1
|
Tomimoto S, Iwasa Y, Satake A. Branching architecture affects genetic diversity within an individual tree. J Theor Biol 2025; 605:112093. [PMID: 40089098 DOI: 10.1016/j.jtbi.2025.112093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 02/02/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
While a tree grows over many years, somatic mutations accumulate and form genetic variation among branches within an individual. Trees can transmit such mutations to subsequent generations, potentially enhancing the genetic diversity of the population. We study a mathematical model to understand the relationship between within-individual genetic variation and branching architecture. We generate branching architecture by repeatedly adding two new branches (main and lateral daughter branches) to each terminal branch (mother branch). The architecture is characterized by two key parameters: main-lateral ratio (ML) and daughter-mother ratio (DM). During branch elongation, somatic mutations accumulate in the stem cells of a shoot apical meristem (SAM) at the tip of each branch. In branching, all the stem cells are passed on from the mother to the main daughter branch, but only one stem cell is chosen for the lateral daughter branch. We evaluate genetic variation by Z¯, the mean genetic differences between all pairs of branches of a tree, and examine how Z¯ varies with DM and ML while keeping the total branch length constant. As a result, (1) Z¯ increases monotonically with ML; (2) Z¯ attains the maximum for an intermediate DM, when stem cells in a SAM are genetically homogeneous; (3) Z¯ decreases monotonically with DM when stem cells are heterogeneous. The effect of branching architecture varies significantly depending on the genetic heterogeneity within a SAM, which results from the behavior of stem cells during growth. Our study sheds light on the overlooked role of branching architecture in storing genetic diversity.
Collapse
Affiliation(s)
- Sou Tomimoto
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yoh Iwasa
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Couturier É, Llanos P, Lizée A, Besson S, Dumais J. The self-replicating cellular organization of shoot apical meristems. AMERICAN JOURNAL OF BOTANY 2025; 112:e70027. [PMID: 40183235 DOI: 10.1002/ajb2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 04/05/2025]
Abstract
PREMISE Apical meristems of land plants have played a fundamental role in the evolution of complex shoot architectures. The most common structure of shoot apical meristems in bryophytes, lycophytes, and ferns is characterized by a single apical cell surrounded by a spiral of apical derivatives. Despite the importance of this type of meristem organization, it remains unclear how it is maintained at the apex. METHODS We analyzed the distribution of different meristem organizations within a data set of 205 images of shoot apical meristems representing 91 species of bryophytes, lycophytes, and ferns. In parallel, we developed a mathematical and computational model to determine whether the meristem structural types observed empirically are predicted from Sachs's division rules; namely, cells divide symmetrically while positioning their new wall at a right angle to the parental walls. RESULTS According to our data set, only four meristem structural types are observed in nature, corresponding to apical cells dividing along one, two, three, or four faces. In addition, the prevalence of the structural types in diverse plant lineages correlates with the shape of the meristems on which they are found. Our model based on Sachs's division rules indicates that as much as six meristem structural types are geometrically possible, but only the four types observed empirically are dynamically stable for realistic meristem geometries. CONCLUSIONS Simple division rules, which we interpret as biophysical constraints on the assembly of the preprophase band, may therefore explain the cellular organization of the shoot apical meristem in three major groups of land plants.
Collapse
Affiliation(s)
| | - Paula Llanos
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile
| | | | | | - Jacques Dumais
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile
| |
Collapse
|
3
|
Doidy J, Wang Y, Gouaille L, Goma-Louamba I, Jiang Z, Pourtau N, Le Gourrierec J, Sakr S. Sugar Transport and Signaling in Shoot Branching. Int J Mol Sci 2024; 25:13214. [PMID: 39684924 PMCID: PMC11641904 DOI: 10.3390/ijms252313214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The source-sink relationship is critical for proper plant growth and development, particularly for vegetative axillary buds, whose activity shapes the branching pattern and ultimately the plant architecture. Once formed from axillary meristems, axillary buds remain dormant or become active to grow into new branches. This transition is notably driven by the regulation of the bud sink strength, which is reflected in the ability to unload, metabolize and store photoassimilates. Plants have so far developed two main mechanisms for unloading sugars (sucrose) towards sink organs, a symplasmic pathway and an apoplasmic pathway, but so far limited investigations have been reported about the modes of sugar uptake during the transition from the dormant to the active outgrowth state of the bud. The available data indicate that the switch from dormant bud to active outgrowing state, requires sugar and is shortly preceded by an increase in bud metabolic activity and a remobilization of the stem starch reserves in favor of growing buds. This activation of the bud sink strength is accompanied by an up-regulation of the main markers of apoplasmic unloading, such as sugar transporters (sucrose transporters-SUTs; sugar will eventually be exported transporters-SWEETs), sucrose hydrolyzing enzymes (cell wall invertase-CWINV) and sugar metabolic pathways (glycolysis/tricarboxylic cycle-TCA; oxidative pentose phosphate pathway-OPPP). As these results are limited to a few species, they are not sufficient to provide a complete and accurate picture of the mode(s) of sugar unloading toward axillary buds and deserve to be complemented by additional studies in a wide variety of plants using systems integration, combining genetic, molecular and immunolocalization approaches. Altogether, we discuss here how sugar is a systemic regulator of shoot branching, acting both as an energy-rich molecule and a signaling entity in the establishment of the bud sink strength.
Collapse
Affiliation(s)
- Joan Doidy
- EBI Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France; (J.D.)
| | - Yuhui Wang
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France (L.G.); (Z.J.); (J.L.G.)
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Léo Gouaille
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France (L.G.); (Z.J.); (J.L.G.)
| | - Ingrid Goma-Louamba
- EBI Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France; (J.D.)
| | - Zhengrong Jiang
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France (L.G.); (Z.J.); (J.L.G.)
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Nathalie Pourtau
- EBI Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France; (J.D.)
| | - José Le Gourrierec
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France (L.G.); (Z.J.); (J.L.G.)
| | - Soulaiman Sakr
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France (L.G.); (Z.J.); (J.L.G.)
| |
Collapse
|
4
|
Kean-Galeno T, Lopez-Arredondo D, Herrera-Estrella L. The Shoot Apical Meristem: An Evolutionary Molding of Higher Plants. Int J Mol Sci 2024; 25:1519. [PMID: 38338798 PMCID: PMC10855264 DOI: 10.3390/ijms25031519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The shoot apical meristem (SAM) gives rise to the aerial structure of plants by producing lateral organs and other meristems. The SAM is responsible for plant developmental patterns, thus determining plant morphology and, consequently, many agronomic traits such as the number and size of fruits and flowers and kernel yield. Our current understanding of SAM morphology and regulation is based on studies conducted mainly on some angiosperms, including economically important crops such as maize (Zea mays) and rice (Oryza sativa), and the model species Arabidopsis (Arabidopsis thaliana). However, studies in other plant species from the gymnosperms are scant, making difficult comparative analyses that help us understand SAM regulation in diverse plant species. This limitation prevents deciphering the mechanisms by which evolution gave rise to the multiple plant structures within the plant kingdom and determines the conserved mechanisms involved in SAM maintenance and operation. This review aims to integrate and analyze the current knowledge of SAM evolution by combining the morphological and molecular information recently reported from the plant kingdom.
Collapse
Affiliation(s)
- Tania Kean-Galeno
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX 79409, USA; (T.K.-G.); (D.L.-A.)
| | - Damar Lopez-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX 79409, USA; (T.K.-G.); (D.L.-A.)
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX 79409, USA; (T.K.-G.); (D.L.-A.)
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36821, Mexico
| |
Collapse
|
5
|
Baranov D, Dolgov S, Timerbaev V. New Advances in the Study of Regulation of Tomato Flowering-Related Genes Using Biotechnological Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:359. [PMID: 38337892 PMCID: PMC10856997 DOI: 10.3390/plants13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Dolgov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
6
|
Nunes MH, Vaz MC, Camargo JLC, Laurance WF, de Andrade A, Vicentini A, Laurance S, Raumonen P, Jackson T, Zuquim G, Wu J, Peñuelas J, Chave J, Maeda EE. Edge effects on tree architecture exacerbate biomass loss of fragmented Amazonian forests. Nat Commun 2023; 14:8129. [PMID: 38097604 PMCID: PMC10721830 DOI: 10.1038/s41467-023-44004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Habitat fragmentation could potentially affect tree architecture and allometry. Here, we use ground surveys of terrestrial LiDAR in Central Amazonia to explore the influence of forest edge effects on tree architecture and allometry, as well as forest biomass, 40 years after fragmentation. We find that young trees colonising the forest fragments have thicker branches and architectural traits that optimise for light capture, which result in 50% more woody volume than their counterparts of similar stem size and height in the forest interior. However, we observe a disproportionately lower height in some large trees, leading to a 30% decline in their woody volume. Despite the substantial wood production of colonising trees, the lower height of some large trees has resulted in a net loss of 6.0 Mg ha-1 of aboveground biomass - representing 2.3% of the aboveground biomass of edge forests. Our findings indicate a strong influence of edge effects on tree architecture and allometry, and uncover an overlooked factor that likely exacerbates carbon losses in fragmented forests.
Collapse
Affiliation(s)
- Matheus Henrique Nunes
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA.
| | - Marcel Caritá Vaz
- Institute for Environmental Science and Sustainabilty, Wilkes University, Wilkes-Barre, PA, USA
| | - José Luís Campana Camargo
- Ecology Graduate Program, National Institute for Amazonian Research, (INPA), Manaus, Brazil
- Biological Dynamics of Forest Fragments Project (BDFFP) at National Institute for Amazonian Research (INPA), Manaus, Brazil
| | - William F Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Ana de Andrade
- Biological Dynamics of Forest Fragments Project (BDFFP) at National Institute for Amazonian Research (INPA), Manaus, Brazil
| | - Alberto Vicentini
- Biological Dynamics of Forest Fragments Project (BDFFP) at National Institute for Amazonian Research (INPA), Manaus, Brazil
- Coordenação de Pesquisas em Ecologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brasil
| | - Susan Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Pasi Raumonen
- Computing Sciences, Tampere University, Tampere, Finland
| | - Toby Jackson
- Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Gabriela Zuquim
- Amazon Research Team, Department of Biology, University of Turku, Turku, Finland
| | - Jin Wu
- School of Biological Sciences and Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, China
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, Spain
| | - Jérôme Chave
- Laboratoire Evolution et Diversité Biologique, CNRS, UPS, IRD, Université Paul Sabatier, Toulouse, France
| | - Eduardo Eiji Maeda
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.
- Finnish Meteorological Institute, FMI, Helsinki, Finland.
| |
Collapse
|
7
|
Cárdenas-Aquino MDR, Camas-Reyes A, Valencia-Lozano E, López-Sánchez L, Martínez-Antonio A, Cabrera-Ponce JL. The Cytokinins BAP and 2-iP Modulate Different Molecular Mechanisms on Shoot Proliferation and Root Development in Lemongrass ( Cymbopogon citratus). PLANTS (BASEL, SWITZERLAND) 2023; 12:3637. [PMID: 37896100 PMCID: PMC10610249 DOI: 10.3390/plants12203637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The known activities of cytokinins (CKs) are promoting shoot multiplication, root growth inhibition, and delaying senescence. 6-Benzylaminopurine (BAP) has been the most effective CK to induce shoot proliferation in cereal and grasses. Previously, we reported that in lemongrass (Cymbopogon citratus) micropropagation, BAP 10 µM induces high shoot proliferation, while the natural CK 6-(γ,γ-Dimethylallylamino)purine (2-iP) 10 µM shows less pronounced effects and developed rooting. To understand the molecular mechanisms involved, we perform a protein-protein interaction (PPI) network based on the genes of Brachypodium distachyon involved in shoot proliferation/repression, cell cycle, stem cell maintenance, auxin response factors, and CK signaling to analyze the molecular mechanisms in BAP versus 2-iP plants. A different pattern of gene expression was observed between BAP- versus 2-iP-treated plants. In shoots derived from BAP, we found upregulated genes that have already been demonstrated to be involved in de novo shoot proliferation development in several plant species; CK receptors (AHK3, ARR1), stem cell maintenance (STM, REV and CLV3), cell cycle regulation (CDKA-CYCD3 complex), as well as the auxin response factor (ARF5) and CK metabolism (CKX1). In contrast, in the 2-iP culture medium, there was an upregulation of genes involved in shoot repression (BRC1, MAX3), ARR4, a type A-response regulator (RR), and auxin metabolism (SHY2).
