1
|
Fu Y, Huang S, Pan R, Chen X, Liu T, Zhang R, Zhu F, Fang Q, Wu L, Dai J, Wang O, Lu L, Wei X, Wang L, Lu X. The PDE4DIP-AKAP9 axis promotes lung cancer growth through modulation of PKA signalling. Commun Biol 2025; 8:178. [PMID: 39905234 PMCID: PMC11794602 DOI: 10.1038/s42003-025-07621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025] Open
Abstract
Phosphodiesterase 4D interacting protein (PDE4DIP) is a Golgi/centrosome-associated protein that plays critical roles in the regulation of microtubule dynamics and maintenance of the Golgi structure. However, its biological role in human cancer remains largely unknown. In this study, we showed that PDE4DIP is overexpressed in human non-small cell lung cancer (NSCLC) tissues and that upregulated PDE4DIP expression is associated with poor prognosis in patients with lung cancer. We demonstrated that PDE4DIP knockdown inhibits NSCLC cell proliferation in vitro and tumorigenicity in vivo. We further demonstrated that PDE4DIP knockdown triggers apoptosis and cell cycle arrest in NSCLC cells by activating the Protein kinase A (PKA) /CREB signalling pathway. PDE4DIP coordinates with A-kinase anchoring proteins 9 (AKAP9) to enhance the Golgi localization and stability of PKA RIIα. Depletion of PDE4DIP mislocalizes PKA RIIα from the Golgi and leads to its degradation, thereby compromising its negative regulatory effect on PKA signalling. Overall, our findings provide novel insights into the roles of the PDE4DIP-AKAP9 complex in regulating PKA signalling and NSCLC growth and highlight PDE4DIP as a promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yangyang Fu
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shishun Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rulu Pan
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xingan Chen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ting Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rongzhe Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fangsheng Zhu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiwei Fang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liyue Wu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Juji Dai
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ouchen Wang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liting Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiduan Wei
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liangxing Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Sherman DJ, Liu L, Mamrosh JL, Xie J, Ferbas J, Lomenick B, Ladinsky MS, Verma R, Rulifson IC, Deshaies RJ. The fatty liver disease-causing protein PNPLA3-I148M alters lipid droplet-Golgi dynamics. Proc Natl Acad Sci U S A 2024; 121:e2318619121. [PMID: 38657050 PMCID: PMC11067037 DOI: 10.1073/pnas.2318619121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/16/2024] [Indexed: 04/26/2024] Open
Abstract
Nonalcoholic fatty liver disease, recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a progressive metabolic disorder that begins with aberrant triglyceride accumulation in the liver and can lead to cirrhosis and cancer. A common variant in the gene PNPLA3, encoding the protein PNPLA3-I148M, is the strongest known genetic risk factor for MASLD. Despite its discovery 20 y ago, the function of PNPLA3, and now the role of PNPLA3-I148M, remain unclear. In this study, we sought to dissect the biogenesis of PNPLA3 and PNPLA3-I148M and characterize changes induced by endogenous expression of the disease-causing variant. Contrary to bioinformatic predictions and prior studies with overexpressed proteins, we demonstrate here that PNPLA3 and PNPLA3-I148M are not endoplasmic reticulum-resident transmembrane proteins. To identify their intracellular associations, we generated a paired set of isogenic human hepatoma cells expressing PNPLA3 and PNPLA3-I148M at endogenous levels. Both proteins were enriched in lipid droplet, Golgi, and endosomal fractions. Purified PNPLA3 and PNPLA3-I148M proteins associated with phosphoinositides commonly found in these compartments. Despite a similar fractionation pattern as the wild-type variant, PNPLA3-I148M induced morphological changes in the Golgi apparatus, including increased lipid droplet-Golgi contact sites, which were also observed in I148M-expressing primary human patient hepatocytes. In addition to lipid droplet accumulation, PNPLA3-I148M expression caused significant proteomic and transcriptomic changes that resembled all stages of liver disease. Cumulatively, we validate an endogenous human cellular system for investigating PNPLA3-I148M biology and identify the Golgi apparatus as a central hub of PNPLA3-I148M-driven cellular change.
Collapse
Affiliation(s)
| | - Lei Liu
- Amgen Research, South San Francisco, CA94080
| | | | | | | | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Mark S. Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | | | | | | |
Collapse
|
3
|
Sherman DJ, Liu L, Mamrosh JL, Xie J, Ferbas J, Lomenick B, Ladinsky MS, Verma R, Rulifson IC, Deshaies RJ. The fatty liver disease-causing protein PNPLA3-I148M alters lipid droplet-Golgi dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562302. [PMID: 37873239 PMCID: PMC10592801 DOI: 10.1101/2023.10.13.562302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a progressive metabolic disorder that begins with aberrant triglyceride accumulation in the liver and can lead to cirrhosis and cancer. A common variant in the gene PNPLA3, encoding the protein PNPLA3-I148M, is the strongest known genetic risk factor for MASLD to date. Despite its discovery twenty years ago, the function of PNPLA3, and now the role of PNPLA3-I148M, remain unclear. In this study, we sought to dissect the biogenesis of PNPLA3 and PNPLA3-I148M and characterize changes induced by endogenous expression of the disease-causing variant. Contrary to bioinformatic predictions and prior studies with overexpressed proteins, we demonstrate here that PNPLA3 and PNPLA3-I148M are not endoplasmic reticulum-resident transmembrane proteins. To identify their intracellular associations, we generated a paired set of isogenic human hepatoma cells expressing PNPLA3 and PNPLA3-I148M at endogenous levels. Both proteins were enriched in lipid droplet, Golgi, and endosomal fractions. Purified PNPLA3 and PNPLA3-I148M proteins associated with phosphoinositides commonly found in these compartments. Despite a similar fractionation pattern as the wild-type variant, PNPLA3-I148M induced morphological changes in the Golgi apparatus, including increased lipid droplet-Golgi contact sites, which were also observed in I148M-expressing primary human patient hepatocytes. In addition to lipid droplet accumulation, PNPLA3-I148M expression caused significant proteomic and transcriptomic changes that resembled all stages of liver disease. Cumulatively, we validate an endogenous human cellular system for investigating PNPLA3-I148M biology and identify the Golgi apparatus as a central hub of PNPLA3-I148M-driven cellular change.
Collapse
Affiliation(s)
| | - Lei Liu
- Amgen Research, South San Francisco, CA 94080, USA
| | | | | | - John Ferbas
- Amgen Research, Thousand Oaks, CA 91320, USA
| | - Brett Lomenick
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark S. Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rati Verma
- Amgen Research, Thousand Oaks, CA 91320, USA
| | | | | |
Collapse
|
4
|
Banerjee P, Tan X, Russell WK, Kurie JM. Analysis of Golgi Secretory Functions in Cancer. Methods Mol Biol 2022; 2557:785-810. [PMID: 36512251 DOI: 10.1007/978-1-0716-2639-9_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer cells utilize secretory pathways for paracrine signaling and extracellular matrix remodeling to facilitate directional cell migration, invasion, and metastasis. The Golgi apparatus is a central secretory signaling hub that is often deregulated in cancer. Here we described technologies that utilize microscopic, biochemical, and proteomic approaches to analyze Golgi secretory functions in genetically heterogeneous cancer cell lines.
Collapse
Affiliation(s)
- Priyam Banerjee
- Frits and Rita Markus Bio-Imaging Resource Center, The Rockefeller University, New York, NY, USA
| | - Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Navarro AP, Cheeseman IM. Identification of a Golgi-localized peptide reveals a minimal Golgi-targeting motif. Mol Biol Cell 2022; 33:ar110. [PMID: 35921174 DOI: 10.1091/mbc.e22-03-0091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Prior work has identified signal sequences and motifs that are necessary and sufficient to target proteins to specific subcellular regions and organelles such as the plasma membrane, nucleus, endoplasmic reticulum, and mitochondria. In contrast, minimal sequence motifs that are sufficient for Golgi localization remain largely elusive. In this work, we identified a 37-amino acid alternative open reading frame (altORF) within the mRNA of the centromere protein CENP-R. This altORF peptide localizes specifically to the cytoplasmic surface of the Golgi apparatus. Through mutational analysis, we identify a minimal 10-amino acid sequence and a critical cysteine residue that are necessary and sufficient for Golgi localization. Pharmacological perturbations suggest that this peptide undergoes lipid modification to promote its localization. Together, our work defines a minimal sequence that is sufficient for Golgi targeting and provide a valuable Golgi marker for live cell imaging.
Collapse
Affiliation(s)
- Alexandra P Navarro
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
6
|
RING domain of zinc finger protein like 1 is essential for cell proliferation in endometrial cancer cell line RL95-2. Gene 2018; 677:17-23. [DOI: 10.1016/j.gene.2018.07.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 01/31/2023]
|
7
|
Yu RY, Xing L, Cui PF, Qiao JB, He YJ, Chang X, Zhou TJ, Jin QR, Jiang HL, Xiao Y. Regulating the Golgi apparatus by co-delivery of a COX-2 inhibitor and Brefeldin A for suppression of tumor metastasis. Biomater Sci 2018; 6:2144-2155. [DOI: 10.1039/c8bm00381e] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, celecoxib (CLX) and brefeldin A (BFA) were encapsulated into the biocompatible polymer PLGA-PEG to form nanoparticles that act on the Golgi apparatus to treat metastatic breast cancer.
