1
|
Raziq K, Xue T, Sun D. The shift toward nanovaccination: A comprehensive review of advancing nanovaccination for combinatory immune regulation therapies to treat infectious diseases and cancer. Int Immunopharmacol 2025; 161:115090. [PMID: 40526984 DOI: 10.1016/j.intimp.2025.115090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2025] [Revised: 06/10/2025] [Accepted: 06/10/2025] [Indexed: 06/19/2025]
Abstract
Vaccination is an essential tool in combating infectious disease and holds significant potential in cancer immunotherapy. Recent advances in nanotechnology have paved the way for nanovaccines development, which leverage nanoparticles to enhance vaccines delivery, stability, and immunogenicity. This review article examines the composition of nanovaccines, detailing the characteristics properties of antigens and adjuvant along with the various nanomaterial commonly employed, including liposomes, polymeric nanoparticles, biomimetic structures, as well as organic and inorganic nanocarriers. The mechanism of action of nanovaccines are discussed which contribute to robust immune activation via initiating cellular and humoral mediated responses. Special attention is given to the innovative application of nanovaccines in combinatory immunotherapy, including photo, sonodynamic, magnetic hyperthermia and chemodynamic therapies. These multifunctional platforms enable localized treatment, promote antigen release, and boost immune responses, offering promising strategies for effective infectious disease and cancer immunotherapy. Furthermore, by highlighting the "nano advantages," this review underscores the transformative potential of nanovaccines to elevate immune responses beyond the capabilities of traditional vaccines. Lastly, the challenges of nanovaccine formulation are discussed with significant implication for future immunization and therapeutic strategies.
Collapse
Affiliation(s)
- Khadija Raziq
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ting Xue
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Dongdong Sun
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Liu X, Yang X, Tao L, Li X, Chen G, Liu Q. Nano/Micro-Enabled Modification and Innovation of Conventional Adjuvants for Next-Generation Vaccines. J Funct Biomater 2025; 16:185. [PMID: 40422849 DOI: 10.3390/jfb16050185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
The global spread of infectious diseases has raised public awareness of vaccines, highlighting their essential role in protecting public health. Among the components of modern vaccines, adjuvants have received increasing attention for boosting immune responses and enhancing efficacy. Recent advancements in adjuvant research, particularly nanodelivery systems, have paved the way for developing more effective and safer adjuvants. This review outlines the properties, progress, and mechanisms of FDA-approved conventional adjuvants, focusing on their contributions to and challenges in vaccine success. Despite these advancements, conventional adjuvants still face suboptimal immunomodulatory effects, potential side effects, and limitations in targeting specific immune pathways. Nanodelivery systems have emerged as a transformative approach in adjuvant design, offering unique advantages such as enhancing vaccine stability, enabling controlled antigen release, and inducing specific immune responses. By addressing these limitations, nanocarriers improve the safety and efficacy of conventional adjuvants and drive the development of next-generation adjuvants for complex diseases. This review also explores strategies for incorporating nanodelivery systems into adjuvant development, emphasizing its role in optimizing vaccine formulations. By summarizing current challenges and recent advances, this review aims to provide valuable insights guiding future efforts in designing innovative adjuvants that meet the evolving needs of global immunization programs.
Collapse
Affiliation(s)
- Xingchi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Xu Yang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Lu Tao
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuanchen Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Guoqiang Chen
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Xing J, Zhao X, Li X, Fang R, Sun M, Zhang Y, Song N. The recent advances in vaccine adjuvants. Front Immunol 2025; 16:1557415. [PMID: 40433383 PMCID: PMC12106398 DOI: 10.3389/fimmu.2025.1557415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Vaccine adjuvants, as key components in enhancing vaccine immunogenicity, play a vital role in modern vaccinology. This review systematically examines the historical evolution and mechanisms of vaccine adjuvants, with particular emphasis on innovative advancements in aluminum-based adjuvants, emulsion-based adjuvants, and nucleic acid adjuvants (e.g., CpG oligonucleotides). Specifically, aluminum adjuvants enhance immune responses through particle formation/antigen adsorption, inflammatory cascade activation, and T-cell stimulation. Emulsion adjuvants amplify immunogenicity via antigen depot effects and localized inflammation, while nucleic acid adjuvants like CpG oligonucleotides directly activate B cells and dendritic cells to promote Th1-type immune responses and memory T-cell generation. The article further explores the prospective applications of these novel adjuvants in combating emerging pathogens (including influenza and SARS-CoV-2), particularly highlighting their significance in improving vaccine potency and durability. Moreover, this review underscores the critical importance of adjuvant development in next-generation vaccine design and provides theoretical foundations for creating safer, effective adjuvant.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
4
|
Feng R, Xue RY, Liu C, Li GC, Deng Y, Jin Z, Liu JY, Zhang SS, Cheng H, Guo MY, Zou QM, Li HB. RBD-displaying OMV nanovaccine boosts immunity against SARS-CoV-2. J Nanobiotechnology 2025; 23:97. [PMID: 39923096 PMCID: PMC11807311 DOI: 10.1186/s12951-025-03191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/01/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Since the emergence of SARS-CoV-2, the causative agent of COVID-19, the global health landscape has confronted an unprecedented and formidable challenge. The SARS-CoV-2 receptor-binding domain (RBD) is a key antigen in vaccine design. However, its low immunogenicity has been a hurdle, resulting in the production of minimal anti-RBD antibodies even when combined with alum adjuvant. Outer membrane vesicles (OMVs), secreted by Gram-negative bacteria, are nanospherical structures that can display or deliver antigens while also providing adjuvant activity through pathogen-associated molecular patterns (PAMPs). RESULTS In this study, we utilized the SpyTag (ST)/SpyCatcher (SC) bioconjugation system to couple OMV and SARS-CoV-2 RBD in vitro. We successfully prepared a 'plug-and-display' nanovaccine OMV-RBD, which demonstrated good safety profiles and promoted the uptake of antigens by DCs and the maturation of BMDCs by activating TLR3 and NOD2 signaling pathways. Both intranasal and intramuscular immunization with OMV-RBD vaccine elicited robust antigen-specific humoral and cellular immune responses. Importantly, the induced antibodies effectively inhibited the binding of RBD to human angiotensin-converting enzyme 2 (hACE2) and neutralized SARS-CoV-2 pseudoviruses. CONCLUSIONS This vaccine platform offers an alternative strategy for developing recombinant subunit vaccines against SARS-CoV-2, potentially enhancing immune responses and improving vaccine efficacy.
Collapse
Affiliation(s)
- Rang Feng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Chinese People's Liberation Army Unit 32605, Chongqing, 400042, People's Republic of China
| | - Ruo-Yi Xue
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Department of Laboratory Pathology, Chinese People's Liberation Army No. 72 Hospital, Huzhou, 313000, People's Republic of China
| | - Chang Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Guo-Cheng Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Yan Deng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Zhe Jin
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Jing-Yi Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Shan-Shan Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Hao Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Man-Ying Guo
- Department of Laboratory Pathology, Chinese People's Liberation Army No. 72 Hospital, Huzhou, 313000, People's Republic of China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China.
| | - Hai-Bo Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
5
|
Jung M, Kim H, Choi E, Shin MK, Shin SJ. Enhancing vaccine effectiveness in the elderly to counter antibiotic resistance: The potential of adjuvants via pattern recognition receptors. Hum Vaccin Immunother 2024; 20:2317439. [PMID: 39693178 DOI: 10.1080/21645515.2024.2317439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 12/20/2024] Open
Abstract
Vaccines are an effective way to prevent the emergence and spread of antibiotic resistance by preventing diseases and establishing herd immunity. However, the reduced effectiveness of vaccines in the elderly due to immunosenescence is one of the significant contributors to the increasing antibiotic resistance. To counteract this decline and enhance vaccine effectiveness in the elderly, adjuvants play a pivotal role. Adjuvants are designed to augment the effectiveness of vaccines by activating the innate immune system, particularly through pattern recognition receptors on antigen-presenting cells. To improve vaccine effectiveness in the elderly using adjuvants, it is imperative to select the appropriate adjuvants based on an understanding of immunosenescence and the mechanisms of adjuvant functions. This review demonstrates the phenomenon of immunosenescence and explores various types of adjuvants, including their mechanisms and their potential in improving vaccine effectiveness for the elderly, thereby contributing to developing more effective vaccines for this vulnerable demographic.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Ojha R, Jiang A, Mäntylä E, Quirin T, Modhira N, Witte R, Gaudin A, De Zanetti L, Gormal RS, Vihinen-Ranta M, Mercer J, Suomalainen M, Greber UF, Yamauchi Y, Lozach PY, Helenius A, Vapalahti O, Young P, Watterson D, Meunier FA, Joensuu M, Balistreri G. Dynamin independent endocytosis is an alternative cell entry mechanism for multiple animal viruses. PLoS Pathog 2024; 20:e1012690. [PMID: 39541404 PMCID: PMC11594517 DOI: 10.1371/journal.ppat.1012690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/26/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Mammalian receptor-mediated endocytosis (RME) often involves at least one of three isoforms of the large GTPase dynamin (Dyn). Dyn pinches-off vesicles at the plasma membrane and mediates uptake of many viruses, although some viruses directly penetrate the plasma membrane. RME is classically interrogated by genetic and pharmacological interference, but this has been hampered by undesired effects. Here we studied virus entry in conditional genetic knock-out (KO) mouse embryonic fibroblasts lacking expression of all three dynamin isoforms (Dyn-KO-MEFs). The small canine parvovirus known to use a single receptor, transferrin receptor, strictly depended on dynamin. Larger viruses or viruses known to use multiple receptors, including alphaviruses, influenza, vesicular stomatitis, bunya, adeno, vaccinia, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rhinoviruses infected Dyn-KO-MEFs, albeit at higher dosage than wild-type MEFs. In absence of the transmembrane protease serine subtype 2 (TMPRSS2), which normally activates the SARS-CoV-2 spike protein for plasma membrane fusion, SARS-CoV-2 infected angiotensin-converting enzyme 2 (ACE2)-expressing MEFs predominantly through dynamin- and actin-dependent endocytosis. In presence of TMPRSS2 the ancestral Wuhan-strain bypassed both dynamin-dependent and -independent endocytosis, and was less sensitive to endosome maturation inhibitors than the Omicron B1 and XBB variants, supporting the notion that the Omicron variants do not efficiently use TMPRSS2. Collectively, our study suggests that dynamin function at endocytic pits can be essential for infection with single-receptor viruses, while it is not essential but increases uptake and infection efficiency of multi-receptor viruses that otherwise rely on a functional actin network for infection.
Collapse
Affiliation(s)
- Ravi Ojha
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Elina Mäntylä
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tania Quirin
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Naphak Modhira
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Robert Witte
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Arnaud Gaudin
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Lisa De Zanetti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Rachel Sarah Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science, and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jason Mercer
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Yohei Yamauchi
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Pierre-Yves Lozach
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, PSL Research University, Lyon, France
| | - Ari Helenius
- Department of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Paul Young
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Watterson
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Frédéric A. Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Giuseppe Balistreri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Chandra H, Yadav A, Prasad R, Sagar K, Bhardwaj N, Kumar Gupta K, Singh Thakur G, Nigam M, Pezzani R, Paulo Martins de Lima J, Douglas Melo Coutinho H, Prakash Mishra A. COVID 19: Prevention and treatment through the Indian perspective. Cytokine 2024; 183:156756. [PMID: 39284260 DOI: 10.1016/j.cyto.2024.156756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 11/20/2024]
Abstract
The most destructive period the world has experienced seems to be behind us. Not a single nation was spared by this disease, and many continue to struggle today. Even after recovering from COVID, patient may continue to experience some post-COVID effects, such as heart irregularities or a decline in lung vitality. In the past three years (2019-2022), the world has witnessed the power of a small entity, a single peculiar virus. Science initially appeared to be helpless in this regard, but due to the emergence of disease, pharmaceutics (the development of anti-covid drugs), immunology (the rapid antigen test), microbiology (the isolation of viruses from infected people), biotechnology (the development of recombinant vaccines), biochemistry (the blood profile, the D-dimer test), and biochemistry (blood profile, D-dimer test), biophysics (PCR, RT-PCR, CT Scan, MRI) had worked together to fight the disease. The results of these efforts are the development of new diagnostic techniques, possible treatment and finally the availability of vaccines against COVID-19. However, it is not proven that the treatment through the traditional medical system is directly active on SARS-CoV-2 but is instead indirectly acting on SARS-CoV-2 effects by improving symptoms derived from the viral disease. In India, the traditional system of medicine and tradition knowledge together worked in the pandemic and proved effective strategies in prevention and treatment of SARS-CoV-2. The use of effective masks, PPE kits, plasma therapy, yoga, lockdowns and social seclusion, use of modern antiviral drugs, monoclonal antibodies, herbal remedies, homoeopathy, hygienic practice, as well as the willpower of people, are all contributing to the fight against COVID. Which methods or practices will be effective against COVID nobody is aware since medical professionals who wear PPE kits do not live longer, and some people in India who remained unprotected and roamed freely were not susceptible to infection. The focus of this review is on the mode of transmission, diagnosis, preventive measures, vaccines currently under development, modern medicine developed against SARS-CoV-2, ayurvedic medicine used during pandemic, homoeopathic medicine used during pandemic, and specific yoga poses that can be used to lessen COVID-related symptoms.
Collapse
Affiliation(s)
- Harish Chandra
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India; School of Agriculture, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Archana Yadav
- Department of Microbiology, Institute of Biosciences and Biotechnology, C.S.J.M. University, Kanpur 208024, Uttar Pradesh, India.
| | - Rajendra Prasad
- School of Agriculture, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Kalpana Sagar
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Sciences, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India.
| | - Kartikey Kumar Gupta
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India.
| | - Ghanshyam Singh Thakur
- Department of Naturopathy & Yoga, H. N. B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India.
