1
|
Naillat F, Deshar G, Hankkila A, Rak-Raszewska A, Sharma A, Prunskaite-Hyyrylainen R, Railo A, Shan J, Vainio SJ. Calcium signaling induces partial EMT and renal fibrosis in a Wnt4 mCherry knock-in mouse model. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167180. [PMID: 38653356 DOI: 10.1016/j.bbadis.2024.167180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
The renal tubular epithelial cells (TEC) have a strong capacity for repair after acute injury, but when this mechanism becomes uncontrollable, it leads to chronic kidney diseases (CKD). Indeed, in progress toward CKDs, the TECs may dedifferentiate, undergo epithelial-to-mesenchyme transition (EMT), and promote inflammation and fibrosis. Given the critical role of Wnt4 signaling in kidney ontogenesis, we addressed whether changes in this signaling are connected to renal inflammation and fibrosis by taking advantage of a knock-in Wnt4mCh/mCh mouse. While the Wnt4mCh/mCh embryos appeared normal, the corresponding mice, within one month, developed CKD-related phenotypes, such as pro-inflammatory responses including T-cell/macrophage influx, expression of fibrotic markers, and epithelial cell damage with a partial EMT. The Wnt signal transduction component β-catenin remained unchanged, while calcium signaling is induced in the injured TECs involving Nfat and Tfeb transcription factors. We propose that the Wnt4 signaling pathway is involved in repairing the renal injury, and when the signal is overdriven, CKD is established.
Collapse
Affiliation(s)
- Florence Naillat
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland.
| | - Ganga Deshar
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Anni Hankkila
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | | | - Abhishek Sharma
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | | | - Antti Railo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Jingdong Shan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Seppo J Vainio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland; Infotech Oulu, Kvantum Institute, University of Oulu, Finland
| |
Collapse
|
2
|
Skurat AV, Segvich DM, Contreras CJ, Hu YC, Hurley TD, DePaoli-Roach AA, Roach PJ. Impaired malin expression and interaction with partner proteins in Lafora disease. J Biol Chem 2024; 300:107271. [PMID: 38588813 PMCID: PMC11063907 DOI: 10.1016/j.jbc.2024.107271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Lafora disease (LD) is an autosomal recessive myoclonus epilepsy with onset in the teenage years leading to death within a decade of onset. LD is characterized by the overaccumulation of hyperphosphorylated, poorly branched, insoluble, glycogen-like polymers called Lafora bodies. The disease is caused by mutations in either EPM2A, encoding laforin, a dual specificity phosphatase that dephosphorylates glycogen, or EMP2B, encoding malin, an E3-ubiquitin ligase. While glycogen is a widely accepted laforin substrate, substrates for malin have been difficult to identify partly due to the lack of malin antibodies able to detect malin in vivo. Here we describe a mouse model in which the malin gene is modified at the C-terminus to contain the c-myc tag sequence, making an expression of malin-myc readily detectable. Mass spectrometry analyses of immunoprecipitates using c-myc tag antibodies demonstrate that malin interacts with laforin and several glycogen-metabolizing enzymes. To investigate the role of laforin in these interactions we analyzed two additional mouse models: malin-myc/laforin knockout and malin-myc/LaforinCS, where laforin was either absent or the catalytic Cys was genomically mutated to Ser, respectively. The interaction of malin with partner proteins requires laforin but is not dependent on its catalytic activity or the presence of glycogen. Overall, the results demonstrate that laforin and malin form a complex in vivo, which stabilizes malin and enhances interaction with partner proteins to facilitate normal glycogen metabolism. They also provide insights into the development of LD and the rescue of the disease by the catalytically inactive phosphatase.
Collapse
Affiliation(s)
- Alexander V Skurat
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Christopher J Contreras
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Thomas D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | - Anna A DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Xue S, Du X, Yu M, Ju H, Tan L, Li Y, Liu J, Wang C, Wu X, Xu H, Shen Q. Overexpression of long noncoding RNA 4933425B07Rik leads to renal hypoplasia by inactivating Wnt/β-catenin signaling pathway. Front Cell Dev Biol 2023; 11:1267440. [PMID: 37915768 PMCID: PMC10616775 DOI: 10.3389/fcell.2023.1267440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) is a general term for a class of diseases that are mostly caused by intrauterine genetic development limitation. Without timely intervention, certain children with CAKUT may experience progressive decompensation and a rapid decline in renal function, which will ultimately result in end-stage renal disease. At present, a comprehensive understanding of the pathogenic signaling events of CAKUT is lacking. The role of long noncoding RNAs (lncRNAs) in renal development and disease have recently received much interest. In previous research, we discovered that mice overexpressing the lncRNA 4933425B07Rik (Rik) showed a range of CAKUT phenotypes, primarily renal hypoplasia. The current study investigated the molecular basis of renal hypoplasia caused by Rik overexpression. We first used Rapid Amplification of cDNA ends (RACE) to obtain the full-length sequence of Rik in Rik +/+;Hoxb7 mice. Mouse proximal renal tubule epithelial cells (MPTCs) line with Rik overexpression was constructed using lentiviral methods, and mouse metanephric mesenchyme cell line (MK3) with Rik knockout was then constructed by the CRISPR‒Cas9 method. We performed RNA-seq on the Rik-overexpressing cell line to explore possible differentially expressed molecules and pathways. mRNA expression was confirmed by qRT‒PCR. Reduced levels of Wnt10b, Fzd8, and β-catenin were observed when Rik was expressed robustly. On the other hand, these genes were more highly expressed when Rik was knocked out. These results imply that overabundance of Rik might inhibit the Wnt/β-catenin signaling pathway, which may result in renal hypoplasia. In general, such research might help shed light on CAKUT causes and processes and offer guidance for creating new prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Shanshan Xue
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xuanjin Du
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Minghui Yu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Haixin Ju
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Lihong Tan
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Yaxin Li
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jialu Liu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Chunyan Wang
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xiaohui Wu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| |
Collapse
|
4
|
Dong F, Amlal H, Venkatakrishnan J, Zhang J, Fry M, Yuan Y, Cheng YC, Hu YC, Kao WWY. The gene therapy for corneal pathology with novel nonsense cystinosis mouse lines created by CRISPR Gene Editing. Ocul Surf 2023; 29:432-443. [PMID: 37355021 PMCID: PMC10725217 DOI: 10.1016/j.jtos.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/26/2023]
Abstract
PURPOSE Cystinosis is an autosomal recessive lysosomal storage disease (LSDs) caused by mutations in the gene encoding cystinosin (CTNS) that leads to cystine crystal accumulation in the lysosome that compromises cellular functions resulting in tissue damage and organ failure, especially in kidneys and eyes. However, the underlying molecular mechanism of its pathogenesis remains elusive. Two novel mice lines created via CRISPR are used to examine the pathogenesis of cystinosis in the kidney and cornea and the treatment efficacy of corneal pathology using self-complimentary Adeno-associated viral (scAAV-CTNS) vector. METHODS The CRISPR technique generated two novel cystinotic mouse lines, Ctnsis1 (an insertional mutation) and Ctnsis2 (a nonsense mutation). Immune histochemistry, renal functions test and HRT2 in vivo confocal microscopy were used to evaluate the age-related renal pathogenesis and treatment efficacy of the scAAV-CTNS virus in corneal pathology. RESULTS Both mutations lead to the production of truncated Ctns proteins. Ctnsis1 and Ctnsis 2 mice exhibit the characteristic of cystinotic corneal crystal phenotype at four-week-old. Treatment with the scAAV-CTNS viral vector decreased the corneal crystals in the treated mice cornea. Ctnsis 1 show renal abnormalities manifested by increased urine volume, reduced urine osmolality, and the loss of response to Desmopressin (dDAVP) at 22-month-old but Ctnsis2 don't manifest renal pathology up to 2 years of age. CONCLUSIONS Both Ctnsis1 and Ctnsis2 mice exhibit phenotypes resembling human intermediate nephropathic and ocular cystinosis, respectively. scAAV-CTNS viral vectors reduce the corneal cystine crystals and have a great potential as a therapeutic strategy for treating patients suffering from cystinosis.
Collapse
Affiliation(s)
- Fei Dong
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Hassane Amlal
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Jianhua Zhang
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Matthew Fry
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Yong Yuan
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Yu Chia Cheng
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Bridges JP, Safina C, Pirard B, Brown K, Filuta A, Panchanathan R, Bouhelal R, Reymann N, Patel S, Seuwen K, Miller WE, Ludwig MG. Regulation of pulmonary surfactant by the adhesion GPCR GPR116/ADGRF5 requires a tethered agonist-mediated activation mechanism. eLife 2022; 11:69061. [PMID: 36073784 PMCID: PMC9489211 DOI: 10.7554/elife.69061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
The mechanistic details of the tethered agonist mode of activation for the adhesion GPCR ADGRF5/GPR116 have not been completely deciphered. We set out to investigate the physiological importance of autocatalytic cleavage upstream of the agonistic peptide sequence, an event necessary for NTF displacement and subsequent receptor activation. To examine this hypothesis, we characterized tethered agonist-mediated activation of GPR116 in vitro and in vivo. A knock-in mouse expressing a non-cleavable GPR116 mutant phenocopies the pulmonary phenotype of GPR116 knock-out mice, demonstrating that tethered agonist-mediated receptor activation is indispensable for function in vivo. Using site-directed mutagenesis and species-swapping approaches, we identified key conserved amino acids for GPR116 activation in the tethered agonist sequence and in extracellular loops 2/3 (ECL2/3). We further highlight residues in transmembrane 7 (TM7) that mediate stronger signaling in mouse versus human GPR116 and recapitulate these findings in a model supporting tethered agonist:ECL2 interactions for GPR116 activation.
Collapse
Affiliation(s)
- James P Bridges
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Caterina Safina
- Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
| | - Bernard Pirard
- Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
| | - Kari Brown
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Alyssa Filuta
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Ravichandran Panchanathan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, United States
| | - Rochdi Bouhelal
- Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
| | - Nicole Reymann
- Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
| | - Sejal Patel
- Novartis Institutes for Biomedical Research, Novartis, Cambridge, United States
| | - Klaus Seuwen
- Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
| | - William E Miller
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, United States
| | | |
Collapse
|
6
|
Finer G, Maezawa Y, Ide S, Onay T, Souma T, Scott R, Liang X, Zhao X, Gadhvi G, Winter DR, Quaggin SE, Hayashida T. Stromal Transcription Factor 21 Regulates Development of the Renal Stroma via Interaction with Wnt/ β-Catenin Signaling. KIDNEY360 2022; 3:1228-1241. [PMID: 35919523 PMCID: PMC9337899 DOI: 10.34067/kid.0005572021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 04/12/2022] [Indexed: 01/11/2023]
Abstract
Background Kidney formation requires coordinated interactions between multiple cell types. Input from the interstitial progenitor cells is implicated in multiple aspects of kidney development. We previously reported that transcription factor 21 (Tcf21) is required for ureteric bud branching. Here, we show that Tcf21 in Foxd1+ interstitial progenitors regulates stromal formation and differentiation via interaction with β-catenin. Methods We utilized the Foxd1Cre;Tcf21f/f murine kidney for morphologic analysis. We used the murine clonal mesenchymal cell lines MK3/M15 to study Tcf21 interaction with Wnt/β-catenin. Results Absence of Tcf21 from Foxd1+ stromal progenitors caused a decrease in stromal cell proliferation, leading to marked reduction of the medullary stromal space. Lack of Tcf21 in the Foxd1+ stromal cells also led to defective differentiation of interstitial cells to smooth-muscle cells, perivascular pericytes, and mesangial cells. Foxd1Cre;Tcf21f/f kidney showed an abnormal pattern of the renal vascular tree. The stroma of Foxd1Cre;Tcf21f/f kidney demonstrated marked reduction in β-catenin protein expression compared with wild type. Tcf21 was bound to β-catenin both upon β-catenin stabilization and at basal state as demonstrated by immunoprecipitation in vitro. In MK3/M15 metanephric mesenchymal cells, Tcf21 enhanced TCF/LEF promoter activity upon β-catenin stabilization, whereas DNA-binding deficient mutated Tcf21 did not enhance TCF/LEF promoter activity. Kidney explants of Foxd1Cre;Tcf21f/f showed low mRNA expression of stromal Wnt target genes. Treatment of the explants with CHIR, a Wnt ligand mimetic, restored Wnt target gene expression. Here, we also corroborated previous evidence that normal development of the kidney stroma is required for normal development of the Six2+ nephron progenitor cells, loop of Henle, and the collecting ducts. Conclusions These findings suggest that stromal Tcf21 facilitates medullary stroma development by enhancing Wnt/β-catenin signaling and promotes stromal cell proliferation and differentiation. Stromal Tcf21 is also required for the development of the adjacent nephron epithelia.
