. An emphasis will be placed on branch points in these pathways and how alterations in FA trafficking contribute to NAFLD and related comorbidities.
Collapse
|
14
|
Abstract
Hepatitis C Virus (HCV) particles exhibit several unusual properties that are not found in other enveloped RNA viruses, most notably their low buoyant density and interaction with serum lipoproteins. With the advent of systems to grow HCV in cell culture, the molecular basis of HCV particle assembly and release can now be addressed. The process of virus assembly involves protein-protein interactions between viral structural and nonstructural proteins and the coordinated action of host factors. This chapter reviews our current understanding of these interactions and factors.
Collapse
Affiliation(s)
- Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
15
|
Molecular cloning, expression, and hormonal regulation of the chicken microsomal triglyceride transfer protein. Gene 2013; 523:1-9. [DOI: 10.1016/j.gene.2013.03.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/03/2013] [Accepted: 03/25/2013] [Indexed: 11/18/2022]
|
16
|
Vélez Pérez JA, Guzmán O, Navarro-García F. Steric contribution of macromolecular crowding to the time and activation energy for preprotein translocation across the endoplasmic reticulum membrane. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012725. [PMID: 23944508 DOI: 10.1103/physreve.88.012725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Indexed: 06/02/2023]
Abstract
Protein translocation from the cytosol to the endoplasmic reticulum (ER) or vice versa, an essential process for cell function, includes the transport of preproteins destined to become secretory, luminal, or integral membrane proteins (translocation) or misfolded proteins returned to the cytoplasm to be degraded (retrotranslocation). An important aspect in this process that has not been fully studied is the molecular crowding at both sides of the ER membrane. By using models of polymers crossing a membrane through a pore, in an environment crowded by either static or dynamic spherical agents, we computed the following transport properties: the free energy, the activation energy, the force, and the transport times for translocation and retrotranslocation. Using experimental protein crowding data for the cytoplasm and ER sides, we showed that dynamic crowding, which resembles biological environments where proteins are translocated or retrotranslocated, increases markedly all the physical properties of translocation and retrotranslocation as compared with translocation in a diluted system. By contrast, transport properties in static crowded systems were similar to those in diluted conditions. In the dynamic regime, the effects of crowding were more notorious in the transport times, leading to a huge difference for large chains. We indicate that this difference is the result of the synergy between the free energy and the diffusivity of the translocating chain. That synergy leads to translocation rates similar to experimental measures in diluted systems, which indicates that the effects of crowding can be measured. Our data also indicate that effects of crowding cannot be neglected when studying translocation because protein dynamic crowding has a relevant steric contribution, which changes the properties of translocation.
Collapse
Affiliation(s)
- José Antonio Vélez Pérez
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, 09340 México, DF, México.
| | | | | |
Collapse
|
17
|
Ye J. Hepatitis C virus: a new class of virus associated with particles derived from very low-density lipoproteins. Arterioscler Thromb Vasc Biol 2012; 32:1099-103. [PMID: 22517369 DOI: 10.1161/atvbaha.111.241448] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus (HCV) infects 3% of the world population and is the leading cause of liver failure in the United States. A unique feature of HCV is that the viral particles are integral to very low-density lipoprotein (VLDL)-derived lipoprotein particles. The virus is assembled into VLDL in hepatocytes and released out of the cells together with VLDL. The virus then infects more hepatocytes by entering the cells through the low-density lipoprotein receptor, which mediates uptake of majorities of VLDL-derived lipoprotein particles. These observations suggest that HCV may belong to a novel class of viruses that is associated with VLDL. Understanding the relationship between HCV and VLDL metabolism may reveal new strategies to treat HCV infection.
Collapse
Affiliation(s)
- Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| |
Collapse
|
18
|
Abstract
Steady increase in the incidence of atherosclerosis is becoming a major concern not only in the United States but also in other countries. One of the major risk factors for the development of atherosclerosis is high concentrations of plasma low-density lipoprotein, which are metabolic products of very low-density lipoprotein (VLDL). VLDLs are synthesized and secreted by the liver. In this review, we discuss various stages through which VLDL particles go from their biogenesis to secretion in the circulatory system. Once VLDLs are synthesized in the lumen of the endoplasmic reticulum, they are transported to the Golgi. The transport of nascent VLDLs from the endoplasmic reticulum to Golgi is a complex multistep process, which is mediated by a specialized transport vesicle, the VLDL transport vesicle. The VLDL transport vesicle delivers VLDLs to the cis-Golgi lumen where nascent VLDLs undergo a number of essential modifications. The mature VLDL particles are then transported to the plasma membrane and secreted in the circulatory system. Understanding of molecular mechanisms and identification of factors regulating the complex intracellular VLDL trafficking will provide insight into the pathophysiology of various metabolic disorders associated with abnormal VLDL secretion and identify potential new therapeutic targets.
Collapse
Affiliation(s)
- Samata Tiwari
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL 32827, USA
| | | |
Collapse
|
19
|
Ai D, Baez JM, Jiang H, Conlon DM, Hernandez-Ono A, Frank-Kamenetsky M, Milstein S, Fitzgerald K, Murphy AJ, Woo CW, Strong A, Ginsberg HN, Tabas I, Rader DJ, Tall AR. Activation of ER stress and mTORC1 suppresses hepatic sortilin-1 levels in obese mice. J Clin Invest 2012; 122:1677-87. [PMID: 22466652 DOI: 10.1172/jci61248] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 02/15/2012] [Indexed: 02/06/2023] Open
Abstract
Recent GWAS have identified SNPs at a human chromosom1 locus associated with coronary artery disease risk and LDL cholesterol levels. The SNPs are also associated with altered expression of hepatic sortilin-1 (SORT1), which encodes a protein thought to be involved in apoB trafficking and degradation. Here, we investigated the regulation of Sort1 expression in mouse models of obesity. Sort1 expression was markedly repressed in both genetic (ob/ob) and high-fat diet models of obesity; restoration of hepatic sortilin-1 levels resulted in reduced triglyceride and apoB secretion. Mouse models of obesity also exhibit increased hepatic activity of mammalian target of rapamycin complex 1 (mTORC1) and ER stress, and we found that administration of the mTOR inhibitor rapamycin to ob/ob mice reduced ER stress and increased hepatic sortilin-1 levels. Conversely, genetically increased hepatic mTORC1 activity was associated with repressed Sort1 and increased apoB secretion. Treating WT mice with the ER stressor tunicamycin led to marked repression of hepatic sortilin-1 expression, while administration of the chemical chaperone PBA to ob/ob mice led to amelioration of ER stress, increased sortilin-1 expression, and reduced apoB and triglyceride secretion. Moreover, the ER stress target Atf3 acted at the SORT1 promoter region as a transcriptional repressor, whereas knockdown of Atf3 mRNA in ob/ob mice led to increased hepatic sortilin-1 levels and decreased apoB and triglyceride secretion. Thus, in mouse models of obesity, induction of mTORC1 and ER stress led to repression of hepatic Sort1 and increased VLDL secretion via Atf3. This pathway may contribute to dyslipidemia in metabolic disease.
Collapse
Affiliation(s)
- Ding Ai
- Department of Medicine, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Grubb S, Guo L, Fisher EA, Brodsky JL. Protein disulfide isomerases contribute differentially to the endoplasmic reticulum-associated degradation of apolipoprotein B and other substrates. Mol Biol Cell 2011; 23:520-32. [PMID: 22190736 PMCID: PMC3279382 DOI: 10.1091/mbc.e11-08-0704] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ER-associated degradation (ERAD) rids the early secretory pathway of misfolded or misprocessed proteins. Some members of the protein disulfide isomerase (PDI) family appear to facilitate ERAD substrate selection and retrotranslocation, but a thorough characterization of PDIs during the degradation of diverse substrates has not been undertaken, in part because there are 20 PDI family members in mammals. PDIs can also exhibit disulfide redox, isomerization, and/or chaperone activity, but which of these activities is required for the ERAD of different substrate classes is unknown. We therefore examined the fates of unique substrates in yeast, which expresses five PDIs. Through the use of a yeast expression system for apolipoprotein B (ApoB), which is disulfide rich, we discovered that Pdi1 interacts with ApoB and facilitates degradation through its chaperone activity. In contrast, Pdi1's redox activity was required for the ERAD of CPY* (a misfolded version of carboxypeptidase Y that has five disulfide bonds). The ERAD of another substrate, the alpha subunit of the epithelial sodium channel, was Pdi1 independent. Distinct effects of mammalian PDI homologues on ApoB degradation were then observed in hepatic cells. These data indicate that PDIs contribute to the ERAD of proteins through different mechanisms and that PDI diversity is critical to recognize the spectrum of potential ERAD substrates.
