1
|
Drobac Backović D, Tokodi N. Blue revolution turning green? A global concern of cyanobacteria and cyanotoxins in freshwater aquaculture: A literature review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121115. [PMID: 38749125 DOI: 10.1016/j.jenvman.2024.121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
To enhance productivity, aquaculture is intensifying, with high-density fish ponds and increased feed input, contributing to nutrient load and eutrophication. Climate change further exacerbates cyanobacterial blooms and cyanotoxin production that affect aquatic organisms and consumers. A review was conducted to outline this issue from its inception - eutrophication, cyanobacterial blooms, their harmful metabolites and consequential effects (health and economic) in aquacultures. The strength of evidence regarding the relationship between cyanobacteria/cyanotoxins and potential consequences in freshwater aquacultures (fish production) globally were assessed as well, while identifying knowledge gaps and suggesting future research directions. With that aim several online databases were searched through June 2023 (from 2000), and accessible publications conducted in aquacultures with organisms for human consumption, reflecting cyanotoxin exposure, were selected. Data on cyanobacteria/cyanotoxins in aquacultures and its products worldwide were extracted and analyzed. Selected 63 papers from 22 countries were conducted in Asia (48%), Africa (22%), America (22%) and Europe (8%). Microcystis aeruginosa was most frequent, among over 150 cyanobacterial species. Cyanobacterial metabolites (mostly microcystins) were found in aquaculture water and fish from 18 countries (42 and 33 papers respectively). The most affected were small and shallow fish ponds, and omnivorous or carnivorous fish species. Cyanotoxins were detected in various fish organs, including muscles, with levels exceeding the tolerable daily intake in 60% of the studies. The majority of research was done in developing countries, employing less precise detection methods, making the obtained values estimates. To assess the risk of human exposure, the precise levels of all cyanotoxins, not just microcystins are needed, including monitoring their fate in aquatic food chains and during food processing. Epidemiological research on health consequences, setting guideline values, and continuous monitoring are necessary as well. Further efforts should focus on methods for elimination, prevention, and education.
Collapse
Affiliation(s)
- Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Nada Tokodi
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia; Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Laboratory of Metabolomics, Gronostajowa 7, Krakow, 30387, Poland.
| |
Collapse
|
2
|
Shartau RB, Turcotte LDM, Bradshaw JC, Ross ARS, Surridge BD, Nemcek N, Johnson SC. Dissolved Algal Toxins along the Southern Coast of British Columbia Canada. Toxins (Basel) 2023; 15:395. [PMID: 37368696 DOI: 10.3390/toxins15060395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Harmful algal blooms (HABs) in coastal British Columbia (BC), Canada, negatively impact the salmon aquaculture industry. One disease of interest to salmon aquaculture is Net Pen Liver Disease (NPLD), which induces severe liver damage and is believed to be caused by the exposure to microcystins (MCs). To address the lack of information about algal toxins in BC marine environments and the risk they pose, this study investigated the presence of MCs and other toxins at aquaculture sites. Sampling was carried out using discrete water samples and Solid Phase Adsorption Toxin Tracking (SPATT) samplers from 2017-2019. All 283 SPATT samples and all 81 water samples tested positive for MCs. Testing for okadaic acid (OA) and domoic acid (DA) occurred in 66 and 43 samples, respectively, and all samples were positive for the toxin tested. Testing for dinophysistoxin-1 (DTX-1) (20 samples), pectenotoxin-2 (PTX-2) (20 samples), and yessotoxin (YTX) (17 samples) revealed that all samples were positive for the tested toxins. This study revealed the presence of multiple co-occurring toxins in BC's coastal waters and the levels detected in this study were below the regulatory limits for health and recreational use. This study expands our limited knowledge of algal toxins in coastal BC and shows that further studies are needed to understand the risks they pose to marine fisheries and ecosystems.
Collapse
Affiliation(s)
- Ryan B Shartau
- Department of Biology, The University of Texas at Tyler, Tyler, TX 75799, USA
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Lenora D M Turcotte
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Julia C Bradshaw
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Andrew R S Ross
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2, Canada
| | | | - Nina Nemcek
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2, Canada
| | - Stewart C Johnson
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
3
|
An Improved Transfer Learning Model for Cyanobacterial Bloom Concentration Prediction. WATER 2022. [DOI: 10.3390/w14081300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The outbreak of cyanobacterial blooms is a serious water environmental problem, and the harm it brings to aquatic ecosystems and water supply systems cannot be underestimated. It is very important to establish an accurate prediction model of cyanobacterial bloom concentration, which is a challenging issue. Machine learning techniques can improve the prediction accuracy, but a large amount of historical monitoring data is needed to train these models. For some waters with an inconvenient geographical location or frequent sensor failures, there are not enough historical data to train the model. To deal with this problem, a fused model based on a transfer learning method is proposed in this paper. In this study, the data of water environment with a large amount of historical monitoring data are taken as the source domain in order to learn the knowledge of cyanobacterial bloom growth characteristics and train the prediction model. The data of the water environment with a small amount of historical monitoring data are taken as the target domain in order to load the model trained in the source domain. Then, the training set of the target domain is used to participate in the inter-layer fine-tuning training of the model to obtain the transfer learning model. At last, the transfer learning model is fused with a convolutional neural network to obtain the prediction model. Various experiments are conducted for a 2 h prediction on the test set of the target domain. The results show that the proposed model can significantly improve the prediction accuracy of cyanobacterial blooms for the water environment with a low data volume.
Collapse
|
4
|
van Dyk C, Nyoni H, Barnhoorn I. Hepatic nodular alterations in wild fish from a hyper-eutrophic freshwater system with cyanobacterial blooms: a species and seasonal comparison. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15729-15742. [PMID: 34636005 DOI: 10.1007/s11356-021-16635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
This paper reports on the seasonal and species comparison of hepatic nodular alterations in two indicator fish species from the hyper-eutrophic Roodeplaat Dam in South Africa. This freshwater system is characterized by seasonal cyanobacterial algal blooms which release bio-toxins, including hepato-toxins, which can have negative effects on the health of the resident fish population. A total of 115 Clarias gariepinus (Burchell) and 98 Oreochromis mossambicus (Peters) were collected seasonally across six different surveys over a period of 3 years. Nodular alterations in livers were assessed both macroscopically and microscopically. We found a species difference with a 48% prevalence of nodular alterations in C. gariepinus and no macroscopically visible alterations in O. mossambicus. Affected fish also showed an increase in the ratio of liver mass to body mass, i.e., the hepatosomatic index. The microscopic characteristics of the nodules were primarily associated with pre-neoplastic, focal areas of cellular alterations; most prevalent were focal areas of steatosis. However, we could not establish a seasonal pattern regarding the occurrence of these alterations and therefore no association between the occurrence of the liver pathology and the cyanobacterial blooms. Our results therefore suggest that the occurrence of nodular alterations is not an acute, seasonal response, but rather a chronic, and possibly, and more interestingly, a species-specific, pathological response.
Collapse
Affiliation(s)
- Cobus van Dyk
- Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa.
| | - Hlengilizwe Nyoni
- College of Science, Engineering and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, UNISA Science Campus, 1710, Roodepoort, South Africa
| | - Irene Barnhoorn
- Department of Zoology, University of Venda, Thohoyandou, 0950, South Africa
| |
Collapse
|
5
|
Shahmohamadloo RS, Ortiz Almirall X, Simmons DBD, Poirier DG, Bhavsar SP, Sibley PK. Fish tissue accumulation and proteomic response to microcystins is species-dependent. CHEMOSPHERE 2022; 287:132028. [PMID: 34474382 DOI: 10.1016/j.chemosphere.2021.132028] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Cyanotoxins including microcystins are increasing globally, escalating health risks to humans and wildlife. Freshwater fish can accumulate and retain microcystins in tissues; however, uptake and depuration studies thus far have not exposed fish to microcystins in its intracellular state (i.e., cell-bound or conserved within cyanobacteria), which is a primary route of exposure in the field, nor have they investigated sublethal molecular-level effects in tissues, limiting our knowledge of proteins responsible for microcystin toxicity pathways in pre-to-postsenescent stages of a harmful algal bloom. We address these gaps with a 2-wk study (1 wk of 'uptake' exposure to intracellular microcystins (0-40 μg L-1) produced by Microcystis aeruginosa followed by 1 wk of 'depuration' in clean water) using Rainbow Trout (Oncorhynchus mykiss) and Lake Trout (Salvelinus namaycush). Liver and muscle samples were collected throughout uptake and depuration phases for targeted microcystin quantification and nontargeted proteomics. For both species, microcystins accumulated at a higher concentration in the liver than muscle, and activated cellular responses related to oxidative stress, apoptosis, DNA repair, and carcinogenicity. However, intraspecific proteomic effects between Rainbow Trout and Lake Trout differed, and interspecific accumulation and retention of microcystins in tissues within each species also differed. We demonstrate that fish do not respond the same to cyanobacterial toxicity within and among species despite being reared in the same environment and diet.
Collapse
Affiliation(s)
- René S Shahmohamadloo
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada; Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Xavier Ortiz Almirall
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | | | - David G Poirier
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Satyendra P Bhavsar
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada; Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Banerjee S, Maity S, Guchhait R, Chatterjee A, Biswas C, Adhikari M, Pramanick K. Toxic effects of cyanotoxins in teleost fish: A comprehensive review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105971. [PMID: 34560410 DOI: 10.1016/j.aquatox.2021.105971] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The phenomenon of eutrophication leads to the global occurrence of algal blooms. Cyanotoxins as produced by many cyanobacterial species can lead to detrimental effects to the biome due to their stability and potential biomagnification along food webs. Therefore, understanding of the potential risks these toxins pose to the most susceptible organisms is an important prerequisite for ecological risks assessment of cyanobacteria blooms. Fishes are an important component of aquatic ecosystems that are prone to direct exposure to cyanotoxins. However, relatively few investigations have focused on measuring the toxic potentials of cyanotoxins in teleost fishes. This review comprehensively describes the major toxicological impacts (such as hepatotoxicity, neurotoxicity, immune toxicity, reproductive toxicity and cytogenotoxicity) of commonly occurring cyanotoxins in teleost fishes. The present work encompasses recent research progresses with special emphasis on the basic molecular mechanisms by which different cyanotoxins impose their toxicities in teleost fishes. The major research areas, which need to be focused on in future scientific investigations, have also been highlighted. Protein kinase inhibition, transcriptional dysregulation, disruption of redox homeostasis and the induction of apoptotic pathways appear to be the key drivers of the toxicological effects of cyanotoxins in fish. Analyses also showed that the impacts of cyanotoxins on specific reproductive processes are relatively less described in teleosts in comparison to mammalian systems. In fact, as compared to other toxicological effects of cyanotoxins, their reproductive toxicity (such as impacts on oocyte development, maturation and their hormonal regulation) is poorly understood in fish, and thus requires further studies. Furthermore, additonal studies characterizing the molecular mechanisms responsible for the cellular uptake of cyanotoxins need to be investigated.