Collapse
Affiliation(s)
- Gal Finer
- Division of Nephrology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shintaro Ide
- Department of Medicine, Duke University, Durham, North Carolina
| | - Tuncer Onay
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tomokazu Souma
- Department of Medicine, Duke University, Durham, North Carolina
| | - Rizaldy Scott
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xiaoyan Liang
- Division of Nephrology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xiangmin Zhao
- Division of Nephrology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Gaurav Gadhvi
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Deborah R. Winter
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Susan E. Quaggin
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tomoko Hayashida
- Division of Nephrology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
7
|
Chowdhury D, Gardner JC, Satpati A, Nookala S, Mukundan S, Porollo A, Landero Figueroa JA, Subramanian Vignesh K. Metallothionein 3-Zinc Axis Suppresses Caspase-11 Inflammasome Activation and Impairs Antibacterial Immunity. Front Immunol 2021; 12:755961. [PMID: 34867993 PMCID: PMC8633875 DOI: 10.3389/fimmu.2021.755961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Non-canonical inflammasome activation by mouse caspase-11 (or human CASPASE-4/5) is crucial for the clearance of certain gram-negative bacterial infections, but can lead to severe inflammatory damage. Factors that promote non-canonical inflammasome activation are well recognized, but less is known about the mechanisms underlying its negative regulation. Herein, we identify that the caspase-11 inflammasome in mouse and human macrophages (Mϕ) is negatively controlled by the zinc (Zn2+) regulating protein, metallothionein 3 (MT3). Upon challenge with intracellular lipopolysaccharide (iLPS), Mϕ increased MT3 expression that curtailed the activation of caspase-11 and its downstream targets caspase-1 and interleukin (IL)-1β. Mechanistically, MT3 increased intramacrophage Zn2+ to downmodulate the TRIF-IRF3-STAT1 axis that is prerequisite for caspase-11 effector function. In vivo, MT3 suppressed activation of the caspase-11 inflammasome, while caspase-11 and MT3 synergized in impairing antibacterial immunity. The present study identifies an important yin-yang relationship between the non-canonical inflammasome and MT3 in controlling inflammation and immunity to gram-negative bacteria.
Collapse
Affiliation(s)
- Debabrata Chowdhury
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Jason C. Gardner
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Abhijit Satpati
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Suba Nookala
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Santhosh Mukundan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Aleksey Porollo
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Julio A. Landero Figueroa
- University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States
| | - Kavitha Subramanian Vignesh
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
8
|
Chowdhury D, Alrefai H, Landero Figueroa JA, Candor K, Porollo A, Fecher R, Divanovic S, Deepe GS, Subramanian Vignesh K. Metallothionein 3 Controls the Phenotype and Metabolic Programming of Alternatively Activated Macrophages. Cell Rep 2020; 27:3873-3886.e7. [PMID: 31242420 DOI: 10.1016/j.celrep.2019.05.093] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/01/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022] Open
Abstract
Alternatively activated (M2) macrophages promote wound healing but weaken antimicrobial defenses. The mechanisms that enforce macrophage divergence and dictate the phenotypic and metabolic characteristics of M2 macrophages remain elusive. We show that alternative activation with interleukin (IL)-4 induces expression of metallothionein 3 (MT3) that regulates macrophage polarization and function. MT3 was requisite for metabolic reprograming in IL-4-stimulated macrophages or M(IL-4) macrophages to promote mitochondrial respiration and suppress glycolysis. MT3 fostered an M(IL-4) phenotype, suppressed hypoxia inducible factor (HIF)1α activation, and thwarted the emergence of a proinflammatory M1 program in macrophages. MT3 deficiency augmented macrophage plasticity, resulting in enhanced interferon γ (IFNγ) responsiveness and a dampened M(IL-4) phenotype. Thus, MT3 programs the phenotype and metabolic fate of M(IL-4) macrophages.
Collapse
Affiliation(s)
- Debabrata Chowdhury
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hani Alrefai
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Julio A Landero Figueroa
- University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Kathleen Candor
- University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Aleksey Porollo
- Center for Autoimmune Genomics and Etiology and Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Roger Fecher
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY 10467, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - George S Deepe
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | |
Collapse
|
9
|
Kuang Y, Golan O, Preusse K, Cain B, Christensen CJ, Salomone J, Campbell I, Okwubido-Williams FV, Hass MR, Yuan Z, Eafergan N, Moberg KH, Kovall RA, Kopan R, Sprinzak D, Gebelein B. Enhancer architecture sensitizes cell specific responses to Notch gene dose via a bind and discard mechanism. eLife 2020; 9:53659. [PMID: 32297857 PMCID: PMC7213981 DOI: 10.7554/elife.53659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/15/2020] [Indexed: 11/13/2022] Open
Abstract
Notch pathway haploinsufficiency can cause severe developmental syndromes with highly variable penetrance. Currently, we have a limited mechanistic understanding of phenotype variability due to gene dosage. Here, we unexpectedly found that inserting an enhancer containing pioneer transcription factor sites coupled to Notch dimer sites can induce a subset of Notch haploinsufficiency phenotypes in Drosophila with wild type Notch gene dose. Using Drosophila genetics, we show that this enhancer induces Notch phenotypes in a Cdk8-dependent, transcription-independent manner. We further combined mathematical modeling with quantitative trait and expression analysis to build a model that describes how changes in Notch signal production versus degradation differentially impact cellular outcomes that require long versus short signal duration. Altogether, these findings support a 'bind and discard' mechanism in which enhancers with specific binding sites promote rapid Cdk8-dependent Notch turnover, and thereby reduce Notch-dependent transcription at other loci and sensitize tissues to gene dose based upon signal duration.
Collapse
Affiliation(s)
- Yi Kuang
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, United States
| | - Ohad Golan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Kristina Preusse
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States
| | - Brittany Cain
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, United States
| | - Collin J Christensen
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Joseph Salomone
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, United States.,Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Ian Campbell
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, United States
| | | | - Matthew R Hass
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Nathanel Eafergan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University and Emory University School of Medicine, Atlanta, United States
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| |
Collapse
|
10
|
Fujimoto M, Andrew M, Liao L, Zhang D, Yildirim G, Sluss P, Kalra B, Kumar A, Yakar S, Hwa V, Dauber A. Low IGF-I Bioavailability Impairs Growth and Glucose Metabolism in a Mouse Model of Human PAPPA2 p.Ala1033Val Mutation. Endocrinology 2019; 160:1363-1376. [PMID: 30977789 PMCID: PMC6507901 DOI: 10.1210/en.2018-00755] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/05/2019] [Indexed: 02/03/2023]
Abstract
Bioactive free IGF-I is critically important for growth. The bioavailability of IGF-I is modulated by the IGF-binding proteins (IGFBPs) and their proteases, such as pregnancy-associated plasma protein-A2 (PAPP-A2). We have created a mouse model with a specific mutation in PAPPA2 identified in a human with PAPP-A2 deficiency. The human mutation was introduced to the mouse genome via a knock-in strategy, creating knock-in mice with detectable protein levels of Papp-a2 but without protease activities. We found that the Pappa2 mutation led to significant reductions in body length (10%), body weight (10% and 20% in males and females, respectively), and relative lean mass in mice. Micro-CT analyses of Pappa2 knock-in femurs from adult mice showed inhibited periosteal bone expansion leading to more slender bones in both male and female mice. Furthermore, in the Pappa2 knock-in mice, insulin resistance correlated with decreased serum free IGF-I and increased intact IGFBP-3 concentrations. Interestingly, mice heterozygous for the knock-in mutation demonstrated a growth rate for body weight and length as well as a biochemical phenotype that was intermediate between wild-type and homozygous mice. This study models a human PAPPA2 mutation in mice. The mouse phenotype closely resembles that of the human patients, and it provides further evidence that the regulation of IGF-I bioavailability by PAPP-A2 is critical for human growth and for glucose and bone metabolism.
Collapse
Affiliation(s)
- Masanobu Fujimoto
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Melissa Andrew
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Endocrinology, Children’s National Medical Center, Washington, DC
| | - Lihong Liao
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Dongsheng Zhang
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Gozde Yildirim
- Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | | | | | | | - Shoshana Yakar
- Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Correspondence: Andrew Dauber, MD, Children’s National Medical Center, 111 Michigan Avenue NW, WW3.5, Suite 200, Room 1215, Washington, DC 20010. E-mail: ; or Vivian Hwa, PhD, Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 240 Albert Sabin Way, T5.605, Cincinnati, Ohio 45229. E-mail:
| | - Andrew Dauber
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Endocrinology, Children’s National Medical Center, Washington, DC
- Correspondence: Andrew Dauber, MD, Children’s National Medical Center, 111 Michigan Avenue NW, WW3.5, Suite 200, Room 1215, Washington, DC 20010. E-mail: ; or Vivian Hwa, PhD, Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 240 Albert Sabin Way, T5.605, Cincinnati, Ohio 45229. E-mail:
| |
Collapse
|
11
|
Maezawa S, Alavattam KG, Tatara M, Nagai R, Barski A, Namekawa SH. A rapidly evolved domain, the SCML2 DNA-binding repeats, contributes to chromatin binding of mouse SCML2†. Biol Reprod 2019; 100:409-419. [PMID: 30137219 DOI: 10.1093/biolre/ioy181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/20/2018] [Accepted: 08/16/2018] [Indexed: 11/14/2022] Open
Abstract
Genes involved in sexual reproduction diverge rapidly as a result of reproductive fitness. Here, we identify a novel protein domain in the germline-specific Polycomb protein SCML2 that is required for the establishment of unique gene expression programs after the mitosis-to-meiosis transition in spermatogenesis. We term this novel domain, which is comprised of rapidly evolved, DNA-binding repeat units of 28 amino acids, the SCML2 DNA-binding (SDB) repeats. These repeats are acquired in a specific subgroup of the rodent lineage, having been subjected to positive selection in the course of evolution. Mouse SCML2 has two DNA-binding domains: one is the SDB repeats and the other is an RNA-binding region, which is conserved in human SCML2. For the recruitment of SCML2 to target loci, the SDB repeats cooperate with the other functional domains of SCML2 to bind chromatin. The cooperative action of these domains enables SCML2 to sense DNA hypomethylation in an in vivo chromatin environment, thereby enabling SCML2 to bind to hypomethylated chromatin. We propose that the rapid evolution of SCML2 is due to reproductive adaptation, which has promoted species-specific gene expression programs in spermatogenesis.