Collapse
Affiliation(s)
- Sarah Grubb
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
21
|
Curcio CA, Johnson M, Huang JD, Rudolf M. Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res 2009; 28:393-422. [PMID: 19698799 PMCID: PMC4319375 DOI: 10.1016/j.preteyeres.2009.08.001] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The largest risk factor for age-related macular degeneration (ARMD) is advanced age. A prominent age-related change in the human retina is the accumulation of histochemically detectable neutral lipid in normal Bruch's membrane (BrM) throughout adulthood. This change has the potential to have a major impact on physiology of the retinal pigment epithelium (RPE). It occurs in the same compartment as drusen and basal linear deposit, the pathognomonic extracellular, lipid-containing lesions of ARMD. Here we present evidence from light microscopic histochemistry, ultrastructure, lipid profiling of tissues and isolated lipoproteins, and gene expression analysis that this deposition can be accounted for by esterified cholesterol-rich, apolipoprotein B-containing lipoprotein particles constitutively produced by the RPE. This work collectively allows ARMD lesion formation and its aftermath to be conceptualized as a response to the retention of a sub-endothelial apolipoprotein B lipoprotein, similar to a widely accepted model of atherosclerotic coronary artery disease (CAD) (Tabas et al., 2007). This approach provides a wide knowledge base and sophisticated clinical armamentarium that can be readily exploited for the development of new model systems and the future benefit of ARMD patients.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, AL 35294-0009, USA.
| | | | | | | |
Collapse
|
22
|
Levy E, Ménard D, Delvin E, Montoudis A, Beaulieu JF, Mailhot G, Dubé N, Sinnett D, Seidman E, Bendayan M. Localization, function and regulation of the two intestinal fatty acid-binding protein types. Histochem Cell Biol 2009; 132:351-67. [PMID: 19499240 DOI: 10.1007/s00418-009-0608-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2009] [Indexed: 01/20/2023]
Abstract
Although intestinal (I) and liver (L) fatty acid binding proteins (FABP) have been widely studied, the physiological significance of the presence of the two FABP forms (I- and L-FABP) in absorptive cells remains unknown as do the differences related to their distribution along the crypt-villus axis, regional expression, ontogeny and regulation in the human intestine. Our morphological experiments supported the expression of I- and L-FABP as early as 13 weeks of gestation. Whereas cytoplasmic immunofluorescence staining of L-FABP was barely detectable in the lower half of the villus and in the crypt epithelial cells, I-FABP was visualized in epithelial cells of the crypt-villus axis in all intestinal segments until the adult period in which the staining was maximized in the upper part of the villus. Immunoelectron microscopy revealed more intense labeling of L-FABP compared with I-FABP, accompanied with a heterogeneous distribution in the cytoplasm, microvilli and basolateral membranes. By western blot analysis, I- and L-FABP at 15 weeks of gestation appeared predominant in jejunum compared with duodenum, ileum, proximal and distal colon. Exploration of the maturation aspect documented a rise in L-FABP in adult tissues. Permanent transfections of Caco-2 cells with I-FABP cDNA resulted in decreased lipid export, apolipoprotein (apo) biogenesis and chylomicron secretion. Additionally, supplementation of Caco-2 with insulin, hydrocortisone and epidermal growth factor differentially modulated the expression of I- and L-FABP, apo B-48 and microsomal triglyceride transfer protein (MTP), emphasizing that these key proteins do not exhibit a parallel modulation. Overall, our findings indicate that the two FABPs display differences in localization, regulation and developmental pattern.
Collapse
Affiliation(s)
- Emile Levy
- Department of Nutrition, CHU-Sainte-Justine, University of Montreal, 3175 Côte Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jiang ZG, Liu Y, Hussain MM, Atkinson D, McKnight CJ. Reconstituting initial events during the assembly of apolipoprotein B-containing lipoproteins in a cell-free system. J Mol Biol 2008; 383:1181-94. [PMID: 18804479 PMCID: PMC2637522 DOI: 10.1016/j.jmb.2008.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/02/2008] [Accepted: 09/04/2008] [Indexed: 12/12/2022]
Abstract
The synthesis of apolipoprotein B (apoB) dictates the formation of chylomicrons and very low-density lipoproteins, two major lipoprotein precursors in the human plasma. Despite its biological significance, the mechanism of the assembly of these apoB-containing lipoproteins remains elusive. An essential obstacle is the lack of systems that allow fine dissection of key components during assembly, including nascent apoB peptide, lipids in defined forms, chaperones, and microsomal triglyceride transfer protein (MTP). In this study, we used a prokaryotic cell-free expression system to reconstitute early events in the assembly of apoB-containing lipoprotein that involve the N-terminal domains of apoB. Our study shows that N-terminal domains larger than 20.5% of apoB (B20.5) have an intrinsic ability to remodel vesicular phospholipid bilayers into discrete protein-lipid complexes. The presence of appropriate lipid substrates during apoB translation plays a pivotal role for successful lipid recruitment, and similar lipid recruitment fails to occur if the lipids are added posttranslationally. Cotranslational presence of MTP can dramatically promote the folding of B6.4-20.5 and B6.4-22. Furthermore, apoB translated in the presence of MTP retains its phospholipid recruitment capability posttranslationally. Our data suggest that during the synthesis of apoB, the N-terminal domain has a short window for intrinsic phospholipid recruitment, the time frame of which is predetermined by the environment where apoB synthesis occurs. The presence of MTP prolongs this window of time by acting as a chaperone. The absence of either proper lipid substrate or MTP may result in the improper folding of apoB and, consequently, its degradation.
Collapse
Affiliation(s)
- Z. Gordon Jiang
- Department of Physiology and Biophysics, Boston University School of Medicine, University of New York, Downstate Medical Center, Brooklyn, NY 11203
| | - Yuhang Liu
- Department of Physiology and Biophysics, Boston University School of Medicine, University of New York, Downstate Medical Center, Brooklyn, NY 11203
| | - M. Mahmood Hussain
- Department of Anatomy and Cell Biology and Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY 11203
| | - David Atkinson
- Department of Physiology and Biophysics, Boston University School of Medicine, University of New York, Downstate Medical Center, Brooklyn, NY 11203
| | - C. James McKnight
- Department of Physiology and Biophysics, Boston University School of Medicine, University of New York, Downstate Medical Center, Brooklyn, NY 11203
| |
Collapse
|
24
|
Babin PJ, Gibbons GF. The evolution of plasma cholesterol: direct utility or a "spandrel" of hepatic lipid metabolism? Prog Lipid Res 2008; 48:73-91. [PMID: 19049814 DOI: 10.1016/j.plipres.2008.11.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 02/07/2023]
Abstract
Fats provide a concentrated source of energy for multicellular organisms. The efficient transport of fats through aqueous biological environments raises issues concerning effective delivery to target tissues. Furthermore, the utilization of fatty acids presents a high risk of cytotoxicity. Improving the efficiency of fat transport while simultaneously minimizing the cytotoxic risk confers distinct selective advantages. In humans, most of the plasma cholesterol is associated with low-density lipoprotein (LDL), a metabolic by-product of very-low-density lipoprotein (VLDL), which originates in the liver. However, the functions of VLDL are not clear. This paper reviews the evidence that LDL arose as a by-product during the natural selection of VLDL. The latter, in turn, evolved as a means of improving the efficiency of diet-derived fatty acid storage and utilization, as well as neutralizing the potential cytotoxicity of fatty acids while conserving their advantages as a concentrated energy source. The evolutionary biology of lipid transport processes has provided a fascinating insight into how and why these VLDL functions emerged during animal evolution. As causes of historical origin must be separated from current utilities, our spandrel-LDL theory proposes that LDL is a spandrel of VLDL selection, which appeared non-adaptively and may later have become crucial for vertebrate fitness.
