1
|
Varma M, Bhandari R, Kuhad A. Repurposing Niclosamide as a plausible neurotherapeutic in autism spectrum disorders, targeting mitochondrial dysfunction: a strong hypothesis. Metab Brain Dis 2024; 39:387-401. [PMID: 37284987 PMCID: PMC10957696 DOI: 10.1007/s11011-023-01247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Autism Spectrum Disorders (ASD) are a complex set of neurodevelopmental manifestations which present in the form of social and communication deficits. Affecting a growing proportion of children worldwide, the exact pathogenesis of this disorder is not very well understood, and multiple signaling pathways have been implicated. Among them, the ERK/MAPK pathway is critical in a number of cellular processes, and the normal functioning of neuronal cells also depends on this cascade. As such, recent studies have increasingly focused on the impact this pathway has on the development of autistic symptoms. Improper ERK signaling is suspected to be involved in neurotoxicity, and the same might be implicated in autism spectrum disorders (ASD), through a variety of effects including mitochondrial dysfunction and oxidative stress. Niclosamide, an antihelminthic and anti-inflammatory agent, has shown potential in inhibiting this pathway, and countering the effects shown by its overactivity in inflammation. While it has previously been evaluated in other neurological disorders like Alzheimer's Disease and Parkinson's Disease, as well as various cancers by targeting ERK/MAPK, it's efficacy in autism has not yet been evaluated. In this article, we attempt to discuss the potential role of the ERK/MAPK pathway in the pathogenesis of ASD, specifically through mitochondrial damage, before moving to the therapeutic potential of niclosamide in the disorder, mediated by the inhibition of this pathway and its detrimental effects of neuronal development.
Collapse
Affiliation(s)
- Manasi Varma
- Pharmacology Research Laboratory, UGC- Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160 014, India
| | - Ranjana Bhandari
- Pharmacology Research Laboratory, UGC- Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160 014, India.
| | - Anurag Kuhad
- Pharmacology Research Laboratory, UGC- Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
2
|
Ramirez-Garcia PD, Veldhuis NA, Bunnett NW, Davis TP. Targeting endosomal receptors, a new direction for polymers in nanomedicine. J Mater Chem B 2023; 11:5390-5399. [PMID: 37219363 PMCID: PMC10641892 DOI: 10.1039/d3tb00156c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this perspective, we outline a new opportunity for exploiting nanoparticle delivery of antagonists to target G-protein coupled receptors localized in intracellular compartments. We discuss the specific example of antagonizing endosomal receptors involved in pain to develop long-lasting analgesics but also outline the broader application potential of this delivery approach. We discuss the materials used to target endosomal receptors and indicate the design requirements for future successful applications.
Collapse
Affiliation(s)
- Paulina D Ramirez-Garcia
- Dentistry Translational Research Center, New York University College of Dentistry, New York, 10010, USA.
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Nicholas A Veldhuis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone School of Medicine, New York, NY 10010, USA
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
3
|
Meraş İ, Chotard L, Liontis T, Ratemi Z, Wiles B, Seo JH, Van Raamsdonk JM, Rocheleau CE. The Rab GTPase activating protein TBC-2 regulates endosomal localization of DAF-16 FOXO and lifespan. PLoS Genet 2022; 18:e1010328. [PMID: 35913999 PMCID: PMC9371356 DOI: 10.1371/journal.pgen.1010328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 07/06/2022] [Indexed: 12/02/2022] Open
Abstract
FOXO transcription factors have been shown to regulate longevity in model organisms and are associated with longevity in humans. To gain insight into how FOXO functions to increase lifespan, we examined the subcellular localization of DAF-16 in C. elegans. We show that DAF-16 is localized to endosomes and that this endosomal localization is increased by the insulin-IGF signaling (IIS) pathway. Endosomal localization of DAF-16 is modulated by endosomal trafficking proteins. Disruption of the Rab GTPase activating protein TBC-2 increases endosomal localization of DAF-16, while inhibition of TBC-2 targets, RAB-5 or RAB-7 GTPases, decreases endosomal localization of DAF-16. Importantly, the amount of DAF-16 that is localized to endosomes has functional consequences as increasing endosomal localization through mutations in tbc-2 reduced the lifespan of long-lived daf-2 IGFR mutants, depleted their fat stores, and DAF-16 target gene expression. Overall, this work identifies endosomal localization as a mechanism regulating DAF-16 FOXO, which is important for its functions in metabolism and aging. FOXO transcription factors have been shown to modulate lifespan in multiple model organisms and to be associated with longevity in humans. Here we describe a new localization of the C. elegans FOXO transcription factor, called DAF-16. We report that DAF-16 localizes to endosomes, membrane compartments internalized from the plasma membrane at the cell surface. We demonstrate that expansion of these endosome compartments by disruption of an endosomal regulator called TBC-2 results in increased localization of DAF-16 on endosomes at the expense of nuclear localization in the intestinal cells. This results in altered expression of DAF-16 target genes, reduced fat storage and decreased lifespan. These results demonstrate the importance of endosomal trafficking for proper localization of DAF-16 and suggest that the endosome is an important site of FOXO regulation. An intriguing possibility based on our results is that storage of FOXO on endosomes facilitates the mobilization of FOXO as a rapid response to environmental stress.
Collapse
Affiliation(s)
- İçten Meraş
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Laëtitia Chotard
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
| | - Thomas Liontis
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Brain Repair and Integrative Neuroscience Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Zakaria Ratemi
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Benjamin Wiles
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Jung Hwa Seo
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Jeremy M. Van Raamsdonk
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Brain Repair and Integrative Neuroscience Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Christian E. Rocheleau
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
4
|
Martin TJ. PTH1R Actions on Bone Using the cAMP/Protein Kinase A Pathway. Front Endocrinol (Lausanne) 2022; 12:833221. [PMID: 35126319 PMCID: PMC8807523 DOI: 10.3389/fendo.2021.833221] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/24/2021] [Indexed: 12/29/2022] Open
Abstract
After the initial signaling action of parathyroid hormone (PTH) on bone was shown to be activation of adenylyl cyclase, its target was found to be cells of the osteoblast lineage, to the exclusion of osteoclasts and their precursors. This led to the view that the osteoblast lineage regulated osteoclast formation, a proposal that was established when the molecular mechanisms of osteoclast formation were discovered. This is in addition to the effect of PTH1Rv signaling throughout the osteoblast differentiation process to favour the formation of bone-forming osteoblasts. Initial signaling in the PTH target cells through cAMP and protein kinase A (PKA) activation is extremely rapid, and marked by an amplification process in which the later event, PKA activation, precedes cAMP accumulation in time and is achieved at lower concentrations. All of this is consistent with the existence of "spare receptors", as is the case with several other peptide hormones. PTH-related protein (PTHrP), that was discovered as a cancer product, shares structural similarity with PTH in the amino-terminal domain that allows the hormone, PTH, and the autocrine/paracrine agent, PTHrP, to share actions upon a common G protein coupled receptor, PTH1R, through which they activate adenylyl cyclase with equivalent potencies. Studies of ligand-receptor kinetics have revealed that the PTH/PTH1R ligand-receptor complex, after initial binding and adenylyl cyclase activation at the plasma membrane, is translocated to the endosome, where adenylyl cyclase activation persists for a further short period. This behavior of the PTH1R resembles that of a number of hormones and other agonists that undergo such endosomal translocation. It remains to be determined whether and to what extent the cellular effects through the PTH1R might be influenced when endosomal is added to plasma membrane activation.
Collapse
Affiliation(s)
- T. John Martin
- Department of Medicine, St Vincent’s Institute of Medical Research, St Vincent’s Health, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
5
|
Koseska A, Bastiaens PI. Processing Temporal Growth Factor Patterns by an Epidermal Growth Factor Receptor Network Dynamically Established in Space. Annu Rev Cell Dev Biol 2020; 36:359-383. [DOI: 10.1146/annurev-cellbio-013020-103810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The proto-oncogenic epidermal growth factor (EGF) receptor (EGFR) is a tyrosine kinase whose sensitivity and response to growth factor signals that vary over time and space determine cellular behavior within a developing tissue. The molecular reorganization of the receptors on the plasma membrane and the enzyme-kinetic mechanisms of phosphorylation are key determinants that couple growth factor binding to EGFR signaling. To enable signal initiation and termination while simultaneously accounting for suppression of aberrant signaling, a coordinated coupling of EGFR kinase and protein tyrosine phosphatase activity is established through space by vesicular dynamics. The dynamical operation mode of this network enables not only time-varying growth factor sensing but also adaptation of the response depending on cellular context. By connecting spatially coupled enzymatic kinase/phosphatase processes and the corresponding dynamical systems description of the EGFR network, we elaborate on the general principles necessary for processing complex growth factor signals.
