1
|
Ramchatesingh B, Martinez Villarreal A, Lefrançois P, Gantchev J, Sivachandran S, Abou Setah S, Litvinov IV. Targeting PRAME directly or via EZH2 inhibition overcomes retinoid resistance and represents a novel therapy for keratinocyte carcinoma. Mol Oncol 2025. [PMID: 40101298 DOI: 10.1002/1878-0261.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/11/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025] Open
Abstract
Retinoids have demonstrated efficacy as preventative/treatment agents for keratinocyte carcinomas (KCs): basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (SCC). However, retinoid resistance mechanisms limit the efficacy of these compounds. A subset of KCs expresses Preferentially Expressed Antigen in Melanoma (PRAME): a retinoid signaling corepressor. PRAME is proposed to repress retinoid signaling by guiding enhancer of zeste homolog 2 (EZH2) to retinoic acid response elements (RARE) in promoters. We investigated the effects of PRAME on KC pathogenesis and retinoid response. High-PRAME expression in tumors was negatively correlated with epidermal differentiation gene signatures. PRAME overexpression downregulated epidermal differentiation gene signatures and impaired differentiation in 3D culture. PRAME overexpression attenuated retinoid-induced RARE activation, growth suppression, and differentiation responses. Conversely, low-PRAME tumors and PRAME-depleted KC cells demonstrated enriched epidermal differentiation gene signatures. PRAME downregulation restored retinoid-induced RARE activation, growth suppression, keratinization in SCC, and cell death signaling in BCC. Furthermore, combined retinoid and EZH2 inhibitor treatment augmented RARE activation and suppressed PRAME-expressing KC cell growth. Hence, PRAME confers retinoid resistance in KC, which may be overcome by EZH2 inhibition.
Collapse
Affiliation(s)
- Brandon Ramchatesingh
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Amelia Martinez Villarreal
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Philippe Lefrançois
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Division of Dermatology, McGill University Health Center, Montreal, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University Montreal, Canada
| | - Jennifer Gantchev
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Sriraam Sivachandran
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Samy Abou Setah
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Ivan V Litvinov
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Division of Dermatology, McGill University Health Center, Montreal, Canada
| |
Collapse
|
2
|
Singh DK, Carcamo S, Farias EF, Hasson D, Zheng W, Sun D, Huang X, Cheung J, Nobre AR, Kale N, Sosa MS, Bernstein E, Aguirre-Ghiso JA. 5-Azacytidine- and retinoic-acid-induced reprogramming of DCCs into dormancy suppresses metastasis via restored TGF-β-SMAD4 signaling. Cell Rep 2023; 42:112560. [PMID: 37267946 PMCID: PMC10592471 DOI: 10.1016/j.celrep.2023.112560] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/31/2023] [Accepted: 05/08/2023] [Indexed: 06/04/2023] Open
Abstract
Disseminated cancer cells (DCCs) in secondary organs can remain dormant for years to decades before reactivating into overt metastasis. Microenvironmental signals leading to cancer cell chromatin remodeling and transcriptional reprogramming appear to control onset and escape from dormancy. Here, we reveal that the therapeutic combination of the DNA methylation inhibitor 5-azacytidine (AZA) and the retinoic acid receptor ligands all-trans retinoic acid (atRA) or AM80, an RARα-specific agonist, promotes stable dormancy in cancer cells. Treatment of head and neck squamous cell carcinoma (HNSCC) or breast cancer cells with AZA+atRA induces a SMAD2/3/4-dependent transcriptional program that restores transforming growth factor β (TGF-β)-signaling and anti-proliferative function. Significantly, either combination, AZA+atRA or AZA+AM80, strongly suppresses HNSCC lung metastasis formation by inducing and maintaining solitary DCCs in a SMAD4+/NR2F1+ non-proliferative state. Notably, SMAD4 knockdown is sufficient to drive resistance to AZA+atRA-induced dormancy. We conclude that therapeutic doses of AZA and RAR agonists may induce and/or maintain dormancy and significantly limit metastasis development.
Collapse
Affiliation(s)
- Deepak K Singh
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Saul Carcamo
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Bioinformatics for Next Generation Sequencing Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eduardo F Farias
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Bioinformatics for Next Generation Sequencing Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Zheng
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dan Sun
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xin Huang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julie Cheung
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Rita Nobre
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nupura Kale
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julio A Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Friesen L, Kostlan R, Liu Q, Yu H, Zhu J, Lukacs N, Kim CH. Cutting Edge: The Expression of Transcription Inhibitor GFI1 Is Induced by Retinoic Acid to Rein in Th9 Polarization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1237-1242. [PMID: 36165199 PMCID: PMC9522314 DOI: 10.4049/jimmunol.2200328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/07/2022] [Indexed: 11/07/2022]
Abstract
IL-9, produced mainly by specialized T cells, mast cells, and group 2 innate lymphoid cells, regulates immune responses, including anti-helminth and allergic responses. Polarization of naive CD4 T cells into IL-9-producing T cells (Th9s) is induced by IL-4 and TGF-β1 or IL-1β. In this article, we report that the transcription factor growth factor-independent 1 transcriptional repressor (GFI1) plays a negative role in mouse Th9 polarization. Moreover, the expression of GFI1 is controlled by liganded RARα, allowing GFI1 to mediate the negative effect of retinoic acid on IL-9 expression. The Gfi1 gene has multiple RARα binding sites in the promoter region for recruiting nuclear coactivator steroid receptor coactivator-3 and p300 for histone epigenetic modifications in a retinoic acid-dependent manner. Retinoic acid-induced GFI1 binds the Il9 gene and suppresses its expression. Thus, GFI1 is a novel negative regulator of Il9 gene expression. The negative GFI1 pathway for IL-9 regulation provides a potential control point for Th9 activity.
Collapse
Affiliation(s)
- Leon Friesen
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI
| | - Raymond Kostlan
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI
| | - Qingyang Liu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI
| | - Hao Yu
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IL
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Nicholas Lukacs
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI
| | - Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI;
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI
| |
Collapse
|
4
|
Luo W, Xu Y, Liu R, Liao Y, Wang S, Zhang H, Li X, Wang H. Retinoic acid and RARγ maintain satellite cell quiescence through regulation of translation initiation. Cell Death Dis 2022; 13:838. [PMID: 36175396 PMCID: PMC9522790 DOI: 10.1038/s41419-022-05284-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 01/23/2023]
Abstract
In adult skeletal muscle, satellite cells are in a quiescent state, which is essential for the future activation of muscle homeostasis and regeneration. Multiple studies have investigated satellite cell proliferation and differentiation, but the molecular mechanisms that safeguard the quiescence of satellite cells remain largely unknown. In this study, we purposely activated dormant satellite cells by using various stimuli and captured the in vivo-preserved features from quiescence to activation transitions. We found that retinoic acid signaling was required for quiescence maintenance. Mechanistically, retinoic acid receptor gamma (RARγ) binds to and stimulates genes responsible for Akt dephosphorylation and subsequently inhibits overall protein translation initiation in satellite cells. Furthermore, the alleviation of retinoic acid signaling released the satellite cells from quiescence, but this restraint was lost in aged cells. Retinoic acid also preserves the quiescent state during satellite cell isolation, overcoming the cellular stress caused by the isolation process. We conclude that active retinoic acid signaling contributes to the maintenance of the quiescent state of satellite cells through regulation of the protein translation initiation process.
Collapse
Affiliation(s)
- Wenzhe Luo
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China ,grid.440622.60000 0000 9482 4676College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yueyuan Xu
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruige Liu
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yinlong Liao
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sheng Wang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haoyuan Zhang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinyun Li
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Heng Wang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China ,grid.440622.60000 0000 9482 4676College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
5
|
Prasad K, AlOmar SY, Almuqri EA, Rudayni HA, Kumar V. Genomics-guided identification of potential modulators of SARS-CoV-2 entry proteases, TMPRSS2 and Cathepsins B/L. PLoS One 2021; 16:e0256141. [PMID: 34407143 PMCID: PMC8372896 DOI: 10.1371/journal.pone.0256141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/31/2021] [Indexed: 01/04/2023] Open
Abstract
SARS-CoV-2 requires serine protease, transmembrane serine protease 2 (TMPRSS2), and cysteine proteases, cathepsins B, L (CTSB/L) for entry into host cells. These host proteases activate the spike protein and enable SARS-CoV-2 entry. We herein performed genomic-guided gene set enrichment analysis (GSEA) to identify upstream regulatory elements altering the expression of TMPRSS2 and CTSB/L. Further, medicinal compounds were identified based on their effects on gene expression signatures of the modulators of TMPRSS2 and CTSB/L genes. Using this strategy, estradiol and retinoic acid have been identified as putative SARS-CoV-2 alleviation agents. Next, we analyzed drug-gene and gene-gene interaction networks using 809 human targets of SARS-CoV-2 proteins. The network results indicate that estradiol interacts with 370 (45%) and retinoic acid interacts with 251 (31%) human proteins. Interestingly, a combination of estradiol and retinoic acid interacts with 461 (56%) of human proteins, indicating the therapeutic benefits of drug combination therapy. Finally, molecular docking analysis suggests that both the drugs bind to TMPRSS2 and CTSL with the nanomolar to low micromolar affinity. The results suggest that these drugs can simultaneously target both the entry pathways of SARS-CoV-2 and thus can be considered as a potential treatment option for COVID-19.
