1
|
Pal R, Thomas CM, Salamat K, Jenkins SJ, Bradford BM, Mabbott NA. Acute LPS exposure enhances susceptibility to peripheral prion infection. Sci Rep 2025; 15:9754. [PMID: 40119036 PMCID: PMC11928655 DOI: 10.1038/s41598-025-94003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
After peripheral infections, the initial accumulation of prions within secondary lymphoid tissues is essential for the transmission of disease to the brain. Macrophages are considered to sequester or destroy prions, but little was known of their impact on disease susceptibility after a peripheral infection. Inflammation in the peritoneal cavity can trigger the macrophage disappearance reaction, whereby the macrophages are temporarily contained within cellular aggregates on the mesothelium. We studied the impact of the bacterial lipopolysaccharide (LPS)-mediated macrophage disappearance reaction on susceptibility to an intraperitoneal prion infection. Intraperitoneal LPS injection significantly enhanced prion disease susceptibility approximately 100X when given 24-3 h before infection. The effects on disease susceptibility coincided with the reduced abundance of macrophages within the peritoneal cavity at the time of infection and the enhanced early accumulation of prions in the spleen. This suggests that the reduced recoverable abundance of macrophages in the peritoneal cavity following acute LPS-treatment, increased disease susceptibility by enhancing the initial propagation of the prions from site of exposure (peritoneal cavity) to the spleen from where they subsequently spread to the brain. Further studies may help identify novel macrophage-targeted treatments that can reduce susceptibility to peripherally acquired prion infections.
Collapse
Affiliation(s)
- Reiss Pal
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Charlotte M Thomas
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Khalid Salamat
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Stephen J Jenkins
- Queens Medical Research Institute, University of Edinburgh Centre for Inflammation Research, Edinburgh, UK
| | - Barry M Bradford
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK.
| | - Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK.
| |
Collapse
|
2
|
Sasaki T, Ota Y, Takikawa Y, Terrooatea T, Kanaya T, Takahashi M, Taguchi-Atarashi N, Tachibana N, Yabukami H, Surh CD, Minoda A, Kim KS, Ohno H. Food antigens suppress small intestinal tumorigenesis. Front Immunol 2024; 15:1373766. [PMID: 39359724 PMCID: PMC11445177 DOI: 10.3389/fimmu.2024.1373766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/30/2024] [Indexed: 10/04/2024] Open
Abstract
Food components suppressing small intestinal tumorigenesis are not well-defined partly because of the rarity of this tumor type compared to colorectal tumors. Using Apcmin/+ mice, a mouse model for intestinal tumorigenesis, and antigen-free diet, we report here that food antigens serve this function in the small intestine. By depleting Peyer's patches (PPs), immune inductive sites in the small intestine, we found that PPs have a role in the suppression of small intestinal tumors and are important for the induction of small intestinal T cells by food antigens. On the follicle-associated epithelium (FAE) of PPs, microfold (M) cells pass food antigens from lumen to the dendritic cells to induce T cells. Single-cell RNA-seq (scRNA-seq) analysis of immune cells in PPs revealed a significant impact of food antigens on the induction of the PP T cells and the antigen presentation capacity of dendritic cells. These data demonstrate the role of food antigens in the suppression of small intestinal tumorigenesis by PP-mediated immune cell induction.
Collapse
Affiliation(s)
- Takaharu Sasaki
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuna Ota
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Yui Takikawa
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Tommy Terrooatea
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Kanaya
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Masumi Takahashi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naoko Taguchi-Atarashi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naoko Tachibana
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Haruka Yabukami
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Charles D. Surh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Kwang Soon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Laboratory for Immune Regulation, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
3
|
Medd MM, Cao Q. Perspectives on CRISPR Genome Editing to Prevent Prion Diseases in High-Risk Individuals. Biomedicines 2024; 12:1725. [PMID: 39200190 PMCID: PMC11352000 DOI: 10.3390/biomedicines12081725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Prion diseases are neurodegenerative disorders caused by misfolded prion proteins. Although rare, the said diseases are always fatal; they commonly cause death within months of developing clinical symptoms, and their diagnosis is exceptionally difficult pre-mortem. There are no known cures or treatments other than symptomatic care. Given the aggressiveness of prion diseases on onset, therapies after disease onset could be challenging. Prevention to reduce the incidence or to delay the disease onset has been suggested to be a more feasible approach. In this perspective article, we summarize our current understandings of the origin, risk factors, and clinical manifestations of prion diseases. We propose a PCR testing of the blood to identify PRNP gene polymorphisms at codons 129 and 127 in individuals with familial PRNP mutations to assess the risk. We further present the CRISPR/Cas9 gene editing strategy as a perspective preventative approach for these high-risk individuals to induce a polymorphic change at codon 127 of the PRNP gene, granting immunity to prion diseases in selected high-risk individuals, in particular, in individuals with familial PRNP mutations.