Collapse
|
8
|
Windheim M, Höning S, Leppard KN, Butler L, Seed C, Ponnambalam S, Burgert HG. Sorting Motifs in the Cytoplasmic Tail of the Immunomodulatory E3/49K Protein of Species D Adenoviruses Modulate Cell Surface Expression and Ectodomain Shedding. J Biol Chem 2016; 291:6796-812. [PMID: 26841862 DOI: 10.1074/jbc.m115.684787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 11/06/2022] Open
Abstract
The E3 transcription unit of human species C adenoviruses (Ads) encodes immunomodulatory proteins that mediate direct protection of infected cells. Recently, we described a novel immunomodulatory function for E3/49K, an E3 protein uniquely expressed by species D Ads. E3/49K of Ad19a/Ad64, a serotype that causes epidemic keratokonjunctivitis, is synthesized as a highly glycosylated type I transmembrane protein that is subsequently cleaved, resulting in secretion of its large ectodomain (sec49K). sec49K binds to CD45 on leukocytes, impairing activation and functions of natural killer cells and T cells. E3/49K is localized in the Golgi/trans-Golgi network (TGN), in the early endosomes, and on the plasma membrane, yet the cellular compartment where E3/49K is cleaved and the protease involved remained elusive. Here we show that TGN-localized E3/49K comprises both newly synthesized and recycled molecules. Full-length E3/49K was not detected in late endosomes/lysosomes, but the C-terminal fragment accumulated in this compartment at late times of infection. Inhibitor studies showed that cleavage occurs in a post-TGN compartment and that lysosomotropic agents enhance secretion. Interestingly, the cytoplasmic tail of E3/49K contains two potential sorting motifs, YXXΦ (where Φ represents a bulky hydrophobic amino acid) and LL, that are important for binding the clathrin adaptor proteins AP-1 and AP-2in vitro Surprisingly, mutating the LL motif, either alone or together with YXXΦ, did not prevent proteolytic processing but increased cell surface expression and secretion. Upon brefeldin A treatment, cell surface expression was rapidly lost, even for mutants lacking all known endocytosis motifs. Together with immunofluorescence data, we propose a model for intracellular E3/49K transport whereby cleavage takes place on the cell surface by matrix metalloproteases.
Collapse
Affiliation(s)
- Mark Windheim
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom, the Institute of Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Höning
- the Institute for Biochemistry I and Center for Molecular Medicine Cologne, 50931 Cologne, Germany, and
| | - Keith N Leppard
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Larissa Butler
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Christina Seed
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sreenivasan Ponnambalam
- the School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Hans-Gerhard Burgert
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom,
| |
Collapse
|
9
|
Cdc42 induces EGF receptor protein accumulation and promotes EGF receptor nuclear transport and cellular transformation. FEBS Lett 2014; 589:255-62. [PMID: 25497016 DOI: 10.1016/j.febslet.2014.11.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/17/2014] [Accepted: 11/26/2014] [Indexed: 11/22/2022]
Abstract
Cdc42 is a Ras-related small GTP-binding protein. A previous study has shown that Cdc42 binding to the γ subunit of the coatomer protein complex (γCOP) is essential for Cdc42-regulated cellular transformation, but the molecular mechanism involved is not well understood. Here, we demonstrate that constitutively-active Cdc42 binding to γCOP induced the accumulation of epithelial growth factor receptor (EGFR) in the cells, sustained EGF-stimulated extracellular signal-regulated kinase (ERK), JUN amino-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3K) signaling and promoted cell division. Moreover, constitutive Cdc42 activity facilitated the nuclear translocation of EGFR, and this indicates a novel mechanism through which Cdc42 might promote cellular transformation.
Collapse
|
10
|
Nakakuki M, Kawano H, Notsu T, Imada K, Mizuguchi K, Shimano H. A novel processing system of sterol regulatory element-binding protein-1c regulated by polyunsaturated fatty acid. J Biochem 2014; 155:301-13. [PMID: 24729033 DOI: 10.1093/jb/mvu019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The proteolytic cascade is the key step in transactivation of sterol regulatory element-binding proteins (SREBPs), a transcriptional factor of lipid synthesis. Proteolysis of SREBP-2 is strictly regulated by sterols, but that of SREBP-1c was not strongly sterol-regulated, but inhibited by polyunsaturated fatty acids (PUFAs). In this study, the proteolytic processing of SREBP-1 and -2 was examined by transfection studies of cDNA-encoding mutants in which all the known cleavage sites were disrupted. In cultured cells, sterol-regulated SREBP-2 processing was completely eliminated by mutation of cleavage sites. In contrast, the corresponding SREBP-1c mutants as well as wild type exhibited large amounts of cleaved products in the nuclear extracts from culture cells and murine liver in vivo. The nuclear form of the mutant SREBP-1c was induced by delipidated condition and suppressed by eicosapentaenoic acid, an n-3 PUFA, but not by sterols. This novel processing mechanism was affected by neither SREBP cleavage-activating protein (SCAP) nor insulin-induced gene (Insig)-1, unlike SREBP-2, but abolished by a serine protease inhibitor. Through analysis of deletion mutant, a site-2 protease recognition sequence (DRSR) was identified to be involved in this novel processing. These findings suggest that SREBP-1c cleavage could be subjected to a novel PUFA-regulated cleavage system in addition to the sterol-regulatory SCAP/Insig system.
Collapse
Affiliation(s)
- Masanori Nakakuki
- Development Research, Pharmaceutical Research Center, Mochida Pharmaceutical Co., Ltd., 722 Jimba-aza-Uenohara, Gotemba, Shizuoka 412-8524; and Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, Faculty of Medicine, and International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Peng W, Lei Q, Jiang Z, Hu Z. Characterization of Golgi scaffold proteins and their roles in compartmentalizing cell signaling. J Mol Histol 2013; 45:435-45. [PMID: 24337566 DOI: 10.1007/s10735-013-9560-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/02/2013] [Indexed: 12/21/2022]
Abstract
Subcellular compartmentalization has become an important theme in cell signaling. In particular, the Golgi apparatus (GA) plays a prominent role in compartmentalizing signaling cascades that originate at the plasma membrane or other organelles. To precisely regulate this process, cells have evolved a unique class of organizer proteins, termed "scaffold proteins". Sef, PAQR3, PAQR10 and PAQR11 are scaffold proteins that have recently been identified on the GA and are referred to as Golgi scaffolds. The major cell growth signaling pathways, such as Ras/MAPK, PI3K/AKT, insulin and VEGF (vascular endothelial growth factor), are tightly regulated spatially and temporally by these Golgi scaffolds to ensure a physiologically appropriate outcome. Here, we discuss the subcellular localization and characterization of the topology and functional domains of these Golgi scaffolds and summarize their roles in the compartmentalization of cell signaling. We also highlight the physiological and pathological roles of these Golgi scaffolds in tumorigenesis and developmental disorders.
Collapse
Affiliation(s)
- Wenna Peng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | | | | | | |
Collapse
|
12
|
Bisel B, Calamai M, Vanzi F, Pavone FS. Decoupling polarization of the Golgi apparatus and GM1 in the plasma membrane. PLoS One 2013; 8:e80446. [PMID: 24312472 PMCID: PMC3846482 DOI: 10.1371/journal.pone.0080446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/03/2013] [Indexed: 01/19/2023] Open
Abstract
Cell polarization is a process of coordinated cellular rearrangements that prepare the cell for migration. GM1 is synthesized in the Golgi apparatus and localized in membrane microdomains that appear at the leading edge of polarized cells, but the mechanism by which GM1 accumulates asymmetrically is unknown. The Golgi apparatus itself becomes oriented toward the leading edge during cell polarization, which is thought to contribute to plasma membrane asymmetry. Using quantitative image analysis techniques, we measure the extent of polarization of the Golgi apparatus and GM1 in the plasma membrane simultaneously in individual cells subject to a wound assay. We find that GM1 polarization starts just 10 min after stimulation with growth factors, while Golgi apparatus polarization takes 30 min. Drugs that block Golgi polarization or function have no effect on GM1 polarization, and, conversely, inhibiting GM1 polarization does not affect Golgi apparatus polarization. Evaluation of Golgi apparatus and GM1 polarization in single cells reveals no correlation between the two events. Our results indicate that Golgi apparatus and GM1 polarization are controlled by distinct intracellular cascades involving the Ras/Raf/MEK/ERK and the PI3K/Akt/mTOR pathways, respectively. Analysis of cell migration and invasion suggest that MEK/ERK activation is crucial for two dimensional migration, while PI3K activation drives three dimensional invasion, and no cumulative effect is observed from blocking both simultaneously. The independent biochemical control of GM1 polarity by PI3K and Golgi apparatus polarity by MEK/ERK may act synergistically to regulate and reinforce directional selection in cell migration.
Collapse
Affiliation(s)
- Blaine Bisel
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- * E-mail:
| | - Martino Calamai
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council of Italy (CNR), Florence, Italy
| | - Francesco Vanzi
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- Department of Evolutionary Biology “Leo Pardi”, University of Florence, Florence, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
13
|
Kilgore JA, Dolman NJ, Davidson MW. A review of reagents for fluorescence microscopy of cellular compartments and structures, Part II: reagents for non-vesicular organelles. ACTA ACUST UNITED AC 2013; 66:12.31.1-12.31.24. [PMID: 24510724 DOI: 10.1002/0471142956.cy1231s66] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A wide range of fluorescent dyes and reagents exist for labeling organelles in live and fixed cells. Choosing between them can sometimes be confusing, and optimization for many of them can be challenging. Presented here is a discussion on the commercially-available reagents that have shown the most promise for each organelle of interest, including endoplasmic reticulum/nuclear membrane, Golgi apparatus, mitochondria, nucleoli, and nuclei, with an emphasis on localization of these structures for microscopy. Included is a featured reagent for each structure with a recommended protocol, troubleshooting guide, and example image.