Collapse
Affiliation(s)
- Patrick J Babin
- Université Bordeaux 1, Génomique et Physiologie des Poissons, UMR NuAGe, 33405 Talence, France
| | | |
Collapse
|
25
|
Hooper AJ, van Bockxmeer FM, Burnett JR. Monogenic Hypocholesterolaemic Lipid Disorders and Apolipoprotein B Metabolism. Crit Rev Clin Lab Sci 2008; 42:515-45. [PMID: 16390683 DOI: 10.1080/10408360500295113] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The study of apolipoprotein (apo) B metabolism is central to our understanding of human lipoprotein metabolism. Moreover, the assembly and secretion of apoB-containing lipoproteins is a complex process. Increased plasma concentrations of apoB-containing lipoproteins are an important risk factor for the development of atherosclerotic coronary heart disease. In contrast, decreased levels of, but not the absence of, these apoB-containing lipoproteins is associated with resistance to atherosclerosis and potential long life. The study of inherited monogenic dyslipidaemias has been an effective means to elucidate key metabolic steps and biologically relevant mechanisms. Naturally occurring gene mutations in affected families have been useful in identifying important domains of apoB and microsomal triglyceride transfer protein (MTP) governing the metabolism of apoB-containing lipoproteins. Truncation-causing mutations in the APOB gene cause familial hypobetalipoproteinaemia, whereas mutations in MTP result in abetalipoproteinaemia; both rare conditions are characterised by marked hypocholesterolaemia. The purpose of this review is to examine the role of apoB in lipoprotein metabolism and to explore the key biochemical, clinical, metabolic and genetic features of the monogenic hypocholesterolaemic lipid disorders affecting apoB metabolism.
Collapse
Affiliation(s)
- Amanda J Hooper
- School of Surgery and Pathology, University of Western Australia, Crawley, Australia
| | | | | |
Collapse
|
26
|
Fisher EA, Lapierre LR, Junkins RD, McLeod RS. The AAA-ATPase p97 facilitates degradation of apolipoprotein B by the ubiquitin-proteasome pathway. J Lipid Res 2008; 49:2149-60. [DOI: 10.1194/jlr.m800108-jlr200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Toh SA, Rader DJ. Dyslipidemia in insulin resistance: clinical challenges and adipocentric therapeutic frontiers. Expert Rev Cardiovasc Ther 2008; 6:1007-22. [PMID: 18666851 DOI: 10.1586/14779072.6.7.1007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ever-increasing rates of obesity and diabetes worldwide have the potential to further fuel the epidemic of cardiovascular disease that we are experiencing today. To slow this epidemic successfully, insulin resistance and associated lipid abnormalities that frequently accompany it are key clinical targets. Yet, we are still challenged to reach the mandated clinical goals for lipids that would minimize the development and progression of cardiovascular disease. Adoption of a comprehensive approach by clinicians, in line with recent recommendations for stricter treatment goals for the at-risk patient, is essential to achieving cardiovascular risk reduction. The challenge for clinicians is integrating strategies, approaches and treatments that address the multiple metabolic defects in patients with insulin resistance and dyslipidemia. New perspectives can help effectively meet this ongoing challenge. Emerging evidence suggests that adipose tissue is intimately involved in the inter-relationships between insulin resistance and dyslipidemia. The future probably involves therapeutic strategies that directly target adipose tissue to optimally reduce cardiometabolic risk.
Collapse
Affiliation(s)
- Sue-Anne Toh
- Division of Endocrinology, Diabetes and Metabolism, University of Pennsylvania, 1 Maloney Building, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
28
|
Allister EM, Mulvihill EE, Barrett PHR, Edwards JY, Carter LP, Huff MW. Inhibition of apoB secretion from HepG2 cells by insulin is amplified by naringenin, independent of the insulin receptor. J Lipid Res 2008; 49:2218-29. [PMID: 18587069 DOI: 10.1194/jlr.m800297-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hepatic overproduction of apolipoprotein B (apoB)-containing lipoproteins is characteristic of the dyslipidemia associated with insulin resistance. Recently, we demonstrated that the flavonoid naringenin, like insulin, decreased apoB secretion from HepG2 cells by activation of both the phosphoinositide-3-kinase (PI3-K) pathway and the mitogen-activated protein kinase/extracellular-regulated kinase (MAPK(erk)) pathway. In the present study, we determined whether naringenin-induced signaling required the insulin receptor (IR) and sensitized the cell to the effects of insulin, and whether the kinetics of apoB assembly and secretion in cells exposed to naringenin were similar to those of insulin. Immunoblot analysis revealed that insulin stimulated maximal phosphorylation of IR and IR substrate-1 after 10 min, whereas naringenin did not affect either at any time point up to 60 min. The combination of naringenin and submaximal concentrations of insulin potentiated extracellular-regulated kinase 1/2 activation and enhanced upregulation of the LDL receptor, downregulation of microsomal triglyceride transfer protein expression, and inhibition of apoB-100 secretion. Multicompartmental modeling of apoB pulse-chase studies revealed that attenuation of secreted radiolabeled apoB in naringenin- or insulin-treated cells was similar under lipoprotein-deficient or oleate-stimulated conditions. Naringenin and insulin both stimulated intracellular apoB degradation via a kinetically defined rapid pathway. Therefore, naringenin, like insulin, inhibits apoB secretion through activation of both PI3-K and MAPK(erk) signaling, resulting in similar kinetics of apoB secretion. However, the mechanism for naringenin-induced signaling is independent of the IR. Naringenin represents a possible strategy for reduction of hepatic apoB secretion, particularly in the setting of insulin resistance.
Collapse
Affiliation(s)
- Emma M Allister
- Robarts Research Institute, Departments of Medicine and Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Lo CM, Nordskog BK, Nauli AM, Zheng S, Vonlehmden SB, Yang Q, Lee D, Swift LL, Davidson NO, Tso P. Why does the gut choose apolipoprotein B48 but not B100 for chylomicron formation? Am J Physiol Gastrointest Liver Physiol 2008; 294:G344-52. [PMID: 18006607 DOI: 10.1152/ajpgi.00123.2007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chylomicrons produced by the human gut contain apolipoprotein (apo) B48, whereas very-low-density lipoproteins made by the liver contain apo B100. To study how these molecules function during lipid absorption, we examined the process as it occurs in apobec-1 knockout mice (able to produce only apo B100; KO) and in wild-type mice (of which the normally functioning intestine makes apo B48, WT). Using the lymph fistula model, we studied the process of lipid absorption when animals were intraduodenally infused with a lipid emulsion (4 or 6 micromol/h of triolein). KO mice transported triacylglycerol (TG) as efficiently as WT mice when infused with the lower lipid dose; when infused with 6 micromol/h of triolein, however, KO mice transported significantly less TG to lymph than WT mice, leading to the accumulation of mucosal TG. Interestingly, the size of lipoprotein particles from both KO and WT mice were enlarged to chylomicron-size particles during absorption of the higher dose. These increased-size particles produced by KO mice were not associated with increased apo AIV secretion. However, we found that the gut of the KO mice secreted fewer apo B molecules to lymph (compared with WT), during both fasting and lipid infusion, leading us to conclude that the KO gut produced fewer numbers of TG-rich lipoproteins (including chylomicron) than the wild-type animals. The reduced apo B secretion in KO mice was not related to reduced microsomal triglyceride transfer protein lipid transfer activity. We propose that apo B48 is the preferred protein for the gut to coat chylomicrons to ensure efficient chylomicron formation and lipid absorption.