Collapse
Affiliation(s)
- Aneta Koseska
- Lise Meitner Group Cellular Computations and Learning, Centre of Advanced European Studies and Research (caesar), D-53175 Bonn, Germany
| | - Philippe I.H. Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
6
|
Kattan WE, Hancock JF. RAS Function in cancer cells: translating membrane biology and biochemistry into new therapeutics. Biochem J 2020; 477:2893-2919. [PMID: 32797215 PMCID: PMC7891675 DOI: 10.1042/bcj20190839] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
The three human RAS proteins are mutated and constitutively activated in ∼20% of cancers leading to cell growth and proliferation. For the past three decades, many attempts have been made to inhibit these proteins with little success. Recently; however, multiple methods have emerged to inhibit KRAS, the most prevalently mutated isoform. These methods and the underlying biology will be discussed in this review with a special focus on KRAS-plasma membrane interactions.
Collapse
Affiliation(s)
- Walaa E. Kattan
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX 77030, USA
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX 77030, USA
| |
Collapse
|
7
|
Tiruthani K, Mischler A, Ahmed S, Mahinthakumar J, Haugh JM, Rao BM. Design and evaluation of engineered protein biosensors for live-cell imaging of EGFR phosphorylation. Sci Signal 2019; 12:eaap7584. [PMID: 31164479 PMCID: PMC8757379 DOI: 10.1126/scisignal.aap7584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Live-cell fluorescence microscopy is broadly applied to study the dynamics of receptor-mediated cell signaling, but the availability of intracellular biosensors is limited. A biosensor based on the tandem SH2 domains from phospholipase C-γ1 (PLCγ1), tSH2-WT, has been used to measure phosphorylation of the epidermal growth factor receptor (EGFR). Here, we found that tSH2-WT lacked specificity for phosphorylated EGFR, consistent with the known promiscuity of SH2 domains. Further, EGF-stimulated membrane recruitment of tSH2-WT differed qualitatively from the expected kinetics of EGFR phosphorylation. Analysis of a mathematical model suggested, and experiments confirmed, that the high avidity of tSH2-WT resulted in saturation of its target and interference with EGFR endocytosis. To overcome the apparent target specificity and saturation issues, we implemented two protein engineering strategies. In the first approach, we screened a combinatorial library generated by random mutagenesis of the C-terminal SH2 domain (cSH2) of PLCγ1 and isolated a mutant form (mSH2) with enhanced specificity for phosphorylated Tyr992 (pTyr992) of EGFR. A biosensor based on mSH2 closely reported the kinetics of EGFR phosphorylation but retained cross-reactivity similar to tSH2-WT. In the second approach, we isolated a pTyr992-binding protein (SPY992) from a combinatorial library generated by mutagenesis of the Sso7d protein scaffold. Compared to tSH2-WT and mSH2, SPY992 exhibited superior performance as a specific, moderate-affinity biosensor. We extended this approach to isolate a biosensor for EGFR pTyr1148 (SPY1148). This approach of integrating theoretical considerations with protein engineering strategies can be generalized to design and evaluate suitable biosensors for various phospho-specific targets.
Collapse
Affiliation(s)
- Karthik Tiruthani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Adam Mischler
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Shoeb Ahmed
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Jessica Mahinthakumar
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
8
|
Abstract
The MAPK pathway is a prominent intracellular signaling pathway regulating various intracellular functions. Components of this pathway are mutated in a related collection of congenital syndromes collectively referred to as neuro-cardio-facio-cutaneous syndromes (NCFC) or Rasopathies. Recently, it has been appreciated that these disorders are associated with autism spectrum disorders (ASD). In addition, idiopathic ASD has also implicated the MAPK signaling cascade as a common pathway that is affected by many of the genetic variants that have been found to be linked to ASDs. This chapter describes the components of the MAPK pathway and how it is regulated. Furthermore, this chapter will highlight the various functions of the MAPK pathway during both embryonic development of the central nervous system (CNS) and its roles in neuronal physiology and ultimately, behavior. Finally, we will summarize the perturbations to MAPK signaling in various models of autism spectrum disorders and Rasopathies to highlight how dysregulation of this pivotal pathway may contribute to the pathogenesis of autism.
Collapse
|
9
|
Weddell JC, Imoukhuede PI. Integrative meta-modeling identifies endocytic vesicles, late endosome and the nucleus as the cellular compartments primarily directing RTK signaling. Integr Biol (Camb) 2018; 9:464-484. [PMID: 28436498 DOI: 10.1039/c7ib00011a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, intracellular receptor signaling has been identified as a key component mediating cell responses for various receptor tyrosine kinases (RTKs). However, the extent each endocytic compartment (endocytic vesicle, early endosome, recycling endosome, late endosome, lysosome and nucleus) contributes to receptor signaling has not been quantified. Furthermore, our understanding of endocytosis and receptor signaling is complicated by cell- or receptor-specific endocytosis mechanisms. Therefore, towards understanding the differential endocytic compartment signaling roles, and identifying how to achieve signal transduction control for RTKs, we delineate how endocytosis regulates RTK signaling. We achieve this via a meta-analysis across eight RTKs, integrating computational modeling with experimentally derived cell (compartment volume, trafficking kinetics and pH) and ligand-receptor (ligand/receptor concentration and interaction kinetics) physiology. Our simulations predict the abundance of signaling from eight RTKs, identifying the following hierarchy in RTK signaling: PDGFRβ > IGFR1 > EGFR > PDGFRα > VEGFR1 > VEGFR2 > Tie2 > FGFR1. We find that endocytic vesicles are the primary cell signaling compartment; over 43% of total receptor signaling occurs within the endocytic vesicle compartment for these eight RTKs. Mechanistically, we found that high RTK signaling within endocytic vesicles may be attributed to their low volume (5.3 × 10-19 L) which facilitates an enriched ligand concentration (3.2 μM per ligand molecule within the endocytic vesicle). Under the analyzed physiological conditions, we identified extracellular ligand concentration as the most sensitive parameter to change; hence the most significant one to modify when regulating absolute compartment signaling. We also found that the late endosome and nucleus compartments are important contributors to receptor signaling, where 26% and 18%, respectively, of average receptor signaling occurs across the eight RTKs. Conversely, we found very low membrane-based receptor signaling, exhibiting <1% of the total receptor signaling for these eight RTKs. Moreover, we found that nuclear translocation, mechanistically, requires late endosomal transport; when we blocked receptor trafficking from late endosomes to the nucleus we found a 57% reduction in nuclear translocation. In summary, our research has elucidated the significance of endocytic vesicles, late endosomes and the nucleus in RTK signal propagation.
Collapse
Affiliation(s)
- Jared C Weddell
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W Springfield Ave., 3233 Digital Computer Laboratory, Urbana, IL 61801, USA.
| | | |
Collapse
|
10
|
Gosney JA, Wilkey DW, Merchant ML, Ceresa BP. Proteomics reveals novel protein associations with early endosomes in an epidermal growth factor-dependent manner. J Biol Chem 2018. [PMID: 29523688 DOI: 10.1074/jbc.ra117.000632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is an integral component of proliferative signaling. EGFRs on the cell surface become activated upon EGF binding and have an increased rate of endocytosis. Once in the cytoplasm, the EGF·EGFR complex is trafficked to the lysosome for degradation, and signaling is terminated. During trafficking, the EGFR kinase domain remains active, and the internalized EGFR can continue signaling to downstream effectors. Although effector activity varies based on the EGFR's endocytic location, it is not clear how this occurs. In an effort to identify proteins that uniquely associate with the internalized, liganded EGFR in the early endosome, we developed an early endosome isolation strategy to analyze their protein composition. Post-nuclear supernatant from HeLa cells stimulated with and without EGF were separated on an isotonic 17% Percoll gradient. The gradient was fractionated, and early endosomal fractions were pooled and immunoisolated with an EEA1 mAb. The isolated endosomes were validated by immunoblot using antibodies against organelle-specific marker proteins and transmission EM. These early endosomes were also subjected to LC-MS/MS for proteomic analysis. Five proteins were detected in endosomes in a ligand-dependent manner: EGFR, RUFY1, STOML2, PTPN23, and CCDC51. Knockdown of RUFY1 or PTPN23 by RNAi indicated that both proteins play a role in EGFR trafficking. These experiments indicate that endocytic trafficking of activated EGFR changes the protein composition, membrane trafficking, and signaling potential of the early endosome.
Collapse
Affiliation(s)
| | - Daniel W Wilkey
- Medicine, University of Louisville, Louisville, Kentucky 40202
| | | | | |
Collapse
|
11
|
Membrane targeting of inhibitory Smads through palmitoylation controls TGF-β/BMP signaling. Proc Natl Acad Sci U S A 2017; 114:13206-13211. [PMID: 29180412 PMCID: PMC5740658 DOI: 10.1073/pnas.1710540114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
TGF-β/BMP (bone morphogenetic protein) signaling pathways play conserved roles in controlling embryonic development, tissue homeostasis, and stem cell regulation. Inhibitory Smads (I-Smads) have been shown to negatively regulate TGF-β/BMP signaling by primarily targeting the type I receptors for ubiquitination and turnover. However, little is known about how I-Smads access the membrane to execute their functions. Here we show that Dad, the Drosophila I-Smad, associates with the cellular membrane via palmitoylation, thereby targeting the BMP type I receptor for ubiquitination. By performing systematic biochemistry assays, we characterized the specific cysteine (Cys556) essential for Dad palmitoylation and membrane association. Moreover, we demonstrate that dHIP14, a Drosophila palmitoyl acyl-transferase, catalyzes Dad palmitoylation, thereby inhibiting efficient BMP signaling. Thus, our findings uncover a modification of the inhibitory Smads that controls TGF-β/BMP signaling activity.
