1
|
Drennan PG, Provine NM, Harris SA, Otter A, Hollett K, Cooper C, De Maeyer RPH, Nassanga B, Ateere A, Pudjohartono MF, Peng Y, Chen JL, Jones S, Fadzillah NHM, Grifoni A, Sette A, Satti I, Murray SM, Rowe C, Mandal S, Hallis B, Klenerman P, Dong T, Richards D, Fullerton J, McShane H, Coles M. Immunogenicity of MVA-BN vaccine deployed as mpox prophylaxis: a prospective, single-centre, cohort study and analysis of transcriptomic predictors of response. THE LANCET. MICROBE 2025:101045. [PMID: 40286799 DOI: 10.1016/j.lanmic.2024.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 04/29/2025]
Abstract
BACKGROUND Since 2022, mpox has emerged as a global health threat, with two clades (I and II) causing outbreaks of international public health concern. The third generation smallpox vaccine modified vaccinia Ankara, manufactured by Bavarian Nordic (MVA-BN), has emerged as a key component of mpox prevention. To date, the immunogenicity of this vaccine, including determinants of response, has been incompletely described, especially when MVA-BN has been administered intradermally at a fifth of the registered dose (so-called fractionated dosing), as recommended as a dose-sparing strategy. The aim of this study was to explore the immunogenicity of MVA-BN and baseline determinants of vaccine response in an observational public-health response setting. METHODS We conducted a prospective cohort study and immunological analysis of responses to MVA-BN in patients attending a sexual health vaccination clinic in Oxford, UK. Blood samples were taken at baseline, day 14, and day 28 after first vaccine, and 28 and 90 days following a second vaccine. A subcohort had additional blood samples collected day 1 following their first vaccine (optional timepoint). We assessed IgG responses to mpox and vaccinia antigens using Luminex assay (MpoxPlex) using generalised linear mixed modelling, and T-cell responses using IFN-γ enzyme-linked immunospot and activation-induced marker assay. Associations between blood transcriptomic signatures (baseline, day 1) and immunogenicity were assessed using differential expression analysis and gene set enrichment methods. FINDINGS We recruited 34 participants between Dec 1, 2022 and May 3, 2023 of whom 33 received fractionated dosing. Of the 30 without previous smallpox vaccination, 14 (47%) seroconverted by day 28, increasing to 25 (89%) 90 days after second vaccination. However, individuals seronegative on day 28 had persistently lower responses compared with individuals seropositive on day 28 (numerically lower antibody responses to six of seven dynamic antigens in the MPoxPlex assay, p<0·05). Serological response on day 28 was positively associated with type I and II interferon signatures 1 day after vaccination (n=18; median module score 0·13 vs 0·06; p=1·1 × 10-⁶), but negatively associated with these signatures at baseline (normalised enrichment score -2·81 and -2·86, respectively). INTERPRETATION Baseline inflammatory states might inhibit MVA-BN serological immunogenicity by inhibiting the upregulation of MVA-induced innate immune signalling. If confirmed mechanistically, these insights could inform improved vaccination strategies against mpox in diverse geographic and demographic settings. Given the likelihood of vaccine supply limitations presently and in future outbreak settings, the utility of dose-sparing vaccine strategies as a general approach to maximising population benefit warrants further study. FUNDING UKRI via the UK Monkeypox Research Consortium, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, the Kennedy Trust for Rheumatology Research, the John Climax Donation, the Medical Research Council (UK), the Wellcome Trust, the Center for Cooperative Human Immunology (National Institutes of Health), and the National Institute for Health and Care Research Oxford Biomedical Research Centre.
Collapse
Affiliation(s)
- Philip G Drennan
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Nicholas M Provine
- Pandemic Sciences Institute, University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Ashley Otter
- Emerging Pathogen Serology Group, UK Health Security Agency, Porton Down, UK
| | - Kate Hollett
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Cushla Cooper
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Roel P H De Maeyer
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | | | | | - Yanchun Peng
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK; MRC Translational Immune Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ji-Li Chen
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK; MRC Translational Immune Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Scott Jones
- Emerging Pathogen Serology Group, UK Health Security Agency, Porton Down, UK
| | | | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Allessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Iman Satti
- Jenner Institute, University of Oxford, Oxford, UK
| | - Sam M Murray
- Emerging Pathogen Serology Group, UK Health Security Agency, Porton Down, UK
| | - Cathy Rowe
- Emerging Pathogen Serology Group, UK Health Security Agency, Porton Down, UK
| | | | - Bassam Hallis
- Emerging Pathogen Serology Group, UK Health Security Agency, Porton Down, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tao Dong
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK; MRC Translational Immune Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Duncan Richards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - James Fullerton
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Mark Coles
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Trajman A, Campbell JR, Kunor T, Ruslami R, Amanullah F, Behr MA, Menzies D. Tuberculosis. Lancet 2025; 405:850-866. [PMID: 40057344 DOI: 10.1016/s0140-6736(24)02479-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 10/11/2024] [Accepted: 11/08/2024] [Indexed: 05/13/2025]
Abstract
Tuberculosis is a leading cause of death globally. Given the airborne transmission of tuberculosis, anybody can be infected, but people in high-incidence settings are more exposed. Risk of progression to disease is higher in the first years after infection, and in people with undernourishment, immunosuppression, or who smoke, drink alcohol, or have diabetes. Although cough, fever, and weight loss are hallmark symptoms, people with tuberculosis can be asymptomatic, so a high index of suspicion is required. Prompt diagnosis can be made by sputum examination (ideally with rapid molecular tests), but chest radiography can be helpful. Most people with disease can be treated with regimens of 6 months or less; longer regimens may be necessary for those with drug resistance. Central to successful treatment is comprehensive, person-centred care including addressing key determinants, such as undernourishment, smoking, and alcohol use, and optimising management of comorbidities, such as diabetes and HIV. Care should continue after treatment ends, as long-term sequelae are common. Prevention relies mostly on treatment with rifamycin-based regimens; current vaccines have limited efficacy. Ongoing research on shorter and safer regimens for infection and disease treatment, and simpler and more accurate diagnostic methods will be key for tuberculosis elimination.
Collapse
Affiliation(s)
- Anete Trajman
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; McGill International TB Centre, Montreal, QC, Canada
| | - Jonathon R Campbell
- McGill International TB Centre, Montreal, QC, Canada; Department of Medicine, McGill University, Montreal, QC, Canada; Department of Global and Public Health, McGill University, Montreal, QC, Canada; Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research & Evaluation, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Tenzin Kunor
- We Are TB. Madison, WI, USA; London School of Hygiene and Tropical Medicine, London, UK
| | - Rovina Ruslami
- McGill International TB Centre, Montreal, QC, Canada; Department of Biomedical Sciences, Division of Pharmacology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Marcel A Behr
- McGill International TB Centre, Montreal, QC, Canada
| | - Dick Menzies
- McGill International TB Centre, Montreal, QC, Canada; Department of Medicine, McGill University, Montreal, QC, Canada; McGill International TB Centre & WHO Collaborating Centre in TB Research, Montreal Chest Institute, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
3
|
Sachdeva KS, Chadha VK. TB-vaccines: Current status & challenges. Indian J Med Res 2024; 160:338-345. [PMID: 39632643 PMCID: PMC11619029 DOI: 10.25259/ijmr_1478_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Tuberculosis continues to be among the leading causes of morbidity as well as mortality. It is appreciated that our aim of eliminating TB in the foreseeable future will not be realized until we have a new vaccine with significant efficacy among diverse populations and all age-groups. Although impressive strides have been made in more refined development of new TB vaccines based on learnings from past experiences, the substitute or a booster vaccine for the BCG vaccine is not available yet. This article puts in perspective the recent efforts in re-positioning BCG, development of newer vaccines based on novel approaches, the current TB vaccine pipeline, yet unmet challenges in vaccine development, exploring newer ideas in vaccine development and what the future holds.
Collapse
Affiliation(s)
| | - Vineet K. Chadha
- Epidemiology and Research Division, National Tuberculosis Institute, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Gupta A, Rudra A, Reed K, Langer R, Anderson DG. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 2024; 23:914-938. [PMID: 39433939 DOI: 10.1038/s41573-024-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnab Rudra
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaelan Reed
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Fredsgaard-Jones T, Harris SA, Morrison H, Ateere A, Nassanga B, Ramon RL, Mitton C, Fletcher E, Decker J, Preston-Jones H, Jackson S, Mawer A, Satti I, Barer M, Hinks T, Bettinson H, McShane H. A dose escalation study to evaluate the safety of an aerosol BCG infection in previously BCG-vaccinated healthy human UK adults. Front Immunol 2024; 15:1427371. [PMID: 39611145 PMCID: PMC11602284 DOI: 10.3389/fimmu.2024.1427371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/14/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Tuberculosis (TB) is the leading cause of death worldwide from a single infectious agent. Bacillus Calmette-Guérin (BCG), the only licensed vaccine, provides limited protection. Controlled human infection models (CHIMs) are useful in accelerating vaccine development for pathogens with no correlates of protection; however, the need for prolonged treatment makes Mycobacterium tuberculosis an unethical challenge agent. Aerosolised BCG provides a potential safe surrogate of infection. A CHIM in BCG-vaccinated as well as BCG-naïve individuals would allow identification of novel BCG-booster vaccine candidates and facilitate CHIM studies in populations with high TB endemicity. The purpose of this study was to evaluate the safety and utility of an aerosol BCG CHIM in historically BCG-vaccinated volunteers. Methods There were 12 healthy, historically BCG-vaccinated UK adults sequentially enrolled into dose-escalating groups. The first three received 1 × 104 CFU aerosol BCG Danish 1331 via a nebuliser. After safety review, subsequent groups received doses of 1 × 105 CFU, 1 × 106 CFU, or 1 × 107 CFU. Safety was monitored through self-reported adverse events (AEs), laboratory tests, and lung function testing. Immunology blood samples were taken pre-infection and at multiple timepoints post-infection. A bronchoalveolar lavage (BAL) taken 14 days post-infection was analysed for presence of live BCG. Results No serious AEs occurred during the study. Solicited systemic and respiratory AEs were frequent in all groups, but generally short-lived and mild in severity. There was a trend for more reported AEs in the highest-dose group. No live BCG was detected in BAL from any volunteers. Aerosol BCG induced potent systemic cellular immune responses in the highest-dose group 7 days post-infection. Discussion Aerosol BCG infection up to a dose of 1 × 107 CFU was well-tolerated in historically BCG-vaccinated healthy, UK adults. No live BCG was detected in the BAL fluid 14 days post-infection despite potent systemic responses, suggesting early clearance. Further work is needed to expand the number of volunteers receiving BCG via the aerosol route to refine and establish utility of this aerosol BCG CHIM. Clinical trial registration https://clinicaltrials.gov/, identifier NCT04777721.