Collapse
Affiliation(s)
- Kartikay Prasad
- Amity Institute of Neuropsychology & Neurosciences (AINN), Amity University, Noida, UP, India
| | - Suliman Yousef AlOmar
- Department of College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Eman Abdullah Almuqri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Hassan Ahmed Rudayni
- Biology Department, College of Science, Imam Muhammad bin Saud Islamic University, Riyadh, Kingdom of Saudi Arabia
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences (AINN), Amity University, Noida, UP, India
- * E-mail:
| |
Collapse
|
6
|
Hunsu VO, Facey COB, Fields JZ, Boman BM. Retinoids as Chemo-Preventive and Molecular-Targeted Anti-Cancer Therapies. Int J Mol Sci 2021; 22:7731. [PMID: 34299349 PMCID: PMC8304138 DOI: 10.3390/ijms22147731] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Retinoic acid (RA) agents possess anti-tumor activity through their ability to induce cellular differentiation. However, retinoids have not yet been translated into effective systemic treatments for most solid tumors. RA signaling is mediated by the following two nuclear retinoic receptor subtypes: the retinoic acid receptor (RAR) and the retinoic X receptor (RXR), and their isoforms. The identification of mutations in retinoid receptors and other RA signaling pathway genes in human cancers offers opportunities for target discovery, drug design, and personalized medicine for distinct molecular retinoid subtypes. For example, chromosomal translocation involving RARA occurs in acute promyelocytic leukemia (APL), and all-trans retinoic acid (ATRA) is a highly effective and even curative therapeutic for APL patients. Thus, retinoid-based target discovery presents an important line of attack toward designing new, more effective strategies for treating other cancer types. Here, we review retinoid signaling, provide an update on retinoid agents and the current clinical research on retinoids in cancer, and discuss how the retinoid pathway genotype affects the ability of retinoid agents to inhibit the growth of colorectal cancer (CRC) cells. We also deliberate on why retinoid agents have not shown clinical efficacy against solid tumors and discuss alternative strategies that could overcome the lack of efficacy.
Collapse
Affiliation(s)
- Victoria O. Hunsu
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA; (V.O.H.); (C.O.B.F.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19713, USA
| | - Caroline O. B. Facey
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA; (V.O.H.); (C.O.B.F.)
| | | | - Bruce M. Boman
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA; (V.O.H.); (C.O.B.F.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19713, USA
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
7
|
Eleraky AF, Helal GK, Elshafie MF, Ismail RS. Concomitant inhibition of hedgehog signalling and activation of retinoid receptors abolishes bleomycin-induced lung fibrosis. Clin Exp Pharmacol Physiol 2021; 48:1024-1040. [PMID: 33576062 DOI: 10.1111/1440-1681.13486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/03/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
Pulmonary fibrosis is a devastating disease with unknown treatment. All-trans retinoic acid (ATRA) attenuates bleomycin-induced lung fibrosis by different mechanistic pathways. However, the role of retinoid receptors in lung fibrosis is still unclear. Forskolin (FSK), a potent inhibitor for the revolutionary hedgehog (Hh) signalling pathway, has a promising antifibrotic effect on other organs such as the liver. This study investigates the interplay between the retinoid receptors modulation and the Hh signalling pathway in bleomycin (BLM)-induced pulmonary fibrosis. Rats were randomised and administrated a single dose of 7.5 mg/kg of BLM alone and with ATRA, FSK and both of them. The effects of FSK and ATRA on lung functions, oxidative stress markers (malondialdehyde [MDA], glutathione [GSH], superoxide dismutase [SOD] and catalase [CAT]), retinoid markers (retinoic acid receptors [RAR] and rexinoid X receptors [RXR]) and Hh signalling markers (patched homolog 1 [Ptch-1], Smoothened [Smo] and glioblastoma-2 [Gli-2]) were assessed. In single therapies, ATRA and FSK ameliorated BLM-induced lung fibrosis. On the contrary, a combination of both drugs synergistically reversed the effect of BLM-induced lung fibrosis, as indicated by the enhancement of lung functions and the decrease of the α-smooth muscle actin (α-SMA) expression and collagen deposition. Additionally, FSK and ATRA ameliorated oxidative stress and inflammation, reduced transforming growth factor β1 (TGF-β1) levels and reversed the effect of BLM on the mRNA expression of Ptch-1, Smo and Gli-2. FSK inhibited the Hh pathway and also activated protein kinase A (PKA) that is, in part, involved in phosphorylation of RAR/RXR heterodimer (a key step in retinoid receptor activation). The present results suggest that a combination of FSK and ATRA has a promising therapeutic value for lung fibrosis management.
Collapse
Affiliation(s)
- Ahmed Fawzy Eleraky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Department of Pharmacology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mohamed F Elshafie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Raed S Ismail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
8
|
Peng DQ, Smith SB, Lee HG. Vitamin A regulates intramuscular adipose tissue and muscle development: promoting high-quality beef production. J Anim Sci Biotechnol 2021; 12:34. [PMID: 33663602 PMCID: PMC7934359 DOI: 10.1186/s40104-021-00558-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/18/2021] [Indexed: 01/07/2023] Open
Abstract
During growth in cattle, the development of intramuscular adipose tissue and muscle is dependent upon cell hyperplasia (increased number of adipocytes) and hypertrophy (increased size of adipocytes). Based on the results of previous studies, other adipose tissue depots (e.g., perirenal and subcutaneous) develop from the fetal stage primarily as brown adipose tissue. The hyperplastic stage of intramuscular adipose is considered to develop from late pregnancy, but there is no evidence indicating that intramuscular adipose tissue develops initially as brown adipose tissue. Hyperplastic growth of intramuscular adipose continues well into postweaning and is dependent on the timing of the transition to grain-based diets; thereafter, the late-stage development of intramuscular adipose tissue is dominated by hypertrophy. For muscle development, hyperplasia of myoblasts lasts from early (following development of somites in the embryo) to middle pregnancy, after which growth of muscle is the result of hypertrophy of myofibers. Vitamin A is a fat-soluble compound that is required for the normal immunologic function, vision, cellular proliferation, and differentiation. Here we review the roles of vitamin A in intramuscular adipose tissue and muscle development in cattle. Vitamin A regulates both hyperplasia and hypertrophy in in vitro experiments. Vitamin A supplementation at the early stage and restriction at fattening stage generate opposite effects in the beef cattle. Appropriate vitamin A supplementation and restriction strategy increase intramuscular adipose tissue development (i.e., marbling or intramuscular fat) in some in vivo trials. Besides, hyperplasia and hypertrophy of myoblasts/myotubes were affected by vitamin A treatment in in vitro trials. Additionally, some studies reported an interaction between the alcohol dehydrogenase-1C (ADH1C) genotype and vitamin A feed restriction for the development of marbling and/or intramuscular adipose tissue, which was dependent on the timing and level of vitamin A restriction. Therefore, the feed strategy of vitamin A has the visible impact on the marbling and muscle development in the cattle, which will be helpful to promote the quality of the beef.
Collapse
Affiliation(s)
- Dong Qiao Peng
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Stephen B Smith
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Hong Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
9
|
Goff M, Chen G. Long-term treatment with insulin and retinoic acid increased glucose utilization in L6 muscle cells via glycogenesis. Biochem Cell Biol 2020; 98:683-697. [PMID: 33215509 DOI: 10.1139/bcb-2020-0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The skeletal muscle regulates glucose homeostasis. Here, the effects of vitamin A metabolites including retinoic acid (RA) alone, and in combination with insulin, on glucose utilization were investigated in rat L6 muscle cells during the differentiation process. L6 cells were treated with differentiation medium containing retinol, retinal, RA, and (or) insulin. The glucose levels and pH values in the medium were measured every 2 days. The expression levels of insulin signaling and glycogen synthesis proteins, as well as glycogen content were determined. Retinal and RA reduced the glucose content and pH levels in the medium of the L6 cells. RA acted synergistically with insulin to reduce glucose and pH levels in the medium. The RA- and insulin-mediated reduction of glucose in the medium only occurred when glucose levels were at or above 15 mmol/L. Insulin-induced phosphorylation of Akt Thr308 was further enhanced by RA treatment through the activation of retinoic acid receptor. RA acted synergistically with insulin to phosphorylate glycogen synthase kinase 3β, and dephosphorylate glycogen synthase (GS), which was associated with increases in the protein and mRNA levels of GS. Increases in glycogen content were induced by insulin, and was further enhanced in the presence of RA. We conclude that activation of the RA signaling pathway enhanced insulin-induced glucose utilization in differentiating L6 cells through increases in glycogenesis.
Collapse
Affiliation(s)
- Matthew Goff
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
10
|
Jeong H, Vacanti NM. Systemic vitamin intake impacting tissue proteomes. Nutr Metab (Lond) 2020; 17:73. [PMID: 32863845 PMCID: PMC7449053 DOI: 10.1186/s12986-020-00491-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
The kinetics and localization of the reactions of metabolism are coordinated by the enzymes that catalyze them. These enzymes are controlled via a myriad of mechanisms including inhibition/activation by metabolites, compartmentalization, thermodynamics, and nutrient sensing-based transcriptional or post-translational regulation; all of which are influenced as a network by the activities of metabolic enzymes and have downstream potential to exert direct or indirect control over protein abundances. Considering many of these enzymes are active only when one or more vitamin cofactors are present; the availability of vitamin cofactors likely yields a systems-influence over tissue proteomes. Furthermore, vitamins may influence protein abundances as nuclear receptor agonists, antioxidants, substrates for post-translational modifications, molecular signal transducers, and regulators of electrolyte homeostasis. Herein, studies of vitamin intake are explored for their contribution to unraveling vitamin influence over protein expression. As a body of work, these studies establish vitamin intake as a regulator of protein abundance; with the most powerful demonstrations reporting regulation of proteins directly related to the vitamin of interest. However, as a whole, the field has not kept pace with advances in proteomic platforms and analytical methodologies, and has not moved to validate mechanisms of regulation or potential for clinical application.