Collapse
|
12
|
Bar M, Avni A. Endosomal trafficking and signaling in plant defense responses. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:86-92. [PMID: 25282589 DOI: 10.1016/j.pbi.2014.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 06/03/2023]
Abstract
Plant defense responses are initiated by ligand-receptor recognition. The receptor may contain a motif for endocytosis and endocytosis is important for defense signaling in some cases. Recently, endosomal trafficking during defense has begun to be elucidated. In some cases, defense receptors are internalized into early endosomes, recycled back to the plasma membrane (PM) on recycling endosomes, and targeted for degradation via the late endosome pathway in an ESCRT dependent manner. Endosomal signaling has been proposed for several receptors. Defense receptors have been shown to reside on endosomes during the signaling time window. Increasing the endosomal presence of a receptor can cause a concomitant increase in signaling, while abolishing the formation of endosomes after the receptor has already been internalized can cause signaling attenuation.
Collapse
Affiliation(s)
- Maya Bar
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| | - Adi Avni
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
13
|
Desbuquois B, Authier F. [Involvement of the endosomal compartment in cellular insulin signaling]. Biol Aujourdhui 2014; 208:137-150. [PMID: 25190573 DOI: 10.1051/jbio/2014016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Indexed: 06/03/2023]
Abstract
The insulin receptor and insulin signaling proteins downstream the receptor reside in different subcellular compartments and undergo redistribution within the cell upon insulin activation. Endocytosis of the insulin-receptor complex, by mediating ligand degradation and receptor dephosphorylation, is generally viewed as a mechanism which attenuates or arrests insulin signal transduction. However, several observations suggest that insulin receptor endocytosis and/or recruitement of insulin signaling proteins to endosomes are also involved in a positive regulation of insulin signaling: (1) upon internalization, the insulin receptor remains transiently phosphorylated and activated; (2) in insulin-stimulated cells or tissues, signaling proteins of the PI3K/Akt and Ras/Raf/Mek/Erk pathways are recruited to endosomes or other intracellular compartments, in which they undergo phosphorylation and/or activation; and (3) depletion or overexpression of proteins involved in the regulation of membrane trafficking and endocytosis interfere with insulin signaling. These observations support a spatial and temporal regulation of insulin signal transduction and reinforce the concept that, as for other membrane signaling receptors, endocytosis and signaling are functionally linked.
Collapse
Affiliation(s)
- Bernard Desbuquois
- Inserm U1016 et CNRS UMR 8104, Institut Cochin, et Université Paris Descartes, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - François Authier
- Service Information Scientifique et Technique (IST) de l'Inserm, Délégation Régionale Inserm Paris V, 2 rue d'Alésia, 75014 Paris, France
| |
Collapse
|
14
|
Abstract
Insulin binding to insulin receptor (IR) at the cell surface results in the activation of IR kinase and initiates the translocation of insulin-IR complexes to clathrin-coated pits and to early endosomes containing internalized but still active receptors. In liver parenchyma, several mechanisms are involved in the regulation of endosomal IR tyrosine kinase activity. Two of these regulatory mechanisms are at the level of intraendosomal ligand. First, a progressive decrease in endosomal pH mediated by the vacuolar H(+)-ATPase proton pump promotes dissociation of the insulin-IR complex. Second, free dissociated insulin is degraded by a soluble endosomal acidic insulinase, which has been identified as aspartic acid protease cathepsin D. This enzyme catalyzes the cleavage of insulin at the Phe(B24)-Phe(B25) bond, generating a major clipped molecule, A(1-21)-B(1-24) insulin, that can no longer bind to IR within endosomes. Concomitant with, or shortly after, the tyrosine-phosphorylated IR is deactivated by two independent processes: its rapid dephosphorylation by endosome-associated phosphotyrosine phosphatase(s) and its association with the molecular adaptor Grb14, with resulting inhibition of IR catalytic activity. By mediating the removal and degradation of circulating insulin, as well as the deactivation of the activated IR, internalization of the insulin-receptor complex into endosomes represents a major mechanism involved in the negative regulation of insulin signaling.
Collapse
|
15
|
Fridolfsson HN, Roth DM, Insel PA, Patel HH. Regulation of intracellular signaling and function by caveolin. FASEB J 2014; 28:3823-31. [PMID: 24858278 DOI: 10.1096/fj.14-252320] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/12/2014] [Indexed: 12/28/2022]
Abstract
Caveolae, flask-like invaginations of the plasma membrane, were discovered nearly 60 years ago. Originally regarded as fixation artifacts of electron microscopy, the functional role for these structures has taken decades to unravel. The discovery of the caveolin protein in 1992 (by the late Richard G.W. Anderson) accelerated progress in defining the contribution of caveolae to cellular physiology and pathophysiology. The three isoforms of caveolin (caveolin-1, -2, and -3) are caveolae-resident structural and scaffolding proteins that are critical for the formation of caveolae and their localization of signaling entities. A PubMed search for "caveolae" reveals ∼280 publications from their discovery in the 1950s to the early 1990s, whereas a search for "caveolae or caveolin" after 1990, identifies ∼7000 entries. Most work on the regulation of biological responses by caveolae and caveolin since 1990 has focused on caveolae as plasma membrane microdomains and the function of caveolin proteins at the plasma membrane. By contrast, our recent work and that of others has explored the localization of caveolins in multiple cellular membrane compartments and in the regulation of intracellular signaling. Cellular organelles that contain caveolin include mitochondria, nuclei and the endoplasmic reticulum. Such intracellular localization allows for a complexity of responses to extracellular stimuli by caveolin and the possibility of novel organelle-targeted therapeutics. This review focuses on the impact of intracellular localization of caveolin on signal transduction and cell regulation.
Collapse
Affiliation(s)
- Heidi N Fridolfsson
- VA San Diego Healthcare System, San Diego, California and the Departments of Anesthesiology
| | - David M Roth
- VA San Diego Healthcare System, San Diego, California and the Departments of Anesthesiology
| | - Paul A Insel
- Medicine, and Pharmacology, University of California San Diego, La Jolla, California
| | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, California and the Departments of Anesthesiology,
| |
Collapse
|
16
|
Matusica D, Coulson EJ. Local versus long-range neurotrophin receptor signalling: endosomes are not just carriers for axonal transport. Semin Cell Dev Biol 2014; 31:57-63. [PMID: 24709025 DOI: 10.1016/j.semcdb.2014.03.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 01/25/2023]
Abstract
Neurotrophins play a critical role in neuronal development and survival, as well as maintenance of the adult nervous system. Neurotrophins can mediate their effects by signalling locally at the nerve terminal, or signalling retrogradely from the axonal terminal to the cell soma to regulate gene expression. Given that the axon terminals of many nerve cells can be up to a metre away from their soma, neurons have evolved specialized long-range signalling platforms that depend on a highly regulated network of intracellular membrane compartments termed "signalling endosomes". Endosomal trafficking of activated receptors controls not only the axonal retrograde signals but also local receptor recycling and degradation. Endosomal trafficking involving the sorting and compartmentalizing of different signals, which are subsequently distributed to the appropriate cellular destination, can at least partially explain how neurotrophins generate a diverse array of signalling outcomes. Although signalling endosomes provide a useful model for understanding how different cell surface receptor-mediated signals are generated and transported, the precise role, identity and functional definition of a signalling endosome remains unclear. In this review we will discuss the regulation of local versus long-range neurotrophin signalling, with a specific focus on recent developments in the role of endosomes in regulating the fate of Trk receptors.
Collapse
Affiliation(s)
- Dusan Matusica
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072 Qld, Australia
| | - Elizabeth J Coulson
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072 Qld, Australia.
| |
Collapse
|
17
|
Irannejad R, von Zastrow M. GPCR signaling along the endocytic pathway. Curr Opin Cell Biol 2013; 27:109-16. [PMID: 24680436 DOI: 10.1016/j.ceb.2013.10.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/17/2013] [Indexed: 12/14/2022]
Abstract
Many G protein-coupled receptors (GPCRs) internalize after agonist-induced activation. While endocytosis has long been associated with homeostatic attenuation of cellular responsiveness, accumulating evidence from study of a wide range of eukaryotes reveals that the endocytic pathway also contributes to generating receptor-initiated signals themselves. Here we review recent progress in this area, discussing primarily but not exclusively GPCR signaling in mammalian cells.