Collapse
Affiliation(s)
- So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mayu Tatara
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Rika Nagai
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
He Q, Chen L, Liu Y, Wu Y, Ni D, Liu J, Hu Y, Gu Y, Xie Y, Zhou Q, Li Q. Gulo regulates the proliferation, apoptosis and mesenchymal-to-epithelial transformation of metanephric mesenchyme cells via inhibiting Six2. Biochem Biophys Res Commun 2018; 504:885-891. [PMID: 30219227 DOI: 10.1016/j.bbrc.2018.08.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022]
Abstract
During kidney development, the balance between self-renewal and differentiation of metanephric mesenchyme (MM) cells, mainly regulated by Sine oculis-related homeobox 2 (Six2), is critical for forming mature kidney. L-gulono-γ-lactone oxidase (Gulo), a crucial enzyme for vitamin C synthesis, reveals a different expression at various stages during kidney development, but its function in the early renal development remains unknown. In this work, we aim to study the role of Gulo in MM cells at two differentiation stages. We found that Gulo expression in undifferentiated MM (mK3) cells was lower than in differentiated MM (mK4) cells. Over-expression of Gulo can promote mesenchymal-to-epithelial transformation (MET) and apoptosis and inhibit the proliferation in mK3 cells. Knock-down of Gulo in mK4 cells made its epithelial character cells unstabilized, facilitated the proliferation and restrained the apoptosis. Furthermore, we found that Six2 was negatively regulated by Gulo, and over-expression or knock-down of Six2 was able to rescue partially the MET, proliferation and apoptosis of MM cells caused by Gulo. In conclusion, these findings reveal that Gulo promotes the MET and apoptosis, and inhibits proliferation in MM cells by down-regulating Six2.
Collapse
Affiliation(s)
- Qingling He
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Lei Chen
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Yamin Liu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Yafei Wu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Dongsheng Ni
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Jianing Liu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Yanxia Hu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Yuping Gu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Yajun Xie
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Qin Zhou
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Qianyin Li
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
13
|
Nishikawa M, Yuri S, Kimura H, Yanagawa N, Hamon M, Hauser P, Zhao L, Jo OD, Yanagawa N. Comprehensive analysis of chromatin signature and transcriptome uncovers functional lncRNAs expressed in nephron progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:58-70. [PMID: 30416088 DOI: 10.1016/j.bbagrm.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/25/2018] [Accepted: 09/12/2018] [Indexed: 01/21/2023]
Abstract
Emerging evidence from recent studies has unraveled the roles of long noncoding RNAs (lncRNAs) in the function of various tissues. However, little is known about the roles of lncRNAs in kidney development. In our present study, we aimed to identify functional lncRNAs in one of the three lineages of kidney progenitor cells, i.e., metanephric mesenchymal (MM) cells. We conducted comprehensive analyses of the chromatin signature and transcriptome by RNA-seq and ChIP-seq. We found seventeen lncRNAs that were expressed specifically in MM cells with an active chromatin signature, while remaining silenced in a bivalent chromatin state in non-MM cells. Out of these MM specific lncRNAs, we identified a lncRNA, Gm29418, in a distal enhancer region of Six2, a key regulatory gene of MM cells. We further identified three transcript variants of Gm29418 by Rapid Amplification of cDNA Ends (RACE), and confirmed that the transcription-start-sites (TSSs) of these variants were consistent with the result of Cap Analysis Gene Expression (CAGE). In support of the enhancer-like function of Gm29418 on Six2 expression, we found that knock-down of Gm29418 by two independent anti-sense locked nucleic acid (LNA) phosphorothioate gapmers suppressed Six2 mRNA expression levels in MM cells. We also found that over-expression of Gm29418 led to an increase in Six2 mRNA expression levels in a mouse MM cell line. In conclusion, we identified a lncRNA, Gm29418, in nephron progenitor cells that has an enhancer-like function on a key regulatory gene, Six2.
Collapse
Affiliation(s)
- Masaki Nishikawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA, USA; University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA.
| | - Shunsuke Yuri
- Nara Institute of Science & Technology, Nara 630-0192, Japan
| | | | - Naomi Yanagawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA, USA; University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Morgan Hamon
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA, USA; University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Peter Hauser
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA, USA; University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Lifu Zhao
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA, USA
| | - Oak D Jo
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA, USA; University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Norimoto Yanagawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA, USA; University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Maezawa S, Hasegawa K, Alavattam KG, Funakoshi M, Sato T, Barski A, Namekawa SH. SCML2 promotes heterochromatin organization in late spermatogenesis. J Cell Sci 2018; 131:jcs217125. [PMID: 30097555 PMCID: PMC6140322 DOI: 10.1242/jcs.217125] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
Spermatogenesis involves the progressive reorganization of heterochromatin. However, the mechanisms that underlie the dynamic remodeling of heterochromatin remain unknown. Here, we identify SCML2, a germline-specific Polycomb protein, as a critical regulator of heterochromatin organization in spermatogenesis. We show that SCML2 accumulates on pericentromeric heterochromatin (PCH) in male germ cells, where it suppresses PRC1-mediated monoubiquitylation of histone H2A at Lysine 119 (H2AK119ub) and promotes deposition of PRC2-mediated H3K27me3 during meiosis. In postmeiotic spermatids, SCML2 is required for heterochromatin organization, and the loss of SCML2 leads to the formation of ectopic patches of facultative heterochromatin. Our data suggest that, in the absence of SCML2, the ectopic expression of somatic lamins drives this process. Furthermore, the centromere protein CENP-V is a specific marker of PCH in postmeiotic spermatids, and SCML2 is required for CENP-V localization on PCH. Given the essential functions of PRC1 and PRC2 for genome-wide gene expression in spermatogenesis, our data suggest that heterochromatin organization and spermatogenesis-specific gene expression are functionally linked. We propose that SCML2 coordinates the organization of heterochromatin and gene expression through the regulation of Polycomb complexes.
Collapse
Affiliation(s)
- So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazuteru Hasegawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Mayuka Funakoshi
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Taiga Sato
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| |
Collapse
|
15
|
Dong F, Jin X, Boettler MA, Sciulli H, Abu-Asab M, Del Greco C, Wang S, Hu YC, Campos MM, Jackson SN, Muller L, Woods AS, Combs CA, Zhang J, Nickerson ML, Kruth HS, Weiss JS, Kao WW. A Mouse Model of Schnyder Corneal Dystrophy with the N100S Point Mutation. Sci Rep 2018; 8:10219. [PMID: 29977031 PMCID: PMC6033878 DOI: 10.1038/s41598-018-28545-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/18/2018] [Indexed: 11/09/2022] Open
Abstract
Schnyder corneal dystrophy (SCD) is a rare autosomal dominant disease in humans, characterized by abnormal deposition of cholesterol and phospholipids in cornea caused by mutations in the UbiA prenyltransferase domain containing 1 (UBIAD1) gene. In this study, we generated a mouse line carrying Ubiad1 N100S point mutation using the CRISPR/Cas9 technique to investigate the pathogenesis of SCD. In vivo confocal microscopy revealed hyper-reflective dot-like deposits in the anterior cornea in heterozygotes and homozygotes. No significant change was found in corneal epithelial barrier function or wound healing. Electron microscopy revealed abnormal mitochondrial morphology in corneal epithelial, stromal, and endothelial cells. Mitochondrial DNA copy number assay showed 1.27 ± 0.07 fold change in homozygotes versus 0.98 ± 0.05 variation in wild type mice (P < 0.05). Lipidomic analysis indicated abnormal metabolism of glycerophosphoglycerols, a lipid class found in mitochondria. Four (34:1, 34:2, 36:2, and 44:8) of the 11 glycerophosphoglycerols species identified by mass spectrometry showed a significant increase in homozygous corneas compared with heterozygous and wild-type mouse corneas. Unexpectedly, we did not find a difference in the corneal cholesterol level between different genotypes by filipin staining or lipidomic analysis. The Ubiad1N100S mouse provides a promising animal model of SCD revealing that mitochondrial dysfunction is a prominent component of the disease. The different phenotype in human and mouse may due to difference in cholesterol metabolism between species.
Collapse
Affiliation(s)
- Fei Dong
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Xueting Jin
- Laboratory of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Harrison Sciulli
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Mones Abu-Asab
- Histopathology Facility, National Eye Institute, NIH, Bethesda, MD, USA
| | | | - Shurong Wang
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
- Ophthalmology, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yueh-Chiang Hu
- Transgenic Animal and Genome Editing Core, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Maria M Campos
- Histopathology Facility, National Eye Institute, NIH, Bethesda, MD, USA
| | - Shelley N Jackson
- Structural Biology Core, National Institute of Drug Abuse, NIH, Baltimore, MD, USA
| | - Ludovic Muller
- Structural Biology Core, National Institute of Drug Abuse, NIH, Baltimore, MD, USA
| | - Amina S Woods
- Structural Biology Core, National Institute of Drug Abuse, NIH, Baltimore, MD, USA
| | - Christian A Combs
- Light Microscopy Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Jianhua Zhang
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Michael L Nickerson
- Laboratory of Translational Genomics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Howard S Kruth
- Laboratory of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Jayne S Weiss
- Department of Ophthalmology, Pathology and Pharmacology, Louisiana State University School of Medicine, Louisiana State University Eye Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Winston W Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
16
|
Krause M, Rak-Raszewska A, Naillat F, Saarela U, Schmidt C, Ronkainen VP, Bart G, Ylä-Herttuala S, Vainio SJ. Exosomes as secondary inductive signals involved in kidney organogenesis. J Extracell Vesicles 2018; 7:1422675. [PMID: 29410779 PMCID: PMC5795705 DOI: 10.1080/20013078.2017.1422675] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022] Open
Abstract
The subfraction of extracellular vesicles, called exosomes, transfers biological molecular information not only between cells but also between tissues and organs as nanolevel signals. Owing to their unique properties such that they contain several RNA species and proteins implicated in kidney development, exosomes are putative candidates to serve as developmental programming units in embryonic induction and tissue interactions. We used the mammalian metanephric kidney and its nephron-forming mesenchyme containing the nephron progenitor/stem cells as a model to investigate if secreted exosomes could serve as a novel type of inductive signal in a process defined as embryonic induction that controls organogenesis. As judged by several characteristic criteria, exosomes were enriched and purified from a cell line derived from embryonic kidney ureteric bud (UB) and from primary embryonic kidney UB cells, respectively. The cargo of the UB-derived exosomes was analysed by qPCR and proteomics. Several miRNA species that play a role in Wnt pathways and enrichment of proteins involved in pathways regulating the organization of the extracellular matrix as well as tissue homeostasis were identified. When labelled with fluorescent dyes, the uptake of the exosomes by metanephric mesenchyme (MM) cells and the transfer of their cargo to the cells can be observed. Closer inspection revealed that besides entering the cytoplasm, the exosomes were competent to also reach the nucleus. Furthermore, fluorescently labelled exosomal RNA enters into the cytoplasm of the MM cells. Exposure of the embryonic kidney-derived exosomes to the whole MM in an ex vivo organ culture setting did not lead to an induction of nephrogenesis but had an impact on the overall organization of the tissue. We conclude that the exosomes provide a novel signalling system with an apparent role in secondary embryonic induction regulating organogenesis.
Collapse
Affiliation(s)
- Mirja Krause
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- The Ritchie Centre, Hudson Institute of Medical Research Core, Clayton, Australia
| | - Aleksandra Rak-Raszewska
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Florence Naillat
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ulla Saarela
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Christina Schmidt
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Veli-Pekka Ronkainen
- Biocenter Oulu, Tissue Imaging Center, Light Microscopy Facility, Faculty of Biochemistry and Molecular Medicine, Developmental Biology Lab, University of Oulu, Oulu, Finland
| | - Geneviève Bart
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo J. Vainio
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
17
|
Li Z, Peng Y, Hufnagel RB, Hu YC, Zhao C, Queme LF, Khuchua Z, Driver AM, Dong F, Lu QR, Lindquist DM, Jankowski MP, Stottmann RW, Kao WWY, Huang T. Loss of SLC25A46 causes neurodegeneration by affecting mitochondrial dynamics and energy production in mice. Hum Mol Genet 2018; 26:3776-3791. [PMID: 28934388 DOI: 10.1093/hmg/ddx262] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/23/2017] [Indexed: 11/13/2022] Open
Abstract
Recently, we identified biallelic mutations of SLC25A46 in patients with multiple neuropathies. Functional studies revealed that SLC25A46 may play an important role in mitochondrial dynamics by mediating mitochondrial fission. However, the cellular basis and pathogenic mechanism of the SLC25A46-related neuropathies are not fully understood. Thus, we generated a Slc25a46 knock-out mouse model. Mice lacking SLC25A46 displayed severe ataxia, mainly caused by degeneration of Purkinje cells. Increased numbers of small, unmyelinated and degenerated optic nerves as well as loss of retinal ganglion cells indicated optic atrophy. Compound muscle action potentials in peripheral nerves showed peripheral neuropathy associated with degeneration and demyelination in axons. Mutant cerebellar neurons have large mitochondria, which exhibit abnormal distribution and transport. Biochemically mutant mice showed impaired electron transport chain activity and accumulated autophagy markers. Our results suggest that loss of SLC25A46 causes degeneration in neurons by affecting mitochondrial dynamics and energy production.