Collapse
Affiliation(s)
- Heesoo Jeong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY USA
| | | |
Collapse
|
11
|
Jovic TH, Ali SR, Ibrahim N, Jessop ZM, Tarassoli SP, Dobbs TD, Holford P, Thornton CA, Whitaker IS. Could Vitamins Help in the Fight Against COVID-19? Nutrients 2020; 12:E2550. [PMID: 32842513 PMCID: PMC7551685 DOI: 10.3390/nu12092550] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
There are limited proven therapeutic options for the prevention and treatment of COVID-19. The role of vitamin and mineral supplementation or "immunonutrition" has previously been explored in a number of clinical trials in intensive care settings, and there are several hypotheses to support their routine use. The aim of this narrative review was to investigate whether vitamin supplementation is beneficial in COVID-19. A systematic search strategy with a narrative literature summary was designed, using the Medline, EMBASE, Cochrane Trials Register, WHO International Clinical Trial Registry, and Nexis media databases. The immune-mediating, antioxidant and antimicrobial roles of vitamins A to E were explored and their potential role in the fight against COVID-19 was evaluated. The major topics extracted for narrative synthesis were physiological and immunological roles of each vitamin, their role in respiratory infections, acute respiratory distress syndrome (ARDS), and COVID-19. Vitamins A to E highlighted potentially beneficial roles in the fight against COVID-19 via antioxidant effects, immunomodulation, enhancing natural barriers, and local paracrine signaling. Level 1 and 2 evidence supports the use of thiamine, vitamin C, and vitamin D in COVID-like respiratory diseases, ARDS, and sepsis. Although there are currently no published clinical trials due to the novelty of SARS-CoV-2 infection, there is pathophysiologic rationale for exploring the use of vitamins in this global pandemic, supported by early anecdotal reports from international groups. The final outcomes of ongoing trials of vitamin supplementation are awaited with interest.
Collapse
Affiliation(s)
- Thomas H Jovic
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| | - Stephen R Ali
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| | - Nader Ibrahim
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| | - Zita M Jessop
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| | - Sam P Tarassoli
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
| | - Thomas D Dobbs
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| | - Patrick Holford
- Institute for Optimum Nutrition, Ambassador House, Paradise Road, Richmond TW9 1SQ, UK;
| | - Catherine A Thornton
- Institute of Life Sciences 1, Swansea University Medical School, Swansea University, Swansea SA2 8PY, UK;
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea SA28PY, UK; (N.I.); (Z.M.J.); (S.P.T.); (T.D.D.)
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea SA66NL, UK
| |
Collapse
|
12
|
Costantini L, Molinari R, Farinon B, Merendino N. Retinoic Acids in the Treatment of Most Lethal Solid Cancers. J Clin Med 2020; 9:E360. [PMID: 32012980 PMCID: PMC7073976 DOI: 10.3390/jcm9020360] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
Although the use of oral administration of pharmacological all-trans retinoic acid (ATRA) concentration in acute promyelocytic leukaemia (APL) patients was approved for over 20 years and used as standard therapy still to date, the same use in solid cancers is still controversial. In the present review the literature about the top five lethal solid cancers (lung, stomach, liver, breast, and colon cancer), as defined by The Global Cancer Observatory of World Health Organization, and retinoic acids (ATRA, 9-cis retinoic acid, and 13-cis retinoic acid, RA) was compared. The action of retinoic acids in inhibiting the cell proliferation was found in several cell pathways and compartments: from membrane and cytoplasmic signaling, to metabolic enzymes, to gene expression. However, in parallel in the most aggressive phenotypes several escape routes have evolved conferring retinoic acids-resistance. The comparison between different solid cancer types pointed out that for some cancer types several information are still lacking. Moreover, even though some pathways and escape routes are the same between the cancer types, sometimes they can differently respond to retinoic acid therapy, so that generalization cannot be made. Further studies on molecular pathways are needed to perform combinatorial trials that allow overcoming retinoic acids resistance.
Collapse
Affiliation(s)
- Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | | | | | | |
Collapse
|
13
|
Joseph C, Green AC, Kwang D, Purton LE. Extrinsic Regulation of Hematopoietic Stem Cells and Lymphocytes by Vitamin A. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0142-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Cheung CY, Anderson DF, Rouzaire M, Blanchon L, Sapin V, Brace RA. Retinoic Acid Pathway Regulation of Vascular Endothelial Growth Factor in Ovine Amnion. Reprod Sci 2018; 26:1351-1359. [PMID: 29587617 DOI: 10.1177/1933719118765979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vascular endothelial growth factor (VEGF) has been proposed as an important regulator of amniotic fluid absorption across the amnion into the fetal vasculature on the surface of the placenta. However, the activators of VEGF expression and action in the amnion have not been identified. Using the pregnant sheep model, we aimed to investigate the presence of the retinoic acid (RA) pathway in ovine amnion and to determine its effect on VEGF expression. Further, we explored relationships between RA receptors and VEGF and tested the hypothesis that RA modulates intramembranous absorption (IMA) through induction of amnion VEGF in sheep fetuses subjected to altered IMA rates. Our study showed that RA receptor isoforms were expressed in sheep amnion, and RA response elements (RAREs) were identified in ovine RARβ and VEGF gene promoters. In ovine amnion cells, RA treatment upregulated RARβ messenger RNA (mRNA) and increased VEGF transcript levels. In sheep fetuses, increases in IMA rate was associated with elevated VEGF mRNA levels in the amnion but not in the chorion. Further, RARβ mRNA was positively correlated with VEGF mRNA levels in the amnion and not chorion. We conclude that an RA pathway is present in ovine fetal membranes and that RA is capable of inducing VEGF. The finding of a positive relationship between amnion VEGF and RARβ during altered IMA rate suggests that the retinoid pathway may play a role through VEGF in regulating intramembranous transport across the amnion.
Collapse
Affiliation(s)
- Cecilia Y Cheung
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA.,Center for Developmental Health, Oregon Health & Science University, Portland, OR, USA
| | - Debra F Anderson
- Center for Developmental Health, Oregon Health & Science University, Portland, OR, USA
| | - Marion Rouzaire
- Team "Translational approach to epithelial injury and repair," Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Loïc Blanchon
- Team "Translational approach to epithelial injury and repair," Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Vincent Sapin
- Team "Translational approach to epithelial injury and repair," Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Robert A Brace
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA.,Center for Developmental Health, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
15
|
Seo GY, Lee JM, Jang YS, Kang SG, Yoon SI, Ko HJ, Lee GS, Park SR, Nagler CR, Kim PH. Mechanism underlying the suppressor activity of retinoic acid on IL4-induced IgE synthesis and its physiological implication. Cell Immunol 2017; 322:49-55. [PMID: 29042055 DOI: 10.1016/j.cellimm.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/11/2017] [Accepted: 10/03/2017] [Indexed: 12/25/2022]
Abstract
The present study extends an earlier report that retinoic acid (RA) down-regulates IgE Ab synthesis in vitro. Here, we show the suppressive activity of RA on IgE production in vivo and its underlying mechanisms. We found that RA down-regulated IgE class switching recombination (CSR) mainly through RA receptor α (RARα). Additionally, RA inhibited histone acetylation of germ-line ε (GL ε) promoter, leading to suppression of IgE CSR. Consistently, serum IgE levels were substantially elevated in vitamin A-deficient (VAD) mice and this was more dramatic in VAD-lecithin:retinol acyltransferase deficient (LRAT-/-) mice. Further, serum mouse mast cell protease-1 (mMCP-1) level was elevated while frequency of intestinal regulatory T cells (Tregs) were diminished in VAD LRAT-/- mice, reflecting that deprivation of RA leads to allergic immune response. Taken together, our results reveal that RA has an IgE-repressive activity in vivo, which may ameliorate IgE-mediated allergic disease.
Collapse
Affiliation(s)
- Goo-Young Seo
- Department of Molecular Bioscience, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Pathology and Committee on Immunology, The University of Chicago, 924 East 57th Street, R120, Chicago, IL 60637, USA
| | - Jeong-Min Lee
- Department of Molecular Bioscience, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Young-Saeng Jang
- Department of Molecular Bioscience, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung Goo Kang
- Division of Biomedical Convergence, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seok-Rae Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Cathryn R Nagler
- Department of Pathology and Committee on Immunology, The University of Chicago, 924 East 57th Street, R120, Chicago, IL 60637, USA
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
16
|
Li Y, Liu Y, Chen G. Vitamin A status affects the plasma parameters and regulation of hepatic genes in streptozotocin-induced diabetic rats. Biochimie 2017; 137:1-11. [PMID: 28238841 DOI: 10.1016/j.biochi.2017.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023]
Abstract
Vitamin A (VA) status regulates metabolism in rats. Whether VA status and availability of retinoic acid (RA) contribute to the insulin-regulated hepatic gene expression remains to be determined. Zucker lean rats with VA sufficient (VAS) or VA deficient (VAD) status were treated with streptozotocin (STZ) to induce insulin-dependent diabetes. They were treated with saline (STZ-VAS-C or STZ-VAD-C), RA (STZ-VAS-RA or STZ-VAD-RA), insulin (STZ-VAS-INS or STZ-VAD-INS), or insulin + RA (STZ-VAS-INS + RA or STZ-VAD-INS + RA) for 3 h. Insulin and insulin + RA treatments reduced tail tip blood glucose, raised plasma insulin and suppressed plasma β-hydroxybutyrate levels in both STZ-VAD and STZ-VAS rats. STZ-VAD-INS and STZ-VAD-INS + RA rats had lower plasma glucose levels than STZ-VAD-C rats had. STZ-VAD-INS and STZ-VAD-INS + RA rats had higher plasma leptin level and lower glucagon level than STZ-VAD-C rats did. Insulin treatment induced Gck, Srebp-1c and Fas and suppressed Pck1 expression levels in the liver of STZ-VAS and STZ-VAD rats. Interestingly, insulin treatment inhibited Cyp26a1 expression in STZ-VAD, but not STZ-VAS rats, whereas RA treatment induced it in both. RA treatment induced Gck expression only in STZ-VAD rats. Insulin + RA treatment further induced the Cyp26a1 and Gck expressions in STZ-VAD rats. The Srebp-1c expression levels of STZ-VAD-INS and STZ-VAD-INS + RA rats were higher than that of STZ-VAS-INS and STZ-VAS-INS + RA rats. The changes of Gck mRNA and glucokinase protein were consistent. In STZ-induced diabetic rats, VA is not required for insulin-regulated Gck, Srebp-1c, Fas and Pck1 expression. However, VA status altered responses of certain genes (Cyp26a1 and Srebp-1c) to insulin treatment.