Collapse
Affiliation(s)
- Jason A Kilgore
- Molecular Probes Labeling and Detection, Life Technologies, Eugene, Oregon
| | - Nick J Dolman
- Molecular Probes Labeling and Detection, Life Technologies, Eugene, Oregon
| | - Michael W Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, Florida
| |
Collapse
|
14
|
Walker AK, Jacobs RL, Watts JL, Rottiers V, Jiang K, Finnegan DM, Shioda T, Hansen M, Yang F, Niebergall LJ, Vance DE, Tzoneva M, Hart AC, Näär AM. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 2011; 147:840-52. [PMID: 22035958 DOI: 10.1016/j.cell.2011.09.045] [Citation(s) in RCA: 333] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/14/2011] [Accepted: 09/19/2011] [Indexed: 12/17/2022]
Abstract
Sterol regulatory element-binding proteins (SREBPs) activate genes involved in the synthesis and trafficking of cholesterol and other lipids and are critical for maintaining lipid homeostasis. Aberrant SREBP activity, however, can contribute to obesity, fatty liver disease, and insulin resistance, hallmarks of metabolic syndrome. Our studies identify a conserved regulatory circuit in which SREBP-1 controls genes in the one-carbon cycle, which produces the methyl donor S-adenosylmethionine (SAMe). Methylation is critical for the synthesis of phosphatidylcholine (PC), a major membrane component, and we find that blocking SAMe or PC synthesis in C. elegans, mouse liver, and human cells causes elevated SREBP-1-dependent transcription and lipid droplet accumulation. Distinct from negative regulation of SREBP-2 by cholesterol, our data suggest a feedback mechanism whereby maturation of nuclear, transcriptionally active SREBP-1 is controlled by levels of PC. Thus, nutritional or genetic conditions limiting SAMe or PC production may activate SREBP-1, contributing to human metabolic disorders.
Collapse
Affiliation(s)
- Amy K Walker
- Massachusetts General Hospital Cancer Center, Building 149, 13th Street, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Seifert W, Kühnisch J, Maritzen T, Horn D, Haucke V, Hennies HC. Cohen syndrome-associated protein, COH1, is a novel, giant Golgi matrix protein required for Golgi integrity. J Biol Chem 2011; 286:37665-75. [PMID: 21865173 DOI: 10.1074/jbc.m111.267971] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Loss-of-function mutations in the gene COH1, also known as VPS13B, lead to autosomal recessive Cohen syndrome. However, the cellular distribution and function of the encoded protein COH1 (3997 amino acids), which lacks functional homologies to other mammalian proteins, have remained enigmatic. We show here that COH1 is a peripheral Golgi membrane protein that strongly co-localizes with the cis-Golgi matrix protein GM130. Consistent with its subcellular localization, COH1 depletion using RNAi causes fragmentation of the Golgi ribbon into ministacks. Disruption of Golgi organization observed in fibroblasts from Cohen syndrome patients suggests that Golgi dysfunction contributes to Cohen syndrome pathology. In conclusion, our findings establish COH1 as a Golgi-associated matrix protein required for Golgi integrity.
Collapse
Affiliation(s)
- Wenke Seifert
- Cologne Center for Genomics, Universität zu Köln, 50931 Köln, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Yuan L, Morales CR. Prosaposin sorting is mediated by oligomerization. Exp Cell Res 2011; 317:2456-67. [PMID: 21835174 DOI: 10.1016/j.yexcr.2011.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 07/17/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
Abstract
The compartmental nature of eukaryotic cells requires sophisticated mechanisms of protein sorting. Prosaposin, the precursor of four sphingolipid activator proteins, is transported from the trans-Golgi network (TGN) to lysosomes as a partially glycosylated (65 kDa) protein with high-mannose/hybrid oligosaccharides. Prosaposin is also found in the extracellular space where it is secreted as a fully glycosylated (70 kDa) protein composed of complex glycans. Although the trafficking of prosaposin to lysosomes is known to be mediated by sortilin, the mechanism of secretion of this protein is still unknown. In this study, we report that prosaposin may covalently aggregate into oligomers. Our results demonstrate that while prosaposin oligomers are secreted into the extracellular space, monomeric prosaposin remains inside the cell bound to sortilin. We also found that deletion of the C-terminus of prosaposin, previously shown to block its lysosomal transport, did not abolish its oligomerization and secretion. On the other hand, elimination of the N-terminus and of each saposin domain inhibited its oligomerization and resulted in its retention as a fully glycosylated protein. In conclusion, we are reporting for the first time that oligomerization of prosaposin is crucial for its entry into the secretory pathway.
Collapse
Affiliation(s)
- Libin Yuan
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, Canada H3A 2B2
| | | |
Collapse
|
17
|
Kumar A, Kremer KN, Dominguez D, Tadi M, Hedin KE. Gα13 and Rho mediate endosomal trafficking of CXCR4 into Rab11+ vesicles upon stromal cell-derived factor-1 stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:951-8. [PMID: 21148034 PMCID: PMC3057048 DOI: 10.4049/jimmunol.1002019] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CXCR4, like other G protein-coupled receptors, signals via heterotrimeric guanine nucleotide-binding proteins (G proteins) to regulate gene transcription, migration, development, growth, and transformation. We describe a formerly uncharacterized function of a G protein: a role in receptor trafficking. We previously showed that CXCR4 and the TCR physically associate and form a heterodimer upon stromal cell-derived factor-1 or CXCL12 (SDF-1) stimulation in human T cells to prolong ERK activation and, thereby, lead to gene upregulation and cytokine secretion. The CXCR4-TCR heterodimers occur on the cell surface and in an intracellular compartment in response to SDF-1. Neither the intracellular compartment to which the CXCR4-TCR heterodimers localize nor the mechanism for localization has been elucidated. In this article, we characterize molecular mechanisms required for postendocytic trafficking of CXCR4. Upon SDF-1 stimulation, CXCR4 localizes to Rab11(+) vesicles, a recycling compartment near the microtubule organizing center and Golgi apparatus. This trafficking requires the CXCR4 C-terminal tail domain but not the CXCR4 ubiquitination sites. The TCR also constitutively localizes to this Rab11(+) compartment. Trafficking of CXCR4 into the Rab11(+), TCR-containing endosomes requires actin polymerization. Furthermore, inhibiting Rho activation or depleting Gα13 prevented trafficking of CXCR4 into the Rab11(+) endosomes without hindering the ability of CXCR4 to endocytose. These results indicated that, upon SDF-1 treatment, Gα13 and Rho mediate the actin polymerization necessary for trafficking CXCR4 into the Rab11(+), recycling endosomal compartment, which also contains constitutively recycling TCR and, thus, CXCR4-TCR heterodimers. To our knowledge, this is the first report of Gα13 as a mediator of receptor trafficking.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
18
|
Bond LM, Peden AA, Kendrick-Jones J, Sellers JR, Buss F. Myosin VI and its binding partner optineurin are involved in secretory vesicle fusion at the plasma membrane. Mol Biol Cell 2011; 22:54-65. [PMID: 21148290 PMCID: PMC3016977 DOI: 10.1091/mbc.e10-06-0553] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 10/14/2010] [Accepted: 10/21/2010] [Indexed: 12/14/2022] Open
Abstract
During constitutive secretion, proteins synthesized at the endoplasmic reticulum (ER) are transported to the Golgi complex for processing and then to the plasma membrane for incorporation or extracellular release. This study uses a unique live-cell constitutive secretion assay to establish roles for the molecular motor myosin VI and its binding partner optineurin in discrete stages of secretion. Small interfering RNA-based knockdown of myosin VI causes an ER-to-Golgi transport delay, suggesting an unexpected function for myosin VI in the early secretory pathway. Depletion of myosin VI or optineurin does not affect the number of vesicles leaving the trans-Golgi network (TGN), indicating that these proteins do not function in TGN vesicle formation. However, myosin VI and optineurin colocalize with secretory vesicles at the plasma membrane. Furthermore, live-cell total internal reflection fluorescence microscopy demonstrates that myosin VI or optineurin depletion reduces the total number of vesicle fusion events at the plasma membrane and increases both the proportion of incomplete fusion events and the number of docked vesicles in this region. These results suggest a novel role for myosin VI and optineurin in regulation of fusion pores formed between secretory vesicles and the plasma membrane during the final stages of secretion.