Collapse
Affiliation(s)
- Zhuo Li
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Yanyan Peng
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Robert B Hufnagel
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Chuntao Zhao
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cancer and Blood Diseases Institute
| | | | - Zaza Khuchua
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ashley M Driver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Fei Dong
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cancer and Blood Diseases Institute
| | - Diana M Lindquist
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Winston W Y Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
18
|
Xu Q, Junttila S, Scherer A, Giri KR, Kivelä O, Skovorodkin I, Röning J, Quaggin SE, Marti HP, Shan J, Samoylenko A, Vainio SJ. Renal carcinoma/kidney progenitor cell chimera organoid as a novel tumorigenesis gene discovery model. Dis Model Mech 2017; 10:1503-1515. [PMID: 29084770 PMCID: PMC5769601 DOI: 10.1242/dmm.028332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) organoids provide a new way to model various diseases, including cancer. We made use of recently developed kidney-organ-primordia tissue-engineering technologies to create novel renal organoids for cancer gene discovery. We then tested whether our novel assays can be used to examine kidney cancer development. First, we identified the transcriptomic profiles of quiescent embryonic mouse metanephric mesenchyme (MM) and of MM in which the nephrogenesis program had been induced ex vivo. The transcriptome profiles were then compared to the profiles of tumor biopsies from renal cell carcinoma (RCC) patients, and control samples from the same kidneys. Certain signature genes were identified that correlated in the developmentally induced MM and RCC, including components of the caveolar-mediated endocytosis signaling pathway. An efficient siRNA-mediated knockdown (KD) of Bnip3, Gsn, Lgals3, Pax8, Cav1, Egfr or Itgb2 gene expression was achieved in mouse RCC (Renca) cells. The live-cell imaging analysis revealed inhibition of cell migration and cell viability in the gene-KD Renca cells in comparison to Renca controls. Upon siRNA treatment, the transwell invasion capacity of Renca cells was also inhibited. Finally, we mixed E11.5 MM with yellow fluorescent protein (YFP)-expressing Renca cells to establish chimera organoids. Strikingly, we found that the Bnip3-, Cav1- and Gsn-KD Renca-YFP+ cells as a chimera with the MM in 3D organoid rescued, in part, the RCC-mediated inhibition of the nephrogenesis program during epithelial tubules formation. Altogether, our research indicates that comparing renal ontogenesis control genes to the genes involved in kidney cancer may provide new growth-associated gene screens and that 3D RCC-MM chimera organoids can serve as a novel model with which to investigate the behavioral roles of cancer cells within the context of emergent complex tissue structures. Editor’s Choice: Chimeras between embryonic kidney cells and renal carcinoma cells serve as a novel model to assay the roles of co-regulated genes in kidney development and renal carcinogenesis.
Collapse
Affiliation(s)
- Qi Xu
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Sanna Junttila
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | | | - Khem Raj Giri
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Oona Kivelä
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland.,ValiFinn, FI-90220 Oulu, Finland
| | - Ilya Skovorodkin
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Juha Röning
- Department of Computer Science and Engineering, University of Oulu, FI-90014 Oulu, Finland
| | - Susan E Quaggin
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland.,Feinberg Cardiovascular Research Institute, Division of Medicine-Nephrology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Jingdong Shan
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Anatoly Samoylenko
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Seppo J Vainio
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| |
Collapse
|
19
|
Maezawa S, Hasegawa K, Yukawa M, Sakashita A, Alavattam KG, Andreassen PR, Vidal M, Koseki H, Barski A, Namekawa SH. Polycomb directs timely activation of germline genes in spermatogenesis. Genes Dev 2017; 31:1693-1703. [PMID: 28924034 PMCID: PMC5647939 DOI: 10.1101/gad.302000.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/21/2017] [Indexed: 01/08/2023]
Abstract
Maezawa et al. show that Polycomb-repressive complex 1 (PRC1) directs timely activation of germline genes during spermatogenesis. During spermatogenesis, a large number of germline genes essential for male fertility are coordinately activated. However, it remains unknown how timely activation of this group of germline genes is accomplished. Here we show that Polycomb-repressive complex 1 (PRC1) directs timely activation of germline genes during spermatogenesis. Inactivation of PRC1 in male germ cells results in the gradual loss of a stem cell population and severe differentiation defects, leading to male infertility. In the stem cell population, RNF2, the dominant catalytic subunit of PRC1, activates transcription of Sall4, which codes for a transcription factor essential for subsequent spermatogenic differentiation. Furthermore, RNF2 and SALL4 together occupy transcription start sites of germline genes in the stem cell population. Once differentiation commences, these germline genes are activated to enable the progression of spermatogenesis. Our study identifies a novel mechanism by which Polycomb directs the developmental process by activating a group of lineage-specific genes.
Collapse
Affiliation(s)
- So Maezawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| | - Kazuteru Hasegawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| | - Masashi Yukawa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA.,Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| | - Paul R Andreassen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA.,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Miguel Vidal
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, 28040 Madrid, Spain
| | - Haruhiko Koseki
- Developmental Genetics Laboratory, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA.,Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| |
Collapse
|
20
|
A Transgenic Core Facility’s Experience in Genome Editing Revolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1016:75-90. [DOI: 10.1007/978-3-319-63904-8_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Da Sacco S, Thornton ME, Petrosyan A, Lavarreda‐Pearce M, Sedrakyan S, Grubbs BH, De Filippo RE, Perin L. Direct Isolation and Characterization of Human Nephron Progenitors. Stem Cells Transl Med 2016; 6:419-433. [PMID: 28191781 PMCID: PMC5442819 DOI: 10.5966/sctm.2015-0429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/04/2016] [Indexed: 01/29/2023] Open
Abstract
Mature nephrons originate from a small population of uninduced nephrogenic progenitor cells (NPs) within the cap mesenchyme. These cells are characterized by the coexpression of SIX2 and CITED1. Many studies on mouse models as well as on human pluripotent stem cells have advanced our knowledge of NPs, but very little is known about this population in humans, since it is exhausted before birth and strategies for its direct isolation are still limited. Here we report an efficient protocol for direct isolation of human NPs without genetic manipulation or stepwise induction procedures. With the use of RNA‐labeling probes, we isolated SIX2+CITED1+ cells from human fetal kidney for the first time. We confirmed their nephrogenic state by gene profiling and evaluated their nephrogenic capabilities in giving rise to mature renal cells. We also evaluated the ability to culture these cells without complete loss of SIX2 and CITED1 expression over time. In addition to defining the gene profile of human NPs, this in vitro system facilitates studies of human renal development and provides a novel tool for renal regeneration and bioengineering purposes. Stem Cells Translational Medicine2017;6:419–433
Collapse
Affiliation(s)
- Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Matthew E. Thornton
- Maternal‐Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Maria Lavarreda‐Pearce
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Sargis Sedrakyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Brendan H. Grubbs
- Maternal‐Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Roger E. De Filippo
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
22
|
Zeb1 Is a Potential Regulator of Six2 in the Proliferation, Apoptosis and Migration of Metanephric Mesenchyme Cells. Int J Mol Sci 2016; 17:ijms17081283. [PMID: 27509493 PMCID: PMC5000680 DOI: 10.3390/ijms17081283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/21/2016] [Accepted: 07/27/2016] [Indexed: 01/10/2023] Open
Abstract
Nephron progenitor cells surround around the ureteric bud tips (UB) and inductively interact with the UB to originate nephrons, the basic units of renal function. This process is determined by the internal balance between self-renewal and consumption of the nephron progenitor cells, which is depending on the complicated regulation networks. It has been reported that Zeb1 regulates the proliferation of mesenchymal cells in mouse embryos. However, the role of Zeb1 in nephrons generation is not clear, especially in metanephric mesenchyme (MM). Here, we detected cell proliferation, apoptosis and migration in MM cells by EdU assay, flow cytometry assay and wound healing assay, respectively. Meanwhile, Western and RT-PCR were used to measure the expression level of Zeb1 and Six2 in MM cells and developing kidney. Besides, the dual-luciferase assay was conducted to study the molecular relationship between Zeb1 and Six2. We found that knock-down of Zeb1 decreased cell proliferation, migration and promoted cell apoptosis in MM cells and Zeb1 overexpression leaded to the opposite data. Western-blot and RT-PCR results showed that knock-down of Zeb1 decreased the expression of Six2 in MM cells and Zeb1 overexpression contributed to the opposite results. Similarly, Zeb1 promoted Six2 promoter reporter activity in luciferase assays. However, double knock-down of Zeb1 and Six2 did not enhance the apoptosis of MM cells compared with control cells. Nevertheless, double silence of Zeb1 and Six2 repressed cell proliferation. In addition, we also found that Zeb1 and Six2 had an identical pattern in distinct developing phases of embryonic kidney. These results indicated that there may exist a complicated regulation network between Six2 and Zeb1. Together, we demonstrate Zeb1 promotes proliferation and apoptosis and inhibits the migration of MM cells, in association with Six2.
Collapse
|
23
|
Song R, Preston G, Kidd L, Bushnell D, Sims-Lucas S, Bates CM, Yosypiv IV. Prorenin receptor is critical for nephron progenitors. Dev Biol 2015; 409:382-91. [PMID: 26658320 DOI: 10.1016/j.ydbio.2015.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
Deficient nephrogenesis is the major factor contributing to renal hypoplasia defined as abnormally small kidneys. Nephron induction during kidney development is driven by reciprocal interactions between progenitor cells of the cap mesenchyme (CM) and the ureteric bud (UB). The prorenin receptor (PRR) is a receptor for renin and prorenin, and an accessory subunit of the vacuolar proton pump H(+)-ATPase. Global loss of PRR is lethal in mice and PRR mutations are associated with a high blood pressure, left ventricular hypertrophy and X-linked mental retardation in humans. To circumvent lethality of the ubiquitous PRR mutation in mice and to determine the potential role of the PRR in nephrogenesis, we generated a mouse model with a conditional deletion of the PRR in Six2(+) nephron progenitors and their epithelial derivatives (Six2(PRR-/-)). Targeted ablation of PRR in Six2(+) nephron progenitors caused a marked decrease in the number of developing nephrons, small cystic kidneys and podocyte foot process effacement at birth, and early postnatal death. Reduced congenital nephron endowment resulted from premature depletion of nephron progenitor cell population due to impaired progenitor cell proliferation and loss of normal molecular inductive response to canonical Wnt/β-catenin signaling within the metanephric mesenchyme. At 2 months of age, heterozygous Six2(PRR+/-) mice exhibited focal glomerulosclerosis, decreased kidney function and massive proteinuria. Collectively, these findings demonstrate a cell-autonomous requirement for the PRR within nephron progenitors for progenitor maintenance, progression of nephrogenesis, normal kidney development and function.