Collapse
Affiliation(s)
- Sambuddha Banerjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Sukhendu Maity
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Rajkumar Guchhait
- P.G. Department of Zoology, Mahishadal Raj College, Garkamalpur, Purba Medinipur, India
| | - Ankit Chatterjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Chayan Biswas
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Madhuchhanda Adhikari
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Kousik Pramanick
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
7
|
Shahmohamadloo RS, Ortiz Almirall X, Simmons DBD, Lumsden JS, Bhavsar SP, Watson-Leung T, Eyken AV, Hankins G, Hubbs K, Konopelko P, Sarnacki M, Strong D, Sibley PK. Cyanotoxins within and Outside of Microcystis aeruginosa Cause Adverse Effects in Rainbow Trout ( Oncorhynchus mykiss). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10422-10431. [PMID: 34264629 DOI: 10.1021/acs.est.1c01501] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The global expansion of toxic Microcystis blooms, and production of cyanotoxins including microcystins, are an increasing risk to freshwater fish. Differentiating intracellular and extracellular microcystin toxicity pathways (i.e., within and outside of cyanobacterial cells) in fish is necessary to assess the severity of risks to populations that encounter harmful algal blooms in pre-to-postsenescent stages. To address this, adult and juvenile Rainbow Trout (Oncorhynchus mykiss) were, respectively, exposed for 96 h to intracellular and extracellular microcystins (0, 20, and 100 μg L-1) produced by Microcystis aeruginosa. Fish were dissected at 24 h intervals for histopathology, targeted microcystin quantification, and nontargeted proteomics. Rainbow Trout accumulated intracellular and extracellular microcystins in all tissues within 24 h, with greater accumulation in the extracellular state. Proteomics revealed intracellular and extracellular microcystins caused sublethal toxicity by significantly dysregulating proteins linked to the cytoskeletal structure, stress responses, and DNA repair in all tissues. Pyruvate metabolism in livers, anion binding in kidneys, and myopathy in muscles were also significantly impacted. Histopathology corroborated these findings with evidence of necrosis, apoptosis, and hemorrhage at similar severity in both microcystin treatments. We demonstrate that sublethal concentrations of intracellular and extracellular microcystins cause adverse effects in Rainbow Trout after short-term exposure.
Collapse
Affiliation(s)
- René S Shahmohamadloo
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Xavier Ortiz Almirall
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario M9P 3V6, Canada
- School of Environmental Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Denina B D Simmons
- Faculty of Science, Ontario Tech University, Oshawa, Ontario L1G 0C5, Canada
| | - John S Lumsden
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Satyendra P Bhavsar
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario M9P 3V6, Canada
- Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Trudy Watson-Leung
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario M9P 3V6, Canada
| | - Angela Vander Eyken
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Gabrielle Hankins
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kate Hubbs
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Polina Konopelko
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Michael Sarnacki
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Damon Strong
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
8
|
Li H, Gu X, Chen H, Mao Z, Zeng Q, Yang H, Kan K. Comparative toxicological effects of planktonic Microcystis and benthic Oscillatoria on zebrafish embryonic development: Implications for cyanobacteria risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:115852. [PMID: 33246764 DOI: 10.1016/j.envpol.2020.115852] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Planktonic and benthic cyanobacteria blooms are increasing in frequency in recent years. Although many studies have focused on the effects of purified toxins or cyanobacteria extracts on fish developments, the more complex impacts of cyanobacteria cells on fish populations are still considered insufficient. This study compared the toxicological effects of harmful planktonic Microcystis and benthic Oscillatoria on zebrafish (Danio rerio) early stages of development. Zebrafish embryos, at 1-2 h post fertilization (hpf), were exposed to 5, 10, and 20 × 105 cells/mL Microcystis (producing microcystins) or Oscillatoria (producing cylindrospermopsins) until 96 hpf. The results indicated that the effects of benthic Oscillatoria on embryonic development of zebrafish were different from those of planktonic Microcystis. Reduced hatching rates, increased mortality, depressed heart rates and elevated malformation rates were observed following exposures to increased concentrations of Microcystis, whilst Oscillatoria exposures only caused yolk sac edemas. Exposure to a high concentration of Microcystis induced severe oxidative damage, growth inhibition and transcriptional downregulations of genes (GH, GHR1, IGF1, IGF1rb) associated with the growth hormone/insulin-like growth factor (GH/IGF) axis. Although Oscillatoria exposure did not affect the body growth, it obviously enhanced the antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and up-regulated the expressions of several oxidative stress-related genes. Discrepancies in the developmental toxicity caused by Microcystis and Oscillatoria may not only attributed to the different secondary metabolites they secrete, but also to the different adhesion behaviors of algal cells on embryonic chorion. These results suggested that harmful cyanobacteria cells could influence the successful recruitment of fish, while the effects of benthic cyanobacteria should not be ignored. It also highlighted that the necessity for further investigating the ecotoxicity of intact cyanobacterial samples when assessing the risk of cyanobacterial blooms.
Collapse
Affiliation(s)
- Hongmin Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China.
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Kecong Kan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Banan A, Kalbassi MR, Bahmani M, Sotoudeh E, Johari SA, Ali JM, Kolok AS. Salinity modulates biochemical and histopathological changes caused by silver nanoparticles in juvenile Persian sturgeon (Acipenser persicus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10658-10671. [PMID: 31939027 DOI: 10.1007/s11356-020-07687-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
The objective of this study was to evaluate the effect of salinity on the acute and sub-chronic toxicity of silver nanoparticles (AgNPs) in Persian sturgeon. This was evaluated by exposing Persian sturgeon to AgNPs in three salinities: freshwater (F: 0.4 ppt), brackish water 1 (B1: 6 ± 0.2 ppt), and brackish water 2 (B2: 12 ± 0.3 ppt) for 14 days, which was followed by analysis of alterations in plasma chemistry and histopathology of the gills, liver, and intestine. Values of 96-h median lethal concentration (LC50) were calculated as 0.89 mg/L in F, 2.07 mg/L in B1, and 1.59 mg/L in B2. After sub-chronic exposures, plasma cortisol, glucose, potassium, and sodium levels illustrated no significant changes within each salinity level. In F, 0.2 mg/L AgNP caused the highest levels of alkaline phosphatase and osmolality levels. In B1, 0.6 mg/L AgNP induced the highest level of alkaline phosphatase and elevated plasma osmolality was recorded in all AgNP-exposed treatments in comparison with the controls. The B2 treatment combined with 0.6 mg/L AgNP significantly reduced plasma chloride level. The results showed elevating salinity significantly increased osmolality, chloride, sodium, and potassium levels of plasma in the fish exposed to AgNPs. The abundance of the tissue lesions was AgNP concentration-dependent, where the highest number of damages was observed in the gills, followed by liver and intestine, respectively. The histopathological study also confirmed alterations such as degeneration of lamella, lifting of lamellar epithelium, hepatic vacuolation, pyknotic nuclei, and cellular infiltration of the lamina propria elicited by AgNPs in the gills, liver, and intestine of Persian sturgeon. In conclusion, the stability of AgNPs in aquatic environments can be regulated by changing the salinity, noting that AgNPs are more stable in low salinity waters.
Collapse
Affiliation(s)
- Ashkan Banan
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Lorestan University, 68151, Khorramabad, Iran.
| | - Mohammad Reza Kalbassi
- Department of Aquaculture, School of Marine Sciences, Tarbiat Modares University, 46414, Tehran, Iran.
| | - Mahmoud Bahmani
- Iranian Fisheries Science and Research Institute, 15745, Tehran, Iran
| | - Ebrahim Sotoudeh
- Department of Fisheries, Faculty of Marine Science and Technology, Persian Gulf University, 75169, Bushehr, Iran
| | - Seyed Ali Johari
- Fisheries Department, Natural Resources Faculty, University of Kurdistan, 66177, Sanandaj, Iran
| | - Jonathan M Ali
- Permitting and Environmental Health Bureau, New Hampshire Department of Environmental Services, 03302, Concord, USA
| | - Alan S Kolok
- Idaho Water Resources Research Institute, University of Idaho, 83844, Moscow, USA
| |
Collapse
|
10
|
Naguib M, Mahmoud UM, Mekkawy IA, Sayed AEDH. Hepatotoxic effects of silver nanoparticles on Clarias gariepinus; Biochemical, histopathological, and histochemical studies. Toxicol Rep 2020; 7:133-141. [PMID: 31956514 PMCID: PMC6962648 DOI: 10.1016/j.toxrep.2020.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/28/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
The current study investigates the hepatotoxic effects of two acute doses of silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on African catfish (Clarias garepinus) using biochemical, histopathological, and histochemical changes and the determination of silver in liver tissue as biomarkers. AgNPs-induced impacts were recorded in some of these characteristics based on their size (20 and 40 nm) and their concentration (10 and 100 μg/L). Concentrations of liver enzymes (Aspartic aminotransferase; AST, Alanine aminotransferase; ALT), alkaline phosphatase (ALP), total lipids (Tl), Glucose (Glu) and Ag-concentration in liver tissue exhibited a significant increase under stress in all exposed groups compared to the control group. The total proteins (Tp), albumin (Al), and globulin (Gl) concentrations exhibited significantly decrease in all treated groups compared to the control group. At tissue and cell levels, histopathological changes were observed. These changes include proliferation of hepatocytes, infiltrations of inflammatory cells, pyknotic nuclei, cytoplasmic vaculation, melanomacrophages aggregation, dilation in the blood vessel, hepatic necrosis, rupture of the wall of the central vein, and apoptotic cells in the liver of AgNPs-exposed fish. As well as the depletion of glycogen content in the liver (feeble magenta coloration) was observed. The size and number of melanomacrophage centers (MMCs) in liver tissue showed highly significant difference in all exposed groups compared to the control group. Recovery period for 15 days led to improved most alterations in the biochemical, histopathological, and histochemical parameters induced by AgNPs and AgNO3. In conclusion, one can assume liver sensitivity of C. garepinus for AgNPs and the recovery period is a must.
Collapse
Affiliation(s)
| | | | | | - Alaa El-Din H. Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
11
|
Forouhar Vajargah M, Imanpoor MR, Shabani A, Hedayati A, Faggio C. Effect of long‐term exposure of silver nanoparticles on growth indices, hematological and biochemical parameters and gonad histology of male goldfish (
Carassius auratus gibelio
). Microsc Res Tech 2019; 82:1224-1230. [DOI: 10.1002/jemt.23271] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Mohammad Forouhar Vajargah
- Department of Fisheries, Faculty of Natural ResourcesUniversity of Guilan Sowmehsara Iran
- Department of Aquaculture, Faculty of Fisheries and EnvironmentGorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Mohammad R. Imanpoor
- Department of Aquaculture, Faculty of Fisheries and EnvironmentGorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Ali Shabani
- Department of Aquaculture, Faculty of Fisheries and EnvironmentGorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Aliakbar Hedayati
- Department of Aquatic Production and Exploitation, Faculty of Fisheries and EnvironmentGorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| |
Collapse
|
12
|
Saraf SR, Frenkel A, Harke MJ, Jankowiak JG, Gobler CJ, McElroy AE. Effects of Microcystis on development of early life stage Japanese medaka (Oryzias latipes): Comparative toxicity of natural blooms, cultured Microcystis and microcystin-LR. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:18-26. [PMID: 29132031 DOI: 10.1016/j.aquatox.2017.10.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Freshwater cyanobacterial harmful algal blooms (CyanoHABs) caused by algae in the genus Microcystis have been increasing in frequency and severity in recent decades. Microcystis blooms threaten aquatic organisms through effects associated with the rapid increase of biomass and the production of the hepatotoxin microcystin (MC) by toxic strains. Among fish, effects of blooms are likely to be more severe for early life stages, and physiological impacts on this life stage could significantly impact recruitment and fish populations. This study explores the effects of Microcystis blooms on the development of fish using the model organism, the Japanese medaka (Oryzias latipes), under realistic exposure conditions. Medaka embryos were exposed to natural blooms collected from New York City (USA) lakes, lab cultures of Microcystis, and MC-LR solutions. Field collected samples were more toxic than lab cultures (even when compared at the same algal density or MC concentration), causing decreased survival, premature time to hatch, reduced body length, yolk sac edema, and decreased heart rate, while lab culture exposures only resulted in bradycardia. Heart rate was the most sensitive endpoint measured, being depressed in embryos exposed to both lab cultures and field collected blooms. Generalized linear model analysis indicated bradycardia was statistically associated with both cell densities of blooms and MC concentrations, while single factor analysis indicated that MC concentrations had a stronger correlation compared to cell densities. However, MC exposure could not fully explain the effects observed, as exposures to MC-LR solutions alone were not able to reduce heart rate as severely as algal exposures. Collectively, these experiments indicate that factors beyond exposure to MC or even isolated Microcystis strains influence heart rate of fish exposed to Microcystis blooms. Enhanced mortality, depressed heart rate, and abnormal development observed in response to environmentally realistic exposures of Microcystis blooms could affect success of fish at both individual or population levels.