Collapse
Affiliation(s)
| | | | - Hazel Morrison
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alberta Ateere
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Celia Mitton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Eve Fletcher
- Department of Respiratory Science, University of Leicester, Leicester, United Kingdom
| | - Jonathan Decker
- Department of Respiratory Science, University of Leicester, Leicester, United Kingdom
| | | | - Susan Jackson
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Andrew Mawer
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iman Satti
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Michael Barer
- Department of Respiratory Science, University of Leicester, Leicester, United Kingdom
| | - Timothy Hinks
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Henry Bettinson
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Audran R, Karoui O, Donnet L, Soumas V, Fares F, Lovis A, Noirez L, Cavassini M, Fayet-Mello A, Satti I, McShane H, Spertini F. Randomised, double-blind, controlled phase 1 trial of the candidate tuberculosis vaccine ChAdOx1-85A delivered by aerosol versus intramuscular route. J Infect 2024; 89:106205. [PMID: 38897242 DOI: 10.1016/j.jinf.2024.106205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND A BCG booster vaccination administered via the respiratory mucosa may establish protective immune responses at the primary site of Mycobacterium tuberculosis infection. The primary objective of this trial was to compare the safety and immunogenicity of inhaled versus intramuscular administered ChAdOx1-85A. METHODS We conducted a single-centre, randomised, double-blind, controlled phase 1 study (Swiss National Clinical Trials Portal number SNCTP000002920). After a dose-escalation vaccination in nine BCG-vaccinated healthy adults, a dose of 1 × 1010 vp of ChAdOx1-85A was administered to twenty BCG-vaccinated adults that were randomly allocated (1:1) into two groups: aerosol ChAdOx1-85A with intramuscular saline placebo or intramuscular ChAdOx1-85A with aerosol saline placebo, using block randomisation. A control group of ten BCG-naïve adults received aerosol ChAdOx1-85A at the same dose. Primary outcomes were solicited and unsolicited adverse events (AEs) up to day 16 post-vaccination and Serious AEs (SAEs) up to 24 weeks; secondary outcomes were cell-mediated and humoral immune responses in blood and bronchoalveolar lavage (BAL) samples. FINDINGS Both vaccination routes were well tolerated with no SAEs. Intramuscular ChAdOx1-85A was associated with more local AEs (mostly pain at the injection site) than aerosol ChAdOx1-85A. Systemic AEs occurred in all groups, mainly fatigue and headaches, without differences between groups. Respiratory AEs were not different between BCG-vaccinated groups. Aerosol ChAdOx1-85A vaccination induced Ag85A BAL and systemic cellular immune responses with compartmentalisation of the immune responses: aerosol ChAdOx1-85A induced stronger BAL cellular responses, particularly IFNγ/IL17+CD4+ T cells; intramuscular ChAdOx1-85A induced stronger systemic cellular and humoral responses. INTERPRETATION Inhaled ChAdOx1-85A was well-tolerated and induced lung mucosal and systemic Ag85A-specific T-cell responses. These data support further evaluation of aerosol ChAdOx1-85A and other viral vectors as a BCG-booster vaccination strategy.
Collapse
Affiliation(s)
- Régine Audran
- Department of Medicine, Division of Allergy and Immunology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Olfa Karoui
- Department of Medicine, Division of Allergy and Immunology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Laura Donnet
- Clinical Trial Unit, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Vassili Soumas
- Clinical Trial Unit, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Fady Fares
- Clinical Trial Unit, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Alban Lovis
- Department of Medicine, Division of Pneumology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Leslie Noirez
- Department of Medicine, Division of Pneumology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Matthias Cavassini
- Department of Medicine, Division of Infectious Disease, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Aurélie Fayet-Mello
- Clinical Trial Unit, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Iman Satti
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK.
| | - François Spertini
- Department of Medicine, Division of Allergy and Immunology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
7
|
Satti I, Marshall JL, Harris SA, Wittenberg R, Tanner R, Lopez Ramon R, Wilkie M, Ramos Lopez F, Riste M, Wright D, Peralta Alvarez MP, Williams N, Morrison H, Stylianou E, Folegatti P, Jenkin D, Vermaak S, Rask L, Cabrera Puig I, Powell Doherty R, Lawrie A, Moss P, Hinks T, Bettinson H, McShane H. Safety of a controlled human infection model of tuberculosis with aerosolised, live-attenuated Mycobacterium bovis BCG versus intradermal BCG in BCG-naive adults in the UK: a dose-escalation, randomised, controlled, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:909-921. [PMID: 38621405 DOI: 10.1016/s1473-3099(24)00143-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Mycobacterium tuberculosis is the main causative agent of tuberculosis. BCG, the only licensed vaccine, provides inadequate protection against pulmonary tuberculosis. Controlled human infection models are useful tools for vaccine development. We aimed to determine a safe dose of aerosol-inhaled live-attenuated Mycobacterium bovis BCG as a surrogate for M tuberculosis infection, then compare the safety and tolerability of infection models established using aerosol-inhaled and intradermally administered BCG. METHODS This phase 1 controlled human infection trial was conducted at two clinical research facilities in the UK. Healthy, immunocompetent adults aged 18-50 years, who were both M tuberculosis-naive and BCG-naive and had no history of asthma or other respiratory diseases, were eligible for the trial. Participants were initially enrolled into group 1 (receiving the BCG Danish strain); the trial was subsequently paused because of a worldwide shortage of BCG Danish and, after protocol amendment, was restarted using the BCG Bulgaria strain (group 2). After a dose-escalation study, during which participants were sequentially allocated to receive either 1 × 103, 1 × 104, 1 × 105, 1 × 106, or 1 × 107 colony-forming units (CFU) of aerosol BCG, the maximum tolerated dose was selected for the randomised controlled trial. Participants in this trial were randomly assigned (9:12), by variable block randomisation and using sequentially numbered sealed envelopes, to receive aerosol BCG (1 × 107 CFU) and intradermal saline or intradermal BCG (1 × 106 CFU) and aerosol saline. Participants were masked to treatment allocation until day 14. The primary outcome was to compare the safety of a controlled human infection model based on aerosol-inhaled BCG versus one based on intradermally administered BCG, and the secondary outcome was to evaluate BCG recovery in the airways of participants who received aerosol BCG or skin biopsies of participants who received intradermal BCG. BCG was detected by culture and by PCR. The trial is registered at ClinicalTrials.gov, NCT02709278, and is complete. FINDINGS Participants were assessed for eligibility between April 7, 2016, and Sept 29, 2018. For group 1, 15 participants were screened, of whom 13 were enrolled and ten completed the study; for group 2, 60 were screened and 33 enrolled, all of whom completed the study. Doses up to 1 × 107 CFU aerosol-inhaled BCG were sufficiently well tolerated. No significant difference was observed in the frequency of adverse events between aerosol and intradermal groups (median percentage of solicited adverse events per participant, post-aerosol vs post-intradermal BCG: systemic 7% [IQR 2-11] vs 4% [1-13], p=0·62; respiratory 7% [1-19] vs 4% [1-9], p=0·56). More severe systemic adverse events occurred in the 2 weeks after aerosol BCG (15 [12%] of 122 reported systemic adverse events) than after intradermal BCG (one [1%] of 94; difference 11% [95% CI 5-17]; p=0·0013), but no difference was observed in the severity of respiratory adverse events (two [1%] of 144 vs zero [0%] of 97; 1% [-1 to 3]; p=0·52). All adverse events after aerosol BCG resolved spontaneously. One serious adverse event was reported-a participant in group 2 was admitted to hospital to receive analgesia for a pre-existing ovarian cyst, which was deemed unrelated to BCG infection. On day 14, BCG was cultured from bronchoalveolar lavage samples after aerosol infection and from skin biopsy samples after intradermal infection. INTERPRETATION This first-in-human aerosol BCG controlled human infection model was sufficiently well tolerated. Further work will evaluate the utility of this model in assessing vaccine efficacy and identifying potential correlates of protection. FUNDING Bill & Melinda Gates Foundation, Wellcome Trust, National Institute for Health Research Oxford Biomedical Research Centre, Thames Valley Clinical Research Network, and TBVAC2020.
Collapse
Affiliation(s)
- Iman Satti
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | | | | | - Rachel Tanner
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Morven Wilkie
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Michael Riste
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Daniel Wright
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Nicola Williams
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | | | | | | | - Daniel Jenkin
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Linnea Rask
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | | | - Alison Lawrie
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Timothy Hinks
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Henry Bettinson
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Jeyanathan M, Xing Z. A new tool for accelerating tuberculosis vaccine development. THE LANCET. INFECTIOUS DISEASES 2024; 24:803-804. [PMID: 38621406 DOI: 10.1016/s1473-3099(24)00178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Affiliation(s)
- Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada; Michael G DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Zhou Xing
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada; Michael G DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
9
|
Stylianou E, Satti I. Inhaled aerosol viral-vectored vaccines against tuberculosis. Curr Opin Virol 2024; 66:101408. [PMID: 38574628 DOI: 10.1016/j.coviro.2024.101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024]
Abstract
Bacille Calmette-Guérin (BCG) remains the sole licensed vaccine against tuberculosis (TB), despite its variable efficacy in protecting against pulmonary TB. The development of effective TB vaccines faces significant challenges, marked by the absence of validated correlates of protection and predictive animal models. Strategic approaches to enhance TB vaccines and augment BCG efficacy include utilising prime-boost strategies with viral-vectored vaccines and exploring innovative delivery techniques, such as mucosal vaccine administration. Viral vectors offer numerous advantages, including the capacity to accommodate genes encoding extensive antigenic fragments and the induction of robust immune responses. Aerosol delivery aligns with the route of Mycobacterium tuberculosis infection and holds the potential to enhance protective mucosal immunity. Aerosolised viral-vectored vaccines overcome anti-vector immunity, facilitating repeated aerosol deliveries.
Collapse
Affiliation(s)
- Elena Stylianou
- The Jenner Institute, Old Road Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Iman Satti
- The Jenner Institute, Old Road Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
10
|
Qin L, Sun Y, Gao N, Ling G, Zhang P. Nanotechnology of inhalable vaccines for enhancing mucosal immunity. Drug Deliv Transl Res 2024; 14:597-620. [PMID: 37747597 DOI: 10.1007/s13346-023-01431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
Vaccines are the cornerstone of world health. The majority of vaccines are formulated as injectable products, facing the drawbacks of cold chain transportation, needle-stick injuries, and primary systemic immunity. Inhalable vaccines exhibited unique advantages due to their small dose, easy to use, quick effect, and simultaneous induction of mucosal and systemic responses. Facing global pandemics, especially the coronavirus disease 2019 (COVID-19), a majority of inhalable vaccines are in preclinical or clinical trials. A better understanding of advanced delivery technologies of inhalable vaccines may provide new scientific insights for developing inhalable vaccines. In this review article, detailed immune mechanisms involving mucosal, cellular, and humoral immunity were described. The preparation methods of inhalable vaccines were then introduced. Advanced nanotechnologies of inhalable vaccines containing inhalable nucleic acid vaccines, inhalable adenovirus vector vaccines, novel adjuvant-assisted inhalable vaccines, and biomaterials for inhalable vaccine delivery were emphatically discussed. Meanwhile, the latest clinical progress in inhalable vaccines for COVID-19 and tuberculosis was discussed.
Collapse
Affiliation(s)
- Li Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co. Ltd., No. 243, Gongyebei Road, Jinan, 250100, China
| | - Nan Gao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
11
|
Hoseinpour R, Hasani A, Baradaran B, Abdolalizadeh J, Salehi R, Hasani A, Nabizadeh E, Yekani M, Hasani R, Kafil HS, Azizian K, Memar MY. Tuberculosis vaccine developments and efficient delivery systems: A comprehensive appraisal. Heliyon 2024; 10:e26193. [PMID: 38404880 PMCID: PMC10884459 DOI: 10.1016/j.heliyon.2024.e26193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Despite the widespread use of the Bacillus Calmette-Guérin (BCG) vaccine, Mycobacterium tuberculosis (MTB) continues to be a global burden. Vaccination has been proposed to prevent and treat tuberculosis (TB) infection, and several of them are in different phases of clinical trials. Though vaccine production is in progress but requires more attention. There are several TB vaccines in the trial phase, most of which are based on a combination of proteins/adjuvants or recombinant viral vectors used for selected MTB antigens. In this review, we attempted to discuss different types of TB vaccines based on the vaccine composition, the immune responses generated, and their clinical trial phases. Furthermore, we have briefly overviewed the effective delivery systems used for the TB vaccine and their effectiveness in different vaccines.