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India.
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova 35128, Italy; AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy.
| | | | | | - Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, Bloemfontein 9300, South Africa.
| |
Collapse
|
8
|
Li Y, Lu SM, Wang JL, Yao HP, Liang LG. Progress in SARS-CoV-2, diagnostic and clinical treatment of COVID-19. Heliyon 2024; 10:e33179. [PMID: 39021908 PMCID: PMC11253070 DOI: 10.1016/j.heliyon.2024.e33179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Background Corona Virus Disease 2019(COVID-19)is a global pandemic novel coronavirus infection disease caused by Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Although rapid, large-scale testing plays an important role in patient management and slowing the spread of the disease. However, there has been no good and widely used drug treatment for infection and transmission of SARS-CoV-2. Key findings Therefore, this review updates the body of knowledge on viral structure, infection routes, detection methods, and clinical treatment, with the aim of responding to the large-section caused by SARS-CoV-2. This paper focuses on the structure of SARS-CoV-2 viral protease, RNA polymerase, serine protease and main proteinase-like protease as well as targeted antiviral drugs. Conclusion In vitro or clinical trials have been carried out to provide deeper thinking for the pathogenesis, clinical diagnosis, vaccine development and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Si-Ming Lu
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Clinical in Vitro Diagnostic Techniques, Hangzhou, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Long Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Guo Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Colón W, Oriol-Mathieu V, Hural J, Hattingh L, Adungo F, Lagatie O, Lavreys L, Allen M, Anzala O, Espy N, Fransen K, Garcia PJ, Maciel M, Murtagh M, Peel SA, Peeling RW, Tan LLJ, Warren M, Pau MG, D’Souza PM. HIV Diagnostics and Vaccines: It Takes Two to Tango. J Infect Dis 2024; 229:1919-1925. [PMID: 38451247 PMCID: PMC11492280 DOI: 10.1093/infdis/jiae113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/08/2024] Open
Abstract
Current serologic tests for HIV screening and confirmation of infection present challenges to the adoption of HIV vaccines. The detection of vaccine-induced HIV-1 antibodies in the absence of HIV-1 infection, referred to as vaccine-induced seropositivity/seroreactivity, confounds the interpretation of test results, causing misclassification of HIV-1 status with potential affiliated stigmatization. For HIV vaccines to be widely adopted with high community confidence and uptake, tests are needed that are agnostic to the vaccination status of tested individuals (ie, positive only for true HIV-1 infection). Successful development and deployment of such tests will require HIV vaccine developers to work in concert with diagnostic developers. Such tests will need to match today's high-performance standards (accuracy, cost-effectiveness, simplicity) for use in vaccinated and unvaccinated populations, especially in low- and middle-income countries with high HIV burden. Herein, we discuss the challenges and strategies for developing modified serologic HIV tests for concurrent deployment with HIV vaccines.
Collapse
Affiliation(s)
- Will Colón
- Johnson & Johnson Global Public Health Research and Development, Beerse, Belgium
| | | | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | | | | | - Ole Lagatie
- Johnson & Johnson Global Public Health Research and Development, Beerse, Belgium
| | - Ludo Lavreys
- Janssen Vaccines and Prevention B.V., Leiden, the Netherlands
| | - Mary Allen
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Omu Anzala
- Kenya Aids Vaccine Initiative Institute of Clinical Research, University of Nairobi, Kenya
| | - Nicole Espy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Katrien Fransen
- HIV/STD Reference Laboratory, Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Patricia J Garcia
- Epidemiology, STD, and HIV Unit, School of Public Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Milton Maciel
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Sheila A Peel
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Rosanna W Peeling
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | - Patricia M D’Souza
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Santos JF, del Rocío Silva-Calpa L, de Souza FG, Pal K. Central Countries' and Brazil's Contributions to Nanotechnology. CURRENT NANOMATERIALS 2024; 9:109-147. [DOI: 10.2174/2405461508666230525124138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 03/14/2023] [Indexed: 01/05/2025]
Abstract
Abstract:
Nanotechnology is a cornerstone of the scientific advances witnessed over the past few
years. Nanotechnology applications are extensively broad, and an overview of the main trends
worldwide can give an insight into the most researched areas and gaps to be covered. This document
presents an overview of the trend topics of the three leading countries studying in this area, as
well as Brazil for comparison. The data mining was made from the Scopus database and analyzed
using the VOSviewer and Voyant Tools software. More than 44.000 indexed articles published
from 2010 to 2020 revealed that the countries responsible for the highest number of published articles
are The United States, China, and India, while Brazil is in the fifteenth position. Thematic
global networks revealed that the standing-out research topics are health science, energy,
wastewater treatment, and electronics. In a temporal observation, the primary topics of research are:
India (2020), which was devoted to facing SARS-COV 2; Brazil (2019), which is developing promising
strategies to combat cancer; China (2018), whit research on nanomedicine and triboelectric
nanogenerators; the United States (2017) and the Global tendencies (2018) are also related to the
development of triboelectric nanogenerators. The collected data are available on GitHub. This study
demonstrates the innovative use of data-mining technologies to gain a comprehensive understanding
of nanotechnology's contributions and trends and highlights the diverse priorities of nations in
this cutting-edge field.
Collapse
Affiliation(s)
- Jonas Farias Santos
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leydi del Rocío Silva-Calpa
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Gomes de Souza
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Macromoléculas Professora Eloisa Mano, Centro de
Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kaushik Pal
- University Center
for Research and Development (UCRD), Department of Physics, Chandigarh University, Ludhiana - Chandigarh State
Hwy, Mohali, Gharuan, 140413 Punjab, India
| |
Collapse
|
11
|
Zhao Z, Bashiri S, Ziora ZM, Toth I, Skwarczynski M. COVID-19 Variants and Vaccine Development. Viruses 2024; 16:757. [PMID: 38793638 PMCID: PMC11125726 DOI: 10.3390/v16050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), the global pandemic caused by severe acute respiratory syndrome 2 virus (SARS-CoV-2) infection, has caused millions of infections and fatalities worldwide. Extensive SARS-CoV-2 research has been conducted to develop therapeutic drugs and prophylactic vaccines, and even though some drugs have been approved to treat SARS-CoV-2 infection, treatment efficacy remains limited. Therefore, preventive vaccination has been implemented on a global scale and represents the primary approach to combat the COVID-19 pandemic. Approved vaccines vary in composition, although vaccine design has been based on either the key viral structural (spike) protein or viral components carrying this protein. Therefore, mutations of the virus, particularly mutations in the S protein, severely compromise the effectiveness of current vaccines and the ability to control COVID-19 infection. This review begins by describing the SARS-CoV-2 viral composition, the mechanism of infection, the role of angiotensin-converting enzyme 2, the host defence responses against infection and the most common vaccine designs. Next, this review summarizes the common mutations of SARS-CoV-2 and how these mutations change viral properties, confer immune escape and influence vaccine efficacy. Finally, this review discusses global strategies that have been employed to mitigate the decreases in vaccine efficacy encountered against new variants.
Collapse
Affiliation(s)
- Ziyao Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (Z.Z.); (S.B.); (I.T.)
| | - Sahra Bashiri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (Z.Z.); (S.B.); (I.T.)
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (Z.Z.); (S.B.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia;
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (Z.Z.); (S.B.); (I.T.)
| |
Collapse
|
12
|
Freitas CL, Sarmento ACA, Serquiz N, Nobre ML, Costa APF, Medeiros KS, Gonçalves AK. Side effects of COVID-19 vaccines in paediatric patients: a review systematic and meta-analysis protocol. BMJ Open 2024; 14:e076064. [PMID: 38594182 PMCID: PMC11015277 DOI: 10.1136/bmjopen-2023-076064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/29/2024] [Indexed: 04/11/2024] Open
Abstract
INTRODUCTION The paediatric population represents a quarter of the world's population, and like adult patients, they have also suffered immeasurably from the SARS-CoV-2 pandemic. Immunisation is an effective strategy for reducing the number of COVID-19 cases. With the advancements in vaccination for younger age groups, parents or guardians have raised doubts and questions about adverse effects and the number of doses required. Therefore, systematic reviews focusing on this population are needed to consolidate evidence that can help in decision-making and clinical practice. This protocol aims to assess the safety of COVID-19 vaccines in paediatric patients and evaluate the correlation between the number of vaccine doses and side effects. METHODS AND ANALYSIS We will search the PubMed, ClinicalTrials.gov, Web of Science, Embase, CINAHL, Latin American and Caribbean Health Sciences Literature, Scopus and Cochrane databases for randomised and quasi-randomised clinical trials that list the adverse effects of the COVID-19 vaccine and assess its correlation with the number of doses, without any language restrictions. Two reviewers will select the studies according to the inclusion and exclusion criteria, extract data and asses for risk of bias using the Cochrane risk-of-bias tool. The Review Software Manager (RevMan V.5.4.1) will be used to synthesise the data. We will use the Working Group's Grading of Recommendations Assessment, Development and Evaluations to grade the strength of the evidence of the results. ETHICS AND DISSEMINATION Formal ethical approval is not required as no primary data are collected. This systematic review will be disseminated through a peer-reviewed publication. PROSPERO REGISTRATION NUMBER CRD42023390077.
Collapse
Affiliation(s)
- Cijara Leonice Freitas
- Postgraduate Program student in Health Science, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ayane Cristine Alves Sarmento
- Postgraduate Program student in Health Science, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Clinical Analysis and Toxicology, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Nicoli Serquiz
- Postgraduate Program student in Health Science, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria Luisa Nobre
- Surgery Department, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Paula Ferreira Costa
- Postgraduate Program student in Health Science, Federal University of Rio Grande do Norte, Natal, Brazil
- Institute of Teaching, Research and Innovation, League Against Cancer, Natal, Brazil
| | | | - Ana Katherine Gonçalves
- Postgraduate Program student in Health Science, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Obstetrics and Gynecology, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
13
|
Del Moral-Sánchez I, Wee EG, Xian Y, Lee WH, Allen JD, Torrents de la Peña A, Fróes Rocha R, Ferguson J, León AN, Koekkoek S, Schermer EE, Burger JA, Kumar S, Zwolsman R, Brinkkemper M, Aartse A, Eggink D, Han J, Yuan M, Crispin M, Ozorowski G, Ward AB, Wilson IA, Hanke T, Sliepen K, Sanders RW. Triple tandem trimer immunogens for HIV-1 and influenza nucleic acid-based vaccines. NPJ Vaccines 2024; 9:74. [PMID: 38582771 PMCID: PMC10998906 DOI: 10.1038/s41541-024-00862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/14/2024] [Indexed: 04/08/2024] Open
Abstract
Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.
Collapse
Affiliation(s)
- Iván Del Moral-Sánchez
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Edmund G Wee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yuejiao Xian
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rebeca Fróes Rocha
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - James Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - André N León
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Edith E Schermer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Sanjeev Kumar
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Robby Zwolsman
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mitch Brinkkemper
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Aafke Aartse
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
14
|
Pegg CL, Modhiran N, Parry RH, Liang B, Amarilla AA, Khromykh AA, Burr L, Young PR, Chappell K, Schulz BL, Watterson D. The role of N-glycosylation in spike antigenicity for the SARS-CoV-2 gamma variant. Glycobiology 2024; 34:cwad097. [PMID: 38048640 PMCID: PMC10969516 DOI: 10.1093/glycob/cwad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
The emergence of SARS-CoV-2 variants alters the efficacy of existing immunity towards the viral spike protein, whether acquired from infection or vaccination. Mutations that impact N-glycosylation of spike may be particularly important in influencing antigenicity, but their consequences are difficult to predict. Here, we compare the glycosylation profiles and antigenicity of recombinant viral spike of ancestral Wu-1 and the Gamma strain, which has two additional N-glycosylation sites due to amino acid substitutions in the N-terminal domain (NTD). We found that a mutation at residue 20 from threonine to asparagine within the NTD caused the loss of NTD-specific antibody COVA2-17 binding. Glycan site-occupancy analyses revealed that the mutation resulted in N-glycosylation switching to the new sequon at N20 from the native N17 site. Site-specific glycosylation profiles demonstrated distinct glycoform differences between Wu-1, Gamma, and selected NTD variant spike proteins, but these did not affect antibody binding. Finally, we evaluated the specificity of spike proteins against convalescent COVID-19 sera and found reduced cross-reactivity against some mutants, but not Gamma spike compared to Wuhan spike. Our results illustrate the impact of viral divergence on spike glycosylation and SARS-CoV-2 antibody binding profiles.
Collapse
Affiliation(s)
- Cassandra L Pegg
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, Building 75, Corner College Road and Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Rhys H Parry
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4006, Australia
| | - Lucy Burr
- Department of Respiratory Medicine, Mater Health Services, Raymond Terrace, South Brisbane, Queensland 4101, Australia
| | - Paul R Young
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, Building 75, Corner College Road and Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4006, Australia
| | - Keith Chappell
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, Building 75, Corner College Road and Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4006, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4006, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, Building 75, Corner College Road and Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4006, Australia
| |
Collapse
|
15
|
Chavda VP, Ghali ENHK, Balar PC, Chauhan SC, Tiwari N, Shukla S, Athalye M, Patravale V, Apostolopoulos V, Yallapu MM. Protein subunit vaccines: Promising frontiers against COVID-19. J Control Release 2024; 366:761-782. [PMID: 38219913 DOI: 10.1016/j.jconrel.2024.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
The emergence of COVID-19 has posed an unprecedented global health crisis, challenging the healthcare systems worldwide. Amidst the rapid development of several vaccine formulations, protein subunit vaccines have emerged as a promising approach. This article provides an in-depth evaluation of the role of protein subunit vaccines in the management of COVID-19. Leveraging viral protein fragments, particularly the spike protein from SARS-CoV-2, these vaccines elicit a targeted immune response without the risk of inducing disease. Notably, the robust safety profile of protein subunit vaccines makes them a compelling candidate in the management of COVID-19. Various innovative approaches, including reverse vaccinology, virus like particles, and recombinant modifications are incorporated to develop protein subunit vaccines. In addition, the utilization of advanced manufacturing techniques facilitates large-scale production, ensuring widespread distribution. Despite these advancements, challenges persist, such as the requirement for cold-chain storage and the necessity for booster doses. This article evaluates the formulation and applications of protein subunit vaccines, providing a comprehensive overview of their clinical development and approvals in the context of COVID-19. By addressing the current status and challenges, this review aims to contribute to the ongoing discourse on optimizing protein subunit vaccines for effective pandemic control.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India.
| | - Eswara Naga Hanuma Kumar Ghali
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| | - Pankti C Balar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| | - Nikita Tiwari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Somanshi Shukla
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Mansi Athalye
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia.