Collapse
Affiliation(s)
- Spencer R Saraf
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 United States
| | - Amy Frenkel
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 United States; Dartmouth College, Hanover, NH 03755, United States
| | - Matthew J Harke
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 United States; Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY 10964, United States
| | - Jennifer G Jankowiak
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 United States
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 United States
| | - Anne E McElroy
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 United States.
| |
Collapse
|
13
|
Glover CN, Wood CM, Goss GG. Drinking and water permeability in the Pacific hagfish, Eptatretus stoutii. J Comp Physiol B 2017; 187:1127-1135. [DOI: 10.1007/s00360-017-1097-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/17/2017] [Accepted: 04/06/2017] [Indexed: 01/09/2023]
|
14
|
Paulino MG, Tavares D, Bieczynski F, Pedrão PG, Souza NES, Sakuragui MM, Luquet CM, Terezan AP, Fernandes JB, Giani A, Fernandes MN. Crude extract of cyanobacteria (Radiocystis fernandoi, strain R28) induces liver impairments in fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:91-101. [PMID: 27886582 DOI: 10.1016/j.aquatox.2016.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/12/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Radiocystis fernandoi R28 strain is a cyanobacterium which produces mostly the RR and YR microcystin variants (MC-RR and MC-YR, respectively). The effects of crude extract of the R. fernandoi strain R28 were evaluated on the protein phosphatases and on the structure and ultrastructure of the liver of the Neotropical fish, Hoplias malabaricus, after acute and subchronic exposure. Concomitantly, the accumulation of the majority of MCs was determined in the liver and muscle. The fish were exposed to 120.60 MC-RR+MC-LR kg-fish-1 (=100μg MC-LReq kg-fish-1) for 12 and 96h (one single dose, acute exposure) and 30days (one similar dose every 72h, subchronic exposure). MCs did not accumulate in the muscle but, in the liver, MC-YR accumulated after acute exposure and MC-RR and MC-YR accumulation occurred after subchronic exposure. Protein phosphatase 2A (PP2A) activity was inhibited only after subchronic exposure. Acute exposure induced liver hyperemia, hemorrhage, changes in hepatocytes and cord-like disorganization. At the ultrastructural level, the decreasing of glycogen and lipid levels, the swelling of mitochondria and whirling of endoplasmic reticulum suggested hepatocyte necrosis. Subchronic exposure resulted in a complete disarrangement of cord-like hepatocytes, some recovery of mitochondria and whirling endoplasmic reticulum and extensive connective tissues containing fibrous materials in the liver parenchyma. Despite microcystin toxicity and liver alterations, no tumor was induced by MCs. In conclusion, the increased algal mass of R. fernandoi in tropical freshwater, producing mainly MC-RR and MC-YR variants, results in fish liver impairments.
Collapse
Affiliation(s)
- M G Paulino
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - D Tavares
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - F Bieczynski
- Center of Applied Ecology of Neuquen, INIBIOMA, UNCo-CONICET- Ruta Provincial 61, km 3, 8371, Junín de los Andes, Neuquén, Argentina
| | - P G Pedrão
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - N E S Souza
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - M M Sakuragui
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - C M Luquet
- Center of Applied Ecology of Neuquen, INIBIOMA, UNCo-CONICET- Ruta Provincial 61, km 3, 8371, Junín de los Andes, Neuquén, Argentina
| | - A P Terezan
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - J B Fernandes
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - A Giani
- Department of Botany, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M N Fernandes
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil.
| |
Collapse
|
15
|
Xie M, Ren M, Yang C, Yi H, Li Z, Li T, Zhao J. Metagenomic Analysis Reveals Symbiotic Relationship among Bacteria in Microcystis-Dominated Community. Front Microbiol 2016; 7:56. [PMID: 26870018 PMCID: PMC4735357 DOI: 10.3389/fmicb.2016.00056] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/13/2016] [Indexed: 11/13/2022] Open
Abstract
Microcystis bloom, a cyanobacterial mass occurrence often found in eutrophicated water bodies, is one of the most serious threats to freshwater ecosystems worldwide. In nature, Microcystis forms aggregates or colonies that contain heterotrophic bacteria. The Microcystis-bacteria colonies were persistent even when they were maintained in lab culture for a long period. The relationship between Microcystis and the associated bacteria was investigated by a metagenomic approach in this study. We developed a visualization-guided method of binning for genome assembly after total colony DNA sequencing. We found that the method was effective in grouping sequences and it did not require reference genome sequence. Individual genomes of the colony bacteria were obtained and they provided valuable insights into microbial community structures. Analysis of metabolic pathways based on these genomes revealed that while all heterotrophic bacteria were dependent upon Microcystis for carbon and energy, Vitamin B12 biosynthesis, which is required for growth by Microcystis, was accomplished in a cooperative fashion among the bacteria. Our analysis also suggests that individual bacteria in the colony community contributed a complete pathway for degradation of benzoate, which is inhibitory to the cyanobacterial growth, and its ecological implication for Microcystis bloom is discussed.
Collapse
Affiliation(s)
- Meili Xie
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of SciencesWuhan, China; University of Chinese Academy of SciencesBeijing, China
| | - Minglei Ren
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of SciencesWuhan, China; University of Chinese Academy of SciencesBeijing, China
| | - Chen Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of SciencesWuhan, China; University of Chinese Academy of SciencesBeijing, China
| | - Haisi Yi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of SciencesWuhan, China; University of Chinese Academy of SciencesBeijing, China
| | - Zhe Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences Beijing, China
| | - Tao Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences Wuhan, China
| | - Jindong Zhao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of SciencesWuhan, China; College of Life Science, Peking UniversityBeijing, China
| |
Collapse
|
16
|
Bittencourt-Oliveira MC, Hereman TC, Macedo-Silva I, Cordeiro-Araújo MK, Sasaki FFC, Dias CTS. Sensitivity of salad greens (Lactuca sativa L. and Eruca sativa Mill.) exposed to crude extracts of toxic and non-toxic cyanobacteria. BRAZ J BIOL 2015; 75:273-8. [PMID: 26132007 DOI: 10.1590/1519-6984.08113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 03/12/2014] [Indexed: 11/22/2022] Open
Abstract
We evaluated the effect of crude extracts of the microcystin-producing (MC+) cyanobacteria Microcystis aeruginosa on seed germination and initial development of lettuce and arugula, at concentrations between 0.5 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent, and compared it to crude extracts of the same species without the toxin (MC-). Crude extracts of the cyanobacteria with MC (+) and without MC (-) caused different effects on seed germination and initial development of the salad green seedlings, lettuce being more sensitive to both extracts when compared to arugula. Crude extracts of M. aeruginosa (MC+) caused more evident effects on seed germination and initial development of both species of salad greens than MC-. Concentrations of 75 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent induced a greater occurrence of abnormal seedlings in lettuce, due to necrosis of the radicle and shortening of this organ in normal seedlings, as well as the reduction in total chlorophyll content and increase in the activity of the antioxidant enzyme peroxidase (POD). The MC- extract caused no harmful effects to seed germination and initial development of seedlings of arugula. However, in lettuce, it caused elevation of POD enzyme activity, decrease in seed germination at concentrations of 75 μg.L(-1) (MC-75) and 100 μg.L(-1) (MC-100), and shortening of the radicle length, suggesting that other compounds present in the cyanobacteria extracts contributed to this result. Crude extracts of M. aeruginosa (MC-) may contain other compounds, besides the cyanotoxins, capable of causing inhibitory or stimulatory effects on seed germination and initial development of salad green seedlings. Arugula was more sensitive to the crude extracts of M. aeruginosa (MC+) and (MC-) and to other possible compounds produced by the cyanobacteria.
Collapse
Affiliation(s)
- M C Bittencourt-Oliveira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - T C Hereman
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - I Macedo-Silva
- Graduating Program on Biological Sciences, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, SP, Brazil
| | - M K Cordeiro-Araújo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - F F C Sasaki
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - C T S Dias
- Department of Exact Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
17
|
Chronic effect of waterborne silver nanoparticles on rainbow trout (Oncorhynchus mykiss): histopathology and bioaccumulation. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s00580-014-2019-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Sotton B, Guillard J, Anneville O, Maréchal M, Savichtcheva O, Domaizon I. Trophic transfer of microcystins through the lake pelagic food web: evidence for the role of zooplankton as a vector in fish contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 466-467:152-63. [PMID: 23906853 DOI: 10.1016/j.scitotenv.2013.07.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/30/2013] [Accepted: 07/04/2013] [Indexed: 05/08/2023]
Abstract
An in situ study was performed to investigate the role of zooplankton as a vector of microcystins (MCs) from Planktothrix rubescens filaments to fish during a metalimnic bloom of P. rubescens in Lake Hallwil (Switzerland). The concentrations of MCs in P. rubescens and various zooplanktonic taxa (filter-feeders and predators) were assessed in different water strata (epi-, meta- and hypolimnion) using replicated sampling over a 24-hour survey. The presence of P. rubescens in the gut content of various zooplanktonic taxa (Daphnia, Bosmina and Chaoborus) was verified by targeting the cyanobacterial nucleic acids (DNA). These results highlighted that cyanobacterial cells constitute a part of food resource for herbivorous zooplanktonic taxa during metalimnic bloom periods. Furthermore, presence of MCs in Chaoborus larvae highlighted the trophic transfer of MCs between herbivorous zooplankton and their invertebrate predators. Our results suggest that zooplanktonic herbivores by diel vertical migration (DVM) act as vectors of MCs by encapsulating grazed cyanobacteria. As a consequence, they largely contribute to the contamination of zooplanktonic predators, and in fine of zooplanktivorous whitefish. Indeed, we estimated the relative contribution of three preys of the whitefish (i.e. Daphnia, Bosmina and Chaoborus) to diet contamination. We showed that Chaoborus and Daphnia were the highest contributor as MC vectors in the whitefish diet (74.6 and 20.5% of MC-LR equivalent concentrations, respectively). The transfer of MCs across the different trophic compartments follows complex trophic pathways involving various trophic levels whose relative importance in fish contamination might vary at daily and seasonal scale.