Collapse
Affiliation(s)
- Renfang Song
- Department of Pediatrics, Department of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Graeme Preston
- Department of Pediatrics, Department of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Laura Kidd
- Department of Pediatrics, Department of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Daniel Bushnell
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Sunder Sims-Lucas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Carlton M Bates
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Ihor V Yosypiv
- Department of Pediatrics, Department of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
24
|
Junttila S, Saarela U, Halt K, Manninen A, Pärssinen H, Lecca MR, Brändli AW, Sims-Lucas S, Skovorodkin I, Vainio SJ. Functional genetic targeting of embryonic kidney progenitor cells ex vivo. J Am Soc Nephrol 2014; 26:1126-37. [PMID: 25201883 DOI: 10.1681/asn.2013060584] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/23/2014] [Indexed: 01/11/2023] Open
Abstract
The embryonic mammalian metanephric mesenchyme (MM) is a unique tissue because it is competent to generate the nephrons in response to Wnt signaling. An ex vivo culture in which the MM is separated from the ureteric bud (UB), the natural inducer, can be used as a classic tubule induction model for studying nephrogenesis. However, technological restrictions currently prevent using this model to study the molecular genetic details before or during tubule induction. Using nephron segment-specific markers, we now show that tubule induction in the MM ex vivo also leads to the assembly of highly segmented nephrons. This induction capacity was reconstituted when MM tissue was dissociated into a cell suspension and then reaggregated (drMM) in the presence of human recombinant bone morphogenetic protein 7/human recombinant fibroblast growth factor 2 for 24 hours before induction. Growth factor-treated drMM also recovered the capacity for organogenesis when recombined with the UB. Cell tracking and time-lapse imaging of chimeric drMM cultures indicated that the nephron is not derived from a single progenitor cell. Furthermore, viral vector-mediated transduction of green fluorescent protein was much more efficient in dissociated MM cells than in intact mesenchyme, and the nephrogenic competence of transduced drMM progenitor cells was preserved. Moreover, drMM cells transduced with viral vectors mediating Lhx1 knockdown were excluded from the nephric tubules, whereas cells transduced with control vectors were incorporated. In summary, these techniques allow reproducible cellular and molecular examinations of the mechanisms behind nephrogenesis and kidney organogenesis in an ex vivo organ culture/organoid setting.
Collapse
Affiliation(s)
- Sanna Junttila
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ulla Saarela
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kimmo Halt
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Aki Manninen
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Heikki Pärssinen
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - M Rita Lecca
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - André W Brändli
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany; and
| | - Sunder Sims-Lucas
- Rangos Research Center, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ilya Skovorodkin
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Seppo J Vainio
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland;
| |
Collapse
|
25
|
Zhao XP, Liao MC, Chang SY, Abdo S, Aliou Y, Chenier I, Ingelfinger JR, Zhang SL. Maternal diabetes modulates kidney formation in murine progeny: the role of hedgehog interacting protein (HHIP). Diabetologia 2014; 57:1986-96. [PMID: 24957663 DOI: 10.1007/s00125-014-3297-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/20/2014] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS We hypothesised that maternal diabetes impairs kidney formation in offspring via augmented expression of hedgehog interacting protein (HHIP). Our gene-array results were performed in neonatal kidneys from our murine model of maternal diabetes and indicated that Hhip expression was significantly modulated by maternal diabetes. METHODS We systematically examined the functional role of HHIP in kidney formation in our murine maternal diabetes model and elucidated the potential mechanisms related to dysnephrogenesis in vitro. RESULTS The kidneys of the offspring of diabetic dams, compared with those of the offspring of control non-diabetic dams, showed retardation of development--small kidneys and less ureteric bud (UB) branching morphogenesis. Augmented HHIP expression was observed in the offspring of diabetic dams, initially localised to differentiated metanephric mesenchyme and UB epithelium and subsequently in maturing glomerular endothelial and tubulointerstitial cells. The heightened HHIP targeting TGF-β1 signalling was associated with dysmorphogenesis. In vitro, HHIP overexpression decreased sonic hedgehog and paired box gene 2 proteins (SHH and PAX2, respectively) and increased transcriptional nuclear factor-kappa B (NFκB, p50/p65), phosphorylation of p53, and TGF-β1 expression. In contrast, overexpression of PAX2 inhibited HHIP and NFκB and activated SHH, N-myc and p27(Kip1) expression. Moreover, high glucose stimulated HHIP expression, and then targeted TGF-β1 signalling. Thus, PAX2, via a negative autocrine feedback mechanism, attenuated the stimulatory effect of high glucose on HHIP expression. CONCLUSIONS/INTERPRETATION Maternal diabetes modulates kidney formation in young progeny mediated, at least in part, via augmented HHIP expression.
Collapse
Affiliation(s)
- Xin-Ping Zhao
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Tour Viger, 900 rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Musharraf A, Kruspe D, Tomasch J, Besenbeck B, Englert C, Landgraf K. BOR-syndrome-associated Eya1 mutations lead to enhanced proteasomal degradation of Eya1 protein. PLoS One 2014; 9:e87407. [PMID: 24489909 PMCID: PMC3906160 DOI: 10.1371/journal.pone.0087407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/27/2013] [Indexed: 11/18/2022] Open
Abstract
Mutations in the human EYA1 gene have been associated with several human diseases including branchio-oto (BO) and branchio-oto-renal (BOR) syndrome, as well as congenital cataracts and ocular anterior segment anomalies. BOR patients suffer from severe malformations of the ears, branchial arches and kidneys. The phenotype of Eya1-heterozygous mice resembles the symptoms of human patients suffering from BOR syndrome. The Eya1 gene encodes a multifunctional protein that acts as a protein tyrosine phosphatase and a transcriptional coactivator. It has been shown that Eya1 interacts with Six transcription factors, which are also required for nuclear translocation of the Eya1 protein. We investigated the effects of seven disease-causing Eya1 missense mutations on Eya1 protein function, in particular cellular localization, ability to interact with Six proteins, and protein stability. We show here that the BOR-associated Eya1 missense mutations S454P, L472R, and L550P lead to enhanced proteasomal degradation of the Eya1 protein in mammalian cells. Moreover, Six proteins lead to a significant stabilization of Eya1, which is caused by Six-mediated protection from proteasomal degradation. In case of the mutant L550P, loss of interaction with Six proteins leads to rapid protein degradation. Our observations suggest that protein destabilization constitutes a novel disease causing mechanism for Eya1.
Collapse
Affiliation(s)
- Amna Musharraf
- Leibniz Institute for Age Research - Fritz Lipmann Institute e. V. (FLI), Jena, Germany
| | - Dagmar Kruspe
- Leibniz Institute for Age Research - Fritz Lipmann Institute e. V. (FLI), Jena, Germany
| | - Jürgen Tomasch
- Leibniz Institute for Age Research - Fritz Lipmann Institute e. V. (FLI), Jena, Germany
| | - Birgit Besenbeck
- Leibniz Institute for Age Research - Fritz Lipmann Institute e. V. (FLI), Jena, Germany
| | - Christoph Englert
- Leibniz Institute for Age Research - Fritz Lipmann Institute e. V. (FLI), Jena, Germany
| | - Kathrin Landgraf
- Leibniz Institute for Age Research - Fritz Lipmann Institute e. V. (FLI), Jena, Germany
- * E-mail:
| |
Collapse
|
28
|
αV-integrins are required for mechanotransduction in MDCK epithelial cells. PLoS One 2013; 8:e71485. [PMID: 23977051 PMCID: PMC3747215 DOI: 10.1371/journal.pone.0071485] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/29/2013] [Indexed: 01/12/2023] Open
Abstract
The properties of epithelial cells within tissues are regulated by their immediate microenvironment, which consists of neighboring cells and the extracellular matrix (ECM). Integrin heterodimers orchestrate dynamic assembly and disassembly of cell-ECM connections and thereby convey biochemical and mechanical information from the ECM into cells. However, the specific contributions and functional hierarchy between different integrin heterodimers in the regulation of focal adhesion dynamics in epithelial cells are incompletely understood. Here, we have studied the functions of RGD-binding αV-integrins in a Madin Darby Canine Kidney (MDCK) cell model and found that αV-integrins regulate the maturation of focal adhesions (FAs) and cell spreading. αV-integrin-deficient MDCK cells bound collagen I (Col I) substrate via α2β1-integrins but failed to efficiently recruit FA components such as talin, focal adhesion kinase (FAK), vinculin and integrin-linked kinase (ILK). The apparent inability to mature α2β1-integrin-mediated FAs and link them to cellular actin cytoskeleton led to disrupted mechanotransduction in αV-integrin deficient cells seeded onto Col I substrate.
Collapse
|
29
|
Saifudeen Z, Liu J, Dipp S, Yao X, Li Y, McLaughlin N, Aboudehen K, El-Dahr SS. A p53-Pax2 pathway in kidney development: implications for nephrogenesis. PLoS One 2012; 7:e44869. [PMID: 22984579 PMCID: PMC3440354 DOI: 10.1371/journal.pone.0044869] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 08/15/2012] [Indexed: 01/11/2023] Open
Abstract
Congenital reduction in nephron number (renal hypoplasia) is a predisposing factor for chronic kidney disease and hypertension. Despite identification of specific genes and pathways in nephrogenesis, determinants of final nephron endowment are poorly understood. Here, we report that mice with germ-line p53 deletion (p53(-/-)) manifest renal hypoplasia; the phenotype can be recapitulated by conditional deletion of p53 from renal progenitors in the cap mesenchyme (CM(p53-/-)). Mice or humans with germ-line heterozygous mutations in Pax2 exhibit renal hypoplasia. Since both transcription factors are developmentally expressed in the metanephros, we tested the hypothesis that p53 and Pax2 cooperate in nephrogenesis. In this study, we provide evidence for the presence of genetic epistasis between p53 and Pax2: a) p53(-/-) and CM(p53-/-)embryos express lower Pax2 mRNA and protein in nephron progenitors than their wild-type littermates; b) ChIP-Seq identified peaks of p53 occupancy in chromatin regions of the Pax2 promoter and gene in embryonic kidneys; c) p53 binding to Pax2 gene is significantly more enriched in Pax2 -expressing than non-expressing metanephric mesenchyme cells; d) in transient transfection assays, Pax2 promoter activity is stimulated by wild-type p53 and inhibited by a dominant negative mutant p53; e) p53 knockdown in cultured metanephric mesenchyme cells down-regulates endogenous Pax2 expression; f) reduction of p53 gene dosage worsens the renal hypoplasia in Pax2(+/-) mice. Bioinformatics identified a set of developmental renal genes likely to be co-regulated by p53 and Pax2. We propose that the cross-talk between p53 and Pax2 provides a transcriptional platform that promotes nephrogenesis, thus contributing to nephron endowment.
Collapse
Affiliation(s)
- Zubaida Saifudeen
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Murugan S, Shan J, Kühl SJ, Tata A, Pietilä I, Kühl M, Vainio SJ. WT1 and Sox11 regulate synergistically the promoter of the Wnt4 gene that encodes a critical signal for nephrogenesis. Exp Cell Res 2012; 318:1134-45. [DOI: 10.1016/j.yexcr.2012.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/07/2012] [Accepted: 03/10/2012] [Indexed: 01/19/2023]
|
31
|
Nishikawa M, Yanagawa N, Kojima N, Yuri S, Hauser PV, Jo OD, Yanagawa N. Stepwise renal lineage differentiation of mouse embryonic stem cells tracing in vivo development. Biochem Biophys Res Commun 2012; 417:897-902. [DOI: 10.1016/j.bbrc.2011.12.071] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/15/2011] [Indexed: 11/26/2022]
|
32
|
Chi L, Saarela U, Railo A, Prunskaite-Hyyryläinen R, Skovorodkin I, Anthony S, Katsu K, Liu Y, Shan J, Salgueiro AM, Belo JA, Davies J, Yokouchi Y, Vainio SJ. A secreted BMP antagonist, Cer1, fine tunes the spatial organization of the ureteric bud tree during mouse kidney development. PLoS One 2011; 6:e27676. [PMID: 22114682 PMCID: PMC3219680 DOI: 10.1371/journal.pone.0027676] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/21/2011] [Indexed: 01/02/2023] Open
Abstract
The epithelial ureteric bud is critical for mammalian kidney development as it generates the ureter and the collecting duct system that induces nephrogenesis in dicrete locations in the kidney mesenchyme during its emergence. We show that a secreted Bmp antagonist Cerberus homologue (Cer1) fine tunes the organization of the ureteric tree during organogenesis in the mouse embryo. Both enhanced ureteric expression of Cer1 and Cer1 knock out enlarge kidney size, and these changes are associated with an altered three-dimensional structure of the ureteric tree as revealed by optical projection tomography. Enhanced Cer1 expression changes the ureteric bud branching programme so that more trifid and lateral branches rather than bifid ones develop, as seen in time-lapse organ culture. These changes may be the reasons for the modified spatial arrangement of the ureteric tree in the kidneys of Cer1+ embryos. Cer1 gain of function is associated with moderately elevated expression of Gdnf and Wnt11, which is also induced in the case of Cer1 deficiency, where Bmp4 expression is reduced, indicating the dependence of Bmp expression on Cer1. Cer1 binds at least Bmp2/4 and antagonizes Bmp signalling in cell culture. In line with this, supplementation of Bmp4 restored the ureteric bud tip number, which was reduced by Cer1+ to bring it closer to the normal, consistent with models suggesting that Bmp signalling inhibits ureteric bud development. Genetic reduction of Wnt11 inhibited the Cer1-stimulated kidney development, but Cer1 did not influence Wnt11 signalling in cell culture, although it did inhibit the Wnt3a-induced canonical Top Flash reporter to some extent. We conclude that Cer1 fine tunes the spatial organization of the ureteric tree by coordinating the activities of the growth-promoting ureteric bud signals Gndf and Wnt11 via Bmp-mediated antagonism and to some degree via the canonical Wnt signalling involved in branching.