Collapse
Affiliation(s)
- Milan M. Medd
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qi Cao
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Alfituri OA, Blake R, Jensen K, Mabbott NA, Hope J, Stevens JM. Differential role of M cells in enteroid infection by Mycobacterium avium subsp. paratuberculosis and Salmonella enterica serovar Typhimurium. Front Cell Infect Microbiol 2024; 14:1416537. [PMID: 39040600 PMCID: PMC11260670 DOI: 10.3389/fcimb.2024.1416537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Infection of ruminants such as cattle with Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, a disease characterized by chronic inflammation of the small intestine and diarrhoea. Infection with MAP is acquired via the faecal-to-oral route and the pathogen initially invades the epithelial lining of the small intestine. In this study we used an in vitro 3D mouse enteroid model to determine the influence of M cells in infection of the gut epithelia by MAP, in comparison with another bacterial intestinal pathogen of veterinary importance, Salmonella enterica serovar Typhimurium. The differentiation of M cells in the enteroid cultures was induced by stimulation with the cytokine receptor activator of nuclear factor-κB ligand (RANKL), and the effects on MAP and Salmonella uptake and intracellular survival were determined. The presence of M cells in the cultures correlated with increased uptake and intracellular survival of Salmonella, but had no effect on MAP. Interestingly neither pathogen was observed to preferentially accumulate within GP2-positive M cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Joanne M. Stevens
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
5
|
Del Castillo D, Lo DD. Deciphering the M-cell niche: insights from mouse models on how microfold cells "know" where they are needed. Front Immunol 2024; 15:1400739. [PMID: 38863701 PMCID: PMC11165056 DOI: 10.3389/fimmu.2024.1400739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Known for their distinct antigen-sampling abilities, microfold cells, or M cells, have been well characterized in the gut and other mucosa including the lungs and nasal-associated lymphoid tissue (NALT). More recently, however, they have been identified in tissues where they were not initially suspected to reside, which raises the following question: what external and internal factors dictate differentiation toward this specific role? In this discussion, we will focus on murine studies to determine how these cells are identified (e.g., markers and function) and ask the broader question of factors triggering M-cell localization and patterning. Then, through the consideration of unconventional M cells, which include villous M cells, Type II taste cells, and medullary thymic epithelial M cells (microfold mTECs), we will establish the M cell as not just a player in mucosal immunity but as a versatile niche cell that adapts to its home tissue. To this end, we will consider the lymphoid structure relationship and apical stimuli to better discuss how the differing cellular programming and the physical environment within each tissue yield these cells and their unique organization. Thus, by exploring this constellation of M cells, we hope to better understand the multifaceted nature of this cell in its different anatomical locales.
Collapse
Affiliation(s)
| | - David D. Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
6
|
Mahbub NU, Islam MM, Hong ST, Chung HJ. Dysbiosis of the gut microbiota and its effect on α-synuclein and prion protein misfolding: consequences for neurodegeneration. Front Cell Infect Microbiol 2024; 14:1348279. [PMID: 38435303 PMCID: PMC10904658 DOI: 10.3389/fcimb.2024.1348279] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Abnormal behavior of α-synuclein and prion proteins is the hallmark of Parkinson's disease (PD) and prion illnesses, respectively, being complex neurological disorders. A primary cause of protein aggregation, brain injury, and cognitive loss in prion illnesses is the misfolding of normal cellular prion proteins (PrPC) into an infectious form (PrPSc). Aggregation of α-synuclein causes disruptions in cellular processes in Parkinson's disease (PD), leading to loss of dopamine-producing neurons and motor symptoms. Alteration in the composition or activity of gut microbes may weaken the intestinal barrier and make it possible for prions to go from the gut to the brain. The gut-brain axis is linked to neuroinflammation; the metabolites produced by the gut microbiota affect the aggregation of α-synuclein, regulate inflammation and immunological responses, and may influence the course of the disease and neurotoxicity of proteins, even if their primary targets are distinct proteins. This thorough analysis explores the complex interactions that exist between the gut microbiota and neurodegenerative illnesses, particularly Parkinson's disease (PD) and prion disorders. The involvement of the gut microbiota, a complex collection of bacteria, archaea, fungi, viruses etc., in various neurological illnesses is becoming increasingly recognized. The gut microbiome influences neuroinflammation, neurotransmitter synthesis, mitochondrial function, and intestinal barrier integrity through the gut-brain axis, which contributes to the development and progression of disease. The review delves into the molecular mechanisms that underlie these relationships, emphasizing the effects of microbial metabolites such as bacterial lipopolysaccharides (LPS), and short-chain fatty acids (SCFAs) in regulating brain functioning. Additionally, it looks at how environmental influences and dietary decisions affect the gut microbiome and whether they could be risk factors for neurodegenerative illnesses. This study concludes by highlighting the critical role that the gut microbiota plays in the development of Parkinson's disease (PD) and prion disease. It also provides a promising direction for future research and possible treatment approaches. People afflicted by these difficult ailments may find hope in new preventive and therapeutic approaches if the role of the gut microbiota in these diseases is better understood.
Collapse
Affiliation(s)
- Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
7
|
Simmons SM, Bartz JC. Strain-Specific Targeting and Destruction of Cells by Prions. BIOLOGY 2024; 13:57. [PMID: 38275733 PMCID: PMC10813089 DOI: 10.3390/biology13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Prion diseases are caused by the disease-specific self-templating infectious conformation of the host-encoded prion protein, PrPSc. Prion strains are operationally defined as a heritable phenotype of disease under controlled conditions. One of the hallmark phenotypes of prion strain diversity is tropism within and between tissues. A defining feature of prion strains is the regional distribution of PrPSc in the CNS. Additionally, in both natural and experimental prion disease, stark differences in the tropism of prions in secondary lymphoreticular system tissues occur. The mechanism underlying prion tropism is unknown; however, several possible hypotheses have been proposed. Clinical target areas are prion strain-specific populations of neurons within the CNS that are susceptible to neurodegeneration following the replication of prions past a toxic threshold. Alternatively, the switch from a replicative to toxic form of PrPSc may drive prion tropism. The normal form of the prion protein, PrPC, is required for prion formation. More recent evidence suggests that it can mediate prion and prion-like disease neurodegeneration. In vitro systems for prion formation have indicated that cellular cofactors contribute to prion formation. Since these cofactors can be strain specific, this has led to the hypothesis that the distribution of prion formation cofactors can influence prion tropism. Overall, there is evidence to support several mechanisms of prion strain tropism; however, a unified theory has yet to emerge.