Collapse
Affiliation(s)
- Chun-Min Lo
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ota T, Gayet C, Ginsberg HN. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest 2008; 118:316-32. [PMID: 18060040 PMCID: PMC2104481 DOI: 10.1172/jci32752] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 10/03/2007] [Indexed: 12/30/2022] Open
Abstract
ER stress can cause hepatic insulin resistance and steatosis. Increased VLDL secretion could protect the liver from ER stress-induced steatosis, but the effect of lipid-induced ER stress on the secretion of VLDL is unknown. To determine the effect of lipids on hepatic ER stress and VLDL secretion, we treated McA-RH7777 liver cells with free fatty acids. Prolonged exposure increased cell triglycerides, induced steatosis, and increased ER stress. Effects on apoB100 secretion, which is required for VLDL assembly, were parabolic, with moderate free fatty acid exposure increasing apoB100 secretion, while greater lipid loading inhibited apoB100 secretion. This decreased secretion at higher lipid levels was due to increased protein degradation through both proteasomal and nonproteasomal pathways and was dependent on the induction of ER stress. These findings were supported in vivo, where intravenous infusion of oleic acid (OA) in mice increased ER stress in a duration-dependent manner. apoB secretion was again parabolic, stimulated by moderate, but not prolonged, OA infusion. Inhibition of ER stress was able to restore OA-stimulated apoB secretion after prolonged OA infusion. These results suggest that excessive ER stress in response to increased hepatic lipids may decrease the ability of the liver to secrete triglycerides by limiting apoB secretion, potentially worsening steatosis.
Collapse
Affiliation(s)
- Tsuguhito Ota
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
31
|
Yamaguchi J, Conlon DM, Liang JJ, Fisher EA, Ginsberg HN. Translocation Efficiency of Apolipoprotein B Is Determined by the Presence of β-Sheet Domains, Not Pause Transfer Sequences. J Biol Chem 2006; 281:27063-71. [PMID: 16854991 DOI: 10.1074/jbc.m606809200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cotranslational translocation of apoB100 across the endoplasmic reticulum (ER) membrane is inefficient, resulting in exposure of nascent apoB on the cytosolic surface of the ER. This predisposes apoB100 to ubiquitinylation and targeting for proteasomal degradation. It has been suggested that pause transfer sequences (PTS) present throughout apoB cause inefficient translocation. On the other hand, our previous study demonstrated that the translocation efficiency of apoB100 is dependent on the presence of a beta-sheet domain between 29 and 34% of full-length apoB100 (Liang, J.-S., Wu, X., Jiang, H., Zhou, M., Yang, H., Angkeow, P., Huang, L.-S., Sturley, S. L., and Ginsberg, H. N. (1998) J. Biol. Chem. 273, 35216-35221); this region of apoB has no PTS. However, the effects of the beta-sheet domain may require the presence of PTS elsewhere in the N-terminal region of apoB100. To further investigate the roles of PTS and beta-sheet domains in the translocation of apoB100 across the ER, we transfected McArdle RH7777, HepG2, or Chinese hamster ovary cells with human albumin (ALB)/human apoB chimeric cDNA constructs: ALB/B12-17 (two PTS but no beta-sheet), ALB/B29-34 (beta-sheet but no PTS), ALB/B36-41 (two PTS and a beta-sheet), and ALB/B49-54 (neither PTS nor a beta-sheet). ALB/ALB1-40 served as a control. Compared with ALB/ALB1-40, secretion rates of ALB/B12-17, ALB/B29-34, and ALB/B36-41 were reduced. Secretion of ALB/B49-54 was similar to that of ALB/ALB1-40. However, only ALB/B29-34 and ALB/B36-41 had increased proteinase K sensitivity, ubiquitinylation, and increased physical interaction with Sec61alpha. These results indicate that the translocation efficiency of apoB100 is determined mainly by the presence of beta-sheet domains. PTS do not appear to affect translocation, but may affect secretion by other mechanisms.
Collapse
Affiliation(s)
- Junji Yamaguchi
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
32
|
Tavridou A, Kaklamanis L, Megaritis G, Kourounakis AP, Papalois A, Roukounas D, Rekka EA, Kourounakis PN, Charalambous A, Manolopoulos VG. Pharmacological characterization in vitro of EP2306 and EP2302, potent inhibitors of squalene synthase and lipid biosynthesis. Eur J Pharmacol 2006; 535:34-42. [PMID: 16545796 DOI: 10.1016/j.ejphar.2006.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 01/26/2006] [Accepted: 02/07/2006] [Indexed: 11/21/2022]
Abstract
We investigated the effects of EP2306 and EP2302, two novel 2-biphenylmorpholine derivatives, on squalene synthase activity in rabbit and human liver microsomes, lipid biosynthesis, low-density lipoprotein (LDL) receptor expression and LDL protein uptake as well as apoB secretion in HepG2 cells. Both EP2306 and EP2302 inhibited squalene synthase activity dose-dependently. In rabbit liver microsomes, the IC50 values were 33 microM for EP2306 and 0.6 microM for EP2302 whereas in human liver microsomes, they were 63 microM for EP2306 and 1 microM for EP2302. Both EP2300 compounds inhibited cholesterol production by HepG2 cells dose dependently with IC50 values of 13.3 microM for EP2306 and 3 microM for EP2302. Furthermore, both EP2300 compounds and simvastatin significantly reduced triglyceride synthesis and apoB secretion and increased LDL receptor expression and LDL uptake in HepG2 cells. In summary, we have shown that EP2300 compounds are potent inhibitors of squalene synthase activity in rabbit and human liver microsomes and also they are effective inhibitors of cholesterol and triglyceride biosynthesis in HepG2 cells. These results suggest that EP2306 and EP2302 might prove to be useful for lipid-lowering and treatment of atherosclerosis in vivo.
Collapse
Affiliation(s)
- Anna Tavridou
- ELPEN Pharmaceutical Co Inc., 95 Marathonos Av.,19009 Pikermi, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Avramoglu RK, Basciano H, Adeli K. Lipid and lipoprotein dysregulation in insulin resistant states. Clin Chim Acta 2006; 368:1-19. [PMID: 16480697 DOI: 10.1016/j.cca.2005.12.026] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 12/15/2005] [Accepted: 12/20/2005] [Indexed: 12/30/2022]
Abstract
Insulin resistant states are commonly associated with an atherogenic dyslipidemia that contributes to significantly higher risk of atherosclerosis and cardiovascular disease. Indeed, disorders of carbohydrate and lipid metabolism co-exist in the majority of subjects with the "metabolic syndrome" and form the basis for the definition and diagnosis of this complex syndrome. The most fundamental defect in these patients is resistance to cellular actions of insulin, particularly resistance to insulin-stimulated glucose uptake. Insulin insensitivity appears to cause hyperinsulinemia, enhanced hepatic gluconeogenesis and glucose output, reduced suppression of lipolysis in adipose tissue leading to a high free fatty acid flux, and increased hepatic very low density lipoprotein (VLDL) secretion causing hypertriglyceridemia and reduced plasma levels of high density lipoprotein (HDL) cholesterol. Although the link between insulin resistance and dysregulation of lipoprotein metabolism is well established, a significant gap of knowledge exists regarding the underlying cellular and molecular mechanisms. Emerging evidence suggests that insulin resistance and its associated metabolic dyslipidemia result from perturbations in key molecules of the insulin signaling pathway, including overexpression of key phosphatases, downregulation and/or activation of key protein kinase cascades, leading to a state of mixed hepatic insulin resistance and sensitivity. These signaling changes in turn cause an increased expression of sterol regulatory element binding protein (SREBP) 1c, induction of de novo lipogensis and higher activity of microsomal triglyceride transfer protein (MTP), which together with high exogenous free fatty acid (FFA) flux collectively stimulate the hepatic production of apolipoprotein B (apoB)-containing VLDL particles. VLDL overproduction underlies the high triglyceride/low HDL-cholesterol lipid profile commonly observed in insulin resistant subjects.