Collapse
Affiliation(s)
- Rasoul Hoseinpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Laboratory sciences and Microbiology, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alka Hasani
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit, Sina Educational, Research, and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Hasani
- Department of Clinical Biochemistry and Applied Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Hossein Samadi Kafil
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Azizian
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Science, Sanandaj, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Mata-Espinosa D, Lara-Espinosa JV, Barrios-Payán J, Hernández-Pando R. The Use of Viral Vectors for Gene Therapy and Vaccination in Tuberculosis. Pharmaceuticals (Basel) 2023; 16:1475. [PMID: 37895946 PMCID: PMC10610538 DOI: 10.3390/ph16101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Tuberculosis (TB), an infection caused by Mycobacterium tuberculosis (Mtb), is one of the primary causes of death globally. The treatment of TB is long and based on several drugs, producing problems in compliance and toxicity, increasing Mtb resistance to first-line antibiotics that result in multidrug-resistant TB and extensively drug-resistant TB. Thus, the need for new anti-TB treatments has increased. Here, we review some model strategies to study gene therapy based on the administration of a recombinant adenovirus that encodes diverse cytokines, such as IFNγ, IL12, GM/CSF, OPN, TNFα, and antimicrobial peptides to enhance the protective immune response against Mtb. These models include a model of progressive pulmonary TB, a model of chronic infection similar to latent TB, and a murine model of pulmonary Mtb transmission to close contacts. We also review new vaccines that deliver Mtb antigens via particle- or virus-based vectors and trigger protective immune responses. The results obtained in this type of research suggest that this is an alternative therapy that has the potential to treat active TB as an adjuvant to conventional antibiotics and a promising preventive treatment for latent TB reactivation and Mtb transmission. Moreover, Ad vector vaccines are adequate for preventing infectious diseases, including TB.
Collapse
Affiliation(s)
| | | | | | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City 14080, Mexico; (J.V.L.-E.); (J.B.-P.)
| |
Collapse
|
13
|
Stylianou E, Pinpathomrat N, Sampson O, Richard A, Korompis M, McShane H. A five-antigen Esx-5a fusion delivered as a prime-boost regimen protects against M.tb challenge. Front Immunol 2023; 14:1263457. [PMID: 37869008 PMCID: PMC10585038 DOI: 10.3389/fimmu.2023.1263457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023] Open
Abstract
The development of tuberculosis (TB) vaccines has been hindered by the complex nature of Mycobacterium tuberculosis (M.tb) and the absence of clearly defined immune markers of protection. While Bacillus Calmette-Guerin (BCG) is currently the only licensed TB vaccine, its effectiveness diminishes in adulthood. In our previous research, we identified that boosting BCG with an intranasally administered chimpanzee adenovirus expressing the PPE15 antigen of M.tb (ChAdOx1.PPE15) improved its protection. To enhance the vaccine's efficacy, we combined PPE15 with the other three members of the Esx-5a secretion system and Ag85A into a multi-antigen construct (5Ag). Leveraging the mucosal administration safety of ChAdOx1, we targeted the site of M.tb infection to induce localized mucosal responses, while employing modified vaccinia virus (MVA) to boost systemic immune responses. The combination of these antigens resulted in enhanced BCG protection in both the lungs and spleens of vaccinated mice. These findings provide support for advancing ChAdOx1.5Ag and MVA.5Ag to the next stages of vaccine development.
Collapse
Affiliation(s)
- Elena Stylianou
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Jeyanathan M, Afkhami S, Kang A, Xing Z. Viral-vectored respiratory mucosal vaccine strategies. Curr Opin Immunol 2023; 84:102370. [PMID: 37499279 DOI: 10.1016/j.coi.2023.102370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
Increasing global concerns of pandemic respiratory viruses highlight the importance of developing optimal vaccination strategies that encompass vaccine platform, delivery route, and regimens. The decades-long effort to develop vaccines to combat respiratory infections such as influenza, respiratory syncytial virus, and tuberculosis has met with challenges, including the inability of systemically administered vaccines to induce respiratory mucosal (RM) immunity. In this regard, ample preclinical and available clinical studies have demonstrated the superiority of RM vaccination to induce RM immunity over parenteral route of vaccination. A great stride has been made in developing vaccines for RM delivery against respiratory pathogens, including M. tuberculosis and SARS-CoV-2. In particular, inhaled aerosol delivery of adenoviral-vectored vaccines has shown significant promise.
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alisha Kang
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
15
|
Afkhami S, Kang A, Jeyanathan V, Xing Z, Jeyanathan M. Adenoviral-vectored next-generation respiratory mucosal vaccines against COVID-19. Curr Opin Virol 2023; 61:101334. [PMID: 37276833 PMCID: PMC10172971 DOI: 10.1016/j.coviro.2023.101334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
The world is in need of next-generation COVID-19 vaccines. Although first-generation injectable COVID-19 vaccines continue to be critical tools in controlling the current global health crisis, continuous emergence of SARS-CoV-2 variants of concern has eroded the efficacy of these vaccines, leading to staggering breakthrough infections and posing threats to poor vaccine responders. This is partly because the humoral and T-cell responses generated following intramuscular injection of spike-centric monovalent vaccines are mostly confined to the periphery, failing to either access or be maintained at the portal of infection, the respiratory mucosa (RM). In contrast, respiratory mucosal-delivered vaccine can induce immunity encompassing humoral, cellular, and trained innate immunity positioned at the respiratory mucosa that may act quickly to prevent the establishment of an infection. Viral vectors, especially adenoviruses, represent the most promising platform for RM delivery that can be designed to express both structural and nonstructural antigens of SARS-CoV-2. Boosting RM immunity via the respiratory route using multivalent adenoviral-vectored vaccines would be a viable next-generation vaccine strategy.
Collapse
Affiliation(s)
- Sam Afkhami
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research & Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alisha Kang
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research & Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Vidthiya Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research & Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research & Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research & Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
16
|
Srivastava S, Dey S, Mukhopadhyay S. Vaccines against Tuberculosis: Where Are We Now? Vaccines (Basel) 2023; 11:vaccines11051013. [PMID: 37243117 DOI: 10.3390/vaccines11051013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Tuberculosis (TB) is among the top 10 leading causes of death in low-income countries. Statistically, TB kills more than 30,000 people each week and leads to more deaths than any other infectious disease, such as acquired immunodeficiency syndrome (AIDS) and malaria. TB treatment is largely dependent on BCG vaccination and impacted by the inefficacy of drugs, absence of advanced vaccines, misdiagnosis improper treatment, and social stigma. The BCG vaccine provides partial effectiveness in demographically distinct populations and the prevalence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB incidences demands the design of novel TB vaccines. Various strategies have been employed to design vaccines against TB, such as: (a) The protein subunit vaccine; (b) The viral vector vaccine; (c) The inactivation of whole-cell vaccine, using related mycobacteria, (d) Recombinant BCG (rBCG) expressing Mycobacterium tuberculosis (M.tb) protein or some non-essential gene deleted BCG. There are, approximately, 19 vaccine candidates in different phases of clinical trials. In this article, we review the development of TB vaccines, their status and potential in the treatment of TB. Heterologous immune responses generated by advanced vaccines will contribute to long-lasting immunity and might protect us from both drug-sensitive and drug-resistant TB. Therefore, advanced vaccine candidates need to be identified and developed to boost the human immune system against TB.
Collapse
Affiliation(s)
- Shruti Srivastava
- Research and Development Office, Ashoka University, Rajiv Gandhi Education City, Sonipat 131029, Haryana, India
| | - Sajal Dey
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, Telangana, India
| |
Collapse
|
17
|
Duong VT, Skwarczynski M, Toth I. Towards the development of subunit vaccines against tuberculosis: The key role of adjuvant. Tuberculosis (Edinb) 2023; 139:102307. [PMID: 36706503 DOI: 10.1016/j.tube.2023.102307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
According to the World Health Organization (WHO), tuberculosis (TB) is the leading cause of death triggered by a single infectious agent, worldwide. Bacillus Calmette-Guerin (BCG) is the only currently licensed anti-TB vaccine. However, other strategies, including modification of recombinant BCG vaccine, attenuated Mycobacterium tuberculosis (Mtb) mutant constructs, DNA and protein subunit vaccines, are under extensive investigation. As whole pathogen vaccines can trigger serious adverse reactions, most current strategies are focused on the development of safe anti-TB subunit vaccines; this is especially important given the rising TB infection rate in immunocompromised HIV patients. The whole Mtb genome has been mapped and major antigens have been identified; however, optimal vaccine delivery mode is still to be established. Isolated protein antigens are typically poorly immunogenic so adjuvants are required to induce strong and long-lasting immune responses. This article aims to review the developmental status of anti-TB subunit vaccine adjuvants.
Collapse
Affiliation(s)
- Viet Tram Duong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
18
|
Intranasal multivalent adenoviral-vectored vaccine protects against replicating and dormant M.tb in conventional and humanized mice. NPJ Vaccines 2023; 8:25. [PMID: 36823425 PMCID: PMC9948798 DOI: 10.1038/s41541-023-00623-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Viral-vectored vaccines are highly amenable for respiratory mucosal delivery as a means of inducing much-needed mucosal immunity at the point of pathogen entry. Unfortunately, current monovalent viral-vectored tuberculosis (TB) vaccine candidates have failed to demonstrate satisfactory clinical protective efficacy. As such, there is a need to develop next-generation viral-vectored TB vaccine strategies which incorporate both vaccine antigen design and delivery route. In this study, we have developed a trivalent chimpanzee adenoviral-vectored vaccine to provide protective immunity against pulmonary TB through targeting antigens linked to the three different growth phases (acute/chronic/dormancy) of Mycobacterium tuberculosis (M.tb) by expressing an acute replication-associated antigen, Ag85A, a chronically expressed virulence-associated antigen, TB10.4, and a dormancy/resuscitation-associated antigen, RpfB. Single-dose respiratory mucosal immunization with our trivalent vaccine induced robust, sustained tissue-resident multifunctional CD4+ and CD8+ T-cell responses within the lung tissues and airways, which were further quantitatively and qualitatively improved following boosting of subcutaneously BCG-primed hosts. Prophylactic and therapeutic immunization with this multivalent trivalent vaccine in conventional BALB/c mice provided significant protection against not only actively replicating M.tb bacilli but also dormant, non-replicating persisters. Importantly, when used as a booster, it also provided marked protection in the highly susceptible C3HeB/FeJ mice, and a single respiratory mucosal inoculation was capable of significant protection in a humanized mouse model. Our findings indicate the great potential of this next-generation TB vaccine strategy and support its further clinical development for both prophylactic and therapeutic applications.
Collapse
|
19
|
Vatzia E, Feest K, McNee A, Manjegowda T, Carr BV, Paudyal B, Chrun T, Maze EA, Mccarron A, Morris S, Everett HE, MacLoughlin R, Salguero FJ, Lambe T, Gilbert SC, Tchilian E. Immunization with matrix-, nucleoprotein and neuraminidase protects against H3N2 influenza challenge in pH1N1 pre-exposed pigs. NPJ Vaccines 2023; 8:19. [PMID: 36792640 PMCID: PMC9930017 DOI: 10.1038/s41541-023-00620-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
There is an urgent need for influenza vaccines providing broader protection that may decrease the need for annual immunization of the human population. We investigated the efficacy of heterologous prime boost immunization with chimpanzee adenovirus (ChAdOx2) and modified vaccinia Ankara (MVA) vectored vaccines, expressing conserved influenza virus nucleoprotein (NP), matrix protein 1 (M1) and neuraminidase (NA) in H1N1pdm09 pre-exposed pigs. We compared the efficacy of intra-nasal, aerosol and intra-muscular vaccine delivery against H3N2 influenza challenge. Aerosol prime boost immunization induced strong local lung T cell and antibody responses and abrogated viral shedding and lung pathology following H3N2 challenge. In contrast, intramuscular immunization induced powerful systemic responses and weak local lung responses but also abolished lung pathology and reduced viral shedding. These results provide valuable insights into the development of a broadly protective influenza vaccine in a highly relevant large animal model and will inform future vaccine and clinical trial design.