Collapse
Affiliation(s)
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| |
Collapse
|
8
|
Kim N, Ju IG, Jeon SH, Lee Y, Jung MJ, Gee MS, Cho JS, Inn KS, Garrett-Sinha LA, Oh MS, Lee JK. Inhibition of microfold cells ameliorates early pathological phenotypes by modulating microglial functions in Alzheimer's disease mouse model. J Neuroinflammation 2023; 20:282. [PMID: 38012646 PMCID: PMC10680211 DOI: 10.1186/s12974-023-02966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The gut microbiota has recently attracted attention as a pathogenic factor in Alzheimer's disease (AD). Microfold (M) cells, which play a crucial role in the gut immune response against external antigens, are also exploited for the entry of pathogenic bacteria and proteins into the body. However, whether changes in M cells can affect the gut environments and consequently change brain pathologies in AD remains unknown. METHODS Five familial AD (5xFAD) and 5xFAD-derived fecal microbiota transplanted (5xFAD-FMT) naïve mice were used to investigate the changes of M cells in the AD environment. Next, to establish the effect of M cell depletion on AD environments, 5xFAD mice and Spib knockout mice were bred, and behavioral and histological analyses were performed when M cell-depleted 5xFAD mice were six or nine months of age. RESULTS In this study, we found that M cell numbers were increased in the colons of 5xFAD and 5xFAD-FMT mice compared to those of wild-type (WT) and WT-FMT mice. Moreover, the level of total bacteria infiltrating the colons increased in the AD-mimicked mice. The levels of M cell-related genes and that of infiltrating bacteria showed a significant correlation. The genetic inhibition of M cells (Spib knockout) in 5xFAD mice changed the composition of the gut microbiota, along with decreasing proinflammatory cytokine levels in the colons. M cell depletion ameliorated AD symptoms including amyloid-β accumulation, microglial dysfunction, neuroinflammation, and memory impairment. Similarly, 5xFAD-FMT did not induce AD-like pathologies, such as memory impairment and excessive neuroinflammation in Spib-/- mice. CONCLUSION Therefore, our findings provide evidence that the inhibiting M cells can prevent AD progression, with therapeutic implications.
Collapse
Affiliation(s)
- Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - In Gyoung Ju
- Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Ho Jeon
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Yeongae Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Min-Ji Jung
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Min Sung Gee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Jae Seok Cho
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung-Soo Inn
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
- Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, Republic of Korea.
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.
| | - Jong Kil Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.
- Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Onji M, Penninger JM. RANKL and RANK in Cancer Therapy. Physiology (Bethesda) 2023; 38:0. [PMID: 36473204 DOI: 10.1152/physiol.00020.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Receptor activator of nuclear factor-κB (RANK) and its ligand (RANKL) are key regulators of mammalian physiology such as bone metabolism, immune tolerance and antitumor immunity, and mammary gland biology. Here, we explore the multiple functions of RANKL/RANK in physiology and pathophysiology and discuss underlying principles and strategies to modulate the RANKL/RANK pathway as a therapeutic target in immune-mediated cancer treatment.
Collapse
Affiliation(s)
- Masahiro Onji
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter, Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Guo Y, Xu Y, Lin X, Zhen Z, Yi F, Guan H, Shi Q, Sun W, Yang A, Dong X, Wang J. Creutzfeldt-Jakob Disease: Alterations of Gut Microbiota. Front Neurol 2022; 13:832599. [PMID: 35493823 PMCID: PMC9051076 DOI: 10.3389/fneur.2022.832599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/18/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Human gut dysbiosis has been implicated with the onset of many neurodegenerative disorders. However, the current data focused on the gut microbiota of patients with Creutzfeldt-Jakob disease (CJD) are still lacking. In our study, we explored the gut microbiota alteration in patients with CJD. Method We performed 16S ribosomal RNA MiSeq sequencing in stool samples of patients with CJD and controls. Functional analysis of the gut microbiota between these two groups was based on Kyoto Encyclopedia of Genes and Genomes and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2. Clinical rating scales were used to evaluate the association between cognitive impairment and gut microbiota alteration. Result We identified a significant alteration in both the structure and the richness of the CJD group. Function analysis revealed that the gut microbiota of patients with CJD enriched in immune signaling molecule interactions and xenobiotics biodegradation. MoCA and survival times were found to be associated with gut microbiota in patients with CJD. Conclusion We demonstrated an altered gut microbiota in patients with CJD, which was associated with the cognitive impairment and the survival time of these patients.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xue Lin
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhen Zhen
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Fang Yi
- Department of Neurology, Lishilu Outpatient, Central Medical Branch of PLA General Hospital, Beijing, China
| | - Hongzhi Guan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenjie Sun
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Magold AI, Swartz MA. Pathogenic Exploitation of Lymphatic Vessels. Cells 2022; 11:979. [PMID: 35326430 PMCID: PMC8946894 DOI: 10.3390/cells11060979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Lymphatic vessels provide a critical line of communication between peripheral tissues and their draining lymph nodes, which is necessary for robust immune responses against infectious agents. At the same time, lymphatics help shape the nature and kinetics of immune responses to ensure resolution, limit tissue damage, and prevent autoimmune responses. A variety of pathogens have developed strategies to exploit these functions, from multicellular organisms like nematodes to bacteria, viruses, and prions. While lymphatic vessels serve as transport routes for the dissemination of many pathogens, their hypoxic and immune-suppressive environments can provide survival niches for others. Lymphatics can be exploited as perineural niches, for inter-organ distribution among highly motile carrier cells, as effective replicative niches, and as alternative routes in response to therapy. Recent studies have broadened our understanding of lymphatic involvement in pathogenic spread to include a wider range of pathogens, as well as new mechanisms of exploitation, which we summarize here.