Collapse
Affiliation(s)
- Benoît Sotton
- INRA, UMR CARRTEL, 75 av. de Corzent, F-74203 Thonon Les Bains, France.
| | | | | | | | | | | |
Collapse
|
19
|
Ferrão-Filho AS, Soares MCS, Lima RS, Magalhães VF. Effects of Cylindrospermopsis raciborskii (cyanobacteria) on the swimming behavior of Daphnia (cladocera). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:223-229. [PMID: 24357033 DOI: 10.1002/etc.2420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/24/2013] [Accepted: 10/02/2013] [Indexed: 06/03/2023]
Abstract
The present study aimed to test the effects of raw water samples from a eutrophic reservoir and of a saxitoxin-producing strain of Cylindrospermopsis raciborskii on the swimming behavior of 2 key herbivore species of Daphnia. Two complementary approaches were used, acute bioassays and behavioral assays using an automated movement tracking system for measuring the following activity parameters: swimming time, resting time, distance traveled, and mean velocity. In both assays, animals were exposed to field samples or to toxic filaments in different concentrations and observed for 2 h to 3 h. In the acute bioassays, there was a decrease in the number of swimming individuals during the exposure period and a recovery following removal from toxic algae. A significant relationship was found between median effective concentration and the saxitoxin content of seston (r(2) = 0.998; p = 0.025) in the acute bioassays with raw water samples. Behavioral assays also showed significant effects in the activity parameters with both field samples and the strain of C. raciborskii, with some recovery during the exposure period. Both approaches corroborated previous research on the effects of neurotoxic C. raciborskii on the swimming activity of Daphnia, and these effects are compatible with the mechanism of action of saxitoxins. The present study showed that activity parameters of aquatic organisms may be a useful tool in the evaluation of sublethal toxicity and detection of neurotoxins in raw water.
Collapse
Affiliation(s)
- Aloysio S Ferrão-Filho
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
20
|
Pavagadhi S, Balasubramanian R. Toxicological evaluation of microcystins in aquatic fish species: current knowledge and future directions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:1-16. [PMID: 23948073 DOI: 10.1016/j.aquatox.2013.07.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 07/09/2013] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
Microcystins (MCs) are algal toxins produced intracellularly within the algal cells, and are subsequently released into the aquatic systems. An increase in the frequency and intensity of occurrence of harmful algal blooms has directed the global attention towards the presence of MCs in aquatic systems. The effects of MCs on fish have been verified in a number of studies including histological, biochemical and behavioral effects. The toxicological effects of MCs on different organs of fish are related to the exposure route (intraperitoneal injection, feeding or immersion), the mode of uptake (passive or active transport) as well as biotransformation and bioaccumulation capabilities by different organs. This paper reviews the rapidly expanding literature on the toxicological evaluation of MCs in fish from both field studies and controlled laboratory experimental investigations, integrates the current knowledge available about the mechanisms involved in MC-induced effects on fish, and points out future research directions from a cross-disciplinary perspective. In addition, the need to carry out systematic fish toxicity studies to account for possible interactions between MCs and other environmental pollutants in aquatic systems is discussed.
Collapse
Affiliation(s)
- Shruti Pavagadhi
- Singapore-Delft Water Alliance, National University of Singapore, Singapore 117576, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | | |
Collapse
|
21
|
Stewart I, Eaglesham GK, McGregor GB, Chong R, Seawright AA, Wickramasinghe WA, Sadler R, Hunt L, Graham G. First report of a toxic Nodularia spumigena (Nostocales/ Cyanobacteria) bloom in sub-tropical Australia. II. Bioaccumulation of nodularin in isolated populations of mullet (Mugilidae). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2412-43. [PMID: 22851952 PMCID: PMC3407913 DOI: 10.3390/ijerph9072412] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 12/03/2022]
Abstract
Fish collected after a mass mortality at an artificial lake in south-east Queensland, Australia, were examined for the presence of nodularin as the lake had earlier been affected by a Nodularia bloom. Methanol extracts of muscle, liver, peritoneal and stomach contents were analysed by HPLC and tandem mass spectrometry; histological examination was conducted on livers from captured mullet. Livers of sea mullet (Mugil cephalus) involved in the fish kill contained high concentrations of nodularin (median 43.6 mg/kg, range 40.8-47.8 mg/kg dry weight; n = 3) and the toxin was also present in muscle tissue (median 44.0 μg/kg, range 32.3-56.8 μg/kg dry weight). Livers of fish occupying higher trophic levels accumulated much lower concentrations. Mullet captured from the lake 10 months later were also found to have high hepatic nodularin levels. DNA sequencing of mullet specimens revealed two species inhabiting the study lake: M. cephalus and an unidentified mugilid. The two mullet species appear to differ in their exposure and/or uptake of nodularin, with M. cephalus demonstrating higher tissue concentrations. The feeding ecology of mullet would appear to explain the unusual capacity of these fish to concentrate nodularin in their livers; these findings may have public health implications for mullet fisheries and aquaculture production where toxic cyanobacteria blooms affect source waters. This report incorporates a systematic review of the literature on nodularin measured in edible fish, shellfish and crustaceans.
Collapse
Affiliation(s)
- Ian Stewart
- Queensland Health Forensic and Scientific Services, 39 Kessels Road, Coopers Plains, Queensland 4108, Australia; (G.K.E.); (L.H.); (G.G.)
- School of Public Health, Griffith University, Parklands Drive, Southport, Queensland 4217, Australia;
| | - Geoffrey K. Eaglesham
- Queensland Health Forensic and Scientific Services, 39 Kessels Road, Coopers Plains, Queensland 4108, Australia; (G.K.E.); (L.H.); (G.G.)
| | - Glenn B. McGregor
- Environment and Resource Sciences, Queensland Department of Science, Information Technology, Innovation and the Arts, Ecosciences Precinct, Boggo Road, Dutton Park, Queensland 4102, Australia;
| | - Roger Chong
- Biosecurity Queensland, Department of Agriculture, Fisheries and Forestry, 39 Kessels Road, Coopers Plains, Queensland 4108, Australia;
| | - Alan A. Seawright
- The University of Queensland, National Research Centre for Environmental Toxicology (EnTox), 39 Kessels Road, Coopers Plains, Queensland 4108, Australia; (A.A.S.); (W.A.W.)
| | - Wasantha A. Wickramasinghe
- The University of Queensland, National Research Centre for Environmental Toxicology (EnTox), 39 Kessels Road, Coopers Plains, Queensland 4108, Australia; (A.A.S.); (W.A.W.)
| | - Ross Sadler
- School of Public Health, Griffith University, Parklands Drive, Southport, Queensland 4217, Australia;
| | - Lindsay Hunt
- Queensland Health Forensic and Scientific Services, 39 Kessels Road, Coopers Plains, Queensland 4108, Australia; (G.K.E.); (L.H.); (G.G.)
| | - Glenn Graham
- Queensland Health Forensic and Scientific Services, 39 Kessels Road, Coopers Plains, Queensland 4108, Australia; (G.K.E.); (L.H.); (G.G.)
- Faculty of Science, Health and Education, University of the Sunshine Coast, Sippy Downs Drive, Sippy Downs, Queensland 4556, Australia
| |
Collapse
|
22
|
Marie B, Huet H, Marie A, Djediat C, Puiseux-Dao S, Catherine A, Trinchet I, Edery M. Effects of a toxic cyanobacterial bloom (Planktothrix agardhii) on fish: insights from histopathological and quantitative proteomic assessments following the oral exposure of medaka fish (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:39-48. [PMID: 22414781 DOI: 10.1016/j.aquatox.2012.02.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/07/2012] [Accepted: 02/11/2012] [Indexed: 05/31/2023]
Abstract
Cyanobacterial toxic blooms often occur in freshwater lakes and constitute a potential health risk to human populations, as well as to fish and other aquatic organisms. Microcystin-LR (the cyanotoxin most commonly detected in the freshwater environment) is a potent hepatotoxin, deregulating the kinase pathway by inhibiting phosphatases 1 and 2A. Although toxicological effects have been clearly linked to the in vitro exposure of fish to purified microcystins, cyanotoxins are produced by the cyanobacteria together with numerous other potentially toxic molecules, and their overall and specific implications for the health of fish have still not been clearly established and remain puzzlingly difficult to assess. The medaka fish (Oryzias latipes) was chosen as an in vitro model for studying the effects of a cyanobacterial bloom on liver protein contents using a gel free quantitative approach, iTRAQ, in addition to pathology examinations on histological preparations. Fish were gavaged with 5 μL cyanobacterial extracts (Planktothrix agardhii) from a natural bloom (La Grande Paroisse, France) containing 2.5 μg equiv. MC-LR. 2h after exposure, the fish were sacrificed and livers were collected for analysis. Histological observations indicate that hepatocytes present glycogen storage loss, and cellular damages, together with immunological localization of MCs. Using a proteomic approach, 304 proteins were identified in the fish livers, 147 of them with a high degree of identification confidence. Fifteen of these proteins were statistically significantly different from those of controls (gavaged with water only). Overall, these protein regulation discrepancies clearly indicate that oxidative stress and lipid regulation had occurred in the livers of the exposed medaka fish. In contrast to previous pure microcystin-LR gavage experiments, marked induction of vitellogenin 1 protein was observed for the first time with a cyanobacterial extract. This finding was confirmed by ELISA quantification of vitellogenin liver content, suggesting that the Planktothrix bloom extract had induced the occurrence of an endocrine-disrupting effect.
Collapse
Affiliation(s)
- Benjamin Marie
- UMR 7245 CNRS Molécules de Communication et Adaptation des Microorganismes, Équipe Cyanobactéries, Cyanotoxines et Environnement, Muséum National d'Histoire Naturelle, 12 Rue Buffon, F-75231 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ibrahem MD, Khairy HM, Ibrahim MA. Laboratory exposure of Oreochromis niloticus to crude microcystins (containing microcystin-LR) extracted from Egyptian locally isolated strain (Microcystis aeruginosa Kützing): biological and biochemical studies. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:899-908. [PMID: 22095249 DOI: 10.1007/s10695-011-9577-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/08/2011] [Indexed: 05/31/2023]
Abstract
Cyanobacterial blooms exert negative impacts on fisheries and water management authorities. Recently, it has gained global attention, as elevated earth warming and environmental pollution are accelerating algal growth. Oreochromis niloticus (O. niloticus) is a worldwide and the most commonly cultured fish in Egypt. The biological interaction of the living organisms to the surrounding environment must continuously be assessed to predict future effects of the ongoing hazards on fish. The study was designed to examine the possible biological and biochemical response of O. niloticus exposed to different concentrations of microcystins crude extract (containing microcystin-LR). Three equal groups of O. niloticus were assigned for intraperitoneal injection of three different doses: 100, 200, and 400 μg m(-1) dried aqueous microcystins extract, for 10 days. Clinical, condition factor (K) and hepatosomatic index (HIS) were estimated. Biochemical alterations were evaluated via lipid peroxidation, DNA fragmentation assay and electrophoretic analysis of fragmented DNA using agarose gel electrophoresis. The results showed that there were discernible behavioral and clinical alterations. Significant differences in K and HIS were observed between treatments. Also, significant elevations were observed in lipid peroxidation level and in the DNA fragmentation percentage in the exposed fish to the doses of 200 and 400 μg m(-1) of microcystins crude extract. The current study addresses the possible toxic effects of microcystins crude extract to O. niloticus. The results cleared that microcystins crude extract (containing MC-LR) is toxic to O. niloticus in time- and dose-dependent manners.
