1
|
Quan W, Wu X, Cheng Y, Lu Y, Wu Q, Ding H, Hu J, Wang J, Zhou T, Ji Q, Zhang Y. Phase Modulation of 2D Semiconducting GaTe from Hexagonal to Monoclinic through Layer Thickness Control and Strain Engineering. NANO LETTERS 2025; 25:6614-6621. [PMID: 40227181 DOI: 10.1021/acs.nanolett.5c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Phase engineering offers a novel approach to modulate the properties of materials for versatile applications. Two-dimensional (2D) GaTe, an emerging III-VI semiconductor, can exist in hexagonal (h) or monoclinic (m) phases with fascinating phase-dependent properties (e.g., isotropic or anisotropic electrical transport). However, the key factors governing GaTe phases remain obscure. Herein, we achieve phase modulation of GaTe by tuning two previously overlooked factors: layer thickness and strain. The precise layer-controlled synthesis of GaTe from a monolayer (1L) to >10L is achieved via molecular beam epitaxy. A layer-dependent phase transition from h-GaTe (1-5L) to m-GaTe (>10L) is unambiguously unveiled by scanning tunneling microscopy/spectroscopy, driven by system energy minimization according to density functional theory calculations. Local phase transitions from ultrathin h-GaTe to m-GaTe are also obtained via introduced tensile strain. This work clarifies the factors influencing GaTe phases, providing valuable guidance for the phase engineering of other 2D materials toward the desired properties and applications.
Collapse
Affiliation(s)
- Wenzhi Quan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Xinyan Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yujin Cheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yue Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Qilong Wu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Haoxuan Ding
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jingyi Hu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jialong Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Tong Zhou
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Qingqing Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yanfeng Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
2
|
Shin H, Woo G, Cho J, Han S, Han J, Kim S, Kim Y, Kim HU, Kim T. Strain-Assisted Large-Scale 1T-MoS 2 Synthesis and its Optical Synaptic Flash Memory Application. SMALL METHODS 2025:e2500200. [PMID: 40195824 DOI: 10.1002/smtd.202500200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Indexed: 04/09/2025]
Abstract
2D transition-metal dichalcogenides (TMDCs) have attracted attention as promising materials for next-generation devices owing to their versatile electronic and optical properties. The phase variety of TMDCs provides strategic opportunities for performance enhancement. Herein, a novel method is proposed to synthesize wafer-scale 1T phase MoS₂ and, simultaneously, induce a phase transition via a plasma-assisted metal-sulfidation process and spontaneous internal strain. With thicker MoS2 layers, the strong internal strain during synthesis suppresses the undesirable phase transition from the metastable 1T phase to the 2H phase, ensuring stabilization of the 1T phase. Furthermore, as-synthesized 1T-MoS₂ shows remarkable electrical properties owing to the narrow bandgap (0.4 eV) of its semi-metallic state. As a result, the 1T-phase MoS₂ floating gate (1T-FG) flash memory demonstrates a wider memory window, a higher on/off ratio, and improved stability compared to the 2H-phase MoS₂ floating gate (2H-FG) flash memory. A 5 × 5 array structure is constructed to validate large-scale integration. Notably, under light irradiation, a single 1T-FG memory enables carrier trapping in the floating gate, even in the off state. This study introduces a facile phase control strategy and provides insights into advanced nonvolatile memory and optoelectronic synaptic functionalities.
Collapse
Affiliation(s)
- Hyelim Shin
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gunhoo Woo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jinill Cho
- Department of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sujeong Han
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Junghyup Han
- Department of Chemical Engineering, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Seongho Kim
- Semiconductor Manufacturing Research Center, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
- Department of Materials Science and Engineering, Chungnam National University(CNU), Daejeon, 34134, Republic of Korea
- Nano-Mechatronics, KIMM Campus, University of Science & Technology (UST), Daejeon, 34113, Republic of Korea
| | - Younsang Kim
- Department of Chemical Engineering, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Hyeong-U Kim
- Semiconductor Manufacturing Research Center, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
- Department of Materials Science and Engineering, Chungnam National University(CNU), Daejeon, 34134, Republic of Korea
- Nano-Mechatronics, KIMM Campus, University of Science & Technology (UST), Daejeon, 34113, Republic of Korea
| | - Taesung Kim
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
3
|
Goel N, Kumar R. Physics of 2D Materials for Developing Smart Devices. NANO-MICRO LETTERS 2025; 17:197. [PMID: 40117056 PMCID: PMC11928721 DOI: 10.1007/s40820-024-01635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/11/2024] [Indexed: 03/23/2025]
Abstract
Rapid industrialization advancements have grabbed worldwide attention to integrate a very large number of electronic components into a smaller space for performing multifunctional operations. To fulfill the growing computing demand state-of-the-art materials are required for substituting traditional silicon and metal oxide semiconductors frameworks. Two-dimensional (2D) materials have shown their tremendous potential surpassing the limitations of conventional materials for developing smart devices. Despite their ground-breaking progress over the last two decades, systematic studies providing in-depth insights into the exciting physics of 2D materials are still lacking. Therefore, in this review, we discuss the importance of 2D materials in bridging the gap between conventional and advanced technologies due to their distinct statistical and quantum physics. Moreover, the inherent properties of these materials could easily be tailored to meet the specific requirements of smart devices. Hence, we discuss the physics of various 2D materials enabling them to fabricate smart devices. We also shed light on promising opportunities in developing smart devices and identified the formidable challenges that need to be addressed.
Collapse
Affiliation(s)
- Neeraj Goel
- Department of Electronics and Communication Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India.
| | - Rahul Kumar
- Institute of Infrastructure Technology Research and Management, Ahmedabad, 380026, India.
| |
Collapse
|
4
|
Katiyar AK, Ahn JH. Strain-Engineered 2D Materials: Challenges, Opportunities, and Future Perspectives. SMALL METHODS 2025; 9:e2401404. [PMID: 39623800 DOI: 10.1002/smtd.202401404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/20/2024] [Indexed: 03/22/2025]
Abstract
Strain engineering is a powerful strategy that can strongly influence and tune the intrinsic characteristics of materials by incorporating lattice deformations. Due to atomically thin thickness, 2D materials are excellent candidates for strain engineering as they possess inherent mechanical flexibility and stretchability, which allow them to withstand large strains. The application of strain affects the atomic arrangement in the lattice of 2D material, which modify the electronic band structure. It subsequently tunes the electrical and optical characteristics, thereby enhances the performance and functionalities of the fabricated devices. Recent advances in strain engineering strategies for large-area flexible devices fabricated with 2D materials enable dynamic modulation of device performance. This perspective provides an overview of the strain engineering approaches employed so far for straining 2D materials, reviewing their advantages and disadvantages. The effect of various strains (uniaxial, biaxial, hydrostatic) on the characteristics of 2D material is also discussed, with a particular emphasis on electronic and optical properties. The strain-inducing methods employed for large-area device applications based on 2D materials are summarized. In addition, the future perspectives of strain engineering in functional devices, along with the associated challenges and potential solutions, are also outlined.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
5
|
Wang W, Wu C, Li Z, Liu K. Interface Engineering of 2D Materials toward High-Temperature Electronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418439. [PMID: 39962855 DOI: 10.1002/adma.202418439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/04/2025] [Indexed: 03/27/2025]
Abstract
High-temperature electronic materials and devices are highly sought after for advanced applications in aerospace, high-speed automobiles, and deep-well drilling, where active or passive cooling mechanisms are either insufficient or impractical. 2D materials (2DMs) represent promising alternatives to traditional silicon and wide-bandgap semiconductors (WBG) for nanoscale electronic devices operating under high-temperature conditions. The development of robust interfaces is essential for ensuring that 2DMs and their devices achieve high performance and maintain stability when subjected to elevated temperatures. This review summarizes recent advancements in the interface engineering of 2DMs for high-temperature electronic devices. Initially, the limitations of conventional silicon-based materials and WBG semiconductors, alongside the advantages offered by 2DMs, are examined. Subsequently, strategies for interface engineering to enhance the stability of 2DMs and the performance of their devices are detailed. Furthermore, various interface-engineered 2D high-temperature devices, including transistors, optoelectronic devices, sensors, memristors, and neuromorphic devices, are reviewed. Finally, a forward-looking perspective on future 2D high-temperature electronics is presented. This review offers valuable insights into emerging 2DMs and their applications in high-temperature environments from both fundamental and practical perspectives.
Collapse
Affiliation(s)
- Wenxin Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Chenghui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zonglin Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Si N, Wang R, He Q, Liu S, Wang Y, Yuan Q. Growth Pathway and Phase Transition From Quasi-layered Pt 5Se 4 to Layered PtSe 2 Nanocrystals. SMALL METHODS 2025:e2402020. [PMID: 39895176 DOI: 10.1002/smtd.202402020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/19/2025] [Indexed: 02/04/2025]
Abstract
The discovery and control of phases is a significant endeavor for materials science. PtSe2, as a stable Pt─Se phase, is controllably synthesized for electronic, optoelectronic, and electrocatalytic applications, while research on another stable Pt─Se phase, Pt5Se4, is limited to calculations. Moreover, the growth mechanisms and phase transition of Pt─Se compounds remain unclear. Here, we report a two-step growth pathway of PtSe2 with a stable Pt5Se4 phase as intermediate and reveal the Pt-Pt5Se4-PtSe2 transition process. The synthesis of PtSe2 and Pt5Se4 nanocrystals is achieved by controlling the degree of selenization. Theoretical calculations prove that Pt5Se4 phase is thermodynamically favorable under Se-deficient conditions and PtSe2 nanocrystals are formed along with the diffusion of Pt and Se atoms. This work greatly enriches the knowledge on the growth mechanism and phase transition of Pt─Se compounds, and offers insights into the controlled synthesis of Pt5Se4 for future electrocatalysis and electronic devices.
Collapse
Affiliation(s)
- Nan Si
- School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240, China
| | - Rui Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240, China
| | - Qingyuan He
- School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240, China
| | - Siyu Liu
- School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240, China
| | - Yanming Wang
- University of Michigan -Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240, China
| | - Qinglin Yuan
- School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240, China
| |
Collapse
|
7
|
Jangir A, Ho DT, Schwingenschlögl U. Control of the Phase Distribution in TMDs by Strain Engineering and Kirigami Techniques. J Phys Chem Lett 2025; 16:811-817. [PMID: 39812594 PMCID: PMC11770754 DOI: 10.1021/acs.jpclett.4c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Materials exhibiting both metallic and semiconducting states, including two-dimensional transition metal dichalcogenides (TMDs), have numerous applications. We therefore investigate the effects of axial and shear strains on the phase energetics of pristine and striped TMDs using density functional theory and classical molecular dynamics simulations. We demonstrate that control of the phase distribution can be achieved by the integration of strain engineering and Kirigami techniques. Our results extend the understanding of the phase energetics in TMDs and reveal an effective strategy for creating virtually defect-free metal-semiconductor-metal junctions.