Collapse
Affiliation(s)
- Roshanak Irannejad
- Department of Psychiatry, University of California, San Francisco School of Medicine, 600 16th Street, San Francisco, CA 94158-2140, USA; Department of Cellular & Molecular Pharmacology, University of California, San Francisco School of Medicine, 600 16th Street, San Francisco, CA 94158-2140, USA
| | - Mark von Zastrow
- Department of Psychiatry, University of California, San Francisco School of Medicine, 600 16th Street, San Francisco, CA 94158-2140, USA; Department of Cellular & Molecular Pharmacology, University of California, San Francisco School of Medicine, 600 16th Street, San Francisco, CA 94158-2140, USA.
| |
Collapse
|
18
|
Fortian A, Sorkin A. Live-cell fluorescence imaging reveals high stoichiometry of Grb2 binding to the EGF receptor sustained during endocytosis. J Cell Sci 2013; 127:432-44. [PMID: 24259669 DOI: 10.1242/jcs.137786] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation of epidermal growth factor (EGF) receptor (EGFR) leads to its interaction with Grb2, a dual-function adapter mediating both signaling through Ras and receptor endocytosis. We used time-lapse three-dimensional imaging by spinning disk confocal microscopy to analyze trafficking of EGFR and Grb2 in living HeLa cells stimulated with low, physiological concentrations of EGFR ligands. Endogenous Grb2 was replaced in these cells by Grb2 fused to yellow fluorescent protein (YFP). After transient residence in the plasma membrane, Rhodamine-conjugated EGF (EGF-Rh) and Grb2-YFP were rapidly internalized and accumulated in endosomes. Quantitative image analysis revealed that on average two Grb2-YFP molecules were colocalized with one EGF-Rh in cells stimulated with 2 ng/ml EGF-Rh, and the excess of Grb2-YFP over EGF-Rh was even higher when a receptor-saturating concentration of EGF-Rh was used. Therefore, we hypothesize that a single EGFR molecule can be simultaneously associated with functionally distinct Grb2 interaction partners during and after endocytosis. Continuous presence of Grb2-YFP in endosomes was also observed when EGFR was activated by transforming growth factor-α and amphiregulin, suggesting that endosomal EGFRs remain ligand occupied and signaling competent, despite the fact that these growth factors are thought to dissociate from the receptor at acidic pH. The prolonged localization and activity of EGFR-Grb2 complexes in endosomes correlated with the sustained activation of extracellular stimulus-regulated kinase 1/2, suggesting that endosomal EGFRs contribute significantly to this signaling pathway. We propose that endosomal EGFRs function to extend signaling in time and space to compensate for rapid downregulation of surface EGFRs in cells with low receptor expression levels.
Collapse
Affiliation(s)
- Arola Fortian
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
19
|
Diering GH, Numata Y, Fan S, Church J, Numata M. Endosomal acidification by Na+/H+ exchanger NHE5 regulates TrkA cell-surface targeting and NGF-induced PI3K signaling. Mol Biol Cell 2013; 24:3435-48. [PMID: 24006492 PMCID: PMC3814139 DOI: 10.1091/mbc.e12-06-0445] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/21/2013] [Accepted: 08/28/2013] [Indexed: 01/19/2023] Open
Abstract
To facilitate polarized vesicular trafficking and signal transduction, neuronal endosomes have evolved sophisticated mechanisms for pH homeostasis. NHE5 is a member of the Na(+)/H(+) exchanger family and is abundantly expressed in neurons and associates with recycling endosomes. Here we show that NHE5 potently acidifies recycling endosomes in PC12 cells. NHE5 depletion by plasmid-based short hairpin RNA significantly reduces cell surface abundance of TrkA, an effect similar to that observed after treatment with the V-ATPase inhibitor bafilomycin. A series of cell-surface biotinylation experiments suggests that anterograde trafficking of TrkA from recycling endosomes to plasma membrane is the likeliest target affected by NHE5 depletion. NHE5 knockdown reduces phosphorylation of Akt and Erk1/2 and impairs neurite outgrowth in response to nerve growth factor (NGF) treatment. Of interest, although both phosphoinositide 3-kinase-Akt and Erk signaling are activated by NGF-TrkA, NGF-induced Akt-phosphorylation appears to be more sensitively affected by perturbed endosomal pH. Furthermore, NHE5 depletion in rat cortical neurons in primary culture also inhibits neurite formation. These results collectively suggest that endosomal pH modulates trafficking of Trk-family receptor tyrosine kinases, neurotrophin signaling, and possibly neuronal differentiation.
Collapse
Affiliation(s)
- Graham H. Diering
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yuka Numata
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Steven Fan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - John Church
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Masayuki Numata
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
20
|
Epidermal growth factor stimulates extracellular-signal regulated kinase phosphorylation of a novel site on cytoplasmic Dynein intermediate chain 2. Int J Mol Sci 2013; 14:3595-620. [PMID: 23434660 PMCID: PMC3588060 DOI: 10.3390/ijms14023595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 11/17/2022] Open
Abstract
Extracellular-signal regulated kinase (ERK) signaling is required for a multitude of physiological and patho-physiological processes. However, the identities of the proteins that ERK phosphorylates to elicit these responses are incompletely known. Using an affinity purification methodology of general utility, here we identify cytoplasmic dynein intermediate chain 2 (DYNC1I-2, IC-2) as a novel substrate for ERK following epidermal growth factor receptor stimulation of fibroblasts. IC-2 is a subunit of cytoplasmic dynein, a minus-end directed motor protein necessary for transport of diverse cargos along microtubules. Emerging data support the hypothesis that post-translational modification regulates dynein but the signaling mechanisms used are currently unknown. We find that ERK phosphorylates IC-2 on a novel, highly conserved Serine residue proximal to the binding site for the p150Glued subunit of the cargo adapter dynactin. Surprisingly, neither constitutive phosphorylation nor a phosphomimetic substitution of this Serine influences binding of p150Glued to IC-2. These data suggest that ERK phosphorylation of IC-2 regulates dynein function through mechanisms other than its interaction with dynactin.
Collapse
|
21
|
Abstract
During development and tissue homeostasis, patterns of cellular organization, proliferation and movement are highly choreographed. Receptor tyrosine kinases (RTKs) have a crucial role in establishing these patterns. Individual cells and tissues exhibit tight spatial control of the RTKs that they express, enabling tissue morphogenesis and function, while preventing unwarranted cell division and migration that can contribute to tumorigenesis. Indeed, RTKs are deregulated in most human cancers and are a major focus of targeted therapeutics. A growing appreciation of the essential role of spatial RTK regulation during development prompts the realization that spatial deregulation of RTKs is likely to contribute broadly to cancer development and may affect the sensitivity and resistance of cancer to pharmacological RTK inhibitors.
Collapse
Affiliation(s)
- Jessica B. Casaletto
- MGH Center for Cancer Research and Harvard Medical School Department of Pathology, 149 13th Street Charlestown, MA 02129 United States
| | - Andrea I. McClatchey
- MGH Center for Cancer Research and Harvard Medical School Department of Pathology, 149 13th Street Charlestown, MA 02129 United States
- To whom correspondence should be addressed:
| |
Collapse
|
22
|
Brankatschk B, Wichert SP, Johnson SD, Schaad O, Rossner MJ, Gruenberg J. Regulation of the EGF transcriptional response by endocytic sorting. Sci Signal 2012; 5:ra21. [PMID: 22416276 DOI: 10.1126/scisignal.2002351] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ligand binding to the epidermal growth factor receptor (EGFR) on the cell surface activates the extracellular signal-regulated kinase (ERK) cascade. Activated, ligand-bound receptors are internalized, and this process may contribute to termination of signaling or enable signaling from intracellular sites. ESCRT (endosomal sorting complex required for transport) complexes may contribute to termination of signaling by sorting receptors into intraluminal vesicles of multivesicular endosomes from which the receptors continue into lysosomes for degradation. We showed that depletion of ESCRTs, which causes the retention of the EGFR in endosomes, increased the activation of the EGFR and its downstream kinases but had little effect on the overall profile and amplitude of the EGF-induced transcriptional response. In contrast, interfering with receptor endocytosis or ubiquitination to keep the EGFR at the cell surface stimulated increases in the abundance of many EGF-induced transcripts, similar to those induced by EGFR overexpression. We also found that the complete EGF transcriptional program was rapidly activated after ligand binding to the receptor. We conclude that the transcriptional response is elicited primarily by receptor molecules at the cell surface.
Collapse
Affiliation(s)
- Ben Brankatschk
- Department of Biochemistry, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
23
|
Sharfman M, Bar M, Ehrlich M, Schuster S, Melech-Bonfil S, Ezer R, Sessa G, Avni A. Endosomal signaling of the tomato leucine-rich repeat receptor-like protein LeEix2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:413-23. [PMID: 21736652 DOI: 10.1111/j.1365-313x.2011.04696.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Extracellular leucine-rich repeat (LRR) receptor-like proteins (RLPs) represent a unique class of cell-surface receptors, as they lack a functional cytoplasmic domain. Our knowledge of how RLPs that do not contain a kinase or Toll domain function is very limited. The tomato RLP receptor LeEix2 signals to induce defense responses mediated by the fungal protein ethylene-inducing xylanase (EIX). The movement of FYVE-positive endosomes before and after EIX application was examined using spinning disc confocal microscopy. We found that while FYVE-positive endosomes generally observe a random movement pattern, following EIX application a subpopulation of FYVE-positive endosomes follow a directional movement pattern. Further, cellular endosomes travel greater distances at higher speeds following EIX application. Time-course experiments conducted with specific inhibitors demonstrate the involvement of endosomal signaling in EIX-triggered defense responses. Abolishing the existence of endosomes or the endocytic event prevented EIX-induced signaling. Endocytosis/endosome inhibitors, such as Dynasore or 1-butanol, inhibit EIX-induced signaling. Moreover, treatment with Endosidin1, which inhibits an early step in plasma membrane/endosome trafficking, enhances the induction of defense responses by EIX. Our data indicate a distinct endosomal signaling mechanism for induction of defense responses in this RLP system.