Collapse
Affiliation(s)
- Yang Li
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Yang Liu
- Department of Pharmaceutical Engineering, School of Life Science, Wuchang University of Technology, Wuhan, Hubei Province, 430223, China
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, USA.
| |
Collapse
|
17
|
Li C, Jiang J, Zheng Z, Lee KS, Zhou Y, Chen E, Culiat CT, Qiao Y, Chen X, Ting K, Zhang X, Soo C. Neural EGFL-Like 1 Is a Downstream Regulator of Runt-Related Transcription Factor 2 in Chondrogenic Differentiation and Maturation. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:963-972. [PMID: 28302495 PMCID: PMC5417045 DOI: 10.1016/j.ajpath.2016.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/21/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
Recent studies indicate that neural EGFL-like 1 (Nell-1), a secretive extracellular matrix molecule, is involved in chondrogenic differentiation. Herein, we demonstrated that Nell-1 serves as a key downstream target of runt-related transcription factor 2 (Runx2), a central regulator of chondrogenesis. Unlike in osteoblast lineage cells where Nell-1 and Runx2 demonstrate mutual regulation, further studies in chondrocytes revealed that Runx2 tightly regulates the expression of Nell-1; however, Nell-1 does not alter the expression of Runx2. More important, Nell-1 administration partially restored Runx2 deficiency-induced impairment of chondrocyte differentiation and maturation in vitro, ex vivo, and in vivo. Mechanistically, although the expression of Nell-1 is highly reliant on Runx2, the prochondrogenic function of Nell-1 persisted in Runx2-/- scenarios. The biopotency of Nell-1 is independent of the nuclear import and DNA binding functions of Runx2 during chondrogenesis. Nell-1 is a key functional mediator of chondrogenesis, thus opening up new possibilities for the application of Nell-1 in cartilage regeneration.
Collapse
Affiliation(s)
- Chenshuang Li
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California; Department of Orthodontics, Peking University, School and Hospital of Stomatology, Beijing, China
| | - Jie Jiang
- UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Zhong Zheng
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Kevin S Lee
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Yanheng Zhou
- Department of Orthodontics, Peking University, School and Hospital of Stomatology, Beijing, China
| | - Eric Chen
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | | | - Yiqiang Qiao
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California; Department of Orthodontics, School of Stomatology, Zhengzhou University, Zhengzhou, China
| | - Xuepeng Chen
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California; Department of Orthodontics, Hospital of Stomatology, Zhejiang University, Hangzhou, China
| | - Kang Ting
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Xinli Zhang
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California.
| | - Chia Soo
- UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
18
|
Corley SM, Tsai SY, Wilkins MR, Shannon Weickert C. Transcriptomic Analysis Shows Decreased Cortical Expression of NR4A1, NR4A2 and RXRB in Schizophrenia and Provides Evidence for Nuclear Receptor Dysregulation. PLoS One 2016; 11:e0166944. [PMID: 27992436 PMCID: PMC5161508 DOI: 10.1371/journal.pone.0166944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/06/2016] [Indexed: 12/14/2022] Open
Abstract
Many genes are differentially expressed in the cortex of people with schizophrenia, implicating factors that control transcription more generally. Hormone nuclear receptors dimerize to coordinate context-dependent changes in gene expression. We hypothesized that members of two families of nuclear receptors (NR4As), and retinoid receptors (RARs and RXRs), are altered in the dorsal lateral prefrontal cortex (DLPFC) of people with schizophrenia. We used next generation sequencing and then qPCR analysis to test for changes in mRNA levels for transcripts encoding nuclear receptors: orphan nuclear receptors (3 in the NR4A, 3 in the RAR, 3 in the RXR families and KLF4) in total RNA extracted from the DLPFC from people with schizophrenia compared to controls (n = 74). We also correlated mRNA levels with demographic factors and with estimates of antipsychotic drug exposure (schizophrenia group only). We tested for correlations between levels of transcription factor family members and levels of genes putatively regulated by these transcription factors. We found significantly down regulated expression of NR4A1 (Nurr 77) and KLF4 mRNAs in people with schizophrenia compared to controls, by both NGS and qPCR (p = or <0.01). We also detected decreases in NR4A2 (Nurr1) and RXRB mRNAs by using qPCR in the larger cohort (p<0.05 and p<0.01, respectively). We detected decreased expression of RARG and NR4A2 mRNAs in females with schizophrenia (p<0.05). The mRNA levels of NR4A1, NR4A2 and NR4A3 were all negative correlated with lifetime estimates of antipsychotic exposure. These novel findings, which may be influenced by antipsychotic drug exposure, implicate the orphan and retinoid nuclear receptors in the cortical pathology found in schizophrenia. Genes down stream of these receptors can be dysregulated as well, but the direction of change is not immediately predictable based on the putative transcription factor changes.
Collapse
Affiliation(s)
- Susan M. Corley
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Shan-Yuan Tsai
- Schizophrenia Research Institute, Randwick, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Psychiatry, University of New South Wales Sydney, NSW, Australia
| | - Marc R. Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Randwick, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Psychiatry, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
19
|
Comptour A, Rouzaire M, Belville C, Bonnin N, Daniel E, Chiambaretta F, Blanchon L, Sapin V. Lysyl oxidase-like 4 involvement in retinoic acid epithelial wound healing. Sci Rep 2016; 6:32688. [PMID: 27597564 PMCID: PMC5011693 DOI: 10.1038/srep32688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/11/2016] [Indexed: 01/09/2023] Open
Abstract
Vitamin A and its active forms (retinoic acids/RAs) are known to have pro-healing properties, but their mechanisms of action are still poorly understood. This work aimed to identify the cellular and molecular processes by which atRA (all-trans RA) improves wound healing, using an in vivo model of mouse corneal alkali burns and an in vitro cellular human corneal epithelial injury model. Regulation by atRA has been studied on most of the cellular events that occur in wound healing. We investigated the direct influence of atRA on a specific target gene known to be involved in the extracellular matrix (ECM) dynamics, one of the pathways contributing to epithelial repair. Our results demonstrate that atRA promotes corneal epithelial wound healing by acting preferentially on migration. The induction of lysyl oxidase-like 4 (LOXL4) expression by atRA in the corneal epithelium environment was established as essential in the mechanism of atRA-dependent wound healing. Our study describes for the first time a direct link between a retinoic-induced gene and protein, LOXL4, and its general clinical pro-healing properties in ECM dynamics.
Collapse
Affiliation(s)
- Aurélie Comptour
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
| | - Marion Rouzaire
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
| | - Corinne Belville
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
- Clermont Université, Université d’Auvergne, GReD, F-63000 Clermont-Ferrand, France
| | - Nicolas Bonnin
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Ophthalmology Department, F-63000 Clermont-Ferrand, France
| | - Estelle Daniel
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Ophthalmology Department, F-63000 Clermont-Ferrand, France
| | - Frédéric Chiambaretta
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Ophthalmology Department, F-63000 Clermont-Ferrand, France
| | - Loïc Blanchon
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
| | - Vincent Sapin
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
| |
Collapse
|
20
|
Pisetpackdeekul P, Supmuang P, Pan-In P, Banlunara W, Limcharoen B, Kokpol C, Wanichwecharungruang S. Proretinal nanoparticles: stability, release, efficacy, and irritation. Int J Nanomedicine 2016; 11:3277-86. [PMID: 27499622 PMCID: PMC4959592 DOI: 10.2147/ijn.s111748] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Despite many potent biological activities, retinoids such as retinoic acid (RA) and retinal possess dose-related broad side effects. In this study, we show that this problem, which has been unsolvable for a long time, can be tackled through a controlled release strategy in which retinal is continuously delivered to the skin via sustained release from proretinal nanoparticles. The water dispersible proretinal nanoparticles are stable when kept in water at neutral pH and at room temperature for 8 months under light-proof conditions, and show sustained release of retinal into human synthetic sebum at a pH of 5. In the daily topical application tests performed for 4 weeks on rats' skin, the nanoparticles showed superior ability to increase epidermal thickness compared to RA and retinal, with no skin irritation observed for the proretinal particles, but severe skin irritation observed for RA and free retinal. When tested under occlusion conditions in human volunteers, insignificant skin irritation was observed for the proretinal nanoparticles. The 12-week, double-blind, split-face study on human volunteers indicates better antiaging efficacy of the particles as compared to the free RA.