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
16
|
Zhang J, Feng J, Huang Y, Zhou B, Li B, Zhang R. Ginseng Polysaccharide Enhances the Humoral and Cellular Immune Responses to SARS-CoV-2 RBD Protein Subunit Vaccines. Vaccines (Basel) 2023; 11:1833. [PMID: 38140237 PMCID: PMC10747565 DOI: 10.3390/vaccines11121833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The COVID-19 pandemic remarkably accelerated vaccine research progress. The role of adjuvants in enhancing vaccine immune intensity and influencing immune types has been considered. Ginseng polysaccharide (GPS) has been demonstrated to have strong immunoregulatory properties. It is important to explore the feasibility of adding GPS to vaccine adjuvant components to improve the immune response effect of RBD vaccines. Here, we prepared a SARS-CoV-2 RBD antigen using the Escherichia coli expression system and determined that subcutaneous administration of GPS at a dose of 40 mg/kg could effectively activate dendritic cells (DCs) and macrophages (MΦ) in mice. Compared with the RBD group, the RBD+GPS triggered stronger and persistent antibody responses. It is also notable that higher levels of RBD-specific IgG and IgA were distributed in the lungs of RBD+GPS-immunized BALB/c mice. In addition, the RBD+GPS also resulted in lower percentages of IFN-γ+ CD4+ T cells and higher percentages of IFN-γ+ CD8+ T cells and CD8+ Tcm cells. These results suggest that GPS could be a promising vaccine immuno-enhancer for SARS-CoV-2 RBD subunit vaccines to establish stronger systemic and pulmonary mucosal protective immunity.
Collapse
Affiliation(s)
| | | | | | | | - Bing Li
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.Z.); (J.F.); (Y.H.); (B.Z.)
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.Z.); (J.F.); (Y.H.); (B.Z.)
| |
Collapse
|
17
|
Nolan TM, Deliyannis G, Griffith M, Braat S, Allen LF, Audsley J, Chung AW, Ciula M, Gherardin NA, Giles ML, Gordon TP, Grimley SL, Horng L, Jackson DC, Juno JA, Kedzierska K, Kent SJ, Lewin SR, Littlejohn M, McQuilten HA, Mordant FL, Nguyen THO, Soo VP, Price B, Purcell DFJ, Ramanathan P, Redmond SJ, Rockman S, Ruan Z, Sasadeusz J, Simpson JA, Subbarao K, Fabb SA, Payne TJ, Takanashi A, Tan CW, Torresi J, Wang JJ, Wang LF, Al-Wassiti H, Wong CY, Zaloumis S, Pouton CW, Godfrey DI. Interim results from a phase I randomized, placebo-controlled trial of novel SARS-CoV-2 beta variant receptor-binding domain recombinant protein and mRNA vaccines as a 4th dose booster. EBioMedicine 2023; 98:104878. [PMID: 38016322 PMCID: PMC10696466 DOI: 10.1016/j.ebiom.2023.104878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND SARS-CoV-2 booster vaccination should ideally enhance protection against variants and minimise immune imprinting. This Phase I trial evaluated two vaccines targeting SARS-CoV-2 beta-variant receptor-binding domain (RBD): a recombinant dimeric RBD-human IgG1 Fc-fusion protein, and an mRNA encoding a membrane-anchored RBD. METHODS 76 healthy adults aged 18-64 y, previously triple vaccinated with licensed SARS-CoV-2 vaccines, were randomised to receive a 4th dose of either an adjuvanted (MF59®, CSL Seqirus) protein vaccine (5, 15 or 45 μg, N = 32), mRNA vaccine (10, 20, or 50 μg, N = 32), or placebo (saline, N = 12) at least 90 days after a 3rd boost vaccination or SARS-CoV-2 infection. Bleeds occurred on days 1 (prior to vaccination), 8, and 29. CLINICALTRIALS govNCT05272605. FINDINGS No vaccine-related serious or medically-attended adverse events occurred. The protein vaccine reactogenicity was mild, whereas the mRNA vaccine was moderately reactogenic at higher dose levels. Best anti-RBD antibody responses resulted from the higher doses of each vaccine. A similar pattern was seen with live virus neutralisation and surrogate, and pseudovirus neutralisation assays. Breadth of immune response was demonstrated against BA.5 and more recent omicron subvariants (XBB, XBB.1.5 and BQ.1.1). Binding antibody titres for both vaccines were comparable to those of a licensed bivalent mRNA vaccine. Both vaccines enhanced CD4+ and CD8+ T cell activation. INTERPRETATION There were no safety concerns and the reactogenicity profile was mild and similar to licensed SARS-CoV-2 vaccines. Both vaccines showed strong immune boosting against beta, ancestral and omicron strains. FUNDING Australian Government Medical Research Future Fund, and philanthropies Jack Ma Foundation and IFM investors.
Collapse
Affiliation(s)
- Terry M Nolan
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia.
| | - Georgia Deliyannis
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Maryanne Griffith
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Sabine Braat
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Lilith F Allen
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jennifer Audsley
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Amy W Chung
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Marcin Ciula
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nicholas A Gherardin
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Michelle L Giles
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Tom P Gordon
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, Adelaide, Australia
| | - Samantha L Grimley
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lana Horng
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia
| | - David C Jackson
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jennifer A Juno
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Kedzierska
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Stephen J Kent
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Mason Littlejohn
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Hayley A McQuilten
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Francesca L Mordant
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Thi H O Nguyen
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Vanessa Pac Soo
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Briony Price
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia
| | - Damian F J Purcell
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Pradhipa Ramanathan
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Samuel J Redmond
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Steven Rockman
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; CSL Seqirus, Vaccine Innovation Unit, Parkville, Melbourne, Australia
| | - Zheng Ruan
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Joseph Sasadeusz
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Kanta Subbarao
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Australia
| | - Stewart A Fabb
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Thomas J Payne
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Asuka Takanashi
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Chee Wah Tan
- Duke NUS Medical School, Programme for Emerging Infectious Diseases, Singapore
| | - Joseph Torresi
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jing Jing Wang
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, Adelaide, Australia
| | - Lin-Fa Wang
- Duke NUS Medical School, Programme for Emerging Infectious Diseases, Singapore
| | | | - Chinn Yi Wong
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sophie Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Dale I Godfrey
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
18
|
Cheng MQ, Li R, Luo X, Chen JY, Bai ZP, Zhao P, Weng ZY, Song G. Immunogenicity and safety of adjuvant-associated COVID-19 vaccines: A systematic review and meta-analysis of randomized controlled trials. Heliyon 2023; 9:e22858. [PMID: 38125524 PMCID: PMC10731085 DOI: 10.1016/j.heliyon.2023.e22858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Background The benefits and risks of adjuvant-associated COVID-19 vaccines (ACVs) are unclear. The study aimed to assess the immunogenicity and safety of ACVs compared with controls (placebo or the same vaccine without adjuvants [NACVs]). Methods Randomized controlled trials sourced from PubMed, EMBASE, Web of Science, and Cochrane Library were systematically reviewed. Evaluators extracted information independently. The evidence quality was assessed using random-effects models. The risk of bias was assessed using the Cochrane Risk of Bias tool. Results Of the 33 studies, 27 analyzed immunogenicity (n = 9069, ACVs group; n = 3757, control), and 26 analyzed safety (n = 58669, ACVs groups; n = 30733 control). Compared with controls, full vaccination with ACVs produced significant immune responses (relative risk [RR] of seroneutralization reaction, 12.3; 95 % confidence interval [95 % CI], 6.92-21.89; standardized mean deviation of geometric mean titer 3.96, 95 % CI, 3.35-4.58). Additionally, ACVs produced significant immunoreactivity compared with NACVs only (P < 0.05). Furthermore, full vaccination with ACVs significantly increased the risk of local and systemic adverse reactions (AEs) compared with controls. However, vaccination with ACVs did not significantly increase the risk of systemic and localized AEs compared with vaccination with NACVs only (P > 0.05). It was observed that ACVs had a lower risk of all-cause mortality than controls (RR, 0.51; 95 % CI 0.30-0.87). It was further found that ACVs produced nAb response against all sublines of the Omicron variant, but the antibody titers were lower than those for the SARS-CoV-2 original strain. Conclusions The findings of this meta-analysis demonstrate that ACVs may have a superior effect and an acceptable safety in preventing COVID-19. Although these results suggest the potential of ACVs, further studies are required.
Collapse
Affiliation(s)
- Meng-Qun Cheng
- Department of Reproductive Medicine, The Puer People's Hospital, Pu'er, China
| | - Rong Li
- Department of Pharmacy, The Puer People's Hospital, Pu'er, China
| | - Xin Luo
- Department of Pharmacy, The Puer People's Hospital, Pu'er, China
| | - Jing-Yu Chen
- Department of Pharmacy, The Puer People's Hospital, Pu'er, China
| | - Zhong-Ping Bai
- Department of Pharmacy, The Puer People's Hospital, Pu'er, China
| | - Pin Zhao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Zhi-Ying Weng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Gao Song
- Department of Pharmacy, The Puer People's Hospital, Pu'er, China
| |
Collapse
|
19
|
Chappell KJ, Mordant FL, Amarilla AA, Modhiran N, Liang B, Li Z, Wijesundara DK, Lackenby JA, Griffin P, Bennet JK, Hensen L, Zhang W, Nguyen THO, Tran MH, Tapley P, Barnes J, Reading PC, Kedzierska K, Ranasinghe C, Subbarao K, Watterson D, Young PR, Munro TP. Long-term safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2 in adults aged 18-55 years or ≥56 years: 12-month results from a randomised, double-blind, placebo-controlled, phase 1 trial. EBioMedicine 2023; 97:104842. [PMID: 37865043 PMCID: PMC10597768 DOI: 10.1016/j.ebiom.2023.104842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND We previously demonstrated the safety and immunogenicity of an MF59-adjuvanted COVID-19 vaccine based on the SARS-CoV-2 spike glycoprotein stabilised in a pre-fusion conformation by a molecular clamp using HIV-1 glycoprotein 41 sequences. Here, we describe 12-month results in adults aged 18-55 years and ≥56 years. METHODS Phase 1, double-blind, placebo-controlled trial conducted in Australia (July 2020-December 2021; ClinicalTrials.govNCT04495933; active, not recruiting). Healthy adults (Part 1: 18-55 years; Part 2: ≥56 years) received two doses of placebo, 5 μg, 15 μg, or 45 μg vaccine, or one 45 μg dose of vaccine followed by placebo (Part 1 only), 28 days apart (n = 216; 24 per group). Safety, humoral immunogenicity (including against virus variants), and cellular immunogenicity were assessed to day 394 (12 months after second dose). Effects of subsequent COVID-19 vaccination on humoral responses were examined. FINDINGS All two-dose vaccine regimens were well tolerated and elicited strong antigen-specific and neutralising humoral responses, and CD4+ T-cell responses, by day 43 in younger and older adults, although cellular responses were lower in older adults. Humoral responses waned by day 209 but were boosted in those receiving authorised vaccines. Neutralising activity against Delta and Omicron variants was present but lower than against the Wuhan strain. Cross-reactivity in HIV diagnostic tests declined over time but remained detectable in most participants. INTERPRETATION The SARS-CoV-2 molecular clamp vaccine is well tolerated and evokes robust immune responses in adults of all ages. Although the HIV glycoprotein 41-based molecular clamp is not being progressed, the clamp concept represents a viable platform for vaccine development. FUNDING This study was funded by the Coalition for Epidemic Preparedness Innovations, the National Health and Medical Research Council of Australia, and the Queensland Government.
Collapse
Affiliation(s)
- Keith J Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia.
| | - Francesca L Mordant
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Zheyi Li
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Danushka K Wijesundara
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Julia A Lackenby
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Paul Griffin
- Nucleus Network Brisbane Clinic, Herston, QLD, Australia; Department of Infectious Diseases, Mater Health, QLD, Australia; School of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | | | - Luca Hensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Mai H Tran
- Agilex Biolabs, Thebarton, SA, Australia
| | | | - James Barnes
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Charani Ranasinghe
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Trent P Munro
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
20
|
Mbatha LS, Akinyelu J, Maiyo F, Kudanga T. Future prospects in mRNA vaccine development. Biomed Mater 2023; 18:052006. [PMID: 37589309 DOI: 10.1088/1748-605x/aceceb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
The recent advancements in messenger ribonucleic acid (mRNA) vaccine development have vastly enhanced their use as alternatives to conventional vaccines in the prevention of various infectious diseases and treatment of several types of cancers. This is mainly due to their remarkable ability to stimulate specific immune responses with minimal clinical side effects. This review gives a detailed overview of mRNA vaccines currently in use or at various stages of development, the recent advancements in mRNA vaccine development, and the challenges encountered in their development. Future perspectives on this technology are also discussed.
