1
|
Racine JJ, Misherghi A, Dwyer JR, Maser R, Forte E, Bedard O, Sattler S, Pugliese A, Landry L, Elso C, Nakayama M, Mannering S, Rosenthal N, Serreze DV. HLA-DQ8 Supports Development of Insulitis Mediated by Insulin-Reactive Human TCR-Transgenic T Cells in Nonobese Diabetic Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1792-1805. [PMID: 37877672 PMCID: PMC10939972 DOI: 10.4049/jimmunol.2300303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
In an effort to improve HLA-"humanized" mouse models for type 1 diabetes (T1D) therapy development, we previously generated directly in the NOD strain CRISPR/Cas9-mediated deletions of various combinations of murine MHC genes. These new models improved upon previously available platforms by retaining β2-microglobulin functionality in FcRn and nonclassical MHC class I formation. As proof of concept, we generated H2-Db/H2-Kd double knockout NOD mice expressing human HLA-A*0201 or HLA-B*3906 class I variants that both supported autoreactive diabetogenic CD8+ T cell responses. In this follow-up work, we now describe the creation of 10 new NOD-based mouse models expressing various combinations of HLA genes with and without chimeric transgenic human TCRs reactive to proinsulin/insulin. The new TCR-transgenic models develop differing levels of insulitis mediated by HLA-DQ8-restricted insulin-reactive T cells. Additionally, these transgenic T cells can transfer insulitis to newly developed NSG mice lacking classical murine MHC molecules, but expressing HLA-DQ8. These new models can be used to test potential therapeutics for a possible capacity to reduce islet infiltration or change the phenotype of T cells expressing type 1 diabetes patient-derived β cell autoantigen-specific TCRs.
Collapse
Affiliation(s)
| | - Adel Misherghi
- The Jackson Laboratory, Bar Harbor, ME
- College of the Atlantic, Bar Harbor, ME
| | | | | | | | | | - Susanne Sattler
- Imperial College London, London, United Kingdom
- Medical University Graz, Graz, Austria
| | - Alberto Pugliese
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Laurie Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Colleen Elso
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Stuart Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, ME
- Imperial College London, London, United Kingdom
| | | |
Collapse
|
2
|
Shi Z, Li Y, Jaberi-Douraki M. Hybrid computational modeling demonstrates the utility of simulating complex cellular networks in type 1 diabetes. PLoS Comput Biol 2021; 17:e1009413. [PMID: 34570760 PMCID: PMC8496846 DOI: 10.1371/journal.pcbi.1009413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/07/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022] Open
Abstract
Persistent destruction of pancreatic β-cells in type 1 diabetes (T1D) results from multifaceted pancreatic cellular interactions in various phase progressions. Owing to the inherent heterogeneity of coupled nonlinear systems, computational modeling based on T1D etiology help achieve a systematic understanding of biological processes and T1D health outcomes. The main challenge is to design such a reliable framework to analyze the highly orchestrated biology of T1D based on the knowledge of cellular networks and biological parameters. We constructed a novel hybrid in-silico computational model to unravel T1D onset, progression, and prevention in a non-obese-diabetic mouse model. The computational approach that integrates mathematical modeling, agent-based modeling, and advanced statistical methods allows for modeling key biological parameters and time-dependent spatial networks of cell behaviors. By integrating interactions between multiple cell types, model results captured the individual-specific dynamics of T1D progression and were validated against experimental data for the number of infiltrating CD8+T-cells. Our simulation results uncovered the correlation between five auto-destructive mechanisms identifying a combination of potential therapeutic strategies: the average lifespan of cytotoxic CD8+T-cells in islets; the initial number of apoptotic β-cells; recruitment rate of dendritic-cells (DCs); binding sites on DCs for naïve CD8+T-cells; and time required for DCs movement. Results from therapy-directed simulations further suggest the efficacy of proposed therapeutic strategies depends upon the type and time of administering therapy interventions and the administered amount of therapeutic dose. Our findings show modeling immunogenicity that underlies autoimmune T1D and identifying autoantigens that serve as potential biomarkers are two pressing parameters to predict disease onset and progression.
Collapse
Affiliation(s)
- Zhenzhen Shi
- 1DATA Consortium, Kansas State University Olathe, Olathe, Kansas, United States of America
- Department of Mathematics, Kansas State University, Manhattan, Kansas, United States of America
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science, Shenzhen, China
| | - Majid Jaberi-Douraki
- 1DATA Consortium, Kansas State University Olathe, Olathe, Kansas, United States of America
- Department of Mathematics, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
3
|
Thomas AM, Dong Y, Beskid NM, García AJ, Adams AB, Babensee JE. Brief exposure to hyperglycemia activates dendritic cells in vitro and in vivo. J Cell Physiol 2020; 235:5120-5129. [PMID: 31674663 PMCID: PMC7056598 DOI: 10.1002/jcp.29380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
Dendritic cells are key players in regulating immunity. These cells both activate and inhibit the immune response depending on their cellular environment. Their response to hyperglycemia, a condition common amongst diabetics wherein glucose is abnormally elevated, remains to be elucidated. In this study, the phenotype and immune response of dendritic cells exposed to hyperglycemia were characterized in vitro and in vivo using the streptozotocin-induced diabetes model. Dendritic cells were shown to be sensitive to hyperglycemia both during and after differentiation from bone marrow precursor cells. Dendritic cell behavior under hyperglycemic conditions was found to vary by phenotype, among which, tolerogenic dendritic cells were particularly sensitive. Expression of the costimulatory molecule CD86 was found to reliably increase when dendritic cells were exposed to hyperglycemia. Additionally, hydrogel-based delivery of the anti-inflammatory molecule interleukin-10 was shown to partially inhibit these effects in vivo.
Collapse
Affiliation(s)
- Aline M Thomas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Ying Dong
- Department of Surgery, Emory University, Atlanta, Georgia
| | - Nicholas M Beskid
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Andrew B Adams
- Department of Surgery, Emory University, Atlanta, Georgia
| | - Julia E Babensee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
4
|
Mattner J, Mohammed JP, Fusakio ME, Giessler C, Hackstein CP, Opoka R, Wrage M, Schey R, Clark J, Fraser HI, Rainbow DB, Wicker LS. Genetic and functional data identifying Cd101 as a type 1 diabetes (T1D) susceptibility gene in nonobese diabetic (NOD) mice. PLoS Genet 2019; 15:e1008178. [PMID: 31199784 PMCID: PMC6568395 DOI: 10.1371/journal.pgen.1008178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic multi-factorial disorder characterized by the immune-mediated destruction of insulin-producing pancreatic beta cells. Variations at a large number of genes influence susceptibility to spontaneous autoimmune T1D in non-obese diabetic (NOD) mice, one of the most frequently studied animal models for human disease. The genetic analysis of these mice allowed the identification of many insulin-dependent diabetes (Idd) loci and candidate genes, one of them being Cd101. CD101 is a heavily glycosylated transmembrane molecule which exhibits negative-costimulatory functions and promotes regulatory T (Treg) function. It is abundantly expressed on subsets of lymphoid and myeloid cells, particularly within the gastrointestinal tract. We have recently reported that the genotype-dependent expression of CD101 correlates with a decreased susceptibility to T1D in NOD.B6 Idd10 congenic mice compared to parental NOD controls. Here we show that the knockout of CD101 within the introgressed B6-derived Idd10 region increased T1D frequency to that of the NOD strain. This loss of protection from T1D was paralleled by decreased Gr1-expressing myeloid cells and FoxP3+ Tregs and an enhanced accumulation of CD4-positive over CD8-positive T lymphocytes in pancreatic tissues. As compared to CD101+/+ NOD.B6 Idd10 donors, adoptive T cell transfers from CD101-/- NOD.B6 Idd10 mice increased T1D frequency in lymphopenic NOD scid and NOD.B6 Idd10 scid recipients. Increased T1D frequency correlated with a more rapid expansion of the transferred CD101-/- T cells and a lower proportion of recipient Gr1-expressing myeloid cells in the pancreatic lymph nodes. Fewer of the Gr1+ cells in the recipients receiving CD101-/- T cells expressed CD101 and the cells had lower levels of IL-10 and TGF-β mRNA. Thus, our results connect the Cd101 haplotype-dependent protection from T1D to an anti-diabetogenic function of CD101-expressing Tregs and Gr1-positive myeloid cells and confirm the identity of Cd101 as Idd10.
Collapse
Affiliation(s)
- Jochen Mattner
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Javid P. Mohammed
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Michael E. Fusakio
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Claudia Giessler
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carl-Philipp Hackstein
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Opoka
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Marius Wrage
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Schey
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Clark
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Heather I. Fraser
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Daniel B. Rainbow
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Linda S. Wicker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Tahvili S, Törngren M, Holmberg D, Leanderson T, Ivars F. Paquinimod prevents development of diabetes in the non-obese diabetic (NOD) mouse. PLoS One 2018; 13:e0196598. [PMID: 29742113 PMCID: PMC5942776 DOI: 10.1371/journal.pone.0196598] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
Quinoline-3-carboxamides (Q compounds) are immunomodulatory compounds that have shown efficacy both in autoimmune disease and cancer. We have in here investigated the impact of one such compound, paquinimod, on the development of diabetes in the NOD mouse model for type I diabetes (T1D). In cohorts of NOD mice treated with paquinimod between weeks 10 to 20 of age and followed up until 40 weeks of age, we observed dose-dependent reduction in incidence of disease as well as delayed onset of disease. Further, in contrast to untreated controls, the majority of NOD mice treated from 15 weeks of age did not develop diabetes at 30 weeks of age. Importantly, these mice displayed significantly less insulitis, which correlated with selectively reduced number of splenic macrophages and splenic Ly6Chi inflammatory monocytes at end point as compared to untreated controls. Collectively, these results demonstrate that paquinimod treatment can significantly inhibit progression of insulitis to T1D in the NOD mouse. We propose that the effect of paquinimod on disease progression may be related to the reduced number of these myeloid cell populations. Our finding also indicates that this compound could be a candidate for clinical development towards diabetes therapy in humans.