Collapse
Affiliation(s)
- Miya Sharfman
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Schiefermeier N, Teis D, Huber LA. Endosomal signaling and cell migration. Curr Opin Cell Biol 2011; 23:615-20. [PMID: 21546233 PMCID: PMC3188704 DOI: 10.1016/j.ceb.2011.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 04/11/2011] [Indexed: 01/08/2023]
Abstract
Cell migration is a complex biological process that is under the tight control of diverse signaling events. While many of the involved signaling molecules diffuse rapidly within cells, it now seems that certain key regulators of cell migration prefer to travel on endosomes. In this review we will discuss the multiple roles of signaling endosomes in regulation of local migration stimuli, dynamics of focal adhesions, cell contractility and locomotion.
Collapse
|
25
|
Grecco HE, Schmick M, Bastiaens PIH. Signaling from the living plasma membrane. Cell 2011; 144:897-909. [PMID: 21414482 DOI: 10.1016/j.cell.2011.01.029] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/10/2010] [Accepted: 01/17/2011] [Indexed: 02/06/2023]
Abstract
Our understanding of the plasma membrane, once viewed simply as a static barrier, has been revolutionized to encompass a complex, dynamic organelle that integrates the cell with its extracellular environment. Here, we discuss how bidirectional signaling across the plasma membrane is achieved by striking a delicate balance between restriction and propagation of information over different scales of time and space and how underlying dynamic mechanisms give rise to rich, context-dependent signaling responses. In this Review, we show how computer simulations can generate counterintuitive predictions about the spatial organization of these complex processes.
Collapse
Affiliation(s)
- Hernán E Grecco
- Max Planck Institute for Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Str. 11, D-44227 Dortmund, Germany
| | | | | |
Collapse
|
26
|
Jean S, Mikryukov A, Tremblay MG, Baril J, Guillou F, Bellenfant S, Moss T. Extended-synaptotagmin-2 mediates FGF receptor endocytosis and ERK activation in vivo. Dev Cell 2010; 19:426-39. [PMID: 20833364 DOI: 10.1016/j.devcel.2010.08.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 10/19/2022]
Abstract
Targeting of activated plasma membrane receptors to endocytic pathways is important in determining the outcome of growth factor signaling. However, the molecular mechanisms are still poorly understood. Here, we show that the synaptotagmin-related membrane protein E-Syt2 is essential for rapid endocytosis of the activated FGF receptor and for functional signal transduction during Xenopus development. E-Syt2 depletion prevents an early phase of activated FGF receptor endocytosis that we show is required for ERK activation and the induction of the mesoderm. E-Syt2 interacts selectively with the activated FGF receptor and with Adaptin-2, and is required upstream of Ras activation and of receptor autophosphorylation for ERK activation and the induction of the mesodermal marker Xbra. The data identify E-Syt2 as an endocytic adaptor for the clathrin-mediated pathway whose function is conserved in human and suggest a broader role for the E-Syt subfamily in growth factor signaling.
Collapse
Affiliation(s)
- Steve Jean
- Cancer Research Centre and Department of Medical Biology, Medical Biochemistry and Pathology, Laval University, Hôtel-Dieu de Québec, 9 rue McMahon, G1R 2J6 Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Radhakrishnan ML, Tidor B. Cellular level models as tools for cytokine design. Biotechnol Prog 2010; 26:919-37. [PMID: 20568274 DOI: 10.1002/btpr.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytokines and growth factors are critical regulators that connect intracellular and extracellular environments through binding to specific cell-surface receptors. They regulate a wide variety of immunological, growth, and inflammatory response processes. The overall signal initiated by a population of cytokine molecules over long time periods is controlled by the subtle interplay of binding, signaling, and trafficking kinetics. Building on the work of others, we abstract a simple kinetic model that captures relevant features from cytokine systems as well as related growth factor systems. We explore a large range of potential biochemical behaviors, through systematic examination of the model's parameter space. Different rates for the same reaction topology lead to a dramatic range of biochemical network properties and outcomes. Evolution might productively explore varied and different portions of parameter space to create beneficial behaviors, and effective human therapeutic intervention might be achieved through altering network kinetic properties. Quantitative analysis of the results reveals the basis for tensions among a number of different network characteristics. For example, strong binding of cytokine to receptor can increase short-term receptor activation and signal initiation but decrease long-term signaling due to internalization and degradation. Further analysis reveals the role of specific biochemical processes in modulating such tensions. For instance, the kinetics of cytokine binding and receptor activation modulate whether ligand-receptor dissociation can generally occur before signal initiation or receptor internalization. Beyond analysis, the same models and model behaviors provide an important basis for the design of more potent cytokine therapeutics by providing insight into how binding kinetics affect ligand potency.
Collapse
Affiliation(s)
- Mala L Radhakrishnan
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | |
Collapse
|
28
|
Luppi P, Geng X, Cifarelli V, Drain P, Trucco M. C-peptide is internalised in human endothelial and vascular smooth muscle cells via early endosomes. Diabetologia 2009; 52:2218-28. [PMID: 19662378 DOI: 10.1007/s00125-009-1476-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/01/2009] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS There is increasing evidence that C-peptide exerts intracellular effects in a variety of cells and could be beneficial in patients with type 1 diabetes. Exactly how C-peptide achieves these effects, however, is unknown. Recent reports showed that C-peptide internalised in the cytoplasm of HEK-293 and Swiss 3T3 cells, where it was not degraded for at least 1 h after uptake. In this study, we investigated the hypothesis that C-peptide is internalised via an endocytic pathway and traffics to classic endocytic organelles, such as endosomes and lysosomes. METHODS We studied the internalisation of C-peptide in vascular endothelial and smooth muscle cells, two relevant targets of C-peptide activity, by using Alexa Fluor-labelled C-peptide probes in living cells and immunohistochemistry employing confocal laser-scanning microscopy. To examine trafficking to subcellular compartments, we used fluorescent constructs tagged to RAB5A, member RAS oncogene family (RAB5A) to identify early endosomes, or to lysosomal-associated membrane protein 1 (LAMP1) to identify lysosomes. RESULTS C-peptide internalised in the cytoplasm of cells within punctate structures identified as early endosomes. Internalisation was clearly detectable after 10 min of incubation and was blocked at 4 degrees C as well as with excess of unlabelled C-peptide. A minor fraction of vesicles, which increased with culture time, co-localised with lysosomes. Uptake of C-peptide was reduced by monodansylcadaverine, a pharmacological compound that blocks clathrin-mediated endocytosis, and by nocodazole, which disrupts microtubule assembly. CONCLUSIONS/INTERPRETATION C-peptide internalises in the cytoplasm of cells by endocytosis, as demonstrated by its localisation in early endosomes. Endosomes might represent a signalling station, through which C-peptide might achieve its cellular effects.
Collapse
Affiliation(s)
- P Luppi
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, PA 15201, USA.
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Tilley DG, Kim IM, Patel PA, Violin JD, Rockman HA. beta-Arrestin mediates beta1-adrenergic receptor-epidermal growth factor receptor interaction and downstream signaling. J Biol Chem 2009; 284:20375-86. [PMID: 19509284 PMCID: PMC2740462 DOI: 10.1074/jbc.m109.005793] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/02/2009] [Indexed: 01/14/2023] Open
Abstract
beta1-Adrenergic receptor (beta1AR) stimulation confers cardioprotection via beta-arrestin-de pend ent transactivation of epidermal growth factor receptors (EGFRs), however, the precise mechanism for this salutary process is unknown. We tested the hypothesis that the beta1AR and EGFR form a complex that differentially directs intracellular signaling pathways. beta1AR stimulation and EGF ligand can each induce equivalent EGFR phosphorylation, internalization, and downstream activation of ERK1/2, but only EGF ligand causes translocation of activated ERK to the nucleus, whereas beta1AR-stimulated/EGFR-transactivated ERK is restricted to the cytoplasm. beta1AR and EGFR are shown to interact as a receptor complex both in cell culture and endogenously in human heart, an interaction that is selective and undergoes dynamic regulation by ligand stimulation. Although catecholamine stimulation mediates the retention of beta1AR-EGFR interaction throughout receptor internalization, direct EGF ligand stimulation initiates the internalization of EGFR alone. Continued interaction of beta1AR with EGFR following activation is dependent upon C-terminal tail GRK phosphorylation sites of the beta1AR and recruitment of beta-arrestin. These data reveal a new signaling paradigm in which beta-arrestin is required for the maintenance of a beta1AR-EGFR interaction that can direct cytosolic targeting of ERK in response to catecholamine stimulation.