Collapse
Affiliation(s)
- Londiwe Simphiwe Mbatha
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Jude Akinyelu
- Department of Biochemistry, Federal University Oye-Ekiti, Ekiti state, Nigeria
| | - Fiona Maiyo
- Department of Medical Sciences, Kabarak University, Nairobi, Kenya
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| |
Collapse
|
21
|
Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther 2023; 8:283. [PMID: 37468460 PMCID: PMC10356842 DOI: 10.1038/s41392-023-01557-7] [Citation(s) in RCA: 284] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Adjuvants are indispensable components of vaccines. Despite being widely used in vaccines, their action mechanisms are not yet clear. With a greater understanding of the mechanisms by which the innate immune response controls the antigen-specific response, the adjuvants' action mechanisms are beginning to be elucidated. Adjuvants can be categorized as immunostimulants and delivery systems. Immunostimulants are danger signal molecules that lead to the maturation and activation of antigen-presenting cells (APCs) by targeting Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) to promote the production of antigen signals and co-stimulatory signals, which in turn enhance the adaptive immune responses. On the other hand, delivery systems are carrier materials that facilitate antigen presentation by prolonging the bioavailability of the loaded antigens, as well as targeting antigens to lymph nodes or APCs. The adjuvants' action mechanisms are systematically summarized at the beginning of this review. This is followed by an introduction of the mechanisms, properties, and progress of classical vaccine adjuvants. Furthermore, since some of the adjuvants under investigation exhibit greater immune activation potency than classical adjuvants, which could compensate for the deficiencies of classical adjuvants, a summary of the adjuvant platforms under investigation is subsequently presented. Notably, we highlight the different action mechanisms and immunological properties of these adjuvant platforms, which will provide a wide range of options for the rational design of different vaccines. On this basis, this review points out the development prospects of vaccine adjuvants and the problems that should be paid attention to in the future.
Collapse
Affiliation(s)
- Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yulong Cai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Jiang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yifan Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Tan JS, Jaffar Ali MNB, Gan BK, Tan WS. Next-generation viral nanoparticles for targeted delivery of therapeutics: Fundamentals, methods, biomedical applications, and challenges. Expert Opin Drug Deliv 2023; 20:955-978. [PMID: 37339432 DOI: 10.1080/17425247.2023.2228202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION Viral nanoparticles (VNPs) are virus-based nanocarriers that have been studied extensively and intensively for biomedical applications. However, their clinical translation is relatively low compared to the predominating lipid-based nanoparticles. Therefore, this article describes the fundamentals, challenges, and solutions of the VNP-based platform, which will leverage the development of next-generation VNPs. AREAS COVERED Different types of VNPs and their biomedical applications are reviewed comprehensively. Strategies and approaches for cargo loading and targeted delivery of VNPs are examined thoroughly. The latest developments in controlled release of cargoes from VNPs and their mechanisms are highlighted too. The challenges faced by VNPs in biomedical applications are identified, and solutions are provided to overcome them. EXPERT OPINION In the development of next-generation VNPs for gene therapy, bioimaging and therapeutic deliveries, focus must be given to reduce their immunogenicity, and increase their stability in the circulatory system. Modular virus-like particles (VLPs) which are produced separately from their cargoes or ligands before all the components are coupled can speed up clinical trials and commercialization. In addition, removal of contaminants from VNPs, cargo delivery across the blood brain barrier (BBB), and targeting of VNPs to organelles intracellularly are challenges that will preoccupy researchers in this decade.
Collapse
Affiliation(s)
- Jia Sen Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhamad Norizwan Bin Jaffar Ali
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Bee Koon Gan
- Department of Biological Science, Faculty of Science, National University of Singapore, Singapore
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
23
|
Gal Y, Marcus H, Mamroud E, Aloni-Grinstein R. Mind the Gap-A Perspective on Strategies for Protecting against Bacterial Infections during the Period from Infection to Eradication. Microorganisms 2023; 11:1701. [PMID: 37512874 PMCID: PMC10386665 DOI: 10.3390/microorganisms11071701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The emergence of antibiotic-resistant bacteria is a pressing public health concern, highlighting the need for alternative approaches to control bacterial infections. Promising approaches include the development of therapeutic vaccines and the utilization of innate immune activation techniques, which may prove useful in conjunction with antibiotics, as well as other antibacterial modalities. However, innate activation should be fast and self- or actively- contained to prevent detrimental consequences. TLR ligand adjuvants are effective at rapidly activating, within minutes to hours, the innate immune system by inducing cytokine production and other signaling molecules that bolster the host's immune response. Neutrophils serve as the first line of defense against invading pathogens by capturing and destroying them through various mechanisms, such as phagocytosis, intracellular degradation, and the formation of NETs. Nutritional immunity is another host defense mechanism that limits the availability of essential metals, such as iron, from invading bacterial pathogens. Thus, iron starvation has been proposed as a potential antibacterial strategy. In this review, we focus on approaches that have the potential to enhance rapid and precise antibacterial responses, bridging the gap between the onset of infection and the elimination of bacteria, hence limiting the infection by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Hadar Marcus
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| |
Collapse
|
24
|
Poumbourios P, Langer C, Boo I, Zakir T, Center RJ, Akerman A, Milogiannakis V, Aggarwal A, Johnstone BA, Ha J, Coulibaly F, Turville SG, Drummer HE. Enhanced stability of the SARS CoV-2 spike glycoprotein following modification of an alanine cavity in the protein core. PLoS Pathog 2023; 19:e1010981. [PMID: 37200378 PMCID: PMC10231827 DOI: 10.1371/journal.ppat.1010981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/31/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
The spike (S) glycoprotein of SARS CoV-2 is the target of neutralizing antibodies (NAbs) that are crucial for vaccine effectiveness. The S1 subunit binds ACE2 while the S2 subunit mediates virus-cell membrane fusion. S2 is a class I fusion glycoprotein subunit and contains a central coiled coil that acts as a scaffold for the conformational changes associated with fusion function. The coiled coil of S2 is unusual in that the 3-4 repeat of inward-facing positions are mostly occupied by polar residues that mediate few inter-helical contacts in the prefusion trimer. We examined how insertion of bulkier hydrophobic residues (Val, Leu, Ile, Phe) to fill a cavity next to Ala1016 and Ala1020 in the 3-4 repeat affects the stability and antigenicity of S trimers. Substitution of Ala1016 with bulkier hydrophobic residues in the context of a prefusion-stabilized S trimer, S2P-FHA, was associated with increased thermal stability. S glycoprotein membrane fusion function was retained with Ala1016/Ala1020 cavity-filling mutations associated with improved recombinant S2P-FHA thermostability, however 2 mutants, A1016L and A1016V/A1020I, lacked ability to mediate entry of S-HIV-1 pseudoparticles into 293-ACE2 cells. When assessed as immunogens, two thermostable S2P-FHA mutants derived from the ancestral isolate, A1016L (16L) and A1016V/A1020I (VI) elicited neutralizing antibody with 50%-inhibitory dilutions (ID50s) in the range 2,700-5,110 for ancestral and Delta-derived viruses, and 210-1,744 for Omicron BA.1. The antigens elicited antibody specificities directed to the receptor-binding domain (RBD), N-terminal domain (NTD), fusion peptide and stem region of S2. The VI mutation enabled the production of intrinsically stable Omicron BA.1 and Omicron BA.4/5 S2P-FHA-like ectodomain oligomers in the absence of an external trimerization motif (T4 foldon), thus representing an alternative approach for stabilizing oligomeric S glycoprotein vaccines.
Collapse
Affiliation(s)
- Pantelis Poumbourios
- Burnet Institute, Melbourne, Australia
- Department of Microbiology, Monash University, Clayton, Australia
| | | | - Irene Boo
- Burnet Institute, Melbourne, Australia
| | | | - Rob J. Center
- Burnet Institute, Melbourne, Australia
- Department of Microbiology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Anouschka Akerman
- Kirby Institute, University of New South Wales, Kensington, Australia
| | | | - Anupriya Aggarwal
- Kirby Institute, University of New South Wales, Kensington, Australia
| | - Bronte A. Johnstone
- Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Jungmin Ha
- Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Fasséli Coulibaly
- Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | | - Heidi E. Drummer
- Burnet Institute, Melbourne, Australia
- Department of Microbiology, Monash University, Clayton, Australia
- Department of Microbiology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| |
Collapse
|
25
|
Nguyen THO, Rowntree LC, Allen LF, Chua BY, Kedzierski L, Lim C, Lasica M, Tennakoon GS, Saunders NR, Crane M, Chee L, Seymour JF, Anderson MA, Whitechurch A, Clemens EB, Zhang W, Chang SY, Habel JR, Jia X, McQuilten HA, Minervina AA, Pogorelyy MV, Chaurasia P, Petersen J, Menon T, Hensen L, Neil JA, Mordant FL, Tan HX, Cabug AF, Wheatley AK, Kent SJ, Subbarao K, Karapanagiotidis T, Huang H, Vo LK, Cain NL, Nicholson S, Krammer F, Gibney G, James F, Trevillyan JM, Trubiano JA, Mitchell J, Christensen B, Bond KA, Williamson DA, Rossjohn J, Crawford JC, Thomas PG, Thursky KA, Slavin MA, Tam CS, Teh BW, Kedzierska K. Robust SARS-CoV-2 T cell responses with common TCRαβ motifs toward COVID-19 vaccines in patients with hematological malignancy impacting B cells. Cell Rep Med 2023; 4:101017. [PMID: 37030296 PMCID: PMC10040362 DOI: 10.1016/j.xcrm.2023.101017] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (∼26%), increased to 59%-75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 060-0808, Japan
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Chhay Lim
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Masa Lasica
- Department of Haematology, St Vincent's Hospital, Fitzroy, VIC 3065, Australia; Department of Haematology, Eastern Health, Box Hill, VIC 3128, Australia
| | - G Surekha Tennakoon
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Natalie R Saunders
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Megan Crane
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Lynette Chee
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - John F Seymour
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mary Ann Anderson
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Ashley Whitechurch
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - So Young Chang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer R Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Anastasia A Minervina
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Tejas Menon
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jessica A Neil
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Francesca L Mordant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Aira F Cabug
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3010, Australia; Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Theo Karapanagiotidis
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Han Huang
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lynn K Vo
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Natalie L Cain
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Grace Gibney
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Fiona James
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Janine M Trevillyan
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia; Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia; Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jeni Mitchell
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Britt Christensen
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia; Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Katherine A Bond
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Microbiology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Deborah A Williamson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, CF14 4XN Cardiff, UK
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Karin A Thursky
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Constantine S Tam
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Benjamin W Teh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.
| |
Collapse
|
26
|
Gholami S, Korosec CS, Farhang-Sardroodi S, Dick DW, Craig M, Ghaemi MS, Ooi HK, Heffernan JM. A mathematical model of protein subunits COVID-19 vaccines. Math Biosci 2023; 358:108970. [PMID: 36773843 PMCID: PMC9911981 DOI: 10.1016/j.mbs.2023.108970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 02/12/2023]
Abstract
We consider a general mathematical model for protein subunit vaccine with a focus on the MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2, and use the model to study immunological outcomes in the humoral and cell-mediated arms of the immune response from vaccination. The mathematical model is fit to vaccine clinical trial data. We elucidate the role of Interferon-γ and Interleukin-4 in stimulating the immune response of the host. Model results, and results from a sensitivity analysis, show that a balance between the TH1 and TH2 arms of the immune response is struck, with the TH1 response being dominant. The model predicts that two-doses of the vaccine at 28 days apart will result in approximately 85% humoral immunity loss relative to peak immunity approximately 6 months post dose 1.
Collapse
Affiliation(s)
- Samaneh Gholami
- Modelling Infection & Immunity Lab, Centre for Disease Modelling, Mathematics & Statistics, York University, Toronto, Ontario, Canada.