Collapse
Affiliation(s)
- Lijun Chi
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla Saarela
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Antti Railo
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Renata Prunskaite-Hyyryläinen
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ilya Skovorodkin
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Shelagh Anthony
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kenjiro Katsu
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yu Liu
- Texas A&M Health Science Center, Center for Development and Diseases, Institute of Biosciences and Technology, Houston, Texas, United States of America
| | - Jingdong Shan
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ana Marisa Salgueiro
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Regenerative Medicine Program, Algarve, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Faro, Portugal
| | - José António Belo
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Regenerative Medicine Program, Algarve, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Faro, Portugal
| | - Jamie Davies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Yuji Yokouchi
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Seppo J. Vainio
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
33
|
Falahatpisheh MH, Nanez A, Ramos KS. AHR regulates WT1 genetic programming during murine nephrogenesis. Mol Med 2011; 17:1275-84. [PMID: 21863216 DOI: 10.2119/molmed.2011.00125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 08/17/2011] [Indexed: 11/06/2022] Open
Abstract
Mounting evidence suggests that the blueprint of chronic renal disease is established during early development by environmental cues that dictate alterations in differentiation programming. Here we show that aryl hydrocarbon receptor (AHR), a lig-and-activated basic helix-loop-helix-PAS homology domain transcription factor, disrupts murine renal differentiation by interfering with Wilms tumor suppressor gene (WT1) signaling in the developing kidney. Embryonic kidneys of C57BL/6J Ahr⁻/⁻ mice at gestation d (GD) 14 showed reduced condensation in the nephrogenic zone and decreased numbers of differentiated structures compared with wild-type mice. These deficits correlated with increased expression of the (+) 17aa Wt1 splice variant, decreased mRNA levels of Igf-1 rec., Wnt-4 and E-cadherin, and reduced levels of 52 kDa WT1 protein. AHR knockdown in wild-type embryonic kidney cells mimicked these alterations with notable increases in (+) 17aa Wt1 mRNA, reduced levels of 52 kDa WT1 protein, and increased (+) 17aa 40-kDa protein. AHR downregulation also reduced Igf-1 rec., Wnt-4, secreted frizzled receptor binding protein-1 (sfrbp-1) and E-cadherin mRNAs. In the case of Igf-1 rec. and Wnt-4, genetic disruption was fully reversed upon restoration of cellular Wt1 protein levels, confirming that functional interactions between AHR and Wt1 represent a likely molecular target for renal developmental interference.
Collapse
Affiliation(s)
- M Hadi Falahatpisheh
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | | | | |
Collapse
|
34
|
Ramos KS, Montoya-Durango DE, Teneng I, Nanez A, Stribinskis V. Epigenetic control of embryonic renal cell differentiation by L1 retrotransposon. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2011; 91:693-702. [PMID: 21384534 PMCID: PMC3180906 DOI: 10.1002/bdra.20786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/20/2010] [Accepted: 01/10/2011] [Indexed: 01/25/2023]
Abstract
BACKGROUND L1 retroelements may play a central role in morphogenesis through epigenetic mechanisms involving recruitment of chromatin modifying protein complexes. Retroelements are repressed in terminally differentiated cells, and highly active in embryonic, undifferentiated, and transformed cells. It is not clear if the modulation of differentiation by L1 is a "cause" or "effect". The purpose of this study was to determine if murine embryonic kidney cells of clonal origin (mK4 cells) harbor retrotransposition events upon ectopic expression of L1, and the impact of L1 on embryonic kidney cell differentiation. Given that L1 is reactivated by aryl hydrocarbon receptor (AHR) ligands, we also sought to investigate the effects of benzo(a)pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the genetic network of mK4 cells. METHODS The mK4 cells overexpressing human L1(RP) were assessed for changes in proliferation and expression of molecular markers of cellular differentiation. RESULTS L1(RP) increased proliferation rates and markedly downregulated differentiation programming in mK4 cells. These genetic alterations were recapitulated by exogenous activation of L1 by AHR ligands. CONCLUSION L1 regulates nephrogenesis in vitro via both insertional and non-insertional mechanisms that disrupt mesenchymal to epithelial transition. Thus, a feedback loop involving L1, WT1, and AHR may play a role in regulation of kidney morphogenesis. Birth Defects Research (Part A), 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | |
Collapse
|
35
|
Chen S, Bellew C, Yao X, Stefkova J, Dipp S, Saifudeen Z, Bachvarov D, El-Dahr SS. Histone deacetylase (HDAC) activity is critical for embryonic kidney gene expression, growth, and differentiation. J Biol Chem 2011; 286:32775-89. [PMID: 21778236 DOI: 10.1074/jbc.m111.248278] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Histone deacetylases (HDACs) regulate fundamental biological processes such as cellular proliferation, differentiation, and survival via genomic and nongenomic effects. This study examined the importance of HDAC activity in the regulation of gene expression and differentiation of the developing mouse kidney. Class I HDAC1-3 and class II HDAC4, -7, and -9 genes are developmentally regulated. Moreover, HDAC1-3 are highly expressed in nephron precursors. Short term treatment of cultured mouse embryonic kidneys with HDAC inhibitors (HDACi) induced global histone H3 and H4 hyperacetylation and H3K4 hypermethylation. However, genome-wide profiling revealed that the HDAC-regulated transcriptome is restricted and encompasses regulators of the cell cycle, Wnt/β-catenin, TGF-β/Smad, and PI3K-AKT pathways. Further analysis demonstrated that base-line expression of key developmental renal regulators, including Osr1, Eya1, Pax2/8, WT1, Gdnf, Wnt9b, Sfrp1/2, and Emx2, is dependent on intact HDAC activity. Treatment of cultured embryonic kidney cells with HDACi recapitulated these gene expression changes, and chromatin immunoprecipitation assays revealed that HDACi is associated with histone hyperacetylation of Pax2/Pax8, Gdnf, Sfrp1, and p21. Gene knockdown studies demonstrated that HDAC1 and HDAC2 play a redundant role in regulation of Pax2/8 and Sfrp1 but not Gdnf. Long term treatment of embryonic kidneys with HDACi impairs the ureteric bud branching morphogenesis program and provokes growth arrest and apoptosis. We conclude that HDAC activity is critical for normal embryonic kidney homeostasis, and we implicate class I HDACs in the regulation of early nephron gene expression, differentiation, and survival.
Collapse
Affiliation(s)
- Shaowei Chen
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Choo SW, Russell S. Genomic approaches to understanding Hox gene function. ADVANCES IN GENETICS 2011; 76:55-91. [PMID: 22099692 DOI: 10.1016/b978-0-12-386481-9.00003-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
For many years, biologists have sought to understand how the homeodomain-containing transcriptional regulators encoded by Hox genes are able to control the development of animal morphology. Almost a century of genetics and several decades of molecular biology have defined the conserved organization of homeotic gene clusters in animals and the basic molecular properties of Hox transcription factors. In contrast to these successes, we remain relatively ignorant of how Hox proteins find their target genes in the genome or what sets of genes a Hox protein regulates to direct morphogenesis. The recent deployment of genomic methods, such as whole transcriptome mRNA expression profiling and genome-wide analysis of protein-DNA interactions, begins to shed light on these issues. Results from such studies, principally in the fruit fly, indicate that Hox proteins control the expression of hundreds, if not thousands, of genes throughout the gene regulatory network and that, in many cases, the effects on the expression of individual genes may be quite subtle. Hox proteins regulate both high-level effectors, including other transcription factors and signaling molecules, as well as the cytodifferentiation genes or Realizators at the bottom of regulatory hierarchies. Insights emerging from mapping Hox binding sites in the genome begin to suggest that Hox binding may be strongly influenced by chromatin accessibility rather than binding site affinity. If this is the case, it indicates we need to refocus our efforts at understanding Hox function toward the dynamics of gene regulatory networks and chromatin epigenetics.
Collapse
Affiliation(s)
- Siew Woh Choo
- Department of Genetics and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
37
|
Chen YW, Chenier I, Chang SY, Tran S, Ingelfinger JR, Zhang SL. High glucose promotes nascent nephron apoptosis via NF-kappaB and p53 pathways. Am J Physiol Renal Physiol 2010; 300:F147-56. [PMID: 20962117 DOI: 10.1152/ajprenal.00361.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A hyperglycemic environment in utero reduces kidney size and nephron number due to nascent nephron apoptosis. However, the underlying mechanisms are incompletely understood. The present study investigated whether the nascent nephron apoptosis promoted by high glucose is mediated via the transcription factor NF-κB and p53 signaling pathways. Neonatal mouse kidneys from the offspring of nondiabetic, diabetic, and insulin-treated diabetic dams were used for in vivo studies, and MK4 cells, an embryonic metanephric mesenchymal (MM) cell line, were used for in vitro studies. Neonatal kidneys of the offspring of diabetic mothers exhibited an increased number of apoptotic cells and reactive oxygen species (ROS) generation, enhanced NF-κB activation, and nuclear translocation of its subunits (p50 and p65 subunits) as well as phosphorylation (Ser 15) of p53 compared with kidneys of offspring of nondiabetic mothers. Insulin treatment of diabetic dams normalized these parameters in the offspring. In vitro, high-glucose (25 mM) induced ROS generation and significantly increased MK4 cell apoptosis and caspase-3 activity via activation of NF-κB pathway, with p53 phosphorylation and nuclear translocation compared with normal glucose (5 mM). These changes in a high-glucose milieu were prevented by transient transfection of small interfering RNAs for dominant negative IκBα or IKK or p53. Our data demonstrate that high glucose-induced nascent nephron apoptosis is mediated, at least in part, via ROS generation and the activation of NF-κB and p53 pathways.
Collapse
Affiliation(s)
- Yun-Wen Chen
- Université de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CRCHUM, Hôpital Hôtel-Dieu, Pavillon Masson, 3850 Saint-Urbain St., Montreal, Quebec, Canada H2W 1T7
| | | | | | | | | | | |
Collapse
|
38
|
Song R, Van Buren T, Yosypiv IV. Histone deacetylases are critical regulators of the renin-angiotensin system during ureteric bud branching morphogenesis. Pediatr Res 2010; 67:573-8. [PMID: 20496471 PMCID: PMC3039915 DOI: 10.1203/pdr.0b013e3181da477c] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mutations in the genes encoding components of the renin-angiotensin system (RAS) in mice or humans cause congenital abnormalities of the kidney and urinary tract. We hypothesized that absence of angiotensin (Ang) II in angiotensinogen (AGT)-deficient mice leads to defects in ureteric bud (UB) branching and that RAS genes are critically dependent on histone deacetylase (HDAC) activity. The number of UB tips was lower in AGT-/- compared with AGT+/+ embryonic (E) day E13.5 metanephroi (24+/-1.5 versus 36+/-3.7, p<0.05). Real-time RT-PCR demonstrated that pharmacological inhibition of HDAC activity with Scriptaid increases AGT, renin, angiotensin-converting enzyme (ACE), and AT1 receptor (AT1R) mRNA levels in E12.5 mouse metanephroi and early mesenchymal (MK3) cells. Furthermore, Scriptaid enhanced Ang II induced decrease in Sprouty (Spry) 1 gene expression in cultured UB cells. Treatment of intact E12.5 mouse metanephroi grown ex vivo with Ang II (10(-5) M, 24 h) increased HDAC-1 and decreased total acetylated histone H3 protein levels. These findings indicate that lack of endogenous Ang II in AGT-deficient mice inhibits UB branching. We conclude that intact RAS is critical in structural integrity of the renal collecting system and that UB morphogenetic program genes, such as AGT, renin, ACE, AT1R, or Spry1, are epigenetically controlled via HDACs.