Collapse
Affiliation(s)
- Mai D Ibrahem
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | | | | |
Collapse
|
24
|
Jaja-Chimedza A, Gantar M, Mayer GD, Gibbs PDL, Berry JP. Effects of cyanobacterial lipopolysaccharides from microcystis on glutathione-based detoxification pathways in the zebrafish (Danio rerio) embryo. Toxins (Basel) 2012; 4:390-404. [PMID: 22822454 PMCID: PMC3398417 DOI: 10.3390/toxins4060390] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/14/2012] [Accepted: 05/14/2012] [Indexed: 12/26/2022] Open
Abstract
Cyanobacteria ("blue-green algae") are recognized producers of a diverse array of toxic secondary metabolites. Of these, the lipopolysaccharides (LPS), produced by all cyanobacteria, remain to be well investigated. In the current study, we specifically employed the zebrafish (Danio rerio) embryo to investigate the effects of LPS from geographically diverse strains of the widespread cyanobacterial genus, Microcystis, on several detoxifying enzymes/pathways, including glutathione-S-transferase (GST), glutathione peroxidase (GPx)/glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT), and compared observed effects to those of heterotrophic bacterial (i.e., E. coli) LPS. In agreement with previous studies, cyanobacterial LPS significantly reduced GST in embryos exposed to LPS in all treatments. In contrast, GPx moderately increased in embryos exposed to LPS, with no effect on reciprocal GR activity. Interestingly, total glutathione levels were elevated in embryos exposed to Microcystis LPS, but the relative levels of reduced and oxidized glutathione (i.e., GSH/GSSG) were, likewise, elevated suggesting that oxidative stress is not involved in the observed effects as typical of heterotrophic bacterial LPS in mammalian systems. In further support of this, no effect was observed with respect to CAT or SOD activity. These findings demonstrate that Microcystis LPS affects glutathione-based detoxification pathways in the zebrafish embryo, and more generally, that this model is well suited for investigating the apparent toxicophore of cyanobacterial LPS, including possible differences in structure-activity relationships between heterotrophic and cyanobacterial LPS, and teleost fish versus mammalian systems.
Collapse
Affiliation(s)
- Asha Jaja-Chimedza
- Department of Chemistry and Biochemistry, Marine Science Program, Florida International University, North Miami, FL 33181, USA.
| | | | | | | | | |
Collapse
|
25
|
Vega-López A, Carrillo-Morales CI, Olivares-Rubio HF, Lilia Domínguez-López M, García-Latorre EA. Evidence of bioactivation of halomethanes and its relation to oxidative stress response in Chirostoma riojai, an endangered fish from a polluted lake in Mexico. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 62:479-493. [PMID: 21877223 DOI: 10.1007/s00244-011-9708-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 08/18/2011] [Indexed: 05/31/2023]
Abstract
Halomethanes (HMs) are produced autochthonously in water bodies through the action of ultraviolet light in the presence of HM precursors, such as dissolved organic carbon and halogens. In mammals, toxic effects induced by HMs are diverse and include oxidative stress, which is also induced by divalent and polyvalent metals; however, in fish little information is available on HM metabolism and its possible consequences at the population level. In the present study, high CYP 2E1 and GST theta-like activities were found in viscera of the Toluca silverside Chirostoma riojai from Lake Zumpango (LZ; central Mexico). Formaldehyde, one of the HM metabolites, was correlated with CYP 2E1 activity and also induced lipid peroxidation in viscera. Hepatic CYP 2E1 activity was correlated with GST theta-like activity, suggesting the coupling of both pathways of HM bioactivation and its consequent oxidative damage. Sediment metals, among others, were also responsible for oxidative stress, particularly iron, lead, arsenic and manganese. However, under normal environmental conditions, the antioxidant enzymes of this species sustain catalysis adapted to oxidative stress. Findings suggest that this fish species apparently has mechanisms of adaptation and recovery that enable it to confront toxic agents of natural origin, such as metals and other substances formed through natural processes, e.g., HMs. This has allowed C. riojai to colonize LZ despite the high sensitivity of this species to xenobiotics of anthropogenic origin.
Collapse
Affiliation(s)
- Armando Vega-López
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, 07738 Mexico, DF, Mexico.
| | | | | | | | | |
Collapse
|
26
|
Jiang J, Shi Y, Shan Z, Yang L, Wang X, Shi L. Bioaccumulation, oxidative stress and HSP70 expression in Cyprinus carpio L. exposed to microcystin-LR under laboratory conditions. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:483-90. [PMID: 22240489 DOI: 10.1016/j.cbpc.2011.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 11/28/2022]
Abstract
Microcystin-LR (MC-LR) produced by cyanobacteria are potent specific hepatotoxins. So far the pathogenesis of environmental MC-LR toxicity to aquatic organisms has not been fully elucidated. In the present study the accumulation of MC-LR was investigated in various organs/tissues of Cyprinus carpio L. (C. carpio) following exposure to MC-LR for 14 d at environmentally relevant concentrations (0.1 to 10 μg L(-1)). Results showed that the presence of MC-LR enhanced toxin accumulation in all investigated organs and the highest accumulation was found in the liver of fish exposed to 5.0 μg L(-1) of MC-LR. An EPR analysis indicated ·OH intensity in liver was significantly induced at 0.1 μg L(-1) of MC-LR and then restored when the MC-LR concentration was greater than 0.1 μg L(-1). After 14-day exposure, MC-LR (1.0-10.0 μg L(-1) of MC-LR) caused a pronounced promotion of glutathione S-transferase (GST) activity and a depletion of reduced glutathione (GSH) content in fish liver, which indicated that GSH was involved in detoxification of MC-LR and the conjugation reaction of MC-LR and GSH occurred. A mild oxidative damage was evidenced by the accumulation of malondialdehyde (MDA) level at 5.0 μg L(-1) of MC-LR exposure, but which was restored when the MC-LR concentration was increased to 10.0 μg L(-1). The responses of antioxidant enzymes and the induction of HSP70 expression might contribute to MC-LR tolerance of C. carpio. However, the protein phosphatase (PP) activities were strikingly inhibited in all treated groups. Thus, the overall toxicity of environmental MC-LR on C. carpio seems to be initiated in the liver via both the ROS pathway and the PP inhibition pathway, and the latter might be more important when ambient MC-LR concentration is greater than 0.1 μg L(-1). More importantly, these results can help to support the evaluation on the potential effects of MC-LR under common environmental concentrations.
Collapse
Affiliation(s)
- Jinlin Jiang
- Nanjing Institute of Environmental Sciences, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing 210042, PR China
| | | | | | | | | | | |
Collapse
|
27
|
Perron MC, Qiu B, Boucher N, Bellemare F, Juneau P. Use of chlorophyll a fluorescence to detect the effect of microcystins on photosynthesis and photosystem II energy fluxes of green algae. Toxicon 2012; 59:567-77. [PMID: 22234271 DOI: 10.1016/j.toxicon.2011.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 01/09/2023]
Abstract
The phenomenon of cyanobacteria bloom occurs widely in lakes, reservoirs, ponds and slow flowing rivers. Those blooms can have important repercussions, at once on recreational and commercial activities but also on the health of animals and human beings. Indeed, many species are known to produce toxins which are released in water mainly at cellular death. The cyanotoxin most frequently encountered is the microcystin (MC), a hepatotoxin which counts more than 70 variants. The use of fast tests for the detection of this toxin is thus a necessity for the protection of the ecosystems and the human health. A promising method for their detection is a bioassay based on the chlorophyll a fluorescence of algae. Many studies have shown that algae are sensible to diverse pollutants, but were almost never used for cyanotoxins. Therefore, our goals were to evaluate the effect of microcystin on the fluorescence of different species of algae and how it can affect the flow of energy through photosystem II. To reach these objectives, we exposed four green algae (Scenedesmus obliquus CPCC5, Chlamydomonas reinhardtii CC125, Pseudokirchneriella subcapitata CPCC37 and Chlorella vulgaris CPCC111) to microcystin standards (variants MC-LF, LR, RR, YR) and to microcystin extracted from Microcystis aeruginosa (CPCC299), which is known to produce mainly MC-LR. Chlorophyll a fluorescence was measured by PEA (Plant Efficiency Analyzer) and LuminoTox. The results of our experiment showed that microcystins affect the photosynthetic efficiency and the flow of energy through photosystem II from 0.01 μg/mL, within only 15 min. From exposure to standard of microcystin, we showed that MC-LF was the most potent variant, followed by MC-YR, LR and RR. Moreover, green algae used in this study demonstrated different sensitivity to MCs, S. obliquus being the more sensitive. We finally demonstrated that LuminoTox was more sensitive to MCs than parameters measured with PEA, although the latter brings indication on the mode of action of MCs at the photosynthetic apparatus level. This is the first report showing a photosynthetic response within 15 min of exposure. Our results suggest that bioassay based on chlorophyll fluorescence can be used as a rapid and sensitive tool to detect microcystin.
Collapse
Affiliation(s)
- Marie-Claude Perron
- Department of Biological Sciences-TOXEN, Ecotoxicology of Aquatic Microorganisms Laboratory, Université du Québec à Montréal, CP8888, Succ. Centre-Ville, Montreal, Québec, H3C 3P8, Canada
| | | | | | | | | |
Collapse
|
28
|
Ferrão-Filho ADS, Kozlowsky-Suzuki B. Cyanotoxins: bioaccumulation and effects on aquatic animals. Mar Drugs 2011; 9:2729-2772. [PMID: 22363248 PMCID: PMC3280578 DOI: 10.3390/md9122729] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, feeding inhibition, paralysis), chronic effects (e.g., reduction in growth and fecundity), biochemical alterations (e.g., activity of phosphatases, GST, AChE, proteases), and behavioral alterations. Research has also focused on the potential for bioaccumulation and transferring of these toxins through the food chain. Although the herbivorous zooplankton is hypothesized as the main target of cyanotoxins, there is not unquestionable evidence of the deleterious effects of cyanobacteria and their toxins on these organisms. Also, the low toxin burden in secondary consumers points towards biodilution of microcystins in the food web as the predominant process. In this broad review we discuss important issues on bioaccumulation and the effects of cyanotoxins, with emphasis on microcystins, as well as drawbacks and future needs in this field of research.