Collapse
Affiliation(s)
- Arun Jangir
- Physical
Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Duc Tam Ho
- Department
of Mechanical and Construction Engineering, Northumbria University, Newcastle
Upon Tyne NE1 8ST, United Kingdom
| | - Udo Schwingenschlögl
- Physical
Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Ai R, Cui X, Li Y, Zhuo X. Local Strain Engineering of Two-Dimensional Transition Metal Dichalcogenides Towards Quantum Emitters. NANO-MICRO LETTERS 2025; 17:104. [PMID: 39777585 PMCID: PMC11711739 DOI: 10.1007/s40820-024-01611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDCs) have received considerable attention in local strain engineering due to their extraordinary mechanical flexibility, electonic structure, and optical properties. The strain-induced out-of-plane deformations in 2D TMDCs lead to diverse excitonic behaviors and versatile modulations in optical properties, paving the way for the development of advanced quantum technologies, flexible optoelectronic materials, and straintronic devices. Research on local strain engineering on 2D TMDCs has been delved into fabrication techniques, electronic state variations, and quantum optical applications. This review begins by summarizing the state-of-the-art methods for introducing local strain into 2D TMDCs, followed by an exploration of the impact of local strain engineering on optical properties. The intriguing phenomena resulting from local strain, such as exciton funnelling and anti-funnelling, are also discussed. We then shift the focus to the application of locally strained 2D TMDCs as quantum emitters, with various strategies outlined for modulating the properties of TMDC-based quantum emitters. Finally, we discuss the remaining questions in this field and provide an outlook on the future of local strain engineering on 2D TMDCs.
Collapse
Affiliation(s)
- Ruoqi Ai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ximin Cui
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Yang Li
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Xiaolu Zhuo
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China.
| |
Collapse
|
9
|
Chen C, Yang Z, Wang T, Wang Y, Gao K, Wu J, Wang J, Qiu J, Tan D. Ultra-broadband all-optical nonlinear activation function enabled by MoTe 2/optical waveguide integrated devices. Nat Commun 2024; 15:9047. [PMID: 39426957 PMCID: PMC11490568 DOI: 10.1038/s41467-024-53371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
All-optical nonlinear activation functions (NAFs) are crucial for enabling rapid optical neural networks (ONNs). As linear matrix computation advances in integrated ONNs, on-chip all-optical NAFs face challenges such as limited integration, high latency, substantial power consumption, and a high activation threshold. In this work, we develop an integrated nonlinear optical activator based on the butt-coupling integration of two-dimensional (2D) MoTe2 and optical waveguides (OWGs). The activator exhibits an ultra-broadband response from visible to near-infrared wavelength, a low activation threshold of 0.94 μW, a small device size (~50 µm2), an ultra-fast response rate (2.08 THz), and high-density integration. The excellent nonlinear effects and broadband response of 2D materials have been utilized to create all-optical NAFs. These activators were applied to simulate MNIST handwritten digit recognition, achieving an accuracy of 97.6%. The results underscore the potential application of this approach in ONNs. Moreover, the classification of more intricate CIFAR-10 images demonstrated a generalizable accuracy of 94.6%. The present nonlinear activator promises a general platform for three-dimensional (3D) ultra-broadband ONNs with dense integration and low activation thresholds by integrating a variety of strong nonlinear optical (NLO) materials (e.g., 2D materials) and OWGs in glass.
Collapse
Affiliation(s)
| | - Zhan Yang
- Aerospace Laser Technology and System Department, CAS Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Wang
- Zhejiang Lab, Hangzhou, Zhejiang, 311121, China
| | - Yalun Wang
- Zhejiang Lab, Hangzhou, Zhejiang, 311121, China
| | - Kai Gao
- Zhejiang Lab, Hangzhou, Zhejiang, 311121, China
| | - Jiajia Wu
- Zhejiang Lab, Hangzhou, Zhejiang, 311121, China
| | - Jun Wang
- Aerospace Laser Technology and System Department, CAS Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianrong Qiu
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Dezhi Tan
- Zhejiang Lab, Hangzhou, Zhejiang, 311121, China.
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| |
Collapse
|
10
|
Hidding J, Cordero-Silis CA, Vaquero D, Rompotis KP, Quereda J, Guimarães MHD. Locally Phase-Engineered MoTe 2 for Near-Infrared Photodetectors. ACS PHOTONICS 2024; 11:4083-4089. [PMID: 39429869 PMCID: PMC11487713 DOI: 10.1021/acsphotonics.4c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024]
Abstract
Transition-metal dichalcogenides (TMDs) are ideal systems for two-dimensional (2D) optoelectronic applications owing to their strong light-matter interaction and various band gap energies. New techniques to modify the crystallographic phase of TMDs have recently been discovered, allowing the creation of lateral heterostructures and the design of all-2D circuitry. Thus, far, the potential benefits of phase-engineered TMD devices for optoelectronic applications are still largely unexplored. The dominant mechanisms involved in photocurrent generation in these systems remain unclear, hindering further development of new all-2D optoelectronic devices. Here, we fabricate locally phase-engineered MoTe2 optoelectronic devices, creating a metal (1T') semiconductor (2H) lateral junction and unveil the main mechanisms at play for photocurrent generation. We find that the photocurrent originates from the 1T'-2H junction, with a maximum at the 2H MoTe2 side of the junction. This observation, together with the nonlinear IV-curve, indicates that the photovoltaic effect plays a major role in the photon-to-charge current conversion in these systems. Additionally, the 1T'-2H MoTe2 heterojunction device exhibits a fast optoelectronic response over a wavelength range of 700-1100 nm, with a rise and fall times of 113 and 110 μs, respectively, 2 orders of magnitude faster when compared to a directly contacted 2H MoTe2 device. These results show the potential of local phase-engineering for all-2D optoelectronic circuitry.
Collapse
Affiliation(s)
- Jan Hidding
- Zernike
Institute for Advanced Materials, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Cédric A. Cordero-Silis
- Zernike
Institute for Advanced Materials, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Daniel Vaquero
- Nanotechnology
Group, USAL—Nanolab, Universidad
de Salamanca, E-37008 Salamanca, Spain
| | - Konstantinos P. Rompotis
- Zernike
Institute for Advanced Materials, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Jorge Quereda
- Departamento
de Física de Materiales, GISC, Universidad
Complutense de Madrid, E-28040 Madrid, Spain
| | - Marcos H. D. Guimarães
- Zernike
Institute for Advanced Materials, University
of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
11
|
Domröse T, Fernandez N, Eckel C, Rossnagel K, Weitz RT, Ropers C. Nanoscale Operando Imaging of Electrically Driven Charge-Density Wave Phase Transitions. NANO LETTERS 2024; 24:12476-12485. [PMID: 39316412 PMCID: PMC11468880 DOI: 10.1021/acs.nanolett.4c03324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Structural transformations in strongly correlated materials promise efficient and fast control of materials' properties via electrical or optical stimulation. The desired functionality of devices operating based on phase transitions, however, will also be influenced by nanoscale heterogeneity. Experimentally characterizing the relationship between microstructure and phase switching remains challenging, as nanometer resolution and high sensitivity to subtle structural modifications are required. Here, we demonstrate nanoimaging of a current-induced phase transformation in the charge-density wave (CDW) material 1T-TaS2. Combining electrical characterizations with tailored contrast enhancement, we correlate macroscopic resistance changes with the nanoscale nucleation and growth of CDW phase domains. In particular, we locally determine the transformation barrier in the presence of dislocations and strain, underlining their non-negligible impact on future functional devices. Thereby, our results demonstrate the merit of tailored contrast enhancement and beam shaping for advanced operando microscopy of quantum materials and devices.
Collapse
Affiliation(s)
- Till Domröse
- Department
of Ultrafast Dynamics, Max Planck Institute
for Multidisciplinary Sciences, 37077 Göttingen, Germany
- 4th
Physical Institute − Solids and Nanostructures, University of Göttingen, 37077 Göttingen, Germany
| | - Noelia Fernandez
- 1st
Institute of Physics, University of Göttingen, 37077 Göttingen, Germany
| | - Christian Eckel
- 1st
Institute of Physics, University of Göttingen, 37077 Göttingen, Germany
| | - Kai Rossnagel
- Institute
of Experimental and Applied Physics, Kiel
University, 24098 Kiel, Germany
- Ruprecht
Haensel Laboratory, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
| | - R. Thomas Weitz
- 1st
Institute of Physics, University of Göttingen, 37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, 37077 Göttingen, Germany
| | - Claus Ropers
- Department
of Ultrafast Dynamics, Max Planck Institute
for Multidisciplinary Sciences, 37077 Göttingen, Germany
- 4th
Physical Institute − Solids and Nanostructures, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
12
|
Geisenhoff J, Pan Y, Yin H, Paesani F, Schimpf AM. Concentration-Dependent Layer-Stacking and the Influence on Phase-Conversion in Colloidally Synthesized WSe 2 Nanocrystals. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:8834-8845. [PMID: 39347471 PMCID: PMC11428078 DOI: 10.1021/acs.chemmater.4c01602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 10/01/2024]
Abstract
We report a synthesis of WSe2 nanocrystals in which the number of layers is controlled by varying the precursor concentration. By altering the ratios and concentrations of W(CO)6 and Ph2Se2 in trioctylphosphine oxide, we show that high [Se] and large Se/W ratios lead to an increased number of layers per nanocrystal. As the number of layers per nanocrystal is increased, the nanocrystal ensembles show less phase-conversion from the metastable 2M phase to the thermodynamically favored 2H phase. Density functional theory calculations indicate that the interlayer binding energy increases with the number of layers, indicating that the stronger interlayer interactions in multilayered nanocrystals may increase the energy barrier to phase-conversion. The results presented herein provide insights for directing phase-conversion in solution-phase syntheses of transition metal dichalcogenides.
Collapse
Affiliation(s)
- Jessica
Q. Geisenhoff
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Yuanhui Pan
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Hang Yin
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093, United States
| | - Alina M. Schimpf
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Woods JM, Chand SB, Mejia E, Adhikari A, Taniguchi T, Watanabe K, Flick J, Grosso G. Emergent Optical Resonances in Atomically Phase-Patterned Semiconducting Monolayers of WS 2. ACS PHOTONICS 2024; 11:3784-3793. [PMID: 39310296 PMCID: PMC11413843 DOI: 10.1021/acsphotonics.4c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024]
Abstract
Atomic-scale control of light-matter interactions represents the ultimate frontier for many applications in photonics and quantum technology. Two-dimensional semiconductors, including transition-metal dichalcogenides, are a promising platform to achieve such control due to the combination of an atomically thin geometry and convenient photophysical properties. Here, we demonstrate that a variety of durable polymorphic structures can be combined to generate additional optical resonances beyond the standard excitons. We theoretically predict and experimentally show that atomic-sized patches of the 1T phase within the 1H matrix form unique electronic bands that lead to the emergence of robust optical resonances with strong absorption, circularly polarized emission, and long radiative lifetimes. The atomic manipulation of two-dimensional semiconductors opens unexplored scenarios for light harvesting devices and exciton-based photonics.