Collapse
Affiliation(s)
- Alexandra I. Magold
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA;
| | - Melody A. Swartz
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA;
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Tsou A, Chen PJ, Tsai KW, Hu WC, Lu KC. THαβ Immunological Pathway as Protective Immune Response against Prion Diseases: An Insight for Prion Infection Therapy. Viruses 2022; 14:v14020408. [PMID: 35216001 PMCID: PMC8877887 DOI: 10.3390/v14020408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Prion diseases, including Creutzfeldt–Jakob disease, are mediated by transmissible proteinaceous pathogens. Pathological changes indicative of neuro-degeneration have been observed in the brains of affected patients. Simultaneously, microglial activation, along with the upregulation of pro-inflammatory cytokines, including IL-1 or TNF-α, have also been observed in brain tissue of these patients. Consequently, pro-inflammatory cytokines are thought to be involved in the pathogenesis of these diseases. Accelerated prion infections have been seen in interleukin-10 knockout mice, and type 1 interferons have been found to be protective against these diseases. Since interleukin-10 and type 1 interferons are key mediators of the antiviral THαβ immunological pathway, protective host immunity against prion diseases may be regulated via THαβ immunity. Currently no effective treatment strategies exist for prion disease; however, drugs that target the regulation of IL-10, IFN-alpha, or IFN-β, and consequently modulate the THαβ immunological pathway, may prove to be effective therapeutic options.
Collapse
Affiliation(s)
- Adam Tsou
- Department of Neurology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Po-Jui Chen
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City 325, Taiwan;
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (K.-W.T.); (K.-C.L.)
| | - Wan-Chung Hu
- Department of Clinical Pathology and Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Correspondence:
| | - Kuo-Cheng Lu
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (K.-W.T.); (K.-C.L.)
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 243, Taiwan
| |
Collapse
|
13
|
Kincaid AE. The Role of the Nasal Cavity in the Pathogenesis of Prion Diseases. Viruses 2021; 13:v13112287. [PMID: 34835094 PMCID: PMC8621399 DOI: 10.3390/v13112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a class of fatal neurodegenerative diseases caused by the entry and spread of infectious prion proteins (PrPSc) in the central nervous system (CNS). These diseases are endemic to certain mammalian animal species that use their sense of smell for a variety of purposes and therefore expose their nasal cavity (NC) to PrPSc in the environment. Prion diseases that affect humans are either inherited due to a mutation of the gene that encodes the prion protein, acquired by exposure to contaminated tissues or medical devices, or develop without a known cause (referred to as sporadic). The purpose of this review is to identify components of the NC that are involved in prion transport and to summarize the evidence that the NC serves as a route of entry (centripetal spread) and/or a source of shedding (centrifugal spread) of PrPSc, and thus plays a role in the pathogenesis of the TSEs.
Collapse
Affiliation(s)
- Anthony E Kincaid
- Departments of Pharmacy Sciences and Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
14
|
Zhang Z, Lu Y, Qi J, Wu W. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharm Sin B 2021; 11:2449-2468. [PMID: 34522594 PMCID: PMC8424224 DOI: 10.1016/j.apsb.2020.12.022] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/14/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Orally administered drug entities have to survive the harsh gastrointestinal environment, penetrate the enteric epithelia and circumvent hepatic metabolism before reaching the systemic circulation. Whereas the gastrointestinal stability can be well maintained by taking proper measures, hepatic metabolism presents as a formidable barrier to drugs suffering from first-pass metabolism. The pharmaceutical academia and industries are seeking alternative pathways for drug transport to circumvent problems associated with the portal pathway. Intestinal lymphatic transport is emerging as a promising pathway to this end. In this review, we intend to provide an updated overview on the rationale, strategies, factors and applications involved in intestinal lymphatic transport. There are mainly two pathways for peroral lymphatic transport-the chylomicron and the microfold cell pathways. The underlying mechanisms are being unraveled gradually and nowadays witness increasing research input and applications.
Collapse
Key Words
- ACQ, aggregation-caused quenching
- ASRT, apical sodium-dependent bile acid transporter
- AUC, area under curve
- BCS, biopharmaceutics classification system
- CM, chylomicron
- Chylomicron
- DC, dendritic cell
- DDT, dichlorodiphenyltrichloroethane
- DTX, docetaxel
- Drug absorption
- Drug carriers
- Drug delivery
- FA, fatty acid
- FAE, follicle-associated epithelia
- FRET, Föster resonance energy transfer
- GIT, gastrointestinal tract
- HBsAg, hepatitis B surface antigen
- HIV, human immunodeficiency virus
- LDL, low-density lipoprotein
- LDV, Leu-Asp-Val
- LDVp, LDV peptidomimetic
- Lymphatic transport
- M cell, microfold cells
- MG, monoglyceride
- MPA, mycophenolic acid
- MPS, mononuclear phagocyte system
- Microfold cell
- Nanoparticles
- OA, oleate
- Oral
- PCL, polycaprolactone
- PEG-PLA, polyethylene glycol-poly(lactic acid)
- PEI, polyethyleneimine
- PLGA, poly(lactic-co-glycolic acid)
- PVA, poly(vinyl alcohol)
- RGD, Arg-Gly-Asp
- RGDp, RGD peptidomimetic
- SEDDS, self-emulsifying drug delivery system
- SLN, solid lipid nanoparticles
- SNEDDS, self-nanoemulsifying drug delivery system
- TEM, transmission electron microscopy
- TG, triglyceride
- TPGS, D-α-tocopherol polyethylene glycol 1000 succinate
- TU, testosterone undecanoate
- WGA, wheat germ agglutinin
- YCW, yeast cell wall
Collapse
Affiliation(s)
- Zichen Zhang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
15
|
Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol 2021; 14:793-802. [PMID: 33753873 DOI: 10.1038/s41385-021-00389-4] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023]
Abstract
Gut-associated lymphoid tissues (GALT) are the key antigen sampling and adaptive immune inductive sites within the intestinal wall. Human GALT includes the multi-follicular Peyer's patches of the ileum, the vermiform appendix, and the numerous isolated lymphoid follicles (ILF) which are distributed along the length of the intestine. Our current understanding of GALT diversity and function derives primarily from studies in mice, and the relevance of many of these findings to human GALT remains unclear. Here we review our current understanding of human GALT diversity, structure, and composition as well as their potential for regulating intestinal immune responses during homeostasis and inflammatory bowel disease (IBD). Finally, we outline some key remaining questions regarding human GALT, the answers to which will advance our understanding of intestinal immune responses and provide potential opportunities to improve the treatment of intestinal diseases.