Collapse
Affiliation(s)
- Aloysio da S. Ferrão-Filho
- Laboratory of Evaluation and Promotion of Environmental Health, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21045-900, Brazil
| | - Betina Kozlowsky-Suzuki
- Departament of Ecology and Marine Resources, Federal University of Rio de Janeiro State (UNIRIO), Av. Pasteur 458, Urca, Rio de Janeiro, RJ 22290-040, Brazil;
| |
Collapse
|
29
|
Pires LMD, Sarpe D, Brehm M, Ibelings BW. Potential synergistic effects of microcystins and bacterial lipopolysaccharides on life history traits of Daphnia galeata raised on low and high food levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 104:230-242. [PMID: 21635866 DOI: 10.1016/j.aquatox.2011.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 04/21/2011] [Accepted: 05/01/2011] [Indexed: 05/30/2023]
Abstract
Metastudies have found no consistent effects of the cyanobacterial toxin microcystin on Daphnia, and there are discrepancies between field observations and experiments. Confounding factors include absence or presence of alternative high quality food or the presence of bioactive compounds, other than microcystins in cyanobacteria. Of specific interest are lipopolysaccharides (LPS) on the outer cell wall. LPS may have a number of biological effects, including reduced detoxication of microcystins in plants and animals. When grazing seston in the field, filterfeeders take up heterotrophic bacteria attached to cyanobacteria, as well as free-living bacteria. The LPS produced by heterotrophic bacteria have been shown to be much more harmful than cyanobacterial LPS. We performed two experiments in which we tested for potential synergistic effects between bacterial LPS and microcystins. Full-factorial experiments separated the main effects and interactions between (i) food quantity as well as food quality (addition of the green alga Scenedesmus), (ii) presence or absence of strains that vary in amount and composition of microcystins (microcystin free strain NIVA-CYA43, moderate microcystin producing strain NIVA-CYA140 and high microcystin producing strain PCC7820), and (iii) presence or absence of bacterial LPS on different life history traits of Daphnia galeata. We measured juvenile growth rate, age and size at first reproduction, death before first reproduction and standard carbon content of Daphnia. From the experiments we conclude that microcystin-producing Microcystis had deleterious effects on the life history of D. galeata, but especially when the availability of high quality green algal food was limited in comparison to the supply of microcystin producing strain PCC7820. In the experiment in which PCC7820 was used as microcystin-producing strain, addition of LPS lowered SCC of Daphnia, but had no effects on other life history parameters. The interaction between Microcystis strain, Microcystis concentration and LPS was highly significant in case of PCC7820, but not in case of CYA-140, indicating that the effects of LPS and its interactions with microcystin on Daphnia life history were strongly context dependent.
Collapse
Affiliation(s)
- L Miguel Dionisio Pires
- Netherlands Institute of Ecology, Department of Aquatic Ecology, 6700 AB Wageningen, The Netherlands
| | | | | | | |
Collapse
|
30
|
Ballesteros ML, Gonzalez M, Wunderlin DA, Bistoni MA, Miglioranza KSB. Uptake, tissue distribution and metabolism of the insecticide endosulfan in Jenynsia multidentata (Anablepidae, Cyprinodontiformes). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:1709-1714. [PMID: 21420767 DOI: 10.1016/j.envpol.2011.02.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 05/30/2023]
Abstract
The study reports the accumulation, distribution and metabolism of technical endosulfan in Jenynsia multidentata. Adult females were exposed to acute sublethal concentrations (0.072, 0.288 and 1.4 μg L⁻¹). After 24 h, fish were sacrificed and gills, liver, brain, intestine and muscle were removed. Results show that both isomers of technical-grade endosulfan (α- and β-) are accumulated in fish tissues and biotransformation to endosulfan sulfate occurs at all concentrations tested. Significantly differences in endosulfan accumulation were only found at 1.4 μg L⁻¹ but not between the lowest concentrations. However a similar distribution pattern was observed at all exposure levels where liver, intestine and brain had the highest levels of α-, β-endosulfan and endosulfan sulfate. Moreover, liver and brain showed the highest endosulfan sulfate:α-endosulfan ratios due to high biotransfomation capacity. J. multidentata demonstrated to be a sensitive species under exposure to technical endosulfan and, therefore, could be used to assess aquatic pollution.
Collapse
Affiliation(s)
- M L Ballesteros
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Cátedra Diversidad Animal II, Av. Vélez Sársfield 299, 5000 Córdoba, Argentina.
| | | | | | | | | |
Collapse
|
31
|
Ferreira MFN, Oliveira VM, Oliveira R, da Cunha PV, Grisolia CK, Pires OR. Histopathological effects of [D-Leu(1)]Microcystin-LR variants on liver, skeletal muscle and intestinal tract of Hypophthalmichthys molitrix (Valenciennes, 1844). Toxicon 2010; 55:1255-62. [PMID: 20144637 DOI: 10.1016/j.toxicon.2010.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 01/01/2023]
Abstract
This study evaluated the effects of [D-Leu(1)]Microcystin-LR variants, by the exposure of Hypophthalmichthys molitrix to Microcystis aeruginosa NPLJ4. Fish was placed in aquariums and exposed to 10(5) cells mL(-1). For 15 days, 05 individuals were removed every 05 days, and tissue samples of liver, skeletal muscle and intestinal tract were collected for histopathologic analyses. Following exposure, those surviving were placed in clean water for 15 days to evaluate their recovery. A control without toxins was maintained in the same conditions and exhibited normal histology and no tissue damage. In exposed fish, samples were characterized by serious damages that similarly affected the different organs, such as dissociation of cells, necrosis and haemorrhage. Samples showed signs of recovery but severe damages were still observed. The results should be valuable to analyze the potency of microcystin toxicity and to help in the diagnosis of fish deaths.
Collapse
Affiliation(s)
- Maria Fernanda Nince Ferreira
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasília, DF, Brazil.
| | | | | | | | | | | |
Collapse
|
32
|
Ger KA, Teh SJ, Goldman CR. Microcystin-LR toxicity on dominant copepods Eurytemora affinis and Pseudodiaptomus forbesi of the upper San Francisco Estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:4852-4857. [PMID: 19539351 DOI: 10.1016/j.scitotenv.2009.05.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 05/27/2023]
Abstract
This study investigates the toxicity and post-exposure effects of dissolved microcystin (MC-LR) on the dominant copepods of the upper San Francisco Estuary (SFE), where blooms of the toxic cyanobacteria Microcystis aeruginosa coincide with record low levels in the abundance of pelagic organisms including phytoplankton, zooplankton, and fish. The potential negative impact of Microcystis on the copepods Eurytemora affinis and Pseudodiaptomus forbesi has raised concern for further depletion of high quality fish food. Response of copepods to MC-LR (MC) was determined using a 48-h standard static renewal method for acute toxicity testing. Following exposure, a life table test was performed to quantify any post-exposure impacts on survival and reproduction. The 48-h LC-50 and LC-10 values for MC were 1.55 and 0.14 mg/L for E. affinis; and 0.52 and 0.21 mg/L for P. forbesi. Copepod populations recovered once dissolved MC was removed and cultures returned to optimal conditions, suggesting no post-exposure effects of MC on copepod populations. Dissolved microcystin above 0.14 mg/L proved likely to have chronic effects on the survival of copepods in the SFE. Since such high concentrations are unlikely, toxicity from dissolved microcystin is not a direct threat to zooplankton of the SFE, and other mechanisms such as dietary exposure to Microcystis constitute a more severe risk.
Collapse
Affiliation(s)
- Kemal A Ger
- Environmental Science and Policy, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
33
|
Martins JC, Leão PN, Vasconcelos V. Differential protein expression in Corbicula fluminea upon exposure to a Microcystis aeruginosa toxic strain. Toxicon 2009; 53:409-16. [DOI: 10.1016/j.toxicon.2008.12.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Jancula D, Drábková M, Cerný J, Karásková M, Korínková R, Rakusan J, Marsálek B. Algicidal activity of phthalocyanines--screening of 31 compounds. ENVIRONMENTAL TOXICOLOGY 2008; 23:218-223. [PMID: 18214913 DOI: 10.1002/tox.20324] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phthalocyanines and their analogues show great potential as photodynamic agents producing reactive oxygen species (ROS), especially in medicine. However, their biocidal effects may also be employed to inhibit various undesirable organisms. This study explores their potential algicidal effects. The laboratory tests concern the effects of various phthalocyanine derivatives on the green alga Pseudokirchneriella subcapitata and cyanobacterium Synechococcus nidulans. Their effects on one example of the sensitive nontarget aquatic organism-crustacean Daphnia magna were also screened. Among 31 tested compounds, the cationic phthalocyanines substituted with heterocycle exhibited the strongest effects on phytoplankton species, some of them even below the level of 1 mg/L, while effects on crustaceans ranged from 3.6 to more than 50 mg/L. These results show that some phthalocyanine derivatives can act as potent algicides.
Collapse
Affiliation(s)
- Daniel Jancula
- Centre for Cyanobacteria and Their Toxins, Institute of Botany, Academy of Sciences of the Czech Republic, Kvetná 8, 60365 Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
35
|
Bernardová K, Babica P, Marsálek B, Bláha L. Isolation and endotoxin activities of lipopolysaccharides from cyanobacterial cultures and complex water blooms and comparison with the effects of heterotrophic bacteria and green alga. J Appl Toxicol 2008; 28:72-7. [PMID: 17461433 DOI: 10.1002/jat.1257] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Massive cyanobacterial water blooms are serious environmental and health problems worldwide. While some cyanobacterial toxins such as peptide microcystins have been investigated extensively, other toxic components of cyanobacteria (e.g. lipopolysaccharides, LPS) are poorly understood. The present study characterized endotoxin activities of LPS isolated from (i) laboratory cyanobacterial cultures, (ii) cyanobacterial water bloom samples dominated by Microcystis sp., Planktothrix sp., Aphanizomenon sp. and Anabaena sp., (iii) heterotrophic Gram-negative bacteria Escherichia coli, Kluyvera intermedia, Pseudomonas putida and Pseudomonas fluorescens and (iv) green alga Pseudokirchneriella subcapitata. Toxicity results derived with Limulus amebocyte lysate assay (LAL-test) showed that endotoxin activities of LPS from both cyanobacteria and heterotrophic bacteria were comparable and the values were within a similar range (1 x 10(3)-1 x 10(6) Endotoxin Units, EU, per mg of isolated LPS). The highest activities among the cyanobacterial samples were observed in the Aphanizomenon sp. dominated water bloom. The results also suggest generally higher endotoxin activities in complex natural samples than in laboratory cyanobacterial cultures. Further, experiments with the eukaryotic green alga P. subcapitata demonstrated a need for careful purification of the LPS extracts prior to testing with the LAL assay as several contaminants may overestimate endotoxin activities. This study shows relatively high pyrogenicity of LPS from various cyanobacteria. Further research should focus on detailed toxicological and ecotoxicological characterization of LPS in massive cyanobacterial water blooms.