Collapse
Affiliation(s)
- Lisa M. Bond
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew A. Peden
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | | | - James R. Sellers
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
19
|
Murphy JP, Pinto DM. Temporal proteomic analysis of IGF-1R signalling in MCF-7 breast adenocarcinoma cells. Proteomics 2010; 10:1847-60. [PMID: 20213678 DOI: 10.1002/pmic.200900711] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dysregulation of the insulin-like growth factor 1 receptor signalling network is implicated in tumour growth and resistance to chemotherapy. We explored proteomic changes resulting from insulin-like growth factor 1 stimulation of MCF-7 adenocarcinoma cells as a function of time. Quantitative analysis using iTRAQ reagents and 2-D LC-MS/MS analysis of three biological replicates resulted in the identification of 899 proteins (p<or=0.05) with an estimated mean false-positive rate of 2.6%. Quantitative protein expression was obtained from 681 proteins. Further analysis by supervised k-means clustering identified five temporal clusters, which were submitted to the FuncAssociate server to assign overrepresented gene ontology terms. Proteins associated with vesicle transport were significantly overrepresented. We further analyzed our data set for proteins showing temporal significance using the software, extraction and analysis of differential gene expression, resulting in 20 significantly and temporally changing proteins (p<or=0.1). These significant proteins play roles in, among others, altered glucose metabolism (lactate dehydrogenase A and pyruvate kinase M1/M2) and cellular stress (nascent polypeptide-associated complex subunit alpha and heat shock (HSC70) proteins). We used multiple reaction monitoring to validate these interesting proteins and have revealed several differences in relative peptide expression corresponding to protein isoforms and variants.
Collapse
Affiliation(s)
- J Patrick Murphy
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
20
|
Shiba Y, Römer W, Mardones GA, Burgos PV, Lamaze C, Johannes L. AGAP2 regulates retrograde transport between early endosomes and the TGN. J Cell Sci 2010; 123:2381-90. [PMID: 20551179 DOI: 10.1242/jcs.057778] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The retrograde transport route links early endosomes and the TGN. Several endogenous and exogenous cargo proteins use this pathway, one of which is the well-explored bacterial Shiga toxin. ADP-ribosylation factors (Arfs) are approximately 20 kDa GTP-binding proteins that are required for protein traffic at the level of the Golgi complex and early endosomes. In this study, we expressed mutants and protein fragments that bind to Arf-GTP to show that Arf1, but not Arf6 is required for transport of Shiga toxin from early endosomes to the TGN. We depleted six Arf1-specific ARF-GTPase-activating proteins and identified AGAP2 as a crucial regulator of retrograde transport for Shiga toxin, cholera toxin and the endogenous proteins TGN46 and mannose 6-phosphate receptor. In AGAP2-depleted cells, Shiga toxin accumulates in transferrin-receptor-positive early endosomes, suggesting that AGAP2 functions in the very early steps of retrograde sorting. A number of other intracellular trafficking pathways are not affected under these conditions. These results establish that Arf1 and AGAP2 have key trafficking functions at the interface between early endosomes and the TGN.
Collapse
Affiliation(s)
- Yoko Shiba
- Institut Curie - Centre de Recherche, Traffic, Signaling and Delivery Laboratory, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
21
|
Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule. Prog Lipid Res 2010; 49:218-34. [PMID: 20043945 DOI: 10.1016/j.plipres.2009.12.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Golgi body-mediated signaling has been linked to its fragmentation and regeneration during the mitotic cycle of the cell. During this process, Golgi-resident proteins are released to the cytosol and interact with other signaling molecules to regulate various cellular processes. Acyl-coenzyme A binding domain containing 3 protein (ACBD3) is a Golgi protein involved in several signaling events. ACBD3 protein was previously known as peripheral-type benzodiazepine receptor and cAMP-dependent protein kinase associated protein 7 (PAP7), Golgi complex-associated protein of 60kDa (GCP60), Golgi complex-associated protein 1 (GOCAP1), and Golgi phosphoprotein 1 (GOLPH1). In this review, we present the gene ontology of ACBD3, its relations to other Acyl-coenzyme A binding domain containing (ACBD) proteins, and its biological function in steroidogenesis, apoptosis, neurogenesis, and embryogenesis. We also discuss the role of ACBD3 in asymmetric cell division and cancer. New findings about ACBD3 may help understand this newly characterized signaling molecule and stimulate further research into its role in molecular endocrinology, neurology, and stem cell biology.
Collapse
|
22
|
Gong H, Guo Y, Linstedt A, Schwartz R. Discrete, continuous, and stochastic models of protein sorting in the Golgi apparatus. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:011914. [PMID: 20365406 PMCID: PMC5367640 DOI: 10.1103/physreve.81.011914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 10/26/2009] [Indexed: 05/29/2023]
Abstract
The Golgi apparatus plays a central role in processing and sorting proteins and lipids in eukaryotic cells. Golgi compartments constantly exchange material with each other and with other cellular components, allowing them to maintain and reform distinct identities despite dramatic changes in structure and size during cell division, development, and osmotic stress. We have developed three minimal models of membrane and protein exchange in the Golgi-a discrete, stochastic model, a continuous ordinary differential equation model, and a continuous stochastic differential equation model-each based on two fundamental mechanisms: vesicle-coat-mediated selective concentration of cargoes and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins during vesicle formation and SNARE-mediated selective fusion of vesicles. By exploring where the models differ, we hope to discover whether the discrete, stochastic nature of vesicle-mediated transport is likely to have appreciable functional consequences for the Golgi. All three models show similar ability to restore and maintain distinct identities over broad parameter ranges. They diverge, however, in conditions corresponding to collapse and reassembly of the Golgi. The results suggest that a continuum model provides a good description of Golgi maintenance but that considering the discrete nature of vesicle-based traffic is important to understanding assembly and disassembly of the Golgi. Experimental analysis validates a prediction of the models that altering guanine nucleotide exchange factor expression levels will modulate Golgi size.
Collapse
Affiliation(s)
- Haijun Gong
- Department of Physics, Carnegie Mellon University, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
23
|
Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat Genet 2009; 41:1179-81. [PMID: 19838196 DOI: 10.1038/ng.464] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 08/24/2009] [Indexed: 02/07/2023]
Abstract
Hereditary sensory and autonomic neuropathy type II (HSAN II) leads to severe mutilations because of impaired nociception and autonomic dysfunction. Here we show that loss-of-function mutations in FAM134B, encoding a newly identified cis-Golgi protein, cause HSAN II. Fam134b knockdown results in structural alterations of the cis-Golgi compartment and induces apoptosis in some primary dorsal root ganglion neurons. This implicates FAM134B as critical in long-term survival of nociceptive and autonomic ganglion neurons.
Collapse
|
24
|
Srinivasa G, Fickus MC, Guo Y, Linstedt AD, Kovacević J. Active mask segmentation of fluorescence microscope images. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2009; 18:1817-29. [PMID: 19380268 PMCID: PMC2765110 DOI: 10.1109/tip.2009.2021081] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the "contour" to that of "inside and outside," or masks, allowing for easy multidimensional segmentation. It adapts to the topology of the image through the use of multiple masks. The algorithm is almost invariant under initialization, allowing for random initialization, and uses a few easily tunable parameters. Experiments show that the active mask algorithm matches the ground truth well and outperforms the algorithm widely used in fluorescence microscopy, seeded watershed, both qualitatively, as well as quantitatively.
Collapse
Affiliation(s)
- Gowri Srinivasa
- Department of Information Science and Engineering and the Center for Pattern Recognition, PES School of Engineering, Bangalore, India
| | | | | | | | | |
Collapse
|
25
|
Luo R, Ha VL, Hayashi R, Randazzo PA. Arf GAP2 is positively regulated by coatomer and cargo. Cell Signal 2009; 21:1169-79. [PMID: 19296914 PMCID: PMC2692659 DOI: 10.1016/j.cellsig.2009.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/05/2009] [Accepted: 03/09/2009] [Indexed: 11/19/2022]
Abstract
Arf GAP2 is one of four Arf GAPs that function in the Golgi apparatus. We characterized the kinetics of Arf GAP2 and its regulation. Purified Arf GAP2 had little activity compared to purified Arf GAP1. Of the potential regulators we examined, coatomer had the greatest effect, stimulating activity one to two orders of magnitude. The effect was biphasic, with half-maximal activation observed at 50 nM coatomer and activation peaking at approximately 150 nM coatomer. Activation by coatomer was greater for Arf GAP2 than has been reported for Arf GAP1. The effects of phosphoinositides and changes in vesicle curvature on GAP activity were small compared to coatomer; however, both increased coatomer-dependent activity. Peptides from p24 cargo proteins increased Arf GAP2 activity by an additional 2- to 4-fold. The effect of cargo peptide was dependent on coatomer. Overexpressing the cargo protein p25 decreased cellular Arf1*GTP levels. The differential sensitivity of Arf GAP1 and Arf GAP2 to coatomer could coordinate their activities. Based on the common regulatory features of Arf GAP1 and 2, we propose a mechanism for cargo selection in which GTP hydrolysis triggered by cargo binding to the coat protein is coupled to coat polymerization.