Collapse
Affiliation(s)
| | | | | | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University
| | | | - Chayada Kokpol
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science; Nanotec-Chulalongkorn University Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Li Y, Li R, Chen W, Chen G. Vitamin A status and its metabolism contribute to the regulation of hepatic genes during the cycle of fasting and refeeding in rats. J Nutr Biochem 2016; 30:33-43. [PMID: 27012619 DOI: 10.1016/j.jnutbio.2015.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/12/2015] [Accepted: 11/20/2015] [Indexed: 02/07/2023]
Abstract
Vitamin A (VA) status and its metabolism affect hepatic metabolic homeostasis. We investigated if VA status and metabolism contribute to energy metabolism and expression of hepatic genes in the cycle of fasting and refeeding. Zucker lean rats with VA sufficient (VAS) or VA deficient (VAD) status were respectively grouped as: ad libitum (VAS-AD or VAD-AD), 48-h fasted (VAS-Fasted or VAD-Fasted), 48-h fasted and refed a VAS diet (VAS-Refed-VAS or VAD-Refed-VAS), or refed a VAD diet (VAS-Refed-VAD or VAD-Refed-VAD) for 6 h. Respiratory exchange ratio (RER) of rats fed the VAS or VAD diet was monitored for 6 weeks. From week four, rats fed the VAS diet had higher RER than those fed the VAD diet. VAS-Refed rats had higher plasma levels of glucose, triglyceride, insulin and leptin than VAD-Refed rats. The mRNA and protein levels of hepatic genes for fuel metabolism in the fasting and refeeding cycle were determined using real-time polymerase chain reaction and immunoblot, respectively. The mRNA levels of glucokinase (Gck), sterol regulatory element-binding protein 1c (Srebp-1c), and fatty acid synthase (Fas) were lowered in VAS-Fasted and VAD-Fasted rats, and increased in VAS-Refed-VAS, VAS-Refed-VAD and VAD-Refed-VAS, but not VAD-Refed-VAD, rats. The ACL and FAS protein levels only dropped in VAS-Fasted rats and increased in VAS-Refed-VAS rats. The GK protein level decreased only in VAS-Fasted rats, and increased in VAS-Refed-VAS, VAS-Refed-VAD and VAD-Refed-VAS (but not VAD-Refed-VAD) rats. We conclude that VA status and its metabolism in the fasting and refeeding cycle contribute to the regulation of hepatic gene expression in rats.
Collapse
Affiliation(s)
- Yang Li
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Rui Li
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Wei Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, USA.
| |
Collapse
|
22
|
Up-regulation of steroid biosynthesis by retinoid signaling: Implications for aging. Mech Ageing Dev 2015; 150:74-82. [PMID: 26303142 DOI: 10.1016/j.mad.2015.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/14/2015] [Accepted: 08/15/2015] [Indexed: 11/24/2022]
Abstract
Retinoids (vitamin A and its derivatives) are critical for a spectrum of developmental and physiological processes, in which steroid hormones also play indispensable roles. The StAR protein predominantly regulates steroid biosynthesis in steroidogenic tissues. We have reported that regulation of retinoid, especially atRA and 9-cis RA, responsive StAR transcription is largely mediated by an LXR-RXR/RAR heterodimeric motif in the mouse StAR promoter. Herein we demonstrate that retinoids are capable of enhancing StAR protein, P-StAR, and steroid production in granulosa, adrenocortical, glial, and epidermal cells. Whereas transient expression of RARα and RXRα enhanced 9-cis RA induced StAR gene transcription, silencing of RXRα with siRNA, decreased StAR and steroid levels. An oligonucleotide probe encompassing an LXR-RXR/RAR motif bound to adrenocortical and epidermal keratinocyte nuclear proteins in EMSAs. ChIP studies revealed association of RARα and RXRα with the StAR proximal promoter. Further studies demonstrated that StAR mRNA levels decreased in diseased and elderly men and women skin tissues and that atRA could restore steroidogenesis in epidermal keratinocytes of aged individuals. These findings provide novel insights into the relevance of retinoid signaling in the up-regulation of steroid biosynthesis in various target tissues, and indicate that retinoid therapy may have important implications in age-related complications and diseases.
Collapse
|
23
|
Samarawickrama C, Chew S, Watson S. Retinoic acid and the ocular surface. Surv Ophthalmol 2015; 60:183-95. [DOI: 10.1016/j.survophthal.2014.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/05/2014] [Accepted: 10/07/2014] [Indexed: 02/04/2023]
|
24
|
Yang J, Wang W, Ooi J, Campos LS, Lu L, Liu P. Signalling Through Retinoic Acid Receptors is Required for Reprogramming of Both Mouse Embryonic Fibroblast Cells and Epiblast Stem Cells to Induced Pluripotent Stem Cells. Stem Cells 2015; 33:1390-404. [PMID: 25546009 PMCID: PMC4863141 DOI: 10.1002/stem.1926] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 11/23/2014] [Indexed: 01/02/2023]
Abstract
We previously demonstrated that coexpressing retinoic acid (RA) receptor gamma and liver receptor homolog-1 (LRH1 or NR5A2) with OCT4, MYC, KLF4, and SOX2 (4F) rapidly reprograms mouse embryonic fibroblast cells (MEFs) into induced pluripotent stem cells (iPSCs). Here, we further explore the role of RA in reprogramming and report that the six factors (6F) efficiently and directly reprogram MEFs into integration-free iPSCs in defined medium (N2B27) in the absence of feeder cells. Through genetic and chemical approaches, we find that RA signalling is essential, in a highly dose-sensitive manner, for MEF reprogramming. The removal of exogenous RA from N2B27, the inhibition of endogenous RA synthesis or the expression of a dominant-negative form of RARA severely impedes reprogramming. By contrast, supplementing N2B27 with various retinoids substantially boosts reprogramming. In addition, when coexpressed with LRH1, RA receptors (RARs) can promote reprogramming in the absence of both exogenous and endogenously synthesized RA. Remarkably, the reprogramming of epiblast stem cells into embryonic stem cell-like cells also requires low levels of RA, which can modulate Wnt signalling through physical interactions of RARs with β-catenin. These results highlight the important functions of RA signalling in reprogramming somatic cells and primed stem cells to naïve pluripotency. Stem Cells 2015;33:1390-1404.
Collapse
Affiliation(s)
- Jian Yang
- Wellcome Trust Sanger InstituteHinxtonCambridgeUnited Kingdom
| | - Wei Wang
- Wellcome Trust Sanger InstituteHinxtonCambridgeUnited Kingdom
| | - Jolene Ooi
- Wellcome Trust Sanger InstituteHinxtonCambridgeUnited Kingdom
| | - Lia S. Campos
- Wellcome Trust Sanger InstituteHinxtonCambridgeUnited Kingdom
| | - Liming Lu
- Wellcome Trust Sanger InstituteHinxtonCambridgeUnited Kingdom
- Shanghai Institute of ImmunologyShanghai Jiaotong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Pentao Liu
- Wellcome Trust Sanger InstituteHinxtonCambridgeUnited Kingdom
| |
Collapse
|
25
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
26
|
Jin J, Li X, Xing L, Chang Y, Wu L, Jin Z, Su X, Bai Y, Zheng Y, Jiang Y, Zhao X, Lu L, Gao Q. Addition of all-trans-retinoic acid to omeprazole and sucralfate therapy improves the prognosis of gastric dysplasia. J Int Med Res 2015; 43:204-16. [PMID: 25631875 DOI: 10.1177/0300060514559791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE To investigate the efficacy of all-trans retinoic acid (ATRA) in human gastric dysplasia. METHODS In this double-blind study, patients with precancerous gastric dysplasia with or without intestinal metaplasia (IM) received either conventional treatment consisting of omeprazole and sucralfate (control group) or conventional treatment plus ATRA. Gastric mucosal biopsies were performed before and after drug treatment and were analysed histologically; expression of retinoblastoma (Rb) protein and HER2 protein in gastric mucosa were measured using immunohistochemistry. RESULTS A total of 122 patients were included in the study, 63 in the ATRA group and 59 in the control group. In the ATRA group, dysplasia was attenuated in 43 out of 63 patients (68%) compared with 22 out of 59 patients (37%) in the control group; however, IM was not affected by treatment in either group. ATRA treatment was associated with significantly increased Rb expression and decreased HER2 expression in gastric mucosa. CONCLUSIONS The use of conventional therapy plus ATRA for gastric dysplasia was associated with improved efficacy compared with conventional therapy alone. It was also accompanied by increased Rb expression and decreased HER2 expression in gastric mucosa. The addition of ATRA to conventional therapy for gastritis may improve the prognosis of gastric dysplasia.
Collapse
Affiliation(s)
- Jianjun Jin
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xiaozhen Li
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Luqi Xing
- Department of Pathology, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yongchao Chang
- Clinical Laboratory, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Lijuan Wu
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zhe Jin
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xiuli Su
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yanli Bai
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yufeng Zheng
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yalin Jiang
- Clinical Laboratory, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xiao Zhao
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Lan Lu
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
27
|
Marighetto A, Brayda-Bruno L, Etchamendy N. Studying the impact of aging on memory systems: contribution of two behavioral models in the mouse. Curr Top Behav Neurosci 2015; 10:67-89. [PMID: 21805395 DOI: 10.1007/7854_2011_151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present chapter, we describe our own attempts to improve our understanding of the pathophysiology of memory in aging. First, we tried to improve animal models of memory degradations occurring in aging, and develop common behavioral tools between mice and humans. Second, we began to use these behavioral tools to identify the molecular/intracellular changes occurring within the integrate network of memory systems in order to bridge the gap between the molecular and system level of analysis. The chapter is divided into three parts (i) modeling aging-related degradation in declarative memory (DM) in mice, (ii) assessing the main components of working memory (WM) with a common radial-maze task in mice and humans and (iii) studying the role of the retinoid cellular signaling path in aging-related changes in memory systems.