Collapse
Affiliation(s)
- Katerina Bernardová
- Biology Centre of the Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 370 05 Ceské Budejovice, Czech Republic
| | | | | | | |
Collapse
|
36
|
Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 619:675-732. [PMID: 18461789 DOI: 10.1007/978-0-387-75865-7_32] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper reviews the rapidly expanding literature on the ecological effects of cyanobacterial toxins. The study employs a qualitative meta-analysis from the literature examining results from a large number of independent studies and extracts general patterns from the literature or signals contradictions. The meta-analysis is set up by putting together two large tables--embodying a large and representative part of the literature (see Appendix A). The first table (Table A.1) reviews the presence (concentrations) of different cyanobacterial toxins in the tissues of various groups of aquatic biota after exposure via different routes, experimentally in the lab or via natural routes in the environment. The second table (Table A.2) reviews the dose dependent effect of toxins on biota. The great majority of studies deal with the presence and effects of microcystin, especially of the MC-LR congener. Although this may partly be justified--MC-LR is an abundant and highly toxic protein--our review also emphasizes what is known about (i) other MC congeners (a number of studies showed a preferred accumulation of the less toxic variant MC-RR in animal tissues), (ii) nodularin (data on a range of biota from studies on the Baltic Sea), (iii) neurotoxins like anatoxin-a(s), which are conspicuously often present at times when mass mortalities of birds occur, (iv) a few studies on the presence and effects of cylindrospermposin, as well as (v) the first examples of ecological effects of newly identified bioactive compounds, like microviridin-J. Data were reorganized to assess to what extent bioconcentration (uptake and concentration of toxins from the water) or biomagnification (uptake and concentration via the food) of cyanobacterial toxins occurs in ecosystems. There is little support for the occurrence of biomagnification, and this reduces the risk for biota at higher trophic levels. Rather than biomagnification biodilution seems to occur in the foodweb with toxins being subject to degradation and excretion at every level. Nevertheless toxins were present at all tropic levels, indicating that some vectorial transport must take place, and in sufficient quantities for effects to possibly occur. Feeding seemed to be the most important route for exposure of aquatic biota to cyanobacterial toxins. A fair number of studies focus on dissolved toxins, but in those studies purified toxin typically is used, and biota do not appear very sensitive to this form of exposure. More effects are found when crude cyanobacterial cell lysates are used, indicating that there may be synergistic effects between different bioactive compounds. Aquatic biota are by no means defenseless against toxic cyanobacteria. Several studies indicate that those species that are most frequently exposed to toxins in their natural environment are also the most tolerant. Protection includes behavioral mechanisms, detoxication of MC and NODLN by conjugation with glutathione, and fairly rapid depuration and excretion. A common theme in much of the ecological studies is that of modulating factors. Effects are seldom straightforward, but are dependent on factors like the (feeding) condition of the animals, environmental conditions and the history of exposure (acclimation and adaptation to toxic cyanobacteria). This makes it harder to generalize on what is known about ecological effects of cyanobacterial toxins. The paper concludes by summarizing the risks for birds, fish, macroinvertebrates and zooplankton. Although acute (lethal) effects are mentioned in the literature, mass mortalities of--especially--fish are more likely to be the result of multiple stress factors that co-occur during cyanobacterial blooms. Bivalves appear remarkably resistant, whilst the harmful effects of cyanobacteria on zooplankton vary widely and the specific contribution of toxins is hard to evaluate.
Collapse
|
37
|
Ecosystem Effects Workgroup Report. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 619:655-74. [DOI: 10.1007/978-0-387-75865-7_31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Ibelings BW, Chorus I. Accumulation of cyanobacterial toxins in freshwater "seafood" and its consequences for public health: a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 150:177-92. [PMID: 17689845 DOI: 10.1016/j.envpol.2007.04.012] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 04/15/2007] [Indexed: 05/06/2023]
Abstract
This review summarizes and discusses the current understanding of human exposure to cyanobacterial toxins in "seafood" collected from freshwater and coastal areas. The review consists of three parts: (a) the existing literature on concentrations of cyanobacterial toxins in seafood is reviewed, and the likelihood of bioaccumulation discussed; (b) we derive cyanotoxin doses likely to occur through seafood consumption and propose guideline values for seafood and compare these to guidelines for drinking water; and (c) we discuss means to assess, control or mitigate the risks of exposure to cyanotoxins through seafood consumption. This is discussed in the context of two specific procedures, the food specific HACCP-approach and the water-specific Water Safety Plan approach by the WHO. Risks of exposure to cyanotoxins in food are sometimes underestimated. Risk assessments should acknowledge this and investigate the partitioning of exposure between drinking-water and food, which may vary depending on local circumstances.
Collapse
Affiliation(s)
- Bas W Ibelings
- Eawag, Swiss Federal Institute of Aquatic Sciences and Technology, Centre of Ecology, Evolution and Biogeochemistry, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland.
| | | |
Collapse
|
39
|
Eddy FB. Drinking in juvenile Atlantic salmon (Salmo salar L.) in response to feeding and activation of the endogenous renin–angiotensin system. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:23-8. [PMID: 16978894 DOI: 10.1016/j.cbpa.2006.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 07/27/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
Drinking rate and rectal fluid production of juvenile Atlantic salmon (1-2 g) in freshwater were investigated in unfed fish and recently fed fish. Drinking was also investigated following activation of the renin-angiotensin system (RAS) by two hypotensive agents, a nitric oxide (NO) donor sodium nitroprusside (SNP) and bacterial lipopolysaccharide (LPS). In unfed fish the basal drinking rate was 0.13 microL g(-1) h(-1) and rectal fluid production was 0.076 microL g(-1) h(-1). In recently fed fish both drinking rate and rectal fluid production increased significantly by about fivefold compared to unfed fish, and similar values were obtained for fish exposed to PS for 24 h. Exposure to SNP resulted in about a tenfold elevation of drinking rate and rectal fluid production, compared to unfed fish. Absorption of water by the gut was in the range 35-60% for all treatments. Drinking may have a role in processing food in the gut and the fluid in the gut may subjected to absorptive and secretory processes. The most likely route for removal of water absorbed by the gut is excretion via the kidney and this would result in an increased osmoregulatory burden on the fish. In polluted waters drinking could be increased through stimulation of the endogenous RAS by vasodilators, e.g., LPS and the gut could be a significant target for toxin exposure.
Collapse
Affiliation(s)
- F Brian Eddy
- Division of Environmental and Applied Biology, School of Life Sciences, University of Dundee, Dundee DD1 4HN, UK.
| |
Collapse
|
40
|
Zurawell RW, Goldberg JI, Holmes CFB, Prepas EE. Tissue distribution and oral dose effects of microcystin in the freshwater pulmonate snail Lymnaea stagnalis jugularis (Say). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:620-6. [PMID: 17365616 DOI: 10.1080/15287390600974510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Microcystin (MC) concentrations were measured in the alimentary tract, digestive gland, and remaining visceral mass of adult pulmonate snails (Lymnaea stagnalis) exposed to cyanobacteria known to contain MC. The highest proportion of total body MC content was measured within the alimentary tract (83%), though an appreciable proportion (17%) was also found within the digestive gland tissue. This provides conclusive evidence for the limited digestion of toxic cyanobacteria and subsequent uptake and accumulation of MC by the digestive gland of L. stagnalis. Additionally, pure microcystin-LR was orally administered to adult L. stagnalis to investigate the potential for toxic effects. Exposure to microcystin-LR induced histopathological alterations of the digestive glands consistent with those reported elsewhere for mammals and fish, indicating a common mode of toxicity to both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Ronald W Zurawell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
41
|
Marionnet D, Deschaux P, Reynaud S. Possible implication of macrophages in the regulation of cytochrome P450 activities in carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2006; 21:80-91. [PMID: 16337134 DOI: 10.1016/j.fsi.2005.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 10/20/2005] [Accepted: 10/20/2005] [Indexed: 05/05/2023]
Abstract
Macrophages play a key role in the regulation of cytochrome P450 activity induced by immunostimulants in mammals. We investigated the effects of immunostimulants (LPS, dextran sulfate and tilorone) on biotransformation and macrophage activities in carp. The major effect of LPS was its capacity to inhibit 3-MC-induced cytochrome P450 activities in the liver and head kidney. Basal phase I activities were reduced by tilorone and dextran sulfate in immune organs. Tilorone and dextran sulfate differently modulated total cytochrome P450 contents and P4501A activities suggesting differential sensitivity for P450 classes. In immune organs, tilorone and dextran sulfate inhibited basal EROD activity. Tilorone inhibited 3-MC-induced EROD activity whereas dextran sulfate enhanced this activity. LPS and dextran sulfate increased ROS production by macrophages and all the immunostimulants induced macrophage activating factor (MAF) production. This study demonstrates for the first time in fish the capacity of CYP-regulated immunostimulants to activate macrophages and provides initial insight into the capacity of macrophages to regulate CYP activity induced by immunostimulants in fish.
Collapse
Affiliation(s)
- D Marionnet
- Laboratoire d'Immunophysiologie Générale et Comparée, Faculté des Sciences, 123, av. Albert Thomas, 87060 Limoges, France
| | | | | |
Collapse
|
42
|
Sotero-Santos RB, Silva CRDSE, Verani NF, Nonaka KO, Rocha O. Toxicity of a cyanobacteria bloom in Barra Bonita Reservoir (Middle Tietê River, São Paulo, Brazil). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2006; 64:163-70. [PMID: 15993489 DOI: 10.1016/j.ecoenv.2005.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 02/17/2005] [Accepted: 03/10/2005] [Indexed: 05/03/2023]
Abstract
In eutrophic waters during cyanobacterial bloom lysis, a blend of cyanobacterial toxins and other compounds are released into the water, affecting aquatic communities. This research investigated the effect of a simulated cyanobacterial lysis event. For this purpose, intact cells from a natural cyanobacterial bloom from Barra Bonita Reservoir (Tietê River basin, Brazil) were taken, and the cells were broken by repeated freeze/thaw cycles. The toxicity of the crude cyanobacterial extract was investigated using cladocerans (Daphnia similis and Ceriodaphnia silvestrii), and the hepatotoxicity of the cyanobacterial lyophilized material was confirmed by mouse bioassay. The results obtained using D. similis and C. silvestrii acute bioassays indicated 24-h LC(50) values of 186.61 and 155.11 mg L(-1), respectively. The 24-h LD(50) determined by intraperitoneal injection into mice was 445.45 mg dry kg(-1). Microcystin content was 311 microgg(-1) dry wt freeze-dried cyanobacteria. The acute tests with cladocerans were effective in indicating the toxicity of the crude cyanobacterial extract and in prognostiating the toxic effects of cyanobacterial blooms, at least on some usual components of the aquatic community, such as microcrustaceans.
Collapse
Affiliation(s)
- Rosana Barbosa Sotero-Santos
- Departamento de Ecologia e Biologia Evolutiva, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Via Washington Luis, km 235, CEP 13.565-905 - São Carlos, SP, Brazil
| | | | | | | | | |
Collapse
|
43
|
Bucking C, Wood CM. Water dynamics in the digestive tract of the freshwater rainbow trout during the processing of a single meal. J Exp Biol 2006; 209:1883-93. [PMID: 16651554 DOI: 10.1242/jeb.02205] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe temporal effects of feeding and digestion on chyme composition,specifically water and solid content, and net fluxes across the gastrointestinal tract, as well as plasma parameters, were examined in freshwater rainbow trout. A single meal of commercial dry pellets,incorporating ballotini beads as inert reference markers, was employed. Plasma Na+ levels increased by 15–20% at 2 h post-feeding, where Cl– levels did not change. Plasma osmolality was well regulated despite an initial chyme osmolality (775 mOsm) 2.8-fold higher than that in the blood plasma. Chyme osmolality throughout the gastrointestinal tract remained significantly higher than plasma osmolality for the duration of the 72 h period. Solid material was absorbed along the entire intestinal tract, although not in the stomach, necessitating the incorporation of an inert marker. A similar temporal pattern of transit between the ballotini beads (solid phase marker) and 3[H]-PEG 4000 (fluid phase marker),provided support for the use of ballotini beads. Large additions of water to the chyme were seen in the stomach, the largest occurring within 2 h following feeding (7.1±1.4 ml kg–1), and amounted to ∼16 ml kg–1 over the first 12 h. As the chyme entered the anterior intestine, a further large water secretion (3.5±0.5 ml kg–1) was seen. Thereafter the water fluxes into the chyme of the anterior intestine decreased steadily over time, but remained positive,whereas the mid-intestine exhibited net absorption of water at all time points, and the posterior intestine demonstrated little water handling at any time. The endogenous water that was secreted into the anterior intestine was absorbed along the tract, which showed a net water flux close to zero. However, assuming that the water secreted into the stomach was endogenous in nature, the processing of a single meal resulted in net loss of endogenous water (0.24 ml kg–1 h–1) to the environment,a beneficial consequence of the osmotic challenge offered by the food for a freshwater hyperosmotic regulator.