Collapse
Affiliation(s)
| | | | - Ryo Hayashi
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892
| | - Paul A. Randazzo
- Corresponding author: Bldg 37, Room 2042, Bethesda, MD 20892; tel: 301-496-3788; fax: 301-480-1260; e-mail:
| |
Collapse
|
26
|
Zou J, Zhang Y, Yin S, Wu H, Pyykkö I. Mitochondrial dysfunction disrupts trafficking of Kir4.1 in spiral ganglion satellite cells. J Neurosci Res 2009; 87:141-9. [DOI: 10.1002/jnr.21842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Liu Y, Boukhelifa M, Tribble E, Bankaitis VA. Functional studies of the mammalian Sac1 phosphoinositide phosphatase. ADVANCES IN ENZYME REGULATION 2009; 49:75-86. [PMID: 19534026 PMCID: PMC2895967 DOI: 10.1016/j.advenzreg.2009.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Liu
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090, USA
| | | | | | | |
Collapse
|
28
|
Pulvirenti T, Giannotta M, Capestrano M, Capitani M, Pisanu A, Polishchuk RS, San Pietro E, Beznoussenko GV, Mironov AA, Turacchio G, Hsu VW, Sallese M, Luini A. A traffic-activated Golgi-based signalling circuit coordinates the secretory pathway. Nat Cell Biol 2008; 10:912-22. [PMID: 18641641 DOI: 10.1038/ncb1751] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 06/26/2008] [Indexed: 12/12/2022]
Abstract
As with other complex cellular functions, intracellular membrane transport involves the coordinated engagement of a series of organelles and machineries; however, the molecular basis of this coordination is unknown. Here we describe a Golgi-based signalling system that is activated by traffic and is involved in monitoring and balancing trafficking rates into and out of the Golgi complex. We provide evidence that the traffic signal is due to protein chaperones that leave the endoplasmic reticulum and reach the Golgi complex where they bind to the KDEL receptor. This initiates a signalling reaction that includes the activation of a Golgi pool of Src kinases and a phosphorylation cascade that in turn activates intra-Golgi trafficking, thereby maintaining the dynamic equilibrium of the Golgi complex. The concepts emerging from this study should help to understand the control circuits that coordinate high-order cellular functions.
Collapse
Affiliation(s)
- Teodoro Pulvirenti
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, 66030 Santa Maria Imbaro (Chieti), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cai Q, Pan PY, Sheng ZH. Syntabulin-kinesin-1 family member 5B-mediated axonal transport contributes to activity-dependent presynaptic assembly. J Neurosci 2007; 27:7284-96. [PMID: 17611281 PMCID: PMC6794594 DOI: 10.1523/jneurosci.0731-07.2007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanism by which microtubule-based axonal transport regulates activity-dependent presynaptic plasticity in developing neurons remains mostly unknown. Our previous studies established that syntabulin is an adaptor capable of conjoining the kinesin family member 5B (KIF5B) motor and syntaxin-1. We now report that the complex of syntaxin-1-syntabulin-KIF5B mediates axonal transport of the active zone (AZ) components essential for presynaptic assembly. Syntabulin associates with AZ precursor carriers and colocalizes and comigrates with green fluorescent protein (GFP)-Bassoon-labeled AZ transport cargos within developing axons. Knock-down of syntabulin or disruption of the syntaxin-1-syntabulin-KIF5B complex impairs the anterograde transport of GFP-Bassoon out of the soma and reduces the axonal densities of synaptic vesicle (SV) clusters and FM4-64 [N-(3-triethylammoniumpropyl)-4-(p-dibutylaminostyryl)pyridinium, dibromide] loading. Furthermore, syntabulin loss of function results in a reduction in both the amplitude of postsynaptic currents and the frequency of asynchronous quantal events, and abolishes the activity-induced recruitment of new GFP-Bassoon into the axons and subsequent coclustering with SVs. Consequently, syntabulin loss of function blocks the formation of new presynaptic boutons during activity-dependent synaptic plasticity in developing neurons. These studies establish that a kinesin motor-adaptor complex is critical for the anterograde axonal transport of AZ components, thus contributing to activity-dependent presynaptic assembly during neuronal development.
Collapse
Affiliation(s)
- Qian Cai
- Synaptic Function Unit, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701
| | - Ping-Yue Pan
- Synaptic Function Unit, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701
| | - Zu-Hang Sheng
- Synaptic Function Unit, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701
| |
Collapse
|
30
|
Lin X, Liu CC, Gao Q, Zhang X, Wu G, Lee WH. RINT-1 serves as a tumor suppressor and maintains Golgi dynamics and centrosome integrity for cell survival. Mol Cell Biol 2007; 27:4905-16. [PMID: 17470549 PMCID: PMC1951495 DOI: 10.1128/mcb.02396-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Faithful mitotic partitioning of the Golgi apparatus and the centrosome is critical for proper cell division. Although these two cytoplasmic organelles are probably coordinated during cell division, supporting evidence of this coordination is still largely lacking. Here, we show that the RAD50-interacting protein, RINT-1, is localized at the Golgi apparatus and the centrosome in addition to the endoplasmic reticulum. To examine the biological roles of RINT-1, we found that the homozygous deletion of Rint-1 caused early embryonic lethality at embryonic day 5 (E5) to E6 and the failure of blastocyst outgrowth ex vivo. About 81% of the Rint-1 heterozygotes succumbed to multiple tumor formation with haploinsufficiency during their average life span of 24 months. To pinpoint the cellular function of RINT-1, we found that RINT-1 depletion by RNA interference led to the loss of the pericentriolar positioning and dispersal of the Golgi apparatus and concurrent centrosome amplification during the interphase. Upon mitotic entry, RINT-1-deficient cells exhibited multiple abnormalities, including aberrant Golgi dynamics during early mitosis and defective reassembly at telophase, increased formation of multiple spindle poles, and frequent chromosome missegregation. Mitotic cells often underwent cell death in part due to the overwhelming cellular defects. Taken together, these findings suggest that RINT-1 serves as a novel tumor suppressor essential for maintaining the dynamic integrity of the Golgi apparatus and the centrosome, a prerequisite to their proper coordination during cell division.
Collapse
Affiliation(s)
- Xiaoqin Lin
- Department of Biological Chemistry, 124 Sprague Hall, 839 Medical Science Ct., University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
31
|
Li X, Kaloyanova D, van Eijk M, Eerland R, van der Goot G, Oorschot V, Klumperman J, Lottspeich F, Starkuviene V, Wieland FT, Helms JB. Involvement of a Golgi-resident GPI-anchored protein in maintenance of the Golgi structure. Mol Biol Cell 2007; 18:1261-71. [PMID: 17251550 PMCID: PMC1838991 DOI: 10.1091/mbc.e06-03-0236] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 12/22/2006] [Accepted: 01/12/2007] [Indexed: 01/08/2023] Open
Abstract
The Golgi apparatus consists of a series of flattened cisternal membranes that are aligned in parallel to form stacks. Cytosolic-oriented Golgi-associated proteins have been identified that may coordinate or maintain the Golgi architecture. Here, we describe a novel GPI-anchored protein, Golgi-resident GPI-anchored protein (GREG) that has a brefeldin A-sensitive Golgi localization. GREG resides in the Golgi lumen as a cis-oriented homodimer, due to strong interactions between coiled-coil regions in the C termini. Dimerization of GREG as well as its Golgi localization depends on a unique tandem repeat sequence within the coiled-coil region. RNA-mediated interference of GREG expression or expression of GREG mutants reveals an essential role for GREG in maintenance of the Golgi integrity. Under these conditions, secretion of the vesicular stomatitis virus glycoprotein protein as a marker for protein transport along the secretory pathway is inhibited, suggesting a loss of Golgi function as well. These results imply the involvement of a luminal protein in Golgi structure and function.
Collapse
Affiliation(s)
- Xueyi Li
- *Biochemie-Zentrum Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Dora Kaloyanova
- Department of Biochemistry and Cell Biology and Institute of Biomembranes, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Martin van Eijk
- Department of Biochemistry and Cell Biology and Institute of Biomembranes, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Ruud Eerland
- Department of Biochemistry and Cell Biology and Institute of Biomembranes, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Gisou van der Goot
- Institut des Maladies Infectieuses, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Viola Oorschot
- Department of Cell Biology, University Medical Center and Institute for Biomembranes, 3584 CX Utrecht, The Netherlands
| | - Judith Klumperman
- Department of Cell Biology, University Medical Center and Institute for Biomembranes, 3584 CX Utrecht, The Netherlands
| | | | - Vytaute Starkuviene
- Cell Biology and Biophysics Programme, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Felix T. Wieland
- *Biochemie-Zentrum Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - J. Bernd Helms
- Department of Biochemistry and Cell Biology and Institute of Biomembranes, Utrecht University, 3508 TD Utrecht, The Netherlands
- *Biochemie-Zentrum Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Abstract
Changes in intracellular free calcium regulate many intracellular processes. With respect to the secretory pathway and the Golgi apparatus, changes in calcium concentration occurring either in the adjacent cytosol or within the lumen of the Golgi act to regulate Golgi function. Conversely, the Golgi sequesters calcium to shape cytosolic calcium signals as well as initiate them by releasing calcium via inositol-1,4,5-triphosphate (IP(3)) receptors, located on Golgi membranes. Local calcium transients juxtaposed to the Golgi (arising from release by the Golgi or other organelles) can activate calcium dependent signalling molecules located on or around the Golgi. This review focuses on the reciprocal relationship between the cell biology of the Golgi apparatus and intracellular calcium homeostasis.
Collapse
Affiliation(s)
- Nick J Dolman
- The Physiological Laboratory, The University of Liverpool, Crown Street, Liverpool, UK.
| | | |
Collapse
|
33
|
Bejarano E, Cabrera M, Vega L, Hidalgo J, Velasco A. Golgi structural stability and biogenesis depend on associated PKA activity. J Cell Sci 2006; 119:3764-75. [PMID: 16926194 DOI: 10.1242/jcs.03146] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian Golgi complex consists of stacks of cisternae linked laterally into a continuous perinuclear ribbon structure. Protein kinase A is stably associated with the Golgi complex during interphase. To analyze its role in Golgi structural maintenance cells were depleted of protein kinase A regulatory subunits using small interfering RNAs. Under these conditions, the catalytic subunits redistributed to the cytosol and the entire Golgi complex underwent disassembly into multiple juxtanuclear fragments. A similar effect took place following pharmacological inhibition or redistribution of the complete holoenzyme to the cytosol. Golgi fragments maintained their polarization and competence for anterograde protein trafficking. By electron microscopy, they were identified as whorl-like structures composed of concentrically arrayed cisternae. To test a possible role of protein kinase A in Golgi biogenesis we analyzed its involvement during Golgi reassembly from the endoplasmic reticulum. In cells incubated with protein kinase A inhibitors, Golgi reconstruction was arrested at a late step of the reassembly process. This is consistent with the stage of enzyme recruitment from cytosol to emerging Golgi membranes during the reassembly process. We conclude that protein kinase A activity plays a relevant role in the assembly and maintenance of a continuous Golgi ribbon from separated membrane stacks.