Collapse
|
16
|
Alterations in gut microbiota linked to provenance, sex, and chronic wasting disease in white-tailed deer (Odocoileus virginianus). Sci Rep 2021; 11:13218. [PMID: 34168170 PMCID: PMC8225879 DOI: 10.1038/s41598-021-89896-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/04/2021] [Indexed: 01/04/2023] Open
Abstract
Chronic wasting disease (CWD) is a fatal, contagious, neurodegenerative prion disease affecting both free-ranging and captive cervid species. CWD is spread via direct or indirect contact or oral ingestion of prions. In the gastrointestinal tract, prions enter the body through microfold cells (M-cells), and the abundance of these cells can be influenced by the gut microbiota. To explore potential links between the gut microbiota and CWD, we collected fecal samples from farmed and free-ranging white-tailed deer (Odocoileus virginianus) around the Midwest, USA. Farmed deer originated from farms that were depopulated due to CWD. Free-ranging deer were sampled during annual deer harvests. All farmed deer were tested for CWD via ELISA and IHC, and we used 16S rRNA gene sequencing to characterize the gut microbiota. We report significant differences in gut microbiota by provenance (Farm 1, Farm 2, Free-ranging), sex, and CWD status. CWD-positive deer from Farm 1 and 2 had increased abundances of Akkermansia, Lachnospireacea UCG-010, and RF39 taxa. Overall, differences by provenance and sex appear to be driven by diet, while differences by CWD status may be linked to CWD pathogenesis.
Collapse
|
17
|
KOBAYASHI H, IWAIDE S, UJIKE N, MURAKAMI T. Oxazolone-induced gastrointestinal disorders enhance the oral transmission of AA amyloidosis in mice. J Vet Med Sci 2021; 83:935-939. [PMID: 33883362 PMCID: PMC8267199 DOI: 10.1292/jvms.21-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/11/2021] [Indexed: 11/22/2022] Open
Abstract
Amyloid A (AA) amyloidosis is a lethal disease characterized by systemic AA amyloid deposition, and is reported in many animal species. Despite experiments have shown that AA amyloidosis can be transmitted orally, horizontal transmission and cross-species transmission are concerns, the transmission mechanism has been unknown. In this study, we examined the oral transmission efficiency of AA amyloidosis using oxazolone-induced gastrointestinal disorder mice. As a result, the upper or lower gastrointestinal disorder groups developed more severe amyloid deposition in systemic tissues than the group without gastrointestinal disorders. The results of this study suggest that gastrointestinal damage promotes the oral transmission of AA amyloidosis.
Collapse
Affiliation(s)
- Hiroto KOBAYASHI
- Laboratory of Veterinary Toxicology, Cooperative Department
of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho,
Fuchu, Tokyo 183-8509, Japan
| | - Susumu IWAIDE
- Laboratory of Veterinary Toxicology, Cooperative Department
of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho,
Fuchu, Tokyo 183-8509, Japan
| | - Naoki UJIKE
- Laboratory of Veterinary Toxicology, Cooperative Department
of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho,
Fuchu, Tokyo 183-8509, Japan
| | - Tomoaki MURAKAMI
- Laboratory of Veterinary Toxicology, Cooperative Department
of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho,
Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
18
|
Kondreddy V, Keshava S, Esmon CT, Pendurthi UR, Rao LVM. A critical role of endothelial cell protein C receptor in the intestinal homeostasis in experimental colitis. Sci Rep 2020; 10:20569. [PMID: 33239717 PMCID: PMC7689504 DOI: 10.1038/s41598-020-77502-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022] Open
Abstract
Crohn’s disease and ulcerative colitis are the two forms of disorders of the human inflammatory bowel disease with unknown etiologies. Endothelial cell protein C receptor (EPCR) is a multifunctional and multiligand receptor, which is expressed on the endothelium and other cell types, including epithelial cells. Here, we report that EPCR is expressed in the colon epithelial cells, CD11c+, and CD21+/CD35+ myeloid cells surrounding the crypts in the colon mucosa. EPCR expression was markedly decreased in the colon mucosa during colitis. The loss of EPCR appeared to associate with increased disease index of the experimental colitis in mice. EPCR−/− mice were more susceptible to dextran sulfate sodium (DSS)-induced colitis, manifested by increased weight loss, macrophage infiltration, and inflammatory cytokines in the colon tissue. DSS treatment of EPCR−/− mice resulted in increased bleeding, bodyweight loss, anemia, fibrin deposition, and loss of colon epithelial and goblet cells. Administration of coagulant factor VIIa significantly attenuated the DSS-induced colon length shortening, rectal bleeding, bodyweight loss, and disease activity index in the wild-type mice but not EPCR−/− mice. In summary, our data provide direct evidence that EPCR plays a crucial role in regulating the inflammation in the colon during colitis.