| | - Chapin S Korosec
- Modelling Infection & Immunity Lab, Centre for Disease Modelling, Mathematics & Statistics, York University, Toronto, Ontario, Canada
| | - Suzan Farhang-Sardroodi
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada; Modelling Infection & Immunity Lab, Centre for Disease Modelling, Mathematics & Statistics, York University, Toronto, Ontario, Canada
| | - David W Dick
- Modelling Infection & Immunity Lab, Centre for Disease Modelling, Mathematics & Statistics, York University, Toronto, Ontario, Canada
| | - Morgan Craig
- Sainte-Justine University Hospital Research Centre and Department of Mathematics and Statistics, Université de Montréal, Montreal, Quebec, Canada
| | - Mohammad Sajjad Ghaemi
- Digital Technologies Research Centre, National Research Council Canada, Toronto, ON, Canada
| | - Hsu Kiang Ooi
- Digital Technologies Research Centre, National Research Council Canada, Toronto, ON, Canada
| | - Jane M Heffernan
- Modelling Infection & Immunity Lab, Centre for Disease Modelling, Mathematics & Statistics, York University, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Zhang Z, Zhou J, Ni P, Hu B, Jolicoeur N, Deng S, Xiao Q, He Q, Li G, Xia Y, Liu M, Wang C, Fang Z, Xia N, Zhang ZR, Zhang B, Cai K, Xu Y, Liu B. PF-D-Trimer, a protective SARS-CoV-2 subunit vaccine: immunogenicity and application. NPJ Vaccines 2023; 8:38. [PMID: 36922524 PMCID: PMC10015519 DOI: 10.1038/s41541-023-00636-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has had and continues to have a significant impact on global public health. One of the characteristics of SARS-CoV-2 is a surface homotrimeric spike protein, which is primarily responsible for the host immune response upon infection. Here we present the preclinical studies of a broadly protective SARS-CoV-2 subunit vaccine developed from our trimer domain platform using the Delta spike protein, from antigen design through purification, vaccine evaluation and manufacturability. The pre-fusion trimerized Delta spike protein, PF-D-Trimer, was highly expressed in Chinese hamster ovary (CHO) cells, purified by a rapid one-step anti-Trimer Domain monoclonal antibody immunoaffinity process and prepared as a vaccine formulation with an adjuvant. Immunogenicity studies have shown that this vaccine candidate induces robust immune responses in mouse, rat and Syrian hamster models. It also protects K18-hACE2 transgenic mice in a homologous viral challenge. Neutralizing antibodies induced by this vaccine show cross-reactivity against the ancestral WA1, Delta and several Omicrons, including BA.5.2. The formulated PF-D Trimer is stable for up to six months without refrigeration. The Trimer Domain platform was proven to be a key technology in the rapid production of PF-D-Trimer vaccine and may be crucial to accelerate the development and accessibility of updated versions of SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Zhihao Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China.,Wuhan Binhui Biopharmaceutical Co., Ltd, Wuhan, China
| | - Jinhu Zhou
- Wuhan Binhui Biopharmaceutical Co., Ltd, Wuhan, China
| | - Peng Ni
- Wuhan Binhui Biopharmaceutical Co., Ltd, Wuhan, China
| | - Bing Hu
- Institute of Health Inspection and Testing, Hubei Provincial Centre for Disease Control and Prevention (Hubei CDC), Wuhan, Hubei, China
| | | | - Shuang Deng
- Nova Biologiques Inc. Montréal, Québec, Canada
| | - Qian Xiao
- Wuhan Binhui Biopharmaceutical Co., Ltd, Wuhan, China
| | - Qian He
- Wuhan Binhui Biopharmaceutical Co., Ltd, Wuhan, China.,School of Pharmacy, Hubei University of Science and Technology, Xian Ning, China
| | - Gai Li
- Nova Biologiques Inc. Montréal, Québec, Canada
| | - Yan Xia
- Nova Biologiques Inc. Montréal, Québec, Canada
| | - Mei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China.,Wuhan Binhui Biopharmaceutical Co., Ltd, Wuhan, China
| | - Cong Wang
- Wuhan Binhui Biopharmaceutical Co., Ltd, Wuhan, China
| | - Zhizheng Fang
- Wuhan Binhui Biopharmaceutical Co., Ltd, Wuhan, China
| | - Nan Xia
- Wuhan Binhui Biopharmaceutical Co., Ltd, Wuhan, China
| | - Zhe-Rui Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bo Zhang
- Wuhan Binhui Biopharmaceutical Co., Ltd, Wuhan, China. .,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Centre for Disease Control and Prevention (Hubei CDC), Wuhan, Hubei, China.
| | - Yan Xu
- Wuhan Binhui Biopharmaceutical Co., Ltd, Wuhan, China. .,Nova Biologiques Inc. Montréal, Québec, Canada.
| | - Binlei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China. .,Wuhan Binhui Biopharmaceutical Co., Ltd, Wuhan, China. .,School of Pharmacy, Hubei University of Science and Technology, Xian Ning, China.
| |
Collapse
|
28
|
Zhou Z, Shen J, Zhao M, Zhang X, Wang T, Li J, Zhao X. Effect of anxiety and depression on self-reported adverse reactions to COVID-19 vaccine: a cross-sectional study in Shanghai, China. BMC Public Health 2023; 23:425. [PMID: 36869301 PMCID: PMC9983539 DOI: 10.1186/s12889-023-15118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/23/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND The association of anxiety and depression with adverse reactions after receipt of coronavirus disease 2019 (COVID-19) vaccine is not clear among the general population. This study aims to evaluate the effect of anxiety and depression on self-reported adverse reactions to COVID-19 vaccine. METHODS The cross-sectional study was conducted during April-July 2021. Participants completing the two doses of vaccine were included in this study. Sociodemographic information, anxiety and depression levels and adverse reactions after the first dose of vaccine for all participants were collected. The anxiety and depression levels were assessed by the Seven-item Generalized Anxiety Disorder Scale and the Nine-item Patient Health Questionnaire Scale, respectively. The multivariate logistic regression analysis was used to examine the association between anxiety and depression and adverse reactions. RESULTS A total of 2161 participants were enrolled in this study. The prevalence of anxiety and depression was 13% (95% confidence interval (CI), 11.3-14.2%) and 15% (95%CI, 13.6-16.7%), respectively. Of the 2161 participants, 1607 (74%; 95% CI, 73-76%) reported at least one adverse reaction after the first dose of the vaccine. Pain at the injection site (55%) and fatigue and headache (53% and 18%, respectively) were the most commonly reported local and systemic adverse reactions, respectively. Participants with anxiety or depression or both were more likely to report local and systemic adverse reactions (P < 0.05). CONCLUSION The results suggest that anxiety and depression increase the risk of self-reported adverse reactions to COVID-19 vaccine. Consequently, appropriate psychological interventions before vaccination will help to reduce or alleviate symptoms of vaccination.
Collapse
Affiliation(s)
- Zhitong Zhou
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai 200124, China.,Institute of Clinical Epidemiology and Evidence-Based Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Junwei Shen
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai 200124, China
| | - Miaomiao Zhao
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Xiaoying Zhang
- College of public Health, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Tao Wang
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai 200124, China.,Institute of Clinical Epidemiology and Evidence-Based Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jue Li
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai 200124, China. .,Institute of Clinical Epidemiology and Evidence-Based Medicine, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xudong Zhao
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai 200124, China.
| |
Collapse
|
29
|
Kovalenko A, Ryabchevskaya E, Evtushenko E, Nikitin N, Karpova O. Recombinant Protein Vaccines against Human Betacoronaviruses: Strategies, Approaches and Progress. Int J Mol Sci 2023; 24:1701. [PMID: 36675218 PMCID: PMC9863728 DOI: 10.3390/ijms24021701] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Betacoronaviruses have already troubled humanity more than once. In 2002-2003 and 2012, the SARS-CoV and MERS-CoV, respectively, caused outbreaks of respiratory syndromes with a fatal outcome. The spread of the SARS-CoV-2 coronavirus has become a pandemic. These three coronaviruses belong to the genus Betacoronavirus and have a zoonotic origin. The emergence of new coronavirus infections in the future cannot be ruled out, and vaccination is the main way to prevent the spread of the infection. Previous experience in the development of vaccines against SARS and MERS has helped to develop a number of vaccines against SARS-CoV-2 in a fairly short time. Among them, there are quite a few recombinant protein vaccines, which seem to be very promising in terms of safety, minimization of side effects, storage and transportation conditions. The problem of developing a universal betacoronavirus vaccine is also still relevant. Here, we summarize the information on the designing of vaccines based on recombinant proteins against highly pathogenic human betacoronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | - Nikolai Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | |
Collapse
|
30
|
A Self-Emulsified Adjuvant System Containing the Immune Potentiator Alpha Tocopherol Induces Higher Neutralizing Antibody Responses than a Squalene-Only Emulsion When Evaluated with a Recombinant Cytomegalovirus (CMV) Pentamer Antigen in Mice. Pharmaceutics 2023; 15:pharmaceutics15010238. [PMID: 36678865 PMCID: PMC9867524 DOI: 10.3390/pharmaceutics15010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The development of new vaccine adjuvants represents a key approach to improvingi the immune responses to recombinant vaccine antigens. Emulsion adjuvants, such as AS03 and MF59, in combination with influenza vaccines, have allowed antigen dose sparing, greater breadth of responses and fewer immunizations. It has been demonstrated previously that emulsion adjuvants can be prepared using a simple, low-shear process of self-emulsification (SE). The role of alpha tocopherol as an immune potentiator in emulsion adjuvants is clear from the success of AS03 in pandemic responses, both to influenza and COVID-19. Although it was a significant formulation challenge to include alpha tocopherol in an emulsion prepared by a low-shear process, the resultant self-emulsifying adjuvant system (SE-AS) showed a comparable effect to the established AS03 when used with a quadrivalent influenza vaccine (QIV). In this paper, we first optimized the SE-AS with alpha tocopherol to create SE-AS44, which allowed the emulsion to be sterile-filtered. Then, we compared the in vitro cell activation cytokine profile of SE-AS44 with the self-emulsifying adjuvant 160 (SEA160), a squalene-only adjuvant. In addition, we evaluated SE-AS44 and SEA160 competitively, in combination with a recombinant cytomegalovirus (CMV) pentamer antigen mouse.
Collapse
|
31
|
Noureddine Z, Madi L, Ullah S, Alrawashdeh H, Naseralallah L. A prospective observational study to evaluate the safety of COVID-19 mRNA vaccines administered to Qatar Rehabilitation Institute patients. Qatar Med J 2023; 2023:10. [PMID: 36874588 PMCID: PMC9979845 DOI: 10.5339/qmj.2023.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/18/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND The safety of the COVID-19 mRNA vaccine in the outpatient setting has been extensively studied; however, there need to be more reports that specifically assess their safety in the inpatient population. It is hence imperative to explore the adverse drug reaction (ADR) profile in this population and monitor the progression of these ADRs in a hospital setting. This provides a unique opportunity to closely observe patients to ensure no side effects go undiagnosed. This study aims to explore and quantify the incidence and severity of ADRs in patients who have received the COVID-19 vaccine during their stay in the rehabilitation facility. METHODS This is a prospective observational study, which included adult patients admitted to the rehabilitation facility who were deemed eligible to receive the COVID-19 vaccine during their hospital stay. Data were collected by the investigators from June 2021 to May 2022 at 24 hours, 48 hours, and 7 days post-vaccination. A piloted data collection tool was utilized. RESULTS Thirty-five patients met the inclusion criteria. Pain at the injection site was the most commonly reported local ADR, while headache was the most frequent systemic ADR. The majority of the reported ADRs were mild to moderate in nature, with only one severe reaction detected. Although no statistical significance was noted among the variables, common patterns were identified, such as a higher occurrence of fever at 24 hours after the second dose as opposed to the first dose. Close monitoring of the included study subjects did not reveal any unanticipated ADRs or an increase in ADRs susceptibility and severity compared to the general population. CONCLUSION This study supports the initiation of vaccination campaigns in inpatient rehabilitation settings. This approach would offer the advantage of gaining full immunity and reducing the risk of contracting COVID-19 infection and complications once discharged.
Collapse
Affiliation(s)
- Zahra Noureddine
- Clinical Pharmacy Department, Qatar Rehabilitation Institute, Hamad Medical Corporation, Doha, Qatar. E-mail: ORCID: 0000-0001-9695-7293
| | - Lama Madi
- Clinical Pharmacy Department, Qatar Rehabilitation Institute, Hamad Medical Corporation, Doha, Qatar. E-mail: ORCID: 0000-0001-9695-7293
| | - Sami Ullah
- Department of Physical Medicine and Rehabilitation, Qatar Rehabilitation Institute, Hamad Medical Corporation, Doha, Qatar
| | - Haneen Alrawashdeh
- Clinical Pharmacy Department, Qatar Rehabilitation Institute, Hamad Medical Corporation, Doha, Qatar. E-mail: ORCID: 0000-0001-9695-7293
| | - Lina Naseralallah
- Clinical Pharmacy Department, Qatar Rehabilitation Institute, Hamad Medical Corporation, Doha, Qatar. E-mail: ORCID: 0000-0001-9695-7293.,School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
32
|
Synthesis and Characterization of Innovative Microgels Based on Polyacrylic Acid and Microalgae Cell Wall and Their Potential as Antigen Delivery Vehicles. Pharmaceutics 2022; 15:pharmaceutics15010133. [PMID: 36678762 PMCID: PMC9863243 DOI: 10.3390/pharmaceutics15010133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
In this study, hybrid polyacrylic acid and Schizochytrium sp. microalgae (PAA/Schizo) microgels were synthesized by inverse emulsion assisted by ultrasound using the cell wall fraction as crosslinker. Physicochemical characterization of PAA/Schizo microgels revealed polymeric spherical particles (288 ± 39 nm) and were deemed stable and negatively charged. The produced microgels are not inherently toxic as cell viability was sustained above 80% when mice splenocytes were exposed to concentrations ranging 10-900 µg/mL. PAA/Schizo microgels were evaluated as antigen delivery nanovehicle by adsorbing bovine serum albumin (BSA); with a loading efficiency of 72% and loading capacity of 362 µg/mg. Overall, intranasally-immunized BALB/c mice showed null IgG or IgA responses against PAA/Schizo microgel-BSA, whereas soluble BSA induced significant humoral responses in systemic and mucosal compartments. Splenocytes proliferation assay upon BSA stimulus revealed positive CD4+ T cells-proliferation response in PAA/Schizo microgels-BSA group. Thus, PAA/Schizo microgels constitute functional antigen delivery vehicles of simple and ecofriendly synthesis. Moreover, the use of cell wall fraction as cross-linker agent provides an alternative use for the generation of high-value products using residual algae biomass from the oil industry. Our data suggests that the PAA/Schizo microgels are potential antigen delivery vehicles for immunotherapy development.