Collapse
Affiliation(s)
- María del Rosario Cárdenas-Aquino
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - Alberto Camas-Reyes
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - Lorena López-Sánchez
- Red de Estudios Moleculares Avanzados, Unidad de Microscopia Avanzada, Instituto de Ecología, A.C. INECOL 1975–2023, Carretera antigua a Coatepec 351, Col. El Haya, Xalapa 91073, Mexico;
| | - Agustino Martínez-Antonio
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato Gto 36824, Mexico; (M.d.R.C.-A.); (A.C.-R.); (E.V.-L.)
| |
Collapse
|
8
|
Rogo U, Fambrini M, Pugliesi C. Embryo Rescue in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3106. [PMID: 37687352 PMCID: PMC10489947 DOI: 10.3390/plants12173106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Embryo rescue (ER) techniques are among the oldest and most successful in vitro tissue culture protocols used with plant species. ER refers to a series of methods that promote the development of an immature or lethal embryo into a viable plant. Intraspecific, interspecific, or intergeneric crosses allow the introgression of important alleles of agricultural interest from wild species, such as resistance or tolerance to abiotic and biotic stresses or morphological traits in crops. However, pre-zygotic and post-zygotic reproductive barriers often present challenges in achieving successful hybridization. Pre-zygotic barriers manifest as incompatibility reactions that hinder pollen germination, pollen tube growth, or penetration into the ovule occurring in various tissues, such as the stigma, style, or ovary. To overcome these barriers, several strategies are employed, including cut-style or graft-on-style techniques, the utilization of mixed pollen from distinct species, placenta pollination, and in vitro ovule pollination. On the other hand, post-zygotic barriers act at different tissues and stages ranging from early embryo development to the subsequent growth and reproduction of the offspring. Many crosses among different genera result in embryo abortion due to the failure of endosperm development. In such cases, ER techniques are needed to rescue these hybrids. ER holds great promise for not only facilitating successful crosses but also for obtaining haploids, doubled haploids, and manipulating the ploidy levels for chromosome engineering by monosomic and disomic addition as well substitution lines. Furthermore, ER can be used to shorten the reproductive cycle and for the propagation of rare plants. Additionally, it has been repeatedly used to study the stages of embryonic development, especially in embryo-lethal mutants. The most widely used ER procedure is the culture of immature embryos taken and placed directly on culture media. In certain cases, the in vitro culture of ovule, ovaries or placentas enables the successful development of young embryos from the zygote stage to maturity.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (U.R.); (M.F.)
| |
Collapse
|
9
|
Clark CB, Ma J. The genetic basis of shoot architecture in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:55. [PMID: 37351274 PMCID: PMC10281916 DOI: 10.1007/s11032-023-01391-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/26/2023] [Indexed: 06/24/2023]
Abstract
Shoot architecture refers to the three-dimensional body plan of the above ground organs of the plant. The patterning of this body plan results from the tight genetic control of the size and maintenance of meristems, the initiation of axillary growth, and the timing of developmental phase transition. Variation in shoot architecture can result in dramatic differences in plant productivity and/or grain yield due to their effects on light interception, photosynthetic efficiency, response to agronomic inputs, and environmental adaptation. The fine-tuning of shoot architecture has consequently been of great interest to plant breeders, driving the need for deeper understanding of the genes and molecular mechanisms governing these traits. In soybean, the world's most important oil and protein crop, major components of shoot architecture include stem growth habit, plant height, branch angle, branch number, leaf petiole angle, and the size and shape of leaves. Key genes underlying some of these traits have been identified to integrate hormonal, developmental, and environmental signals modulating the growth and orientation of shoot organs. Here we summarize the current knowledge and recent advances in the understanding of the genetic control of these important architectural traits in soybean.
Collapse
Affiliation(s)
- Chancelor B. Clark
- Department of Agronomy, Purdue University, 915 W Mitch Daniels Blvd, West Lafayette, 47907 IN USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, 915 W Mitch Daniels Blvd, West Lafayette, 47907 IN USA
- Center for Plant Biology, Purdue University, West Lafayette, IN USA
| |
Collapse
|
10
|
Cheng Y, Liang C, Qiu Z, Zhou S, Liu J, Yang Y, Wang R, Yin J, Ma C, Cui Z, Song J, Li D. Jasmonic acid negatively regulates branch growth in pear. FRONTIERS IN PLANT SCIENCE 2023; 14:1105521. [PMID: 36824194 PMCID: PMC9941643 DOI: 10.3389/fpls.2023.1105521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The quality of seedlings is an important factor for development of the pear industry. A strong seedling with few branches and suitable internodes is ideal material as a rootstock for grafting and breeding. Several branching mutants of pear rootstocks were identified previously. In the present study, 'QAU-D03' (Pyrus communis L.) and it's mutants were used to explore the mechanism that affects branch formation by conducting phenotypic trait assessment, hormone content analysis, and transcriptome analysis. The mutant plant (MP) showed fewer branches, shorter 1-year-old shoots, and longer petiole length, compared to original plants (OP), i.e., wild type. Endogenous hormone analysis revealed that auxin, cytokinin, and jasmonic acid contents in the stem tips of MP were significantly higher than those of the original plants. In particular, the jasmonic acid content of the MP was 1.8 times higher than that of the original plants. Transcriptome analysis revealed that PcCOI1, which is a transcriptional regulatory gene downstream of the jasmonic acid signaling pathway, was expressed more highly in the MP than in the original plants, whereas the expression levels of PcJAZ and PcMYC were reduced in the MP compared with that of the original plants. In response to treatment with exogenous methyl jasmonate, the original plants phenotype was consistent with that of the MP in developing less branches. These results indicate that jasmonic acid negatively regulates branch growth of pear trees and that jasmonic acid downstream regulatory genes play a crucial role in regulating branching.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Chenglin Liang
- Haidu College, Qingdao Agricultural University, Laiyang, China
| | - Zhiyun Qiu
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Siqi Zhou
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jianlong Liu
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yingjie Yang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Ran Wang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jie Yin
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Chunhui Ma
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Zhenhua Cui
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jiankun Song
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Dingli Li
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
11
|
Ge Y, Gao Y, Jiao Y, Wang Y. A conserved module in the formation of moss midribs and seed plant axillary meristems. SCIENCE ADVANCES 2022; 8:eadd7275. [PMID: 36399581 PMCID: PMC9674282 DOI: 10.1126/sciadv.add7275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Different evolutionary lineages have evolved distinct characteristic body plans and anatomical structures, but their origins are largely elusive. For example, seed plants evolve axillary meristems to enable lateral branching. In moss, the phyllid (leaf) midrib containing specialized cells is responsible for water conduction and support. Midribs function like vascular tissues in flowering plants but may have risen from a different evolutionary path. Here, we demonstrate that midrib formation in the model moss Physcomitrium patens is regulated by orthologs of Arabidopsis LATERAL SUPPRESSOR (LAS), a key regulator of axillary meristem initiation. Midribs are missing in loss-of-function mutants, and ectopic formation of midrib-like structures is induced in overexpression lines. Furthermore, the PpLAS/AtLAS genes have conserved functions in the promotion of cell division in both lineages, which alleviates phenotypes in both Physcomitrium and Arabidopsis las mutants. Our results show that a conserved regulatory module is reused in divergent developmental programs, water-conducting and supporting tissues in moss, and axillary meristem initiation in seed plants.
Collapse
Affiliation(s)
- Yanhua Ge
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Kebrom TH, Doust AN. Activation of apoplastic sugar at the transition stage may be essential for axillary bud outgrowth in the grasses. FRONTIERS IN PLANT SCIENCE 2022; 13:1023581. [PMID: 36388483 PMCID: PMC9643854 DOI: 10.3389/fpls.2022.1023581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Shoot branches develop from buds in leaf axils. Once formed from axillary meristems, the buds enter a transition stage before growing into branches. The buds may transition into dormancy if internal and environmental factors limit sucrose supply to the buds. A fundamental question is why sucrose can be limiting at the transition stage for bud outgrowth, whereas new buds continue to be formed. Sucrose is transported to sink tissues through symplastic or apoplastic pathways and a shift from symplastic to apoplastic pathway is common during seed and fruit development. In addition, symplastic connected tissues are stronger sinks than symplastically isolated tissues that rely on sugars effluxed to the apoplast. Recent studies in sorghum, sugarcane, and maize indicate activation of apoplastic sugar in buds that transition to outgrowth but not to dormancy, although the mode of sugar transport during bud formation is still unclear. Since the apoplastic pathway in sorghum buds was specifically activated during bud outgrowth, we posit that sugar for axillary bud formation is most likely supplied through the symplastic pathway. This suggests a key developmental change at the transition stage, which alters the sugar transport pathway of newly-formed buds from symplastic to apoplastic, making the buds a less strong sink for sugars. We suggest therefore that bud outgrowth that relies on overflow of excess sucrose to the apoplast will be more sensitive to internal and environmental factors that enhance the growth of sink tissues and sucrose demand in the parent shoot; whereas bud formation that relies on symplastic sucrose will be less affected by these factors.
Collapse
Affiliation(s)
- Tesfamichael H. Kebrom
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, United States
- Center for Computational Systems Biology, College of Engineering, Prairie View A&M University, Prairie View, TX, United States
| | - Andrew N. Doust
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
13
|
Su K, Sun J, Han J, Zheng T, Sun B, Liu S. Combined morphological and multi-omics analyses to reveal the developmental mechanism of Zanthoxylum bungeanum prickles. FRONTIERS IN PLANT SCIENCE 2022; 13:950084. [PMID: 36072325 PMCID: PMC9441855 DOI: 10.3389/fpls.2022.950084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Zanthoxylum bungeanum Maxim. as an important economic forest, its epidermis bears prickles which complicate the harvesting process and increase the labor costs. To explore the developmental mechanism of prickles, three varieties of Zanthoxylum bungeanum (PZB, SZB, GSZB) were selected for morphological and multi-omics analyses. The absorption spectra of prickles and stems were detected using Fourier-transform infrared spectroscopy (FTIR), and they were found different at 1617, 1110, 3319, and 1999 cm-1. The morphology of prickles and stems were observed using light microscopy and transmission electron microscopy (TEM). The growth direction of cells on the prickle side and stem side were perpendicular to each other, and there was a resembling abscission zone (RAZ) between them. The vacuolar deposits of prickle cells were much more than stem cells, indicating that the lignification degree of prickles was higher than stems. In addition, 9 candidate genes (ZbYABBY2, ZbYABBY1, ZbYABBY5, ZbWRKY, ZbLOG5, ZbAZG2, ZbGh16, ZbIAA33, and ZbGh16X1) were screened out and validated base on transcriptome and qRT-PCA. As well as, 30 key metabolites were found related to prickle development base on metabolome analysis. Among them, 4-hydroxy-2-oxopentanoate, trans-2-hydroxy-cinnamate, trans-cinnamate, polyhydroxy-fatty acid, 10,16-dihydroxypalmitate, cinnamic acid were related to the biosynthesis of cutin, suberine and wax. Indole-3-acetate, tryptamine, anthranilate, fromylanthranilate, N6-(delta2-isopentenyl)-adenine were related to plant hormone signal transduction. Generally, this is the first study to reveal the developmental mechanism of prickles. The results of this study lay the foundation for the breeding of non-prickle Zanthoxylum bungeanum.