Collapse
Affiliation(s)
- Vijay Kondreddy
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center At Tyler, 11937 US Highway 271, Tyler, TX, 75708-3154, USA
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center At Tyler, 11937 US Highway 271, Tyler, TX, 75708-3154, USA
| | - Charles T Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center At Tyler, 11937 US Highway 271, Tyler, TX, 75708-3154, USA
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center At Tyler, 11937 US Highway 271, Tyler, TX, 75708-3154, USA.
| |
Collapse
|
19
|
Mabbott NA, Bradford BM, Pal R, Young R, Donaldson DS. The Effects of Immune System Modulation on Prion Disease Susceptibility and Pathogenesis. Int J Mol Sci 2020; 21:E7299. [PMID: 33023255 PMCID: PMC7582561 DOI: 10.3390/ijms21197299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Prion diseases are a unique group of infectious chronic neurodegenerative disorders to which there are no cures. Although prion infections do not stimulate adaptive immune responses in infected individuals, the actions of certain immune cell populations can have a significant impact on disease pathogenesis. After infection, the targeting of peripherally-acquired prions to specific immune cells in the secondary lymphoid organs (SLO), such as the lymph nodes and spleen, is essential for the efficient transmission of disease to the brain. Once the prions reach the brain, interactions with other immune cell populations can provide either host protection or accelerate the neurodegeneration. In this review, we provide a detailed account of how factors such as inflammation, ageing and pathogen co-infection can affect prion disease pathogenesis and susceptibility. For example, we discuss how changes to the abundance, function and activation status of specific immune cell populations can affect the transmission of prion diseases by peripheral routes. We also describe how the effects of systemic inflammation on certain glial cell subsets in the brains of infected individuals can accelerate the neurodegeneration. A detailed understanding of the factors that affect prion disease transmission and pathogenesis is essential for the development of novel intervention strategies.
Collapse
Affiliation(s)
- Neil A. Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (B.M.B.); (R.P.); (R.Y.); (D.S.D.)
| | | | | | | | | |
Collapse
|
20
|
Abstract
In sheep, scrapie is a fatal neurologic disease that is caused by a misfolded protein called a prion (designated PrPSc). The normal cellular prion protein (PrPC) is encoded by an endogenous gene, PRNP, that is present in high concentrations within the CNS. Although a broad range of functions has been described for PrPC, its entire range of functions has yet to be fully elucidated. Accumulation of PrPSc results in neurodegeneration. The PRNP gene has several naturally occurring polymorphisms, and there is a strong correlation between scrapie susceptibility and PRNP genotype. The cornerstone of scrapie eradication programs is the selection of scrapie-resistant genotypes to eliminate classical scrapie. Transmission of classical scrapie in sheep occurs during the prenatal and periparturient periods when lambs are highly susceptible. Initially, the scrapie agent is disseminated throughout the lymphoid system and into the CNS. Shedding of the scrapie agent occurs before the onset of clinical signs. In contrast to classical scrapie, atypical scrapie is believed to be a spontaneous disease that occurs in isolated instances in older animals within a flock. The agent that causes atypical scrapie is not considered to be naturally transmissible. Transmission of the scrapie agent to species other than sheep, including deer, has been experimentally demonstrated as has the transmission of nonscrapie prion agents to sheep. The purpose of this review is to outline the current methods for diagnosing scrapie in sheep and the techniques used for studying the pathogenesis and host range of the scrapie agent. Also discussed is the US scrapie eradication program including recent updates.
Collapse
|
21
|
Salvesen Ø, Espenes A, Reiten MR, Vuong TT, Malachin G, Tran L, Andréoletti O, Olsaker I, Benestad SL, Tranulis MA, Ersdal C. Goats naturally devoid of PrP C are resistant to scrapie. Vet Res 2020; 51:1. [PMID: 31924264 PMCID: PMC6954626 DOI: 10.1186/s13567-019-0731-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Prion diseases are progressive and fatal, neurodegenerative disorders described in humans and animals. According to the "protein-only" hypothesis, the normal host-encoded prion protein (PrPC) is converted into a pathological and infectious form (PrPSc) in these diseases. Transgenic knockout models have shown that PrPC is a prerequisite for the development of prion disease. In Norwegian dairy goats, a mutation (Ter) in the prion protein gene (PRNP) effectively blocks PrPC synthesis. We inoculated 12 goats (4 PRNP+/+, 4 PRNP+/Ter, and 4 PRNPTer/Ter) intracerebrally with goat scrapie prions. The mean incubation time until clinical signs of prion disease was 601 days post-inoculation (dpi) in PRNP+/+ goats and 773 dpi in PRNP+/Ter goats. PrPSc and vacuolation were similarly distributed in the central nervous system (CNS) of both groups and observed in all brain regions and segments of the spinal cord. Generally, accumulation of PrPSc was limited in peripheral organs, but all PRNP+/+ goats and 1 of 4 PRNP+/Ter goats were positive in head lymph nodes. The four PRNPTer/Ter goats remained healthy, without clinical signs of prion disease, and were euthanized 1260 dpi. As expected, no accumulation of PrPSc was observed in the CNS or peripheral tissues of this group, as assessed by immunohistochemistry, enzyme immunoassay, and real-time quaking-induced conversion. Our study shows for the first time that animals devoid of PrPC due to a natural mutation do not propagate prions and are resistant to scrapie. Clinical onset of disease is delayed in heterozygous goats expressing about 50% of PrPC levels.