Collapse
|
33
|
Graña C, Ghosn L, Evrenoglou T, Jarde A, Minozzi S, Bergman H, Buckley BS, Probyn K, Villanueva G, Henschke N, Bonnet H, Assi R, Menon S, Marti M, Devane D, Mallon P, Lelievre JD, Askie LM, Kredo T, Ferrand G, Davidson M, Riveros C, Tovey D, Meerpohl JJ, Grasselli G, Rada G, Hróbjartsson A, Ravaud P, Chaimani A, Boutron I. Efficacy and safety of COVID-19 vaccines. Cochrane Database Syst Rev 2022; 12:CD015477. [PMID: 36473651 PMCID: PMC9726273 DOI: 10.1002/14651858.cd015477] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Different forms of vaccines have been developed to prevent the SARS-CoV-2 virus and subsequent COVID-19 disease. Several are in widespread use globally. OBJECTIVES: To assess the efficacy and safety of COVID-19 vaccines (as a full primary vaccination series or a booster dose) against SARS-CoV-2. SEARCH METHODS We searched the Cochrane COVID-19 Study Register and the COVID-19 L·OVE platform (last search date 5 November 2021). We also searched the WHO International Clinical Trials Registry Platform, regulatory agency websites, and Retraction Watch. SELECTION CRITERIA We included randomized controlled trials (RCTs) comparing COVID-19 vaccines to placebo, no vaccine, other active vaccines, or other vaccine schedules. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. We used GRADE to assess the certainty of evidence for all except immunogenicity outcomes. We synthesized data for each vaccine separately and presented summary effect estimates with 95% confidence intervals (CIs). MAIN RESULTS: We included and analyzed 41 RCTs assessing 12 different vaccines, including homologous and heterologous vaccine schedules and the effect of booster doses. Thirty-two RCTs were multicentre and five were multinational. The sample sizes of RCTs were 60 to 44,325 participants. Participants were aged: 18 years or older in 36 RCTs; 12 years or older in one RCT; 12 to 17 years in two RCTs; and three to 17 years in two RCTs. Twenty-nine RCTs provided results for individuals aged over 60 years, and three RCTs included immunocompromized patients. No trials included pregnant women. Sixteen RCTs had two-month follow-up or less, 20 RCTs had two to six months, and five RCTs had greater than six to 12 months or less. Eighteen reports were based on preplanned interim analyses. Overall risk of bias was low for all outcomes in eight RCTs, while 33 had concerns for at least one outcome. We identified 343 registered RCTs with results not yet available. This abstract reports results for the critical outcomes of confirmed symptomatic COVID-19, severe and critical COVID-19, and serious adverse events only for the 10 WHO-approved vaccines. For remaining outcomes and vaccines, see main text. The evidence for mortality was generally sparse and of low or very low certainty for all WHO-approved vaccines, except AD26.COV2.S (Janssen), which probably reduces the risk of all-cause mortality (risk ratio (RR) 0.25, 95% CI 0.09 to 0.67; 1 RCT, 43,783 participants; high-certainty evidence). Confirmed symptomatic COVID-19 High-certainty evidence found that BNT162b2 (BioNtech/Fosun Pharma/Pfizer), mRNA-1273 (ModernaTx), ChAdOx1 (Oxford/AstraZeneca), Ad26.COV2.S, BBIBP-CorV (Sinopharm-Beijing), and BBV152 (Bharat Biotect) reduce the incidence of symptomatic COVID-19 compared to placebo (vaccine efficacy (VE): BNT162b2: 97.84%, 95% CI 44.25% to 99.92%; 2 RCTs, 44,077 participants; mRNA-1273: 93.20%, 95% CI 91.06% to 94.83%; 2 RCTs, 31,632 participants; ChAdOx1: 70.23%, 95% CI 62.10% to 76.62%; 2 RCTs, 43,390 participants; Ad26.COV2.S: 66.90%, 95% CI 59.10% to 73.40%; 1 RCT, 39,058 participants; BBIBP-CorV: 78.10%, 95% CI 64.80% to 86.30%; 1 RCT, 25,463 participants; BBV152: 77.80%, 95% CI 65.20% to 86.40%; 1 RCT, 16,973 participants). Moderate-certainty evidence found that NVX-CoV2373 (Novavax) probably reduces the incidence of symptomatic COVID-19 compared to placebo (VE 82.91%, 95% CI 50.49% to 94.10%; 3 RCTs, 42,175 participants). There is low-certainty evidence for CoronaVac (Sinovac) for this outcome (VE 69.81%, 95% CI 12.27% to 89.61%; 2 RCTs, 19,852 participants). Severe or critical COVID-19 High-certainty evidence found that BNT162b2, mRNA-1273, Ad26.COV2.S, and BBV152 result in a large reduction in incidence of severe or critical disease due to COVID-19 compared to placebo (VE: BNT162b2: 95.70%, 95% CI 73.90% to 99.90%; 1 RCT, 46,077 participants; mRNA-1273: 98.20%, 95% CI 92.80% to 99.60%; 1 RCT, 28,451 participants; AD26.COV2.S: 76.30%, 95% CI 57.90% to 87.50%; 1 RCT, 39,058 participants; BBV152: 93.40%, 95% CI 57.10% to 99.80%; 1 RCT, 16,976 participants). Moderate-certainty evidence found that NVX-CoV2373 probably reduces the incidence of severe or critical COVID-19 (VE 100.00%, 95% CI 86.99% to 100.00%; 1 RCT, 25,452 participants). Two trials reported high efficacy of CoronaVac for severe or critical disease with wide CIs, but these results could not be pooled. Serious adverse events (SAEs) mRNA-1273, ChAdOx1 (Oxford-AstraZeneca)/SII-ChAdOx1 (Serum Institute of India), Ad26.COV2.S, and BBV152 probably result in little or no difference in SAEs compared to placebo (RR: mRNA-1273: 0.92, 95% CI 0.78 to 1.08; 2 RCTs, 34,072 participants; ChAdOx1/SII-ChAdOx1: 0.88, 95% CI 0.72 to 1.07; 7 RCTs, 58,182 participants; Ad26.COV2.S: 0.92, 95% CI 0.69 to 1.22; 1 RCT, 43,783 participants); BBV152: 0.65, 95% CI 0.43 to 0.97; 1 RCT, 25,928 participants). In each of these, the likely absolute difference in effects was fewer than 5/1000 participants. Evidence for SAEs is uncertain for BNT162b2, CoronaVac, BBIBP-CorV, and NVX-CoV2373 compared to placebo (RR: BNT162b2: 1.30, 95% CI 0.55 to 3.07; 2 RCTs, 46,107 participants; CoronaVac: 0.97, 95% CI 0.62 to 1.51; 4 RCTs, 23,139 participants; BBIBP-CorV: 0.76, 95% CI 0.54 to 1.06; 1 RCT, 26,924 participants; NVX-CoV2373: 0.92, 95% CI 0.74 to 1.14; 4 RCTs, 38,802 participants). For the evaluation of heterologous schedules, booster doses, and efficacy against variants of concern, see main text of review. AUTHORS' CONCLUSIONS Compared to placebo, most vaccines reduce, or likely reduce, the proportion of participants with confirmed symptomatic COVID-19, and for some, there is high-certainty evidence that they reduce severe or critical disease. There is probably little or no difference between most vaccines and placebo for serious adverse events. Over 300 registered RCTs are evaluating the efficacy of COVID-19 vaccines, and this review is updated regularly on the COVID-NMA platform (covid-nma.com). Implications for practice Due to the trial exclusions, these results cannot be generalized to pregnant women, individuals with a history of SARS-CoV-2 infection, or immunocompromized people. Most trials had a short follow-up and were conducted before the emergence of variants of concern. Implications for research Future research should evaluate the long-term effect of vaccines, compare different vaccines and vaccine schedules, assess vaccine efficacy and safety in specific populations, and include outcomes such as preventing long COVID-19. Ongoing evaluation of vaccine efficacy and effectiveness against emerging variants of concern is also vital.
Collapse
Affiliation(s)
- Carolina Graña
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Lina Ghosn
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Theodoros Evrenoglou
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Alexander Jarde
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | | | | | | | | | | | | | - Hillary Bonnet
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Rouba Assi
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | | | - Melanie Marti
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Declan Devane
- Evidence Synthesis Ireland, Cochrane Ireland and HRB-Trials Methodology Research Network, National University of Ireland, Galway, Ireland
| | - Patrick Mallon
- UCD Centre for Experimental Pathogen Host Research and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Jean-Daniel Lelievre
- Department of Clinical Immunology and Infectious Diseases, Henri Mondor Hospital, Vaccine Research Institute, Université Paris Est Créteil, Paris, France
| | - Lisa M Askie
- Quality Assurance Norms and Standards Department, World Health Organization, Geneva, Switzerland
| | - Tamara Kredo
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa
| | | | - Mauricia Davidson
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Carolina Riveros
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | | | - Joerg J Meerpohl
- Institute for Evidence in Medicine, Medical Center & Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Cochrane Germany, Cochrane Germany Foundation, Freiburg, Germany
| | - Giacomo Grasselli
- Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gabriel Rada
- Epistemonikos Foundation, Santiago, Chile
- UC Evidence Center, Cochrane Chile Associated Center, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Asbjørn Hróbjartsson
- Centre for Evidence Based Medicine Odense (CEBMO) and Cochrane Denmark, University of Southern Denmark, Odense, Denmark
- Open Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Philippe Ravaud
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Anna Chaimani
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Isabelle Boutron
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| |
Collapse
|
34
|
Rhodes S, Smith N, Evans T, White R. Identifying COVID-19 optimal vaccine dose using mathematical immunostimulation/immunodynamic modelling. Vaccine 2022; 40:7032-7041. [PMID: 36272876 PMCID: PMC9574467 DOI: 10.1016/j.vaccine.2022.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Identifying optimal COVID-19 vaccine dose is essential for maximizing their impact. However, COVID-19 vaccine dose-finding has been an empirical process, limited by short development timeframes, and therefore potentially not thoroughly investigated. Mathematical IS/ID modelling is a novel method for predicting optimal vaccine dose which could inform future COVID-19 vaccine dose decision making. METHODS Published clinical data on COVID-19 vaccine dose-response was identified and extracted. Mathematical models were calibrated to the dose-response data stratified by subpopulation, where possible to predict optimal dose. Predicted optimal doses were summarised across vaccine type and compared to chosen dose for the primary series of COVID-19 vaccines to identify vaccine doses that may benefit from re-evaluation. RESULTS 30 clinical dose-response datasets in adults and elderly population were extracted for four vaccine types and optimal doses predicted using the models. Results suggest that, if re-assessed for dose, COVID-19 vaccines Ad26.cov, ChadOx1 n-Cov19, BNT162b2, Coronavac, and NVX-CoV2373 could benefit from increased dose in adults and mRNA-1273 and Coronavac, could benefit from increased and decreased dose for the elderly population, respectively. DISCUSSION Future iterations of COVID-19 vaccines could benefit from re-evaluating dose to ensure most effective use of the vaccine and mathematical modelling can support this.
Collapse
Affiliation(s)
- Sophie Rhodes
- TB Modelling Group, CMMID, TB Centre, London School of Hygiene and Tropical Medicine, UK,Corresponding author
| | - Neal Smith
- Defence and Science Technology Laboratory, UK
| | | | - Richard White
- TB Modelling Group, CMMID, TB Centre, London School of Hygiene and Tropical Medicine, UK
| |
Collapse
|
35
|
Yang B, Huang X, Gao H, Leung NH, Tsang TK, Cowling BJ. Immunogenicity, efficacy, and safety of SARS-CoV-2 vaccine dose fractionation: a systematic review and meta-analysis. BMC Med 2022; 20:409. [PMID: 36284331 PMCID: PMC9595080 DOI: 10.1186/s12916-022-02600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Dose fractionation of a coronavirus disease 2019 (COVID-19) vaccine could effectively accelerate global vaccine coverage, while supporting evidence of efficacy, immunogenicity, and safety are unavailable, especially with emerging variants. METHODS We systematically reviewed clinical trials that reported dose-finding results and estimated the dose-response relationship of neutralizing antibodies (nAbs) of COVID-19 vaccines using a generalized additive model. We predicted the vaccine efficacy against both ancestral and variants, using previously reported correlates of protection and cross-reactivity. We also reviewed and compared seroconversion to nAbs, T cell responses, and safety profiles between fractional and standard dose groups. RESULTS We found that dose fractionation of mRNA and protein subunit vaccines could induce SARS-CoV-2-specific nAbs and T cells that confer a reasonable level of protection (i.e., vaccine efficacy > 50%) against ancestral strains and variants up to Omicron. Safety profiles of fractional doses were non-inferior to the standard dose. CONCLUSIONS Dose fractionation of mRNA and protein subunit vaccines may be safe and effective, which would also vary depending on the characteristics of emerging variants and updated vaccine formulations.
Collapse
Affiliation(s)
- Bingyi Yang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Xiaotong Huang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huizhi Gao
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nancy H Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tim K Tsang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong, China.
| |
Collapse
|
36
|
Yang N, Garcia A, Meyer C, Tuschl T, Merghoub T, Wolchok JD, Deng L. Heat-inactivated modified vaccinia virus Ankara boosts Th1 cellular and humoral immunity as a vaccine adjuvant. NPJ Vaccines 2022; 7:120. [PMID: 36261460 PMCID: PMC9580433 DOI: 10.1038/s41541-022-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Protein or peptide-based subunit vaccines have generated excitement and renewed interest in combating human cancer or COVID-19 outbreak. One major concern for subunit vaccine application is the weak immune responses induced by protein or peptides. Developing novel and effective vaccine adjuvants are critical for the success of subunit vaccines. Here we explored the potential of heat-inactivated MVA (heat-iMVA) as a vaccine adjuvant. Heat-iMVA dramatically enhances T cell responses and antibodies responses, mainly toward Th1 immune responses when combined with protein or peptide-based immunogen. The adjuvant effect of Heat-iMVA is stronger than live MVA and is dependent on the cGAS/STING-mediated cytosolic DNA-sensing pathway. In a therapeutic vaccination model based on tumor neoantigen peptide vaccine, Heat-iMVA significantly extended the survival and delayed tumor growth. When combined with SARS-CoV-2 spike protein, Heat-iMVA induced more robust spike-specific antibody production and more potent neutralization antibodies. Our results support that Heat-iMVA can be developed as a safe and potent vaccine adjuvant for subunit vaccines against cancer or SARS-CoV-2.