Collapse
Affiliation(s)
- Sahar Tahvili
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Dan Holmberg
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Leanderson
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Active Biotech AB, Lund, Sweden
| | - Fredrik Ivars
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Drexhage HA, Dik WA, Leenen PJM, Versnel MA. The Immune Pathogenesis of Type 1 Diabetes: Not Only Thinking Outside the Cell but Also Outside the Islet and Out of the Box. Diabetes 2016; 65:2130-3. [PMID: 27456621 DOI: 10.2337/dbi16-0030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hemmo A Drexhage
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wim A Dik
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marjan A Versnel
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
7
|
Ryall CL, Viloria K, Lhaf F, Walker AJ, King A, Jones P, Mackintosh D, McNeice R, Kocher H, Flodstrom-Tullberg M, Edling C, Hill NJ. Novel role for matricellular proteins in the regulation of islet β cell survival: the effect of SPARC on survival, proliferation, and signaling. J Biol Chem 2014; 289:30614-30624. [PMID: 25204658 DOI: 10.1074/jbc.m114.573980] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding the mechanisms regulating islet growth and survival is critical for developing novel approaches to increasing or sustaining β cell mass in both type 1 and type 2 diabetes patients. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that is important for the regulation of cell growth and adhesion. Increased SPARC can be detected in the serum of type 2 diabetes patients. The aim of this study was to investigate the role of SPARC in the regulation of β cell growth and survival. We show using immunohistochemistry that SPARC is expressed by stromal cells within islets and can be detected in primary mouse islets by Western blot. SPARC is secreted at high levels by pancreatic stellate cells and is regulated by metabolic parameters in these cells, but SPARC expression was not detectable in β cells. In islets, SPARC expression is highest in young mice, and is also elevated in the islets of non-obese diabetic (NOD) mice compared with controls. Purified SPARC inhibits growth factor-induced signaling in both INS-1 β cells and primary mouse islets, and inhibits IGF-1-induced proliferation of INS-1 β cells. Similarly, exogenous SPARC prevents IGF-1-induced survival of primary mouse islet cells. This study identifies the stromal-derived matricellular protein SPARC as a novel regulator of islet survival and β cell growth.
Collapse
Affiliation(s)
- Claire L Ryall
- Diabetes and Cardiovascular Research Group, Kingston University, Kingston upon Thames, United Kingdom
| | - Katrina Viloria
- Diabetes and Cardiovascular Research Group, Kingston University, Kingston upon Thames, United Kingdom
| | - Fadel Lhaf
- Diabetes and Cardiovascular Research Group, Kingston University, Kingston upon Thames, United Kingdom
| | - Anthony J Walker
- School of Life Sciences, and Kingston University, Kingston upon Thames, United Kingdom
| | - Aileen King
- Diabetes Research Group, Division of Reproduction & Endocrinology, King's College London, London, United Kingdom
| | - Peter Jones
- Diabetes Research Group, Division of Reproduction & Endocrinology, King's College London, London, United Kingdom
| | - David Mackintosh
- Diabetes and Cardiovascular Research Group, Kingston University, Kingston upon Thames, United Kingdom
| | - Rosemary McNeice
- School of Mathematics, Kingston University, Kingston upon Thames, United Kingdom
| | - Hemant Kocher
- Barts Cancer Institute, and Queen Mary University of London, London, United Kingdom
| | - Malin Flodstrom-Tullberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Edling
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom, and
| | - Natasha J Hill
- Diabetes and Cardiovascular Research Group, Kingston University, Kingston upon Thames, United Kingdom.
| |
Collapse
|
8
|
Beumer W, Welzen-Coppens JMC, van Helden-Meeuwsen CG, Gibney SM, Drexhage HA, Versnel MA. The gene expression profile of CD11c+ CD8α- dendritic cells in the pre-diabetic pancreas of the NOD mouse. PLoS One 2014; 9:e103404. [PMID: 25166904 PMCID: PMC4148310 DOI: 10.1371/journal.pone.0103404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/01/2014] [Indexed: 11/19/2022] Open
Abstract
Two major dendritic cell (DC) subsets have been described in the pancreas of mice: The CD11c+ CD8α- DCs (strong CD4+ T cell proliferation inducers) and the CD8α+ CD103+ DCs (T cell apoptosis inducers). Here we analyzed the larger subset of CD11c+ CD8α- DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR) to elucidate abnormalities in underlying gene expression networks. CD11c+ CD8α- DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+ CD8α- DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24) was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+ CD8α- DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+ CD8α- DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS.
Collapse
Affiliation(s)
- Wouter Beumer
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | - Sinead M. Gibney
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Hemmo A. Drexhage
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| | - Marjan A. Versnel
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Quah HS, Miranda-Hernandez S, Khoo A, Harding A, Fynch S, Elkerbout L, Brodnicki TC, Baxter AG, Kay TWH, Thomas HE, Graham KL. Deficiency in type I interferon signaling prevents the early interferon-induced gene signature in pancreatic islets but not type 1 diabetes in NOD mice. Diabetes 2014; 63:1032-40. [PMID: 24353186 DOI: 10.2337/db13-1210] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type I interferons (IFNs) have been implicated in the initiation of islet autoimmunity and development of type 1 diabetes. To directly test their involvement, we generated NOD mice deficient in type I IFN receptors (NOD.IFNAR1(-/-)). Expression of the type I IFN-induced genes Mx1, Isg15, Ifit1, Oas1a, and Cxcr4 was detectable in NOD islets as early as 1 week of age. Of these five genes, expression of Isg15, Ifit1, Oas1a, and Mx1 peaked at 3-4 weeks of age, corresponding with an increase in Ifnα mRNA, declined at 5-6 weeks of age, and increased again at 10-14 weeks of age. Increased IFN-induced gene expression was ablated in NOD.IFNAR1(-/-) islets. Loss of Toll-like receptor 2 (TLR2) resulted in reduced islet expression of Mx1 at 2 weeks of age, but TLR2 or TLR9 deficiency did not change the expression of other IFN-induced genes in islets compared with wild-type NOD islets. We observed increased β-cell major histocompatibility complex class I expression with age in NOD and NOD.IFNAR1(-/-) mice. NOD.IFNAR1(-/-) mice developed insulitis and diabetes at a similar rate to NOD controls. These results indicate type I IFN is produced within islets in young mice but is not essential for the initiation and progression of diabetes in NOD mice.
Collapse
|
10
|
Abstract
Islets form in the pancreas after the first endocrine cells have arisen as either single cells or small cell clusters in the epithelial cords. These cords constitute the developing pancreas in one of its earliest recognizable stages. Islet formation begins at the time the cords transform into a branching ductal system, continues while the ductal system expands, and finally stops before the exocrine tissue of ducts and acini reaches its final expansion. Thus, islets continuously arise from founder cells located in the branching and ramifying ducts. Islets arising from proximal duct cells locate between the exocrine lobules, develop strong autonomic and sensory innervations, and pass their blood to efferent veins (insulo-venous efferent system). Islets arising from cells of more distal ducts locate within the exocrine lobules, respond to nerve impulses ending at neighbouring blood vessels, and pass their blood to the surrounding acini (insulo-acinar portal system). Consequently, the section of the ductal system from which an islet arises determines to a large extent its future neighbouring tissue, architecture, properties, and functions. We note that islets interlobular in position are frequently found in rodents (rats and mice), whereas intralobularly-located, peripheral duct islets prevail in humans and cattle. Also, we expound on bovine foetal Laguesse islets as a prominent foetal type of type 1 interlobular neuro-insular complexes, similar to neuro-insular associations frequently found in rodents. Finally, we consider the probable physiological and pathophysiological implications of the different islet positions within and between species.
Collapse
|
11
|
Gallo PM, Gallucci S. The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity. Front Immunol 2013; 4:138. [PMID: 23772226 PMCID: PMC3677085 DOI: 10.3389/fimmu.2013.00138] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/23/2013] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) initiate and control immune responses, participate in the maintenance of immunological tolerance and are pivotal players in the pathogenesis of autoimmunity. In patients with autoimmune disease and in experimental animal models of autoimmunity, DCs show abnormalities in both numbers and activation state, expressing immunogenic levels of costimulatory molecules and pro-inflammatory cytokines. Exogenous and endogenous danger signals activate DCs to stimulate the immune response. Classic endogenous danger signals are released, activated, or secreted by host cells and tissues experiencing stress, damage, and non-physiologic cell death; and are therefore referred to as damage-associated molecular patterns (DAMPs). Some DAMPs are released from cells, where they are normally sequestered, during necrosis (e.g., heat shock proteins, uric acid, ATP, HMGB1, mitochondria-derived molecules). Others are actively secreted, like Type I Interferons. Here we discuss important DAMPs in the context of autoimmunity. For some, there is a clear pathogenic link (e.g., nucleic acids and lupus). For others, there is less evidence. Additionally, we explore emerging danger signals. These include inorganic materials and man-made technologies (e.g., nanomaterials) developed as novel therapeutic approaches. Some nanomaterials can activate DCs and may trigger unintended inflammatory responses. Finally, we will review “homeostatic danger signals,” danger signals that do not derive directly from pathogens or dying cells but are associated with perturbations of tissue/cell homeostasis and may signal pathological stress. These signals, like acidosis, hypoxia, and changes in osmolarity, also play a role in inflammation and autoimmunity.