Collapse
Affiliation(s)
- John M. Woods
- Photonics
Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Saroj B. Chand
- Photonics
Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Enrique Mejia
- Photonics
Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Ashok Adhikari
- Photonics
Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Johannes Flick
- Center
for Computational Quantum Physics, Flatiron
Institute, New York, New York 10010, United States
- Department
of Physics, City College of New York, New York, New York 10031, United States
- Physics
Program,
Graduate Center, City University of New
York, New York New York 10016, United States
| | - Gabriele Grosso
- Photonics
Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
- Physics
Program,
Graduate Center, City University of New
York, New York New York 10016, United States
| |
Collapse
|
14
|
Xue G, Qin B, Ma C, Yin P, Liu C, Liu K. Large-Area Epitaxial Growth of Transition Metal Dichalcogenides. Chem Rev 2024; 124:9785-9865. [PMID: 39132950 DOI: 10.1021/acs.chemrev.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Over the past decade, research on atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) has expanded rapidly due to their unique properties such as high carrier mobility, significant excitonic effects, and strong spin-orbit couplings. Considerable attention from both scientific and industrial communities has fully fueled the exploration of TMDs toward practical applications. Proposed scenarios, such as ultrascaled transistors, on-chip photonics, flexible optoelectronics, and efficient electrocatalysis, critically depend on the scalable production of large-area TMD films. Correspondingly, substantial efforts have been devoted to refining the synthesizing methodology of 2D TMDs, which brought the field to a stage that necessitates a comprehensive summary. In this Review, we give a systematic overview of the basic designs and significant advancements in large-area epitaxial growth of TMDs. We first sketch out their fundamental structures and diverse properties. Subsequent discussion encompasses the state-of-the-art wafer-scale production designs, single-crystal epitaxial strategies, and techniques for structure modification and postprocessing. Additionally, we highlight the future directions for application-driven material fabrication and persistent challenges, aiming to inspire ongoing exploration along a revolution in the modern semiconductor industry.
Collapse
Affiliation(s)
- Guodong Xue
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Biao Qin
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Chaojie Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Peng Yin
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Can Liu
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
15
|
Yu X, Peng Z, Xu L, Shi W, Li Z, Meng X, He X, Wang Z, Duan S, Tong L, Huang X, Miao X, Hu W, Ye L. Manipulating 2D Materials through Strain Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402561. [PMID: 38818684 DOI: 10.1002/smll.202402561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/15/2024] [Indexed: 06/01/2024]
Abstract
This review explores the growing interest in 2D layered materials, such as graphene, h-BN, transition metal dichalcogenides (TMDs), and black phosphorus (BP), with a specific focus on recent advances in strain engineering. Both experimental and theoretical results are delved into, highlighting the potential of strain to modulate physical properties, thereby enhancing device performance. Various strain engineering methods are summarized, and the impact of strain on the electrical, optical, magnetic, thermal, and valleytronic properties of 2D materials is thoroughly examined. Finally, the review concludes by addressing potential applications and challenges in utilizing strain engineering for functional devices, offering valuable insights for further research and applications in optoelectronics, thermionics, and spintronics.
Collapse
Affiliation(s)
- Xiangxiang Yu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- School of Physic and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Zhuiri Peng
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Langlang Xu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wenhao Shi
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zheng Li
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaohan Meng
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiao He
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhen Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Shikun Duan
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Lei Tong
- Department of Electronic Engineering, Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Xinyu Huang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiangshui Miao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Lei Ye
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China
| |
Collapse
|
16
|
He Z, Poudel SP, Stolz S, Wang T, Rossi A, Wang F, Mo SK, Weber-Bargioni A, Qiu ZQ, Barraza-Lopez S, Zhu T, Crommie MF. Synthesis and Polymorph Manipulation of FeSe 2 Monolayers. NANO LETTERS 2024; 24:8535-8541. [PMID: 38968422 DOI: 10.1021/acs.nanolett.4c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Polymorph engineering involves the manipulation of material properties through controlled structural modification and is a candidate technique for creating unique two-dimensional transition metal dichalcogenide (TMDC) nanodevices. Despite its promise, polymorph engineering of magnetic TMDC monolayers has not yet been demonstrated. Here we grow FeSe2 monolayers via molecular beam epitaxy and find that they have great promise for magnetic polymorph engineering. Using scanning tunneling microscopy (STM) and spectroscopy (STS), we find that FeSe2 monolayers predominantly display a 1T' structural polymorph at 5 K. Application of voltage pulses from an STM tip causes a local, reversible transition from the 1T' phase to the 1T phase. Density functional theory calculations suggest that this single-layer structural phase transition is accompanied by a magnetic transition from an antiferromagnetic to a ferromagnetic configuration. These results open new possibilities for creating functional magnetic devices with TMDC monolayers via polymorph engineering.
Collapse
Affiliation(s)
- Zehao He
- Department of Physics, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Material Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Shiva Prasad Poudel
- Department of Physics and MonArk NSF Quantum Foundry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Samuel Stolz
- Department of Physics, University of California, Berkeley, California 94720, United States
| | - Tianye Wang
- Department of Physics, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Antonio Rossi
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Feng Wang
- Department of Physics, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute at the University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sung-Kwan Mo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexander Weber-Bargioni
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zi Qiang Qiu
- Department of Physics, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Salvador Barraza-Lopez
- Department of Physics and MonArk NSF Quantum Foundry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Tiancong Zhu
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Michael F Crommie
- Department of Physics, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute at the University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Xu S, Evans-Lutterodt K, Li S, Williams NL, Hou B, Huang JJ, Boebinger MG, Lee S, Wang M, Singer A, Guo P, Qiu DY, Cha JJ. Lithiation Induced Phases in 1T'-MoTe 2 Nanoflakes. ACS NANO 2024; 18:17349-17358. [PMID: 38889099 DOI: 10.1021/acsnano.4c06330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Multiple polytypes of MoTe2 with distinct structures and intriguing electronic properties can be accessed by various physical and chemical approaches. Here, we report electrochemical lithium (Li) intercalation into 1T'-MoTe2 nanoflakes, leading to the discovery of two previously unreported lithiated phases. Distinguished by their structural differences from the pristine 1T' phase, these distinct phases were characterized using in situ polarization Raman spectroscopy and in situ single-crystal X-ray diffraction. The lithiated phases exhibit increasing resistivity with decreasing temperature, and their carrier densities are two to 4 orders of magnitude smaller than the metallic 1T' phase, as probed through in situ Hall measurements. The discovery of these gapped phases in initially metallic 1T'-MoTe2 underscores electrochemical intercalation as a potent tool for tuning the phase stability and electron density in two-dimensional (2D) materials.
Collapse
Affiliation(s)
- Shiyu Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
| | - Kenneth Evans-Lutterodt
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Shunran Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Natalie L Williams
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Bowen Hou
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
| | - Jason J Huang
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Matthew G Boebinger
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830 United States
| | - Sihun Lee
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Mengjing Wang
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Diana Y Qiu
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
| | - Judy J Cha
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
18
|
Han X, Zhang Z, Wang R. A Mini Review: Phase Regulation for Molybdenum Dichalcogenide Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:984. [PMID: 38869609 PMCID: PMC11174720 DOI: 10.3390/nano14110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Atomically thin two-dimensional transition metal dichalcogenides (TMDCs) have been regarded as ideal and promising nanomaterials that bring broad application prospects in extensive fields due to their ultrathin layered structure, unique electronic band structure, and multiple spatial phase configurations. TMDCs with different phase structures exhibit great diversities in physical and chemical properties. By regulating the phase structure, their properties would be modified to broaden the application fields. In this mini review, focusing on the most widely concerned molybdenum dichalcogenides (MoX2: X = S, Se, Te), we summarized their phase structures and corresponding electronic properties. Particularly, the mechanisms of phase transformation are explained, and the common methods of phase regulation or phase stabilization strategies are systematically reviewed and discussed. We hope the review could provide guidance for the phase regulation of molybdenum dichalcogenides nanomaterials, and further promote their real industrial applications.
Collapse
Affiliation(s)
| | - Zhihong Zhang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
| | - Rongming Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
| |
Collapse
|
19
|
Sabbaghi S, Hosseinian E, Bazargan V. Strain-Assisted Phase Transformation in Two-Dimensional Transition-Metal Dichalcogenides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22676-22688. [PMID: 38632875 DOI: 10.1021/acsami.4c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Two-dimensional polymorphic transition-metal dichalcogenides have drawn attention for their diverse applications. This work explores the complex interplay between strain-induced phase transformation and crack growth behavior in annealed nanocrystalline MoS2. Employing molecular dynamics (MD) simulations, this research focuses on the effect of grain size, misorientation, and annealing on phase evolution and their effects on the mechanical behavior of MoS2. First, examining phase transformation in monocrystalline MoS2 under various stress states reveals distinct behaviors depending on the initial phase (1T or 2H) and crystallographic orientation with respect to loading directions. Notably, transformation from a layered hexagonal to a body-centered tetragonal structure is more noticeable when strain in a zigzag direction is applied to the 1T sample. As such, single crystalline MoS2 with a 1T phase exhibits a 16% lower fracture stress in the armchair direction compared to that with a 2H phase. On the other hand, the 1T phase shows a 5% higher phonon lifetime compared to the 2H phase with similar phonon group velocities. Next, the influence of thermal energy and mechanical stress on the phase transformation of nanocrystalline MoS2 is investigated through annealing and quenching cycles, uncovering 60 and 44% irreversibility of phase transformation for an average grain size of 3 and 11 nm, respectively. Besides, the evolution of nanocrystalline samples with different initial phases and grain sizes is studied under uniaxial and biaxial stress. This study shows an inverse pseudo-Hall-Petch effect with exponents of 0.11 and 0.09 for 2H and 1T, respectively. The study reveals that phase transformation can occur concurrently with crack initiation and propagation with the 1T phase exhibiting a 19% lower grain size sensitivity of fracture stress compared to the 2H phase.