Collapse
Affiliation(s)
- Ning Yang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Aitor Garcia
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Taha Merghoub
- Immuno-oncology service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jedd D Wolchok
- Immuno-oncology service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Liang Deng
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Immuno-oncology service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
37
|
Helmy SA, El-Morsi RM, Helmy SAM, El-Masry SM. Towards novel nano-based vaccine platforms for SARS-CoV-2 and its variants of concern: Advances, challenges and limitations. J Drug Deliv Sci Technol 2022; 76:103762. [PMID: 36097606 PMCID: PMC9452404 DOI: 10.1016/j.jddst.2022.103762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/07/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022]
Abstract
Vaccination is the most effective tool available for fighting the spread of COVID-19. Recently, emerging variants of SARS-CoV-2 have led to growing concerns about increased transmissibility and decreased vaccine effectiveness. Currently, many vaccines are approved for emergency use and more are under development. This review highlights the ongoing advances in the design and development of different nano-based vaccine platforms. The challenges, limitations, and ethical consideration imposed by these nanocarriers are also discussed. Further, the effectiveness of the leading vaccine candidates against all SARS-CoV-2 variants of concern are highlighted. The review also focuses on the possibility of using an alternative non-invasive routes of vaccine administration using micro and nanotechnologies to enhance vaccination compliance and coverage.
Collapse
Affiliation(s)
- Sally A Helmy
- Department of Clinical and Hospital Pharmacy, Faculty of Pharmacy, Taibah University, AL-Madinah AL-Munawarah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Rasha M El-Morsi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Egypt
| | - Soha A M Helmy
- Department of Languages and Translation, College of Arts and Humanities, Taibah University, AL-Madinah AL-Munawarah, Saudi Arabia
- Department of Foreign Languages, Faculty of Education, Tanta University, Tanta, Egypt
| | - Soha M El-Masry
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
38
|
Lu M, Joung Y, Jeon CS, Kim S, Yong D, Jang H, Pyun SH, Kang T, Choo J. Dual-mode SERS-based lateral flow assay strips for simultaneous diagnosis of SARS-CoV-2 and influenza a virus. NANO CONVERGENCE 2022; 9:39. [PMID: 36063218 PMCID: PMC9441817 DOI: 10.1186/s40580-022-00330-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 05/28/2023]
Abstract
Since COVID-19 and flu have similar symptoms, they are difficult to distinguish without an accurate diagnosis. Therefore, it is critical to quickly and accurately determine which virus was infected and take appropriate treatments when a person has an infection. This study developed a dual-mode surface-enhanced Raman scattering (SERS)-based LFA strip that can diagnose SARS-CoV-2 and influenza A virus with high accuracy to reduce the false-negative problem of the commercial colorimetric LFA strip. Furthermore, using a single strip, it is feasible to detect SARS-CoV-2 and influenza A virus simultaneously. A clinical test was performed on 39 patient samples (28 SARS-CoV-2 positives, 6 influenza A virus positives, and 5 negatives), evaluating the clinical efficacy of the proposed dual-mode SERS-LFA strip. Our assay results for clinical samples show that the dual-mode LFA strip significantly reduced the false-negative rate for both SARS-CoV-2 and influenza A virus.
Collapse
Affiliation(s)
- Mengdan Lu
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Chang Su Jeon
- R&D Center, Speclipse Inc., Seongnam, 13461, South Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University College of Medicine, Jinju, 52727, South Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Sung Hyun Pyun
- R&D Center, Speclipse Inc., Seongnam, 13461, South Korea.
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea.
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
39
|
O’Donnell JS, Isaacs A, Jakob V, Lebas C, Barnes JB, Reading PC, Young PR, Watterson D, Dubois PM, Collin N, Chappell KJ. Characterization and comparison of novel adjuvants for a prefusion clamped MERS vaccine. Front Immunol 2022; 13:976968. [PMID: 36119058 PMCID: PMC9478912 DOI: 10.3389/fimmu.2022.976968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Various chemical adjuvants are available to augment immune responses to non-replicative, subunit vaccines. Optimized adjuvant selection can ensure that vaccine-induced immune responses protect against the diversity of pathogen-associated infection routes, mechanisms of infectious spread, and pathways of immune evasion. In this study, we compare the immune response of mice to a subunit vaccine of Middle Eastern respiratory syndrome coronavirus (MERS-CoV) spike protein, stabilized in its prefusion conformation by a proprietary molecular clamp (MERS SClamp) alone or formulated with one of six adjuvants: either (i) aluminium hydroxide, (ii) SWE, a squalene-in-water emulsion, (iii) SQ, a squalene-in-water emulsion containing QS21 saponin, (iv) SMQ, a squalene-in-water emulsion containing QS21 and a synthetic toll-like receptor 4 (TLR4) agonist 3D-6-acyl Phosphorylated HexaAcyl Disaccharide (3D6AP); (v) LQ, neutral liposomes containing cholesterol, 1.2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and QS21, (vi) or LMQ, neutral liposomes containing cholesterol, DOPC, QS21, and 3D6AP. All adjuvanted formulations induced elevated antibody titers which where greatest for QS21-containing formulations. These had elevated neutralization capacity and induced higher frequencies of IFNƔ and IL-2-producing CD4+ and CD8+ T cells. Additionally, LMQ-containing formulations skewed the antibody response towards IgG2b/c isotypes, allowing for antibody-dependent cellular cytotoxicity. This study highlights the utility of side-by-side adjuvant comparisons in vaccine development.
Collapse
Affiliation(s)
- Jake S. O’Donnell
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ariel Isaacs
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Celia Lebas
- Vaccine Formulation Institute, Geneva, Switzerland
| | - James B. Barnes
- The WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Patrick C. Reading
- The WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Paul R. Young
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Watterson
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | | | - Nicolas Collin
- Vaccine Formulation Institute, Geneva, Switzerland
- *Correspondence: Keith J. Chappell, ; Nicolas Collin,
| | - Keith J. Chappell
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Keith J. Chappell, ; Nicolas Collin,
| |
Collapse
|
40
|
Toubasi AA, Al‐Sayegh TN, Obaid YY, Al‐Harasis SM, AlRyalat SAS. Efficacy and safety of COVID-19 vaccines: A network meta-analysis. J Evid Based Med 2022; 15:245-262. [PMID: 36000160 PMCID: PMC9538745 DOI: 10.1111/jebm.12492] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/27/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Several vaccines showed a good safety profile and significant efficacy against COVID-19. Moreover, in the absence of direct head to head comparison between COVID-19 vaccines, a network meta-analysis that indirectly compares between them is needed. METHODS Databases PubMed, CENTRAL, medRxiv, and clinicaltrials.gov were searched. Studies were included if they were placebo-controlled clinical trials and reported the safety profile and/or effectiveness of COVID-19 vaccines. The quality of the included studies was assessed using the Revised Cochrane risk-of-bias tool for randomized trials and the Revised Cochrane risk-of-bias tool for nonrandomized trials. RESULTS Forty-nine clinical trials that included 421,173 participants and assessed 28 vaccines were included in this network meta-analysis. The network meta-analysis showed that Pfizer is the most effective in preventing COVID-19 infection whereas the Sputnik Vaccine was the most effective in preventing severe COVID-19 infection. In terms of the local and systemic side, the Sinopharm and V-01 vaccines were the safest. CONCLUSION We found that almost all of the vaccines included in this study crossed the threshold of 50% efficacy. However, some of them did not reach the previously mentioned threshold against the B.1.351 variant while the remainder have not yet investigated vaccine efficacy against this variant. Since each vaccine has its own strong and weak points, we strongly advocate continued vaccination efforts in individualized manner that recommend the best vaccine for each group in the community which is abundantly required to save lives and to avert the emergence of future variants.
Collapse
|
41
|
Isaac AB, Karolina W, Temitope AA, Anuska R, Joanne E, Deborah A, Bianca OC, Filip T, Zofia P, Oluwasegun OI, Oluwaferanmi O, Grace BT. PROSPECTS OF LASSA FEVER CANDIDATE VACCINES. Afr J Infect Dis 2022; 16:46-58. [PMID: 36124324 PMCID: PMC9480887 DOI: 10.21010/ajid.v16i2s.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
Background Lassa fever is an acute viral haemorrhagic disease caused by the Lassa virus (LASV). It is endemic in West Africa and infects about 300,000 people each year, leading to approximately 5000 deaths annually. The development of the LASV vaccine has been listed as a priority by the World Health Organization since 2018. Considering the accelerated development and availability of vaccines against COVID-19, we set out to assess the prospects of LASV vaccines and the progress made so far. Materials and Methods We reviewed the progress made on twenty-six vaccine candidates listed by Salami et al. (2019) and searched for new vaccine candidates through Google Scholar, PubMed, and DOAJ from June to July 2021. We searched the articles published in English using keywords that included "vaccine" AND "Lassa fever" OR "Lassa virus" in the title/abstract. Results Thirty-four candidate vaccines were identified - 26 already listed in the review by Salami et al. and an additional 8, which were developed over the last seven years. 30 vaccines are still in the pre-clinical stage while 4 of them are currently undergoing clinical trials. The most promising candidates in 2019 were vesicular stomatitis virus-vectored vaccine and live-attenuated MV/LASV vaccine; both had progressed to clinical trials. Conclusions Despite the focus on COVID-19 vaccines since 2020, LASV vaccine is under development and continues to make impressive progress, hence more emphasis should be put into exploring further clinical studies related to the most promising types of vaccines identified.
Collapse
Affiliation(s)
- Ademusire Babatunde Isaac
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Wieczorek Karolina
- Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria,Queen Mary University of London Barts and The London School of Medicine and Dentistry, United Kingdom,Corresponding author’s E-Mail:
| | - Alonge Aishat Temitope
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Rajen Anuska
- Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria,Queen Mary University of London Barts and The London School of Medicine and Dentistry, United Kingdom
| | - Egbe Joanne
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Adebambo Deborah
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Offorbuike Chiamaka Bianca
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Trojan Filip
- University College London, Medical School, London, United Kingdom
| | - Przypaśniak Zofia
- Queen Mary University of London Barts and The London School of Medicine and Dentistry, United Kingdom
| | - Oduguwa Ifeoluwa Oluwasegun
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Omitoyin Oluwaferanmi
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Balogun Toluwalogo Grace
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| |
Collapse
|
42
|
Kedzierska K, Nguyen THO. PD-1 blockade unblocks immune responses to vaccination. Nat Immunol 2022; 23:1135-1137. [PMID: 35902636 DOI: 10.1038/s41590-022-01254-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Fan J, Jin S, Gilmartin L, Toth I, Hussein WM, Stephenson RJ. Advances in Infectious Disease Vaccine Adjuvants. Vaccines (Basel) 2022; 10:1120. [PMID: 35891284 PMCID: PMC9316175 DOI: 10.3390/vaccines10071120] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Vaccines are one of the most significant medical interventions in the fight against infectious diseases. Since their discovery by Edward Jenner in 1796, vaccines have reduced the worldwide transmission to eradication levels of infectious diseases, including smallpox, diphtheria, hepatitis, malaria, and influenza. However, the complexity of developing safe and effective vaccines remains a barrier for combating many more infectious diseases. Immune stimulants (or adjuvants) are an indispensable factor in vaccine development, especially for inactivated and subunit-based vaccines due to their decreased immunogenicity compared to whole pathogen vaccines. Adjuvants are widely diverse in structure; however, their overall function in vaccine constructs is the same: to enhance and/or prolong an immunological response. The potential for adverse effects as a result of adjuvant use, though, must be acknowledged and carefully managed. Understanding the specific mechanisms of adjuvant efficacy and safety is a key prerequisite for adjuvant use in vaccination. Therefore, rigorous pre-clinical and clinical research into adjuvant development is essential. Overall, the incorporation of adjuvants allows for greater opportunities in advancing vaccine development and the importance of immune stimulants drives the emergence of novel and more effective adjuvants. This article highlights recent advances in vaccine adjuvant development and provides detailed data from pre-clinical and clinical studies specific to infectious diseases. Future perspectives into vaccine adjuvant development are also highlighted.
Collapse
Affiliation(s)
- Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Shengbin Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Lachlan Gilmartin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| |
Collapse
|
44
|
Short KK, Lathrop SK, Davison CJ, Partlow HA, Kaiser JA, Tee RD, Lorentz EB, Evans JT, Burkhart DJ. Using Dual Toll-like Receptor Agonism to Drive Th1-Biased Response in a Squalene- and α-Tocopherol-Containing Emulsion for a More Effective SARS-CoV-2 Vaccine. Pharmaceutics 2022; 14:1455. [PMID: 35890352 PMCID: PMC9318334 DOI: 10.3390/pharmaceutics14071455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
A diversity of vaccines is necessary to reduce the mortality and morbidity of SARS-CoV-2. Vaccines must be efficacious, easy to manufacture, and stable within the existing cold chain to improve their availability around the world. Recombinant protein subunit vaccines adjuvanted with squalene-based emulsions such as AS03™ and MF59™ have a long and robust history of safe, efficacious use with straightforward production and distribution. Here, subunit vaccines were made with squalene-based emulsions containing novel, synthetic toll-like receptor (TLR) agonists, INI-2002 (TLR4 agonist) and INI-4001 (TLR7/8 agonist), using the recombinant receptor-binding domain (RBD) of SARS-CoV-2 S protein as an antigen. The addition of the TLR4 and TLR7/8 agonists, alone or in combination, maintained the formulation characteristics of squalene-based emulsions, including a sterile filterable droplet size (<220 nm), high homogeneity, and colloidal stability after months of storage at 4, 25, and 40 °C. Furthermore, the addition of the TLR agonists skewed the immune response from Th2 towards Th1 in immunized C57BL/6 mice, resulting in an increased production of IgG2c antibodies and a lower antigen-specific production of IL-5 with a higher production of IFNγ by lymphocytes. As such, incorporating TLR4 and TLR7/8 agonists into emulsions leveraged the desirable formulation and stability characteristics of emulsions and can induce Th1-type humoral and cell-mediated immune responses to combat the continued threat of SARS-CoV-2.