Collapse
Affiliation(s)
- Paul M Gallo
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Temple Autoimmunity Center, Temple University School of Medicine , Philadelphia, PA , USA
| | | |
Collapse
|
12
|
Graham KL, Sutherland RM, Mannering SI, Zhao Y, Chee J, Krishnamurthy B, Thomas HE, Lew AM, Kay TWH. Pathogenic mechanisms in type 1 diabetes: the islet is both target and driver of disease. Rev Diabet Stud 2012; 9:148-68. [PMID: 23804258 DOI: 10.1900/rds.2012.9.148] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent advances in our understanding of the pathogenesis of type 1 diabetes have occurred in all steps of the disease. This review outlines the pathogenic mechanisms utilized by the immune system to mediate destruction of the pancreatic beta-cells. The autoimmune response against beta-cells appears to begin in the pancreatic lymph node where T cells, which have escaped negative selection in the thymus, first meet beta-cell antigens presented by dendritic cells. Proinsulin is an important antigen in early diabetes. T cells migrate to the islets via the circulation and establish insulitis initially around the islets. T cells within insulitis are specific for islet antigens rather than bystanders. Pathogenic CD4⁺ T cells may recognize peptides from proinsulin which are produced locally within the islet. CD8⁺ T cells differentiate into effector T cells in islets and then kill beta-cells, primarily via the perforin-granzyme pathway. Cytokines do not appear to be important cytotoxic molecules in vivo. Maturation of the immune response within the islet is now understood to contribute to diabetes, and highlights the islet as both driver and target of the disease. The majority of our knowledge of these pathogenic processes is derived from the NOD mouse model, although some processes are mirrored in the human disease. However, more work is required to translate the data from the NOD mouse to our understanding of human diabetes pathogenesis. New technology, especially MHC tetramers and modern imaging, will enhance our understanding of the pathogenic mechanisms.
Collapse
Affiliation(s)
- Kate L Graham
- St. Vincent´s Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Welzen-Coppens JMC, van Helden-Meeuwsen CG, Drexhage HA, Versnel MA. Abnormalities of dendritic cell precursors in the pancreas of the NOD mouse model of diabetes. Eur J Immunol 2011; 42:186-94. [PMID: 22002898 DOI: 10.1002/eji.201141770] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/08/2011] [Accepted: 10/12/2011] [Indexed: 11/06/2022]
Abstract
The non-obese diabetic (NOD) mouse is a widely used animal model for the study of human diabetes. Before the start of lymphocytic insulitis, DC accumulation around islets of Langerhans is a hallmark for autoimmune diabetes development in this model. Previous experiments indicated that an inflammatory influx of these DCs in the pancreas is less plausible. Here, we investigated whether the pancreas contains DC precursors and whether these precursors contribute to DC accumulation in the NOD pancreas. Fetal pancreases of NOD and control mice were isolated followed by FACS using ER-MP58, Ly6G, CD11b and Ly6C. Sorted fetal pancreatic ER-MP58(+) cells were cultured with GM-CSF and tested for DC markers and antigen processing. CFSE labeling and Ki-67 staining were used to determine cell proliferation in cultures and tissues. Ly6C(hi) and Ly6C(low) precursors were present in fetal pancreases of NOD and control mice. These precursors developed into CD11c(+) MHCII(+) CD86(+) DCs capable of processing DQ-OVA. ER-MP58(+) cells in the embryonic and pre-diabetic NOD pancreas had a higher proliferation capacity. Our observations support a novel concept that pre-diabetic DC accumulation in the NOD pancreas is due to aberrant enhanced proliferation of local precursors, rather than to aberrant "inflammatory infiltration" from the circulation.
Collapse
|
14
|
Tsui H, Paltser G, Chan Y, Dorfman R, Dosch HM. 'Sensing' the link between type 1 and type 2 diabetes. Diabetes Metab Res Rev 2011; 27:913-8. [PMID: 22069284 DOI: 10.1002/dmrr.1279] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Obesity-associated insulin resistance is a core element of metabolic syndrome and type 2 diabetes (T2D). Notably, insulin resistance is also a feature of type 1 diabetes (T1D), where findings in the non-obese diabetic mouse model have implicated transient receptor potential vanilloid-1 (TRPV1+) sensory neurons in local islet inflammation and glucose metabolism. Here, we briefly review the role of TRPV1 in non-obese diabetic (NOD) T1D pathogenesis, highlighting commonalities that suggest TRPV1 may contribute to obesity and T2D as well. With the recently discovered importance of adipose infiltrating lymphocytes in the metabolic disturbances of obesity and T2D, sensory innervation of fat may thus play an analogous role to sensory neurons in the islet--modulating neuroendocrine homeostasis and inflammation. In such a scenario, TRPV1+ sensory nerves would provide the pathoaetiological link connecting the shared metabolic and immunologic features of type 1 diabetes and T2D.
Collapse
Affiliation(s)
- Hubert Tsui
- The Research Institute, Hospital For Sick Children, University of Toronto, Neuroscience and Mental Health Program, Toronto, ON M5G 1X8, Canada.
| | | | | | | | | |
Collapse
|
15
|
Zheng D, Wang Y, Cao Q, Lee VWS, Zheng G, Sun Y, Tan TK, Wang Y, Alexander SI, Harris DCH. Transfused macrophages ameliorate pancreatic and renal injury in murine diabetes mellitus. NEPHRON. EXPERIMENTAL NEPHROLOGY 2011; 118:e87-e99. [PMID: 21311199 DOI: 10.1159/000321034] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Alternatively activated macrophages (M2 macrophages) are able to reduce renal injury in murine adriamycin nephropathy. However, the effect of M2 macrophages in other renal diseases such as diabetic nephropathy remains unknown. METHODS Macrophages were separated from splenocytes and polarized with IL-4 and IL-13 into a protective phenotype. Mice underwent adoptive transfer with M2 macrophages, and then diabetes was induced by tail vein injection with streptozotocin (STZ). Blood glucose levels were monitored daily. Mice were sacrificed at week 10 after STZ. Renal function and histopathological injury were assessed quantitatively. RESULTS Transfused M2 macrophages accumulated progressively in kidneys for up to 10 weeks after STZ. Kidneys from diabetic mice transfused with M2 macrophages had less tubular atrophy, glomerular hypertrophy and interstitial expansion than did control diabetic mice. M2 macrophages suppressed the development of interstitial fibrosis. In addition, the degree of pancreatic islet injury, as assessed by insulin staining, haemoglobin A1c and blood glucose was reduced after transfusion of M2 macrophages. In vivo, activation of kidney endogenous macrophage cytokine expression was inhibited by M2 macrophages. CONCLUSION Our findings show that M2 macrophages can protect against islet and renal injury in streptozotocin-induced diabetes, providing a potential therapeutic strategy for diabetes and diabetic nephropathy.
Collapse
Affiliation(s)
- Dong Zheng
- Centre for Transplant and Renal Research, University of Sydney, Westmead Millennium Institute, Sydney, NSW 2145, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rowe PA, Campbell-Thompson ML, Schatz DA, Atkinson MA. The pancreas in human type 1 diabetes. Semin Immunopathol 2010; 33:29-43. [PMID: 20495921 PMCID: PMC3022158 DOI: 10.1007/s00281-010-0208-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 04/13/2010] [Indexed: 11/24/2022]
Abstract
Type 1 diabetes (T1D) is considered a disorder whose pathogenesis is autoimmune in origin, a notion drawn in large part from studies of human pancreata performed as far back as the 1960s. While studies of the genetics, epidemiology, and peripheral immunity in T1D have been subject to widespread analysis over the ensuing decades, efforts to understand the disorder through analysis of human pancreata have been far more limited. We have reviewed the published literature pertaining to the pathology of the human pancreas throughout all stages in the natural history of T1D. This effort uncovered a series of findings that challenge many dogmas ascribed to T1D and revealed data suggesting the marked heterogeneity in terms of its pathology. An improved understanding and appreciation for pancreatic pathology in T1D could lead to improved disease classification, an understanding of why the disorder occurs, and better therapies for disease prevention and management.
Collapse
Affiliation(s)
- Patrick A Rowe
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
17
|
Nikolic T, Welzen-Coppens JMC, Leenen PJM, Drexhage HA, Versnel MA. Plasmacytoid dendritic cells in autoimmune diabetes - potential tools for immunotherapy. Immunobiology 2009; 214:791-9. [PMID: 19628297 DOI: 10.1016/j.imbio.2009.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which a T-cell-mediated attack destroys the insulin-producing cells of the pancreatic islets. Despite insulin supplementation severe complications ask for novel treatments that aim at cure or delay of the onset of the disease. In spontaneous animal models for diabetes like the nonobese diabetic (NOD) mouse, distinct steps in the pathogenesis of the disease can be distinguished. In the past 10 years it became evident that DC and macrophages play an important role in all three phases of the pathogenesis of T1D. In phase 1, dendritic cells (DC) and macrophages accumulate at the islet edges. In phase 2, DC and macrophages are involved in the activation of autoreactive T cells that accumulate in the pancreas. In the third phase the islets are invaded by macrophages, DC and NK cells followed by the destruction of the beta-cells. Recent data suggest a role for a new member of the DC family: the plasmacytoid DC (pDC). pDC have been found to induce tolerance in experimental models of asthma. Several studies in humans and the NOD mouse support a similar role for pDC in diabetes. Mechanisms found to be involved in tolerance induction by pDC are inhibition of effector T cells, induction of regulatory T cells, production of cytokines and indoleamine 2,3-dioxygenase (IDO). The exact mechanism of tolerance induction by pDC in diabetes remains to be established but the intrinsic tolerogenic properties of pDC provide a promising, yet underestimated target for therapeutic intervention.