Collapse
Affiliation(s)
| | | | | | | | - Howard A. Rockman
- From the Departments ofMedicine
- Cell Biology, and
- Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina 27710
| |
Collapse
|
31
|
McCaffrey G, Welker J, Scott J, van Der Salm L, Grimes ML. High-resolution fractionation of signaling endosomes containing different receptors. Traffic 2009; 10:938-50. [PMID: 19416476 PMCID: PMC3031173 DOI: 10.1111/j.1600-0854.2009.00909.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Receptor endocytosis is regulated by ligand binding, and receptors may signal after endocytosis in signaling endosomes. We hypothesized that signaling endosomes containing different types of receptors may be distinct from one another and have different physical characteristics. To test this hypothesis, we developed a high-resolution organelle fractionation method based on mass and density, optimized to resolve endosomes from other organelles. Three different types of receptors undergoing ligand-induced endocytosis were localized predominately in endosomes that were resolved from one another using this method. Endosomes containing activated receptor tyrosine kinases (RTKs), TrkA and EGFR, were similar to one another. Endosomes containing p75(NTR) (in the tumor necrosis receptor superfamily) and PAC1 (a G-protein-coupled receptor) were distinct from each other and from RTK endosomes. Receptor-specific endosomes may direct the intracellular location and duration of signal transduction pathways to dictate response to signals and determine cell fate.
Collapse
Affiliation(s)
- Gretchen McCaffrey
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | - Jonathan Welker
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | - Jessica Scott
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Louise van Der Salm
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | - Mark L. Grimes
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, USA
| |
Collapse
|
32
|
Disanza A, Frittoli E, Palamidessi A, Scita G. Endocytosis and spatial restriction of cell signaling. Mol Oncol 2009; 3:280-96. [PMID: 19570732 DOI: 10.1016/j.molonc.2009.05.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/28/2009] [Accepted: 05/28/2009] [Indexed: 02/06/2023] Open
Abstract
Endocytosis and recycling are essential components of the wiring enabling cells to perceive extracellular signals and transduce them in a temporally and spatially controlled fashion, directly influencing not only the duration and intensity of the signaling output, but also their correct location. Here, we will discuss key experimental evidence that support how different internalization routes, the generation of diverse endomembrane platforms, and cycles of internalization and recycling ensure polarized compartmentalization of signals, regulating a number of physiological and pathologically-relevant processes in which the resolution of spatial information is vital for their execution.
Collapse
Affiliation(s)
- Andrea Disanza
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | | | | | | |
Collapse
|
33
|
Kardassis D, Murphy C, Fotsis T, Moustakas A, Stournaras C. Control of transforming growth factor β signal transduction by small GTPases. FEBS J 2009; 276:2947-65. [DOI: 10.1111/j.1742-4658.2009.07031.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Abstract
Cellular signaling pathways respond to external inputs to drive pivotal cellular decisions. Far from being mere data relay systems, signaling cascades form complex interacting networks with multiple layers of feedback and feed-forward control loops regulated in both space and time. While it may be intuitively obvious that this complexity allows cells to assess and respond appropriately to a myriad of external cues, untangling the wires to understand precisely how complex networks function as control and computational systems presents a daunting challenge to theoretical and experimental biologists alike. In this review we have focused on activation of the canonical MAP kinase cascade by receptor tyrosine kinases (RTKs) in order to examine some of the fundamental design principles used to build biological circuits and control systems. In particular, we explore how cells can reconfigure signaling cascades to generate distinct biological outputs by utilizing the unique spatial constraints available in biological membranes.
Collapse
Affiliation(s)
- Angus Harding
- Queensland Brain Institute; University of Queensland; Brisbane, Australia
| | - John F. Hancock
- Institute for Molecular Bioscience; University of Queensland; Brisbane, Australia
| |
Collapse
|
35
|
Au CE, Bell AW, Gilchrist A, Hiding J, Nilsson T, Bergeron JJ. Organellar proteomics to create the cell map. Curr Opin Cell Biol 2007; 19:376-85. [PMID: 17689063 DOI: 10.1016/j.ceb.2007.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 05/01/2007] [Indexed: 01/09/2023]
Abstract
The elucidation of a complete, accurate, and permanent representation of the proteome of the mammalian cell may be achievable piecemeal by an organellar based approach. The small volume of organelles assures high protein concentrations. Providing isolated organelles are homogenous, this assures reliable protein characterization within the sensitivity and dynamic range limits of current mass spec based analysis. The stochastic aspect of peptide selection by tandem mass spectrometry for sequence determination by fragmentation is dealt with by multiple biological replicates as well as by prior protein separation on 1-D gels. Applications of this methodology to isolated synaptic vesicles, clathrin coated vesicles, endosomes, phagosomes, endoplasmic reticulum, and Golgi apparatus, as well as Golgi-derived COPI vesicles, have led to mechanistic insight into the identity and function of these organelles.
Collapse
Affiliation(s)
- Catherine E Au
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Signals received at the cell surface must be properly transmitted to critical targets within the cell to achieve the appropriate biological response. This process of signal transduction is often initiated by receptor tyrosine kinases (RTKs), which function as entry points for many extracellular cues and play a critical role in recruiting the intracellular signaling cascades that orchestrate a particular response. Essential for most RTK-mediated signaling is the engagement and activation of the mitogen-activated protein kinase (MAPK) cascade comprised of the Raf, MEK and extracellular signal-regulated kinase (ERK) kinases. For many years, it was thought that signaling from RTKs to ERK occurred only at the plasma membrane and was mediated by a simple, linear Ras-dependent pathway. However, the limitation of this model became apparent with the discovery that Ras and ERK can be activated at various intracellular compartments, and that RTKs can modulate Ras/ERK signaling from these sites. Moreover, ERK scaffolding proteins and signaling modulators have been identified that play critical roles in determining the strength, duration and location of RTK-mediated ERK signaling. Together, these factors contribute to the diversity of biological responses generated by RTK signaling.
Collapse
Affiliation(s)
- M M McKay
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA
| | | |
Collapse
|
37
|
Geldner N, Hyman DL, Wang X, Schumacher K, Chory J. Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev 2007; 21:1598-602. [PMID: 17578906 PMCID: PMC1899468 DOI: 10.1101/gad.1561307] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The LRR receptor serine/threonine kinases are a major eukaryotic receptor family, for which the central regulatory mechanism of endosomal trafficking remains largely unadressed. We show that the steroid receptor BRI1 localizes to both plasma membrane and early endosomal compartments, even when observed at low, endogenous expression levels, and that its localization and turnover are independent of ligand. However, increasing endosomal localization of BRI1 enhances activation of the pathway and genomic responses. Our data indicate distinct signaling and trafficking mechanisms within this receptor class and show that the use of endosomes as signaling compartments is an unexpectedly broad phenomenon in eukaryotes.
Collapse
Affiliation(s)
- Niko Geldner
- Plant Biology Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | - Derek L. Hyman
- Plant Biology Laboratory, The Salk Institute, La Jolla, California 92037, USA
- Howard Hughes Medical Institute Plant Biology Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | - Xuelu Wang
- Plant Biology Laboratory, The Salk Institute, La Jolla, California 92037, USA
- Howard Hughes Medical Institute Plant Biology Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | - Karin Schumacher
- Zentrum für Molekularbiologie der Pflanzen, 72076 Tübingen, Germany
| | - Joanne Chory
- Plant Biology Laboratory, The Salk Institute, La Jolla, California 92037, USA
- Howard Hughes Medical Institute Plant Biology Laboratory, The Salk Institute, La Jolla, California 92037, USA
- Corresponding author.E-MAIL ; FAX (858) 558-6379
| |
Collapse
|
38
|
Cooper MS, Virta VC. Evolution of gastrulation in the ray-finned (actinopterygian) fishes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:591-608. [PMID: 17285635 DOI: 10.1002/jez.b.21142] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sometime before or during the early Mesozoic era, new lineages of actinopterygian (ray-finned) fishes radically transformed their mode of gastrulation. During this evolutionary transformation, yolky endoderm was a hotspot for ontogenetic change. As holoblastic cleavage patterns were modified into meroblastic cleavage patterns, major changes in cell identity specification occurred within the mesendodermal marginal zone, as well as in the superficial epithelium of the embryo. These cellular identity changes resulted in the appearance of two novel extra-embryonic tissues within the embryos of teleostean fishes: the enveloping layer (EVL) and the yolk syncytial layer (YSL). The generation of these extra-embryonic tissues prompted major morphogenetic changes within the Organizer Region. As these evolutionary changes occurred, the outermost cell layer of the Organizer (the Organizer Epithelium) was apparently retained as a signaling center necessary for the establishment of left-right embryonic asymmetry in the embryo. Conserved and derived features of Organizer morphogenesis and gastrulation within ancient lineages of ray-finned fishes provide important insights into how the genetically encoded cell behaviors of early morphogenesis can be altered during the course of evolution. In particular, a highly divergent form of actinopterygian gastrulation, which is found in the annual fishes of South America, demonstrates that no aspect of vertebrate gastrulation is inherently immutable to evolutionary change.