Collapse
Affiliation(s)
- Rita Kohen Avramoglu
- Clinical Biochemistry Division, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | | | | |
Collapse
|
34
|
Tachibana S, Sato K, Cho Y, Chiba T, Schneider WJ, Akiba Y. Octanoate reduces very low-density lipoprotein secretion by decreasing the synthesis of apolipoprotein B in primary cultures of chicken hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1737:36-43. [PMID: 16226916 DOI: 10.1016/j.bbalip.2005.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 08/28/2005] [Accepted: 09/06/2005] [Indexed: 10/25/2022]
Abstract
Fatty acids of varying lengths and saturation differentially affect plasma apolipoprotein B (apoB) levels. To identify the mechanisms underlying the effect of octanoate on very low-density lipoprotein (VLDL) secretion, chicken primary hepatocytes were incubated with either fatty acid-bovine serum albumin (BSA) complexes or BSA alone. Addition of octanoate to culture medium significantly reduced VLDL-triacylglycerol (TG), VLDL-cholesterol and apoB secretion from hepatocytes compared to both control cultures with BSA only and palmitate treatments, but did not modulate intracellular TG accumulation. However, no differences in cellular microsomal triglyceride transfer protein levels were observed in the cultures with saturated fatty acid. In pulse-chase studies, octanoate treatment resulted in reduced apoB-100 synthesis, in agreement with its promotion of secretion. This characteristic effect of octanoate was confirmed by addition of a protease inhibitor, N-acetyl-leucyl-leucyl-norleucinal (ALLN), to hepatocyte cultures. Analysis showed that the level of apoB mRNA was lower in cultures supplemented with octanoate than in the control cultures, but no significant changes were observed in the levels of apolipoprotein A-I, fatty acid synthase and 3-hydroxy-3-methylglutaryl-CoA reductase mRNA as a result of octanoate treatment. Time-course studies indicate that a 50% reduction in apoB mRNA levels requires 12 h of incubation with octanoate. We conclude that octanoate reduced VLDL secretion by the specific down-regulation of apoB gene expression and impairment of subsequent synthesis of apoB, not by the modulation of intracellular apoB degradation, which is known to be a major regulatory target of VLDL secretion of other fatty acids.
Collapse
Affiliation(s)
- Shizuko Tachibana
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Gilham D, Perreault KR, Holmes CFB, Brindley DN, Vance DE, Lehner R. Insulin, glucagon and fatty acid treatment of hepatocytes does not result in phosphorylation or changes in activity of triacylglycerol hydrolase. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1736:189-99. [PMID: 16168708 DOI: 10.1016/j.bbalip.2005.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 10/25/2022]
Abstract
It is recognized that the majority of very low density lipoprotein (VLDL) associated triacylglycerol (TG) is synthesized from fatty acids and partial acylglycerols generated by lipolysis of intra-hepatic storage rather than made de novo. Triacylglycerol hydrolase (TGH) is involved in mobilizing stored TG. Modulating the ability of TGH to hydrolyze stored lipids represents a potentially regulated and rate limiting step in VLDL assembly. Phosphorylation of lipases and carboxylesterases trigger diverse but functionally significant events. We explored the potential for regulating the mobilization of hepatic TG through phosphorylation of TGH. Insulin is known to suppress VLDL secretion from liver, and glucagon can be considered an opposing hormone. However, neither insulin nor glucagon treatment of hepatocytes led to phosphorylation of TGH or changes in its activity. Augmenting intracellular TG stores by incubations with oleic acid also did not lead to changes in TGH activity. Therefore, changes in phosphorylation state are not a mechanism for regulating TGH activity, access to TG substrate pools or for TGH-mediated contributions to VLDL assembly and secretion.
Collapse
Affiliation(s)
- Dean Gilham
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | | | | | |
Collapse
|
36
|
Chuang SM, Madura K. Saccharomyces cerevisiae Ub-conjugating enzyme Ubc4 binds the proteasome in the presence of translationally damaged proteins. Genetics 2005; 171:1477-84. [PMID: 16118187 PMCID: PMC1456077 DOI: 10.1534/genetics.105.046888] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Surveillance mechanisms that monitor protein synthesis can promote rapid elimination of misfolded nascent proteins. We showed that the translation elongation factor eEF1A and the proteasome subunit Rpt1 play a central role in the translocation of nascent-damaged proteins to the proteasome. We show here that multiubiquitinated proteins, and the ubiquitin-conjugating (E2) enzyme Ubc4, are rapidly detected in the proteasome following translational damage. However, Ubc4 levels in the proteasome were reduced significantly in a strain that expressed a mutant Rpt1 subunit. Ubc4 and Ubc5 are functionally redundant E2 enzymes that represent ideal candidates for ubiquitinating damaged nascent proteins because they lack significant substrate specificity, are required for the degradation of bulk, damaged proteins, and contribute to cellular stress-tolerance mechanisms. In agreement with this hypothesis, we determined that ubc4Delta ubc5Delta is exceedingly sensitive to protein translation inhibitors. Collectively, these studies suggest a specific role for Ubc4 and Ubc5 in the degradation of cotranslationally damaged proteins that are targeted to the proteasome.
Collapse
Affiliation(s)
- Show-Mei Chuang
- Department of Biochemistry, Rm. 383, SPH/Research Building, Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
37
|
Gilham D, Alam M, Gao W, Vance DE, Lehner R. Triacylglycerol hydrolase is localized to the endoplasmic reticulum by an unusual retrieval sequence where it participates in VLDL assembly without utilizing VLDL lipids as substrates. Mol Biol Cell 2004; 16:984-96. [PMID: 15601899 PMCID: PMC545928 DOI: 10.1091/mbc.e04-03-0224] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The majority of hepatic intracellular triacylglycerol (TG) is mobilized by lipolysis followed by reesterification to reassemble TG before incorporation into a very-low-density lipoprotein (VLDL) particle. Triacylglycerol hydrolase (TGH) is a lipase that hydrolyzes TG within hepatocytes. Immunogold electron microscopy in transfected cells revealed a disparate distribution of this enzyme within the endoplasmic reticulum (ER), with particularly intense localization in regions surrounding mitochondria. TGH is localized to the lumen of the ER by the C-terminal tetrapeptide sequence HIEL functioning as an ER retention signal. Deletion of HIEL resulted in secretion of catalytically active TGH. Mutation of HIEL to KDEL, which is the consensus ER retrieval sequence in animal cells, also resulted in ER retention and conservation of lipolytic activity. However, KDEL-TGH was not as efficient at mobilizing lipids for VLDL secretion and exhibited an altered distribution within the ER. TGH is a glycoprotein, but glycosylation is not required for catalytic activity. TGH does not hydrolyze apolipoprotein B-associated lipids. This suggests a mechanism for vectored movement of TGs onto developing VLDL in the ER as TGH may mobilize TG for VLDL assembly, but will not access this lipid once it is associated with VLDL.
Collapse
Affiliation(s)
- Dean Gilham
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | | | | | | |
Collapse
|
38
|
Liang JJ, Oelkers P, Guo C, Chu PC, Dixon JL, Ginsberg HN, Sturley SL. Overexpression of human diacylglycerol acyltransferase 1, acyl-coa:cholesterol acyltransferase 1, or acyl-CoA:cholesterol acyltransferase 2 stimulates secretion of apolipoprotein B-containing lipoproteins in McA-RH7777 cells. J Biol Chem 2004; 279:44938-44. [PMID: 15308631 DOI: 10.1074/jbc.m408507200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The relative importance of each core lipid in the assembly and secretion of very low density lipoproteins (VLDL) has been of interest over the past decade. The isolation of genes encoding diacylglycerol acyltransferase (DGAT) and acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) provided the opportunity to investigate the effects of isolated increases in triglycerides (TG) or cholesteryl esters (CE) on apolipoprotein B (apoB) lipoprotein biogenesis. Overexpression of human DGAT1 in rat hepatoma McA-RH7777 cells resulted in increased synthesis, cellular accumulation, and secretion of TG. These effects were associated with decreased intracellular degradation and increased secretion of newly synthesized apoB as VLDL. Similarly, overexpression of human ACAT1 or ACAT2 in McA-RH7777 cells resulted in increased synthesis, cellular accumulation, and secretion of CE. This led to decreased intracellular degradation and increased secretion of VLDL apoB. Overexpression of ACAT2 had a significantly greater impact upon assembly and secretion of VLDL from liver cells than did overexpression of ACAT1. The addition of oleic acid (OA) to media resulted in a further increase in VLDL secretion from cells expressing DGAT1, ACAT1, or ACAT2. VLDL secreted from DGAT1-expressing cells incubated in OA had a higher TG:CE ratio than VLDL secreted from ACAT1- and ACAT2-expressing cells treated with OA. These studies indicate that increasing DGAT1, ACAT1, or ACAT2 expression in McA-RH7777 cells stimulates the assembly and secretion of VLDL from liver cells and that the core composition of the secreted VLDL reflects the enzymatic activity that is elevated.