Collapse
Affiliation(s)
- Tatjana Nikolic
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Marleau AM, Summers KL, Singh B. Differential contributions of APC subsets to T cell activation in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:5235-49. [PMID: 18390704 DOI: 10.4049/jimmunol.180.8.5235] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite the pivotal role of dendritic cells (DC) in shaping immunity, little is known about their functionality in type 1 diabetes. Moreover, due to the paucity of DC in vivo, functional studies have relied largely upon in vitro-expanded cells to elucidate type 1 diabetes-associated functional abnormalities. In this study, we provide a comprehensive analysis of the functional capabilities of in vivo-derived DC subsets from NOD mice by comparing DC to other NOD APC types and to DC from autoimmune-resistant strains. NOD DC closely resemble those from nonautoimmune strains with respect to costimulation and cytokine production. The exception is the CD8alpha(+)CD11b(-)DC subset which is numerically reduced in NOD spleens, but not in the pancreatic lymph nodes, while DC from both tissues produce little IL-12 in this strain. This defect results in unusual deferral toward macrophage-derived IL-12 in NOD mice; NOD macrophages produce aberrantly high IL-12 levels that can overcompensate for the DC defect in Th1 polarization. APC subset use for autoantigen presentation also differs in NOD mice. NOD B cells overshadow DC at activating islet-reactive T cells, whereas DC and B cells in NOD-resistant mice are functionally comparable. Differential involvement of APC subsets in T cell activation and tolerance induction may prove to be a crucial factor in the selection and expansion of autoreactive T cells.
Collapse
Affiliation(s)
- Annette M Marleau
- Department of Microbiology and Immunology, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
19
|
Newly weaned nonobese diabetic mice show heightened early diabetes sensitivity to multiple low doses of streptozotocin than nondiabetes-prone CD-1 mice: initial beta-cell damage a key trigger for type 1 diabetes? Pancreas 2008; 37:e8-e19. [PMID: 18580436 DOI: 10.1097/mpa.0b013e3181661b1b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES We determined if newly weaned female nonobese diabetic (NOD) mice show greater diabetes sensitivity to dose-adjusted regimens of multiple low doses of streptozotocin (Stz) than nondiabetes-prone CD-1 mice. METHODS Female NOD mice received 5 daily doses of Stz from day 21 (0, 5, 10, 15, 20, 30, and 40 mg/kg body weight) and CD-1 mice 20, 30, and 40 mg. RESULTS : Streptozotocin, at the 15-, 20-, 30-, and 40-mg dose, induced rapid diabetes in NOD mice. By day 100, 90% to 95% of NOD mice became diabetic after the 40- and 30-mg dose and 33% to 40% with the 15- and 20-mg dose. In comparison, only about 50% and 33% of CD-1 mice developed diabetes with the 40- and 30-mg dose, respectively, and 5.5% with the 20-mg dose. In NOD mice, the 20-mg dose also partially suppressed spontaneous diabetes. All diabetic mice displayed insulitis, variable immunostaining for insulin, and redistribution of glucagon and somatostatin cells. Glucose transporter-2 was markedly attenuated in selective beta cells. CONCLUSIONS Newly weaned female NOD mice show heightened early sensitivity to low doses of Stz than CD-1 mice. At diabetes, several beta cells remain and show variable immunostaining for insulin and an attenuated expression for glucose transporter-2. Specific low doses of Stz may also suppress spontaneous diabetes.
Collapse
|
20
|
Fetal Hox11 expression patterns predict defective target organs: a novel link between developmental biology and autoimmunity. Immunol Cell Biol 2008; 86:301-9. [PMID: 18301381 DOI: 10.1038/icb.2008.6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Developmental biology has long been ignored in the etiology and diverse manifestations of autoimmune diseases. Yet a role for development is suggested by intriguing overlaps in particular organs targeted in autoimmune diseases, in this case type 1 diabetes and Sjogren's syndrome. Patients with type 1 diabetes have high rates of co-occurring Sjogren's syndrome, and both conditions are associated with hearing loss and tongue abnormalities. All of these co-occurrences are found in organs tracing their lineage to the developmental transcription factor Hox11, which is expressed in embryonic cells destined for the pancreas, salivary glands, tongue, cranial nerves and cochlea. To determine whether development contributes to autoimmunity, we compared four target organs in NOD mice (an animal model for type 1 diabetes and Sjogren's syndrome) with NOD-SCID mice (which lack lymphocytes) and normal controls. We examined the structure and/or function of the cochlea, salivary glands, pancreas and tongue at early time points after birth. Before the usual time of the onset of type 1 diabetes or Sjogren's syndrome, we show that all four Hox11-derived organs are structurally abnormal in both NOD mice and NOD-SCID mice versus controls. The most striking functional defect is near complete hearing loss occurring before the normal time of the onset of autoimmunity. The hearing loss is associated with severe structural defects in the cochlea, suggesting that near-deafness occurs independent of autoimmune attack. The pancreas and salivary glands are also structurally abnormal in NOD and NOD-SCID mice, but they are functionally normal. This suggests that autoimmune attack of these two organs is required for functional failure. We conclude that a developmental lineage of cells contributes to autoimmunity and predicts which organs may be targeted, either structurally and/or functionally. Taken together, our findings challenge the orthodoxy that autoimmunity is solely caused by a defective immune system.
Collapse
|
21
|
McDuffie M, Maybee NA, Keller SR, Stevens BK, Garmey JC, Morris MA, Kropf E, Rival C, Ma K, Carter JD, Tersey SA, Nunemaker CS, Nadler JL. Nonobese diabetic (NOD) mice congenic for a targeted deletion of 12/15-lipoxygenase are protected from autoimmune diabetes. Diabetes 2008; 57:199-208. [PMID: 17940120 PMCID: PMC2993320 DOI: 10.2337/db07-0830] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE 12/15-lipoxygenase (12/15-LO), one of a family of fatty acid oxidoreductase enzymes, reacts with polyenoic fatty acids to produce proinflammatory lipids. 12/15-LO is expressed in macrophages and pancreatic beta-cells. It enhances interleukin 12 production by macrophages, and several of its products induce apoptosis of beta-cells at nanomolar concentrations in vitro. We had previously demonstrated a role for 12/15-LO in beta-cell damage in the streptozotocin model of diabetes. Since the gene encoding 12/15-LO (gene designation Alox15) lies within the Idd4 diabetes susceptibility interval in NOD mice, we hypothesized that 12/15-LO is also a key regulator of diabetes susceptibility in the NOD mouse. RESEARCH DESIGN AND METHODS We developed NOD mice carrying an inactivated 12/15-LO locus (NOD-Alox15(null)) using a "speed congenic" protocol, and the mice were monitored for development of insulitis and diabetes. RESULTS NOD mice deficient in 12/15-LO develop diabetes at a markedly reduced rate compared with NOD mice (2.5 vs. >60% in females by 30 weeks). Nondiabetic female NOD-Alox15(null) mice demonstrate improved glucose tolerance, as well as significantly reduced severity of insulitis and improved beta-cell mass, when compared with age-matched nondiabetic NOD females. Disease resistance is associated with decreased numbers of islet-infiltrating activated macrophages at 4 weeks of age in NOD-Alox15(null) mice, preceding the development of insulitis. Subsequently, islet-associated infiltrates are characterized by decreased numbers of CD4(+) T cells and increased Foxp3(+) cells. CONCLUSIONS These results suggest an important role for 12/15-LO in conferring susceptibility to autoimmune diabetes in NOD mice through its effects on macrophage recruitment or activation.
Collapse
Affiliation(s)
- Marcia McDuffie
- University of Virginia, P.O. Box 801405, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Role of uncoupling protein UCP2 in cell-mediated immunity: how macrophage-mediated insulitis is accelerated in a model of autoimmune diabetes. Proc Natl Acad Sci U S A 2007; 104:19085-90. [PMID: 18006654 DOI: 10.1073/pnas.0709557104] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Infiltration of inflammatory cells into pancreatic islets of Langerhans and selective destruction of insulin-secreting beta-cells are characteristics of type 1 diabetes. Uncoupling protein 2 (UCP2) is a mitochondrial protein expressed in immune cells. UCP2 controls macrophage activation by modulating the production of mitochondrial reactive oxygen species (ROS) and MAPK signaling. We investigated the role of UCP2 on immune cell activity in type 1 diabetes in Ucp2-deficient mice. Using the model of multiple low-dose streptozotocin (STZ)-induced diabetes, we found that autoimmune diabetes was strongly accelerated in Ucp2-KO mice, compared with Ucp2-WT mice with increased intraislet lymphocytic infiltration. Macrophages from STZ-treated Ucp2-KO mice had increased IL-1beta and nitric oxide (NO) production, compared with WT macrophages. Moreover, more macrophages were recruited in islets of STZ-treated Ucp2-KO mice, compared with Ucp2-WT mice. This finding also was accompanied by increased NO/ROS-induced damage. Altogether, our data show that inflammation is stronger in Ucp2-KO mice and islets, leading to the exacerbated disease in these mice. Our results highlight the mitochondrial protein UCP2 as a new player in autoimmune diabetes.