Collapse
Affiliation(s)
- Aline Marighetto
- Neurocentre Magendie-Inserm U862, 146 Rue Leo Saignat, 33077, Bordeaux-Cedex, France,
| | | | | |
Collapse
|
28
|
|
29
|
Zhang Y, Liang J, Li Q. Coordinated regulation of retinoic acid signaling pathway by KDM5B and polycomb repressive complex 2. J Cell Biochem 2014; 115:1528-1538. [PMID: 24619877 DOI: 10.1002/jcb.24807] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/07/2014] [Indexed: 01/24/2023]
Abstract
Polycomb repressive complex 2 (PRC2) is a critical epigenetic regulator in many biological processes, including maintenance of cell identity, stem cell self-renewal, differentiation, and deregulation of PRC2 is often observed in human cancers and diseases. Here we report that KDM5B (PLU-1/JARID1B), a histone lysine demethylase of Jumonji family, associates with PRC2 and colocalizes with PRC2 in nuclear bodies, and their physical association is dependent on direct interaction between KDM5B and the SUZ12 component of PRC2. Interestingly, co-occupancy of KDM5B and PRC2 was evidenced at the conserved cis-regulatory DNA element on retinoic acid (RA) responsive genes. Transcription readout and in vitro pull-down experiments suggest that KDM5B is an essential co-activator, but not a co-repressor, for the RA signaling, and the interface between KDM5B's JMJC domain and retinoic acid receptor α (RARα) is crucial for RA-mediated gene expression. Detailed chromatin immunoprecipitation assays addressed the seemingly paradox by revealing a biphasic effect of KDM5B on RA-induced gene activation through decoupled H3K4me3 demethylation and PRC2-antagonizing activities. These results demonstrate that KDM5B and PRC2 regulate RA signaling cascade in a cooperative and orchestrated fashion.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191, China
| | | | | |
Collapse
|
30
|
Chen W, Howell ML, Li Y, Li R, Chen G. Vitamin A and feeding statuses modulate the insulin-regulated gene expression in Zucker lean and fatty primary rat hepatocytes. PLoS One 2014; 9:e100868. [PMID: 25105869 PMCID: PMC4126667 DOI: 10.1371/journal.pone.0100868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023] Open
Abstract
Unattended hepatic insulin resistance predisposes individuals to dyslipidemia, type 2 diabetes and many other metabolic complications. The mechanism of hepatic insulin resistance at the gene expression level remains unrevealed. To examine the effects of vitamin A (VA), total energy intake and feeding conditions on the insulin-regulated gene expression in primary hepatocytes of Zucker lean (ZL) and fatty (ZF) rats, we analyze the expression levels of hepatic model genes in response to the treatments of insulin and retinoic acid (RA). We report that the insulin- and RA-regulated glucokinase, sterol regulatory element-binding protein-1c and cytosolic form of phosphoenolpyruvate carboxykinase expressions are impaired in hepatocytes of ZF rats fed chow or a VA sufficient (VAS) diet ad libitum. The impairments are partially corrected when ZF rats are fed a VA deficient (VAD) diet ad libitum or pair-fed a VAS diet to the intake of their VAD counterparts in non-fasting conditions. Interestingly in the pair-fed ZL and ZF rats, transient overeating on the last day of pair-feeding regimen changes the expression levels of some VA catabolic genes, and impairs the insulin- and RA-regulated gene expression in hepatocytes. These results demonstrate that VA and feeding statuses modulate the hepatic insulin sensitivity at the gene expression level.
Collapse
Affiliation(s)
- Wei Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Meredith L. Howell
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Yang Li
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Rui Li
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| |
Collapse
|
31
|
Chen W, Chen G. The Roles of Vitamin A in the Regulation of Carbohydrate, Lipid, and Protein Metabolism. J Clin Med 2014; 3:453-479. [PMID: 26237385 PMCID: PMC4449691 DOI: 10.3390/jcm3020453] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/06/2014] [Accepted: 03/14/2014] [Indexed: 02/07/2023] Open
Abstract
Currently, two-thirds of American adults are overweight or obese. This high prevalence of overweight/obesity negatively affects the health of the population, as obese individuals tend to develop several chronic diseases, such as type 2 diabetes and cardiovascular diseases. Due to obesity's impact on health, medical costs, and longevity, the rise in the number of obese people has become a public health concern. Both genetic and environmental/dietary factors play a role in the development of metabolic diseases. Intuitively, it seems to be obvious to link over-nutrition to the development of obesity and other metabolic diseases. However, the underlying mechanisms are still unclear. Dietary nutrients not only provide energy derived from macronutrients, but also factors such as micronutrients with regulatory roles. How micronutrients, such as vitamin A (VA; retinol), regulate macronutrient homeostasis is still an ongoing research topic. As an essential micronutrient, VA plays a key role in the general health of an individual. This review summarizes recent research progress regarding VA's role in carbohydrate, lipid, and protein metabolism. Due to the large amount of information regarding VA functions, this review focusses on metabolism in metabolic active organs and tissues. Additionally, some perspectives for future studies will be provided.
Collapse
Affiliation(s)
- Wei Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA.
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA.
| |
Collapse
|
32
|
Khillan JS. Vitamin A/retinol and maintenance of pluripotency of stem cells. Nutrients 2014; 6:1209-22. [PMID: 24662164 PMCID: PMC3967188 DOI: 10.3390/nu6031209] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 12/22/2022] Open
Abstract
Retinol, the alcohol form of vitamin A is a key dietary component that plays a critical role in vertebrate development, cell differentiation, reproduction, vision and immune system. Natural and synthetic analogs of retinol, called retinoids, have generally been associated with the cell differentiation via retinoic acid which is the most potent metabolite of retinol. However, a direct function of retinol has not been fully investigated. New evidence has now emerged that retinol supports the self-renewal of stem cells including embryonic stem cells (ESCs), germ line stem cells (GSCs) and cancer stem cells (CSCs) by activating the endogenous machinery for self-renewal by a retinoic acid independent mechanism. The studies have also revealed that stem cells do not contain enzymes that are responsible for metabolizing retinol into retinoic acid. This new function of retinol may have important implications for stem cell biology which can be exploited for quantitative production of pure population of pluripotent stem cells for regenerative medicine as well as clinical applications for cancer therapeutics.
Collapse
Affiliation(s)
- Jaspal S Khillan
- Department of Immunology, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15261, USA.
| |
Collapse
|
33
|
Manna PR, Slominski AT, King SR, Stetson CL, Stocco DM. Synergistic activation of steroidogenic acute regulatory protein expression and steroid biosynthesis by retinoids: involvement of cAMP/PKA signaling. Endocrinology 2014; 155:576-91. [PMID: 24265455 PMCID: PMC3891939 DOI: 10.1210/en.2013-1694] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both retinoic acid receptors (RARs) and retinoid X receptors (RXRs) mediate the action of retinoids that play important roles in reproductive development and function, as well as steroidogenesis. Regulation of steroid biosynthesis is principally mediated by the steroidogenic acute regulatory protein (StAR); however, the modes of action of retinoids in the regulation of steroidogenesis remain obscure. In this study we demonstrate that all-trans retinoic acid (atRA) enhances StAR expression, but not its phosphorylation (P-StAR), and progesterone production in MA-10 mouse Leydig cells. Activation of the protein kinase A (PKA) cascade, by dibutyrl-cAMP or type I/II PKA analogs, markedly increased retinoid-responsive StAR, P-StAR, and steroid levels. Targeted silencing of endogenous RARα and RXRα, with small interfering RNAs, resulted in decreases in 9-cis RA-stimulated StAR and progesterone levels. Truncation of and mutational alterations in the 5'-flanking region of the StAR gene demonstrated the importance of the -254/-1-bp region in retinoid responsiveness. An oligonucleotide probe encompassing an RXR/liver X receptor recognition motif, located within the -254/-1-bp region, specifically bound MA-10 nuclear proteins and in vitro transcribed/translated RXRα and RARα in EMSAs. Transcription of the StAR gene in response to atRA and dibutyrl-cAMP was influenced by several factors, its up-regulation being dependent on phosphorylation of cAMP response-element binding protein (CREB). Chromatin immunoprecipitation studies revealed the association of phosphorylation of CREB, CREB binding protein, RXRα, and RARα to the StAR promoter. Further studies elucidated that hormone-sensitive lipase plays an important role in atRA-mediated regulation of the steroidogenic response that involves liver X receptor signaling. These findings delineate the molecular events by which retinoids influence cAMP/PKA signaling and provide additional and novel insight into the regulation of StAR expression and steroidogenesis in mouse Leydig cells.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry (P.R.M., S.R.K., D.M.S.), Department of Dermatology and Pathology (C.L.S.), Texas Tech University Health Sciences Center, Lubbock, Texas 79430; and Department of Pathology and Laboratory Medicine (A.T.S.), University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | | | | | | | | |
Collapse
|
34
|
Bagatin E. Oral isotretinoin: the most promising dermatological off-label uses. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.10.58] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Affiliation(s)
- Pengxiang Huang
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Vikas Chandra
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Fraydoon Rastinejad
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| |
Collapse
|
36
|
Piskunov A, Al Tanoury Z, Rochette-Egly C. Nuclear and extra-nuclear effects of retinoid acid receptors: how they are interconnected. Subcell Biochem 2014; 70:103-127. [PMID: 24962883 DOI: 10.1007/978-94-017-9050-5_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The nuclear retinoic acid receptors (RAR α, β and γ) and their isoforms are ligand-dependent regulators of transcription Transcription , which mediate the effects of all-trans retinoic acid (RA), the active endogenous metabolite of Vitamin A. They heterodimerize with Retinoid X Receptors (RXRs α, β and γ), and regulate the expression of a battery of target genes Target genes involved in cell growth and differentiation Differentiation . During the two last decades, the description of the crystallographic structures of RARs, the characterization of the polymorphic response elements of their target genes Target genes , and the identification of the multiprotein complexes involved in their transcriptional activity have provided a wealth of information on their pleiotropic effects. However, the regulatory scenario became even more complicated once it was discovered that RARs are phosphoproteins and that RA can activate kinase signaling cascades via a pool of RARs present in membrane lipid rafts. Now it is known that these RA-activated kinases Kinases translocate to the nucleus where they phosphorylate RARs and other retinoid signaling factors. The phosphorylation Phosphorylation state of the RARs dictates whether the transcriptional programs which are known to be induced by RA are facilitated and/or switched on. Thus, kinase signaling pathways appear to be crucial for fine-tuning the appropriate physiological activity of RARs.