Collapse
Affiliation(s)
- John J Liang
- Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Rasouli M, Trischuk TC, Lehner R. Calmodulin antagonist W-7 inhibits de novo synthesis of cholesterol and suppresses secretion of de novo synthesized and preformed lipids from cultured hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1682:92-101. [PMID: 15158760 DOI: 10.1016/j.bbalip.2004.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 01/05/2004] [Accepted: 02/06/2004] [Indexed: 11/17/2022]
Abstract
The effects of a calmodulin antagonist W-7 were studied on the synthesis and secretion of lipids in primary rat hepatocytes and McArdle-RH7777 cells. In time course experiments, W-7 (20 microM) inhibited secretion of newly synthesized triacyl[(3)H]glycerol by 35%. When the cells were pre-treated overnight with W-7 (20 microM), followed by incubation with [(3)H]oleate, a significant decrease in the secretion of triacylglycerol (TG) and cholesteryl ester (CE) was observed. De novo synthesis of cholesterol from acetate or mevalonolactone was inhibited by W-7, but not glycerolipid synthesis from glycerol and oleic acid precursors. Concentration-response curves for the effects of overnight pre-incubation with W-7 followed labeling with [(3)H]glycerol and [(14)C]mevalonolactone revealed that: (1). the inhibitory effect of W-7 was concentration-dependent and appeared even at the lowest concentration examined (1 microM). W-7 at a concentration of 20 microM suppressed secretion of TG by 60% (P<or=0.002), phosphatidylcholine (PC) by 31% (P<or=0.05), CE by 59% (P<or=0.002) and cholesterol by 64% (P<or=0.002). (2). The incorporation of [(14)C]mevalonolactone into cellular cholesterol and CE was decreased significantly, while W-7 did not have any significant effect upon incorporation of [(3)H]glycerol into glycerolipids, except at the highest concentration examined (50 microM), where synthesis of both TG and PC was significantly suppressed. (3). While the percentage of secreted de novo synthesized glycerolipids and CE decreased proportionally with increasing concentration of W-7, the percentage of secreted newly made cholesterol remained unaffected at any concentration of W-7. In the absence of W-7, about 19% of newly formed cholesterol became esterified into CE, whereas W-7 increased cholesterol esterification in a concentration-dependent manner. (4) W-7 (20 microM) also suppressed the secretion of preformed cholesterol by 24% and CE by 55% but did not affect the recruitment of preformed cholesterol for esterification. About 6.5% of pre-labeled cholesterol and 20% of CE were directed to secretion, which was suppressed in the presence of W-7 by 17% (P<or=0.09) and 48% (P<or=0.001), respectively. These results suggest that, W-7 in the range of 1-20 microM inhibited de novo synthesis of cholesterol and the secretion of both de novo synthesized and preformed lipids.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Departments of Pediatrics and Cell Biology, University of Alberta, 328 Heritage Medical Research Centre, Edmonton, AB, Canada T6G 2S2
| | | | | |
Collapse
|
40
|
Nassir F, Xie Y, Patterson BW, Luo J, Davidson NO. Hepatic secretion of small lipoprotein particles in apobec-1-/- mice is regulated by the LDL receptor. J Lipid Res 2004; 45:1649-59. [PMID: 15145984 DOI: 10.1194/jlr.m300505-jlr200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies have examined the role of the LDL receptor (LDLR) in regulating murine hepatic lipoprotein production and apolipoprotein B (apoB) secretion, with divergent conclusions from in vivo versus in vitro approaches. We have re-examined this question, both in vivo and in vitro, using apobec-1-/- mice to model the pattern of human hepatic apoB-100 secretion. Hepatic triglyceride production in vivo (using Triton WR-1339) was unchanged in wild-type (WT) C57BL/6, apobec-1-/-, ldlr-/-, and [apobec-1-/-, ldlr-/-] mice, while apoB-100 production (using [35S]methionine incorporation) was increased > 2-fold in [apobec-1-/-, ldlr-/-] mice. Although > 90% of newly synthesized apoB floated within the d < 1.006 fraction of serum from all genotypes, fast-performance liquid chromatography separation revealed that nascent triglyceride-rich particles from [apobec-1-/-, ldlr-/-] mice, but not WT, apobec-1-/-, or ldlr-/- mice, distributed into smaller (intermediate and LDL-sized) particles. Studies in isolated hepatocytes from these different genotypes confirmed secretion of smaller particles exclusively from [apobec-1-/-, ldlr-/-] mice, and pulse-chase analysis demonstrated increased secretion of apoB-100 with virtual elimination of posttranslational degradation. These results directly support the suggestion that the LDLR regulates hepatic apoB-100 production and modulates secretion of small, triglyceride-rich particles, both in vivo and in vitro.
Collapse
Affiliation(s)
- Fatiha Nassir
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
41
|
Kang SK, Chung TW, Lee JY, Lee YC, Morton RE, Kim CH. The hepatitis B virus X protein inhibits secretion of apolipoprotein B by enhancing the expression of N-acetylglucosaminyltransferase III. J Biol Chem 2004; 279:28106-12. [PMID: 15123606 DOI: 10.1074/jbc.m403176200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The X protein of hepatitis B virus (HBx) plays a major role on hepatocellular carcinoma (HCC). Apolipoprotein B (apoB) in the liver is an important glycoprotein for transportation of very low density lipoproteins and low density lipoproteins. Although lipid accumulation in the liver is known as one of the factors for the HCC, the relationship between HBx and apoB during the HCC development is poorly understood. To better understand the biological significance of HBx in HCC, liver Chang cells that specifically express HBx were established and characterized. In this study we demonstrate that overexpression of HBx significantly up-regulates the expression of UDP-N-acetylglucosamine:beta-d-mannoside-1,4-N-acetylglucosaminyltransferase-III (GnT-III), an enzyme that functions as a bisecting-N-acetylglucosamine (GlcNAc) transferase in apoB, and increases GnT-III promoter activity in a chloramphenicol acetyltransferase assay. GnT-III expression levels of HBx-transfected cells appeared to be higher than that of hepatocarcinoma cells as well as GnT-III-transfected cells, indicating that HBx may has a strong GnT-III promotor-enhancing activity. Intracellular levels of apoBs, which contained the increased bisecting GlcNAc, were accumulated in HBx-transfected liver cells. These cells as well as GnT-III-transfected liver cells revealed the inhibition of apoB secretion and the increased accumulation of intracellular triglyceride and cholesterol compared with vector-transfected cells. Moreover, overexpression of GnT-III and HBx in liver cells was shown to down-regulate the transcriptional level of microsomal triglyceride transfer protein, which regulates the assembly and secretion of apoB. Therefore, our study strongly suggested that the HBx increase in intracellular accumulation of aberrantly glycosylated apoB resulted in inhibition of secretion of apoB as well as intracellular lipid accumulation by elevating the expression of GnT-III.