Collapse
Affiliation(s)
- Øyvind Salvesen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| | - Arild Espenes
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Malin R. Reiten
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - Giulia Malachin
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Linh Tran
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - Ingrid Olsaker
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Michael A. Tranulis
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| |
Collapse
|
22
|
Bradford BM, Mabbott NA. Unaltered intravenous prion disease pathogenesis in the temporary absence of marginal zone B cells. Sci Rep 2019; 9:19119. [PMID: 31836813 PMCID: PMC6910919 DOI: 10.1038/s41598-019-55772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/03/2019] [Indexed: 11/16/2022] Open
Abstract
Prion diseases are a unique, infectious, neurodegenerative disorders that can affect animals and humans. Data from mouse transmissions show that efficient infection of the host after intravenous (IV) prion exposure is dependent upon the early accumulation and amplification of the prions on stromal follicular dendritic cells (FDC) in the B cell follicles. How infectious prions are initially conveyed from the blood-stream to the FDC in the spleen is uncertain. Addressing this issue is important as susceptibility to peripheral prion infections can be reduced by treatments that prevent the early accumulation of prions upon FDC. The marginal zone (MZ) in the spleen contains specialized subsets of B cells and macrophages that are positioned to continuously monitor the blood-stream and remove pathogens, toxins and apoptotic cells. The continual shuttling of MZ B cells between the MZ and the B-cell follicle enables them to efficiently capture and deliver blood-borne antigens and antigen-containing immune complexes to splenic FDC. We tested the hypothesis that MZ B cells also play a role in the initial shuttling of prions from the blood-stream to FDC. MZ B cells were temporarily depleted from the MZ by antibody-mediated blocking of integrin function. We show that depletion of MZ B cells around the time of IV prion exposure did not affect the early accumulation of blood-borne prions upon splenic FDC or reduce susceptibility to IV prion infection. In conclusion, our data suggest that the initial delivery of blood-borne prions to FDC in the spleen occurs independently of MZ B cells.
Collapse
Affiliation(s)
- Barry M Bradford
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, EH25 9RG, UK.
| |
Collapse
|
23
|
Jackson A, Forsyth CB, Shaikh M, Voigt RM, Engen PA, Ramirez V, Keshavarzian A. Diet in Parkinson's Disease: Critical Role for the Microbiome. Front Neurol 2019; 10:1245. [PMID: 31920905 PMCID: PMC6915094 DOI: 10.3389/fneur.2019.01245] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Parkinson's disease (PD) is the most common movement disorder affecting up to 1% of the population above the age of 60 and 4–5% of those above the age of 85. Little progress has been made on efforts to prevent disease development or halt disease progression. Diet has emerged as a potential factor that may prevent the development or slow the progression of PD. In this review, we discuss evidence for a role for the intestinal microbiome in PD and how diet-associated changes in the microbiome may be a viable approach to prevent or modify disease progression. Methods: We reviewed studies demonstrating that dietary components/foods were related to risk for PD. We reviewed evidence for the dysregulated intestinal microbiome in PD patients including abnormal shifts in the intestinal microbiota composition (i.e., dysbiosis) characterized by a loss of short chain fatty acid (SCFA) bacteria and increased lipopolysaccharide (LPS) bacteria. We also examined several candidate mechanisms by which the microbiota can influence PD including the NLRP3 inflammasome, insulin resistance, mitochondrial function, vagal nerve signaling. Results: The PD-associated microbiome is associated with decreased production of SCFA and increased LPS and it is believed that these changes may contribute to the development or exacerbation of PD. Diet robustly impacts the intestinal microbiome and the Western diet is associated with increased risk for PD whereas the Mediterranean diet (including high intake of dietary fiber) decreases PD risk. Mechanistically this may be the consequence of changes in the relative abundance of SCFA-producing or LPS-containing bacteria in the intestinal microbiome with effects on intestinal barrier function, endotoxemia (i.e., systemic LPS), NLRP3 inflammasome activation, insulin resistance, and mitochondrial dysfunction, and the production of factors such as glucagon like peptide 1 (GLP-1) and brain derived neurotrophic factor (BDNF) as well as intestinal gluconeogenesis. Conclusions: This review summarizes a model of microbiota-gut-brain-axis regulation of neuroinflammation in PD including several new mechanisms. We conclude with the need for clinical trials in PD patients to test this model for beneficial effects of Mediterranean based high fiber diets.
Collapse
Affiliation(s)
- Aeja Jackson
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Christopher B Forsyth
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Maliha Shaikh
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Robin M Voigt
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Phillip A Engen
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Vivian Ramirez
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Ali Keshavarzian
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| |
Collapse
|
24
|
Kobayashi N, Takahashi D, Takano S, Kimura S, Hase K. The Roles of Peyer's Patches and Microfold Cells in the Gut Immune System: Relevance to Autoimmune Diseases. Front Immunol 2019; 10:2345. [PMID: 31649668 PMCID: PMC6794464 DOI: 10.3389/fimmu.2019.02345] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
Microfold (M) cells are located in the epithelium covering mucosa-associated lymphoid tissues, such as the Peyer's patches (PPs) of the small intestine. M cells actively transport luminal antigens to the underlying lymphoid follicles to initiate an immune response. The molecular machinery of M-cell differentiation and function has been vigorously investigated over the last decade. Studies have shed light on the role of M cells in the mucosal immune system and have revealed that antigen uptake by M cells contributes to not only mucosal but also systemic immune responses. However, M-cell studies usually focus on infectious diseases; the contribution of M cells to autoimmune diseases has remained largely unexplored. Accumulating evidence suggests that dysbiosis of the intestinal microbiota is implicated in multiple systemic diseases, including autoimmune diseases. This implies that the uptake of microorganisms by M cells in PPs may play a role in the pathogenesis of autoimmune diseases. We provide an outline of the current understanding of M-cell biology and subsequently discuss the potential contribution of M cells and PPs to the induction of systemic autoimmunity, beyond the mucosal immune response.