Collapse
Affiliation(s)
- Renfang Song
- Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
39
|
Molecular anatomy of the kidney: what have we learned from gene expression and functional genomics? Pediatr Nephrol 2010; 25:1005-16. [PMID: 20049614 PMCID: PMC3189493 DOI: 10.1007/s00467-009-1392-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 09/15/2009] [Accepted: 09/18/2009] [Indexed: 12/15/2022]
Abstract
The discipline of paediatric nephrology encompasses the congenital nephritic syndromes, renal dysplasias, neonatal renal tumours, early onset cystic disease, tubulopathies and vesicoureteric reflux, all of which arise due to defects in normal kidney development. Indeed, congenital anomalies of the kidney and urinary tract (CAKUT) represent 20-30% of prenatal anomalies, occurring in 1 in 500 births. Developmental biologists have studied the anatomical and morphogenetic processes involved in kidney development for the last five decades. However, with the advent of transgenic mice, the sequencing of the genome, improvements in mutation detection and the advent of functional genomics, our understanding of the molecular basis of kidney development has grown significantly. Here we discuss how the advent of new genetic and genomics approaches has added to our understanding of kidney development and paediatric renal disease, as well as identifying areas in which we are still lacking knowledge.
Collapse
|
40
|
Isolation of clonogenic, long-term self renewing embryonic renal stem cells. Stem Cell Res 2010; 5:23-39. [PMID: 20434421 DOI: 10.1016/j.scr.2010.03.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/12/2010] [Accepted: 03/18/2010] [Indexed: 01/24/2023] Open
Abstract
A tissue stem cell should exhibit long-term self-renewal, clonogenicity and a capacity to differentiate into the tissue of origin. Such a postnatal renal stem cell has not been formally identified. The metanephric mesenchyme (MM) of the developing kidney gives rise to both the renal interstitium and the nephrons and is regarded as the progenitor population of the developing kidney. However, isolated MM does not self renew and requires immortalization for survival in culture. Here we report the isolation and sustained culture of long-term repopulating, clonal progenitors from the embryonic kidney as free floating nephrospheres. Such cells displayed clonal self renewal for in excess of twenty passages when cultured with bFGF and thrombin, showed broad mesodermal multipotentiality, but retained expression of key renal transcription factors (Wt1, Sall1, Eya1, Six1, Six2, Osr1 and Hoxa11). While these cells did display limited capacity to contribute to developing embryonic kidney explants, nephrospheres did not display in vitro renal epithelial capacity. Nephrospheres could be cultured from both Sall1(+) and Sall1(-) fractions of embryonic kidney, suggesting that they were derived from the MM as a whole and not specifically the MM-derived cap mesenchyme committed to nephron formation. This embryonic renal stem cell population was not able to be isolated from postnatal kidney confirming that while the embryonic MM represents a mulitpotent stem cell population, this does not persist after birth.
Collapse
|
41
|
Song R, Spera M, Garrett C, El-Dahr SS, Yosypiv IV. Angiotensin II AT2 receptor regulates ureteric bud morphogenesis. Am J Physiol Renal Physiol 2009; 298:F807-17. [PMID: 20032120 DOI: 10.1152/ajprenal.00147.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ANG II AT2 receptor (AT2R)-deficient mice exhibit abnormal ureteric bud (UB) budding, increased incidence of double ureters, and vesicoureteral reflux. However, the role of the AT2R during UB morphogenesis and the mechanisms by which aberrant AT2R signaling disrupts renal collecting system development have not been fully defined. In this study, we mapped the expression of the AT2R during mouse metanephric development, examined the impact of disrupted AT2R signaling on UB branching, cell proliferation, and survival, and investigated the cross talk of the AT2R with the glial-derived neurotrophic factor (GDNF)/c-Ret/Wnt11 signaling pathway. Embryonic mouse kidneys express AT2R in the branching UB and the mesenchyme. Treatment of embryonic day 12.5 (E12.5) metanephroi with the AT2R antagonist PD123319 or genetic inactivation of the AT2R in mice inhibits UB branching, decreasing the number of UB tips compared with control (34 +/- 1.0 vs. 43 +/- 0.6, P < 0.01; 36 +/- 1.8 vs. 48 +/- 1.3, P < 0.01, respectively). In contrast, treatment of metanephroi with the AT2R agonist CGP42112 increases the number of UB tips compared with control (48 +/- 1.8 vs. 39 +/- 12.3, P < 0.05). Using real-time quantitative RT-PCR and whole mount in situ hybridization, we demonstrate that PD123319 downregulates the expression of GDNF, c-Ret, Wnt11, and Spry1 mRNA levels in E12.5 metanephroi grown ex vivo. AT(2)R blockade or genetic inactivation of AT2R stimulates apoptosis and inhibits proliferation of the UB cells in vivo. We conclude that AT2R performs essential functions during UB branching morphogenesis via control of the GDNF/c-Ret/Wnt11 signaling pathway, UB cell proliferation, and survival.
Collapse
Affiliation(s)
- Renfang Song
- Section of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
42
|
Salsi V, Ferrari S, Ferraresi R, Cossarizza A, Grande A, Zappavigna V. HOXD13 binds DNA replication origins to promote origin licensing and is inhibited by geminin. Mol Cell Biol 2009; 29:5775-88. [PMID: 19703996 PMCID: PMC2772751 DOI: 10.1128/mcb.00509-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/26/2009] [Accepted: 08/12/2009] [Indexed: 12/24/2022] Open
Abstract
HOX DNA-binding proteins control patterning during development by regulating processes such as cell aggregation and proliferation. Recently, a possible involvement of HOX proteins in replication origin activity was suggested by results showing that a number of HOX proteins interact with the DNA replication licensing regulator geminin and bind a characterized human origin of replication. The functional significance of these observations, however, remained unclear. We show that HOXD13, HOXD11, and HOXA13 bind in vivo all characterized human replication origins tested. We furthermore show that HOXD13 interacts with the CDC6 loading factor, promotes pre-replication complex (pre-RC) proteins assembly at origins, and stimulates DNA synthesis in an in vivo replication assay. HOXD13 expression in cultured cells accelerates DNA synthesis initiation in correlation with the earlier pre-RC recruitment onto origins during G(1) phase. Geminin, which interacts with HOXD13 as well, blocks HOXD13-mediated assembly of pre-RC proteins and inhibits HOXD13-induced DNA replication. Our results uncover a function for Hox proteins in the regulation of replication origin activity and reveal an unforeseen role for the inhibition of HOX protein activity by geminin in the context of replication origin licensing.
Collapse
Affiliation(s)
- Valentina Salsi
- Department of Animal Biology, Department of Biomedical Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/d, Modena 41100, Italy
| | - Silvia Ferrari
- Department of Animal Biology, Department of Biomedical Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/d, Modena 41100, Italy
| | - Roberta Ferraresi
- Department of Animal Biology, Department of Biomedical Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/d, Modena 41100, Italy
| | - Andrea Cossarizza
- Department of Animal Biology, Department of Biomedical Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/d, Modena 41100, Italy
| | - Alexis Grande
- Department of Animal Biology, Department of Biomedical Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/d, Modena 41100, Italy
| | - Vincenzo Zappavigna
- Department of Animal Biology, Department of Biomedical Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/d, Modena 41100, Italy
| |
Collapse
|
43
|
Yallowitz AR, Gong KQ, Swinehart IT, Nelson LT, Wellik DM. Non-homeodomain regions of Hox proteins mediate activation versus repression of Six2 via a single enhancer site in vivo. Dev Biol 2009; 335:156-65. [PMID: 19716816 PMCID: PMC2791332 DOI: 10.1016/j.ydbio.2009.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 08/19/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
Hox genes control many developmental events along the AP axis, but few target genes have been identified. Whether target genes are activated or repressed, what enhancer elements are required for regulation, and how different domains of the Hox proteins contribute to regulatory specificity are poorly understood. Six2 is genetically downstream of both the Hox11 paralogous genes in the developing mammalian kidney and Hoxa2 in branchial arch and facial mesenchyme. Loss-of-function of Hox11 leads to loss of Six2 expression and loss-of-function of Hoxa2 leads to expanded Six2 expression. Herein we demonstrate that a single enhancer site upstream of the Six2 coding sequence is responsible for both activation by Hox11 proteins in the kidney and repression by Hoxa2 in the branchial arch and facial mesenchyme in vivo. DNA-binding activity is required for both activation and repression, but differential activity is not controlled by differences in the homeodomains. Rather, protein domains N- and C-terminal to the homeodomain confer activation versus repression activity. These data support a model in which the DNA-binding specificity of Hox proteins in vivo may be similar, consistent with accumulated in vitro data, and that unique functions result mainly from differential interactions mediated by non-homeodomain regions of Hox proteins.
Collapse
Affiliation(s)
- Alisha R. Yallowitz
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Ke-Qin Gong
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Ilea T. Swinehart
- Program of Cellular and Molecular Biology; University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Lisa T. Nelson
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Deneen M. Wellik
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2200, USA
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, MI 48109-2200, USA
- Program of Cellular and Molecular Biology; University of Michigan, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
44
|
Lyons JP, Miller RK, Zhou X, Weidinger G, Deroo T, Denayer T, Park JL, Ji H, Hong JY, Li A, Moon RT, Jones EA, Vleminckx K, Vize PD, McCrea PD. Requirement of Wnt/beta-catenin signaling in pronephric kidney development. Mech Dev 2009; 126:142-59. [PMID: 19100832 PMCID: PMC2684468 DOI: 10.1016/j.mod.2008.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 11/24/2008] [Indexed: 01/02/2023]
Abstract
The pronephric kidney controls water and electrolyte balance during early fish and amphibian embryogenesis. Many Wnt signaling components have been implicated in kidney development. Specifically, in Xenopus pronephric development as well as the murine metanephroi, the secreted glycoprotein Wnt-4 has been shown to be essential for renal tubule formation. Despite the importance of Wnt signals in kidney organogenesis, little is known of the definitive downstream signaling pathway(s) that mediate their effects. Here we report that inhibition of Wnt/beta-catenin signaling within the pronephric field of Xenopus results in significant losses to kidney epithelial tubulogenesis with little or no effect on adjoining axis or somite development. We find that the requirement for Wnt/beta-catenin signaling extends throughout the pronephric primordium and is essential for the development of proximal and distal tubules of the pronephros as well as for the development of the duct and glomus. Although less pronounced than effects upon later pronephric tubule differentiation, inhibition of the Wnt/beta-catenin pathway decreased expression of early pronephric mesenchymal markers indicating it is also needed in early pronephric patterning. We find that upstream inhibition of Wnt/beta-catenin signals in zebrafish likewise reduces pronephric epithelial tubulogenesis. We also find that exogenous activation of Wnt/beta-catenin signaling within the Xenopus pronephric field results in significant tubulogenic losses. Together, we propose Wnt/beta-catenin signaling is required for pronephric tubule, duct and glomus formation in Xenopus laevis, and this requirement is conserved in zebrafish pronephric tubule formation.