Collapse
Affiliation(s)
- Soroush Sabbaghi
- Department of Mechanical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran 14399-57131, Iran
| | - Ehsan Hosseinian
- Department of Mechanical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran 14399-57131, Iran
| | - Vahid Bazargan
- Department of Mechanical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran 14399-57131, Iran
| |
Collapse
|
20
|
Kim H, Kim C, Jung Y, Kim N, Son J, Lee GH. In-plane anisotropic two-dimensional materials for twistronics. NANOTECHNOLOGY 2024; 35:262501. [PMID: 38387091 DOI: 10.1088/1361-6528/ad2c53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
In-plane anisotropic two-dimensional (2D) materials exhibit in-plane orientation-dependent properties. The anisotropic unit cell causes these materials to show lower symmetry but more diverse physical properties than in-plane isotropic 2D materials. In addition, the artificial stacking of in-plane anisotropic 2D materials can generate new phenomena that cannot be achieved in in-plane isotropic 2D materials. In this perspective we provide an overview of representative in-plane anisotropic 2D materials and their properties, such as black phosphorus, group IV monochalcogenides, group VI transition metal dichalcogenides with 1T' and Tdphases, and rhenium dichalcogenides. In addition, we discuss recent theoretical and experimental investigations of twistronics using in-plane anisotropic 2D materials. Both in-plane anisotropic 2D materials and their twistronics hold considerable potential for advancing the field of 2D materials, particularly in the context of orientation-dependent optoelectronic devices.
Collapse
Affiliation(s)
- Hangyel Kim
- Department of Material Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Changheon Kim
- Department of Material Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
| | - Yeonwoong Jung
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, United States of America
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, United States of America
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, United States of America
| | - Namwon Kim
- Research Institute for Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, United States of America
- Materials Science, Engineering, and Commercialization, Texas State University, San Marcos, TX 78666, United States of America
| | - Jangyup Son
- Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonbuk 54895, Republic of Korea
- Division of Nano and Information Technology, KIST School University of Science and Technology(UST), Jeonbuk 55324, Republic of Korea
| | - Gwan-Hyoung Lee
- Department of Material Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
21
|
Zhai W, Li Z, Wang Y, Zhai L, Yao Y, Li S, Wang L, Yang H, Chi B, Liang J, Shi Z, Ge Y, Lai Z, Yun Q, Zhang A, Wu Z, He Q, Chen B, Huang Z, Zhang H. Phase Engineering of Nanomaterials: Transition Metal Dichalcogenides. Chem Rev 2024; 124:4479-4539. [PMID: 38552165 DOI: 10.1021/acs.chemrev.3c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Crystal phase, a critical structural characteristic beyond the morphology, size, dimension, facet, etc., determines the physicochemical properties of nanomaterials. As a group of layered nanomaterials with polymorphs, transition metal dichalcogenides (TMDs) have attracted intensive research attention due to their phase-dependent properties. Therefore, great efforts have been devoted to the phase engineering of TMDs to synthesize TMDs with controlled phases, especially unconventional/metastable phases, for various applications in electronics, optoelectronics, catalysis, biomedicine, energy storage and conversion, and ferroelectrics. Considering the significant progress in the synthesis and applications of TMDs, we believe that a comprehensive review on the phase engineering of TMDs is critical to promote their fundamental studies and practical applications. This Review aims to provide a comprehensive introduction and discussion on the crystal structures, synthetic strategies, and phase-dependent properties and applications of TMDs. Finally, our perspectives on the challenges and opportunities in phase engineering of TMDs will also be discussed.
Collapse
Affiliation(s)
- Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Lixin Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Banlan Chi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Jinzhe Liang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zhiying Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
22
|
Rai H, Thakur D, Gadal A, Ye Z, Balakrishnan V, Gosvami NN. Transforming friction: unveiling sliding-induced phase transitions in CVD-grown WS 2 monolayers under single-asperity sliding nanocontacts. NANOSCALE 2024; 16:7102-7109. [PMID: 38501154 DOI: 10.1039/d3nr06556a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Transition metal dichalcogenides (TMDs) exhibit diverse properties across different phases, making them promising materials for various engineering applications. In the present work, we employed a comprehensive approach, combining experimental investigations and computational simulations to elucidate the remarkable tunable frictional characteristics of chemical vapor deposition (CVD) grown WS2 monolayers through the sliding-induced transitions between the 1H and 1T' phases. Our atomic force microscopy (AFM) measurements reveal a significant contrast in friction between the two phases, with the 1H phase displaying higher friction (∼52%) than the 1T' phase. Surprisingly, under repeated scanning at constant stress, the friction of the 1H phase decreases, eventually matching the lower friction values of the 1T' phase. It was observed that the phase transformation is irreversible and is strongly dependent on contact stresses and is accelerated as the contact stress is increased by increasing the applied normal load. Molecular dynamics (MD) simulations provide further insights into the phase transition mechanism, highlighting the role of localized lateral stress and strain induced by sliding an AFM tip on the 1H phase. The simulations confirm that sliding induced localized lateral strain plays a crucial role in the phase transition, ultimately resulting in a decrease in friction. Moreover, our simulations unveil an intriguing connection between friction, potential energy surfaces, and the localized lateral strain during the phase transformation process. Our findings not only offer insights into the tribological properties of TMD materials but also open new possibilities for tailoring their performance in various applications where reducing friction and wear is crucial.
Collapse
Affiliation(s)
- Himanshu Rai
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Deepa Thakur
- School of Mechanical and Materials Engineering, Indian Institute of Technology Mandi, Himachal Pradesh 175075, India.
| | - Aayush Gadal
- Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, OH 45056, USA.
| | - Zhijiang Ye
- Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, OH 45056, USA.
| | - Viswanath Balakrishnan
- School of Mechanical and Materials Engineering, Indian Institute of Technology Mandi, Himachal Pradesh 175075, India.
| | - Nitya Nand Gosvami
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
23
|
Wang X, Hu Y, Kim SY, Cho K, Wallace RM. Mechanism of Fermi Level Pinning for Metal Contacts on Molybdenum Dichalcogenide. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13258-13266. [PMID: 38422472 DOI: 10.1021/acsami.3c18332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The high contact resistance of transition metal dichalcogenide (TMD)-based devices is receiving considerable attention due to its limitation on electronic performance. The mechanism of Fermi level (EF) pinning, which causes the high contact resistance, is not thoroughly understood to date. In this study, the metal (Ni and Ag)/Mo-TMD surfaces and interfaces are characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning tunneling microscopy and spectroscopy, and density functional theory systematically. Ni and Ag form covalent and van der Waals (vdW) interfaces on Mo-TMDs, respectively. Imperfections are detected on Mo-TMDs, which lead to electronic and spatial variations. Gap states appear after the adsorption of single and two metal atoms on Mo-TMDs. The combination of the interface reaction type (covalent or vdW), the imperfection variability of the TMD materials, and the gap states induced by contact metals with different weights are concluded to be the origins of EF pinning.
Collapse
Affiliation(s)
- Xinglu Wang
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States of America
| | - Yaoqiao Hu
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States of America
| | - Seong Yeoul Kim
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States of America
| | - Kyeongjae Cho
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States of America
| | - Robert M Wallace
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States of America
| |
Collapse
|
24
|
Chen L, Chen L, Chen H, Jiang K, Zhu L, Shang L, Li Y, Gong S, Hu Z. Phase transition in WSe 2-xTe x monolayers driven by charge injection and pressure: a first-principles study. NANOSCALE 2024. [PMID: 38477210 DOI: 10.1039/d3nr06164g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Alloying strategies permit new probes for governing structural stability and semiconductor-semimetal phase transition of transition metal dichalcogenides (TMDs). However, the possible structure and phase transition mechanism of the alloy TMDs, and the effect of an external field, have been still unclear. Here, the enrichment of the Te content in WSe2-xTex monolayers allows for coherent structural transition from the H phase to the T' phase. The crystal orbital Hamiltonian population (COHP) uncovers that the bonding state of the H phase approaches the high-energy domain near the Fermi level as the Te concentration increases, posing a source of structural instability followed by a weakened energy barrier for the phase transition. In addition, the structural phase transition driven by charge injection opens up new possibilities for the development of phase-change devices based on atomic thin films. For WSe2-xTex monolayers with the H phase as the stable phase, the critical value of electron concentration triggering the phase transition decreases with an increase in the x value. Furthermore, the energy barrier from the H phase to the T' phase can be effectively reduced by applying tensile strain, which could favor the phase switching in electronic devices. This work provides a critical reference for controllable modulation of phase-sensitive devices from alloy materials with rich phase characteristics.
Collapse
Affiliation(s)
- Liyuan Chen
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Li Chen
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Hongli Chen
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Kai Jiang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Liangqing Zhu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Liyan Shang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Yawei Li
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Shijing Gong
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Zhigao Hu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
25
|
Haider ASMR, Hezam AFAM, Islam MA, Arafat Y, Ferdaous MT, Salehin S, Karim MR. Temperature-dependent failure of atomically thin MoTe 2. J Mol Model 2024; 30:86. [PMID: 38413404 DOI: 10.1007/s00894-024-05883-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
CONTEXT In this study, we investigated the mechanical responses of molybdenum ditelluride (MoTe2) using molecular dynamics (MD) simulations. Our key focus was on the tensile behavior of MoTe2 with trigonal prismatic phase (2H-MoTe2) which was investigated under uniaxial tensile stress for both armchair and zigzag directions. Crack formation and propagation were examined to understand the fracture behavior of such material for varying temperatures. Additionally, the study also assesses the impact of temperature on Young's modulus and fracture stress-strain of a monolayer of 2H-MoTe2. METHOD The investigation was done using molecular dynamics (MD) simulations using Stillinger-Weber (SW) potentials. The tensile behavior was simulated for temperature for 10 K and then from 100 to 600 K with a 100-K interval. The crack propagation and formation of 10 K and 300 K 2H-MoTe2 for both directions at different strain rates was analyzed using Ovito visualizer. All the simulations were conducted using a strain rate of 10-4 ps-1. The results show that the fracture strength of 2H-MoTe2 in the armchair and zigzag direction at 10 K is 16.33 GPa (11.43 N/m) and 13.71429 GPa (9.46 N/m) under a 24% and 18% fracture strain, respectively. The fracture strength of 2H-MoTe2 in the armchair and zigzag direction at 600 K is 10.81 GPa (7.56 N/m) and 10.13 GPa (7.09 N/m) under a 12.5% and 12.47% fracture strain, respectively.