Collapse
|
23
|
Coutinho-Silva R, Robson T, Beales PE, Burnstock G. Changes in expression of P2X7 receptors in NOD mouse pancreas during the development of diabetes. Autoimmunity 2007; 40:108-16. [PMID: 17364502 DOI: 10.1080/08916930601118841] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study examined the expression of P2X7 receptors in pancreatic islets of the non-obese diabetic (NOD) mouse model of human autoimmune insulin-dependent diabetes mellitus, to determine whether they are involved in islet cell destruction during early- and late-developing diabetes. Pancreatic cells containing glucagon (alpha-cells), insulin (beta-cells) and somatostatin (delta-cells) were co-localized with P2X7 receptors. We examined P2X7 receptor expression in normal and diabetic spleens using flow cytometry. In non-diabetic NOD controls, P2X7 receptors were expressed in glucagon-containing cells at the periphery of islets, being consistent with previous studies. In early NOD diabetes (12 weeks), there was migration of peripheral P2X7 receptor positive, glucagon-containing cells into the center of islets. In late NOD diabetes (34 weeks), P2X7 receptor- and glucagon-stained alpha-cells were gone from islets. Migration of macrophages and dendritic cells into islets took place, but they lacked P2X7 immunoreactivity. There was no significant difference in the percentage of splenic macrophages stained for P2X7 receptors from control and diabetic spleens. In conclusion, in the development of early to late diabetes, there is a down-regulation of P2X7 receptors on islet cells and a loss of alpha- and beta-cell populations. P2X7 receptor signalling might be involved in alpha-cell clearance from late diabetic islets.
Collapse
Affiliation(s)
- Robson Coutinho-Silva
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London, UK
| | | | | | | |
Collapse
|
24
|
Razavi R, Chan Y, Afifiyan FN, Liu XJ, Wan X, Yantha J, Tsui H, Tang L, Tsai S, Santamaria P, Driver JP, Serreze D, Salter MW, Dosch HM. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. Cell 2007; 127:1123-35. [PMID: 17174891 DOI: 10.1016/j.cell.2006.10.038] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 08/22/2006] [Accepted: 10/03/2006] [Indexed: 11/26/2022]
Abstract
In type 1 diabetes, T cell-mediated death of pancreatic beta cells produces insulin deficiency. However, what attracts or restricts broadly autoreactive lymphocyte pools to the pancreas remains unclear. We report that TRPV1(+) pancreatic sensory neurons control islet inflammation and insulin resistance. Eliminating these neurons in diabetes-prone NOD mice prevents insulitis and diabetes, despite systemic persistence of pathogenic T cell pools. Insulin resistance and beta cell stress of prediabetic NOD mice are prevented when TRPV1(+) neurons are eliminated. TRPV1(NOD), localized to the Idd4.1 diabetes-risk locus, is a hypofunctional mutant, mediating depressed neurogenic inflammation. Delivering the neuropeptide substance P by intra-arterial injection into the NOD pancreas reverses abnormal insulin resistance, insulitis, and diabetes for weeks. Concordantly, insulin sensitivity is enhanced in trpv1(-/-) mice, whereas insulitis/diabetes-resistant NODxB6Idd4-congenic mice, carrying wild-type TRPV1, show restored TRPV1 function and insulin sensitivity. Our data uncover a fundamental role for insulin-responsive TRPV1(+) sensory neurons in beta cell function and diabetes pathoetiology.
Collapse
Affiliation(s)
- Rozita Razavi
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Research Institute, University of Toronto, Toronto, ON, Canada, M5G 1X8
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Planas R, Alba A, Carrillo J, Puertas MC, Ampudia R, Pastor X, Okamoto H, Takasawa S, Gurr W, Pujol-Borrell R, Verdaguer J, Vives-Pi M. Reg (regenerating) gene overexpression in islets from non-obese diabetic mice with accelerated diabetes: role of IFNbeta. Diabetologia 2006; 49:2379-87. [PMID: 16900387 DOI: 10.1007/s00125-006-0365-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 06/01/2006] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS The expression of IFNbeta in beta cells results in accelerated type 1 diabetes. The REG family of beta cell proliferation factors have been described as autoantigens in autoimmune diabetes. The aim of this study was to determine the effect of IFNbeta on Reg expression, and the implications of this in terms of autoimmunity. METHODS Reg gene expression was determined in islets from non-obese diabetic (NOD) RIP-HuIFNbeta mice by cDNA microarray, quantitative real-time PCR and immunohistochemistry. The effect of IFNbeta on Reg1 and Reg2 expression was assessed in the NOD insulinoma cell line NIT-1. IL-6, known to induce Reg expression, was measured in the insulitis microenvironment. Morphological studies were carried out to determine islet enlargement in this model. RESULTS Reg2 was upregulated in islets from the NOD RIP-HuIFNbeta mice at the onset of the autoimmune attack. IFNbeta upregulates Reg1 and Reg2 genes in NIT-1 cells. The expression of Il6 was increased in islets from transgenic mice and in NIT-1 cells exposed to HuIFNbeta. Moreover, islets from transgenic mice were enlarged compared with those from wild-type mice. CONCLUSIONS/INTERPRETATION Reg overexpression correlates well with the acceleration of diabetes in this model. The upregulation of Reg suggests that islets try to improve hyperglycaemia by regenerating the cells lost in the autoimmune attack. Reg expression is regulated by several factors such as inflammation. Therefore, the overexpression of an IFNbeta-induced autoantigen (REG) in the islets during inflammation might contribute to the premature onset of diabetes.
Collapse
Affiliation(s)
- R Planas
- Laboratory of Immunobiology for Research and Diagnostic Applications (LIRAD), Blood and Tissue Bank, Germans Trias i Pujol University Hospital, PO Box 72, 08916, Badalona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Marée AFM, Kublik R, Finegood DT, Edelstein-Keshet L. Modelling the onset of Type 1 diabetes: can impaired macrophage phagocytosis make the difference between health and disease? PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2006; 364:1267-82. [PMID: 16608707 DOI: 10.1098/rsta.2006.1769] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A wave of apoptosis (programmed cell death) occurs normally in pancreatic beta-cells of newborn mice. We previously showed that macrophages from non-obese diabetic (NOD) mice become activated more slowly and engulf apoptotic cells at a lower rate than macrophages from control (Balb/c) mice. It has been hypothesized that this low clearance could result in secondary necrosis, escalating inflammation and self-antigen presentation that later triggers autoimmune, Type 1 diabetes (T1D). We here investigate whether this hypothesis could offer a reasonable and parsimonious explanation for onset of T1D in NOD mice. We quantify variants of the Copenhagen model (Freiesleben De Blasio et al. 1999 Diabetes 48, 1677), based on parameters from NOD and Balb/c experimental data. We show that the original Copenhagen model fails to explain observed phenomena within a reasonable range of parameter values, predicting an unrealistic all-or-none disease occurrence for both strains. However, if we take into account that, in general, activated macrophages produce harmful cytokines only when engulfing necrotic (but not apoptotic) cells, then the revised model becomes qualitatively and quantitatively reasonable. Further, we show that known differences between NOD and Balb/c mouse macrophage kinetics are large enough to account for the fact that an apoptotic wave can trigger escalating inflammatory response in NOD, but not Balb/c mice. In Balb/c mice, macrophages clear the apoptotic wave so efficiently, that chronic inflammation is prevented.
Collapse
Affiliation(s)
- Athanasius F M Marée
- Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | | | | | | |
Collapse
|
27
|
Chong AS, Shen J, Tao J, Yin D, Kuznetsov A, Hara M, Philipson LH. Reversal of diabetes in non-obese diabetic mice without spleen cell-derived beta cell regeneration. Science 2006; 311:1774-5. [PMID: 16556844 DOI: 10.1126/science.1123510] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Autoimmune destruction of beta cells is the predominant cause of type 1 diabetes mellitus (T1DM) in humans and is modeled in non-obese diabetic (NOD) mice. Many therapeutic interventions prevent the development of T1DM in NOD mice, but few can induce its reversal once established. Intervention with Freund's complete adjuvant, semi-allogeneic splenocytes, and temporary islet transplantation has been reported to cure NOD mice of established T1DM. Using the same approach, we report here that this treatment cured 32% of NOD mice of established diabetes (>340 milligrams per deciliter blood glucose), although beta cells in these mice were not derived from donor splenocytes.
Collapse
Affiliation(s)
- Anita S Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Allergic asthma is one of the most common chronic diseases in western society, characterized by variable airway obstruction, mucus hypersecretion and infiltration of the airway wall with T-helper type 2 (Th2) cells, eosinophils and mast cells. If we are to devise new causal therapies for this disease, it is important to elucidate how Th2 cells are activated and respond to intrinsically harmless allergens. Dendritic cells (DCs) are the most important antigen-presenting cells in the lung and are mainly recognized for their exceptional potential to generate a primary immune response and sensitization to aeroallergens. Much less attention has been paid to the role of DCs in established inflammation. Based on functional studies in a murine model for asthma, in this review article, we propose that DCs are essential for generating allergen-specific effector Th2 responses in ongoing inflammation in sensitized mice. A better understanding of the role of DCs in the maintenance of the inflammatory response to allergens in asthma should lead to new therapeutic approaches intervening at the top of the inflammatory cascade.