Collapse
Affiliation(s)
- Sung-Koo Kang
- National Research Laboratory for Glycobiology, and Department of Biochemistry and Molecular Biology, College of Oriental Medicine, Dongguk University, Sukjang-Dong 707, Kyungju City, Kyungbuk 780-714, Korea
| | | | | | | | | | | |
Collapse
|
42
|
Zhang YL, Hernandez-Ono A, Ko C, Yasunaga K, Huang LS, Ginsberg HN. Regulation of Hepatic Apolipoprotein B-lipoprotein Assembly and Secretion by the Availability of Fatty Acids. J Biol Chem 2004; 279:19362-74. [PMID: 14970200 DOI: 10.1074/jbc.m400220200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The in vivo effects of increased delivery of fatty acids (FA) to the liver are poorly defined. Therefore, we compared the effects of infusing either 6 mM oleic acid (OA) bound to albumin, 0.5-20% Intralipid, or saline for 3 or 6 h into male C57BL/6J mice. Infusions were followed by studies of triglyceride (TG) and apoB secretion. Although plasma FA levels increased similarly after either 20% Intralipid or 6 mM OA, TG secretion increased only after infusion of 4-20% Intralipid; TG secretion was unchanged by 6 mM OA. By contrast, 6-h infusions of either 6 mM OA or 4-20% Intralipid increased apoB secretion. 6 mM OA and 20% Intralipid each increased secretion of apoB from primary hepatocytes ex vivo. Importantly, 0.5-2% Intralipid, which delivered more FA to the liver than 6 mM OA, did not stimulate apoB secretion. Hepatic apoB mRNA levels were unaffected by either 6 mM OA or 20% Intralipid, but microsomal triglyceride transfer protein mRNA was significantly lower after 6-h infusions with 6 mM OA versus either saline or 20% Intralipid. Lower microsomal triglyceride transfer protein mRNA levels were associated with reduced hepatic TG mass after 6-h infusions of 6 mM OA. We conclude that 1) increased FA delivery to the liver in vivo increases secretion of apoB-lipoproteins via post-transcriptional mechanisms, 2) OA-induced apoB-lipoprotein secretion occurred at least in part via mechanisms other than by providing substrate for TG synthesis, and 3) the route of delivery of FA is important for its effects on apoB secretion.
Collapse
Affiliation(s)
- Yuan-Li Zhang
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
43
|
Lapierre LR, Currie DL, Yao Z, Wang J, McLeod RS. Amino acid sequences within the β1 domain of human apolipoprotein B can mediate rapid intracellular degradation. J Lipid Res 2004; 45:366-77. [PMID: 14581578 DOI: 10.1194/jlr.m300104-jlr200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein B (apoB)-48 contains a region termed the beta1 domain that is predicted to be composed of extensive amphipathic beta-strands. Analysis of truncated apoB variants revealed that sequences between the carboxyl termini of apoB-37 and apoB-42 governed the secretion efficiency and intracellular stability of apoB. Although apoB-37, apoB-34, and apoB-29 were stable and secreted efficiently, apoB-42 and apoB-100 were secreted poorly and were degraded by an acetyl-leucyl-leucyl-norleucinal (ALLN)-sensitive pathway. Amino acid sequence analysis suggested that a segment between the carboxyl termini of apoB-38 and apoB-42 was 63% homologous to fatty acid binding proteins (FABPs), which contain orthogonal beta-sheets. To test the hypothesis that sequences from the beta1 domain are involved in apoB degradation, fusion proteins were created that contained apoB-29 linked to fragments derived from the beta1 domain of apoB or to liver FABP. Fusion proteins containing the beta1 domain segments apoB-34-42 or apoB-37-42 were degraded rapidly, whereas other fusion proteins were stable and secreted efficiently. Degradation was ALLN-sensitive, and the apoB-34-42 segment increased the association of the apoB protein with the cytosolic surface of the microsomal membrane. Our data suggest that the presence of specific sequences in the beta1 domain of human apoB increases degradation by promoting the cytosolic exposure of the protein, although not all regions of the beta1 domain are functionally equivalent.
Collapse
Affiliation(s)
- Louis R Lapierre
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | | | | | |
Collapse
|
44
|
Dolinsky VW, Gilham D, Hatch GM, Agellon LB, Lehner R, Vance DE. Regulation of triacylglycerol hydrolase expression by dietary fatty acids and peroxisomal proliferator-activated receptors. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1635:20-8. [PMID: 14642773 DOI: 10.1016/j.bbalip.2003.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Triacylglycerol hydrolase (TGH) is an enzyme that catalyzes the lipolysis of intracellular stored triacylglycerol (TG). Peroxisomal proliferator-activated receptors (PPAR) regulate a multitude of genes involved in lipid homeostasis. Polyunsaturated fatty acids (PUFA) are PPAR ligands and fatty acids are produced via TGH activity, so we studied whether dietary fats and PPAR agonists could regulate TGH expression. In 3T3-L1 adipocytes, TGH expression was increased 10-fold upon differentiation, compared to pre-adipocytes. 3T3-L1 cells incubated with a PPARgamma agonist during the differentiation process resulted in a 5-fold increase in TGH expression compared to control cells. Evidence for direct regulation of TGH expression by PPARgamma could not be demonstrated as TGH expression was not affected by a 24-h incubation of mature 3T3-L1 adipocytes with the PPARgamma agonist. Feeding mice diets enriched in fatty acids for 3 weeks did not affect hepatic TGH expression, though a 3-week diet enriched in fatty acids and cholesterol increased hepatic TGH expression 2-fold. Two weeks of clofibrate feeding did not significantly affect hepatic TGH expression or microsomal lipolytic activities in wild-type or PPARalpha-null mice, indicating that PPARalpha does not regulate hepatic TGH expression. Therefore, TGH expression does not appear to be directly regulated by PPARs or fatty acids in the liver or adipocytes.
Collapse
Affiliation(s)
- Vernon W Dolinsky
- Department of Biochemistry, University of Alberta, 328 Heritage Medical Research Centre, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Morel E, Demignot S, Chateau D, Chambaz J, Rousset M, Delers F. Lipid-dependent bidirectional traffic of apolipoprotein B in polarized enterocytes. Mol Biol Cell 2004; 15:132-41. [PMID: 14565984 PMCID: PMC307534 DOI: 10.1091/mbc.e03-04-0215] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Revised: 09/19/2003] [Accepted: 09/19/2003] [Indexed: 01/24/2023] Open
Abstract
Enterocytes are highly polarized cells that transfer nutrients across the intestinal epithelium from the apical to the basolateral pole. Apolipoprotein B (apoB) is a secretory protein that plays a key role in the transepithelial transport of dietary fatty acids as triacylglycerol. The evaluation of the control of apoB traffic by lipids is therefore of particular interest. To get a dynamic insight into this process, we used the enterocytic Caco-2 cells cultured on microporous filters, a system in which the apical and basal compartments can be delimited. Combining biochemical and morphological approaches, our results showed that, besides their role in protection from degradation, lipids control the intracellular traffic of apoB in enterocytes. A supply of fatty acids and cholesterol is sufficient for the export of apoB from the endoplasmic reticulum and its post-Golgi traffic up to the apical brush-border domain, where it remains until an apical supply of complex lipid micelles signals its chase down to the basolateral secretory domain. This downward traffic of apoB involves a microtubule-dependent process. Our results demonstrate an enterocyte-specific bidirectional process for the lipid-dependent traffic of a secretory protein.