Collapse
Affiliation(s)
- Aleksandr Piskunov
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404, Illkirch Cedex, France,
| | | | | |
Collapse
|
37
|
Marissal-Arvy N, Hamiani R, Richard E, Moisan MP, Pallet V. Vitamin A regulates hypothalamic-pituitary-adrenal axis status in LOU/C rats. J Endocrinol 2013; 219:21-7. [PMID: 23847298 DOI: 10.1530/joe-13-0062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this study was to explore the involvement of retinoids in the hypoactivity and hyporeactivity to stress of the hypothalamic-pituitary-adrenal (HPA) axis in LOU/C rats. We measured the effects of vitamin A deficiency administered or not with retinoic acid (RA) on plasma corticosterone in standard conditions and in response to restraint stress and on hypothalamic and hippocampal expression of corticosteroid receptors, corticotropin-releasing hormone and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in LOU/C rats. Interestingly, under control conditions, we measured a higher plasma concentration of retinol in LOU/C than in Wistar rats, which could contribute to the lower basal activity of the HPA axis in LOU/C rats. Vitamin A deficiency induced an increased HPA axis activity in LOU/C rats, normalized by RA administration. Compared with LOU/C control rats, vitamin A-deficient rats showed a delayed and heightened corticosterone response to restraint stress. The expression of corticosteroid receptors was strongly decreased by vitamin A deficiency in the hippocampus, which could contribute to a less efficient feedback by corticosterone on HPA axis tone. The expression of 11β-HSD1 was increased by vitamin A deficiency in the hypothalamus (+62.5%) as in the hippocampus (+104.7%), which could lead to a higher production of corticosterone locally and contribute to alteration of the hippocampus. RA supplementation treatment restored corticosterone concentrations and 11β-HSD1 expression to control levels. The high vitamin A status of LOU/C rats could contribute to their low HPA axis activity/reactivity and to a protective effect against 11β-HSD1-mediated deleterious action on cognitive performances during ageing.
Collapse
Affiliation(s)
- Nathalie Marissal-Arvy
- INRA, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
38
|
Komori R, Kobayashi T, Matsuo H, Kino K, Miyazawa H. Csn3 gene is regulated by all-trans retinoic acid during neural differentiation in mouse P19 cells. PLoS One 2013; 8:e61938. [PMID: 23613978 PMCID: PMC3629135 DOI: 10.1371/journal.pone.0061938] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/14/2013] [Indexed: 12/21/2022] Open
Abstract
κ-Casein (CSN3) is known to play an essential role in controlling the stability of the milk micelles. We found that the expression of Csn3 was induced by all-trans retinoic acid (ATRA) during neural differentiation in P19 embryonal carcinoma cells from our study using DNA microarray. In this paper, we describe the detailed time course of Csn3 expression and the induction mechanism of Csn3 transcription activation in this process. The Csn3 expression was induced rapidly and transiently within 24 h of ATRA treatment. Retinoic acid receptor (RAR)-specific agonists were used in expression analysis to identify the RAR subtype involved upregulation of Csn3; a RARα-specific agonist mimicked the effects of ATRA on induction of Csn3 expression. Therefore, RARα may be the RAR subtype mediating the effects of ATRA on the induction of Csn3 gene transcription in this differentiation-promoting process of P19 cells. We found that the promoter region of Csn3 contained a typical consensus retinoic acid response element (RARE), and this RARE was necessary for ATRA-dependent transcriptional regulation. We confirmed that RARα bound to this RARE sequence in P19 cells. These findings indicated that the Csn3 expression is upregulated via ATRA-bound RARα and binding of this receptor to the RARE in the Csn3 promoter region. This will certainly serve as a first step forward unraveling the mysteries of induction of Csn3 in the process of neural differentiation.
Collapse
Affiliation(s)
- Rie Komori
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Takanobu Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Hikaru Matsuo
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Katsuhito Kino
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Hiroshi Miyazawa
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
- * E-mail:
| |
Collapse
|
39
|
Kim DM, Choi HR, Park A, Shin SM, Bae KH, Lee SC, Kim IC, Kim WK. Retinoic acid inhibits adipogenesis via activation of Wnt signaling pathway in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 2013; 434:455-9. [PMID: 23583383 DOI: 10.1016/j.bbrc.2013.03.095] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 03/27/2013] [Indexed: 01/29/2023]
Abstract
Although retinoic acid (RA) is well known to inhibit the differentiation of 3T3-L1 cells into adipocytes both in vivo and in vitro, its molecular mechanism is not fully understood. In this report, we investigate the inhibitory mechanism of adipocyte differentiation by RA in 3T3-L1 cells. Because both RA and Wnt are known to inhibit adipogenesis at a common step involving the inhibition of PPAR-γ expression, we focused on the crosstalk between these two signaling pathways. We found that RA treatment resulted in a dramatic inhibition of adipogenesis, especially at an early phase of differentiation, and led to increased β-catenin protein expression. Moreover, RA enhances the transcriptional activity of β-catenin as well as Wnt gene expression during adipogenesis. Taken together, the present study demonstrated that Wnt/β-catenin signaling may be associated with the RA-induced suppression of adipogenesis and may cooperatively inhibit adipocyte differentiation.
Collapse
Affiliation(s)
- Dong Min Kim
- Department of Medical System Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kasimanickam VR, Kasimanickam RK, Rogers HA. Immunolocalization of retinoic acid receptor-alpha, -beta, and -gamma, in bovine and canine sperm. Theriogenology 2013; 79:1010-8. [PMID: 23465288 DOI: 10.1016/j.theriogenology.2013.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/19/2013] [Accepted: 01/19/2013] [Indexed: 01/17/2023]
Abstract
Retinoic acid is an important regulator of cellular proliferation and differentiation. The action of retinoic acid is mediated by retinoic acid receptors (RARs) and the retinoid X receptors. The objective was to elucidate the protein localization and expression of RARα, RARβ, and RARγ in bull and dog sperm. Bull and dog sperm were subjected to an immunostaining procedure to determine presence of RARα, RARβ, and RARγ. We concluded that all three receptors were present in different regions of bull and dog sperm at varying levels. Protein expression in bull and dog sperm lysates was investigated using protein dot-blot analyses. The protein levels of RARα and RARγ were higher than the protein level of RARβ in bull and dog sperm. Protein sequences of RARα, RARβ, and RARγ for bull and dog were 98%, 89%, and 98%, respectively, on similarity alignment. In conclusion, the presence of RARα, RARβ, and RARγ receptors supported their role in sperm structure and function.
Collapse
Affiliation(s)
- Vanmathy R Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | | | | |
Collapse
|
41
|
Al Tanoury Z, Piskunov A, Rochette-Egly C. Vitamin A and retinoid signaling: genomic and nongenomic effects. J Lipid Res 2013; 54:1761-75. [PMID: 23440512 DOI: 10.1194/jlr.r030833] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vitamin A or retinol is arguably the most multifunctional vitamin in the human body, as it is essential from embryogenesis to adulthood. The pleiotropic effects of vitamin A are exerted mainly by one active metabolite, all-trans retinoic acid (atRA), which regulates the expression of a battery of target genes through several families of nuclear receptors (RARs, RXRs, and PPARβ/δ), polymorphic retinoic acid (RA) response elements, and multiple coregulators. It also involves extranuclear and nontranscriptional effects, such as the activation of kinase cascades, which are integrated in the nucleus via the phosphorylation of several actors of RA signaling. However, vitamin A itself proved recently to be active and RARs to be present in the cytosol to regulate translation and cell plasticity. These new concepts expand the scope of the biologic functions of vitamin A and RA.
Collapse
Affiliation(s)
- Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM), U964, CNRS, UMR7104, Université de Strasbourg, 67404 Illkirch Cedex, France
| | | | | |
Collapse
|
42
|
Connolly RM, Nguyen NK, Sukumar S. Molecular pathways: current role and future directions of the retinoic acid pathway in cancer prevention and treatment. Clin Cancer Res 2013; 19:1651-9. [PMID: 23322901 DOI: 10.1158/1078-0432.ccr-12-3175] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retinoids and their naturally metabolized and synthetic products (e.g., all-trans retinoic acid, 13-cis retinoic acid, bexarotene) induce differentiation in various cell types. Retinoids exert their actions mainly through binding to the nuclear retinoic acid receptors (α, β, γ), which are transcriptional and homeostatic regulators with functions that are often compromised early in neoplastic transformation. The retinoids have been investigated extensively for their use in cancer prevention and treatment. Success has been achieved with their use in the treatment of subtypes of leukemia harboring chromosomal translocations. Promising results have been observed in the breast cancer prevention setting, where fenretinide prevention trials have provided a strong rationale for further investigation in young women at high risk for breast cancer. Ongoing phase III randomized trials investigating retinoids in combination with chemotherapy in non-small cell lung cancer aim to definitively characterize the role of retinoids in this tumor type. The limited treatment success observed to date in the prevention and treatment of solid tumors may relate to the frequent epigenetic silencing of RARβ. Robust evaluation of RARβ and downstream genes may permit optimized use of retinoids in the solid tumor arena.