Collapse
Affiliation(s)
- A S M Redwan Haider
- Depatment of Mechanical and Production Engineering, Islamic University of Technology, Gazipur, Bangladesh
| | | | - Md Akibul Islam
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada.
| | - Yeasir Arafat
- Depatment of Mechanical and Production Engineering, Islamic University of Technology, Gazipur, Bangladesh
| | - Mohammad Tanvirul Ferdaous
- Depatment of Mechanical and Production Engineering, Islamic University of Technology, Gazipur, Bangladesh
| | - Sayedus Salehin
- Depatment of Mechanical and Production Engineering, Islamic University of Technology, Gazipur, Bangladesh
| | - Md Rezwanul Karim
- Depatment of Mechanical and Production Engineering, Islamic University of Technology, Gazipur, Bangladesh.
| |
Collapse
|
26
|
Liu M, Gou J, Liu Z, Chen Z, Ye Y, Xu J, Xu X, Zhong D, Eda G, Wee ATS. Phase-selective in-plane heteroepitaxial growth of H-phase CrSe 2. Nat Commun 2024; 15:1765. [PMID: 38409207 PMCID: PMC10897461 DOI: 10.1038/s41467-024-46087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Phase engineering of two-dimensional transition metal dichalcogenides (2D-TMDs) offers opportunities for exploring unique phase-specific properties and achieving new desired functionalities. Here, we report a phase-selective in-plane heteroepitaxial method to grow semiconducting H-phase CrSe2. The lattice-matched MoSe2 nanoribbons are utilized as the in-plane heteroepitaxial template to seed the growth of H-phase CrSe2 with the formation of MoSe2-CrSe2 heterostructures. Scanning tunneling microscopy and non-contact atomic force microscopy studies reveal the atomically sharp heterostructure interfaces and the characteristic defects of mirror twin boundaries emerging in the H-phase CrSe2 monolayers. The type-I straddling band alignments with band bending at the heterostructure interfaces are directly visualized with atomic precision. The mirror twin boundaries in the H-phase CrSe2 exhibit the Tomonaga-Luttinger liquid behavior in the confined one-dimensional electronic system. Our work provides a promising strategy for phase engineering of 2D TMDs, thereby promoting the property research and device applications of specific phases.
Collapse
Affiliation(s)
- Meizhuang Liu
- School of Physics, Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou, 510006, China.
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore, Singapore.
| | - Jian Gou
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore, Singapore
- School of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Zizhao Liu
- School of Physics and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zuxin Chen
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou, 510631, China
| | - Yuliang Ye
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou, 510631, China
| | - Jing Xu
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou, 510631, China
| | - Xiaozhi Xu
- School of Physics, Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou, 510006, China
| | - Dingyong Zhong
- School of Physics and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
| | - Goki Eda
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore, Singapore
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore, Singapore.
| |
Collapse
|
27
|
Liu X, Zhang P, Wang S, Fang Y, Wu P, Xiang Y, Chen J, Zhao C, Zhang X, Zhao W, Wang J, Huang F, Guan C. High intrinsic phase stability of ultrathin 2M WS 2. Nat Commun 2024; 15:1263. [PMID: 38341471 DOI: 10.1038/s41467-024-45676-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Metallic 2M or 1T'-phase transition metal dichalcogenides (TMDs) attract increasing interests owing to their fascinating physicochemical properties, such as superconductivity, optical nonlinearity, and enhanced electrochemical activity. However, these TMDs are metastable and tend to transform to the thermodynamically stable 2H phase. In this study, through systematic investigation and theoretical simulation of phase change of 2M WS2, we demonstrate that ultrathin 2M WS2 has significantly higher intrinsic thermal stabilities than the bulk counterparts. The 2M-to-2H phase transition temperature increases from 120 °C to 210 °C in the air as thickness of WS2 is reduced from bulk to bilayer. Monolayered 1T' WS2 can withstand temperatures up to 350 °C in the air before being oxidized, and up to 450 °C in argon atmosphere before transforming to 1H phase. The higher stability of thinner 2M WS2 is attributed to stiffened intralayer bonds, enhanced thermal conductivity and higher average barrier per layer during the layer(s)-by-layer(s) phase transition process. The observed high intrinsic phase stability can expand the practical applications of ultrathin 2M TMDs.
Collapse
Affiliation(s)
- Xiangye Liu
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Pingting Zhang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Shiyao Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Yuqiang Fang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai, Shanghai, 200050, China
| | - Penghui Wu
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Yue Xiang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Jipeng Chen
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Chendong Zhao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai, Shanghai, 200050, China
| | - Xian Zhang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, 100094, China
| | - Wei Zhao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai, Shanghai, 200050, China
| | - Junjie Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Fuqiang Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai, Shanghai, 200050, China
| | - Cao Guan
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China.
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China.
| |
Collapse
|
28
|
Zhang Y, Hossain MA, Hwang KJ, Ferrari PF, Maduzia J, Peña T, Wu SM, Ertekin E, van der Zande AM. Patternable Process-Induced Strain in 2D Monolayers and Heterobilayers. ACS NANO 2024; 18:4205-4215. [PMID: 38266246 DOI: 10.1021/acsnano.3c09354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Strain engineering in two-dimensional (2D) materials is a powerful but difficult to control approach to tailor material properties. Across applications, there is a need for device-compatible techniques to design strain within 2D materials. This work explores how process-induced strain engineering, commonly used by the semiconductor industry to enhance transistor performance, can be used to pattern complex strain profiles in monolayer MoS2 and 2D heterostructures. A traction-separation model is identified to predict strain profiles and extract the interfacial traction coefficient of 1.3 ± 0.7 MPa/μm and the damage initiation threshold of 16 ± 5 nm. This work demonstrates the utility to (1) spatially pattern the optical band gap with a tuning rate of 91 ± 1 meV/% strain and (2) induce interlayer heterostrain in MoS2-WSe2 heterobilayers. These results provide a CMOS-compatible approach to design complex strain patterns in 2D materials with important applications in 2D heterogeneous integration into CMOS technologies, moiré engineering, and confining quantum systems.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - M Abir Hossain
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439 United States
| | - Kelly J Hwang
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Paolo F Ferrari
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Joseph Maduzia
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tara Peña
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Stephen M Wu
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Elif Ertekin
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Arend M van der Zande
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nano Technology Lab, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
Liu H, Wu Y, Wu Z, Liu S, Zhang VL, Yu T. Coexisting Phases in Transition Metal Dichalcogenides: Overview, Synthesis, Applications, and Prospects. ACS NANO 2024; 18:2708-2729. [PMID: 38252696 DOI: 10.1021/acsnano.3c10665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Over the past decade, significant advancements have been made in phase engineering of two-dimensional transition metal dichalcogenides (TMDCs), thereby allowing controlled synthesis of various phases of TMDCs and facile conversion between them. Recently, there has been emerging interest in TMDC coexisting phases, which contain multiple phases within one nanostructured TMDC. By taking advantage of the merits from the component phases, the coexisting phases offer enhanced performance in many aspects compared with single-phase TMDCs. Herein, this review article thoroughly expounds the latest progress and ongoing efforts on the syntheses, properties, and applications of TMDC coexisting phases. The introduction section overviews the main phases of TMDCs (2H, 3R, 1T, 1T', 1Td), along with the advantages of phase coexistence. The subsequent section focuses on the synthesis methods for coexisting phases of TMDCs, with particular attention to local patterning and random formations. Furthermore, on the basis of the versatile properties of TMDC coexisting phases, their applications in magnetism, valleytronics, field-effect transistors, memristors, and catalysis are discussed. Lastly, a perspective is presented on the future development, challenges, and potential opportunities of TMDC coexisting phases. This review aims to provide insights into the phase engineering of 2D materials for both scientific and engineering communities and contribute to further advancements in this emerging field.
Collapse
Affiliation(s)
- Haiyang Liu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yaping Wu
- School of Physics and Technology, Xiamen University, Xiamen 361005, China
| | - Zhiming Wu
- School of Physics and Technology, Xiamen University, Xiamen 361005, China
| | - Sheng Liu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Vanessa Li Zhang
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ting Yu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
30
|
Koo Y, Moon T, Kang M, Joo H, Lee C, Lee H, Kravtsov V, Park KD. Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials. LIGHT, SCIENCE & APPLICATIONS 2024; 13:30. [PMID: 38272869 PMCID: PMC10810844 DOI: 10.1038/s41377-024-01380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/26/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Tip-enhanced nano-spectroscopy and -imaging have significantly advanced our understanding of low-dimensional quantum materials and their interactions with light, providing a rich insight into the underlying physics at their natural length scale. Recently, various functionalities of the plasmonic tip expand the capabilities of the nanoscopy, enabling dynamic manipulation of light-matter interactions at the nanoscale. In this review, we focus on a new paradigm of the nanoscopy, shifting from the conventional role of imaging and spectroscopy to the dynamical control approach of the tip-induced light-matter interactions. We present three different approaches of tip-induced control of light-matter interactions, such as cavity-gap control, pressure control, and near-field polarization control. Specifically, we discuss the nanoscale modifications of radiative emissions for various emitters from weak to strong coupling regime, achieved by the precise engineering of the cavity-gap. Furthermore, we introduce recent works on light-matter interactions controlled by tip-pressure and near-field polarization, especially tunability of the bandgap, crystal structure, photoluminescence quantum yield, exciton density, and energy transfer in a wide range of quantum materials. We envision that this comprehensive review not only contributes to a deeper understanding of the physics of nanoscale light-matter interactions but also offers a valuable resource to nanophotonics, plasmonics, and materials science for future technological advancements.
Collapse
Affiliation(s)
- Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Taeyoung Moon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Mingu Kang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Huitae Joo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Changjoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Vasily Kravtsov
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
31
|
Dai B, Su Y, Guo Y, Wu C, Xie Y. Recent Strategies for the Synthesis of Phase-Pure Ultrathin 1T/1T' Transition Metal Dichalcogenide Nanosheets. Chem Rev 2024; 124:420-454. [PMID: 38146851 DOI: 10.1021/acs.chemrev.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The past few decades have witnessed a notable increase in transition metal dichalcogenide (TMD) related research not only because of the large family of TMD candidates but also because of the various polytypes that arise from the monolayer configuration and layer stacking order. The peculiar physicochemical properties of TMD nanosheets enable an enormous range of applications from fundamental science to industrial technologies based on the preparation of high-quality TMDs. For polymorphic TMDs, the 1T/1T' phase is particularly intriguing because of the enriched density of states, and thus facilitates fruitful chemistry. Herein, we comprehensively discuss the most recent strategies for direct synthesis of phase-pure 1T/1T' TMD nanosheets such as mechanical exfoliation, chemical vapor deposition, wet chemical synthesis, atomic layer deposition, and more. We also review frequently adopted methods for phase engineering in TMD nanosheets ranging from chemical doping and alloying, to charge injection, and irradiation with optical or charged particle beams. Prior to the synthesis methods, we discuss the configuration of TMDs as well as the characterization tools mostly used in experiments. Finally, we discuss the current challenges and opportunities as well as emphasize the promising fields for the future development.