Collapse
Affiliation(s)
- Etienne Morel
- Unité Mixte de Recherche, Institut National de la Santé et de la Recherche Médicale U505, Université Pierre et Marie Curie, Laboratoire de Pharmacologie Cellulaire et Moléculaire de l'EPHE, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
46
|
Chen Z, Fitzgerald RL, Li G, Davidson NO, Schonfeld G. Hepatic secretion of apoB-100 is impaired in hypobetalipoproteinemic mice with an apoB-38.9-specifying allele. J Lipid Res 2004; 45:155-63. [PMID: 13130124 DOI: 10.1194/jlr.m300275-jlr200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein B (apoB) truncation-specifying mutations cause familial hypobetalipoproteinemia (FHBL). Lipoprotein kinetics studies have shown that production rates of apoB-100 are reduced by 70-80% in heterozygous FHBL humans, instead of the expected 50%. To develop suitable mouse models to study the underlying mechanism, apoB-38.9-only (Apob(38.9/38.9)) mice were crossbred with Apobec-1 knockout (Apobec-1(-/-)) mice or apoB-100-only (Apob(100/100)) mice to produce two lines of apoB-38.9 heterozygous mice that produce only apoB-38.9 and apoB-100, namely Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) mice. In vivo rates of apoB-100 secretion were measured using [35S]Met/Cys to label proteins and Triton WR-1339 to block apoB-100 VLDL lipolysis/uptake. Rates of secretion were reduced by 80%, rather than the expected 50%, in both Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) mice compared with those of the respective Apobec-1(-/-)/Apob(+/+) and Apob(100/100) control mice. Continuous labeling and pulse-chase experiments in primary hepatocyte cultures revealed that rates of apoB-100 synthesis by Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) hepatocytes were reduced to the expected 50% of those of the respective controls, but the efficiency of secretion of apoB-100 was significantly lower in apoB-38.9 heterozygous hepatocytes. The greater-than-expected decreases in apoB-100 production rates of FHBL heterozygous humans appear to be attributable to a defect in secretion rather than in the synthesis of apoB-100 from the unaffected apoB allele.
Collapse
Affiliation(s)
- Zhouji Chen
- Division of Atherosclerosis, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
47
|
Elzinga BM, Baller JFW, Mensenkamp AR, Yao Z, Agellon LB, Kuipers F, Verkade HJ. Inhibition of apolipoprotein B secretion by taurocholate is controlled by the N-terminal end of the protein in rat hepatoma McArdle-RH7777 cells. Biochim Biophys Acta Mol Cell Biol Lipids 2003; 1635:93-103. [PMID: 14729072 DOI: 10.1016/j.bbalip.2003.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bile salts (BS) inhibit the secretion of apolipoprotein B (apoB) and triacylglycerol (TG) in primary rat, mouse and human hepatocytes and in mice in vivo. We investigated whether lipidation of apoB into a lipoprotein particle is required for this inhibitory action of BS. The sodium/taurocholate co-transporting polypeptide (Ntcp) was co-expressed in McArdle-RH7777 (McA-RH7777) cells stably expressing the full-length human apoB100 (h-apoB100, secreted as TG-rich lipoprotein particles) or carboxyl-truncated human apoB18 (h-apoB18, secreted in lipid-free form). The doubly transfected cell lines (h-apoB/r-Ntcp) effectively accumulated taurocholic acid (TC). TC incubation decreased the secretion of endogenous rat apoB100 (-50%) and h-apoB18 (-35%), but did not affect secretion of rat apoA-I. Pulse-chase experiments (35S-methionine) indicated that the impaired secretion of radiolabeled h-apoB18 and h-apoB100 was associated with accelerated intracellular degradation. The calpain protease inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN) partially inhibited intracellular apoB degradation but did not affect the amount of either h-apoB18 or h-apoB100 secreted into the medium, indicating that inhibition of apoB secretion by TC is not due to calpain-dependent proteasomal degradation. We conclude that TC does not inhibit apoB secretion by interference with its lipidation, but rather involves a mechanism dependent on the N-terminal end of apoB.
Collapse
Affiliation(s)
- Baukje M Elzinga
- Department of Pediatrics, Groningen University Institute for Drug Exploration, Pediatric Gastroenterology, Academic Hospital, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Ko C, O'Rourke SM, Huang LS. A fish oil diet produces different degrees of suppression of apoB and triglyceride secretion in human apoB transgenic mouse strains. J Lipid Res 2003; 44:1946-55. [PMID: 12867542 DOI: 10.1194/jlr.m300172-jlr200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human apolipoprotein B (apoB) transgenic (HuBTg) mouse strains were used to assess genetic effects on the response to fish oil (FO), a source of n-3 fatty acids. A congenic HuBTg strain of the C57BL/6 (B6) background and six F1 HuBTg strains were fed a FO for 2 weeks. Different responses of plasma lipid levels to FO were observed among these strains. In particular, plasma apoB levels changed minimally in FO-fed male B6 HuBTg mice, but increased markedly ( approximately 40%) in FO-fed male FVB/NJ (FVB) x B6 F1 HuBTg mice. These strain differences were determined mainly by hepatic apoB secretion rates and were likely regulated by posttranscriptional mechanisms. In addition, plasma triglyceride (TG) levels were reduced (14%) in FO-fed B6 mice, but not in FVB x B6 mice. These strain differences were determined mainly by TG secretion rates, but were not due to differences in hepatic lipogenesis. Hepatic mRNA levels of acyl-CoA oxidase, reflective of peroxisomal beta-oxidation rate, were increased in FO-fed B6 but not in FVB x B6 mice, which could account for the difference in TG secretion rates. In summary, differential effects of FO on plasma apoB and TG levels in B6 and FVB x B6 HuBTg mice were associated with strain differences in hepatic apoB and TG secretion and in peroxisomal beta-oxidation.
Collapse
Affiliation(s)
- Carol Ko
- Department of Medicine, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
49
|
Abstract
Apolipoprotein B is a large, amphipathic protein that plays a central role in lipoprotein metabolism. Because its overproduction and deficiency leads to metabolic and pathologic disorders, much effort has been paid to investigate the mechanisms of how its homeostasis is achieved. Earlier and recent studies have showed that apoB gene locus might reside in different chromatin domains in the hepatic and intestinal cells, and two sets of very distinct regulatory elements operate to control its transcription. Posttranscriptional modification of apoB mRNA is performed by a multicomponent enzyme complex, several possible pathways regulate the editing efficiency. Understanding of the mechanism responsible for apoB mRNA editing will provide the basis for C-to-U editing in gene therapy. In addition to apoB mRNA abundance and stability, its translation can be also regulated at the steps of elongation. The translocation of apoB into the ER is an important and complicated process that is less understood. Successful transport and correct folding of apoB may lead to its final secretion, otherwise subject to intracellular degradation, which is accomplished by proteasomal and nonproteasomal pathways at multiple levels and may differ among cell types.
Collapse
Affiliation(s)
- Ai-Bing Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 10005, People's Republic of China
| | | | | |
Collapse
|
50
|
Gilham D, Ho S, Rasouli M, Martres P, Vance DE, Lehner R. Inhibitors of hepatic microsomal triacylglycerol hydrolase decrease very low density lipoprotein secretion. FASEB J 2003; 17:1685-7. [PMID: 12958176 DOI: 10.1096/fj.02-0728fje] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The presence of elevated circulating triacylglycerol (TG)-rich very low density lipoprotein (VLDL) and apolipoprotein B-100 (apoB-100) levels represents an independent risk factor for coronary artery disease. Triacylglycerol hydrolase catalyzes the mobilization of cytoplasmic TG stores. To test the hypothesis that the enzyme plays a role in the provision of core lipids for the assembly of VLDL, we inhibited the lipase activity in primary rat hepatocytes and analyzed lipid and apoB synthesis and secretion. Inhibition of lipolysis resulted in a dramatic decrease in secretion of TGs. In addition, secretion of cholesteryl ester and phosphatidylcholine was substantially decreased. Analysis of secreted apolipoproteins indicated that apoB-100 secretion was much more sensitive to lipase inhibition than was apoB-48 secretion, perhaps because of the ability of apoB-48 to be secreted as a relatively lipid-poor particle. The results agreed with those obtained with hepatoma cells transfected with triacylglycerol hydrolase cDNA, in which preferential lipidation of apoB-100 was observed. Together, our findings provide evidence that inhibition of intracellular TG hydrolysis significantly decreases apoB-100 secretion and suggest that triacylglycerol hydrolase may be a suitable pharmacological target in efforts to lower plasma lipid levels.
Collapse
Affiliation(s)
- Dean Gilham
- Department of Cell Biology, CIHR Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | | | | | |
Collapse
|