Collapse
Affiliation(s)
- Roisin M Connolly
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
43
|
Flajollet S, Staels B, Lefebvre P. Retinoids and nuclear retinoid receptors in white and brown adipose tissues: physiopathologic aspects. Horm Mol Biol Clin Investig 2013; 14:75-86. [DOI: 10.1515/hmbci-2013-0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/06/2013] [Indexed: 01/30/2023]
Abstract
AbstractVitamin A, ingested either as retinol or β-carotene from animal- or plant-derived foods respectively, is a nutrient essential for many biological functions such as embryonic development, vision, immune response, tissue remodeling, and metabolism. Its main active metabolite is all
Collapse
|
44
|
Tsuchiya H, Ikeda Y, Ebata Y, Kojima C, Katsuma R, Tsuruyama T, Sakabe T, Shomori K, Komeda N, Oshiro S, Okamoto H, Takubo K, Hama S, Shudo K, Kogure K, Shiota G. Retinoids ameliorate insulin resistance in a leptin-dependent manner in mice. Hepatology 2012; 56:1319-30. [PMID: 22531980 DOI: 10.1002/hep.25798] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED Transgenic mice expressing dominant-negative retinoic acid receptor (RAR) α specifically in the liver exhibit steatohepatitis, which leads to the development of liver tumors. Although the cause of steatohepatitis in these mice is unknown, diminished hepatic expression of insulin-like growth factor-1 suggests that insulin resistance may be involved. In the present study, we examined the effects of retinoids on insulin resistance in mice to gain further insight into the mechanisms responsible for this condition. Dietary administration of all-trans-retinoic acid (ATRA) significantly improved insulin sensitivity in C57BL/6J mice, which served as a model for high-fat, high-fructose diet-induced nonalcoholic fatty liver disease (NAFLD). The same effect was observed in genetically insulin-resistant KK-A(y) mice, occurring in concert with activation of leptin-signaling pathway proteins, including signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2. However, such an effect was not observed in leptin-deficient ob/ob mice. ATRA treatment significantly up-regulated leptin receptor (LEPR) expression in the livers of NAFLD mice. In agreement with these observations, in vitro experiments showed that in the presence of leptin, ATRA directly induced LEPR gene expression through RARα, resulting in enhancement of STAT3 and insulin-induced insulin receptor substrate 1 phosphorylation. A selective RARα/β agonist, Am80, also enhanced hepatic LEPR expression and STAT3 phosphorylation and ameliorated insulin resistance in KK-A(y) mice. CONCLUSION We discovered an unrecognized mechanism of retinoid action for the activation of hepatic leptin signaling, which resulted in enhanced insulin sensitivity in two mouse models of insulin resistance. Our data suggest that retinoids might have potential for treating NAFLD associated with insulin resistance.
Collapse
Affiliation(s)
- Hiroyuki Tsuchiya
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Maeng S, Kim GJ, Choi EJ, Yang HO, Lee DS, Sohn YC. 9-Cis-retinoic acid induces growth inhibition in retinoid-sensitive breast cancer and sea urchin embryonic cells via retinoid X receptor α and replication factor C3. Mol Endocrinol 2012; 26:1821-35. [PMID: 22949521 DOI: 10.1210/me.2012-1104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is widespread interest in defining factors and mechanisms that suppress the proliferation of cancer cells. Retinoic acid (RA) is a potent suppressor of mammary cancer and developmental embryonic cell proliferation. However, the molecular mechanisms by which 9-cis-RA signaling induces growth inhibition in RA-sensitive breast cancer and embryonic cells are not apparent. Here, we provide evidence that the inhibitory effect of 9-cis-RA on cell proliferation depends on 9-cis-RA-dependent interaction of retinoid X receptor α (RXRα) with replication factor C3 (RFC3), which is a subunit of the RFC heteropentamer that opens and closes the circular proliferating cell nuclear antigen (PCNA) clamp on DNA. An RFC3 ortholog in a sea urchin cDNA library was isolated by using the ligand-binding domain of RXRα as bait in a yeast two-hybrid screening. The interaction of RFC3 with RXRα depends on 9-cis-RA and bexarotene, but not on all-trans-RA or an RA receptor (RAR)-selective ligand. Truncation and mutagenesis experiments demonstrated that the C-terminal LXXLL motifs in both human and sea urchin RFC3 are critical for the interaction with RXRα. The transient interaction between 9-cis-RA-activated RXRα and RFC3 resulted in reconfiguration of the PCNA-RFC complex. Furthermore, we found that knockdown of RXRα or overexpression of RFC3 impairs the ability of 9-cis-RA to inhibit proliferation of MCF-7 breast cancer cells and sea urchin embryogenesis. Our results indicate that 9-cis-RA-activated RXRα suppresses the growth of RA-sensitive breast cancer and embryonic cells through RFC3.
Collapse
Affiliation(s)
- Sejung Maeng
- Department of Marine Molecular Biotechnology, College of Life Sciences, Gangneung-Wonju National University, Gangneung 210-702, Republic of Korea
| | | | | | | | | | | |
Collapse
|
46
|
Tsuchiya H. Retinoids as Promising Treatment for Non-alcoholic Fatty Liver Disease. YAKUGAKU ZASSHI 2012; 132:903-9. [DOI: 10.1248/yakushi.132.903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroyuki Tsuchiya
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University
| |
Collapse
|
47
|
Amann PM, Luo C, Owen RW, Hofmann C, Freudenberger M, Schadendorf D, Eichmüller SB, Bazhin AV. Vitamin A metabolism in benign and malignant melanocytic skin cells: importance of lecithin/retinol acyltransferase and RPE65. J Cell Physiol 2012; 227:718-28. [PMID: 21465477 DOI: 10.1002/jcp.22779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Disturbance in vitamin A metabolism seems to be an important attribute of cancer cells. Retinoids, particularly retinoic acid, have critical regulatory functions and appear to modulate tumor development and progression. The key step of vitamin A metabolism is the esterification of all-trans retinol, catalyzed by lecithin/retinol acyltransferase (LRAT). In this work, we show that malignant melanoma cells are able to esterify all-trans retinol and subsequently isomerize all-trans retinyl esters (RE) into 11-cis retinol, whereas their benign counterparts-melanocytes are not able to catalyze these reactions. Besides, melanoma cell lines express lecithin/retinol acyltranseferase both at the mRNA and protein levels. In contrast, melanocytes do not express this enzyme at the protein level, but mRNA of lecithin/retinol acyltransefrase could still be present at mRNA level. RPE65 is expressed in both melanocytic counterparts, and could be involved in the subsequent isomerization of RE produced by lecithin/retinol acyltransefrase to 11-cis retinol. Cellular retinol-binding protein 2 does not appear to be involved in the regulation of all-trans retinol esterification in these cells. Expression of LRAT and RPE65 can be modulated by retinoids. We propose that the post-transcriptional regulation of lecithin/retinol acyltransefrase could be involved in the differential expression of this enzyme. Besides, activities of LRAT and RPE65 may be important for removal of all-trans retinal which is the substrate for retinoic acid production in skin cells. Consequently, the decreasing cellular amount of retinoic acid and its precursor molecules could result in a change of gene regulation.
Collapse
Affiliation(s)
- Philipp M Amann
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Samarut E, Rochette-Egly C. Nuclear retinoic acid receptors: conductors of the retinoic acid symphony during development. Mol Cell Endocrinol 2012; 348:348-60. [PMID: 21504779 DOI: 10.1016/j.mce.2011.03.025] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/21/2011] [Accepted: 03/31/2011] [Indexed: 11/18/2022]
Abstract
The vitamin A derivative, retinoic acid (RA), is essential for embryonic development through the activation of cognate nuclear receptors, RARs, which work as ligand dependent regulators of transcription. In vitro studies revealed how RARs control gene expression at the molecular level and now it appears that it is fine-tuned by a phosphorylation code. In addition, several genetic approaches provided valuable insights on the functions of RARs during development and on the influence of other actors such as the enzymes involved in RA synthesis and degradation and other signaling pathways. It appears that RARs are the conductors of the RA signaling symphony through controlling the dynamics and the coordination of the different players and development steps.
Collapse
Affiliation(s)
- Eric Samarut
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U596; CNRS, UMR7104; Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France.
| | | |
Collapse
|
49
|
Chen HH, Peng L. Effect of all-trans retinoic acid on the differentiation, invasion and metastasis of liver cancer HepG2 cells. Shijie Huaren Xiaohua Zazhi 2011; 19:3381-3389. [DOI: 10.11569/wcjd.v19.i33.3381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of all-trans retinoic acid (ATRA) on the differentiation, invasion and metastasis of liver cancer HepG2 cells.
METHODS: After HepG2 cells were treated with different concentrations of ATRA, the proliferation of HepG2 cells was evaluated by MTT assay; anchorage-dependent growth was evaluated by colony formation assay; AFP secretion was determined by ELISA; the transcription levels of Nanog and MMP-9 were assessed by RT-PCR, and their protein levels were assessed by Western blot; and cell invasion and migration were evaluated by scratch test and transwell assay.
RESULTS: ATRA suppressed the proliferation and anchorage-dependent growth of HepG2 in a dose- and time-dependent manner. ATRA induced cell differentiation and decreased AFP secretion in HepG2 cells (both P < 0.05). Treatment with ATRA down-regulated the mRNA and protein levels of Nanog and MMP-9 (within 24 hours) in a dose- and time-dependent manner. In addition, ATRA could inhibit the invasion and metastasis of HepG2 cells.
CONCLUSION: ATRA may induce cell differentiation, reduce cell invasion and migration and down-regulate the levels of Nanog in HepG2 cells.
Collapse
|
50
|
A retinoic acid receptor RARα pool present in membrane lipid rafts forms complexes with G protein αQ to activate p38MAPK. Oncogene 2011; 31:3333-45. [PMID: 22056876 DOI: 10.1038/onc.2011.499] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Retinoic acid (RA) regulates several gene programs by nuclear RA receptors (RARs) that are ligand-dependent transcriptional transregulators. The basic mechanism for switching on transcription of cognate-target genes involves RAR binding at specific response elements and a network of interactions with coregulatory protein complexes. In addition to these classical genomic effects, we recently demonstrated that RA also induces the rapid activation of the p38MAPK/MSK1 pathway, with characteristic downstream consequences on the phosphorylation of RARs and the expression of their target genes. Here, we aimed at deciphering the underlying mechanism of the rapid non-genomic effects of RA. We highlighted a novel paradigm in which a fraction of the cellular RARα pool is present in membrane lipid rafts, where it forms complexes with G protein alpha Q (Gαq) in response to RA. This rapid RA-induced formation of RARα/Gαq complexes in lipid rafts is required for the activation of p38MAPK that occurs in response to RA. Accordingly, in RA-resistant cancer cells, characterized by the absence of p38MAPK activation, RARα present in membrane lipid rafts does not associate with Gαq, pointing out the essential contribution of RARα/Gαq complexes in RA signaling.
Collapse
|