Collapse
Affiliation(s)
- Baohu Dai
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yueqi Su
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yuqiao Guo
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Changzheng Wu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yi Xie
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
32
|
Karkee R, Strubbe DA. Panoply of Ni-Doping-Induced Reconstructions, Electronic Phases, and Ferroelectricity in 1T-MoS 2. J Phys Chem Lett 2024; 15:565-574. [PMID: 38198283 DOI: 10.1021/acs.jpclett.3c03175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The distorted phases of monolayer 1T-MoS2 have distinct electronic properties, with potential applications in optoelectronics, catalysis, and batteries. We theoretically investigate the use of Ni-doping to generate distorted 1T phases and find not only the ones usually reported but also two further phases (3 × 3 and 4 × 4), depending on the concentration and the substitutional or adatom doping site. Corresponding pristine phases are stable after removal of dopants, which might offer a potential route to experimental synthesis. We find large ferroelectric polarizations, most notably in 3 × 3 which─compared to the recently measured 1T″─has 100 times greater ferroelectric polarization, a lower energy, and a larger band gap. Doped phases include exotic multiferroic semimetals, ferromagnetic polar metals, and improper ferroelectrics with only in-plane polarization switchable. The pristine phases have unusual multiple gaps in the conduction bands with possible applications for intermediate band solar cells, transparent conductors, and nonlinear optics.
Collapse
Affiliation(s)
- Rijan Karkee
- Department of Physics, University of California, Merced, California 95343, United States
| | - David A Strubbe
- Department of Physics, University of California, Merced, California 95343, United States
| |
Collapse
|
33
|
Köster J, Kretschmer S, Storm A, Rasper F, Kinyanjui MK, Krasheninnikov AV, Kaiser U. Phase transformations in single-layer MoTe 2stimulated by electron irradiation and annealing. NANOTECHNOLOGY 2024; 35:145301. [PMID: 38096582 DOI: 10.1088/1361-6528/ad15bb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
Among two-dimensional (2D) transition metal dichalcogenides (TMDs), MoTe2is predestined for phase-engineering applications due to the small difference in free energy between the semiconducting H-phase and metallic 1T'-phase. At the same time, the complete picture of the phase evolution originating from point defects in single-layer of semiconducting H-MoTe2via Mo6Te6nanowires to cubic molybdenum has not yet been reported so far, and it is the topic of the present study. The occurring phase transformations in single-layer H-MoTe2were initiated by 40-80 kV electrons in the spherical and chromatic aberration-corrected high-resolution transmission electron microscope and/or when subjected to high temperatures. We analyse the damage cross-section at voltages between 40 kV and 80 kV and relate the results to previously published values for other TMDs. Then we demonstrate that electron beam irradiation offers a route to locally transform freestanding single-layer H-MoTe2into one-dimensional (1D) Mo6Te6nanowires. Combining the experimental data with the results of first-principles calculations, we explain the transformations in MoTe2single-layers and Mo6Te6nanowires by an interplay of electron-beam-induced energy transfer, atom ejection, and oxygen absorption. Further, the effects emerging from electron irradiation are compared with those produced byin situannealing in a vacuum until pure molybdenum crystals are obtained at temperatures of about 1000 °C. A detailed understanding of high-temperature solid-to-solid phase transformation in the 2D limit can provide insights into the applicability of this material for future device fabrication.
Collapse
Affiliation(s)
- Janis Köster
- Electron Microscopy Group of Materials Science, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Silvan Kretschmer
- Institut of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
| | - Alexander Storm
- Electron Microscopy Group of Materials Science, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Fabian Rasper
- Electron Microscopy Group of Materials Science, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Michael K Kinyanjui
- Electron Microscopy Group of Materials Science, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Arkady V Krasheninnikov
- Institut of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
- Department of Applied Physics, Aalto University, PO Box 14100, FI-00076 Aalto, Finland
| | - Ute Kaiser
- Electron Microscopy Group of Materials Science, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| |
Collapse
|
34
|
Reuter C, Ecke G, Strehle S. Exploring the Surface Oxidation and Environmental Instability of 2H-/1T'-MoTe 2 Using Field Emission-Based Scanning Probe Lithography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310887. [PMID: 37931614 DOI: 10.1002/adma.202310887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Indexed: 11/08/2023]
Abstract
An unconventional approach for the resistless nanopatterning 2H- and 1T'-MoTe2 by means of scanning probe lithography is presented. A Fowler-Nordheim tunneling current of low energetic electrons (E = 30-60 eV) emitted from the tip of an atomic force microscopy (AFM) cantilever is utilized to induce a nanoscale oxidation on a MoTe2 nanosheet surface under ambient conditions. Due to the water solubility of the generated oxide, a direct pattern transfer into the MoTe2 surface can be achieved by a simple immersion of the sample in deionized water. The tip-grown oxide is characterized using Auger electron and Raman spectroscopy, revealing it consists of amorphous MoO3 /MoOx as well as TeO2 /TeOx . With the presented technology in combination with subsequent AFM imaging it is possible to demonstrate a strong anisotropic sensitivity of 1T'-/(Td )-MoTe2 to aqueous environments. Finally the discussed approach is used to structure a nanoribbon field effect transistor out of a few-layer 2H-MoTe2 nanosheet.
Collapse
Affiliation(s)
- Christoph Reuter
- Institute of Micro- and Nanotechnologies, Microsystems Technology Group, Technische Universität Ilmenau, Max-Planck-Ring 12, 98693, Ilmenau, Germany
| | - Gernot Ecke
- Institute of Micro- and Nanotechnologies, Nanotechnology Group, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 1, 98693, Ilmenau, Germany
| | - Steffen Strehle
- Institute of Micro- and Nanotechnologies, Microsystems Technology Group, Technische Universität Ilmenau, Max-Planck-Ring 12, 98693, Ilmenau, Germany
| |
Collapse
|
35
|
Sovizi S, Angizi S, Ahmad Alem SA, Goodarzi R, Taji Boyuk MRR, Ghanbari H, Szoszkiewicz R, Simchi A, Kruse P. Plasma Processing and Treatment of 2D Transition Metal Dichalcogenides: Tuning Properties and Defect Engineering. Chem Rev 2023; 123:13869-13951. [PMID: 38048483 PMCID: PMC10756211 DOI: 10.1021/acs.chemrev.3c00147] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/31/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) offer fascinating opportunities for fundamental nanoscale science and various technological applications. They are a promising platform for next generation optoelectronics and energy harvesting devices due to their exceptional characteristics at the nanoscale, such as tunable bandgap and strong light-matter interactions. The performance of TMD-based devices is mainly governed by the structure, composition, size, defects, and the state of their interfaces. Many properties of TMDs are influenced by the method of synthesis so numerous studies have focused on processing high-quality TMDs with controlled physicochemical properties. Plasma-based methods are cost-effective, well controllable, and scalable techniques that have recently attracted researchers' interest in the synthesis and modification of 2D TMDs. TMDs' reactivity toward plasma offers numerous opportunities to modify the surface of TMDs, including functionalization, defect engineering, doping, oxidation, phase engineering, etching, healing, morphological changes, and altering the surface energy. Here we comprehensively review all roles of plasma in the realm of TMDs. The fundamental science behind plasma processing and modification of TMDs and their applications in different fields are presented and discussed. Future perspectives and challenges are highlighted to demonstrate the prominence of TMDs and the importance of surface engineering in next-generation optoelectronic applications.
Collapse
Affiliation(s)
- Saeed Sovizi
- Faculty of
Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Shayan Angizi
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| | - Sayed Ali Ahmad Alem
- Chair in
Chemistry of Polymeric Materials, Montanuniversität
Leoben, Leoben 8700, Austria
| | - Reyhaneh Goodarzi
- School of
Metallurgy and Materials Engineering, Iran
University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | | | - Hajar Ghanbari
- School of
Metallurgy and Materials Engineering, Iran
University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | - Robert Szoszkiewicz
- Faculty of
Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Abdolreza Simchi
- Department
of Materials Science and Engineering and Institute for Nanoscience
and Nanotechnology, Sharif University of
Technology, 14588-89694 Tehran, Iran
- Center for
Nanoscience and Nanotechnology, Institute for Convergence Science
& Technology, Sharif University of Technology, 14588-89694 Tehran, Iran
| | - Peter Kruse
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
36
|
Yin Z, Panaccione W, Hu A, Douglas ORT, Tanjil MRE, Jeong Y, Zhao H, Wang MC. Directionally-Resolved Phononic Properties of Monolayer 2D Molybdenum Ditelluride (MoTe 2) under Uniaxial Elastic Strain. NANO LETTERS 2023; 23:11763-11770. [PMID: 38100381 DOI: 10.1021/acs.nanolett.3c03706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Understanding the phonon characteristics of two-dimensional (2D) molybdenum ditelluride (MoTe2) under strain is critical to manipulating its multiphysical properties. Although there have been numerous computational efforts to elucidate the strain-coupled phonon properties of monolayer MoTe2, empirical validation is still lacking. In this work, monolayer 1H-MoTe2 under uniaxial strain is studied via in situ micro-Raman spectroscopy. Directionally dependent monotonic softening of the doubly degenerate in-plane E2g1 phonon mode is observed with increasing uniaxial strain, where the E2g1 peak red-shifts -1.66 ± 0.04 cm-1/% along the armchair direction and -0.80 ± 0.07 cm-1/% along the zigzag direction. The corresponding Grüneisen parameters are calculated to be 1.09 and 0.52 along the armchair and zigzag directions, respectively. This work provides the first empirical quantification and validation of the orientation-dependent strain-coupled phonon response in monolayer 1H-MoTe2 and serves as a benchmark for other prototypical 2D transition-metal tellurides.
Collapse
Affiliation(s)
- Zhewen Yin
- Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Wyatt Panaccione
- Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Anjun Hu
- Department of Medical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Ossie R T Douglas
- Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Md Rubayat-E Tanjil
- Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Yunjo Jeong
- Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Huijuan Zhao
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| | - Michael Cai Wang
- Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
- Department of Medical Engineering, University of South Florida, Tampa, Florida 33620, United States
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
37
|
Awate S, Xu K, Liang J, Katz B, Muzzio R, Crespi VH, Katoch J, Fullerton-Shirey SK. Strain-Induced 2H to 1T' Phase Transition in Suspended MoTe 2 Using Electric Double Layer Gating. ACS NANO 2023; 17:22388-22398. [PMID: 37947443 PMCID: PMC10690768 DOI: 10.1021/acsnano.3c04701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
MoTe2 can be converted from the semiconducting (2H) phase to the semimetallic (1T') phase by several stimuli including heat, electrochemical doping, and strain. This type of phase transition, if reversible and gate-controlled, could be useful for low-power memory and logic. In this work, a gate-controlled and fully reversible 2H to 1T' phase transition is demonstrated via strain in few-layer suspended MoTe2 field effect transistors. Strain is applied by the electric double layer gating of a suspended channel using a single ion conducting solid polymer electrolyte. The phase transition is confirmed by simultaneous electrical transport and Raman spectroscopy. The out-of-plane vibration peak (A1g)─a signature of the 1T' phase─is observed when VSG ≥ 2.5 V. Further, a redshift in the in-plane vibration mode (E2g) is detected, which is a characteristic of a strain-induced phonon shift. Based on the magnitude of the shift, strain is estimated to be 0.2-0.3% by density functional theory. Electrically, the temperature coefficient of resistance transitions from negative to positive at VSG ≥ 2 V, confirming the transition from semiconducting to metallic. The approach to gate-controlled, reversible straining presented here can be extended to strain other two-dimensional materials, explore fundamental material properties, and introduce electronic device functionalities.