Collapse
Affiliation(s)
- Kexing Su
- College of Science, Northwest Agriculture and Forestry University, Xianyang, China
| | - Jiaqian Sun
- Powerchina Northwest Engineering Corporation Limited, Xi’an, China
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi’an, China
| | - Jun Han
- Forestry and Grassland Bureau of Xunhua County, Qinghai, China
| | - Tao Zheng
- College of Science, Northwest Agriculture and Forestry University, Xianyang, China
| | - Bingyin Sun
- Department of Ecological Engineering, Yangling Vocational and Technical College, Xianyang, China
| | - Shuming Liu
- College of Science, Northwest Agriculture and Forestry University, Xianyang, China
| |
Collapse
|
14
|
Zhi X, Tao Y, Jordan D, Borrell A, Hunt C, Cruickshank A, Potgieter A, Wu A, Hammer G, George-Jaeggli B, Mace E. Genetic control of leaf angle in sorghum and its effect on light interception. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:801-816. [PMID: 34698817 DOI: 10.1093/jxb/erab467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Developing sorghum genotypes adapted to different light environments requires understanding of a plant's ability to capture light, determined through leaf angle specifically. This study dissected the genetic basis of leaf angle in 3 year field trials at two sites, using a sorghum diversity panel (729 accessions). A wide range of variation in leaf angle with medium heritability was observed. Leaf angle explained 36% variation in canopy light extinction coefficient, highlighting the extent to which variation in leaf angle influences light interception at the whole-canopy level. This study also found that the sorghum races of Guinea and Durra consistently having the largest and smallest leaf angle, respectively, highlighting the potential role of leaf angle in adaptation to distinct environments. The genome-wide association study detected 33 quantitative trait loci (QTLs) associated with leaf angle. Strong synteny was observed with previously detected leaf angle QTLs in maize (70%) and rice (40%) within 10 cM, among which the overlap was significantly enriched according to χ2 tests, suggesting a highly consistent genetic control in grasses. A priori leaf angle candidate genes identified in maize and rice were found to be enriched within a 1-cM window around the sorghum leaf angle QTLs. Additionally, protein domain analysis identified the WD40 protein domain as being enriched within a 1-cM window around the QTLs. These outcomes show that there is sufficient heritability and natural variation in the angle of upper leaves in sorghum which may be exploited to change light interception and optimize crop canopies for different contexts.
Collapse
Affiliation(s)
- Xiaoyu Zhi
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD, Australia
| | - Yongfu Tao
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD, Australia
| | - David Jordan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD, Australia
| | - Andrew Borrell
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD, Australia
| | - Colleen Hunt
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD, Australia
- Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Hermitage Research Facility, Warwick, QLD, Australia
| | - Alan Cruickshank
- Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Hermitage Research Facility, Warwick, QLD, Australia
| | - Andries Potgieter
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Gatton, QLD, Australia
| | - Alex Wu
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia
| | - Graeme Hammer
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia
| | - Barbara George-Jaeggli
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD, Australia
- Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Hermitage Research Facility, Warwick, QLD, Australia
| | - Emma Mace
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD, Australia
- Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Hermitage Research Facility, Warwick, QLD, Australia
| |
Collapse
|
15
|
Kunita I, Morita MT, Toda M, Higaki T. A Three-Dimensional Scanning System for Digital Archiving and Quantitative Evaluation of Arabidopsis Plant Architectures. PLANT & CELL PHYSIOLOGY 2021; 62:1975-1982. [PMID: 34021582 PMCID: PMC8711699 DOI: 10.1093/pcp/pcab068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/28/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
A plant's architecture contributes to its ability to acquire resources and reduce mechanical load. Arabidopsis thaliana is the most common model plant in molecular biology, and there are several mutants and transgenic lines with modified plant architecture regulation, such as lazy1 mutants, which have reversed angles of lateral branches. Although some phenotyping methods have been used in larger agricultural plants, limited suitable methods are available for three-dimensional reconstruction of Arabidopsis, which is smaller and has more uniform surface textures and structures. An inexpensive, easily adopted three-dimensional reconstruction system that can be used for Arabidopsis is needed so that researchers can view and quantify morphological changes over time. We developed a three-dimensional reconstruction system for A. thaliana using the visual volume intersection method, which uses a fixed camera to capture plant images from multiple directions while the plant slowly rotates. We then developed a script to autogenerate stack images from the obtained input movie and visualized the plant architecture by rendering the output stack image using the general bioimage analysis software. We successfully three-dimensionally and time-sequentially scanned wild-type and lazy1 mutant A. thaliana plants and measured the angles of the lateral branches. This non-contact, non-destructive method requires no specialized equipment and is space efficient, inexpensive and easily adopted by Arabidopsis researchers. Consequently, this system will promote three- and four-dimensional phenotyping of this model plant, and it can be used in combination with molecular genetics to further elucidate the molecular mechanisms that regulate Arabidopsis architecture.
Collapse
Affiliation(s)
- Itsuki Kunita
- Faculty of Engineering, University of the Ryukyus, Senbaru 1, Nishihara-cho, Nakagami-gun, Okinawa 903-0213, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Masashi Toda
- Center for Management of Information Technologies, Kumamoto University, Kurokami 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
| | | |
Collapse
|
16
|
Hata Y, Kyozuka J. Fundamental mechanisms of the stem cell regulation in land plants: lesson from shoot apical cells in bryophytes. PLANT MOLECULAR BIOLOGY 2021; 107:213-225. [PMID: 33609252 PMCID: PMC8648652 DOI: 10.1007/s11103-021-01126-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/01/2021] [Indexed: 05/02/2023]
Abstract
This review compares the molecular mechanisms of stem cell control in the shoot apical meristems of mosses and angiosperms and reveals the conserved features and evolution of plant stem cells. The establishment and maintenance of pluripotent stem cells in the shoot apical meristem (SAM) are key developmental processes in land plants including the most basal, bryophytes. Bryophytes, such as Physcomitrium (Physcomitrella) patens and Marchantia polymorpha, are emerging as attractive model species to study the conserved features and evolutionary processes in the mechanisms controlling stem cells. Recent studies using these model bryophyte species have started to uncover the similarities and differences in stem cell regulation between bryophytes and angiosperms. In this review, we summarize findings on stem cell function and its regulation focusing on different aspects including hormonal, genetic, and epigenetic control. Stem cell regulation through auxin, cytokinin, CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) signaling and chromatin modification by Polycomb Repressive Complex 2 (PRC2) and PRC1 is well conserved. Several transcription factors crucial for SAM regulation in angiosperms are not involved in the regulation of the SAM in mosses, but similarities also exist. These findings provide insights into the evolutionary trajectory of the SAM and the fundamental mechanisms involved in stem cell regulation that are conserved across land plants.
Collapse
Affiliation(s)
- Yuki Hata
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| |
Collapse
|
17
|
López H, Schmitz G, Thoma R, Theres K. Super determinant1A, a RAWULdomain-containing protein, modulates axillary meristem formation and compound leaf development in tomato. THE PLANT CELL 2021; 33:2412-2430. [PMID: 34009392 PMCID: PMC8364250 DOI: 10.1093/plcell/koab121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/22/2021] [Indexed: 05/28/2023]
Abstract
Shoot branching and complex leaf development relies on the establishment of boundaries that precedes the formation of axillary meristems (AMs) and leaflets. The tomato (Solanum lycopersicum) super determinant mutant is compromised in both processes, due to a mutation in Sde1A. Sde1A encodes a protein with a RAWUL domain, which is also present in Polycomb Group Repressive Complex 1 (PRC1) RING finger proteins and WD Repeat Domain 48 proteins. Genetic analysis revealed that Sde1A and Bmi1A cooperate, whereas Bmi1C antagonizes both activities, indicating the existence of functionally opposing PRC1 complexes that interact with Sde1A. Sde1A is expressed at early stages of boundary development in a small group of cells in the center of the leaf-axil boundary, but its activity is required for meristem formation at later stages. This suggests that Sde1A and Bmi1A promote AM formation and complex leaf development by safeguarding a pool of cells in the developing boundary zones. Genetic and protein interaction analyses showed that Sde1A and Lateral suppressor (Ls) are components of the same genetic pathway. In contrast to ls, sde1a mutants are not compromised in inflorescence branching, suggesting that Sde1A is a potential target for breeding tomato cultivars with reduced side-shoot formation during vegetative development.
Collapse
Affiliation(s)
- Hernán López
- Max Planck Institute for Plant Breeding Research, Cologne D-50931, Germany
| | - Gregor Schmitz
- Max Planck Institute for Plant Breeding Research, Cologne D-50931, Germany
| | - Rahere Thoma
- Max Planck Institute for Plant Breeding Research, Cologne D-50931, Germany
| | - Klaus Theres
- Max Planck Institute for Plant Breeding Research, Cologne D-50931, Germany
| |
Collapse
|
18
|
Martinez CC, Li S, Woodhouse MR, Sugimoto K, Sinha NR. Spatial transcriptional signatures define margin morphogenesis along the proximal-distal and medio-lateral axes in tomato (Solanum lycopersicum) leaves. THE PLANT CELL 2021; 33:44-65. [PMID: 33710280 PMCID: PMC8136875 DOI: 10.1093/plcell/koaa012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/23/2020] [Indexed: 05/26/2023]
Abstract
Leaf morphogenesis involves cell division, expansion, and differentiation in the developing leaf, which take place at different rates and at different positions along the medio-lateral and proximal-distal leaf axes. The gene expression changes that control cell fate along these axes remain elusive due to difficulties in precisely isolating tissues. Here, we combined rigorous early leaf characterization, laser capture microdissection, and transcriptomic sequencing to ask how gene expression patterns regulate early leaf morphogenesis in wild-type tomato (Solanum lycopersicum) and the leaf morphogenesis mutant trifoliate. We observed transcriptional regulation of cell differentiation along the proximal-distal axis and identified molecular signatures delineating the classically defined marginal meristem/blastozone region during early leaf development. We describe the role of endoreduplication during leaf development, when and where leaf cells first achieve photosynthetic competency, and the regulation of auxin transport and signaling along the leaf axes. Knockout mutants of BLADE-ON-PETIOLE2 exhibited ectopic shoot apical meristem formation on leaves, highlighting the role of this gene in regulating margin tissue identity. We mapped gene expression signatures in specific leaf domains and evaluated the role of each domain in conferring indeterminacy and permitting blade outgrowth. Finally, we generated a global gene expression atlas of the early developing compound leaf.
Collapse
Affiliation(s)
- Ciera C Martinez
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94709
- Berkeley Institute for Data Science, University of California at Berkeley, Berkeley, CA 94709
- Department of Plant Biology, University of California at Davis, Davis, CA 95616
| | - Siyu Li
- Department of Plant Biology, University of California at Davis, Davis, CA 95616
| | | | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, 15 230-0045 Japan
| | - Neelima R Sinha
- Department of Plant Biology, University of California at Davis, Davis, CA 95616
| |
Collapse
|
19
|
Strable J. Developmental genetics of maize vegetative shoot architecture. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:19. [PMID: 37309417 PMCID: PMC10236122 DOI: 10.1007/s11032-021-01208-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 06/13/2023]
Abstract
More than 1.1 billion tonnes of maize grain were harvested across 197 million hectares in 2019 (FAOSTAT 2020). The vast global productivity of maize is largely driven by denser planting practices, higher yield potential per area of land, and increased yield potential per plant. Shoot architecture, the three-dimensional structural arrangement of the above-ground plant body, is critical to maize grain yield and biomass. Structure of the shoot is integral to all aspects of modern agronomic practices. Here, the developmental genetics of the maize vegetative shoot is reviewed. Plant architecture is ultimately determined by meristem activity, developmental patterning, and growth. The following topics are discussed: shoot apical meristem, leaf architecture, axillary meristem and shoot branching, and intercalary meristem and stem activity. Where possible, classical and current studies in maize developmental genetics, as well as recent advances leveraged by "-omics" analyses, are highlighted within these sections. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01208-1.