Collapse
Affiliation(s)
- Kristopher K. Short
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; (K.K.S.); (S.K.L.); (C.J.D.); (H.A.P.); (J.A.K.); (R.D.T.); (E.B.L.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Stephanie K. Lathrop
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; (K.K.S.); (S.K.L.); (C.J.D.); (H.A.P.); (J.A.K.); (R.D.T.); (E.B.L.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Clara J. Davison
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; (K.K.S.); (S.K.L.); (C.J.D.); (H.A.P.); (J.A.K.); (R.D.T.); (E.B.L.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Haley A. Partlow
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; (K.K.S.); (S.K.L.); (C.J.D.); (H.A.P.); (J.A.K.); (R.D.T.); (E.B.L.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Johnathan A. Kaiser
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; (K.K.S.); (S.K.L.); (C.J.D.); (H.A.P.); (J.A.K.); (R.D.T.); (E.B.L.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Rebekah D. Tee
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; (K.K.S.); (S.K.L.); (C.J.D.); (H.A.P.); (J.A.K.); (R.D.T.); (E.B.L.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Elizabeth B. Lorentz
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; (K.K.S.); (S.K.L.); (C.J.D.); (H.A.P.); (J.A.K.); (R.D.T.); (E.B.L.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jay T. Evans
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; (K.K.S.); (S.K.L.); (C.J.D.); (H.A.P.); (J.A.K.); (R.D.T.); (E.B.L.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - David J. Burkhart
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; (K.K.S.); (S.K.L.); (C.J.D.); (H.A.P.); (J.A.K.); (R.D.T.); (E.B.L.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
45
|
Xu K, Fan C, Han Y, Dai L, Gao GF. Immunogenicity, efficacy and safety of COVID-19 vaccines: an update of data published by 31 December 2021. Int Immunol 2022; 34:595-607. [PMID: 35778913 PMCID: PMC9278184 DOI: 10.1093/intimm/dxac031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
The unprecedented coronavirus disease 2019 (COVID-19) pandemic has caused a disaster for public health in the last 2 years, without any sign of an ending. Various vaccines were developed rapidly as soon as the outbreak occurred. Clinical trials demonstrated the reactogenicity, immunogenicity and protection efficacy in humans, and some of the vaccines have been approved for clinical use. However, waves of infections such as the recently circulating Omicron variant still occur. Newly emerging variants, especially the variants of concern, and waning humoral responses pose serious challenges to the control of the COVID-19 pandemic. Previously, we summarized the humoral and cellular immunity, safety profiles and protection efficacy of COVID-19 vaccines with clinical data published by 21 May 2021. In this review, we summarize and update the published clinical data of COVID-19 vaccines and candidates up to 31 December 2021.
Collapse
Affiliation(s)
- Kun Xu
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China,Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Hainan, China
| | - Chunxiang Fan
- National Immunization Programme, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Yuxuan Han
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Lianpan Dai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Hainan, China,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China,CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
46
|
Immunological Study of Combined Administration of SARS-CoV-2 DNA Vaccine and Inactivated Vaccine. Vaccines (Basel) 2022; 10:vaccines10060929. [PMID: 35746536 PMCID: PMC9228235 DOI: 10.3390/vaccines10060929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Objective: We constructed two DNA vaccines containing the receptor-binding domain (RBD) genes of multiple SARS-CoV-2 variants and used them in combination with inactivated vaccines in a variety of different protocols to explore potential novel immunization strategies against SARS-CoV-2 variants. Methods: Two DNA vaccine candidates with different signal peptides (namely, secreted and membrane signal peptides) and RBD protein genes of different SARS-CoV-2 strains (Wuhan-Hu-1, B.1.351, B.1.617.2, C.37) were used. Four different combinations of DNA and inactivated vaccines were tested, namely, Group A: three doses of DNA vaccine; B: three doses of DNA vaccine and one dose of inactivated vaccine; C: two doses of inactivated vaccine and one dose of DNA vaccine; and D: coadministration of DNA and inactivated vaccines in two doses. Subgroups were grouped according to the signal peptide used (subgroup 1 contained secreted signal peptides, and subgroup 2 contained membrane signal peptides). The in vitro expression of the DNA vaccines, the humoral and cellular immunity responses of the immunized mice, the immune cell population changes in local lymph nodes, and proinflammatory cytokine levels in serum samples were evaluated. Results: The antibody responses and cellular immunity in Group A were weak for all SARS-CoV-2 strains; for Group B, there was a great enhancement of neutralizing antibody (Nab) titers against the B.1.617.2 variant strain. Group C showed a significant increase in antibody responses (NAb titers against the Wuhan-Hu-1 strain were 768 and 1154 for Group C1 and Group C2, respectively, versus 576) and cellular immune responses, especially for variant B.1.617.2 (3240 (p < 0.001) and 2430 (p < 0.05) for Group C1 and Group C2, versus 450); Group D showed an improvement in immunogenicity. Group C induced higher levels of multiple cytokines. Conclusion: The DNA vaccine candidates we constructed, administered as boosters, could enhance the humoral and cellular immune responses of inactivated vaccines against COVID-19, especially for B.1.617.2.
Collapse
|
47
|
Seirafianpour F, Pourriyahi H, Gholizadeh Mesgarha M, Pour Mohammad A, Shaka Z, Goodarzi A. A systematic review on mucocutaneous presentations after COVID-19 vaccination and expert recommendations about vaccination of important immune-mediated dermatologic disorders. Dermatol Ther 2022; 35:e15461. [PMID: 35316551 PMCID: PMC9111423 DOI: 10.1111/dth.15461] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
Abstract
With dermatologic side effects being fairly prevalent following vaccination against COVID-19, and the multitude of studies aiming to report and analyze these adverse events, the need for an extensive investigation on previous studies seemed urgent, in order to provide a thorough body of information about these post-COVID-19 immunization mucocutaneous reactions. To achieve this goal, a comprehensive electronic search was performed through the international databases including Medline (PubMed), Scopus, Cochrane, Web of science, and Google scholar on July 12, 2021, and all articles regarding mucocutaneous manifestations and considerations after COVID-19 vaccine administration were retrieved using the following keywords: COVID-19 vaccine, dermatology considerations and mucocutaneous manifestations. A total of 917 records were retrieved and a final number of 180 articles were included in data extraction. Mild, moderate, severe and potentially life-threatening adverse events have been reported following immunization with COVID vaccines, through case reports, case series, observational studies, randomized clinical trials, and further recommendations and consensus position papers regarding vaccination. In this systematic review, we categorized these results in detail into five elaborate tables, making what we believe to be an extensively informative, unprecedented set of data on this topic. Based on our findings, in the viewpoint of the pros and cons of vaccination, mucocutaneous adverse events were mostly non-significant, self-limiting reactions, and for the more uncommon moderate to severe reactions, guidelines and consensus position papers could be of great importance to provide those at higher risks and those with specific worries of flare-ups or inefficient immunization, with sufficient recommendations to safely schedule their vaccine doses, or avoid vaccination if they have the discussed contra-indications.
Collapse
Affiliation(s)
- Farnoosh Seirafianpour
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran
| | - Homa Pourriyahi
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran
| | | | - Arash Pour Mohammad
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran
| | - Zoha Shaka
- Faculty of MedicineIran University of Medical SciencesTehranIran
- Systematic Review and Meta‐Analysis Expert Group (SRMEG)Universal Scientific Education and Research NetworkTehranIran
| | - Azadeh Goodarzi
- Department of DermatologyRasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical SciencesTehranIran
| |
Collapse
|
48
|
Chen CH, Lin YJ, Cheng LT, Lin CH, Ke GM. Poloxamer-188 Adjuvant Efficiently Maintains Adaptive Immunity of SARS-CoV-2 RBD Subunit Vaccination through Repressing p38MAPK Signaling. Vaccines (Basel) 2022; 10:vaccines10050715. [PMID: 35632471 PMCID: PMC9145454 DOI: 10.3390/vaccines10050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Poloxamer-188 (P188) is a nonionic triblock linear copolymer that can be used as a pharmaceutical excipient because of its amphiphilic nature. This study investigated whether P188 can act as an adjuvant to improve the immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD) subunit vaccine. BALB/c mice were vaccinated twice with the RBD antigen alone or in combination with P188 or MF59 (a commercial adjuvant for comparison purposes). The resulting humoral and cellular immunity were assessed. Results showed that P188 helped elicit higher neutralizing activity than MF59 after vaccination. P188 induced significant humoral immune response, along with type 1 T helper (Th1) and type 2 T helper (Th2) cellular immune response when compared with MF59 due to repressing p38MAPK phosphorylation. Furthermore, P188 did not result in adverse effects such as fibrosis of liver or kidney after vaccination. In conclusion, P188 is a novel adjuvant that may be used for safe and effective immune enhancement of the SARS-CoV-2 RBD antigen.
Collapse
Affiliation(s)
- Chao-Hung Chen
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 10650, Taiwan; (C.-H.C.); (Y.-J.L.); (L.-T.C.)
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Yu-Jen Lin
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 10650, Taiwan; (C.-H.C.); (Y.-J.L.); (L.-T.C.)
- Country Best Biotech Co., Ltd., Taipei 100411, Taiwan;
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 10650, Taiwan; (C.-H.C.); (Y.-J.L.); (L.-T.C.)
| | | | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 10650, Taiwan; (C.-H.C.); (Y.-J.L.); (L.-T.C.)
- Correspondence: ; Tel.: +886-08-7703202 (ext. 5052)
| |
Collapse
|
49
|
Sadeghalvad M, Mansourabadi AH, Noori M, Nejadghaderi SA, Masoomikarimi M, Alimohammadi M, Rezaei N. Recent developments in SARS-CoV-2 vaccines: A systematic review of the current studies. Rev Med Virol 2022; 33:e2359. [PMID: 35491495 PMCID: PMC9348268 DOI: 10.1002/rmv.2359] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 01/28/2023]
Abstract
Designing and manufacturing efficient vaccines against coronavirus disease 2019 (COVID-19) is a major objective. In this systematic review, we aimed to evaluate the most important vaccines under construction worldwide, their efficiencies and clinical results in healthy individuals and in those with specific underlying diseases. We conducted a comprehensive search in PubMed, Scopus, EMBASE, and Web of Sciences by 1 December 2021 to identify published research studies. The inclusion criteria were publications that evaluated the immune responses and safety of COVID-19 vaccines in healthy individuals and in those with pre-existing diseases. We also searched the VAERS database to estimate the incidence of adverse events of special interest (AESI) post COVID-19 vaccination. Almost all investigated vaccines were well tolerated and developed good levels of both humoural and cellular responses. A protective and efficient humoural immune response develops after the second or third dose of vaccine and a longer interval (about 28 days) between the first and second injections of vaccine could induce higher antibody responses. The vaccines were less immunogenic in immunocompromised patients, particularly those with haematological malignancies. In addition, we found that venous and arterial thrombotic events, Bell's palsy, and myocarditis/pericarditis were the most common AESI. The results showed the potency of the SARS-CoV-2 vaccines to protect subjects against disease. The provision of further effective and safe vaccines is necessary in order to reach a high coverage of immunisation programs across the globe and to provide protection against infection itself.
Collapse
Affiliation(s)
- Mona Sadeghalvad
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran
| | | | - Maryam Noori
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran,Urology Research CenterTehran University of Medical SciencesTehranIran
| | - Seyed Aria Nejadghaderi
- Systematic Review and Meta‐Analysis Expert Group (SRMEG)Universal Scientific Education and Research Network (USERN)TehranIran,School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Masoomeh Masoomikarimi
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran
| | - Masoumeh Alimohammadi
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran,Research Center for ImmunodeficienciesChildren's Medical CenterTehran University of Medical SciencesTehranIran
| | - Nima Rezaei
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran,Research Center for ImmunodeficienciesChildren's Medical CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
50
|
Low-Dose SARS-CoV-2 S-Trimer with an Emulsion Adjuvant Induced Th1-Biased Protective Immunity. Int J Mol Sci 2022; 23:ijms23094902. [PMID: 35563292 PMCID: PMC9101745 DOI: 10.3390/ijms23094902] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
During the sustained COVID-19 pandemic, global mass vaccination to achieve herd immunity can prevent further viral spread and mutation. A protein subunit vaccine that is safe, effective, stable, has few storage restrictions, and involves a liable manufacturing process would be advantageous to distribute around the world. Here, we designed and produced a recombinant spike (S)-Trimer that is maintained in a prefusion state and exhibits a high ACE2 binding affinity. Rodents received different doses of S-Trimer (0.5, 5, or 20 μg) antigen formulated with aluminum hydroxide (Alum) or an emulsion-type adjuvant (SWE), or no adjuvant. After two vaccinations, the antibody response, T-cell responses, and number of follicular helper T-cells (Tfh) or germinal center (GC) B cells were assessed in mice; the protective efficacy was evaluated on a Syrian hamster infection model. The mouse studies demonstrated that adjuvating the S-Trimer with SWE induced a potent humoral immune response and Th1-biased cellular immune responses (in low dose) that were superior to those induced by Alum. In the Syrian hamster studies, when S-Trimer was adjuvanted with SWE, higher levels of neutralizing antibodies were induced against live SARS-CoV-2 from the original lineage and against the emergence of variants (Beta or Delta) with a slightly decreased potency. In addition, the SWE adjuvant demonstrated a dose-sparing effect; thus, a lower dose of S-Trimer as an antigen (0.5 μg) can induce comparable antisera and provide complete protection from viral infection. These data support the utility of SWE as an adjuvant to enhance the immunogenicity of the S-Trimer vaccine, which is feasible for further clinical testing.
Collapse
|