Collapse
Affiliation(s)
- Eloy Bejarano
- Department of Cell Biology, Faculty of Biology, University of Seville, Avd. Reina Mercedes s/n, 41012 Seville, Spain
| | | | | | | | | |
Collapse
|
34
|
Sallese M, Pulvirenti T, Luini A. The physiology of membrane transport and endomembrane-based signalling. EMBO J 2006; 25:2663-73. [PMID: 16763561 PMCID: PMC1500860 DOI: 10.1038/sj.emboj.7601172] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 05/05/2006] [Indexed: 01/01/2023] Open
Abstract
Some of the important open questions concerning the physiology of the secretory pathway relate to its homeostasis. Secretion involves a number of separate compartments for which their transport activities should be precisely cross-coordinated to avoid gross imbalances in the trafficking system. Moreover, the membrane fluxes across these compartments should be able to adapt to environmental 'requests' and to respond to extracellular signals. How is this regulation effected? Here, we consider evidence that endomembrane-based signalling cascades that are similar in organization to those used at the plasma membrane coordinate membrane traffic. If this is the case, this would also represent a model for a more general inter-organelle signalling network for functionally interconnecting different intracellular activities, a necessity for the maintenance of cellular homeostasis and to express harmonic global cellular responses.
Collapse
Affiliation(s)
- Michele Sallese
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Teodoro Pulvirenti
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Alberto Luini
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| |
Collapse
|
35
|
Abstract
The selective transfer of material between membrane-delimited organelles is mediated by protein-coated vesicles. In many instances, formation of membrane trafficking intermediates is regulated by the GTP-binding protein Arf. Binding and hydrolysis of GTP by Arf was originally linked to the assembly and disassembly of vesicle coats. Arf GTPase-activating proteins (GAPs), a family of proteins that induce hydrolysis of GTP bound to Arf, were therefore proposed to regulate the disassembly and dissociation of vesicle coats. Following the molecular identification of Arf GAPs, the roles for GAPs and GTP hydrolysis have been directly examined. GAPs have been found to bind cargo and known coat proteins as well as directly contribute to vesicle formation, which is consistent with the idea that GAPs function as subunits of coat proteins rather than simply Arf inactivators. In addition, GTP hydrolysis induced by GAPs occurs largely before vesicle formation and is required for sorting. These results are the primary basis for modifications to the classical model for the function of Arf in transport vesicle formation, including a recent proposal that Arf has a proofreading, rather than a structural, role.
Collapse
Affiliation(s)
- Zhongzhen Nie
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | |
Collapse
|
36
|
Gupta V, Swarup G. Evidence for a role of transmembrane protein p25 in localization of protein tyrosine phosphatase TC48 to the ER. J Cell Sci 2006; 119:1703-14. [PMID: 16595549 DOI: 10.1242/jcs.02885] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-cell protein tyrosine phosphatase gives rise to two splice isoforms: TC48, which is localized to the endoplasmic reticulum (ER) and TC45, a nuclear protein. The present study was undertaken to identify proteins that are involved in targeting TC48 to the ER. We identified two TC48-interacting proteins, p25 and p23, from a yeast two-hybrid screen. p23 and p25 are members of a family of putative cargo receptors that are important for vesicular trafficking between Golgi complex and ER. Both p23 and p25 associate with overexpressed TC48 in Cos-1 cells as determined by coimmunoprecipitation. A significant amount of TC48 colocalized initially with ERGIC and Golgi complex markers (in addition to ER and nuclear membrane localization) and was then retrieved to the ER. Coexpression with p25 enhanced ER localization of TC48, whereas coexpression with p23 resulted in its trapping in membranous structures. Coexpression of a p25 mutant lacking the ER-localization signal KKxx resulted in enhanced Golgi localization of TC48. Forty C-terminal amino acid residues of TC48 (position 376-415) were sufficient for interaction with p23 (but not with p25) and targeted green fluorescence protein (GFP) to the Golgi complex. Targeting of GFP to the ER required 66 C-terminal amino acid residues of TC48 (position 350-415), which showed interaction with p25 and p23. We suggest that TC48 translocates to the Golgi complex along the secretory pathway, whereas its ER localization is maintained by selective retrieval enabled by interactions with p25 and p23.
Collapse
Affiliation(s)
- Vijay Gupta
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
37
|
Korkmaz CG, Korkmaz KS, Kurys P, Elbi C, Wang L, Klokk TI, Hammarstrom C, Troen G, Svindland A, Hager GL, Saatcioglu F. Molecular cloning and characterization of STAMP2, an androgen-regulated six transmembrane protein that is overexpressed in prostate cancer. Oncogene 2005; 24:4934-45. [PMID: 15897894 DOI: 10.1038/sj.onc.1208677] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have identified a novel gene, six transmembrane protein of prostate 2 (STAMP2), named for its high sequence similarity to the recently identified STAMP1 gene. STAMP2 displays a tissue-restricted expression with highest expression levels in placenta, lung, heart, and prostate and is predicted to code for a 459-amino acid six transmembrane protein. Using a form of STAMP2 labeled with green flourescent protein (GFP) in quantitative time-lapse and immunofluorescence confocal microscopy, we show that STAMP2 is primarily localized to the Golgi complex, trans-Golgi network, and the plasma membrane. STAMP2 also localizes to vesicular-tubular structures in the cytosol and colocalizes with the Early Endosome Antigen1 (EEA1) suggesting that it may be involved in the secretory/endocytic pathways. STAMP2 expression is exquisitely androgen regulated in the androgen-sensitive, androgen receptor-positive prostate cancer cell line LNCaP, but not in androgen receptor-negative prostate cancer cell lines PC-3 and DU145. Analysis of STAMP2 expression in matched normal and tumor samples microdissected from prostate cancer specimens indicates that STAMP2 is overexpressed in prostate cancer cells compared with normal prostate epithelial cells. Furthermore, ectopic expression of STAMP2 in prostate cancer cells significantly increases cell growth and colony formation suggesting that STAMP2 may have a role in cell proliferation. Taken together, these data suggest that STAMP2 may contribute to the normal biology of the prostate cell, as well as prostate cancer progression.
Collapse
Affiliation(s)
- Ceren G Korkmaz
- Department of Molecular Biosciences, University of Oslo, Postboks 1050 Blindern, 0316 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Litvak V, Dahan N, Ramachandran S, Sabanay H, Lev S. Maintenance of the diacylglycerol level in the Golgi apparatus by the Nir2 protein is critical for Golgi secretory function. Nat Cell Biol 2005; 7:225-34. [PMID: 15723057 DOI: 10.1038/ncb1221] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 01/19/2005] [Indexed: 01/05/2023]
Abstract
The level of diacylglycerol (DAG) in the Golgi apparatus is crucial for protein transport to the plasma membrane. Studies in budding yeast indicate that Sec14p, a phosphatidylinositol (PI)-transfer protein, is involved in regulating DAG homeostasis in the Golgi complex. Here, we show that Nir2, a peripheral Golgi protein containing a PI-transfer domain, is essential for maintaining the structural and functional integrity of the Golgi apparatus in mammalian cells. Depletion of Nir2 by RNAi leads to substantial inhibition of protein transport from the trans-Golgi network to the plasma membrane, and causes a reduction in the DAG level in the Golgi apparatus. Remarkably, inactivation of cytidine [corrected] 5'-diphosphate (CDP)-choline pathway for phosphatidylcholine biosynthesis restores both effects. These results indicate that Nir2 is involved in maintaining a critical DAG pool in the Golgi apparatus by regulating its consumption via the CDP-choline pathway, demonstrating the interface between secretion from the Golgi and lipid homeostasis.
Collapse
Affiliation(s)
- Vladimir Litvak
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
39
|
Altan-Bonnet N, Sougrat R, Lippincott-Schwartz J. Molecular basis for Golgi maintenance and biogenesis. Curr Opin Cell Biol 2005; 16:364-72. [PMID: 15261668 DOI: 10.1016/j.ceb.2004.06.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Golgi apparatus contains thousands of different types of integral and peripheral membrane proteins, perhaps more than any other intracellular organelle. To understand these proteins' roles in Golgi function and in broader cellular processes, it is useful to categorize them according to their contribution to Golgi creation and maintenance. This is because all of the Golgi's functions derive from its ability to maintain steady-state pools of particular proteins and lipids, which in turn relies on the Golgi's dynamic character - that is, its ongoing state of transformation and outgrowth from the endoplasmic reticulum. Here, we categorize the expanding list of Golgi-associated proteins on the basis of their role in Golgi reformation after the Golgi has been disassembled. Information gained on how different proteins participate in this process can provide important insights for understanding the Golgi's global functions within cells.