Collapse
Affiliation(s)
- Jon P. Lyons
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
- Graduate School of Biomedical Sciences, Program in Genes and Development, Houston, TX 77030
| | - Rachel K. Miller
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Xiaolan Zhou
- Department of Biological Sciences and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, T2N
| | | | - Tom Deroo
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Molecular Biology, UGhent, Ghent, Belgium
| | - Tinneke Denayer
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Molecular Biology, UGhent, Ghent, Belgium
| | - Jae-ll Park
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
- Graduate School of Biomedical Sciences, Program in Genes and Development, Houston, TX 77030
| | - Hong Ji
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Ji Yeon Hong
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
- Graduate School of Biomedical Sciences, Program in Genes and Development, Houston, TX 77030
| | - Annette Li
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Randall T. Moon
- Howard Hughes Medical Institute, Department of Pharmacology & Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195
| | - Elizabeth A. Jones
- Department of Biological Sciences, Molecular Physiology, Warwick University, Coventry, CV4 7AL, United Kingdom
| | - Kris Vleminckx
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Molecular Biology, UGhent, Ghent, Belgium
| | - Peter D. Vize
- Department of Biological Sciences and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, T2N
| | - Pierre D. McCrea
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
- Graduate School of Biomedical Sciences, Program in Genes and Development, Houston, TX 77030
| |
Collapse
|
45
|
Hoxd13 binds in vivo and regulates the expression of genes acting in key pathways for early limb and skeletal patterning. Dev Biol 2008; 317:497-507. [PMID: 18407260 DOI: 10.1016/j.ydbio.2008.02.048] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 02/21/2008] [Accepted: 02/22/2008] [Indexed: 11/24/2022]
Abstract
5' HoxD genes are required for the correct formation of limb skeletal elements. Hoxd13, the most 5'-located HoxD gene, is important for patterning the most distal limb region, and its mutation causes human limb malformation syndromes. The mechanisms underlying the control of developmental processes by Hoxd13, and by Hox genes in general, are still elusive, due to the limited knowledge on their direct downstream target genes. We identified by ChIP-on-chip 248 known gene loci bound invivo by Hoxd13. Genes relevant to limb patterning and skeletogenesis were further analysed. We found that Hoxd13 binds invivo, in developing limbs, the loci of Hand2, a gene crucial to limb AP axis patterning, of Meis1 and Meis2, involved in PD patterning, of the Sfrp1, Barx1, and Fbn1 genes, involved in skeletogenesis, and of the Dach1, Bmp2, Bmp4, andEmx2 genes. We show that Hoxd13 misexpression in developing chick limbs alters the expression of the majority of these genes, supporting the conclusion that Hoxd13 directly regulates their transcription. Our results indicate that 5' Hox proteins regulate directly both key genes for early limb AP and PD axis patterning and genes involved, at later stages, in skeletal patterning.
Collapse
|
46
|
Quinlan J, Kaplan F, Sweezey N, Goodyer P. LGL1, a novel branching morphogen in developing kidney, is induced by retinoic acid. Am J Physiol Renal Physiol 2007; 293:F987-93. [PMID: 17670908 DOI: 10.1152/ajprenal.00098.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Late-gestation lung protein 1 (LGL1) is a glycoprotein secreted by fetal lung mesenchyme that stimulates branching morphogenesis of the developing lung bud. We show that Lgl1 mRNA and protein are also expressed in mesenchymally derived lineages of fetal kidney. Although Lgl1 expression is stimulated by glucocorticoids in kidney cells, cortisol (10−7M) actually suppresses ureteric bud branching of fetal kidneys from HoxB7/GFP mice in explant culture. However, early branching morphogenesis in the lung and kidney is stimulated by retinoic acid, and we identified putative retinoic acid response elements in the Lgl1 promoter. All- trans-retinoic acid (10−6M) stimulated Lgl1 promoter activity and endogenous Lgl1 mRNA expression in vitro. Branching of cultured fetal kidney explants was increased in the presence of all- trans retinoic acid (10−6M). Heterozygous Lgl1 knockout mice were crossed to HoxB7/GFP mice to visualize the extent of ureteric bud branching at fetal stages. At embryonic (E) days E12.5–E13.0, mutant Lgl1+/−embryos showed a 20% reduction in ureteric bud branching compared with wild-type littermates. We propose a model in which retinoic acid stimulates branching morphogenesis by activating Lgl1 early in development. The prominent effects of glucocorticoids on Lgl1 expression in late lung development suggest a second role for LGL1 in alveolar maturation.
Collapse
|
47
|
Zhang SL, Chen YW, Tran S, Liu F, Nestoridi E, Hébert MJ, Ingelfinger JR. Pax-2 and N-myc regulate epithelial cell proliferation and apoptosis in a positive autocrine feedback loop. Pediatr Nephrol 2007; 22:813-24. [PMID: 17357786 DOI: 10.1007/s00467-007-0444-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 01/10/2007] [Accepted: 01/11/2007] [Indexed: 01/22/2023]
Abstract
Both paired homeo box-2 (Pax-2) and N-myc genes play pivotal roles in renal morphogenesis via their effects on cell proliferation and differentiation, but whether and how they interact have not been addressed. In the present study, we investigated such a potential interaction using embryonic renal cells in vitro. Mouse embryonic mesenchymal (MK4) cells stably transfected with Pax-2 cDNA in sense (+) or antisense (-) orientation were used for experiments. Pax-2 promoter activity was monitored by luciferase assay. Reactive oxygen species (ROS) generation, cell proliferation, and cell apoptosis were evaluated. We found that Pax-2 and N-myc gene expression were upregulated and downregulated in Pax-2 (+) and Pax-2 (-) stable transformants, respectively. ROS generation and apoptosis were significantly reduced both in Pax-2 (+) transformants compared with Pax-2 (-) transformants and in naïve MK4 cells cultured in either normal- (5 mM) or high-glucose (25 mM) medium. Transient transfection of N-myc cDNA into Pax-2 (-) stable transformants restored Pax-2 gene expression and prevented ROS generation induced by high glucose. Our data demonstrate that Pax-2 gene overexpression prevents hyperglycemia-induced apoptosis, and N-myc appears to provide a positive autocrine feedback on Pax-2 gene expression in embryonic mesenchymal cells.
Collapse
Affiliation(s)
- Shao-Ling Zhang
- University of Montréal, Centre hospitalier de l'Université de Montréal (CHUM)- Hôtel-Dieu, 3850 Saint Urbain Street, Montréal, Québec, H2W 1T7, Canada.
| | | | | | | | | | | | | |
Collapse
|
48
|
Caruana G, Cullen-McEwen L, Nelson AL, Kostoulias X, Woods K, Gardiner B, Davis MJ, Taylor DF, Teasdale RD, Grimmond SM, Little MH, Bertram JF. Spatial gene expression in the T-stage mouse metanephros. Gene Expr Patterns 2006; 6:807-25. [PMID: 16545622 DOI: 10.1016/j.modgep.2006.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 01/31/2006] [Accepted: 02/03/2006] [Indexed: 01/28/2023]
Abstract
The E11.5 mouse metanephros is comprised of a T-stage ureteric epithelial tubule sub-divided into tip and trunk cells surrounded by metanephric mesenchyme (MM). Tip cells are induced to undergo branching morphogenesis by the MM. In contrast, signals within the mesenchyme surrounding the trunk prevent ectopic branching of this region. In order to identify novel genes involved in the molecular regulation of branching morphogenesis we compared the gene expression profiles of isolated tip, trunk and MM cells using Compugen mouse long oligo microarrays. We identified genes enriched in the tip epithelium, sim-1, Arg2, Tacstd1, Crlf-1 and BMP7; genes enriched in the trunk epithelium, Innp1, Itm2b, Mkrn1, SPARC, Emu2 and Gsta3 and genes spatially restricted to the mesenchyme surrounding the trunk, CSPG2 and CV-2, with overlapping and complimentary expression to BMP4, respectively. This study has identified genes spatially expressed in regions of the developing kidney involved in branching morphogenesis, nephrogenesis and the development of the collecting duct system, calyces, renal pelvis and ureter.
Collapse
Affiliation(s)
- Georgina Caruana
- Department of Anatomy and Cell Biology, Monash University, Clayton, Vic., Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen YW, Liu F, Tran S, Zhu Y, Hébert MJ, Ingelfinger JR, Zhang SL. Reactive oxygen species and nuclear factor-kappa B pathway mediate high glucose-induced Pax-2 gene expression in mouse embryonic mesenchymal epithelial cells and kidney explants. Kidney Int 2006; 70:1607-15. [PMID: 16985513 DOI: 10.1038/sj.ki.5001871] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetic mellitus confers a major risk of congenital malformations, and is associated with diabetic embryopathy, affecting multiple organs including the kidney. The DNA paired box-2 (Pax-2) gene is essential in nephrogenesis. We investigated whether high glucose alters Pax-2 gene expression and aimed to delineate its underlying mechanism(s) of action using both in vitro (mouse embryonic mesenchymal epithelial cells (MK4) and ex vivo (kidney explant from Hoxb7-green florescent protein (GFP) mice) approaches. Pax-2 gene expression was determined by reverse transcriptase-polymerase chain reaction, Western blotting, and immunofluorescent staining. A fusion gene containing the full-length 5'-flanking region of the human Pax-2 promoter linked to a luciferase reporter gene, pGL-2/hPax-2, was transfected into MK4 cells with or without dominant negative IkappaBalpha (DN IkappaBalpha) cotransfection. Fusion gene expression level was quantified by cellular luciferase activity. Reactive oxygen species (ROS) generation was measured by lucigenin assay. Embryonic kidneys from Hoxb7-GFP mice were cultured ex vivo. High D(+) glucose (25 mM), compared to normal glucose (5 mM), specifically induced Pax-2 gene expression in MK4 cells and kidney explants. High glucose-induced Pax-2 gene expression is mediated, at least in part, via ROS generation and activation of the nuclear factor kappa B signaling pathway, but not via protein kinase C, p38 mitogen-activated protein kinase (MAPK), and p44/42 MAPK signaling.
Collapse
Affiliation(s)
- Y-W Chen
- Université Montréal, Centre hospitalier de l'Université de Montréal (CHUM)-Hôtel-Dieu, Pavillon Masson, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Salsi V, Zappavigna V. Hoxd13 and Hoxa13 Directly Control the Expression of the EphA7 Ephrin Tyrosine Kinase Receptor in Developing Limbs. J Biol Chem 2006; 281:1992-9. [PMID: 16314414 DOI: 10.1074/jbc.m510900200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hoxa and Hoxd genes, related to the Drosophila Abd-B gene, display regionally restricted expression patterns and are necessary for the formation of the limb skeletal elements. Hox genes encode transcription factors, which are supposed to control the expression of a series of downstream target genes, whose nature has remained largely elusive. Several genes were identified that are differentially expressed in relation to Hox gene activity; few studies, however, explored their direct regulation by Hox proteins. Ephrin tyrosine kinase receptors and ephrins have been proposed as Hox targets, and recently, evidence was gained for their role in limb development. The expression of the EphA7 gene in developing limbs was shown to correlate with the expression of Hoxa13 and Hoxd13; however, its direct regulation by these genes has never been assessed. We have characterized the EphA7 promoter region and show that it contains multiple binding sites for paralog group 13 Hox proteins. We found that one of these sites is bound in vivo by HOXA13 and HOXD13 and by endogenous Hoxd13 in developing mouse limbs. Moreover, we show that HOXD13 and HOXA13 activate transcription from the EphA7 promoter and that a mutation of the HOXA13/HOXD13 binding site was sufficient to abolish activation. Conversely, the HOXD13(147L) mutation, identified in patients displaying a novel brachydactyly-polydactyly syndrome, does not bind to in vivo, and fails to transactivate the EphA7 promoter. These results establish that EphA7 is a direct downstream target of Hoxd13 and Hoxa13 during limb development, thus providing further insight into the regulatory networks that control limb patterning.
Collapse
Affiliation(s)
- Valentina Salsi
- Department of Animal Biology, University of Modena and Reggio Emilia, Via G. Campi 213/d, Modena 41100, Italy
| | | |
Collapse
|