Collapse
Affiliation(s)
- Josh Strable
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
- Present Address: Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
20
|
Mallet J, Laufs P, Leduc N, Le Gourrierec J. Photocontrol of Axillary Bud Outgrowth by MicroRNAs: Current State-of-the-Art and Novel Perspectives Gained From the Rosebush Model. FRONTIERS IN PLANT SCIENCE 2021; 12:770363. [PMID: 35173747 PMCID: PMC8841825 DOI: 10.3389/fpls.2021.770363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 05/05/2023]
Abstract
Shoot branching is highly dependent on environmental factors. While many species show some light dependence for branching, the rosebush shows a strict requirement for light to allow branching, making this species an excellent model to further understand how light impinges on branching. Here, in the first part, we provide a review of the current understanding of how light may modulate the complex regulatory network of endogenous factors like hormones (SL, IAA, CK, GA, and ABA), nutrients (sugar and nitrogen), and ROS to control branching. We review the regulatory contribution of microRNAs (miRNAs) to branching in different species, highlighting the action of such evolutionarily conserved factors. We underline some possible pathways by which light may modulate miRNA-dependent regulation of branching. In the second part, we exploit the strict light dependence of rosebush for branching to identify putative miRNAs that could contribute to the photocontrol of branching. For this, we first performed a profiling of the miRNAs expressed in early light-induced rosebush buds and next tested whether they were predicted to target recognized regulators of branching. Thus, we identified seven miRNAs (miR156, miR159, miR164, miR166, miR399, miR477, and miR8175) that could target nine genes (CKX1/6, EXPA3, MAX4, CYCD3;1, SUSY, 6PFK, APX1, and RBOHB1). Because these genes are affecting branching through different hormonal or metabolic pathways and because expression of some of these genes is photoregulated, our bioinformatic analysis suggests that miRNAs may trigger a rearrangement of the regulatory network to modulate branching in response to light environment.
Collapse
Affiliation(s)
- Julie Mallet
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Patrick Laufs
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Nathalie Leduc
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - José Le Gourrierec
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
- *Correspondence: José Le Gourrierec,
| |
Collapse
|
21
|
Abstract
Plants and animals are both important for studies in evolutionary developmental biology (EvoDevo). Plant morphology as a valuable discipline of EvoDevo is set for a paradigm shift. Process thinking and the continuum approach in plant morphology allow us to perceive and interpret growing plants as combinations of developmental processes rather than as assemblages of structural units (“organs”) such as roots, stems, leaves, and flowers. These dynamic philosophical perspectives were already favored by botanists and philosophers such as Agnes Arber (1879–1960) and Rolf Sattler (*1936). The acceptance of growing plants as dynamic continua inspires EvoDevo scientists such as developmental geneticists and evolutionary biologists to move towards a more holistic understanding of plants in time and space. This review will appeal to many young scientists in the plant development research fields. It covers a wide range of relevant publications from the past to present.
Collapse
|
22
|
Louarn G, Song Y. Two decades of functional-structural plant modelling: now addressing fundamental questions in systems biology and predictive ecology. ANNALS OF BOTANY 2020; 126:501-509. [PMID: 32725187 PMCID: PMC7489058 DOI: 10.1093/aob/mcaa143] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Functional-structural plant models (FSPMs) explore and integrate relationships between a plant's structure and processes that underlie its growth and development. In the last 20 years, scientists interested in functional-structural plant modelling have expanded greatly the range of topics covered and now handle dynamical models of growth and development occurring from the microscopic scale, and involving cell division in plant meristems, to the macroscopic scales of whole plants and plant communities. SCOPE The FSPM approach occupies a central position in plant science; it is at the crossroads of fundamental questions in systems biology and predictive ecology. This special issue of Annals of Botany features selected papers on critical areas covered by FSPMs and examples of comprehensive models that are used to solve theoretical and applied questions, ranging from developmental biology to plant phenotyping and management of plants for agronomic purposes. Altogether, they offer an opportunity to assess the progress, gaps and bottlenecks along the research path originally foreseen for FSPMs two decades ago. This review also allows discussion of current challenges of FSPMs regarding (1) integration of multidisciplinary knowledge, (2) methods for handling complex models, (3) standards to achieve interoperability and greater genericity and (4) understanding of plant functioning across scales. CONCLUSIONS This approach has demonstrated considerable progress, but has yet to reach its full potential in terms of integration and heuristic knowledge production. The research agenda of functional-structural plant modellers in the coming years should place a greater emphasis on explaining robust emergent patterns, and on the causes of possible deviation from it. Modelling such patterns could indeed fuel both generic integration across scales and transdisciplinary transfer. In particular, it could be beneficial to emergent fields of research such as model-assisted phenotyping and predictive ecology in managed ecosystems.
Collapse
Affiliation(s)
| | - Youhong Song
- Anhui Agricultural University, School of Agronomy, Hefei, Anhui Province, PR China
| |
Collapse
|
23
|
Zhang F, Rossignol P, Huang T, Wang Y, May A, Dupont C, Orbovic V, Irish VF. Reprogramming of Stem Cell Activity to Convert Thorns into Branches. Curr Biol 2020; 30:2951-2961.e5. [DOI: 10.1016/j.cub.2020.05.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
|
24
|
Zheng M, Zhang L, Tang M, Liu J, Liu H, Yang H, Fan S, Terzaghi W, Wang H, Hua W. Knockout of two BnaMAX1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:644-654. [PMID: 31373135 PMCID: PMC7004912 DOI: 10.1111/pbi.13228] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 05/20/2023]
Abstract
Plant height and branch number are essential components of rapeseed plant architecture and are directly correlated with its yield. Presently, improvement of plant architecture is a major challenge in rapeseed breeding. In this study, we first verified that the two rapeseed BnaMAX1 genes had redundant functions resembling those of Arabidopsis MAX1, which regulates plant height and axillary bud outgrowth. Therefore, we designed two sgRNAs to edit these BnaMAX1 homologs using the CRISPR/Cas9 system. The T0 plants were edited very efficiently (56.30%-67.38%) at the BnaMAX1 target sites resulting in homozygous, heterozygous, bi-allelic and chimeric mutations. Transmission tests revealed that the mutations were passed on to the T1 and T2 progeny. We also obtained transgene-free lines created by the CRISPR/Cas9 editing, and no mutations were detected in potential off-target sites. Notably, simultaneous knockout of all four BnaMAX1 alleles resulted in semi-dwarf and increased branching phenotypes with more siliques, contributing to increased yield per plant relative to wild type. Therefore, these semi-dwarf and increased branching characteristics have the potential to help construct a rapeseed ideotype. Significantly, the editing resources obtained in our study provide desirable germplasm for further breeding of high yield in rapeseed.
Collapse
Affiliation(s)
- Ming Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Liang Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Min Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Jinglin Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Hongfang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Hongli Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Shihang Fan
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | | | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| |
Collapse
|
25
|
Ren D, Li Y, He G, Qian Q. Multifloret spikelet improves rice yield. THE NEW PHYTOLOGIST 2020; 225:2301-2306. [PMID: 31677165 DOI: 10.1111/nph.16303] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
The typical rice (Oryza sativa) spikelet contains a single fertile floret and produces only one grain; by contrast, Brachypodium distachyon spikelets contain multiple fertile florets and produce several grains. To increase yield, rice breeders have traditionally focused on panicle morphology (branch number and length, spikelet density), but have not considered the number of florets in each spikelet. Production of rice spikelets with more florets could further increase the number of grains per panicle. Here, we describe two novel approaches - altering meristem determinacy and restoring lateral floret formation - for breeding rice cultivars with a multifloret spikelet, thereby increasing the number of grains per panicle and potentially improving yield.
Collapse
Affiliation(s)
- Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yunfeng Li
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guanghua He
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
26
|
Wu CC, Li FW, Kramer EM. Large-scale phylogenomic analysis suggests three ancient superclades of the WUSCHEL-RELATED HOMEOBOX transcription factor family in plants. PLoS One 2019; 14:e0223521. [PMID: 31603924 PMCID: PMC6788696 DOI: 10.1371/journal.pone.0223521] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
The adaptation of plants to land required multiple morphological innovations. Among these include a variety of lateral organs that are initiated from apical meristems, in which the mantainance of undifferentiated stem cells is regulated by the homeodomain WUSCHEL-RELATED (WOX) transcription factors. Expansion of the WOX gene family has been associated with whole genome duplication (WGD) events and postulated to have been pivotal to the evolution of morphological complexity in land plants. Previous studies have classified the WOX gene family into three superclades (e.g., the ancient clade, the intermediate clade, and the modern clade). In order to improve our understanding of the evolution of the WOX gene family, we surveyed the WOX gene sequences from 38 genomes and 440 transcriptomes spanning the Viridiplantae and Rhodophyta. The WOX phylogeny inferred from 1039 WOX proteins drawn from 267 species with improved support along the backbone of the phylogeny suggests that the plant-specific WOX family contains three ancient superclades, which we term Type 1 (T1WOX, the WOX10/13/14 clade), Type 2 (T2WOX, the WOX8/9 and WOX11/12 clades), and Type 3 (T3WOX, the WUS, WOX1/6, WOX2, WOX3, WOX4 and WOX5/7 clades). Divergence of the T1WOX and T2WOX superclades may predate the diversification of vascular plants. Synteny analysis suggests contribution of WGD to expansion of the WOX family. Promoter analysis finds that the capacity of the WOX genes to be regulated by the auxin and cytokinin signaling pathways may be deeply conserved in the Viridiplantae. This study improves our phylogenetic context for elucidating functional evolution of the WOX gene family, which has likely contributed to the morphological complexity of land plants.
Collapse
Affiliation(s)
- Cheng-Chiang Wu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, New York, United States of America
- Section of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Elena M. Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
27
|
Comparative proteomic analysis provides new insights into the specialization of shoots and stolons in bermudagrass (Cynodon dactylon L.). BMC Genomics 2019; 20:708. [PMID: 31510936 PMCID: PMC6740039 DOI: 10.1186/s12864-019-6077-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 12/26/2022] Open
Abstract
Background Bermudagrass (Cynodon dactylon L.) is an important turfgrass species with two types of stems, shoots and stolons. Despite their importance in determining the morphological variance and plasticity of bermudagrass, the intrinsic differences between stolons and shoots are poorly understood. Results In this study, we compared the proteomes of internode sections of shoots and stolons in the bermudagrass cultivar Yangjiang. The results indicated that 376 protein species were differentially accumulated in the two types of stems. Pathway enrichment analysis revealed that five and nine biochemical pathways were significantly enriched in stolons and shoots, respectively. Specifically, enzymes participating in starch synthesis all preferentially accumulated in stolons, whereas proteins involved in glycolysis and diverse transport processes showed relatively higher abundance in shoots. ADP-glucose pyrophosphorylase (AGPase) and pyruvate kinase (PK), which catalyze rate-limiting steps of starch synthesis and glycolysis, showed high expression levels and enzyme activity in stolons and shoots, respectively, in accordance with the different starch and soluble sugar contents of the two types of stems. Conclusions Our study revealed the differences between the shoots and stolons of bermudagrass at the proteome level. The results not only expand our understanding of the specialization of stolons and shoots but also provide clues for the breeding of bermudagrass and other turfgrasses with different plant architectures. Supplementary material Supplementary information accompanies this paper at 10.1186/s12864-019-6077-3.