Collapse
Affiliation(s)
- Mark S Cooper
- Department of Biology and Center for Developmental Biology, University of Washington, Seattle, Washington 98195-1800, USA.
| | | |
Collapse
|
39
|
Oliver C, Fujimura A, Silveira E Souza AMM, Orlandini de Castro R, Siraganian RP, Jamur MC. Mast cell-specific gangliosides and FcepsilonRI follow the same endocytic pathway from lipid rafts in RBL-2H3 cells. J Histochem Cytochem 2006; 55:315-25. [PMID: 17164410 DOI: 10.1369/jhc.6a7037.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recent studies have shown that, in mast cells, membrane microdomains rich in cholesterol and glycosphingolipids called lipid rafts play an important role in FcepsilonRI signaling. The present study demonstrates that, in RBL-2H3 cells following stimulation, the mast cell-specific gangliosides associated with FcepsilonRI are internalized from lipid rafts along with the receptor. When the cells are labeled with iodinated antibodies against the gangliosides or against FcepsilonRI and the cell components are then fractionated on Percoll density gradients, in stimulated cells the gangliosides are internalized with the same kinetics as FcepsilonRI and at 3 hr are present in the dense lysosome fraction. Using transmission electron microscopy, with antibody against the gangliosides conjugated to horseradish peroxidase and antibody against FcepsilonRI conjugated to colloidal gold, it was possible to demonstrate that the gangliosides and FcepsilonRI are internalized in the same coated vesicles. At 5 min, the gangliosides and FcepsilonRI can be identified in early endosomes and at 3 hr are found together in acid phosphatase-positive lysosomes. This study demonstrates that the mast cell-specific gangliosides are internalized from lipid rafts in the same vesicles and traffic intracellularly with the same kinetics as FcepsilonRI. This study contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Faculdade de Medicina de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
40
|
Varsano T, Dong MQ, Niesman I, Gacula H, Lou X, Ma T, Testa JR, Yates JR, Farquhar MG. GIPC is recruited by APPL to peripheral TrkA endosomes and regulates TrkA trafficking and signaling. Mol Cell Biol 2006; 26:8942-52. [PMID: 17015470 PMCID: PMC1636811 DOI: 10.1128/mcb.00305-06] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
GIPC is a PDZ protein located on peripheral endosomes that binds to the juxtamembrane region of the TrkA nerve growth factor (NGF) receptor and has been implicated in NGF signaling. We establish here that endogenous GIPC binds to the C terminus of APPL, a Rab5 binding protein, which is a marker for signaling endosomes. When PC12(615) cells are treated with either NGF or antibody agonists to activate TrkA, GIPC and APPL translocate from the cytoplasm and bind to incoming, endocytic vesicles carrying TrkA concentrated at the tips of the cell processes. GIPC, but not APPL, dissociates from these peripheral endosomes prior to or during their trafficking from the cell periphery to the juxtanuclear region, where they acquire EEA1. GIPC's interaction with APPL is essential for recruitment of GIPC to peripheral endosomes and for TrkA signaling, because a GIPC PDZ domain mutant that cannot bind APPL or APPL knockdown with small interfering RNA inhibits NGF-induced GIPC recruitment, mitogen-activated protein kinase activation, and neurite outgrowth. GIPC is also required for efficient endocytosis and trafficking of TrkA because depletion of GIPC slows down endocytosis and trafficking of TrkA and APPL to the early EEA1 endosomes in the juxtanuclear region. We conclude that GIPC, following its recruitment to TrkA by APPL, plays a key role in TrkA trafficking and signaling from endosomes.
Collapse
Affiliation(s)
- Tal Varsano
- Department of Cellular and Molecular Medicine, University of California-San Diego, George Palade Laboratories Room 210, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
van der Goot FG, Gruenberg J. Intra-endosomal membrane traffic. Trends Cell Biol 2006; 16:514-21. [PMID: 16949287 DOI: 10.1016/j.tcb.2006.08.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 08/17/2006] [Indexed: 01/08/2023]
Abstract
Following endocytosis, ubiquitinated signaling receptors are incorporated within intraluminal vesicles of forming multivesicular endosomes. These vesicles then follow the pathway from early to late endosomes, remaining within the endosomal lumen, and are eventually delivered to lysosomes, where they are degraded together with their protein cargo. However, intraluminal vesicles do not always end up in lysosomes for degradation; they can also fuse back with the limiting membrane of late endosomes. This route, which might be regulated by lyso-bisphosphatidic acid and its putative effector Alix, can be hijacked by the anthrax toxin and vesicular stomatitis virus and is presumably exploited by proteins and lipids that transit through intraluminal vesicles. Alternatively, these vesicles can be released extracellularly, like HIV in macrophages, upon fusion of endosomes or lysosomes with the plasma membrane.
Collapse
Affiliation(s)
- F Gisou van der Goot
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva
| | | |
Collapse
|
42
|
Abstract
Signal transduction down the Ras/MAPK pathway, including that critical to T cell activation, proliferation, and differentiation, has been generally considered to occur at the plasma membrane. It is now clear that the plasma membrane does not represent the only platform for Ras/MAPK signaling. Moreover, the plasma membrane itself is no longer considered a uniform structure but rather a patchwork of microdomains that can compartmentalize signaling. Signaling on internal membranes was first recognized on endosomes. Genetically encoded fluorescent probes for signaling events such as GTP/GDP exchange on Ras have revealed signaling on a variety of intracellular membranes, including the Golgi apparatus. In fibroblasts, Ras is activated on the plasma membrane and Golgi with distinct kinetics. The pathway by which Golgi-associated Ras becomes activated involves PLCgamma and RasGRP1 and may also require retrograde trafficking of Ras from the plasma membrane to the Golgi as a consequence of depalmitoylation. Thus, the Ras/MAPK pathway represents a clear example of compartmentalized signaling.
Collapse
Affiliation(s)
- Adam Mor
- Department of Medicine, New York University Medical Center, New York, NY 10016-6402, USA.
| | | |
Collapse
|
43
|
Rives AF, Rochlin KM, Wehrli M, Schwartz SL, DiNardo S. Endocytic trafficking of Wingless and its receptors, Arrow and DFrizzled-2, in the Drosophila wing. Dev Biol 2006; 293:268-83. [PMID: 16530179 PMCID: PMC7897421 DOI: 10.1016/j.ydbio.2006.02.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 02/03/2006] [Accepted: 02/06/2006] [Indexed: 11/19/2022]
Abstract
During animal development, Wnt/Wingless (Wg) signaling is required for the patterning of multiple tissues. While insufficient signal transduction is detrimental to normal development, ectopic activation of the pathway can be just as devastating. Thus, numerous controls exist to precisely regulate Wg signaling levels. Endocytic trafficking of pathway components has recently been proposed as one such control mechanism. Here, we characterize the vesicular trafficking of Wg and its receptors, Arrow and DFrizzled-2 (DFz2), and investigate whether trafficking is important to regulate Wg signaling during dorsoventral patterning of the larval wing. We demonstrate a role for Arrow and DFz2 in Wg internalization. Subsequently, Wg, Arrow and DFz2 are trafficked through the endocytic pathway to the lysosome, where they are degraded in a hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)-dependent manner. Surprisingly, we find that Wg signaling is not attenuated by lysosomal targeting in the wing disc. Rather, we suggest that signaling is dampened intracellularly at an earlier trafficking step. This is in contrast to patterning of the embryonic epidermis, where lysosomal targeting is required to restrict the range of Wg signaling. Thus, signal modulation by endocytic routing will depend on the tissue to be patterned and the goals during that patterning event.
Collapse
Affiliation(s)
- Anna F. Rives
- University of Pennsylvania School of Medicine, Department of Cell and Developmental Biology, Philadelphia, PA 190104-6058, USA
| | - Kate M. Rochlin
- University of Pennsylvania School of Medicine, Department of Cell and Developmental Biology, Philadelphia, PA 190104-6058, USA
| | - Marcel Wehrli
- Oregon Health and Science University, Department of Cell and Developmental Biology, Portland, OR 97201-3098, USA
| | - Stephanie L. Schwartz
- University of Pennsylvania School of Medicine, Department of Cell and Developmental Biology, Philadelphia, PA 190104-6058, USA
| | - Stephen DiNardo
- University of Pennsylvania School of Medicine, Department of Cell and Developmental Biology, Philadelphia, PA 190104-6058, USA
| |
Collapse
|
44
|
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway is activated in response to a variety of extracellular stimuli such as growth factor stimulation. The best-characterized MAPK pathway involves the sequential activation of Raf, MEK and ERK proteins, capable of regulating the gene expression required for cell proliferation. Binding to specific lipids can regulate both the subcellular localization of these MAPK signaling proteins as well as their kinase activities. More recently it has become increasingly clear that the majority of MAPK signaling takes place intracellularly on endosomes and that the perturbation of endocytic pathways has dramatic effects on the MAPK pathway. This review highlights the direct effects of lipids on the localization and regulation of MAPK pathway proteins. In addition, the indirect effects lipids have on MAPK signaling via their regulation of endocytosis and the biophysical properties of different membrane lipids as a result of growth factor stimulation are discussed. The ability of a protein to bind to both lipids and proteins at the same time may act like a "ZIP code" to target that protein to a highly specific microlocation and could also allow a protein to be "handed off" to maintain tight control over its binding partners and location.