Collapse
Affiliation(s)
- Nihal Altan-Bonnet
- Cell biology and Metabolism Branch, National Institutes of Child Health and Development, National Institutes of Health, Bethesda, Maryland, MD 20892, USA
| | | | | |
Collapse
|
40
|
Briquet-Laugier V, Lavenu-Bombled C, Schmitt A, Leboeuf M, Uzan G, Dubart-Kupperschmitt A, Rosa JP. Probing platelet factor 4 alpha-granule targeting. J Thromb Haemost 2004; 2:2231-40. [PMID: 15613031 DOI: 10.1111/j.1538-7836.2004.01037.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The storage mechanism of endogenous secretory proteins in megakaryocyte alpha-granules is poorly understood. We have elected to study the granule storage of platelet factor 4 (PF4), a well-known platelet alpha-granule protein. The reporter protein green fluorescent protein (GFP), PF4, or PF4 fused to GFP (PF4-GFP), were transfected in the well-characterized mouse pituitary AtT20 cell line, and in the megakaryocytic leukemic DAMI cell line. These proteins were also transduced using a lentiviral vector, in human CD34+ cells differentiated into megakaryocytes in vitro. Intracellular localization of expressed proteins, and colocalization studies were achieved by laser scanning confocal microscopy and immuno-electronmicroscopy. In preliminary experiments, GFP, a non-secretory protein (no signal peptide), localized in the cytoplasm, while PF4-GFP colocalized with adrenocorticotropin hormone (ACTH)-containing granules in AtT20 cells. In the megakaryocytic DAMI cell line and in human megakaryocytes differentiated in vitro, PF4-GFP localized in alpha-granules along with the alpha granular protein von Willebrand factor (VWF). The signal peptide of PF4 was not sufficient to specify alpha-granule storage of PF4, since when PF4 signal peptide was fused to GFP (SP4-GFP), GFP was not stored into granules in spite of its efficient translocation to the ER-Golgi constitutive secretory pathway. We conclude that the PF4 storage pathway in alpha-granules is not a default pathway, but rather a regular granule storage pathway probably requiring specific sorting mechanisms. In addition PF4-GFP appears as an appropriate probe with which to analyze alpha-granule biogenesis and its alterations in the congenital defect gray platelet syndrome.
Collapse
|
41
|
Su Q, Cai Q, Gerwin C, Smith CL, Sheng ZH. Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nat Cell Biol 2004; 6:941-53. [PMID: 15459722 DOI: 10.1038/ncb1169] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 08/11/2004] [Indexed: 11/09/2022]
Abstract
Different types of cargo vesicles containing presynaptic proteins are transported from the nerve cell body to the nerve terminal, and participate in the formation of active zones. However, the identity of the membranous cargoes and the nature of the motor-cargo interactions remain unsolved. Here, we report the identification of a syntaxin-1-binding protein named syntabulin. Syntabulin attaches syntaxin-containing vesicles to microtubules and migrates with syntaxin within the processes of hippocampal neurons. Knock-down of syntabulin expression with targeted small interfering RNAs (siRNAs) or interference with the syntabulin-syntaxin interaction inhibit attachment of syntaxin-cargo vesicles to microtubules and reduce syntaxin-1 distribution in neuronal processes. Furthermore, conventional kinesin I heavy chain binds to syntabulin and associates with syntabulin-linked syntaxin vesicles in vivo. These findings suggest that syntabulin functions as a linker molecule that attaches syntaxin-cargo vesicles to kinesin I, enabling the transport of syntaxin-1 to neuronal processes.
Collapse
Affiliation(s)
- Qingning Su
- Synaptic Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 3B203, MSC 3701, 35 Convent Drive, Bethesda, MD 20892-3701, USA
| | | | | | | | | |
Collapse
|
42
|
Jiménez A, Zu W, Rawe VY, Pelto-Huikko M, Flickinger CJ, Sutovsky P, Gustafsson JA, Oko R, Miranda-Vizuete A. Spermatocyte/Spermatid-specific Thioredoxin-3, a Novel Golgi Apparatus-associated Thioredoxin, Is a Specific Marker of Aberrant Spermatogenesis. J Biol Chem 2004; 279:34971-82. [PMID: 15181017 DOI: 10.1074/jbc.m404192200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mammalian germ cells are endowed with a complete set of thioredoxins (Trx), a class of redox proteins located in specific structures of the spermatid and sperm tail. We report here the characterization, under normal and pathological conditions, of a novel thioredoxin with a germ line-restricted expression pattern, named spermatocyte/spermatid-specific thioredoxin-3 (SPTRX-3). The human SPTRX-3 gene maps at 9q32, only 50 kb downstream from the TRX-1 gene from which it probably originated as genomic duplication. Therefore, human SPTRX-3 protein comprises a unique thioredoxin domain displaying high homology with the ubiquitously expressed TRX-1. Among the tissues investigated, Sptrx-3 mRNA is found exclusively in the male germ cells at pachytene spermatocyte and round spermatid stages. Light and electron microscopy show SPTRX-3 protein to be predominately located in the Golgi apparatus of pachytene spermatocytes and round and elongated spermatids, with a transient localization in the developing acrosome of round spermatids. In addition, increased levels of SPTRX-3, possibly caused by overexpression, are observed in morphologically abnormal human spermatozoa from infertile men. In addition, SPTRX-3 is identified as a novel postobstruction autoantigen. In this report, we propose that SPTRX-3 can be used as a specific marker for diverse sperm and testis pathologies. SPTRX-3 is the first thioredoxin specific to the Golgi apparatus, and its function within this organelle might be related to the post-translational modification of proteins required for germ cell-specific functions, such as acrosomal biogenesis.
Collapse
Affiliation(s)
- Alberto Jiménez
- Center for Biotechnology, Department of Biosciences at NOVUM, Karolinska Institutet, S-14157 Huddinge, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lüscher B, Keller CA. Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. Pharmacol Ther 2004; 102:195-221. [PMID: 15246246 DOI: 10.1016/j.pharmthera.2004.04.003] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neural inhibition in the brain is mainly mediated by ionotropic gamma-aminobutyric acid type A (GABA(A)) receptors. Different subtypes of these receptors, distinguished by their subunit composition, are either concentrated at postsynaptic sites where they mediate phasic inhibition or found at perisynaptic and extrasynaptic locations where they prolong phasic inhibition and mediate tonic inhibition, respectively. Of special interest are mechanisms that modulate the stability and function of postsynaptic GABA(A) receptor subtypes and that are implicated in functional plasticity of inhibitory transmission in the brain. We will summarize recent progress on the classification of synaptic versus extrasynaptic receptors, the molecular composition of the postsynaptic cytoskeleton, the function of receptor-associated proteins in trafficking of GABA(A) receptors to and from synapses, and their role in post-translational signaling mechanisms that modulate the stability, density, and function of GABA(A) receptors in the postsynaptic membrane.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
44
|
Charych EI, Yu W, Miralles CP, Serwanski DR, Li X, Rubio M, De Blas AL. The brefeldin A-inhibited GDP/GTP exchange factor 2, a protein involved in vesicular trafficking, interacts with the β subunits of the GABAA receptors. J Neurochem 2004; 90:173-89. [PMID: 15198677 DOI: 10.1111/j.1471-4159.2004.02481.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have found that the brefeldin A-inhibited GDP/GTP exchange factor 2 (BIG2) interacts with the beta subunits of the gamma-aminobutyric acid type-A receptor (GABA(A)R). BIG2 is a Sec7 domain-containing guanine nucleotide exchange factor known to be involved in vesicular and protein trafficking. The interaction between the 110 amino acid C-terminal fragment of BIG2 and the large intracellular loop of the GABA(A)R beta subunits was revealed with a yeast two-hybrid assay. The native BIG2 and GABA(A)Rs interact in the brain since both coprecipitated from detergent extracts with either anti-GABA(A)R or anti-BIG2 antibodies. In transfected human embryonic kidney cell line 293 cells, BIG2 promotes the exit of GABA(A)Rs from endoplasmic reticulum. Double label immunofluorescence of cultured hippocampal neurons and electron microscopy immunocytochemistry of rat brain tissue show that BIG2 concentrates in the trans-Golgi network. BIG2 is also present in vesicle-like structures in the dendritic cytoplasm, sometimes colocalizing with GABA(A)Rs. BIG2 is present in both inhibitory GABAergic synapses that contain GABA(A)Rs and in asymmetric excitatory synapses. The results are consistent with the hypotheses that the interaction of BIG2 with the GABA(A)R beta subunits plays a role in the exocytosis and trafficking of assembled GABA(A)R to the cell surface.