Collapse
Affiliation(s)
- Shubham
Sukumar Awate
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ke Xu
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- School
of Physics and Astronomy, Rochester Institute
of Technology, Rochester, New York 14623, United States
- Microsystems
Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Jierui Liang
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Benjamin Katz
- Department
of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ryan Muzzio
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Vincent H. Crespi
- Department
of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jyoti Katoch
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Susan K. Fullerton-Shirey
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
38
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
39
|
Lee D, Jeong H, Lee H, Kim YH, Park JY. Phase-dependent Friction on Exfoliated Transition Metal Dichalcogenides Atomic Layers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302713. [PMID: 37485739 DOI: 10.1002/smll.202302713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/07/2023] [Indexed: 07/25/2023]
Abstract
The fundamental aspects of energy dissipation on 2-dimensional (2D) atomic layers are extensively studied. Among various atomic layers, transition metal dichalcogenides (TMDs) exists in several phases based on their lattice structure, which give rise to the different phononic and electronic contributions in energy dissipation. 2H and 1T' (distorted 1T) phase MoS2 and MoTe2 atomic layers exfoliated on mica substrate are obtained and investigated their nanotribological properties with atomic force microscopy (AFM)/ friction force microscopy (FFM). Surprisingly, 1T' phase of both MoS2 and MoTe2 exhibits ≈10 times higher friction compared to 2H phase. With density functional theory analyses, the friction increase is attributed to enhanced electronic excitation, efficient phonon dissipation, and increased potential energy surface barrier at the tip-sample interface. This study suggests the intriguing possibility of tuning the friction of TMDs through phase transition, which can lead to potential application in tunable tribological devices.
Collapse
Affiliation(s)
- Dooho Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hochan Jeong
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyunsoo Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yong-Hyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
40
|
Chang S, Yan Y, Geng Y. Local Nanostrain Engineering of Monolayer MoS 2 Using Atomic Force Microscopy-Based Thermomechanical Nanoindentation. NANO LETTERS 2023; 23:9219-9226. [PMID: 37824813 DOI: 10.1021/acs.nanolett.3c01809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Strain engineering in two-dimensional materials (2DMs) has important application potential for electronic and optoelectronic devices. However, achieving precise spatial control, adjustable sizing, and permanent strain with nanoscale resolution remains challenging. Herein, a thermomechanical nanoindentation method is introduced, inspired by skin edema caused by mosquito bites, which can induce localized nanostrain and bandgap modulation in monolayer molybdenum disulfide (MoS2) transferred onto a poly(methyl methacrylate) film utilizing a heated atomic force microscopy nanotip. Via adjustment of the machining parameters, the strains of MoS2 are manipulated, achieving an average strain of ≤2.6% on the ring-shaped expansion structure. The local bandgap of MoS2 is spatially modulated using three types of nanostructures. Among them, the nanopit has the largest range of bandgap regulation, with a substantial change of 56 meV. These findings demonstrate the capability of the proposed method to create controllable and reproducible nanostrains in 2DMs.
Collapse
Affiliation(s)
- Shunyu Chang
- The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang 150080, P. R. China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Yongda Yan
- The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang 150080, P. R. China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Yanquan Geng
- The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang 150080, P. R. China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| |
Collapse
|
41
|
Xia Y, Berry JM, Haataja MP. Classification and Simulation of Structural Phase Transformation-Induced Interfacial Defects in Group VI Transition-Metal Dichalcogenide Monolayers. NANO LETTERS 2023; 23:9445-9450. [PMID: 37820381 DOI: 10.1021/acs.nanolett.3c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Polymorphic 2D materials have recently emerged as promising candidates for use in nanoelectronic devices by way of their ability to undergo structural phase transformations induced by external fields. Under cyclic transformations, however, induced interfacial defects may proliferate and compromise the system properties. Herein, we first employ geometric analysis to classify such defects generated during the 2H ↔ 1T and 2H ↔ 1T' transformations in group VI transition-metal dichalcogenide monolayers. Then, simulations of a mesoscale model with atomistic spatial resolution are conducted to assess the proliferation of such defects during cyclic 2H ↔ 1T transformations. It is shown that defect densities reach a steady state, with the 2H phase remaining more pristine than the 1T and 1T' states. We expect that the effects of these defects on the device performance are application-dependent and will require further inquiry.
Collapse
Affiliation(s)
- Yang Xia
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Joel M Berry
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Mikko P Haataja
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
42
|
Kim D, Pandey J, Jeong J, Cho W, Lee S, Cho S, Yang H. Phase Engineering of 2D Materials. Chem Rev 2023; 123:11230-11268. [PMID: 37589590 DOI: 10.1021/acs.chemrev.3c00132] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Polymorphic 2D materials allow structural and electronic phase engineering, which can be used to realize energy-efficient, cost-effective, and scalable device applications. The phase engineering covers not only conventional structural and metal-insulator transitions but also magnetic states, strongly correlated band structures, and topological phases in rich 2D materials. The methods used for the local phase engineering of 2D materials include various optical, geometrical, and chemical processes as well as traditional thermodynamic approaches. In this Review, we survey the precise manipulation of local phases and phase patterning of 2D materials, particularly with ideal and versatile phase interfaces for electronic and energy device applications. Polymorphic 2D materials and diverse quantum materials with their layered, vertical, and lateral geometries are discussed with an emphasis on the role and use of their phase interfaces. Various phase interfaces have demonstrated superior and unique performance in electronic and energy devices. The phase patterning leads to novel homo- and heterojunction structures of 2D materials with low-dimensional phase boundaries, which highlights their potential for technological breakthroughs in future electronic, quantum, and energy devices. Accordingly, we encourage researchers to investigate and exploit phase patterning in emerging 2D materials.
Collapse
Affiliation(s)
- Dohyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Juhi Pandey
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Juyeong Jeong
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Woohyun Cho
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seungyeon Lee
- Division of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Suyeon Cho
- Division of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Heejun Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
43
|
Husremović S, Goodge BH, Erodici MP, Inzani K, Mier A, Ribet SM, Bustillo KC, Taniguchi T, Watanabe K, Ophus C, Griffin SM, Bediako DK. Encoding multistate charge order and chirality in endotaxial heterostructures. Nat Commun 2023; 14:6031. [PMID: 37758701 PMCID: PMC10533556 DOI: 10.1038/s41467-023-41780-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
High-density phase change memory (PCM) storage is proposed for materials with multiple intermediate resistance states, which have been observed in 1T-TaS2 due to charge density wave (CDW) phase transitions. However, the metastability responsible for this behavior makes the presence of multistate switching unpredictable in TaS2 devices. Here, we demonstrate the fabrication of nanothick verti-lateral H-TaS2/1T-TaS2 heterostructures in which the number of endotaxial metallic H-TaS2 monolayers dictates the number of resistance transitions in 1T-TaS2 lamellae near room temperature. Further, we also observe optically active heterochirality in the CDW superlattice structure, which is modulated in concert with the resistivity steps, and we show how strain engineering can be used to nucleate these polytype conversions. This work positions the principle of endotaxial heterostructures as a promising conceptual framework for reliable, non-volatile, and multi-level switching of structure, chirality, and resistance.
Collapse
Affiliation(s)
- Samra Husremović
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Berit H Goodge
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187, Dresden, Germany
| | - Matthew P Erodici
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Katherine Inzani
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Alberto Mier
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Stephanie M Ribet
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- International Institute of Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Karen C Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Takashi Taniguchi
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Kenji Watanabe
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sinéad M Griffin
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - D Kwabena Bediako
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
44
|
Aftab S, Shehzad MA, Salman Ajmal HM, Kabir F, Iqbal MZ, Al-Kahtani AA. Bulk Photovoltaic Effect in Two-Dimensional Distorted MoTe 2. ACS NANO 2023; 17:17884-17896. [PMID: 37656985 DOI: 10.1021/acsnano.3c03593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
In future solar cell technologies, the thermodynamic Shockley-Queisser limit for solar-to-current conversion in traditional p-n junctions could potentially be overcome with a bulk photovoltaic effect by creating an inversion broken symmetry in piezoelectric or ferroelectric materials. Here, we unveiled mechanical distortion-induced bulk photovoltaic behavior in a two-dimensional (2D) material, MoTe2, caused by the phase transition and broken inversion symmetry in MoTe2. The phase transition from single-crystalline semiconducting 2H-MoTe2 to semimetallic 1T'-MoTe2 was confirmed using X-ray photoelectron spectroscopy (XPS). We used a micrometer-scale system to measure the absorption of energy, which reduced from 800 to 63 meV during phase transformation from hexagonal to distorted octahedral and revealed a smaller bandgap semimetallic behavior. Experimentally, a large bulk photovoltaic response is anticipated with the maximum photovoltage VOC = 16 mV and a positive signal of the ISC = 60 μA (400 nm, 90.4 Wcm-2) in the absence of an external electric field. The maximum values of both R and EQE were found to be 98 mAW-1 and 30%, respectively. Our findings are distinctive features of the photocurrent responses caused by in-plane polarity and its potential from a wide pool of established TMD-based nanomaterials and a cutting-edge approach to optimize the efficiency in converting photons-to-electricity for power harvesting optoelectronics devices.
Collapse
Affiliation(s)
- Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, South Korea
| | - Muhammad Arslan Shehzad
- Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Hafiz Muhammad Salman Ajmal
- Department of Biomedical Engineering, Narowal Campus-University of Engineering and Technology, Lahore 54890, Pakistan
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Muhammad Zahir Iqbal
- Nanotechnology Research Laboratory, Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa 23640, Pakistan
| | - Abdullah A Al-Kahtani
- Chemistry Department, Collage of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
45
|
Yu S, Dai Y, Huang B, Wei W. Charge-Transfer-Driven Phase Transition of Two-Dimensional MoTe 2 in Donor-Acceptor Heterostructures. J Phys Chem Lett 2023; 14:7946-7952. [PMID: 37646563 DOI: 10.1021/acs.jpclett.3c02082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In this work, based on first-principles calculations, we propose that electrene can be considered as an electron-donating substrate to drive the phase transition of MoTe2 from the H to T' phase, which is a topic of long-standing interest and importance. In particular, new electrenes Ca2XN2 (X = Zr, Hf) are predicted with the existence of a nearly free two-dimensional (2D) electron gas and ultralow work functions. In MoTe2/Ca2XN2 donor-acceptor heterostructures, we find significantly large charge transfer (∼0.4e per MoTe2 unit cell) from Ca2XN2 to MoTe2, which stabilizes the T' phase and decreases the phase transition barrier (from ∼0.9 to ∼0.5 eV per unit cell). In addition, the phase transition of MoTe2 on Ca2XN2 remains effective as the interlayer distance varies. It therefore can be confirmed conclusively that our results open a new avenue for phase transition study and provide new insights for the large-scale synthesis of metastable high-quality T'-phase MoTe2.