Collapse
Affiliation(s)
- Eleni Vatzia
- The Pirbright Institute, Pirbright, United Kingdom.
| | | | - Adam McNee
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | | | | | | | - Amy Mccarron
- The Pirbright Institute, Pirbright, United Kingdom
| | - Susan Morris
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen E Everett
- Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, United Kingdom
| | | | - Francisco J Salguero
- United Kingdom Health Security Agency, UKHSA-Porton Down, Salisbury, United Kingdom
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford and Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Sarah C Gilbert
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
20
|
Kirk NM, Huang Q, Vrba S, Rahman M, Block AM, Murphy H, White DW, Namugenyi SB, Ly H, Tischler AD, Liang Y. Recombinant Pichinde viral vector expressing tuberculosis antigens elicits strong T cell responses and protection in mice. Front Immunol 2023; 14:1127515. [PMID: 36845108 PMCID: PMC9945092 DOI: 10.3389/fimmu.2023.1127515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) remains a major global health threat. The only available vaccine Bacille Calmette-Guérin (BCG) does not prevent adult pulmonary TB. New effective TB vaccines should aim to stimulate robust T cell responses in the lung mucosa to achieve high protective efficacy. We have previously developed a novel viral vaccine vector based on recombinant Pichinde virus (PICV), a non-pathogenic arenavirus with low seroprevalence in humans, and have demonstrated its efficacy to induce strong vaccine immunity with undetectable anti-vector neutralization activity. Methods Using this tri-segmented PICV vector (rP18tri), we have generated viral vectored TB vaccines (TBvac-1, TBvac-2, and TBvac-10) encoding several known TB immunogens (Ag85B, EsxH, and ESAT-6/EsxA). A P2A linker sequence was used to allow for the expression of two proteins from one open-reading-frame (ORF) on the viral RNA segments. The immunogenicity of TBvac-2 and TBvac-10 and the protective efficacy of TBvac-1 and TBvac-2 were evaluated in mice. Results Both viral vectored vaccines elicited strong antigen-specific CD4 and CD8 T cells through intramuscular (IM) and intranasal (IN) routes as evaluated by MHC-I and MHC-II tetramer analyses, respectively. The IN inoculation route helped to elicit strong lung T cell responses. The vaccine-induced antigen-specific CD4 T cells are functional, expressing multiple cytokines as detected by intracellular cytokine staining. Finally, immunization with TBvac-1 or TBvac-2, both expressing the same trivalent antigens (Ag85B, EsxH, ESAT6/EsxA), reduced Mtb lung tissue burden and dissemination in an aerosol challenge mouse model. Conclusions The novel PICV vector-based TB vaccine candidates can express more than two antigens via the use of P2A linker sequence and elicit strong systemic and lung T cell immunity with protective efficacy. Our study suggests the PICV vector as an attractive vaccine platform for the development of new and effective TB vaccine candidates.
Collapse
Affiliation(s)
- Natalie M. Kirk
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Qinfeng Huang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Sophia Vrba
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Mizanur Rahman
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Alisha M. Block
- Department of Microbiology and Immunology, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Hannah Murphy
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Dylan W. White
- Department of Microbiology and Immunology, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Sarah B. Namugenyi
- Department of Microbiology and Immunology, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Anna D. Tischler
- Department of Microbiology and Immunology, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
21
|
Aksyuk AA, Bansal H, Wilkins D, Stanley AM, Sproule S, Maaske J, Sanikommui S, Hartman WR, Sobieszczyk ME, Falsey AR, Kelly EJ. AZD1222-induced nasal antibody responses are shaped by prior SARS-CoV-2 infection and correlate with virologic outcomes in breakthrough infection. Cell Rep Med 2023; 4:100882. [PMID: 36610390 PMCID: PMC9750884 DOI: 10.1016/j.xcrm.2022.100882] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The nasal mucosa is an important initial site of host defense against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, intramuscularly administered vaccines typically do not achieve high antibody titers in the nasal mucosa. We measure anti-SARS-CoV-2 spike immunoglobulin G (IgG) and IgA in nasal epithelial lining fluid (NELF) following intramuscular vaccination of 3,058 participants from the immunogenicity substudy of a phase 3, double-blind, placebo-controlled study of AZD1222 vaccination (ClinicalTrials.gov: NCT04516746). IgG is detected in NELF collected 14 days following the first AZD1222 vaccination. IgG levels increase with a second vaccination and exceed pre-existing levels in baseline-SARS-CoV-2-seropositive participants. Nasal IgG responses are durable and display strong correlations with serum IgG, suggesting serum-to-NELF transudation. AZD1222 induces short-lived increases to pre-existing nasal IgA levels in baseline-seropositive vaccinees. Vaccinees display a robust recall IgG response upon breakthrough infection, with overall magnitudes unaffected by time between vaccination and illness. Mucosal responses correlate with reduced viral loads and shorter durations of viral shedding in saliva.
Collapse
Affiliation(s)
- Anastasia A Aksyuk
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Himanshu Bansal
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Deidre Wilkins
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Ann Marie Stanley
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Stephanie Sproule
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Jill Maaske
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Satya Sanikommui
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - William R Hartman
- Department of Anesthesiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53726, USA
| | - Magdalena E Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, New York Presbyterian/Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ann R Falsey
- University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Rochester Regional Health, Rochester, NY 14621, USA.
| | - Elizabeth J Kelly
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA.
| |
Collapse
|
22
|
Luo X, Zeng X, Gong L, Ye Y, Sun C, Chen T, Zhang Z, Tao Y, Zeng H, Zou Q, Yang Y, Li J, Sun H. Nanomaterials in tuberculosis DNA vaccine delivery: historical perspective and current landscape. Drug Deliv 2022; 29:2912-2924. [PMID: 36081335 PMCID: PMC9467597 DOI: 10.1080/10717544.2022.2120565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Vaccinations, especially DNA vaccines that promote host immunity, are the most effective interventions for tuberculosis (TB) control. However, the vaccine delivery system exhibits a significant impact on the protective effects of the vaccine. Recently, effective nanomaterial-based delivery systems (including nanoparticles, nanogold, nanoliposomes, virus-like particles, and virus carriers) have been developed for DNA vaccines to control TB. This review highlights the historical development of various nanomaterial-based delivery systems for TB DNA vaccines, along with the emerging technologies. Nanomaterial-based vaccine delivery systems could enhance the efficacy of TB vaccination; therefore, this summary could guide nanomaterial selection for optimal and safe vaccine delivery, facilitating the design and development of highly effective TB vaccines.
Collapse
Affiliation(s)
- Xing Luo
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaoqiang Zeng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Li Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Ye
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Cun Sun
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ting Chen
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Zelong Zhang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yikun Tao
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hao Zeng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yun Yang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jieping Li
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, China.,Department of Hematology, Changsha Central Hospital, Changsha, China
| | - Hongwu Sun
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
23
|
Orlova OV, Glazkova DV, Bogoslovskaya EV, Shipulin GA, Yudin SM. Development of Modified Vaccinia Virus Ankara-Based Vaccines: Advantages and Applications. Vaccines (Basel) 2022; 10:vaccines10091516. [PMID: 36146594 PMCID: PMC9503770 DOI: 10.3390/vaccines10091516] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a promising viral vector for vaccine development. MVA is well studied and has been widely used for vaccination against smallpox in Germany. This review describes the history of the origin of the virus and its properties as a vaccine, including a high safety profile. In recent years, MVA has found its place as a vector for the creation of vaccines against various diseases. To date, a large number of vaccine candidates based on the MVA vector have already been developed, many of which have been tested in preclinical and clinical studies. We discuss data on the immunogenicity and efficacy of some of these vaccines.
Collapse
|
24
|
Singh S, Saavedra-Avila NA, Tiwari S, Porcelli SA. A century of BCG vaccination: Immune mechanisms, animal models, non-traditional routes and implications for COVID-19. Front Immunol 2022; 13:959656. [PMID: 36091032 PMCID: PMC9459386 DOI: 10.3389/fimmu.2022.959656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
Bacillus Calmette-Guerin (BCG) has been used as a vaccine against tuberculosis since 1921 and remains the only currently approved vaccine for this infection. The recent discovery that BCG protects against initial infection, and not just against progression from latent to active disease, has significant implications for ongoing research into the immune mechanisms that are relevant to generate a solid host defense against Mycobacterium tuberculosis (Mtb). In this review, we first explore the different components of immunity that are augmented after BCG vaccination. Next, we summarize current efforts to improve the efficacy of BCG through the development of recombinant strains, heterologous prime-boost approaches and the deployment of non-traditional routes. These efforts have included the development of new recombinant BCG strains, and various strategies for expression of important antigens such as those deleted during the M. bovis attenuation process or antigens that are present only in Mtb. BCG is typically administered via the intradermal route, raising questions about whether this could account for its apparent failure to generate long-lasting immunological memory in the lungs and the inconsistent level of protection against pulmonary tuberculosis in adults. Recent years have seen a resurgence of interest in the mucosal and intravenous delivery routes as they have been shown to induce a better immune response both in the systemic and mucosal compartments. Finally, we discuss the potential benefits of the ability of BCG to confer trained immunity in a non-specific manner by broadly stimulating a host immunity resulting in a generalized survival benefit in neonates and the elderly, while potentially offering benefits for the control of new and emerging infectious diseases such as COVID-19. Given that BCG will likely continue to be widely used well into the future, it remains of critical importance to better understand the immune responses driven by it and how to leverage these for the design of improved vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Medicine, New York University School of Medicine, New York, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
- *Correspondence: Shivani Singh,
| | | | - Sangeeta Tiwari
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, Texas, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
25
|
Hu Z, Lu SH, Lowrie DB, Fan XY. Research Advances for Virus-vectored Tuberculosis Vaccines and Latest Findings on Tuberculosis Vaccine Development. Front Immunol 2022; 13:895020. [PMID: 35812383 PMCID: PMC9259874 DOI: 10.3389/fimmu.2022.895020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by respiratory infection with Mycobacterium tuberculosis, remains a major global health threat. The only licensed TB vaccine, the one-hundred-year-old Bacille Calmette-Guérin has variable efficacy and often provides poor protection against adult pulmonary TB, the transmissible form of the disease. Thus, the lack of an optimal TB vaccine is one of the key barriers to TB control. Recently, the development of highly efficacious COVID-19 vaccines within one year accelerated the vaccine development process in human use, with the notable example of mRNA vaccines and adenovirus-vectored vaccines, and increased the public acceptance of the concept of the controlled human challenge model. In the TB vaccine field, recent progress also facilitated the deployment of an effective TB vaccine. In this review, we provide an update on the current virus-vectored TB vaccine pipeline and summarize the latest findings that might facilitate TB vaccine development. In detail, on the one hand, we provide a systematic literature review of the virus-vectored TB vaccines are in clinical trials, and other promising candidate vaccines at an earlier stage of development are being evaluated in preclinical animal models. These research sharply increase the likelihood of finding a more effective TB vaccine in the near future. On the other hand, we provide an update on the latest tools and concept that facilitating TB vaccine research development. We propose that a pre-requisite for successful development may be a better understanding of both the lung-resident memory T cell-mediated mucosal immunity and the trained immunity of phagocytic cells. Such knowledge could reveal novel targets and result in the innovative vaccine designs that may be needed for a quantum leap forward in vaccine efficacy. We also summarized the research on controlled human infection and ultra-low-dose aerosol infection murine models, which may provide more realistic assessments of vaccine utility at earlier stages. In addition, we believe that the success in the ongoing efforts to identify correlates of protection would be a game-changer for streamlining the triage of multiple next-generation TB vaccine candidates. Thus, with more advanced knowledge of TB vaccine research, we remain hopeful that a more effective TB vaccine will eventually be developed in the near future.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Douglas B. Lowrie
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| |
Collapse
|
26
|
Jeyanathan V, Afkhami S, D’Agostino MR, Zganiacz A, Feng X, Miller MS, Jeyanathan M, Thompson MR, Xing Z. Differential Biodistribution of Adenoviral-Vectored Vaccine Following Intranasal and Endotracheal Deliveries Leads to Different Immune Outcomes. Front Immunol 2022; 13:860399. [PMID: 35757753 PMCID: PMC9231681 DOI: 10.3389/fimmu.2022.860399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Infectious diseases of the respiratory tract are one of the top causes of global morbidity and mortality with lower respiratory tract infections being the fourth leading cause of death. The respiratory mucosal (RM) route of vaccine delivery represents a promising strategy against respiratory infections. Although both intranasal and inhaled aerosol methods have been established for human application, there is a considerable knowledge gap in the relationship of vaccine biodistribution to immune efficacy in the lung. Here, by using a murine model and an adenovirus-vectored model vaccine, we have compared the intranasal and endotracheal delivery methods in their biodistribution, immunogenicity and protective efficacy. We find that compared to intranasal delivery, the deepened and widened biodistribution in the lung following endotracheal delivery is associated with much improved vaccine-mediated immunogenicity and protection against the target pathogen. Our findings thus support further development of inhaled aerosol delivery of vaccines over intranasal delivery for human application.