Collapse
|
28
|
Bruy D, Hattermann T, Barrabé L, Mouly A, Barthélémy D, Isnard S. Evolution of Plant Architecture, Functional Diversification and Divergent Evolution in the Genus Atractocarpus (Rubiaceae) for New Caledonia. FRONTIERS IN PLANT SCIENCE 2018; 9:1775. [PMID: 30564258 PMCID: PMC6288547 DOI: 10.3389/fpls.2018.01775] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/15/2018] [Indexed: 05/29/2023]
Abstract
The diversification of ecological roles and related adaptations in closely related species within a lineage is one of the most important processes linking plant evolution and ecology. Plant architecture offers a robust framework to study these processes as it can highlight how plant structure influences plant diversification and ecological strategies. We investigated a case of gradual evolution of branching architecture in Atractocarpus spp. (Rubiaceae), forming a monophyletic group in New Caledonia that has diversified rapidly, predominantly in rainforest understory habitats. We used a transdisciplinary approach to depict architectural variations and revealed multiple evolutionary transitions from a branched (Stone's architectural model) to a monocaulous habit (Corner's architectural model), which involved the functional reduction of branches into inflorescences. We propose an integrative functional index that assesses branching incidence on functional traits influencing both assimilation and exploration functions. We showed that architectural transitions correlate with ecologically important functional traits. Variation in ecologically important traits among closely relatives, as supported by the architectural analysis, is suggestive of intense competition that favored divergence among locally coexisting species. We propose that Pleistocene climatic fluctuations causing expansion and contraction of rainforest could also have offered ecological opportunities for colonizers in addition to the process of divergent evolution.
Collapse
Affiliation(s)
- David Bruy
- AMAP, IRD, CIRAD, CNRS, INRA, Université de Montpellier, Montpellier, France
- AMAP, IRD, Herbier de Nouméa, Nouméa, New Caledonia
| | - Tom Hattermann
- AMAP, IRD, CIRAD, CNRS, INRA, Université de Montpellier, Montpellier, France
- AMAP, IRD, Herbier de Nouméa, Nouméa, New Caledonia
| | - Laure Barrabé
- Endemia, Plant Red List Authority, Nouméa, New Caledonia
| | - Arnaud Mouly
- Laboratoire Chrono-Environnement UMR 6249 CNRS, Université Bourgogne Franche-Comté, Besançon, France
- Jardin Botanique de la Ville de Besançon et de l'Université de Franche-Comté, Besançon, France
| | - Daniel Barthélémy
- AMAP, IRD, CIRAD, CNRS, INRA, Université de Montpellier, Montpellier, France
- CIRAD, UMR AMAP, Montpellier, France
| | - Sandrine Isnard
- AMAP, IRD, CIRAD, CNRS, INRA, Université de Montpellier, Montpellier, France
- AMAP, IRD, Herbier de Nouméa, Nouméa, New Caledonia
| |
Collapse
|
29
|
Prewitt SF, Ayre BG, McGarry RC. Cotton CENTRORADIALIS/TERMINAL FLOWER 1/SELF-PRUNING genes functionally diverged to differentially impact plant architecture. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5403-5417. [PMID: 30202979 PMCID: PMC6255698 DOI: 10.1093/jxb/ery324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 05/29/2023]
Abstract
Genes of the CENTRORADIALIS/TERMINAL FLOWER 1/SELF-PRUNING (CETS) family influence meristem identity by controlling the balance between indeterminate and determinate growth, thereby profoundly impacting plant architecture. Artificial selection during cotton (Gossypium hirsutum) domestication converted photoperiodic trees to the day-neutral shrubs widely cultivated today. To understand the regulation of cotton architecture and exploit these principles to enhance crop productivity, we characterized the CETS gene family from tetraploid cotton. We demonstrate that genes of the TERMINAL FLOWER 1 (TFL1)-like clade show different roles in regulating growth patterns. Cotton has five TFL1-like genes: SELF-PRUNING (GhSP) is a single gene whereas there are two TFL1-like and BROTHER OF FT (BFT)-like genes, and these duplications are specific to the cotton lineage. All genes of the cotton TFL1-like clade delay flowering when ectopically expressed in transgenic Arabidopsis, with the strongest phenotypes failing to produce functional flowers. GhSP, GhTFL1-L2, and GhBFT-L2 rescue the early flowering Attfl1-14 mutant phenotype, and the encoded polypeptides interact with a cotton FD protein. Heterologous promoter::GUS fusions illustrate differences in the regulation of these genes, suggesting that genes of the GhTFL1-like clade may not act redundantly. Characterizations of the GhCETS family provide strategies for nuanced control of plant growth.
Collapse
Affiliation(s)
- Sarah F Prewitt
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Union Circle, Denton, TX, USA
| | - Brian G Ayre
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Union Circle, Denton, TX, USA
| | - Roisin C McGarry
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Union Circle, Denton, TX, USA
| |
Collapse
|
30
|
Frangedakis E, Saint‐Marcoux D, Moody LA, Rabbinowitsch E, Langdale JA. Nonreciprocal complementation of KNOX gene function in land plants. THE NEW PHYTOLOGIST 2017; 216:591-604. [PMID: 27886385 PMCID: PMC5637896 DOI: 10.1111/nph.14318] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 09/30/2016] [Indexed: 05/02/2023]
Abstract
Class I KNOTTED-LIKE HOMEOBOX (KNOX) proteins regulate development of the multicellular diploid sporophyte in both mosses and flowering plants; however, the morphological context in which they function differs. In order to determine how Class I KNOX function was modified as land plants evolved, phylogenetic analyses and cross-species complementation assays were performed. Our data reveal that a duplication within the charophyte sister group to land plants led to distinct Class I and Class II KNOX gene families. Subsequently, Class I sequences diverged substantially in the nonvascular bryophyte groups (liverworts, mosses and hornworts), with moss sequences being most similar to those in vascular plants. Despite this similarity, moss mutants were not complemented by vascular plant KNOX genes. Conversely, the Arabidopsis brevipedicellus (bp-9) mutant was complemented by the PpMKN2 gene from the moss Physcomitrella patens. Lycophyte KNOX genes also complemented bp-9 whereas fern genes only partially complemented the mutant. This lycophyte/fern distinction is mirrored in the phylogeny of KNOX-interacting BELL proteins, in that a gene duplication occurred after divergence of the two groups. Together, our results imply that the moss MKN2 protein can function in a broader developmental context than vascular plant KNOX proteins, the narrower scope having evolved progressively as lycophytes, ferns and flowering plants diverged.
Collapse
Affiliation(s)
| | - Denis Saint‐Marcoux
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Laura A. Moody
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Ester Rabbinowitsch
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Jane A. Langdale
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| |
Collapse
|
31
|
Conn A, Pedmale UV, Chory J, Navlakha S. High-Resolution Laser Scanning Reveals Plant Architectures that Reflect Universal Network Design Principles. Cell Syst 2017; 5:53-62.e3. [PMID: 28750198 DOI: 10.1016/j.cels.2017.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/15/2017] [Accepted: 06/29/2017] [Indexed: 11/19/2022]
Abstract
Transport networks serve critical functions in biological and engineered systems, and yet their design requires trade-offs between competing objectives. Due to their sessile lifestyle, plants need to optimize their architecture to efficiently acquire and distribute resources while also minimizing costs in building infrastructure. To understand how plants resolve this design trade-off, we used high-precision three-dimensional laser scanning to map the architectures of tomato, tobacco, or sorghum plants grown in several environmental conditions and through multiple developmental time points, scanning in total 505 architectures from 37 plants. Using a graph-theoretic algorithm that we developed to evaluate design strategies, we find that plant architectures lie along the Pareto front between two simple length-based objectives-minimizing total branch length and minimizing nutrient transport distance-thereby conferring a selective fitness advantage for plant transport processes. The location along the Pareto front can distinguish among species and conditions, suggesting that during evolution, natural selection may employ common network design principles despite different optimization trade-offs.
Collapse
Affiliation(s)
- Adam Conn
- Integrative Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ullas V Pedmale
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joanne Chory
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Saket Navlakha
- Integrative Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
32
|
Conn A, Pedmale UV, Chory J, Stevens CF, Navlakha S. A Statistical Description of Plant Shoot Architecture. Curr Biol 2017; 27:2078-2088.e3. [PMID: 28690115 PMCID: PMC6130893 DOI: 10.1016/j.cub.2017.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/20/2017] [Accepted: 06/02/2017] [Indexed: 12/22/2022]
Abstract
Plant architectures can be characterized statistically by their spatial density function, which specifies the probability of finding a branch at each location in the territory occupied by a plant. Using high-precision 3D scanning, we analyzed 557 plant shoot architectures, representing three species, grown across three to five environmental conditions, and through 20-30 developmental time points. We found two elegant properties in the spatial density functions of these architectures: all functions could be nearly modified in one direction without affecting the density in orthogonal directions (called "separability"), and all functions shared the same underlying shape, aside from stretching and compression (called "self-similarity"). Surprisingly, despite their striking visual diversity, we discovered that all architectures could be described as variations on a single underlying function: a Gaussian density function truncated at roughly two SDs. We also observed systematic variation in the spatial density functions across species, growth conditions, and time, which suggests functional specialization despite following the same general design form.
Collapse
Affiliation(s)
- Adam Conn
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ullas V Pedmale
- Howard Hughes Medical Institute and Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joanne Chory
- Howard Hughes Medical Institute and Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Charles F Stevens
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Saket Navlakha
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
33
|
Abstract
Plants provide unmatched opportunities to evaluate long debated evolutionary patterns in terms of the detailed biology of the fossil organisms. Leaves serve here as an example of how those advantages can be exploited. Over the history of vascular plants, three important transitions in leaf evolution—the origin of laminate leaves, the progressive loss of seed plant morphological diversity, and the evolution of more angiosperm-like leaves—also represent major shifts in leaf development and physiology. These transitions often occurred in parallel in different lineages, such as the evolution of marginal growth in each of at least four independent origins of laminate leaves during the Devonian and Carboniferous. Each also entailed dramatic reorganizations of leaf hydraulics. For example, the length of the finest distributary vein order varies from up to tens of centimeters down to hundreds of microns in successive groups of dominant seed plants. Angiosperms impose an additional trend upon these patterns with the evolution of their uniquely high vein densities. Vein density strongly influences and can provide a proxy for other physiological characteristics, such as assimilation and transpiration rates. The large increase in transpiration capacity accompanying the evolution of angiosperm leaf traits may even play an important role in feeding precipitation and thereby altering local climate.