Collapse
Affiliation(s)
- Shiqiang Yu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wei Wei
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
46
|
Liou F, Tsai HZ, Goodwin ZAH, Aikawa AS, Ha E, Hu M, Yang Y, Watanabe K, Taniguchi T, Zettl A, Lischner J, Crommie MF. Imaging Field-Driven Melting of a Molecular Solid at the Atomic Scale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300542. [PMID: 37317869 DOI: 10.1002/adma.202300542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Solid-liquid phase transitions are basic physical processes, but atomically resolved microscopy has yet to capture their full dynamics. A new technique is developed for controlling the melting and freezing of self-assembled molecular structures on a graphene field-effect transistor (FET) that allows phase-transition behavior to be imaged using atomically resolved scanning tunneling microscopy. This is achieved by applying electric fields to 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane-decorated FETs to induce reversible transitions between molecular solid and liquid phases at the FET surface. Nonequilibrium melting dynamics are visualized by rapidly heating the graphene substrate with an electrical current and imaging the resulting evolution toward new 2D equilibrium states. An analytical model is developed that explains observed mixed-state phases based on spectroscopic measurement of solid and liquid molecular energy levels. The observed nonequilibrium melting dynamics are consistent with Monte Carlo simulations.
Collapse
Affiliation(s)
- Franklin Liou
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Hsin-Zon Tsai
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Zachary A H Goodwin
- Department of Materials, Imperial College London, Prince Consort Rd, London, SW7 2BB, UK
- National Graphene Institute, University of Manchester, Booth St. E. Manchester M13 9PL, Manchester, UK
- School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Andrew S Aikawa
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ethan Ha
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Michael Hu
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Yiming Yang
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Alex Zettl
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Johannes Lischner
- Department of Materials, Imperial College London, Prince Consort Rd, London, SW7 2BB, UK
| | - Michael F Crommie
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
47
|
Kim S, Kim SI, Ghods S, Kim JS, Lee YC, Kwun HJ, Moon JY, Lee JH. Nonmetal-Mediated Atomic Spalling of Large-Area Monolayer Transition Metal Dichalcogenide. SMALL SCIENCE 2023; 3:2300033. [PMID: 40212973 PMCID: PMC11935789 DOI: 10.1002/smsc.202300033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/17/2023] [Indexed: 04/22/2025] Open
Abstract
Transition metal dichalcogenides (TMDCs) have attracted intense interest; however, despite the considerable effort of researchers, a universal manufacturing method that can guarantee both high material quality and throughput has not been realized to date. Herein, a universal approach to producing high-quality monolayer TMDCs on a large scale via germanium (Ge)-mediated atomic spalling is presented. Through the modified analytic model, the study verifies that the thin Ge film could be a suitable stressor that effectively reduces the crack propagation depth at the sub-nanometer range. In particular, an acid-etching process is not required in the overall atomic spalling process due to the water-soluble nature of the Ge, enabling it widely applicable to various TMDCs. Under the optimized spalling conditions, a millimeter-sized monolayer of stable MoS2, as well as unstable MoTe2, is successfully achieved. Through detailed spectroscopic and electrical characterizations, it is confirmed that the proposed methodology for obtaining large-area atomic layers does not introduce any significant structural defects or chemical contaminations.
Collapse
Affiliation(s)
- Sein Kim
- Department of Energy Systems ResearchAjou UniversitySuwon16499Republic of Korea
| | - Seung-Il Kim
- Department of Energy Systems ResearchAjou UniversitySuwon16499Republic of Korea
| | - Soheil Ghods
- Department of Energy Systems ResearchAjou UniversitySuwon16499Republic of Korea
| | - Jin-Su Kim
- Department of Materials Science and EngineeringAjou UniversitySuwon16499Republic of Korea
| | - Young Cheol Lee
- Department of Materials Science and EngineeringAjou UniversitySuwon16499Republic of Korea
| | - Hyung Jun Kwun
- Department of Materials Science and EngineeringAjou UniversitySuwon16499Republic of Korea
| | - Ji-Yun Moon
- Department of Energy Systems ResearchAjou UniversitySuwon16499Republic of Korea
| | - Jae-Hyun Lee
- Department of Energy Systems ResearchAjou UniversitySuwon16499Republic of Korea
- Department of Materials Science and EngineeringAjou UniversitySuwon16499Republic of Korea
| |
Collapse
|
48
|
Gao Z, Yin Y, Wang Y, Cui Z, Cao T, Shi J, Fan X. Tunable electrical properties and multiple-phases of ferromagnetic GdS 2, GdSe 2 and Janus GdSSe monolayers. Phys Chem Chem Phys 2023; 25:22782-22793. [PMID: 37584079 DOI: 10.1039/d3cp02705h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
With the continuous miniaturization and integration of spintronic devices, the two-dimensional (2D) ferromagnet coupling of ferromagnetic and diverse electrical properties has become increasingly important. Herein, we report three ferromagnetic monolayers: GdS2, GdSe2 and Janus GdSSe. They are bipolar magnetic semiconductors and demonstrate ferroelasticity with a large reversible strain of 73.2%. Three monolayers all hold large magnetic moments of about 8μB f.u.-1 and large spin-flip energy gaps in both the conduction and valence bands, which are highly desirable for applications in bipolar field effect spin filters and spin valves. Our calculations have testified to the feasibility of the experimental achievement of the three monolayers and their stability. Additionally, intrinsic valley polarization occurs in the three monolayers owing to the cooperative interplay between spin-orbit coupling and magnetic exchange interaction. Moreover, we identified square lattices for GdS2 and GdSe2 monolayers. The new and stable square lattices of GdS2 and GdSe2 monolayers show robust ferromagnetism with high Curie temperatures of 648 and 312 K, respectively, and the characteristics of spin-gapless semiconductors. Overall, these findings render GdS2, GdSe2 and Janus GdSSe monolayers promising candidate materials for multifunctional spintronic devices at the nanoscale.
Collapse
Affiliation(s)
- Zhihao Gao
- State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi'an, Shaanxi 710072, China.
| | - Yuehao Yin
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, 127 YouYi Western Road, Xi'an, Shaanxi 710072, China
| | - Yuwan Wang
- State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi'an, Shaanxi 710072, China.
| | - Zichun Cui
- State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi'an, Shaanxi 710072, China.
| | - Tengfei Cao
- State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi'an, Shaanxi 710072, China.
| | - Junqin Shi
- State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi'an, Shaanxi 710072, China.
| | - Xiaoli Fan
- State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
49
|
Song S, Yoon A, Jang S, Lynch J, Yang J, Han J, Choe M, Jin YH, Chen CY, Cheon Y, Kwak J, Jeong C, Cheong H, Jariwala D, Lee Z, Kwon SY. Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes. Nat Commun 2023; 14:4747. [PMID: 37550303 PMCID: PMC10406929 DOI: 10.1038/s41467-023-40448-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
High-performance p-type two-dimensional (2D) transistors are fundamental for 2D nanoelectronics. However, the lack of a reliable method for creating high-quality, large-scale p-type 2D semiconductors and a suitable metallization process represents important challenges that need to be addressed for future developments of the field. Here, we report the fabrication of scalable p-type 2D single-crystalline 2H-MoTe2 transistor arrays with Fermi-level-tuned 1T'-phase semimetal contact electrodes. By transforming polycrystalline 1T'-MoTe2 to 2H polymorph via abnormal grain growth, we fabricated 4-inch 2H-MoTe2 wafers with ultra-large single-crystalline domains and spatially-controlled single-crystalline arrays at a low temperature (~500 °C). Furthermore, we demonstrate on-chip transistors by lithographic patterning and layer-by-layer integration of 1T' semimetals and 2H semiconductors. Work function modulation of 1T'-MoTe2 electrodes was achieved by depositing 3D metal (Au) pads, resulting in minimal contact resistance (~0.7 kΩ·μm) and near-zero Schottky barrier height (~14 meV) of the junction interface, and leading to high on-state current (~7.8 μA/μm) and on/off current ratio (~105) in the 2H-MoTe2 transistors.
Collapse
Affiliation(s)
- Seunguk Song
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, US
| | - Aram Yoon
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Sora Jang
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jason Lynch
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, US
| | - Jihoon Yang
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Juwon Han
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Myeonggi Choe
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Young Ho Jin
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Cindy Yueli Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, US
| | - Yeryun Cheon
- Department of Physics, Sogang University, Seoul, 04107, Republic of Korea
| | - Jinsung Kwak
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Physics, Changwon National University, Changwon, 51140, Republic of Korea
| | - Changwook Jeong
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyeonsik Cheong
- Department of Physics, Sogang University, Seoul, 04107, Republic of Korea
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, US
| | - Zonghoon Lee
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
| | - Soon-Yong Kwon
- Department of Materials Science and Engineering & Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
50
|
Ge Y, Huang B, Li L, Yun Q, Shi Z, Chen B, Zhang H. Structural Transformation of Unconventional-Phase Materials. ACS NANO 2023. [PMID: 37428980 DOI: 10.1021/acsnano.3c01922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The structural transformation of materials, which involves the evolution of different structural features, including phase, composition, morphology, etc., under external conditions, represents an important fundamental phenomenon and has drawn substantial research interest. Recently, materials with unconventional phases that are different from their thermodynamically stable ones have been demonstrated to possess distinct properties and compelling functions and can further serve as starting materials for structural transformation studies. The identification and mechanism study of the structural transformation process of unconventional-phase starting materials can not only provide deep insights into their thermodynamic stability in potential applications but also offer effective approaches for the synthesis of other unconventional structures. Here, we briefly summarize the recent research progress on the structural transformation of some typical starting materials with various unconventional phases, including the metastable crystalline phase, amorphous phase, and heterophase, induced by different approaches. The importance of unconventional-phase starting materials in the structural modulation of resultant intermediates and products will be highlighted. The employment of diverse in situ/operando characterization techniques and theoretical simulations in studying the mechanism of the structural transformation process will also be introduced. Finally, we discuss the existing challenges in this emerging research field and provide some future research directions.
Collapse
Affiliation(s)
- Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|