Collapse
Affiliation(s)
- Vidthiya Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Michael R. D’Agostino
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Xueya Feng
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew S. Miller
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Michael R. Thompson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,Department of Medicine, McMaster University, Hamilton, ON, Canada,*Correspondence: Zhou Xing,
| |
Collapse
|
27
|
Ardicli O, Azkur AK, Azkur D. A potential immunological silver bullet for COVID-19: The trivalent chimpanzee adenoviral serotype-68 vector (Tri:ChAd). Allergy 2022; 77:2565-2567. [PMID: 35491434 PMCID: PMC9347580 DOI: 10.1111/all.15333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Ozge Ardicli
- Division of Food Processing, Milk and Dairy Products Technology Program Karacabey Vocational School University of Bursa Uludag Bursa Turkey
| | - Ahmet Kursat Azkur
- Department of Virology Faculty of Veterinary Medicine University of Kirikkale Kirikkale Turkey
| | - Dilek Azkur
- Division of Pediatric Allergy and Immunology Department of Pediatrics Faculty of Medicine University of Kirikkale Kirikkale Turkey
| |
Collapse
|
28
|
A century of attempts to develop an effective tuberculosis vaccine: Why they failed? Int Immunopharmacol 2022; 109:108791. [PMID: 35487086 DOI: 10.1016/j.intimp.2022.108791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022]
Abstract
Tuberculosis (TB) remains a major global health problem despite widespread use of the Bacillus BCG vaccine. This situation is worsened by co-infection with HIV, and the development of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains. Thus, novel vaccine candidates and improved vaccination strategies are urgently needed in order to reduce the incidence of TB and even to eradicate TB by 2050. Over the last few decades, 23 novel TB vaccines have entered into clinical trials, more than 13 new vaccines have reached various stages of preclinical development, and more than 50 potential candidates are in the discovery stage as next-generation vaccines. Nevertheless, why has a century of attempts to introduce an effective TB vaccine failed? Who should be blamed -scientists, human response, or Mtb strategies? Literature review reveals that the elimination of latent or active Mtb infections in a given population seems to be an epigenetic process. With a better understanding of the connections between bacterial infections and gene expression conditions in epigenetic events, opportunities arise in designing protective vaccines or therapeutic agents, particularly as epigenetic processes can be reversed. Therefore, this review provides a brief overview of different approaches towards novel vaccination strategies and the mechanisms underlying these approaches.
Collapse
|
29
|
Afkhami S, D'Agostino MR, Zhang A, Stacey HD, Marzok A, Kang A, Singh R, Bavananthasivam J, Ye G, Luo X, Wang F, Ang JC, Zganiacz A, Sankar U, Kazhdan N, Koenig JFE, Phelps A, Gameiro SF, Tang S, Jordana M, Wan Y, Mossman KL, Jeyanathan M, Gillgrass A, Medina MFC, Smaill F, Lichty BD, Miller MS, Xing Z. Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell 2022; 185:896-915.e19. [PMID: 35180381 PMCID: PMC8825346 DOI: 10.1016/j.cell.2022.02.005] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 12/28/2022]
Abstract
The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.
Collapse
Affiliation(s)
- Sam Afkhami
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Michael R D'Agostino
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ali Zhang
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Hannah D Stacey
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Art Marzok
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alisha Kang
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ramandeep Singh
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jegarubee Bavananthasivam
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Gluke Ye
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Xiangqian Luo
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Fuan Wang
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jann C Ang
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Uma Sankar
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Natallia Kazhdan
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Joshua F E Koenig
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Allyssa Phelps
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Steven F Gameiro
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Shangguo Tang
- Department of Pathology and Molecular Medicine, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Manel Jordana
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Karen L Mossman
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Amy Gillgrass
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Maria Fe C Medina
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Fiona Smaill
- Department of Pathology and Molecular Medicine, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Brian D Lichty
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Matthew S Miller
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Zhou Xing
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
30
|
Jeyanathan M, Fritz DK, Afkhami S, Aguirre E, Howie KJ, Zganiacz A, Dvorkin-Gheva A, Thompson MR, Silver R, Cusack RP, Lichty BD, O'Byrne PM, Kolb M, Medina MFC, Dolovich MB, Satia I, Gauvreau GM, Xing Z, Smaill F. Aerosol delivery, but not intramuscular injection, of adenovirus-vectored tuberculosis vaccine induces respiratory-mucosal immunity in humans. JCI Insight 2022; 7:155655. [PMID: 34990408 PMCID: PMC8855837 DOI: 10.1172/jci.insight.155655] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Adenoviral (Ad)-vectored vaccines are typically administered via intramuscular injection to humans, incapable of inducing respiratory mucosal immunity. However, aerosol delivery of Ad-vectored vaccines remains poorly characterized and its ability to induce mucosal immunity in humans is unknown. This phase 1b trial was to evaluate the safety and immunogenicity of human serotype-5 Ad-vectored tuberculosis (TB) vaccine (AdHu5Ag85A) delivered to humans via inhaled aerosol or intramuscular injection. METHODS 31 healthy, previously BCG-vaccinated adults were enrolled. AdHu5Ag85A was administered by single-dose aerosol using Aeroneb® Solo Nebulizer or by intramuscular (IM) injection. The study consisted of the low dose (LD) aerosol, high dose (HD) aerosol and IM groups. The adverse events were assessed at various times post-vaccination. Immunogenicity data were collected from the peripheral blood and bronchoalveolar lavage samples at baseline and select timepoints post-vaccination. RESULTS The nebulized aerosol droplets were <5.39µm in size. Both LD and HD of AdHu5Ag85A administered by aerosol inhalation and IM injection were safe and well-tolerated. Both aerosol doses, particularly LD, but not IM, vaccination markedly induced airway tissue-resident memory CD4 and CD8 T cells of polyfunctionality. While as expected, IM vaccination induced Ag85A-specific T cell responses in the blood, the LD aerosol vaccination also elicited such T cells in the blood. Furthermore, the LD aerosol vaccination induced persisting transcriptional changes in alveolar macrophages. CONCLUSIONS Inhaled aerosol delivery of Ad-vectored vaccine is a safe and superior way to elicit respiratory mucosal immunity. This study warrants further development of aerosol vaccine strategies against respiratory pathogens including TB and COVID-19. TRIAL REGISTRATION This trial is registered with ClinicalTrial.gov, NCT# 02337270. FUNDING The Canadian Institutes for Health Research and the Natural Sciences and Engineering Research Council of Canada.
Collapse
Affiliation(s)
| | - Dominik K Fritz
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Sam Afkhami
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Emilio Aguirre
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Karen J Howie
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Anna Zganiacz
- Department of Medicine, McMaster University, Hamilton, Canada
| | | | - Michael R Thompson
- Department of Chemical Engineering, McMaster University, Hamilton, Canada
| | - Richard Silver
- Department of Critical Care Medicine and Sleep Medicine, Case Western Researve University, Cleveland, United States of America
| | - Ruth P Cusack
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Brian D Lichty
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Paul M O'Byrne
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, Canada
| | | | | | - Imran Satia
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Gail M Gauvreau
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Zhou Xing
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Fiona Smaill
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
31
|
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a leading cause of mortality and morbidity due to a single infectious agent. Aerosol infection with Mtb can result in a range of responses from elimination, active, incipient, subclinical, and latent Mtb infections (LTBI), depending on the host's immune response and the dose and nature of infecting bacilli. Currently, BCG is the only vaccine approved to prevent TB. Although BCG confers protection against severe forms of childhood TB, its use in adults and those with comorbid conditions, such as HIV infection, is questionable. Novel vaccines, including recombinant BCG (rBCG), were developed to improve BCG's efficacy and use as an alternative to BCG in a vulnerable population. The first-generation rBCG vaccines had different Mtb antigens and were tested as a prime, prime-boost, or immunotherapeutic intervention. The novel vaccines target one or more of the following requirements, namely prevention of infection (POI), prevention of disease (POD), prevention of recurrence (POR), and therapeutic vaccines to treat a TB disease. Several vaccine candidates currently in development are classified into four primary categories: live attenuated whole-cell vaccine, inactivated whole-cell vaccine, adjuvanted protein subunit vaccine, and viral-vectored vaccine. Each vaccine's immunogenicity, safety, and efficacy are tested in preclinical animal models and further validated through various phases of clinical trials. This chapter summarizes the various TB vaccine candidates under different clinical trial stages and promises better protection against TB.
Collapse
Affiliation(s)
- Radha Gopalaswamy
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamilnadu, India
| | - Selvakumar Subbian
- The Public Health Research Institute Center at New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
32
|
Immunological Assessment of Lung Responses to Inhalational Lipoprotein Vaccines Against Bacterial Pathogens. Methods Mol Biol 2021. [PMID: 34784043 DOI: 10.1007/978-1-0716-1900-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Lipopeptides or lipoproteins show potential as safe and effective subunit vaccines for protection against bacterial pathogens. Provided suitable adjuvants are selected, such as the TLR2-stimulating molecules Pam2Cys and Pam3Cys, these may be formulated as inhalational vaccines to optimize localized pulmonary immune responses. Here, we present methods to assess antigen-specific memory lymphocyte responses to novel vaccines, with a focus on immune responses in the lung tissue and bronchoalveolar space. We describe detection of T-cell responses via leukocyte restimulation, followed by intracellular cytokine staining and flow cytometry, enzyme-linked immunosorbent spot assay (ELISpot), and sustained leukocyte restimulation for detection of antigen-specific memory responses. We also detail assessment of antibody responses to vaccine antigens, via enzyme-linked immunosorbent assay (ELISA)-based detection. These methods are suitable for testing a wide range of pulmonary vaccines.