Collapse
Affiliation(s)
- Deborah H Anderson
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon, Sask., Canada S7N 4H4.
| |
Collapse
|
45
|
Abstract
Rab proteins are small GTPases involved in the regulation of vesicular membrane traffic. Research done in the past years has demonstrated that some of these proteins are under the control of signal transduction pathways. Still, several recent papers point out to a new unexpected role for this family of Ras-related proteins, as potential regulators of intracellular signaling pathways. In particular, several evidence indicate that members of the Rab family of small GTPases, through their effectors, are key molecules participating to the regulation of numerous signal transduction pathways profoundly influencing cell proliferation, cell nutrition, innate immune response, fragmentation of compartments during mitosis and apoptosis. Even more surprisingly, direct involvement of Rab proteins in signaling to the nucleus has been demonstrated. This review will focus on aspects of Rab proteins function connected to signal transduction and, in particular, connections between membrane traffic and other cell pathways will be examined.
Collapse
Affiliation(s)
- Cecilia Bucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università di Lecce, Via Provinciale Monteroni, 73100 Lecce, Italy.
| | | |
Collapse
|
46
|
Tsacoumangos A, Tsacoumango A, Kil SJ, Ma L, Sönnichsen FD, Carlin C. A novel dileucine lysosomal-sorting-signal mediates intracellular EGF-receptor retention independently of protein ubiquitylation. J Cell Sci 2005; 118:3959-71. [PMID: 16105874 DOI: 10.1242/jcs.02527] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the main goals of this study was to understand the relationship between an epidermal growth factor (EGF) receptor dileucine (LL)-motif (679-LL) required for lysosomal sorting and the protein ubiquitin ligase CBL. We show that receptors containing 679-AA (di-alanine) substitutions that are defective for ligand-induced degradation nevertheless bind CBL and undergo reversible protein ubiquitylation similar to wild-type receptors. We also demonstrate that 679-LL but not CBL is required for EGF receptor downregulation by an endosomal membrane protein encoded by human adenoviruses that uncouples internalization from post-endocytic sorting to lysosomes. 679-LL is necessary for endosomal retention as well as degradation by the adenovirus protein, and is also transferable to reporter molecules. Using NMR spectroscopy, we show that peptides with wild-type 679-LL or mutant 679-AA sequences both exhibit alpha-helical structural propensities but that this structure is not stable in water. A similar analysis carried out in hydrophobic media showed that the alpha-helical structure of the wild-type peptide is stabilized by specific interactions mediated by side-chains in both leucine residues. This structure distinguishes 679-LL from other dileucine-based sorting-signals with obligatory amino-terminal acidic residues that are recognized in the form of an extended beta or beta-like conformation. Taken together, these data show that 679-LL is an alpha-helical stabilizing motif that regulates a predominant step during lysosomal sorting, involving intracellular retention under both sub-saturating and saturating conditions.
Collapse
Affiliation(s)
- Amy Tsacoumangos
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | | | | | |
Collapse
|
47
|
Miaczynska M, Pelkmans L, Zerial M. Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol 2005; 16:400-6. [PMID: 15261672 DOI: 10.1016/j.ceb.2004.06.005] [Citation(s) in RCA: 413] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent studies indicate that endocytic organelles can play a more active role in signal propagation and amplification than was recognised before. By deciphering the interplay between endocytosis and signalling, we will be able to gain a more sophisticated level of understanding of signal transduction mechanisms.
Collapse
Affiliation(s)
- Marta Miaczynska
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | | | |
Collapse
|
48
|
Abstract
Tom1L1 (Tom1-like1) and related proteins Tom1 (Target of Myb1) and Tom1L2 (Tom1-like2) constitute a new protein family characterized by the presence of a VHS (Vps27p/Hrs/Stam) domain in the N-terminal portion followed by a GAT (GGA and Tom) domain. Recently it was demonstrated that the GAT domain of both Tom1 and Tom1L1 binds ubiquitin, suggesting that these proteins might participate in the sorting of ubiquitinated proteins into multivesicular bodies (MVBs). Here we report a novel interaction between Tom1L1 and members of the MVB sorting machinery. Specifically, we found that the VHS domain of Tom1L1 interacts with Hrs (Hepatocyte growth factor-regulated tyrosine kinase substrate), whereas a PTAP motif, located between the VHS and GAT domain of Tom1L1, is responsible for binding to TSG101 (tumor susceptibility gene 101). Myc epitope-tagged Tom1L1 showed a cytosolic distribution but was recruited to endosomes following Hrs expression. In addition, Tom1L1 possesses several tyrosine motifs at the C-terminal region that mediate interactions with members of the Src family kinases and other signaling proteins such as Grb2 and p85. We showed that a fraction of Fyn kinase localizes at endosomes and that this distribution becomes more evident after epidermal growth factor internalization. Moreover, expression of a constitutive active form of Fyn also promoted the recruitment of Tom1L1 to enlarged endosomes. Taken together, we propose that Tom1L1 could act as an intermediary between signaling and degradative pathways.
Collapse
Affiliation(s)
- Rosa Puertollano
- Laboratory of Cell Signaling, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
49
|
Authier F, Merlen C, Amessou M, Danielsen GM. Use of high affinity insulin analogues to assess the functional relationships between insulin receptor trafficking, mitogenic signaling and mRNA expression in rat liver. Biochimie 2004; 86:157-66. [PMID: 15134829 DOI: 10.1016/j.biochi.2004.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 03/12/2004] [Indexed: 11/21/2022]
Abstract
We have investigated the functional relationships between insulin receptor (IR) trafficking, mitogenic signaling and mRNA expression in rat liver and primary hepatocytes. The low-K(d) insulin analogues [His(A8),His(B4), Glu(B10),His(B27)]-human insulin (-HI) (the H2-analogue), [Asp(B10)]HI and [Glu(A13),Glu(B10)]HI, were studied in liver parenchymal cells and compared with wild-type HI and epidermal growth factor (EGF), a mitogenic inducer. The extent and duration of IR endocytosis were markedly increased in response to the H2-analogue and [Asp(B10)]HI compared to wild-type HI, but similar to HI after [Glu(A13),Glu(B10)]HI administration. Importantly, the insulin analogues induced a higher and more prolonged tyrosine phosphorylation of the IR-beta subunit in endosomes compared to authentic HI. A low cell-free endosome-lysosome transfer of the internalized IR was only observed in response to HI and H2-analogue injection. Concomitant with the low endosome-lysosome transfer of the intact IR-beta subunit, 47 and 50 kDa fragments of the IR-beta subunit accumulated in lysosomal fractions. Neither HI nor the insulin analogues promoted the endosomal recruitment and tyrosine phosphorylation of Shc, whereas EGF accessed the Shc signaling pathway. Moreover, EGF induced a fast and prolonged activation of Raf-1 and MAP-kinase pathways whereas HI and insulin analogues displayed a moderate and transient effect. Finally, treatment of primary rat hepatocytes with HI and the protease-resistant H2-analogue did not affect the total level and relative expression of isotype A and B of IR mRNA regardless of time of exposure. These results suggest a lack of relationship between IR trafficking, endosomal tyrosine phosphorylation and mitogenic signaling in rat liver in vivo.
Collapse
Affiliation(s)
- François Authier
- Faculté de Pharmacie Paris XI, Institut National de la Santé et de la Recherche Médicale U510, 5, rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France.
| | | | | | | |
Collapse
|
50
|
Lee H, Jang IH, Ryu SH, Park TG. N-terminal site-specific mono-PEGylation of epidermal growth factor. Pharm Res 2003; 20:818-25. [PMID: 12751640 DOI: 10.1023/a:1023402123119] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE N-terminal site-specific mono-PEGylation of recombinant human epidermal growth factor (EGF) was accomplished using polyethyleneglycol (PEG) derivatives (Mw = 2000 and 5000) through a reactive terminal aldehyde group. METHODS The site-specific PEG conjugation was conducted ata slightly acidic pH condition (pH 5.5). The mono-PEGylation was targeted to an alpha-amine group at the N-terminal end of EGF to minimize reduction of biologic activity. Tryptic digestion mapping and MALDI-TOF MS techniques were applied to show the occurrence of mono-PEGylation at the N-terminus of EGF. RESULTS The site-specific mono-PEGylated EGF, when compared with native EGF, fully retained its in vitro biologic activities such a cell proliferation and intracellular signal transduction. This revealed that although a synthetic polymer of a PEG was covalently conjugated to EGF, the internalized complex of PEGylated EGF-receptor within cells did not hamper the intracellular signal transduction events. The PEGylated EGF also exhibited a prolonged circulation in blood stream in vivo and markedly enhanced physical stability whe incubated with tissue homogenate. CONCLUSION N-terminally mono-PEGylated EGF shows increased physical stability while retaining its biologic activity.
Collapse
Affiliation(s)
- Haeshin Lee
- Department of Biologic Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | |
Collapse
|