Collapse
Affiliation(s)
- Carol Bucking
- McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada.
| | | |
Collapse
|
44
|
Cazenave J, Wunderlin DA, de Los Angeles Bistoni M, Amé MV, Krause E, Pflugmacher S, Wiegand C. Uptake, tissue distribution and accumulation of microcystin-RR in Corydoras paleatus, Jenynsia multidentata and Odontesthes bonariensis. A field and laboratory study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2005; 75:178-90. [PMID: 16157397 DOI: 10.1016/j.aquatox.2005.08.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 07/22/2005] [Accepted: 08/09/2005] [Indexed: 05/04/2023]
Abstract
The uptake and accumulation of microcystin-RR (MC-RR) in fish was investigated under laboratory conditions and in wild fish. Jenynsia multidentata and Corydoras paleatus were exposed for 24h to 50mug/L MC-RR dissolved in water. After exposure, liver, gill, brain, intestine, gall bladder, blood and muscle were analyzed for MC-RR by HPLC and analysis confirmed by LC-ESI-TOF-MS spectrometry. Furthermore, wild individuals of Odontesthes bonariensis were sampled from the eutrophic, cyanobacteria-containing San Roque reservoir, and analyzed for the presence of MC-RR in liver, gill, intestine, and muscle. MC-RR was found in liver, gills, and muscle of all exposed and wild fish, while in C. paleatus MC-RR was also present in the intestine. Moreover, we found presence of MC-RR in brain of J. multidentata. Results indicate that MC-RR uptake might occur at two different organs: intestine and gills, through either feeding (including drinking) or respiratory activities. This suggests that MC-RR is taken into the blood stream after absorption, and distributed to different tissues. The liver showed the major bioaccumulation of MC-RR in both experimentally exposed and wild individuals, with muscle of wild fish showing relative high amounts of this toxin in comparison with those exposed in the laboratory; though MC-RR was present in muscle of fish exposed for 24h. The amount of MC-RR in muscle of O. bonariensis exceeded the value suggested by WHO to be safe, thus causing a health risk to persons consuming fish as a result of chronic exposure to microcystin. Gills also showed bioaccumulation of MC-RR, raising questions on the mechanism involved in the possible uptake of MC-RR through gills as well as on its accumulation in this organ. Although MC-LR has been reported in brain of fish, this is the first report confirming the presence of MC-RR in this organ, which means that both toxins are able to cross the blood-brain barrier. These findings also raise questions on the probable neurotoxicity of microcystins.
Collapse
Affiliation(s)
- Jimena Cazenave
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra Diversidad Animal II, Velez Sarsfield 299, 5000 Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
45
|
Eddy FB. Role of nitric oxide in larval and juvenile fish. Comp Biochem Physiol A Mol Integr Physiol 2005; 142:221-30. [PMID: 15979364 DOI: 10.1016/j.cbpb.2005.05.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Revised: 05/11/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
Fish are known to express the three isoforms of nitric oxide synthase (NOS), the constitutive forms endothelial or eNOS, neuronal or nNOS and the inducible form iNOS. Most studies in fish have focussed on possible roles for NO in cardiovascular physiology although there has been recent attention on the role of nNOS in embryonic development. However compared to mammalian studies there have been relatively few studies on effects of nitric oxide (NO) on fish. Studies on heart and blood vessel preparations from various fish species appear to show results specific to the species or to the particular preparation. Possible roles of NO in the in vivo biology of adult fish or larval fish have received little attention. This article reviews effects of nitric oxide on cardiovascular physiology in fish with special emphasis on larval fish. It introduces some experimental work on possible signaling pathways in larval fish and introduces the possibility that NO could be an important environmental influence for some aquatic organisms. In higher vertebrates LPS (lipopolysaccharide) is known to activate the cytokine signaling system and stimulate increased expression of iNOS and increased production of NO, but this remains less investigated in fish. The effects of LPS on cardiovascular and osmoregulatory physiology of larval and juvenile salmonids are discussed and a possible role of NO in stress-induced drinking is suggested.
Collapse
Affiliation(s)
- F B Eddy
- Biological Sciences Institute, Faculty of Life Sciences, University of Dundee DD1 4HN, UK.
| |
Collapse
|
46
|
Ibelings BW, Bruning K, de Jonge J, Wolfstein K, Pires LMD, Postma J, Burger T. Distribution of microcystins in a lake foodweb: no evidence for biomagnification. MICROBIAL ECOLOGY 2005; 49:487-500. [PMID: 16052377 DOI: 10.1007/s00248-004-0014-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Accepted: 06/24/2004] [Indexed: 05/03/2023]
Abstract
Microcystins, toxins produced by cyanobacteria, may play a role in fish kills, although their specific contribution remains unclear. A better understanding of the eco-toxicological effects of microcystins is hampered by a lack of analyses at different trophic levels in lake foodwebs. We present 3 years of monitoring data, and directly compare the transfer of microcystin in the foodweb starting with the uptake of (toxic) cyanobacteria by two different filter feeders: the cladoceran Daphnia galeata and the zebra mussel Dreissena polymorpha. Furthermore foodwebs are compared in years in which the colonial cyanobacterium Microcystis aeruginosa or the filamentous cyanobacterium Planktothrix agardhii dominated; there are implications in terms of the types and amount of microcystins produced and in the ingestion of cyanobacteria. Microcystin concentrations in the seston commonly reached levels where harmful effects on zooplankton are to be expected. Likewise, concentrations in zooplankton reached levels where intoxication of fish is likely. The food chain starting with Dreissena (consumed by roach and diving ducks) remained relatively free from microcystins. Liver damage, typical for exposure to microcystins, was observed in a large fraction of the populations of different fish species, although no relation with the amount of microcystin could be established. Microcystin levels were especially high in the livers of planktivorous fish, mainly smelt. This puts piscivorous birds at risk. We found no evidence for biomagnification of microcystins. Concentrations in filter feeders were always much below those in the seston, and yet vectorial transport to higher trophic levels took place. Concentrations of microcystin in smelt liver exceeded those in the diet of these fish, but it is incorrect to compare levels in a selected organ to those in a whole organism (zooplankton). The discussion focuses on the implications of detoxication and covalent binding of microcystin for the transfer of the toxin in the foodweb. It seems likely that microcystins are one, but not the sole, factor involved in fish kills during blooms of cyanobacteria.
Collapse
Affiliation(s)
- B W Ibelings
- Institute for Inland Water Management and Waste Water Treatment (RIZA), Lelystad, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
47
|
Wiegand C, Pflugmacher S. Ecotoxicological effects of selected cyanobacterial secondary metabolites: a short review. Toxicol Appl Pharmacol 2005; 203:201-18. [PMID: 15737675 DOI: 10.1016/j.taap.2004.11.002] [Citation(s) in RCA: 351] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 11/02/2004] [Indexed: 11/27/2022]
Abstract
Cyanobacteria are one of the most diverse groups of gram-negative photosynthetic prokaryotes. Many of them are able to produce a wide range of toxic secondary metabolites. These cyanobacterial toxins can be classified in five different groups: hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins (lipopolysaccharides). Cyanobacterial blooms are hazardous due to this production of secondary metabolites and endotoxins, which could be toxic to animals and plants. Many of the freshwater cyanobacterial blooms include species of the toxigenic genera Microcystis, Anabaena, or Plankthotrix. These compounds differ in mechanisms of uptake, affected organs, and molecular mode of action. In this review, the main focus is the aquatic environment and the effects of these toxins to the organisms living there. Some basic toxic mechanisms will be discussed in comparison to the mammalian system.
Collapse
Affiliation(s)
- C Wiegand
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany.
| | | |
Collapse
|
48
|
Jang MH, Ha K, Lucas MC, Joo GJ, Takamura N. Changes in microcystin production by Microcystis aeruginosa exposed to phytoplanktivorous and omnivorous fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2004; 68:51-59. [PMID: 15110469 DOI: 10.1016/j.aquatox.2004.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2003] [Revised: 02/03/2004] [Accepted: 02/04/2004] [Indexed: 05/24/2023]
Abstract
With direct exposure to phytoplanktivorous fish (Hypophthalmichthys molitrix), increased mass-specific microcystin production occurred in three monoclonal Microcystis aeruginosa strains (NIES 44, 88 and 99). Total mass-specific microcystin content of NIES 44 exposed to H. molitrix was over 50 times higher than controls (a mean value of 16.2 microgg(-1)-dry cell in controls versus 878.6 microgg(-1)-dry cell in treatments). Up to nine times higher microcystin levels were detected in NIES 88 exposed to H. molitrix compared to controls (a mean value of 553 in controls versus 5145 microgg(-1)-dry cell in treatments). The microcystin levels of all strains were significantly different between controls and H. molitrix treatments (P < 0.01 for NIES 44 and 88; P < 0.05 for NIES 99). The microcystin response to the omnivorous Carassius gibelio langsdorfi was weaker than that of H. molitrix, though the levels in all strains exposed to the fish were higher than in controls and a significant difference in microcystin production between controls and omnivorous fish treatments occurred for NIES 44 (a mean value of 6.9 in controls versus 41.5 microgg(-1)-dry cell in treatments; P < 0.01) and NIES 88 (a mean value of 359.8 versus 480.4 microgg(-1)-dry cell; P < 0.05). Microcystis cells were observed in the both fish faeces and gut contents, and microcystin was also detected in the body tissues (from 0.6 to 2.5 microgg(-1)-dry weight) and faeces of both fish species on the final day of experiment, although 98% of fish in three strains of Microcystis cultures had lost weight (mean +/- S.E. fish growth rate with M. aeruginosa; -0.90 +/- 0.06% per day, n = 96). This study showed that several M. aeruginosa strains increased toxin production when exposed to fish, especially phytoplanktivorous species, even though fish appeared not to feed vigorously on toxic Microcystis, and supports the hypothesis that this response is a fish-induced defence mediated by physical contact associated with feeding or by chemical cues (e.g. kairomones).
Collapse
Affiliation(s)
- Min-Ho Jang
- Department of Biology, Pusan National University, South Korea
| | | | | | | | | |
Collapse
|
49
|
Volkoff H, Peter RE. Effects of lipopolysaccharide treatment on feeding of goldfish: role of appetite-regulating peptides. Brain Res 2004; 998:139-47. [PMID: 14751584 DOI: 10.1016/j.brainres.2003.11.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The gram-negative bacteria-derived endotoxin lipopolysaccharide (LPS) is known to play an important role in immune and neurological manifestations during bacterial infections. In mammals, peripheral or brain administration of LPS induces anorexia and is thought to exert its effects through activation of pro-inflammatory cytokines. In this study, we investigated the effects of peripheral (intraperitoneal, IP) and central (intracerebroventricular, ICV) injections of LPS on food intake of goldfish. Fish treated IP with 10, 25, 50, 100 or 250 ng/g LPS or ICV with 1, 10 and 100 ng/g LPS showed a significant dose-dependent decrease in food intake, compared to the saline-treated fish. We also examined the brain mRNA expression of several hypothalamic appetite-related neuropeptides in response to the administration of LPS. IP injections of LPS (100 ng/g) induced a decrease in NPY expression and an increase in CCK, CRF and CART expression. These results indicate that LPS is a potent anorexigenic factor in goldfish and that this endotoxin induces a reduction in appetite, at least in part, by influencing gene expression of appetite-related neuropeptides.
Collapse
Affiliation(s)
- Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John's, NL, Canada A1B 3X9.
| | | |
Collapse
|