Collapse
|
33
|
Bošnjak B, Odak I, Barros-Martins J, Sandrock I, Hammerschmidt SI, Permanyer M, Patzer GE, Greorgiev H, Gutierrez Jauregui R, Tscherne A, Schwarz JH, Kalodimou G, Ssebyatika G, Ciurkiewicz M, Willenzon S, Bubke A, Ristenpart J, Ritter C, Tuchel T, Meyer zu Natrup C, Shin DL, Clever S, Limpinsel L, Baumgärtner W, Krey T, Volz A, Sutter G, Förster R. Intranasal Delivery of MVA Vector Vaccine Induces Effective Pulmonary Immunity Against SARS-CoV-2 in Rodents. Front Immunol 2021; 12:772240. [PMID: 34858430 PMCID: PMC8632543 DOI: 10.3389/fimmu.2021.772240] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023] Open
Abstract
Antigen-specific tissue-resident memory T cells (Trms) and neutralizing IgA antibodies provide the most effective protection of the lungs from viral infections. To induce those essential components of lung immunity against SARS-CoV-2, we tested various immunization protocols involving intranasal delivery of a novel Modified Vaccinia virus Ankara (MVA)-SARS-2-spike vaccine candidate. We show that a single intranasal MVA-SARS-CoV-2-S application in mice strongly induced pulmonary spike-specific CD8+ T cells, albeit restricted production of neutralizing antibodies. In prime-boost protocols, intranasal booster vaccine delivery proved to be crucial for a massive expansion of systemic and lung tissue-resident spike-specific CD8+ T cells and the development of Th1 - but not Th2 - CD4+ T cells. Likewise, very high titers of IgG and IgA anti-spike antibodies were present in serum and broncho-alveolar lavages that possessed high virus neutralization capacities to all current SARS-CoV-2 variants of concern. Importantly, the MVA-SARS-2-spike vaccine applied in intramuscular priming and intranasal boosting treatment regimen completely protected hamsters from developing SARS-CoV-2 lung infection and pathology. Together, these results identify intramuscular priming followed by respiratory tract boosting with MVA-SARS-2-S as a promising approach for the induction of local, respiratory as well as systemic immune responses suited to protect from SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Hristo Greorgiev
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Jan Hendrik Schwarz
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - George Ssebyatika
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany
| | | | | | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | - Tamara Tuchel
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Dai-Lun Shin
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sabrina Clever
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Thomas Krey
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Asisa Volz
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Hannover, Germany
| |
Collapse
|
34
|
Saramago S, Magalhães J, Pinheiro M. Tuberculosis Vaccines: An Update of Recent and Ongoing Clinical Trials. APPLIED SCIENCES 2021; 11:9250. [DOI: 10.3390/app11199250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
TB remains a global health challenge and, until now, only one licensed vaccine (the BCG vaccine) is available. The main goal of this work is to assess the progress in the development of new TB vaccines and highlight the research in nanovaccines. A review was conducted using a methodology with the appropriate keywords and inclusion and exclusion criteria. The search revealed 37 clinical trials that were further reviewed. The results available have reported good immunogenicity and safety profiles for the vaccines under investigation. Over the last five years, the vaccines, VPM1002 and Vaccae, have moved ahead to phase III clinical trials, with the remaining candidate vaccines progressing in phase I and II clinical trials. RUTI and ID93+GLA-SE involve the use of nanoparticles. This strategy seems promising to improve the delivery, efficacy, cost, and storage conditions of the existing TB vaccines. In conclusion, the use of nanovaccines may be an option for both prevention and treatment. However, further studies are necessary for the development of novel TB vaccines.
Collapse
Affiliation(s)
- Sean Saramago
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Joana Magalhães
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marina Pinheiro
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Centro Hospitalar Universitário do Porto (CHUP), Largo do Prof. Abel Salazar, 4099-001 Porto, Portugal
| |
Collapse
|
35
|
Heida R, Hinrichs WL, Frijlink HW. Inhaled vaccine delivery in the combat against respiratory viruses: a 2021 overview of recent developments and implications for COVID-19. Expert Rev Vaccines 2021; 21:957-974. [PMID: 33749491 DOI: 10.1080/14760584.2021.1903878] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION As underlined by the late 2019 outbreak of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), vaccination remains the cornerstone of global health-care. Although vaccines for SARS-CoV-2 are being developed at a record-breaking pace, the majority of those that are licensed or currently registered in clinical trials are formulated as an injectable product, requiring a tightly regulated cold-chain infrastructure, and primarily inducing systemic immune responses. AREAS COVERED Here, we shed light on the status of inhaled vaccines against viral pathogens, providing background to the role of the mucosal immune system and elucidating what factors determine an inhalable vaccine's efficacy. We also discuss whether the development of an inhalable powder vaccine formulation against SARS-CoV-2 could be feasible. The review was conducted using relevant studies from PubMed, Web of Science and Google Scholar. EXPERT OPINION We believe that the scope of vaccine research should be broadened toward inhalable dry powder formulations since dry vaccines bear several advantages. Firstly, their dry state can tremendously increase vaccine stability and shelf-life. Secondly, they can be inhaled using disposable inhalers, omitting the need for trained health-care personnel and, therefore, facilitating mass-vaccination campaigns. Thirdly, inhalable vaccines may provide improved protection since they can induce an IgA-mediated mucosal immune response.
Collapse
Affiliation(s)
- Rick Heida
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Wouter Lj Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
36
|
Sivakumaran D, Blatner G, Bakken R, Hokey D, Ritz C, Jenum S, Grewal HMS. A 2-Dose AERAS-402 Regimen Boosts CD8 + Polyfunctionality in HIV-Negative, BCG-Vaccinated Recipients. Front Immunol 2021; 12:673532. [PMID: 34177914 PMCID: PMC8231292 DOI: 10.3389/fimmu.2021.673532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/18/2021] [Indexed: 11/20/2022] Open
Abstract
Despite the widespread use of BCG, tuberculosis (TB) remains a global threat. Existing vaccine candidates in clinical trials are designed to replace or boost BCG which does not provide satisfying long-term protection. AERAS-402 is a replication-deficient Ad35 vaccine encoding a fusion protein of the M. tuberculosis (Mtb) antigens 85A, 85B, and TB10.4. The present phase I trial assessed the safety and immunogenicity of AERAS-402 in participants living in India – a highly TB-endemic area. Healthy male participants aged 18–45 years with a negative QuantiFERON-TB Gold in-tube test (QFT) were recruited. Enrolled participants (n=12) were randomized 2:1 to receive two intramuscular injections of either AERAS-402 (3 x 1010 viral particles [vp]); (n=8) or placebo (n=4) on study days 0 and 28. Safety and immunogenicity parameters were evaluated for up to 182 days post the second injection. Immunogenicity was assessed by a flow cytometry-based intracellular cytokine staining (ICS) assay and transcriptional profiling. The latter was examined using dual-color-Reverse-Transcriptase-Multiplex-Ligation-dependent-Probe-Amplification (dc-RT MLPA) assay. AERAS-402 was well tolerated, and no vaccine-related serious adverse events were recorded. The vaccine-induced CD8+ T-cell responses were dominated by cells co-expressing IFN-γ, TNF-α, and IL-2 (“polyfunctional” cells) and were more robust than CD4+ T-cell responses. Five genes (CXCL10, GNLY, IFI35, IL1B and PTPRCv2) were differentially expressed between the AERAS-402-group and the placebo group, suggesting vaccine-induced responses. Further, compared to pre-vaccination, three genes (CLEC7A, PTPRCv1 and TAGAP) were consistently up-regulated following two doses of vaccination in the AERAS-402-group. No safety concerns were observed for AERAS-402 in healthy Indian adult males. The vaccine-induced predominantly polyfunctional CD8+ T cells in response to Ag85B, humoral immunity, and altered gene expression profiles in peripheral blood mononuclear cells (PBMCs) indicative of activation of various immunologically relevant biological pathways.
Collapse
Affiliation(s)
- Dhanasekaran Sivakumaran
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Gretta Blatner
- Biomedical Advanced Research and Development Authority (BARDA), Department of Health and Human Services, Washington, DC, United States.,Aeras Global TB Vaccine Foundation, Rockville, MD, United States
| | - Rasmus Bakken
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - David Hokey
- Aeras Global TB Vaccine Foundation, Rockville, MD, United States
| | - Christian Ritz
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Harleen M S Grewal
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| |
Collapse
|
37
|
Phase I Trial Evaluating the Safety and Immunogenicity of Candidate TB Vaccine MVA85A, Delivered by Aerosol to Healthy M.tb-Infected Adults. Vaccines (Basel) 2021; 9:vaccines9040396. [PMID: 33923628 PMCID: PMC8073411 DOI: 10.3390/vaccines9040396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/28/2023] Open
Abstract
The immunogenicity of the candidate tuberculosis (TB) vaccine MVA85A may be enhanced by aerosol delivery. Intradermal administration was shown to be safe in adults with latent TB infection (LTBI), but data are lacking for aerosol-delivered candidate TB vaccines in this population. We carried out a Phase I trial to evaluate the safety and immunogenicity of MVA85A delivered by aerosol in UK adults with LTBI (NCT02532036). Two volunteers were recruited, and the vaccine was well-tolerated with no safety concerns. Aerosolised vaccination with MVA85A induced mycobacterium- and vector-specific IFN-γ in blood and mycobacterium-specific Th1 cytokines in bronchoalveolar lavage. We identified several important barriers that could hamper recruitment into clinical trials in this patient population. The trial did not show any safety concerns in the aerosol delivery of a candidate viral-vectored TB vaccine to two UK adults with Mycobacterium tuberculosis (M.tb) infection. It also systemically and mucosally demonstrated inducible immune responses following aerosol vaccination. A further trial in a country with higher incidence of LTBI would confirm these findings.
Collapse
|
38
|
Khanna M, Rady H, Dai G, Ramsay AJ. Intranasal boosting with MVA encoding secreted mycobacterial proteins Ag85A and ESAT-6 generates strong pulmonary immune responses and protection against M. tuberculosis in mice given BCG as neonates. Vaccine 2021; 39:1780-1787. [PMID: 33632562 PMCID: PMC7990059 DOI: 10.1016/j.vaccine.2021.01.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/02/2023]
Abstract
Bacille-Calmette-Guerin (BCG) has variable efficacy as an adult tuberculosis (TB) vaccine but can reduce the incidence and severity of TB infection in humans. We have engineered modified vaccinia Ankara (MVA) strain vaccine constructs to express the secreted mycobacterial proteins Ag85A and ESAT-6 (MVA-AE) and evaluated their immunogenicity and protective efficacy as mucosal booster vaccines for BCG given subcutaneously in early life. Intranasal delivery of MVA-AE to young adult mice induced CD4+ and CD8+ T cell responses to both Ag85A and ESAT-6 in lung mucosae. These responses were markedly enhanced in mice that had been primed neonatally with BCG prior to intranasal MVA-AE immunization (BCG/MVA-AE), as evidenced by numbers of pulmonary Ag85A-, ESAT-6-, and PPD-specific CD4+ and CD8+ T cells and by their capacity to secrete multiple antimicrobial factors, including IFNγ, IL-2 and IL-17. Moreover, MVA-AE boosting generated multifunctional lung CD4+ T cells responding to ESAT-6, which were not, as expected, detected in control mice given BCG, and elevated Ag85A-specific circulating antibody responses. After aerosol challenge with M. tuberculosis H37Rv (Mtb), the BCG/MVA-AE group had significantly reduced mycobacterial burden in the lungs, compared with either BCG primed mice boosted with control MVA or mice given only BCG. These data indicate that intranasal delivery of MVA-AE can boost BCG-induced Th1 and Th17-based immunity locally in the lungs and improve the protective efficacy of neonatally-administered BCG against M. tuberculosis infection.