Collapse
|
34
|
Arévalo R, van Ee BW, Riina R, Berry PE, Wiedenhoeft AC. Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system. ANNALS OF BOTANY 2017; 119:563-579. [PMID: 28065919 PMCID: PMC5458714 DOI: 10.1093/aob/mcw243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/03/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
Background and Aims Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context of these plant habits. Methods Phylogenetic comparative methods were used to test for contingent evolution of habit, habitat and wood anatomy in the mega-diverse genus Croton (Euphorbiaceae), across the largest and most complete molecular phylogeny of the genus to date. Key Results Plant habit and habitat are highly correlated, but most wood anatomical features correlate more strongly with habit. The ancestral Croton was reconstructed as a tree, the wood of which is inferred to have absent or indistinct growth rings, confluent-like axial parenchyma, procumbent ray cells and disjunctive ray parenchyma cell walls. The taxa sampled showed multiple independent origins of the shrub habit in Croton , and this habit shift is contingent on several wood anatomical features (e.g. similar vessel-ray pits, thick fibre walls, perforated ray cells). The only wood anatomical trait correlated with habitat and not habit was the presence of helical thickenings in the vessel elements of mesic Croton . Conclusions Plant functional traits, individually or in suites, are responses to multiple and often confounding contexts in evolution. By establishing an explicit contingent evolutionary framework, the interplay between habit, habitat and wood anatomical diversity was dissected in the genus Croton . Both habit and habitat influence the evolution of wood anatomical characters, and conversely, the wood anatomy of lineages can affect shifts in plant habit and habitat. This study hypothesizes novel putatively functional trait associations in woody plant structure that could be further tested in a variety of other taxa.
Collapse
Affiliation(s)
- Rafael Arévalo
- Center for Wood Anatomy Research, USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, USA
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Benjamin W. van Ee
- University of Puerto Rico at Mayagüez Herbarium, Department of Biology, Universidad de Puerto Rico, Call Box 9000, Mayagüez, 00680, Puerto Rico
| | - Ricarda Riina
- Real Jardín Botánico, RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Paul E. Berry
- University of Michigan, Ecology and Evolutionary Biology Department and Herbarium, Ann Arbor, MI 48108, USA
| | - Alex C. Wiedenhoeft
- Center for Wood Anatomy Research, USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, USA
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
35
|
Basile A, Fambrini M, Pugliesi C. The vascular plants: open system of growth. Dev Genes Evol 2017; 227:129-157. [PMID: 28214944 DOI: 10.1007/s00427-016-0572-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
What is fascinating in plants (true also in sessile animals such as corals and hydroids) is definitely their open and indeterminate growth, as a result of meristematic activity. Plants as well as animals are characterized by a multicellular organization, with which they share a common set of genes inherited from a common eukaryotic ancestor; nevertheless, circa 1.5 billion years of evolutionary history made the two kingdoms very different in their own developmental biology. Flowering plants, also known as angiosperms, arose during the Cretaceous Period (145-65 million years ago), and up to date, they count around 235,000 species, representing the largest and most diverse group within the plant kingdom. One of the foundations of their success relies on the plant-pollinator relationship, essentially unique to angiosperms that pushed large speciation in both plants and insects and on the presence of the carpel, the structure devoted to seed enclosure. A seed represents the main organ preserving the genetic information of a plant; during embryogenesis, the primary axis of development is established by two groups of pluripotent cells: the shoot apical meristem (SAM), responsible for gene rating all aboveground organs, and the root apical meristem (RAM), responsible for producing all underground organs. During postembryonic shoot development, axillary meristem (AM) initiation and outgrowth are responsible for producing all secondary axes of growth including inflorescence branches or flowers. The production of AMs is tightly linked to the production of leaves and their separation from SAM. As leaf primordia are formed on the flanks of the SAM, a region between the apex and the developing organ is established and referred to as boundary zone. Interaction between hormones and the gene network in the boundary zone is fundamental for AM initiation. AMs only develop at the adaxial base of the leaf; thus, AM initiation is also strictly associated with leaf polarity. AMs function as new SAMs: form axillary buds with a few leaves and then the buds can either stay dormant or develop into shoot branches to define a plant architecture, which in turn affects assimilate production and reproductive efficiency. Therefore, the radiation of angiosperms was accompanied by a huge diversification in growth forms that determine an enormous morphological plasticity helping plants to environmental changes. In this review, we focused on the developmental processes of AM initiation and outgrowth. In particular, we summarized the primary growth of SAM, the key role of positional signals for AM initiation, and the dissection of molecular players involved in AM initiation and outgrowth. Finally, the interaction between phytohormone signals and gene regulatory network controlling AM development was discussed.
Collapse
Affiliation(s)
- Alice Basile
- Institute of Biology, RWTH Aachen University, Aachen, Germany
| | - Marco Fambrini
- Dipartimento di Scienze Agrarie, Ambientali e Agro-alimentari, Università degli Studi di Pisa, Pisa, Italy
| | - Claudio Pugliesi
- Dipartimento di Scienze Agrarie, Ambientali e Agro-alimentari, Università degli Studi di Pisa, Pisa, Italy.
| |
Collapse
|
36
|
Fambrini M, Salvini M, Pugliesi C. Molecular cloning, phylogenetic analysis, and expression patterns of LATERAL SUPPRESSOR-LIKE and REGULATOR OF AXILLARY MERISTEM FORMATION-LIKE genes in sunflower (Helianthus annuus L.). Dev Genes Evol 2017; 227:159-170. [PMID: 28035495 DOI: 10.1007/s00427-016-0571-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
The wild sunflower (Helianthus annuus) plants develop a highly branched form with numerous small flowering heads. The origin of a no branched sunflower, producing a single large head, has been a key event in the domestication process of this species. The interaction between hormonal factors and several genes organizes the initiation and outgrowth of axillary meristems (AMs). From sunflower, we have isolated two genes putatively involved in this process, LATERAL SUPPRESSOR (LS)-LIKE (Ha-LSL) and REGULATOR OF AXILLARY MERISTEM FORMATION (ROX)-LIKE (Ha-ROXL), encoding for a GRAS and a bHLH transcription factor (TF), respectively. Typical amino acid residues and phylogenetic analyses suggest that Ha-LSL and Ha-ROXL are the orthologs of the branching regulator LS and ROX/LAX1, involved in the growth habit of both dicot and monocot species. qRT-PCR analyses revealed a high accumulation of Ha-LSL transcripts in roots, vegetative shoots, and inflorescence shoots. By contrast, in internodal stems and young leaves, a lower amount of Ha-LSL transcripts was observed. A comparison of transcription patterns between Ha-LSL and Ha-ROXL revealed some analogies but also remarkable differences; in fact, the gene Ha-ROXL displayed a low expression level in all organs analyzed. In situ hybridization (ISH) analysis showed that Ha-ROXL transcription was strongly restricted to a small domain within the boundary zone separating the shoot apical meristem (SAM) and the leaf primordia and in restricted regions of the inflorescence meristem, beforehand the separation of floral bracts from disc flower primordia. These results suggested that Ha-ROXL may be involved to establish a cell niche for the initiation of AMs as well as flower primordia. The accumulation of Ha-LSL transcripts was not restricted to the boundary zones in vegetative and inflorescence shoots, but the mRNA activity was expanded in other cellular domains of primary shoot apical meristem as well as AMs. In addition, Ha-LSL transcript accumulation was also detected in leaves and floral primordia at early stages of development. These results were corroborated by qRT-PCR analyses that evidenced high levels of Ha-LSL transcripts in very young leaves and disc flowers, suggesting a role of Ha-LSL for the early outgrowth of lateral primordia.
Collapse
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Mariangela Salvini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
37
|
Baïram E, Delaire M, Le Morvan C, Buck-Sorlin G. Models for Predicting the Architecture of Different Shoot Types in Apple. FRONTIERS IN PLANT SCIENCE 2017; 8:65. [PMID: 28203241 PMCID: PMC5285357 DOI: 10.3389/fpls.2017.00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/12/2017] [Indexed: 05/10/2023]
Abstract
In apple, the first-order branch of a tree has a characteristic architecture constituting three shoot types: bourses (rosettes), bourse shoots, and vegetative shoots. Its overall architecture as well as that of each shoot thus determines the distribution of sources (leaves) and sinks (fruits) and could have an influence on the amount of sugar allocated to fruits. Knowledge of architecture, in particular the position and area of leaves helps to quantify source strength. In order to reconstruct this initial architecture, rules equipped with allometric relations could be used: these allow predicting model parameters that are difficult to measure from simple traits that can be determined easily, non-destructively and directly in the orchard. Once such allometric relations are established they can be used routinely to recreate initial structures. Models based on allometric relations have been established in this study in order to predict the leaf areas of the three different shoot types of three apple cultivars with different branch architectures: "Fuji," "Ariane," and "Rome Beauty." The allometric relations derived from experimental data allowed us to model the total shoot leaf area as well as the individual leaf area for each leaf rank, for each shoot type and each genotype. This was achieved using two easily measurable input variables: total leaf number per shoot and the length of the biggest leaf on the shoot. The models were tested using a different data set, and they were able to accurately predict leaf area of all shoot types and genotypes. Additional focus on internode lengths on spurs contributed to refine the models.
Collapse
Affiliation(s)
- Emna Baïram
- Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences (Institut National de la Recherche Agronomique-Agrocampus Ouest-Université d'Angers)Angers, France
| | | | | | - Gerhard Buck-Sorlin
- Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences (Institut National de la Recherche Agronomique-Agrocampus Ouest-Université d'Angers)Angers, France
| |
Collapse
|
38
|
Migault V, Pallas B, Costes E. Combining Genome-Wide Information with a Functional Structural Plant Model to Simulate 1-Year-Old Apple Tree Architecture. FRONTIERS IN PLANT SCIENCE 2017; 7:2065. [PMID: 28127302 PMCID: PMC5226960 DOI: 10.3389/fpls.2016.02065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/26/2016] [Indexed: 05/26/2023]
Abstract
In crops, optimizing target traits in breeding programs can be fostered by selecting appropriate combinations of architectural traits which determine light interception and carbon acquisition. In apple tree, architectural traits were observed to be under genetic control. However, architectural traits also result from many organogenetic and morphological processes interacting with the environment. The present study aimed at combining a FSPM built for apple tree, MAppleT, with genetic determinisms of architectural traits, previously described in a bi-parental population. We focused on parameters related to organogenesis (phyllochron and immediate branching) and morphogenesis processes (internode length and leaf area) during the first year of tree growth. Two independent datasets collected in 2004 and 2007 on 116 genotypes, issued from a 'Starkrimson' × 'Granny Smith' cross, were used. The phyllochron was estimated as a function of thermal time and sylleptic branching was modeled subsequently depending on phyllochron. From a genetic map built with SNPs, marker effects were estimated on four MAppleT parameters with rrBLUP, using 2007 data. These effects were then considered in MAppleT to simulate tree development in the two climatic conditions. The genome wide prediction model gave consistent estimations of parameter values with correlation coefficients between observed values and estimated values from SNP markers ranging from 0.79 to 0.96. However, the accuracy of the prediction model following cross validation schemas was lower. Three integrative traits (the number of leaves, trunk length, and number of sylleptic laterals) were considered for validating MAppleT simulations. In 2007 climatic conditions, simulated values were close to observations, highlighting the correct simulation of genetic variability. However, in 2004 conditions which were not used for model calibration, the simulations differed from observations. This study demonstrates the possibility of integrating genome-based information in a FSPM for a perennial fruit tree. It also showed that further improvements are required for improving the prediction ability. Especially temperature effect should be extended and other factors taken into account for modeling GxE interactions. Improvements could also be expected by considering larger populations and by testing other genome wide prediction models. Despite these limitations, this study opens new possibilities for supporting plant breeding by in silico evaluations of the impact of genotypic polymorphisms on plant integrative phenotypes.