Collapse
Affiliation(s)
- L S van Rijt
- Department of Pulmonary Medicine, Erasmus University Medical Center, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
| | | |
Collapse
|
29
|
Bouma G, Coppens JMC, Lam-Tse WK, Luini W, Sintnicolaas K, Levering WH, Sozzani S, Drexhage HA, Versnel MA. An increased MRP8/14 expression and adhesion, but a decreased migration towards proinflammatory chemokines of type 1 diabetes monocytes. Clin Exp Immunol 2005; 141:509-17. [PMID: 16045741 PMCID: PMC1809454 DOI: 10.1111/j.1365-2249.2005.02865.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the early development of type 1 diabetes macrophages and dendritic cells accumulate around the islets of Langerhans at sites of fibronectin expression. It is thought that these macrophages and dendritic cells are derived from blood monocytes. Previously, we showed an increased serum level of MRP8/14 in type 1 diabetes patients that induced healthy monocytes to adhere more strongly to fibronectin (FN). Here we show that MRP8/14 is expressed and produced at a higher level by type 1 diabetes monocytes, particularly after adhesion to FN, creating a positive feedback mechanism for a high fibronectin-adhesive capacity. Also adhesion to endothelial cells was increased in type 1 diabetes monocytes. Despite this increased adhesion the transendothelial migration of monocytes of type 1 diabetes patients was decreased towards the proinflammatory chemokines CCL2 and CCL3. Because non-obese diabetic (NOD) mouse monocytes show a similar defective proinflammatory migration, we argue that an impaired monocyte migration towards proinflammatory chemokines might be a hallmark of autoimmune diabetes. This hampered monocyte response to proinflammatory chemokines questions whether the early macrophage and dendritic cell accumulation in the diabetic pancreas originates from an inflammatory-driven influx of monocytes. We also show that the migration of type 1 diabetes monocytes towards the lymphoid tissue-related CCL19 was increased and correlated with an increased CCR7 surface expression on the monocytes. Because NOD mice show a high expression of these lymphoid tissue-related chemokines in the early pancreas it is more likely that the early macrophage and dendritic cell accumulation in the diabetic pancreas is related to an aberrant high expression of lymphoid tissue-related chemokines in the pancreas.
Collapse
Affiliation(s)
- G Bouma
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bouma G, Coppens JMC, Mourits S, Nikolic T, Sozzani S, Drexhage HA, Versnel MA. Evidence for an enhanced adhesion of DC to fibronectin and a role of CCL19 and CCL21 in the accumulation of DC around the pre-diabetic islets in NOD mice. Eur J Immunol 2005; 35:2386-96. [PMID: 16047341 DOI: 10.1002/eji.200526251] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The non-obese diabetic (NOD) mouse is a widely used animal model for the study of human diabetes. The lymphocytic (peri-)insulitis is preceded by an early accumulation of dendritic cells (DC) around the islets of Langerhans. This DC accumulation is thought to derive from an influx of monocytes attracted by pro-inflammatory chemokines. Besides chemokines, extracellular matrix (ECM) proteins play an important role in the accumulation of leukocytes in tissues. We studied the expression of the chemokines CCL2, CCL5, CXCL10, CCL19 and CCL21 over time in pancreases of NOD and control mice by ELISA on pancreas lysates as well as by immunohistochemistry. In addition, we studied the adhesive capacity of bone marrow-derived DC (BMDC) to ECM components. DC in the NOD pancreas accumulated at sites with an intense expression of fibronectin. In vitro, NOD BMDC showed increased fibronectin adhesion and increased VLA-5 expression. At the time of early DC accumulation (<10 wk), the lymphoid tissue-related chemokines CCL19 and CCL21 were increased. Our findings support the view that the early accumulation of DC around the NOD islets is not the consequence of an enhanced attraction of precursors and immature DC by pro-inflammatory chemokines. It rather might be the consequence of an aberrantly enhanced adhesion and retention of NOD DC.
Collapse
Affiliation(s)
- Gerben Bouma
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
31
|
Moore DJ, Noorchashm H, Lin TH, Greeley SA, Naji A. NOD B-cells are insufficient to incite T-cell-mediated anti-islet autoimmunity. Diabetes 2005; 54:2019-25. [PMID: 15983202 DOI: 10.2337/diabetes.54.7.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although it is well established that B-cells are required for the development of diabetes in the nonobese diabetic (NOD) mouse, the nature of their role remains unknown. Herein, we investigate the hypothesis that B-cells in this autoimmune background actively disrupt the tolerant state of those T-cells with which they interact. We demonstrate that NOD B-cells express elevated levels of crucial molecules involved in antigen presentation (including CD21/35, major histocompatibility complex class II, and CD40), alterations that invite the possibility of inappropriate T-cell activation. However, when chimeric animals are generated in which all B-cells are NOD-derived, a tolerant state is maintained. These data demonstrate that although B-cells are required for the development of autoimmunity, they are not sufficient to disrupt established tolerance. Moreover, non-B-cell antigen-presenting cells may be the critical actors in the establishment of the tolerant state; this function may be absent in NOD mice as they are characterized by deficient professional antigen-presenting cell function.
Collapse
Affiliation(s)
- Daniel J Moore
- Department of Pediatrics, Vanderbilt Children's Hospital, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
32
|
van Rijt LS, Jung S, Kleinjan A, Vos N, Willart M, Duez C, Hoogsteden HC, Lambrecht BN. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. ACTA ACUST UNITED AC 2005; 201:981-91. [PMID: 15781587 PMCID: PMC2213109 DOI: 10.1084/jem.20042311] [Citation(s) in RCA: 484] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although dendritic cells (DCs) play an important role in sensitization to inhaled allergens, their function in ongoing T helper (Th)2 cell-mediated eosinophilic airway inflammation underlying bronchial asthma is currently unknown. Here, we show in an ovalbumin (OVA)-driven murine asthma model that airway DCs acquire a mature phenotype and interact with CD4(+) T cells within sites of peribronchial and perivascular inflammation. To study whether DCs contributed to inflammation, we depleted DCs from the airways of CD11c-diphtheria toxin (DT) receptor transgenic mice during the OVA aerosol challenge. Airway administration of DT depleted CD11c(+) DCs and alveolar macrophages and abolished the characteristic features of asthma, including eosinophilic inflammation, goblet cell hyperplasia, and bronchial hyperreactivity. In the absence of CD11c(+) cells, endogenous or adoptively transferred CD4(+) Th2 cells did not produce interleukin (IL)-4, IL-5, and IL-13 in response to OVA aerosol. In CD11c-depleted mice, eosinophilic inflammation and Th2 cytokine secretion were restored by adoptive transfer of CD11c(+) DCs, but not alveolar macrophages. These findings identify lung DCs as key proinflammatory cells that are necessary and sufficient for Th2 cell stimulation during ongoing airway inflammation.
Collapse
Affiliation(s)
- Leonie S van Rijt
- Department of Pulmonary Medicine, Erasmus MC, 3015 GE Rotterdam, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bouma G, Nikolic T, Coppens JMC, van Helden-Meeuwsen CG, Leenen PJM, Drexhage HA, Sozzani S, Versnel MA. NOD mice have a severely impaired ability to recruit leukocytes into sites of inflammation. Eur J Immunol 2005; 35:225-35. [PMID: 15593124 DOI: 10.1002/eji.200425513] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The accumulation of macrophages (M Phi) and dendritic cells (DC) in the pancreas plays a crucial role in the pathogenesis of autoimmune diabetes. We studied the recruitment of monocytes, M Phi and DC to sites of inflammation, i.e. the peritoneal cavity and a subcutaneously elicited air pouch in the NOD mouse model of autoimmune diabetes. The leukocyte recruitment was studied from 1 to 7 days after injection of thioglycollate (peritoneum), C5a (peritoneum, air pouch), CCL2 and CCL3 (air pouch). C57BL/6 and BALB/c mice served as controls. Morphological and flow cytometric analysis of the recruited cells was performed, IL-1 beta, TNF-alpha, IL-6, IL-12 and IL-10 in exudates measured, and in vitro CCL2-chemotaxis of exudate M Phi (Boyden chamber) determined. NOD mice were strongly impaired in the recruitment of M Phi, DC, monocytes, and granulocytes. Chemokine-injected air pouches of NOD mice showed an increased IL-10 and a decreased IL-1 beta level, while the other cytokines were normally or very lowly expressed. In addition, NOD exudate M Phi displayed an impaired in vitro CCL2-induced migration. Our data show that NOD mice have an impaired ability to recruit leukocytes into sites of inflammation elicited in the peritoneum and the air pouch. A raised IL-10/IL-1 beta ratio at these sites and a deficient migratory capacity of NOD monocytes are important determinants in this impairment.
Collapse
Affiliation(s)
- Gerben Bouma
- Department of Immunology, Erasmus MC, 3015 GE Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sia C, Homo-Delarche F. Tolerance induction and endogenous regeneration of pancreatic beta-cells in established autoimmune diabetes. Rev Diabet Stud 2005; 1:198-206. [PMID: 17491705 PMCID: PMC1783694 DOI: 10.1900/rds.2004.1.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Studies aimed at the understanding of the multifactorial development of autoimmune diabetes have made substantial contributions toward elucidating the molecular mechanisms that open the road to an effective prevention of defective immune responses. Immunomodulatory regimens capable of inducing tolerance are shown to be effective even in the reversal of established autoimmune diabetes in animal models. Experimental trials including the reeducation of autoreactive T cells, depletion of macrophages, dendritic cells, and T cells, as well as the use of monoclonal antibodies, have yielded encouraging results, but have not yet been translated into beneficial clinical outcomes. In addition, we are now seeing an emergence of promising new directions aimed at the induction of islet regeneration by endogenous factors, suggesting that the repair of pancreatic tissue is possible without the need for an engraftment of donor tissue. These recent waves of technological progress have injected new hope for a combined therapy to offer diabetic patients long-term benefits of insulin independence. This article reviews the latest findings on diabetic pathogenesis and discusses promising avenues to tolerance induction and islet regeneration.