Collapse
Affiliation(s)
- Erik I Charych
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Uronen-Hansson H, Allen J, Osman M, Squires G, Klein N, Callard RE. Toll-like receptor 2 (TLR2) and TLR4 are present inside human dendritic cells, associated with microtubules and the Golgi apparatus but are not detectable on the cell surface: integrity of microtubules is required for interleukin-12 production in response to internalized bacteria. Immunology 2004; 111:173-8. [PMID: 15027902 PMCID: PMC1782406 DOI: 10.1111/j.0019-2805.2003.01803.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The activation of dendritic cells (DCs) by microbes is mediated by pattern recognition receptors including the Toll-like receptors (TLR). Bacterial lipopolysaccharide acts via TLR4 whereas peptidoglycan and lipoprotein responses are mediated by TLR2. It is generally accepted that TLR binding to microbes occurs at the cell surface but this has not been directly demonstrated for human DCs. We show here that TLR2 and TLR4 are expressed inside DCs in an abundant tubulovesicular pattern with a focus of intense staining adjacent to the nucleus. In contrast, there was no detectable expression on the cell surface. TLR2 and TLR4 were readily found both intracellularly and on the surface of monocytes. They were shown to be closely associated with the Golgi complex and colocalized with alpha-tubulin, displaying a high focal concentration at the microtubule organizing centre. Alignment of TLR2 and TLR4 with microtubules was observed, suggesting that microtubules serve as transport tracks for TLR vesicles. Depolymerization of the microtubule network disrupted the intracellular expression of TLR2 and TLR4 and profoundly inhibited interleukin-12 (IL-12) production in response to Neisseria meningitidis but did not prevent phagocytosis. These data are consistent with the bacterial signalling through TLR2 and TLR4 required for IL-12 production occurring inside DCs after phagocytosis.
Collapse
|
46
|
Wu CC, MacCoss MJ, Mardones G, Finnigan C, Mogelsvang S, Yates JR, Howell KE. Organellar proteomics reveals Golgi arginine dimethylation. Mol Biol Cell 2004; 15:2907-19. [PMID: 15047867 PMCID: PMC420113 DOI: 10.1091/mbc.e04-02-0101] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Golgi complex functions to posttranslationally modify newly synthesized proteins and lipids and to sort them to their sites of function. In this study, a stacked Golgi fraction was isolated by classical cell fractionation, and the protein complement (the Golgi proteome) was characterized using multidimensional protein identification technology. Many of the proteins identified are known residents of the Golgi, and 64% of these are predicted transmembrane proteins. Proteins localized to other organelles also were identified, strengthening reports of functional interfacing between the Golgi and the endoplasmic reticulum and cytoskeleton. Importantly, 41 proteins of unknown function were identified. Two were selected for further analysis, and Golgi localization was confirmed. One of these, a putative methyltransferase, was shown to be arginine dimethylated, and upon further proteomic analysis, arginine dimethylation was identified on 18 total proteins in the Golgi proteome. This survey illustrates the utility of proteomics in the discovery of novel organellar functions and resulted in 1) a protein profile of an enriched Golgi fraction; 2) identification of 41 previously uncharacterized proteins, two with confirmed Golgi localization; 3) the identification of arginine dimethylated residues in Golgi proteins; and 4) a confirmation of methyltransferase activity within the Golgi fraction.
Collapse
Affiliation(s)
- Christine C Wu
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhao M, Gold L, Dorward H, Liang LF, Hoodbhoy T, Boja E, Fales HM, Dean J. Mutation of a conserved hydrophobic patch prevents incorporation of ZP3 into the zona pellucida surrounding mouse eggs. Mol Cell Biol 2004; 23:8982-91. [PMID: 14645511 PMCID: PMC309620 DOI: 10.1128/mcb.23.24.8982-8991.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three glycoproteins (ZP1, ZP2, and ZP3) are synthesized in growing mouse oocytes and secreted to form an extracellular zona pellucida that mediates sperm binding and fertilization. Each has a signal peptide to direct it into a secretory pathway, a "zona" domain implicated in matrix polymerization and a transmembrane domain from which the ectodomain must be released. Using confocal microscopy and enhanced green fluorescent protein (EGFP), the intracellular trafficking of ZP3 was observed in growing mouse oocytes. Replacement of the zona domain with EGFP did not prevent secretion of ZP3, suggesting the presence of trafficking signals and a cleavage site in the carboxyl terminus. Analysis of linker-scanning mutations of a ZP3-EGFP fusion protein in transient assays and in transgenic mice identified an eight-amino-acid hydrophobic region required for secretion and incorporation into the zona pellucida. The hydrophobic patch is conserved among mouse zona proteins and lies between a potential proprotein convertase (furin) cleavage site and the transmembrane domain. The cleavage site that releases the ectodomain from the transmembrane domain was defined by mass spectrometry of native zonae pellucidae and lies N-terminal to a proprotein convertase site that is distinct from the hydrophobic patch.
Collapse
Affiliation(s)
- Ming Zhao
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, Building 50, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Altan-Bonnet N, Phair RD, Polishchuk RS, Weigert R, Lippincott-Schwartz J. A role for Arf1 in mitotic Golgi disassembly, chromosome segregation, and cytokinesis. Proc Natl Acad Sci U S A 2003; 100:13314-9. [PMID: 14585930 PMCID: PMC263797 DOI: 10.1073/pnas.2234055100] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 09/08/2003] [Indexed: 11/18/2022] Open
Abstract
In mitosis, chromosome, cytoskeleton, and organelle dynamics must be coordinated for successful cell division. Here, we present evidence for a role for Arf1, a small GTPase associated with the Golgi apparatus, in the orchestration of mitotic Golgi breakdown, chromosome segregation, and cytokinesis. We show that early in mitosis Arf1 becomes inactive and dissociates from Golgi membranes. This is followed by the dispersal of numerous Arf1-dependent peripheral Golgi proteins and subsequent Golgi disassembly. If Arf1 is kept in an active state by treatment with the small molecule H89 or expression of its GTP-locked form, intact Golgi membranes with bound peripheral proteins persist throughout mitosis. These cells enter mitosis but exhibit gross defects in chromosome segregation and cytokinetic furrow ingression. These findings suggest that mitotic Golgi disassembly depends on Arf1 inactivation and is used by the cell to disperse numerous peripheral Golgi proteins for coordinating the behavior of Golgi membranes, chromosomes, and cytoskeleton during mitosis.
Collapse
Affiliation(s)
- Nihal Altan-Bonnet
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
49
|
Camera P, da Silva JS, Griffiths G, Giuffrida MG, Ferrara L, Schubert V, Imarisio S, Silengo L, Dotti CG, Di Cunto F. Citron-N is a neuronal Rho-associated protein involved in Golgi organization through actin cytoskeleton regulation. Nat Cell Biol 2003; 5:1071-8. [PMID: 14595335 DOI: 10.1038/ncb1064] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2003] [Accepted: 09/01/2003] [Indexed: 11/09/2022]
Abstract
The actin cytoskeleton is best known for its role during cellular morphogenesis. However, other evidence suggests that actin is also crucial for the organization and dynamics of membrane organelles such as endosomes and the Golgi complex. As in morphogenesis, the Rho family of small GTPases are key mediators of organelle actin-driven events, although it is unclear how these ubiquitously distributed proteins are activated to regulate actin dynamics in an organelle-specific manner. Here we show that the brain-specific Rho-binding protein Citron-N is enriched at, and associates with, the Golgi apparatus of hippocampal neurons in culture. Suppression of the whole protein or expression of a mutant form lacking the Rho-binding activity results in dispersion of the Golgi apparatus. In contrast, high intracellular levels induce localized accumulation of RhoA and filamentous actin, protecting the Golgi from the rupture normally produced by actin depolymerization. Biochemical and functional analyses indicate that Citron-N controls actin locally by assembling together the Rho effector ROCK-II and the actin-binding, neuron-specific, protein Profilin-IIa (PIIa). Together with recent data on endosomal dynamics, our results highlight the importance of organelle-specific Rho modulators for actin-dependent organelle organization and dynamics.
Collapse
Affiliation(s)
- Paola Camera
- Dipartimento di Genetica, Biologia e Biochimica, Università Degli Studi di Torino Via Santena, 5 bis, Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Procino G, Carmosino M, Marin O, Brunati AM, Contri A, Pinna LA, Mannucci R, Nielsen S, Kwon TH, Svelto M, Valenti G. Ser-256 phosphorylation dynamics of Aquaporin 2 during maturation from the ER to the vesicular compartment in renal cells. FASEB J 2003; 17:1886-8. [PMID: 12897058 DOI: 10.1096/fj.02-0870fje] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aquaporin 2 (AQP2) phosphorylation at Ser-256 by protein kinase A (PKA) is a key signal for vasopressin-stimulated AQP2 insertion into the plasma membrane in renal cells. This study underscores the possible role of phosphorylation at Ser-256 in regulating AQP2 maturation. AQP2-transfected renal CD8 cells were incubated with brefeldin A (BFA) to accumulate newly synthesized AQP2 in the endoplasmic reticulum (ER), and AQP2 flow from ER to the vesicular compartment was analyzed after BFA washout. We found that a) in the ER, AQP2 is weakly phosphorylated; b) the amount of phosphorylated AQP2 (p-AQP2) at Ser-256 increased significantly during transit in the Golgi, even in the presence of the PKA inhibitor H89; and c) AQP2 transport from the Golgi to the vasopressin-regulated vesicular compartment occurred with a concomitant decrease in p-AQP2 at Ser-256. These results support the hypothesis that AQP2 transition in the Golgi apparatus is associated with a PKA-independent increase in AQP2 phosphorylation at Ser-256. Conversely, impaired constitutive phosphorylation in a Golgi-associated compartment occurring in cells expressing mutated S256A-AQP2 or E258K-AQP2 causes phosphorylation-defective AQP2 routing to lysosomes. This result might explain the molecular basis of the dominant form of nephrogenic diabetes insipidus caused by the mutation E258K-AQP2, in which the phenotype is caused by an impaired routing of AQP2.
Collapse
Affiliation(s)
- Giuseppe Procino
- Dipartimento di Fisiologia Generale ed Ambientale, University of Bari, 70126 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|