Collapse
Affiliation(s)
| | | | - Evelyne Costes
- INRA, UMR 1334 AGAP, Equipe Architecture et Fonctionnement des Espèces FruitièresMontpellier, France
| |
Collapse
|
39
|
Burgess AJ, Retkute R, Preston SP, Jensen OE, Pound MP, Pridmore TP, Murchie EH. The 4-Dimensional Plant: Effects of Wind-Induced Canopy Movement on Light Fluctuations and Photosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:1392. [PMID: 27708654 PMCID: PMC5030302 DOI: 10.3389/fpls.2016.01392] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/01/2016] [Indexed: 05/20/2023]
Abstract
Physical perturbation of a plant canopy brought about by wind is a ubiquitous phenomenon and yet its biological importance has often been overlooked. This is partly due to the complexity of the issue at hand: wind-induced movement (or mechanical excitation) is a stochastic process which is difficult to measure and quantify; plant motion is dependent upon canopy architectural features which, until recently, were difficult to accurately represent and model in 3-dimensions; light patterning throughout a canopy is difficult to compute at high-resolutions, especially when confounded by other environmental variables. Recent studies have reinforced the expectation that canopy architecture is a strong determinant of productivity and yield; however, links between the architectural properties of the plant and its mechanical properties, particularly its response to wind, are relatively unknown. As a result, biologically relevant data relating canopy architecture, light- dynamics, and short-scale photosynthetic responses in the canopy setting are scarce. Here, we hypothesize that wind-induced movement will have large consequences for the photosynthetic productivity of our crops due to its influence on light patterning. To address this issue, in this study we combined high resolution 3D reconstructions of a plant canopy with a simple representation of canopy perturbation as a result of wind using solid body rotation in order to explore the potential effects on light patterning, interception, and photosynthetic productivity. We looked at two different scenarios: firstly a constant distortion where a rice canopy was subject to a permanent distortion throughout the whole day; and secondly, a dynamic distortion, where the canopy was distorted in incremental steps between two extremes at set time points in the day. We find that mechanical canopy excitation substantially alters light dynamics; light distribution and modeled canopy carbon gain. We then discuss methods required for accurate modeling of mechanical canopy excitation (here coined the 4-dimensional plant) and some associated biological and applied implications of such techniques. We hypothesize that biomechanical plant properties are a specific adaptation to achieve wind-induced photosynthetic enhancement and we outline how traits facilitating canopy excitation could be used as a route for improving crop yield.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- Division of Plant and Crop Sciences, School of Biosciences, University of NottinghamLoughborough, UK
- Crops for The Future, Semenyih Selangor Darul EhsanSemenyih, Malaysia
| | - Renata Retkute
- School of Life Sciences, The University of WarwickCoventry, UK
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamUK
| | - Simon P. Preston
- School of Mathematical Sciences, University of NottinghamNottingham, UK
| | | | - Michael P. Pound
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamUK
- School of Computer Sciences, University of NottinghamNottingham, UK
| | - Tony P. Pridmore
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamUK
- School of Computer Sciences, University of NottinghamNottingham, UK
| | - Erik H. Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of NottinghamLoughborough, UK
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamUK
| |
Collapse
|
40
|
Leiboff S, Li X, Hu HC, Todt N, Yang J, Li X, Yu X, Muehlbauer GJ, Timmermans MCP, Yu J, Schnable PS, Scanlon MJ. Genetic control of morphometric diversity in the maize shoot apical meristem. Nat Commun 2015; 6:8974. [PMID: 26584889 PMCID: PMC4673881 DOI: 10.1038/ncomms9974] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/21/2015] [Indexed: 12/30/2022] Open
Abstract
The maize shoot apical meristem (SAM) comprises a small pool of stem cells that generate all above-ground organs. Although mutational studies have identified genetic networks regulating SAM function, little is known about SAM morphological variation in natural populations. Here we report the use of high-throughput image processing to capture rich SAM size variation within a diverse maize inbred panel. We demonstrate correlations between seedling SAM size and agronomically important adult traits such as flowering time, stem size and leaf node number. Combining SAM phenotypes with 1.2 million single nucleotide polymorphisms (SNPs) via genome-wide association study reveals unexpected SAM morphology candidate genes. Analyses of candidate genes implicated in hormone transport, cell division and cell size confirm correlations between SAM morphology and trait-associated SNP alleles. Our data illustrate that the microscopic seedling SAM is predictive of adult phenotypes and that SAM morphometric variation is associated with genes not previously predicted to regulate SAM size.
Collapse
Affiliation(s)
- Samuel Leiboff
- Division of Plant Biology, Cornell University, Ithaca, New York 14850, USA
| | - Xianran Li
- Department of Agronomy, Iowa State University, Ames, Iowa 50010, USA
| | - Heng-Cheng Hu
- Department of Agronomy, Iowa State University, Ames, Iowa 50010, USA
| | - Natalie Todt
- Division of Plant Biology, Cornell University, Ithaca, New York 14850, USA
| | - Jinliang Yang
- Department of Agronomy, Iowa State University, Ames, Iowa 50010, USA
| | - Xiao Li
- Department of Agronomy, Iowa State University, Ames, Iowa 50010, USA
| | - Xiaoqing Yu
- Department of Agronomy, Iowa State University, Ames, Iowa 50010, USA
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, Minnesota 55108, USA
| | | | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, Iowa 50010, USA
| | | | - Michael J Scanlon
- Division of Plant Biology, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
41
|
Baumann K, Venail J, Berbel A, Domenech MJ, Money T, Conti L, Hanzawa Y, Madueno F, Bradley D. Changing the spatial pattern of TFL1 expression reveals its key role in the shoot meristem in controlling Arabidopsis flowering architecture. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4769-80. [PMID: 26019254 PMCID: PMC4507777 DOI: 10.1093/jxb/erv247] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Models for the control of above-ground plant architectures show how meristems can be programmed to be either shoots or flowers. Molecular, genetic, transgenic, and mathematical studies have greatly refined these models, suggesting that the phase of the shoot reflects different genes contributing to its repression of flowering, its vegetativeness ('veg'), before activators promote flower development. Key elements of how the repressor of flowering and shoot meristem gene TFL1 acts have now been tested, by changing its spatiotemporal pattern. It is shown that TFL1 can act outside of its normal expression domain in leaf primordia or floral meristems to repress flower identity. These data show how the timing and spatial pattern of TFL1 expression affect overall plant architecture. This reveals that the underlying pattern of TFL1 interactors is complex and that they may be spatially more widespread than TFL1 itself, which is confined to shoots. However, the data show that while TFL1 and floral genes can both act and compete in the same meristem, it appears that the main shoot meristem is more sensitive to TFL1 rather than floral genes. This spatial analysis therefore reveals how a difference in response helps maintain the 'veg' state of the shoot meristem.
Collapse
Affiliation(s)
- Kim Baumann
- John Innes Centre, Colney, Norwich NR4 7UH, UK
| | | | - Ana Berbel
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superiorde Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia 46022, Spain
| | - Maria Jose Domenech
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superiorde Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia 46022, Spain
| | - Tracy Money
- John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Lucio Conti
- John Innes Centre, Colney, Norwich NR4 7UH, UK Dipartimento di Bioscienze, Universita degli studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Yoshie Hanzawa
- John Innes Centre, Colney, Norwich NR4 7UH, UK Department of Crop Sciences and Institute for Genomic Biology, Affiliate in Department of Plant Biology, University of Illinois at Urbana-Champaign, 259 Edward R Madigan Lab, MC-051. 1201W Gregory Drive, Urbana, IL 61801, USA
| | - Francisco Madueno
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superiorde Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia 46022, Spain
| | | |
Collapse
|
42
|
Coudert Y, Palubicki W, Ljung K, Novak O, Leyser O, Harrison CJ. Three ancient hormonal cues co-ordinate shoot branching in a moss. eLife 2015; 4. [PMID: 25806686 PMCID: PMC4391503 DOI: 10.7554/elife.06808] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/10/2015] [Indexed: 11/13/2022] Open
Abstract
Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport. DOI:http://dx.doi.org/10.7554/eLife.06808.001 Most land plants have shoots that form branches and plants can regulate when and where they grow these branches to best exploit their environment. Plants with flowers and the more ancient mosses both have branching shoots, but these two groups of plants evolved to grow in this way independently of each other. Most studies on shoot branching have focused on flowering plants and so it is less clear how branching works in mosses. Three plant hormones—called auxin, cytokinin and strigolactone—control shoot branching in flowering plants. Auxin moves down the main shoot of the plant to prevent new branches from forming. This movement is controlled by the PIN proteins and several other families of proteins. On the other hand, cytokinin promotes the growth of new branches; and strigolactone can either promote or inhibit shoot branching depending on how the auxin is travelling around the plant. Coudert, Palubicki et al. studied shoot branching in a species of moss called Physcomitrella patens. The experiments show that cells on the outer surface of the main shoot are essentially reprogrammed to become so-called ‘branch initials’, which will then develop into new branches. Next, Coudert, Palubicki et al. made a computational model that was able to simulate the pattern of shoot branching in the moss. Further experiments supported the predictions made by the model. Coudert, Palubicki et al. found that, as in flowering plants, auxin from the tip of the main shoot suppresses branching in the moss, and cytokinin promotes branching. The experiments also showed that strigolactone inhibits shoot branching, but its role is restricted to the base of the shoots. The model predicts that, unlike in flowering plants, auxin must flow in both directions in moss shoots to produce the observed patterns of shoot branching. Also, the experiments suggest that the PIN proteins and another group of proteins that control the movement of auxin do not regulate shoot branching in moss. Instead, it appears that auxin may move through microscopic channels that link one moss cell to the next. Coudert, Palubicki et al.'s findings suggest that both flowering plants and mosses have evolved to use the same three hormones to control shoot branching, but that these hormones interact in different ways. One key next step will be to find out how auxin is transported during shoot branching in moss by manipulating the opening of the channels between the cells. A further challenge will be to find out the precise details of how the hormones control the activity of the branch initial cells. DOI:http://dx.doi.org/10.7554/eLife.06808.002
Collapse
Affiliation(s)
- Yoan Coudert
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Wojtek Palubicki
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Umeå University, Umeå, Sweden
| | - Ondrej Novak
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, Olomouc, Czech Republic
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - C Jill Harrison
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
43
|
Coudert Y, Palubicki W, Ljung K, Novak O, Leyser O, Harrison CJ. Three ancient hormonal cues co-ordinate shoot branching in a moss. eLife 2015; 4. [PMID: 25806686 DOI: 10.7554/elife.06808.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/10/2015] [Indexed: 05/18/2023] Open
Abstract
Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport.
Collapse
Affiliation(s)
- Yoan Coudert
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Wojtek Palubicki
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Umeå University, Umeå, Sweden
| | - Ondrej Novak
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, Olomouc, Czech Republic
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - C Jill Harrison
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
44
|
Diversity of maize shoot apical meristem architecture and its relationship to plant morphology. G3-GENES GENOMES GENETICS 2015; 5:819-27. [PMID: 25748433 PMCID: PMC4426368 DOI: 10.1534/g3.115.017541] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The shoot apical meristem contains a pool of undifferentiated stem cells and controls initiation of all aerial plant organs. In maize (Zea mays), leaves are formed throughout vegetative development; on transition to floral development, the shoot meristem forms the tassel. Due to the regulated balance between stem cell maintenance and organogenesis, the structure and morphology of the shoot meristem are constrained during vegetative development. Previous work identified loci controlling meristem architecture in a recombinant inbred line population. The study presented here expanded on this by investigating shoot apical meristem morphology across a diverse set of maize inbred lines. Crosses of these lines to common parents showed varying phenotypic expression in the F1, with some form of heterosis occasionally observed. An investigation of meristematic growth throughout vegetative development in diverse lines linked the timing of reproductive transition to flowering time. Phenotypic correlations of meristem morphology with adult plant traits showed an association between the meristem and flowering time, leaf shape, and yield traits, revealing links between the control and architecture of undifferentiated and differentiated plant organs. Finally, quantitative trait loci mapping was utilized to map the genetic architecture of these meristem traits in two divergent populations. Control of meristem architecture was mainly population-specific, with 15 total unique loci mapped across the two populations with only one locus identified in both populations.