Collapse
Affiliation(s)
- Mayank Khanna
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, and the Louisiana Vaccine Center, New Orleans, LA 70112, USA
| | - Hamada Rady
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, and the Louisiana Vaccine Center, New Orleans, LA 70112, USA
| | - Guixiang Dai
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, and the Louisiana Vaccine Center, New Orleans, LA 70112, USA
| | - Alistair J Ramsay
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, and the Louisiana Vaccine Center, New Orleans, LA 70112, USA.
| |
Collapse
|
39
|
Morrison H, McShane H. Local Pulmonary Immunological Biomarkers in Tuberculosis. Front Immunol 2021; 12:640916. [PMID: 33746984 PMCID: PMC7973084 DOI: 10.3389/fimmu.2021.640916] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Regardless of the eventual site of disease, the point of entry for Mycobacterium tuberculosis (M.tb) is via the respiratory tract and tuberculosis (TB) remains primarily a disease of the lungs. Immunological biomarkers detected from the respiratory compartment may be of particular interest in understanding the complex immune response to M.tb infection and may more accurately reflect disease activity than those seen in peripheral samples. Studies in humans and a variety of animal models have shown that biomarkers detected in response to mycobacterial challenge are highly localized, with signals seen in respiratory samples that are absent from the peripheral blood. Increased understanding of the role of pulmonary specific biomarkers may prove particularly valuable in the field of TB vaccines. Here, development of vaccine candidates is hampered by the lack of defined correlates of protection (COPs). Assessing vaccine immunogenicity in humans has primarily focussed on detecting these potential markers of protection in peripheral blood. However, further understanding of the importance of local pulmonary immune responses suggests alternative approaches may be necessary. For example, non-circulating tissue resident memory T cells (TRM) play a key role in host mycobacterial defenses and detecting their associated biomarkers can only be achieved by interrogating respiratory samples such as bronchoalveolar lavage fluid or tissue biopsies. Here, we review what is known about pulmonary specific immunological biomarkers and discuss potential applications and further research needs.
Collapse
Affiliation(s)
- Hazel Morrison
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Synthetic protein conjugate vaccines provide protection against Mycobacterium tuberculosis in mice. Proc Natl Acad Sci U S A 2021; 118:2013730118. [PMID: 33468674 DOI: 10.1073/pnas.2013730118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The global incidence of tuberculosis remains unacceptably high, with new preventative strategies needed to reduce the burden of disease. We describe here a method for the generation of synthetic self-adjuvanted protein vaccines and demonstrate application in vaccination against Mycobacterium tuberculosis Two vaccine constructs were designed, consisting of full-length ESAT6 protein fused to the TLR2-targeting adjuvants Pam2Cys-SK4 or Pam3Cys-SK4 These were produced by chemical synthesis using a peptide ligation strategy. The synthetic self-adjuvanting vaccines generated powerful local CD4+ T cell responses against ESAT6 and provided significant protection in the lungs from virulent M. tuberculosis aerosol challenge when administered to the pulmonary mucosa of mice. The flexible synthetic platform we describe, which allows incorporation of adjuvants to multiantigenic vaccines, represents a general approach that can be applied to rapidly assess vaccination strategies in preclinical models for a range of diseases, including against novel pandemic pathogens such as SARS-CoV-2.
Collapse
|
41
|
Kim DS, Rowland-Jones S, Gea-Mallorquí E. Will SARS-CoV-2 Infection Elicit Long-Lasting Protective or Sterilising Immunity? Implications for Vaccine Strategies (2020). Front Immunol 2020; 11:571481. [PMID: 33362759 PMCID: PMC7756008 DOI: 10.3389/fimmu.2020.571481] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
In December 2019, an outbreak of a novel coronavirus (SARS-CoV-2) in Wuhan, China resulted in the current COVID-19 global pandemic. The human immune system has not previously encountered this virus, raising the important question as to whether or not protective immunity is generated by infection. Growing evidence suggests that protective immunity can indeed be acquired post-infection-although a handful of reinfection cases have been reported. However, it is still unknown whether the immune response to SARS-CoV-2 leads to some degree of long-lasting protection against the disease or the infection. This review draws insights from previous knowledge regarding the nature and longevity of immunity to the related virus, SARS-CoV, to fill the gaps in our understanding of the immune response to SARS-CoV-2. Deciphering the immunological characteristics that give rise to protective immunity against SARS-CoV-2 is critical to guiding vaccine development and also predicting the course of the pandemic. Here we discuss the recent evidence that characterises the adaptive immune response against SARS-CoV-2 and its potential implications for the generation of memory responses and long-term protection.
Collapse
Affiliation(s)
- David S. Kim
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Sarah Rowland-Jones
- Viral Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ester Gea-Mallorquí
- Viral Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Safar HA, Mustafa AS, McHugh TD. COVID-19 vaccine development: What lessons can we learn from TB? Ann Clin Microbiol Antimicrob 2020; 19:56. [PMID: 33256750 PMCID: PMC7702199 DOI: 10.1186/s12941-020-00402-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
At the time of writing, the SARS-CoV-2 virus has infected more than 49 million people causing more than 1.2 million deaths worldwide since its emergence from Wuhan, China in December 2019. Vaccine development against SARS-CoV-2 has drawn the global attention in order to stop the spread of the virus, with more than 10 vaccines being tested in phase III clinical trials, as of November 2020. However, critical to vaccine development is consideration of the immunological response elicited as well as biological features of the vaccine and both need to be evaluated thoroughly. Tuberculosis is also a major infectious respiratory disease of worldwide prevalence and the vaccine development for tuberculosis has been ongoing for decades. In this review, we highlight some of the common features, challenges and complications in tuberculosis vaccine development, which may also be relevant for, and inform, COVID-19 vaccine development.
Collapse
Affiliation(s)
- Hussain A Safar
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK.
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Timothy D McHugh
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
43
|
Graham JC, Hillegass J, Schulze G. Considerations for setting occupational exposure limits for novel pharmaceutical modalities. Regul Toxicol Pharmacol 2020; 118:104813. [PMID: 33144077 PMCID: PMC7605856 DOI: 10.1016/j.yrtph.2020.104813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/13/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022]
Abstract
In order to develop new and effective medicines, pharmaceutical companies must be modality agnostic. As science reveals an enhanced understanding of biological processes, new therapeutic modalities are becoming important in developing breakthrough therapies to treat both rare and common diseases. As these new modalities progress, concern and uncertainty arise regarding their safe handling by the researchers developing them, employees manufacturing them and nurses administering them. This manuscript reviews the available literature for emerging modalities (including oligonucleotides, monoclonal antibodies, fusion proteins and bispecific antibodies, antibody-drug conjugates, peptides, vaccines, genetically modified organisms, and several others) and provides considerations for occupational health and safety-oriented hazard identification and risk assessments to enable timely, consistent and well-informed hazard identification, hazard communication and risk-management decisions. This manuscript also points out instances where historical exposure control banding systems may not be applicable (e.g. oncolytic viruses, biologics) and where other occupational exposure limit systems are more applicable (e.g. Biosafety Levels, Biologic Control Categories). Review of toxicology and pharmacology information for novel therapeutic modalities. Identification of occupational hazards associated with novel therapeutic modalities. Occupational hazards and exposure risks differ across pharmaceutical modalities. Occupational exposure control banding systems are not one size fits all. Banding system variations offer benefits while enabling proper exposure controls.
Collapse
Affiliation(s)
- Jessica C Graham
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA.
| | - Jedd Hillegass
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| | - Gene Schulze
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| |
Collapse
|
44
|
Ullah I, Bibi S, Ul Haq I, Safia, Ullah K, Ge L, Shi X, Bin M, Niu H, Tian J, Zhu B. The Systematic Review and Meta-Analysis on the Immunogenicity and Safety of the Tuberculosis Subunit Vaccines M72/AS01 E and MVA85A. Front Immunol 2020; 11:1806. [PMID: 33133057 PMCID: PMC7578575 DOI: 10.3389/fimmu.2020.01806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/06/2020] [Indexed: 01/30/2023] Open
Abstract
Background: Tuberculosis (TB) is a severe infectious disease with devastating effects on global public health. No TB vaccine has yet been approved for use on latent TB infections and healthy adults. In this study, we performed a systematic review and meta-analysis to evaluate the immunogenicity and safety of the M72/AS01E and MVA85A subunit vaccines. The M72/AS01E is a novel peptide-based vaccine currently in progress, which may increase the protection level against TB infection. The MVA85A was a viral vector-based TB subunit vaccine being used in the clinical trials. The vaccines mentioned above have been studied in various phase I/II clinical trials. Immunogenicity and safety is the first consideration for TB vaccine development. Methods: The PubMed, Embase, and Cochrane Library databases were searched for published studies (until October 2019) to find out information on the M72/AS01E and MVA85A candidate vaccines. The meta-analysis was conducted by applying the standard methods and processes established by the Cochrane Collaboration. Results: Five eligible randomized clinical trials (RCTs) were selected for the meta-analysis of M72/AS01E candidate vaccines. The analysis revealed that the M72/AS01E subunit vaccine had an abundance of polyfunctional M72-specific CD4+ T cells [standardized mean difference (SMD) = 2.37] in the vaccine group versus the control group, the highest seropositivity rate [relative risk (RR) = 5.09]. The M72/AS01E vaccinated group were found to be at high risk of local injection site redness (RR = 2.64), headache (RR = 1.59), malaise (RR = 3.55), myalgia (RR = 2.27), fatigue (RR = 2.16), pain (RR = 3.99), swelling (RR = 5.09), and fever (RR = 2.04) compared to the control groups. The incidences of common adverse events of M72/AS01E were local injection site redness, headache, malaise, myalgia, fatigue, pain, swelling, fever, etc. Six eligible RCTs were selected for the meta-analysis on MVA85A candidate vaccines. The analysis revealed that the subunit vaccine MVA85A had a higher abundance of overall pooled proportion polyfunctional MVA85A-specific CD4+ T cells SMD = 2.41 in the vaccine group vs. the control group, with the highest seropositivity rate [estimation rate (ER) = 0.55]. The MVA85A vaccinated group were found to be at high risk of local injection site redness (ER = 0.55), headache (ER = 0.40), malaise (ER = 0.29), pain (ER = 0.54), myalgia (ER = 0.31), and fever (ER = 0.20). The incidences of common adverse events of MVA85A were local injection site redness, headache, malaise, pain, myalgia, fever, etc. Conclusion: The M72/AS01E and MVA85A vaccines against TB are safe and had immunogenicity in diverse clinical trials. The M72/AS01E and MVA85A vaccines are associated with a mild adverse reaction. The meta-analysis on immunogenicity and safety of M72/AS01E and MVA85A vaccines provides useful information for the evaluation of available subunit vaccines in the clinic.