Collapse
Affiliation(s)
- Charles Sia
- Department of Immunology, United Biomedical Inc., 25 Davids Drive, Hauppage, New York 11788, USA.
| | | |
Collapse
|
35
|
Nikolic T, Bunk M, Drexhage HA, Leenen PJM. Bone Marrow Precursors of Nonobese Diabetic Mice Develop into Defective Macrophage-Like Dendritic Cells In Vitro. THE JOURNAL OF IMMUNOLOGY 2004; 173:4342-51. [PMID: 15383563 DOI: 10.4049/jimmunol.173.7.4342] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The NOD mouse spontaneously develops autoimmune diabetes. Dendritic cells (DC) play a crucial role in the autoimmune response. Previous studies have reported a defective DC generation in vitro from the NOD mouse bone marrow (BM), but a deviated development of myeloid precursors into non-DC in response to GM-CSF was not considered. In this study, we demonstrate several abnormalities during myeloid differentiation of NOD BM precursors using GM-CSF in vitro. 1) We found reduced proliferation and increased cell death in NOD cultures, which explain the previously reported low yield of DC progeny in NOD. Cell yield in NOR cultures was normal. 2) In a detailed analysis GM-CSF-stimulated cultures, we observed in both NOD and NOR mice an increased frequency of macrophages, identified as CD11c(+)/MHCII(-) cells with typical macrophage morphology, phenotype, and acid phosphatase activity. This points to a preferential maturation of BM precursors into macrophages in mice with the NOD background. 3) The few CD11c(+)/MHCII(high) cells that we obtained from NOD and NOR cultures, which resembled prototypic mature DC, appeared to be defective in stimulating allogeneic T cells. These DC had also strong acid phosphatase activity and elevated expression of monocyte/macrophage markers. In conclusion, in this study we describe a deviated development of myeloid BM precursors of NOD and NOR mice into macrophages and macrophage-like DC in vitro. Potentially, these anomalies contribute to the dysfunctional regulation of tolerance in NOD mice yet are insufficient to induce autoimmune diabetes because they occurred partly in NOR mice.
Collapse
Affiliation(s)
- Tatjana Nikolic
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
36
|
Tsui H, Winer S, Jakowsky G, Dosch HM. Neuronal elements in the pathogenesis of type 1 diabetes. Rev Endocr Metab Disord 2003; 4:301-10. [PMID: 14501181 DOI: 10.1023/a:1025374531151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hubert Tsui
- The Hospital For Sick Children, Research Institute, Departments of Pediatrics & Immunology, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
37
|
Yokoo T, Ohashi T, Utsunomiya Y, Okamoto A, Suzuki T, Shen JS, Tanaka T, Kawamura T, Hosoya T. Gene delivery using human cord blood-derived CD34+cells into inflamed glomeruli in NOD/SCID mice. Kidney Int 2003; 64:102-9. [PMID: 12787400 DOI: 10.1046/j.1523-1755.2003.00046.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Bone marrow reconstitution using genetically-modified hematopoietic stem cells has been reported to confer resistance to inflammation and prevent renal injury in glomerulonephritis. Although this strategy has potentials for clinical use, taking hematopoietic stem cells from bone marrow is highly stressful for patients. In this regard, umbilical cord blood may be a useful alternative and, therefore, we focused on their suitability as a source of hematopoietic stem cells for transplantation-based therapy for glomerulonephritis. METHODS CD34+ cells were obtained from human umbilical cord blood, retrovirally transduced with human beta-glucuronidase (HBG) gene, and transplanted into nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. After confirming the successful chimerism, these mice were treated with lipopolysaccharide (LPS), and local HBG expression in glomeruli was examined using immunohistochemical analysis, HBG bioassay, and Western blot analysis. RESULTS Clonogenic assay showed that 88.4 +/- 5.9% burst-forming unit-erythroid (BFU-E), 79.7 +/- 11.4% in colony-forming unit-macrophage (CFU-M), and 81.1 +/- 14.1% in colony-forming unit-granulocyte (CFU-G), respectively, possessed the transgene after transfection, suggesting that precommited cells were susceptible to retroviral infection. Flow cytometric analysis revealed that 24.1 +/- 14.5% of bone marrow cells in these chimera mice expressed human lymphocyte antigen (HLA) 8 weeks after transplantation. Also, clonogenic assay showed that a sustained engraftment of human hematopoietic cells expressed HBG. CD14-positive cells were recruited into the glomeruli upon LPS treatment and they secreted bioactive HBG, suggesting that cord blood-derived CD34+cells may differentiate into monocyte lineage while maintaining the expression of the transgene. CONCLUSION These data indicate that umbilical cord blood cells can be utilized as a source of hematopoietic stem cells for the transplantation-based therapy of glomerulonephritis.
Collapse
Affiliation(s)
- Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Durant S, Geutskens S, Van Blokland SCA, Coulaud J, Alves V, Pleau JM, Versnel M, Drexhage HA, Homo-Delarche F. Proapoptosis and antiapoptosis-related molecules during postnatal pancreas development in control and nonobese diabetic mice: relationship with innervation. J Transl Med 2003; 83:227-39. [PMID: 12594237 DOI: 10.1097/01.lab.0000053914.93282.a5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The mouse pancreas, an immature organ at birth, reaches its adult size and morphology after weaning (3 weeks of age). Around this time, apoptotic phenomena and various types of macrophages are normally present. During development, Fas-Fas ligand (FasL) interactions are known to play a role in apoptotic events involved in tissue remodeling and elimination of damaged cells, and macrophages are routinely observed near apoptotic cells. Apoptosis and Fas-FasL interactions are also thought to be involved in the pathogenesis of autoimmune diseases, particularly type 1 diabetes (T1D). Therefore, we used early postnatal mouse pancreata from three control strains (C57BL/6, DBA/2, BALB/c) and from two strains with the nonobese diabetic (NOD)-related genetic background (the spontaneous T1D NOD model and the lymphocyte-deficient NODscid strain) to study apoptotic phenomena together with the molecular and immunohistochemical expression of proapoptosis (Fas, FasL) and antiapoptosis (Bcl-2) proteins. First, although no major difference in the numbers of total pancreatic apoptotic cells was noted among strains, significantly more FasL(+) expression was detected immunohistochemically in mice with the NOD genetic background than in control pancreata from birth to 1 month of age. Second, FasL(+), Fas(+), and Bcl-2(+) structures seemed to be associated with innervation, regardless of the strain and age. Third, in control and NOD strains, nerves (identified by immunohistochemical labeling of peripherin or neurofilament 200), were often observed in periductular and peri-insular areas. Finally, some peripherin-positive nerves expressed the interferon-inducible protein-10 chemokine, and various types of macrophages were found to be in close proximity. These data highlight an overlooked, innervation-related aspect of normal mouse postnatal pancreas development with possible implications in T1D pathogenesis.
Collapse
Affiliation(s)
- Sylvie Durant
- CNRS UMR 8603 INSERM U25, FRE 2444, Université Paris V, Hôpital Necker, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Saravia FE, Revsin Y, Gonzalez Deniselle MC, Gonzalez SL, Roig P, Lima A, Homo-Delarche F, De Nicola AF. Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: the nonobese diabetic (NOD) and streptozotocin-treated mice. Brain Res 2002; 957:345-53. [PMID: 12445977 DOI: 10.1016/s0006-8993(02)03675-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diabetes can be associated with cerebral dysfunction in humans and animal models of the disease. Moreover, brain anomalies and alterations of the neuroendocrine system are present in type 1 diabetes (T1D) animals, such as the spontaneous nonobese diabetic (NOD) mouse model and/or the pharmacological streptozotocin (STZ)-induced model. Because of the prevalent role of astrocytes in cerebral glucose metabolism and their intimate connection with neurones, we investigated hippocampal astrocyte alterations in prediabetic and diabetic NOD mice and STZ-treated diabetic mice. The number and cell area related to the glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes were quantified in the stratum radiatum region of the hippocampus by computerized image analysis in prediabetic (2, 4 and 8 weeks of age) and diabetic (16-week-old) NOD female mice, age and sex-matched lymphocyte-deficient NODscid and C57BL/6 control mice and, finally, STZ-induced diabetic and vehicle-treated nondiabetic 16-week-old C57BL/6 female mice. Astrocyte number was higher early in life in prediabetic NOD and NODscid mice than in controls, when transient hyperinsulinemia and low glycemia were found in these strains. The number and cell area of GFAP(+) cells further increased after the onset of diabetes in NOD mice. Similarly, in STZ-treated diabetic mice, the number of GFAP(+) cells and cell area were higher than in vehicle-treated mice. In conclusion, astrocyte changes present in genetic and pharmacological models of T1D appear to reflect an adaptive process to alterations of glucose homeostasis.
Collapse
Affiliation(s)
- Flavia E Saravia
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologa y Medicina Experimental, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Marleau AM, Singh B. Myeloid dendritic cells in non-obese diabetic mice have elevated costimulatory and T helper-1-inducing abilities. J Autoimmun 2002; 19:23-35. [PMID: 12367556 DOI: 10.1006/jaut.2002.0597] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Type 1 diabetes (T1D) in the non-obese diabetic (NOD) mouse begins with activation of islet-reactive T helper-1 (Th1) cells by dendritic cells (DCs). Since multiple genetic loci contribute to T1D, we evaluated the hypothesis that NOD DCs possess inherent characteristics that contribute to the autoimmune phenotype. When compared to a representative Th1 (C57BL/6) and Th2 (BALB/C) control strain, in vitro generated NOD myeloid DCs matured normally. Functionally, NOD DCs exhibited higher expression of CD80/86 and IL-12 production during stimulation of nai;ve T cells, even in comparison to C57BL/6 DCs, the prototype strain for vigorous, Th1-biased immunity. These features of NOD DCs translated into aberrantly elevated IFN-gamma synthesis, enhanced T-cell proliferation, and heightened CD69 expression. Further, NOR DCs, from an NOD-related, autoimmune-resistant strain, did not display this hyper-responsiveness, suggesting that these abnormalities are genetic features of NOD DCs that are related to disease pathogenesis. Cumulatively, these results indicate that NOD DCs are inherently biased towards abnormally high costimulation and Th1-induction, two features that would be expected to confer activation and persistence of autoreactive T cells.