Collapse
|
45
|
Plackett ARG, Di Stilio VS, Langdale JA. Ferns: the missing link in shoot evolution and development. FRONTIERS IN PLANT SCIENCE 2015; 6:972. [PMID: 26594222 PMCID: PMC4635223 DOI: 10.3389/fpls.2015.00972] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/23/2015] [Indexed: 05/02/2023]
Abstract
Shoot development in land plants is a remarkably complex process that gives rise to an extreme diversity of forms. Our current understanding of shoot developmental mechanisms comes almost entirely from studies of angiosperms (flowering plants), the most recently diverged plant lineage. Shoot development in angiosperms is based around a layered multicellular apical meristem that produces lateral organs and/or secondary meristems from populations of founder cells at its periphery. In contrast, non-seed plant shoots develop from either single apical initials or from a small population of morphologically distinct apical cells. Although developmental and molecular information is becoming available for non-flowering plants, such as the model moss Physcomitrella patens, making valid comparisons between highly divergent lineages is extremely challenging. As sister group to the seed plants, the monilophytes (ferns and relatives) represent an excellent phylogenetic midpoint of comparison for unlocking the evolution of shoot developmental mechanisms, and recent technical advances have finally made transgenic analysis possible in the emerging model fern Ceratopteris richardii. This review compares and contrasts our current understanding of shoot development in different land plant lineages with the aim of highlighting the potential role that the fern C. richardii could play in shedding light on the evolution of underlying genetic regulatory mechanisms.
Collapse
Affiliation(s)
- Andrew R. G. Plackett
- Department of Plant Sciences, University of OxfordOxford, UK
- *Correspondence: Andrew R. G. Plackett,
| | | | | |
Collapse
|
46
|
Teichmann T, Muhr M. Shaping plant architecture. FRONTIERS IN PLANT SCIENCE 2015; 6:233. [PMID: 25914710 PMCID: PMC4390985 DOI: 10.3389/fpls.2015.00233] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/23/2015] [Indexed: 05/18/2023]
Abstract
Plants exhibit phenotypical plasticity. Their general body plan is genetically determined, but plant architecture and branching patterns are variable and can be adjusted to the prevailing environmental conditions. The modular design of the plant facilitates such morphological adaptations. The prerequisite for the formation of a branch is the initiation of an axillary meristem. Here, we review the current knowledge about this process. After its establishment, the meristem can develop into a bud which can either become dormant or grow out and form a branch. Many endogenous factors, such as photoassimilate availability, and exogenous factors like nutrient availability or shading, have to be integrated in the decision whether a branch is formed. The underlying regulatory network is complex and involves phytohormones and transcription factors. The hormone auxin is derived from the shoot apex and inhibits bud outgrowth indirectly in a process termed apical dominance. Strigolactones appear to modulate apical dominance by modification of auxin fluxes. Furthermore, the transcription factor BRANCHED1 plays a central role. The exact interplay of all these factors still remains obscure and there are alternative models. We discuss recent findings in the field along with the major models. Plant architecture is economically significant because it affects important traits of crop and ornamental plants, as well as trees cultivated in forestry or on short rotation coppices. As a consequence, plant architecture has been modified during plant domestication. Research revealed that only few key genes have been the target of selection during plant domestication and in breeding programs. Here, we discuss such findings on the basis of various examples. Architectural ideotypes that provide advantages for crop plant management and yield are described. We also outline the potential of breeding and biotechnological approaches to further modify and improve plant architecture for economic needs.
Collapse
Affiliation(s)
- Thomas Teichmann
- *Correspondence: Thomas Teichmann, Plant Cell Biology, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, Göttingen, Germany
| | | |
Collapse
|
47
|
Grigorieva OV, Cherdantsev VG. Intra-individual variation and evolution of modular structure in Draba plants. Biosystems 2014; 123:86-98. [PMID: 24960538 DOI: 10.1016/j.biosystems.2014.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/07/2014] [Accepted: 06/09/2014] [Indexed: 11/26/2022]
Abstract
We studied the evolution of quantitative traits related to shoot system architecture in a large genus Draba (Brassicaceae) making emphasis on the dynamics of relationship between individual and intra-individual variation. The results suggest that selection leading to origin of different life forms arises mainly from a necessity of moderation of the non-adaptive contest between the egoistic plant modules, taking care of self-reproduction of their own. We separated two evolutionary trends, one leading to the formation of short-lived monocarpic, and the other to long-lived polycarpic forms from the short-lived polycarpic plants. The first trend concerns with transformation of the innovation shoots into the axillary inflorescences by shortening of their vegetative developmental phase, while the second one - with individuation of the plant modules owing to acquisition of the capacity of rooting and separating from the mother plant. In both trends, the turning points of the evolution are those of originating of the negative for individual plants interactions between the plant modules being indirect non-adaptive consequences of the previous adaptive evolution and initiating selection for rebuilding of the plant modular structure. The difference between selection operating on intra-individual and individual variations is that, in the first case, combining of the characters of different individuals is infeasible. This leaves no choice for the evolution but to change the developmental mechanisms. In the case considered in this work, this is a change in shoot architecture using the material afforded by the natural variability of developmental pathways of the plant modules.
Collapse
Affiliation(s)
- Olga V Grigorieva
- Department of Biological Evolution, Faculty of Biology, Moscow State University, Moscow, Russia
| | - Vladimir G Cherdantsev
- Department of Biological Evolution, Faculty of Biology, Moscow State University, Moscow, Russia.
| |
Collapse
|
48
|
Rubio-Moraga A, Ahrazem O, Pérez-Clemente RM, Gómez-Cadenas A, Yoneyama K, López-Ráez JA, Molina RV, Gómez-Gómez L. Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting. BMC PLANT BIOLOGY 2014; 14:171. [PMID: 24947472 PMCID: PMC4077219 DOI: 10.1186/1471-2229-14-171] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/12/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND In saffron (Crocus sativus), new corms develop at the base of every shoot developed from the maternal corm, a globular underground storage stem. Since the degree of bud sprouts influences the number and size of new corms, and strigolactones (SLs) suppress growth of pre-formed axillary bud, it was considered appropriate to investigate SL involvement in physiology and molecular biology in saffron. We focused on two of the genes within the SL pathway, CCD7 and CCD8, encoding carotenoid cleavage enzymes required for the production of SLs. RESULTS The CsCCD7 and CsCCD8 genes are the first ones isolated and characterized from a non-grass monocotyledonous plant. CsCCD7 and CsCCD8 expression showed some overlapping, although they were not identical. CsCCD8 was highly expressed in quiescent axillary buds and decapitation dramatically reduced its expression levels, suggesting its involvement in the suppression of axillary bud outgrowth. Furthermore, in vitro experiments showed also the involvement of auxin, cytokinin and jasmonic acid on the sprouting of axillary buds from corms in which the apical bud was removed. In addition, CsCCD8 expression, but not CsCCD7, was higher in the newly developed vascular tissue of axillary buds compared to the vascular tissue of the apical bud. CONCLUSIONS We showed that production and transport of auxin in saffron corms could act synergistically with SLs to arrest the outgrowth of the axillary buds, similar to the control of above-ground shoot branching. In addition, jasmonic acid seems to play a prominent role in bud dormancy in saffron. While cytokinins from roots promote bud outgrowth. In addition the expression results of CsCCD8 suggest that SLs could positively regulate procambial activity and the development of new vascular tissues connecting leaves with the mother corm.
Collapse
Affiliation(s)
- Angela Rubio-Moraga
- Departamento de Ciencia y Tecnología Agroforestal y Genética. Facultad de Farmacia, Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Oussama Ahrazem
- Departamento de Ciencia y Tecnología Agroforestal y Genética. Facultad de Farmacia, Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
- Fundación Parque Científico y Tecnológico de Albacete. Campus Universitario s/n, 02071 Albacete, Spain
| | - Rosa M Pérez-Clemente
- Department of Agricultural and Environmental Sciences, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Department of Agricultural and Environmental Sciences, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Koichi Yoneyama
- Weed Science Center, Utsunomiya University, 350 Mine-machi, Utsunomiya 321-8505, Japan
| | - Juan Antonio López-Ráez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Granada, Spain
| | - Rosa Victoria Molina
- Departamento de Biología Vegetal, Universidad Politécnica de Valencia, 46071 Valencia, Spain
| | - Lourdes Gómez-Gómez
- Departamento de Ciencia y Tecnología Agroforestal y Genética. Facultad de Farmacia, Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| |
Collapse
|
49
|
Saurabh S, Vidyarthi AS, Prasad D. RNA interference: concept to reality in crop improvement. PLANTA 2014; 239:543-64. [PMID: 24402564 DOI: 10.1007/s00425-013-2019-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 12/21/2013] [Indexed: 05/18/2023]
Abstract
The phenomenon of RNA interference (RNAi) is involved in sequence-specific gene regulation driven by the introduction of dsRNA resulting in inhibition of translation or transcriptional repression. Since the discovery of RNAi and its regulatory potentials, it has become evident that RNAi has immense potential in opening a new vista for crop improvement. RNAi technology is precise, efficient, stable and better than antisense technology. It has been employed successfully to alter the gene expression in plants for better quality traits. The impact of RNAi to improve the crop plants has proved to be a novel approach in combating the biotic and abiotic stresses and the nutritional improvement in terms of bio-fortification and bio-elimination. It has been employed successfully to bring about modifications of several desired traits in different plants. These modifications include nutritional improvements, reduced content of food allergens and toxic compounds, enhanced defence against biotic and abiotic stresses, alteration in morphology, crafting male sterility, enhanced secondary metabolite synthesis and seedless plant varieties. However, crop plants developed by RNAi strategy may create biosafety risks. So, there is a need for risk assessment of GM crops in order to make RNAi a better tool to develop crops with biosafety measures. This article is an attempt to review the RNAi, its biochemistry, and the achievements attributed to the application of RNAi in crop improvement.
Collapse
Affiliation(s)
- Satyajit Saurabh
- Department of Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835125, India
| | | | | |
Collapse
|
50
|
Savvides A, van Ieperen W, Dieleman JA, Marcelis LFM. Meristem temperature substantially deviates from air temperature even in moderate environments: is the magnitude of this deviation species-specific? PLANT, CELL & ENVIRONMENT 2013; 36:1950-60. [PMID: 23509944 DOI: 10.1111/pce.12101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 05/18/2023]
Abstract
Meristem temperature (Tmeristem ) drives plant development but is hardly ever quantified. Instead, air temperature (Tair ) is usually used as its approximation. Meristems are enclosed within apical buds. Bud structure and function may differ across species. Therefore, Tmeristem may deviate from Tair in a species-specific way. Environmental variables (air temperature, vapour pressure deficit, radiation, and wind speed) were systematically varied to quantify the response of Tmeristem . This response was related to observations of bud structure and transpiration. Tomato and cucumber plants were used as model plants as they are morphologically distinct and usually growing in similar environments. Tmeristem substantially deviated from Tair in a species-specific manner under moderate environments. This deviation ranged between -2.6 and 3.8 °C in tomato and between -4.1 and 3.0 °C in cucumber. The lower Tmeristem observed in cucumber was linked with the higher transpiration of the bud foliage sheltering the meristem when compared with tomato plants. We here indicate that for properly linking growth and development of plants to temperature in future applications, for instance in climate change scenarios studies, Tmeristem should be used instead of Tair , as a species-specific trait highly reliant on various environmental factors.
Collapse
Affiliation(s)
- Andreas Savvides
- Horticultural Supply Chains, Wageningen University, 6700 AP, Wageningen, The Netherlands; Greenhouse Horticulture, Wageningen UR, 6700 AP, Wageningen, The Netherlands
| | | | | | | |
Collapse
|