Collapse
Affiliation(s)
- Inayat Ullah
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Shaheen Bibi
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China.,School of Life Science, Northwest Normal University, Lanzhou, China
| | - Ijaz Ul Haq
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Safia
- Pakistan Institute of Community Ophthalmology (PICO), Hayatabad Medical Complex, KMU, Peshawar, Pakistan
| | - Kifayat Ullah
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Long Ge
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xintong Shi
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Ma Bin
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Hongxia Niu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Jinhui Tian
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| |
Collapse
|
45
|
Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z. Immunological considerations for COVID-19 vaccine strategies. Nat Rev Immunol 2020; 20:615-632. [PMID: 32887954 PMCID: PMC7472682 DOI: 10.1038/s41577-020-00434-6] [Citation(s) in RCA: 678] [Impact Index Per Article: 135.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the most formidable challenge to humanity in a century. It is widely believed that prepandemic normalcy will never return until a safe and effective vaccine strategy becomes available and a global vaccination programme is implemented successfully. Here, we discuss the immunological principles that need to be taken into consideration in the development of COVID-19 vaccine strategies. On the basis of these principles, we examine the current COVID-19 vaccine candidates, their strengths and potential shortfalls, and make inferences about their chances of success. Finally, we discuss the scientific and practical challenges that will be faced in the process of developing a successful vaccine and the ways in which COVID-19 vaccine strategies may evolve over the next few years.
Collapse
MESH Headings
- Antibodies, Viral/biosynthesis
- Betacoronavirus/drug effects
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- COVID-19 Vaccines
- Clinical Trials as Topic
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Genetic Vectors/chemistry
- Genetic Vectors/immunology
- Humans
- Immunity, Herd/drug effects
- Immunity, Innate/drug effects
- Immunization Schedule
- Immunogenicity, Vaccine
- Pandemics/prevention & control
- Patient Safety
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- SARS-CoV-2
- Severe Acute Respiratory Syndrome/epidemiology
- Severe Acute Respiratory Syndrome/immunology
- Severe Acute Respiratory Syndrome/prevention & control
- Severe Acute Respiratory Syndrome/virology
- Vaccines, Attenuated
- Vaccines, DNA
- Vaccines, Subunit
- Vaccines, Virus-Like Particle
- Viral Vaccines/administration & dosage
- Viral Vaccines/biosynthesis
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Fiona Smaill
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Matthew S Miller
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Brian D Lichty
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| | - Zhou Xing
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
46
|
Davids M, Pooran A, Hermann C, Mottay L, Thompson F, Cardenas J, Gu J, Koeuth T, Meldau R, Limberis J, Gina P, Srivastava S, Calder B, Esmail A, Tomasicchio M, Blackburn J, Gumbo T, Dheda K. A Human Lung Challenge Model to Evaluate the Safety and Immunogenicity of PPD and Live Bacillus Calmette-Guérin. Am J Respir Crit Care Med 2020; 201:1277-1291. [PMID: 31860339 DOI: 10.1164/rccm.201908-1580oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: A human model to better understand tuberculosis immunopathogenesis and facilitate vaccine development is urgently needed.Objectives: We evaluated the feasibility, safety, and immunogenicity of live bacillus Calmette-Guérin (BCG) in a lung-oriented controlled human infection model.Methods: We recruited 106 healthy South African participants with varying degrees of tuberculosis susceptibility. Live BCG, sterile PPD, and saline were bronchoscopically instilled into separate lung segments (n = 65). A control group (n = 34) underwent a single bronchoscopy without challenge. The primary outcome was safety. Cellular and antibody immune signatures were identified in BAL before and 3 days after challenge using flow cytometry, ELISA, RNA sequencing, and mass spectrometry.Measurements and Main Results: The frequency of adverse events was low (9.4%; n = 10), similar in the challenge versus control groups (P = 0.8), and all adverse events were mild and managed conservatively in an outpatient setting. The optimal PPD and BCG dose was 0.5 TU and 104 cfu, respectively, based on changes in BAL cellular profiles (P = 0.02) and antibody responses (P = 0.01) at incremental doses before versus after challenge. At 104 versus 103 cfu BCG, there was a significant increase in number of differentially expressed genes (367 vs. 3; P < 0.001) and dysregulated proteins (64 vs. 0; P < 0.001). Immune responses were highly setting specific (in vitro vs. in vivo) and compartment specific (BAL vs. blood) and localized to the challenged lung segments.Conclusions: A lung-oriented mycobacterial controlled human infection model using live BCG and PPD is feasible and safe. These data inform the study of tuberculosis immunopathogenesis and strategies for evaluation and development of tuberculosis vaccine candidates.
Collapse
Affiliation(s)
- Malika Davids
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Anil Pooran
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Clemens Hermann
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lynelle Mottay
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Fawziyah Thompson
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Jacob Cardenas
- Baylor Institute for Immunology Research, Dallas, Texas; and
| | - Jinghua Gu
- Baylor Institute for Immunology Research, Dallas, Texas; and
| | - Thearith Koeuth
- Baylor Institute for Immunology Research, Dallas, Texas; and
| | - Richard Meldau
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Jason Limberis
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Phindile Gina
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | | | - Bridget Calder
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Aliasgar Esmail
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Michele Tomasicchio
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Jonathan Blackburn
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Tawanda Gumbo
- Baylor Institute for Immunology Research, Dallas, Texas; and
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa.,Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
47
|
Förster R, Fleige H, Sutter G. Combating COVID-19: MVA Vector Vaccines Applied to the Respiratory Tract as Promising Approach Toward Protective Immunity in the Lung. Front Immunol 2020; 11:1959. [PMID: 32849655 PMCID: PMC7426738 DOI: 10.3389/fimmu.2020.01959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 02/02/2023] Open
Abstract
The lung is the vital target organ of coronavirus disease 2019 (COVID-19) caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the majority of patients the most active virus replication seems to be found in the upper respiratory tract, severe cases however suffer from SARS-like disease associated with virus replication in lung tissues. Due to the current lack of suitable anti-viral drugs the induction of protective immunity such as neutralizing antibodies in the lung is the key aim of the only alternative approach—the development and application of SARS-CoV-2 vaccines. However, past experience from experimental animals, livestock, and humans showed that induction of immunity in the lung is limited following application of vaccines at peripheral sides such as skin or muscles. Based on several considerations we therefore propose here to consider the application of a Modified Vaccinia virus Ankara (MVA)-based vaccine to mucosal surfaces of the respiratory tract as a favorable approach to combat COVID-19.
Collapse
Affiliation(s)
- Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany
| | - Henrike Fleige
- Institute of Immunology, Hannover Medical School, Hanover, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Infection Research, Partner Site Munich, Munich, Germany
| |
Collapse
|
48
|
Scriba TJ, Netea MG, Ginsberg AM. Key recent advances in TB vaccine development and understanding of protective immune responses against Mycobacterium tuberculosis. Semin Immunol 2020; 50:101431. [PMID: 33279383 PMCID: PMC7786643 DOI: 10.1016/j.smim.2020.101431] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Tuberculosis is the leading infectious disease killer globally due to a single pathogen. Despite wide deployment of standard drug regimens, modern diagnostics and a vaccine (bacille Calmette Guerin, BCG), the global tuberculosis epidemic is inadequately controlled. Novel, effective vaccine(s) are a crucial element of the World Health Organization End TB Strategy. TB vaccine research and development has recently been catalysed by several factors, including a revised strategy focused first on preventing pulmonary TB in adolescents and adults who are the main source of transmission, and encouraging evaluations of novel efficacy endpoints. Renewed enthusiasm for TB vaccine research has also been stimulated by recent preclinical and clinical advancements. These include new insights into underlying protective immune responses, including potential roles for 'trained' innate immunity and Th1/Th17 CD4+ (and CD8+) T cells. The field has been further reinvigorated by two positive proof of concept efficacy trials: one evaluating a potential new use of BCG in preventing high risk populations from sustained Mycobacterium tuberculosis infection and the second evaluating a novel, adjuvanted, recombinant protein vaccine candidate (M72/AS01E) for prevention of disease in adults already infected. Fourteen additional candidates are currently in various phases of clinical evaluation and multiple approaches to next generation vaccines are in discovery and preclinical development. The two positive efficacy trials and recent studies in nonhuman primates have enabled the first opportunities to discover candidate vaccine-induced correlates of protection, an effort being undertaken by a broad research consortium.
Collapse
Affiliation(s)
- Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Geert Grooteplein 8, 6525 GA Nijmegen, the Netherlands; Department of Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany.
| | - Ann M Ginsberg
- Bill & Melinda Gates Foundation, Division of Global Health, Washington DC, United States.
| |
Collapse
|
49
|
Nemes E, Khader SA, Swanson RV, Hanekom WA. Targeting Unconventional Host Components for Vaccination-Induced Protection Against TB. Front Immunol 2020; 11:1452. [PMID: 32793199 PMCID: PMC7393005 DOI: 10.3389/fimmu.2020.01452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/04/2020] [Indexed: 12/28/2022] Open
Abstract
The current tuberculosis (TB) vaccine, Bacille Calmette-Guerin (BCG), is effective in preventing TB in young children but was developed without a basic understanding of human immunology. Most modern TB vaccine candidates have targeted CD4+ T cell responses, thought to be important for protection against TB disease, but not known to be sufficient or critical for protection. Advances in knowledge of host responses to TB afford opportunities for developing TB vaccines that target immune components not conventionally considered. Here, we describe the potential of targeting NK cells, innate immune training, B cells and antibodies, and Th17 cells in novel TB vaccine development. We also discuss attempts to target vaccine immunity specifically to the lung, the primary disease site in humans.
Collapse
Affiliation(s)
- Elisa Nemes
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Rosemary V Swanson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
50
|
Aguilo N, Uranga S, Mata E, Tarancon R, Gómez AB, Marinova D, Otal I, Monzón M, Badiola J, Montenegro D, Puentes E, Rodríguez E, Vervenne RAW, Sombroek CC, Verreck FAW, Martín C. Respiratory Immunization With a Whole Cell Inactivated Vaccine Induces Functional Mucosal Immunoglobulins Against Tuberculosis in Mice and Non-human Primates. Front Microbiol 2020; 11:1339. [PMID: 32625195 PMCID: PMC7315045 DOI: 10.3389/fmicb.2020.01339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/25/2020] [Indexed: 12/21/2022] Open
Abstract
Vaccination through the natural route of infection represents an attractive immunization strategy in vaccinology. In the case of tuberculosis, vaccine delivery by the respiratory route has regained interest in recent years, showing efficacy in different animal models. In this context, respiratory vaccination triggers lung immunological mechanisms which are omitted when vaccines are administered by parenteral route. However, contribution of mucosal antibodies to vaccine- induced protection has been poorly studied. In the present study, we evaluated in mice and non-human primates (NHP) a novel whole cell inactivated vaccine (MTBVAC HK), by mucosal administration. MTBVAC HK given by intranasal route to BCG-primed mice substantially improved the protective efficacy conferred by subcutaneous BCG only. Interestingly, this improved protection was absent in mice lacking polymeric Ig receptor (pIgR), suggesting a crucial role of mucosal secretory immunoglobulins in protective immunity. Our study in NHP confirmed the ability of MTBVAC HK to trigger mucosal immunoglobulins. Importantly, in vitro assays demonstrated the functionality of these immunoglobulins to induce M. tuberculosis opsonization in the presence of human macrophages. Altogether, our results suggest that mucosal immunoglobulins can be induced by vaccination to improve protection against tuberculosis and therefore, they represent a promising target for next generation tuberculosis vaccines.
Collapse
Affiliation(s)
- Nacho Aguilo
- Grupo de Genética de Micobacterias, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Uranga
- Grupo de Genética de Micobacterias, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Mata
- Grupo de Genética de Micobacterias, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Tarancon
- Grupo de Genética de Micobacterias, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Gómez
- Grupo de Genética de Micobacterias, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Dessislava Marinova
- Grupo de Genética de Micobacterias, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Otal
- Grupo de Genética de Micobacterias, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Monzón
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan Badiola
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | | - Carlos Martín
- Grupo de Genética de Micobacterias, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Miguel Servet, ISS Aragón, Zaragoza, Spain
| |
Collapse
|