Collapse
Affiliation(s)
- Annette M Marleau
- Department of Microbiology and Immunology and John P. Robarts Research Institute, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | |
Collapse
|
41
|
Rosmalen JGM, Leenen PJM, Pelegri C, Drexhage HA, Homo-Delarche F. Islet abnormalities in the pathogenesis of autoimmune diabetes. Trends Endocrinol Metab 2002; 13:209-14. [PMID: 12185667 DOI: 10.1016/s1043-2760(02)00600-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Type 1 diabetes mellitus is a T-cell-mediated autoimmune disease that results in the destruction of the insulin-producing beta cells in the pancreatic islets of Langerhans. In spite of extensive genetic and immunological studies, mainly performed in the non-obese diabetic (NOD) spontaneous mouse model, the etiology of the autoimmune attack remains unknown. Several autoantigens have been identified and numerous studies have suggested a role for defective regulation of immune function. However, this account does not explain why the autoimmune process specifically affects the insulin-producing beta cells. Thus, abnormal immune regulation might explain the predisposition to autoimmunity in general, but additional factors should then determine the target of the autoimmune attack. Here, we review the evidence that abnormalities in islet cell differentiation and function exist that might trigger the immune system towards beta-cell autoimmunity in humans and NOD mice.
Collapse
Affiliation(s)
- Judith G M Rosmalen
- Dept Immunology, Erasmus MC, University Medical Center, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Gysemans C, Van Etten E, Overbergh L, Verstuyf A, Waer M, Bouillon R, Mathieu C. Treatment of autoimmune diabetes recurrence in non-obese diabetic mice by mouse interferon-beta in combination with an analogue of 1alpha,25-dihydroxyvitamin-D3. Clin Exp Immunol 2002; 128:213-20. [PMID: 11985511 PMCID: PMC1906392 DOI: 10.1046/j.1365-2249.2002.01825.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autoimmune diabetes recurrence is in part responsible for islet graft destruction in type 1 diabetic individuals. The aim of the present study was to design treatment modalities able to prevent autoimmune diabetes recurrence after islet transplantation in spontaneously diabetic NOD mice. In order to avoid confusion between autoimmune diabetes recurrence and allograft rejection, we performed syngeneic islet transplantations in spontaneously diabetic NOD mice. Mice were treated with mouse interferon-beta (IFN-beta, 1 x 105 IU/day), a new 14-epi-1,25-(OH)2D3-analogue (TX 527, 5 microg/kg/day) and cyclosporin A (CsA, 7.5 mg/kg/day) as single substances and in combinations. Treatment was stopped either 20 days (IFN-beta and CsA) or 30 days (TX 527) after transplantation. Autoimmune diabetes recurred in 100% of control mice (MST 11 days). None of the mono-therapies significantly prolonged islet graft survival. Combining CsA with TX 527 maintained graft function in 67% of recipients as long as treatment was given (MST 31 days, P < 0.01 versus controls). Interestingly, 100% of the IFN-beta plus TX 527-treated mice had normal blood glucose levels during treatment, and even had a more pronounced prolongation of graft survival (MST 62 days, P < 0.005 versus controls). Cytokine mRNA analysis of the grafts 6 days after transplantation revealed a significant decrease in IL-2, IFN-gamma and IL-12 messages in both IFN-beta plus TX 527- and CsA plus TX 527-treated mice, while only in the IFN-beta with TX 527 group were higher levels of IL-10 transcripts observed. Therefore, we conclude that a combination of IFN-beta and TX 527 delays autoimmune diabetes recurrence in islet grafts in spontaneously diabetic NOD mice.
Collapse
Affiliation(s)
- C Gysemans
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Dendritic cells (DCs) represent a heterogeneous population of professional antigen-presenting cells. Precursor cells move via the blood to peripheral tissues. These immature DCs can take up invading pathogens and then rapidly migrate to the draining secondary lymphoid organs. Converted into antigen-presenting mature DCs, these cells are able to prime naive T cells and to initiate an adoptive immune response. The extraordinary functional profile suggests that, under certain preconditions, DCs may represent an ideal vector in the immunotherapy of cancer and infectious diseases
Collapse
Affiliation(s)
- R Keller
- Department of Pathology, Institute of Experimental Immunology, University of Zurich, CH-8091, Zurich, Switzerland
| |
Collapse
|
44
|
Pelegri C, Rosmalen JGM, Durant S, Throsby M, Alvès V, Coulaud J, Esling A, Pléau JM, Drexhage HA, Homo-Delarche F. Islet Endocrine-Cell Behavior From Birth Onward in Mice With the Nonobese Diabetic Genetic Background. Mol Med 2001. [DOI: 10.1007/bf03402214] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
45
|
Homo-Delarche F. Is pancreas development abnormal in the non-obese diabetic mouse, a spontaneous model of type I diabetes? Braz J Med Biol Res 2001; 34:437-47. [PMID: 11285454 DOI: 10.1590/s0100-879x2001000400002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Despite extensive genetic and immunological research, the complex etiology and pathogenesis of type I diabetes remains unresolved. During the last few years, our attention has been focused on factors such as abnormalities of islet function and/or microenvironment, that could interact with immune partners in the spontaneous model of the disease, the non-obese diabetic (NOD) mouse. Intriguingly, the first anomalies that we noted in NOD mice, compared to control strains, are already present at birth and consist of 1) higher numbers of paradoxically hyperactive beta cells, assessed by in situ preproinsulin II expression; 2) high percentages of immature islets, representing islet neogenesis related to neonatal beta-cell hyperactivity and suggestive of in utero beta-cell stimulation; 3) elevated levels of some types of antigen-presenting cells and FasL+ cells, and 4) abnormalities of extracellular matrix (ECM) protein expression. However, the colocalization in all control mouse strains studied of fibroblast-like cells (anti-TR-7 labeling), some ECM proteins (particularly, fibronectin and collagen I), antigen-presenting cells and a few FasL+ cells at the periphery of islets undergoing neogenesis suggests that remodeling phenomena that normally take place during postnatal pancreas development could be disturbed in NOD mice. These data show that from birth onwards there is an intricate relationship between endocrine and immune events in the NOD mouse. They also suggest that tissue-specific autoimmune reactions could arise from developmental phenomena taking place during fetal life in which ECM-immune cell interaction(s) may play a key role.
Collapse
Affiliation(s)
- F Homo-Delarche
- CNRS UMR 8603, Université Paris V, Hôpital Necker, 161, rue de Sévres, 55015 Paris, France.
| |
Collapse
|
46
|
Rosmalen JG, Pigmans MJ, Kersseboom R, Drexhage HA, Leenen PJ, Homo-Delarche F. Sex steroids influence pancreatic islet hypertrophy and subsequent autoimmune infiltration in nonobese diabetic (NOD) and NODscid mice. J Transl Med 2001; 81:231-9. [PMID: 11232645 DOI: 10.1038/labinvest.3780231] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Female nonobese diabetic (NOD) mice more frequently develop autoimmune diabetes than NOD males. Orchidectomy of the latter aggravates insulitis and diabetes. Because clear differences in immune function have not been observed between prediabetic females and males, before or after castration, we hypothesized that sex-related differences in diabetes incidence are related to target organ-specific actions of sex steroids. Previously, we showed that prediabetic NOD females develop hyperinsulinemia and subsequently mega-islets. Infiltration of the first inflammatory leukocytes is predominantly associated with these mega-islets. Here, we determined the relationship between sex hormones, mega-islet formation, and infiltrating cells in NOD and nonobese diabetic/severe combined immune-deficient (NODscid) mice. Mega-islet formation was reduced in NOD males compared with NOD females, and orchidectomy increased it, indicating a relationship between androgen levels and mega-islet formation. Moreover, enhanced mega-islet formation in castrated NOD males was associated with increased numbers of infiltrating leukocytes. Castrated NODscid males also exhibited increased mega-islet formation and dendritic cell infiltration, indicating that lymphocytes are not required for castration-induced effects. In conclusion, we show that androgens influence pancreatic islets and autoimmune infiltration in NOD and NODscid mice. This suggests that the gender difference in diabetes incidence in NOD mice is related to target organ-specific androgen effects.
Collapse
Affiliation(s)
- J G Rosmalen
- Department of Immunology, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Falcone M, Yeung B, Tucker L, Rodriguez E, Krahl T, Sarvetnick N. IL-4 triggers autoimmune diabetes by increasing self-antigen presentation within the pancreatic Islets. Clin Immunol 2001; 98:190-9. [PMID: 11161975 DOI: 10.1006/clim.2000.4979] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several findings have recently questioned the long held hypothesis that cytokines belonging to the Th2 pathway are protective in T-cell-mediated autoimmunity. Among them, there is our previous report that pancreatic expression of IL-4 activated islet antigen-specific BDC2.5 T cells and rendered them able to trigger insulin-dependent diabetes mellitus in ins-IL-4/BDC2.5 mice (Mueller et al., Immunity, 7, 1997). Here we analyze the mechanisms underlying IL-4-mediated activation of the self-reactive BDC2.5 T cells. IL-4 is mainly known as the Th2-driving cytokine. However, IL-4 is also critical for DC maturation and upregulation of antigen uptake and presentation by macrophages. In our model, we found that pancreatic expression of IL-4 activated self-reactive BDC2.5 T cells by increasing islet antigen presentation by macrophages and dendritic cells. IL-4 could have triggered self-antigen presentation within the pancreatic islets both by driving maturation of DC from a tolerizing to a priming state and by increasing self-antigen uptake by macrophages.
Collapse
Affiliation(s)
- M Falcone
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | | | | | | | | | | |
Collapse
|