Collapse
Affiliation(s)
- Nobuhide Kobayashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan.,Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Shunsuke Takano
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| |
Collapse
|
25
|
Kumagai S, Daikai T, Onodera T. Bovine Spongiform Encephalopathy
- A Review from the Perspective of Food Safety. Food Saf (Tokyo) 2019; 7:21-47. [PMID: 31998585 PMCID: PMC6978881 DOI: 10.14252/foodsafetyfscj.2018009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/01/2019] [Indexed: 12/04/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disease that belongs to transmissible spongiform encephalopathy (TSE). Since the first case was identified in the UK in 1986, BSE spread to other countries including Japan. Its incidence peaked in 1992 in the UK and from 2001 to 2006 in many other countries, but a feed ban aimed at eliminating the recycling of the BSE agent and other control measures aimed at preventing food and feed contamination with the agent were highly effective at reducing the spread of BSE. In 2004, two types of atypical BSE, H-type BSE (H-BSE) and L-type BSE (L-BSE), which differ from classical BSE (C-BSE), were found in France and Italy. Atypical BSE, which is assumed to occur spontaneously, has also been detected among cattle in other countries including Japan. The BSE agent including atypical BSE agent is a unique food-safety hazard with different chemical and biological properties from the microbial pathogens and toxic chemicals that contaminate food. In this review, we summarize the reported findings on the tissue distribution of BSE prions in infected cattle and other aspects of BSE, as well as the control measures against the disease employed in Japan. Topics that require further studies are discussed based on the summarized findings from the perspective of food safety.
Collapse
Affiliation(s)
- Susumu Kumagai
- Research Center for Food Safety, The University of
Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657,
Japan
| | - Takateru Daikai
- Food Safety Commission of Japan Secretariat, Akasaka
Park Bld. 22F, Akasaka 5-2-20, Minato-ku,
Tokyo 107-6122, Japan
- Cooperative Department of Veterinary Medicine,
Graduate School of Veterinary Sciences, Iwate University, Morioka-shi,
Iwate 020-8550, Japan
| | - Takashi Onodera
- Research Center for Food Safety, The University of
Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657,
Japan
| |
Collapse
|
26
|
Effect of co-infection with a small intestine-restricted helminth pathogen on oral prion disease pathogenesis in mice. Sci Rep 2019; 9:6674. [PMID: 31040320 PMCID: PMC6491469 DOI: 10.1038/s41598-019-42900-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/11/2019] [Indexed: 11/24/2022] Open
Abstract
The early replication of some orally-acquired prion strains upon stromal-derived follicular dendritic cells (FDC) within the small intestinal Peyer’s patches is essential to establish host infection, and for the disease to efficiently spread to the brain. Factors that influence the early accumulation of prions in Peyer’s patches can directly influence disease pathogenesis. The host’s immune response to a gastrointestinal helminth infection can alter susceptibility to co-infection with certain pathogenic bacteria and viruses. Here we used the natural mouse small intestine-restricted helminth pathogen Heligmosomoides polygyrus to test the hypothesis that pathology specifically within the small intestine caused by a helminth co-infection would influence oral prion disease pathogenesis. When mice were co-infected with prions on d 8 after H. polygyrus infection the early accumulation of prions within Peyer’s patches was reduced and survival times significantly extended. Natural prion susceptible hosts such as sheep, deer and cattle are regularly exposed to gastrointestinal helminth parasites. Our data suggest that co-infections with small intestine-restricted helminth pathogens may be important factors that influence oral prion disease pathogenesis.
Collapse
|
27
|
Abstract
Prion diseases are rapidly progressive, incurable neurodegenerative disorders caused by misfolded, aggregated proteins known as prions, which are uniquely infectious. Remarkably, these infectious proteins have been responsible for widespread disease epidemics, including kuru in humans, bovine spongiform encephalopathy in cattle, and chronic wasting disease in cervids, the latter of which has spread across North America and recently appeared in Norway and Finland. The hallmark histopathological features include widespread spongiform encephalopathy, neuronal loss, gliosis, and deposits of variably sized aggregated prion protein, ranging from small, soluble oligomers to long, thin, unbranched fibrils, depending on the disease. Here, we explore recent advances in prion disease research, from the function of the cellular prion protein to the dysfunction triggering neurotoxicity, as well as mechanisms underlying prion spread between cells. We also highlight key findings that have revealed new therapeutic targets and consider unanswered questions for future research.
Collapse
Affiliation(s)
- Christina J Sigurdson
- Departments of Pathology and Medicine, UC San Diego School of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska 68178, USA
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
28
|
Frey A, Ramaker K, Röckendorf N, Wollenberg B, Lautenschläger I, Gébel G, Giemsa A, Heine M, Bargheer D, Nielsen P. Fate and Translocation of (Nano)Particulate Matter in the Gastrointestinal Tract. BIOLOGICAL RESPONSES TO NANOSCALE PARTICLES 2019. [DOI: 10.1007/978-3-030-12461-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
de Oliveira CAF, Vetvicka V, Zanuzzo FS. β-Glucan successfully stimulated the immune system in different jawed vertebrate species. Comp Immunol Microbiol Infect Dis 2018; 62:1-6. [PMID: 30711038 DOI: 10.1016/j.cimid.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/15/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022]
Abstract
Several reports have shown the positive effects of β-glucans on the immune. Howeverthese studies have a broad experimental design including β-glucans compounds. Consequently, a study using the same β-glucan molecule, administration route and experimental design is needed to compare the effects of β-glucan across vertebrate species. For this end, during 28 days we fed four different vertebrate species: mice, dogs, piglets and chicks, with two β-glucan molecules (BG01 and BG02). We measured the serum interleukin 2 as an indicator of innate immune response, the neutrophils and monocytes phagocytosis index as a cellular response and antibody formation as an adaptive response. The results clearly showed that the different β-glucan molecules exhibited biologically differently behaviors, but both molecules stimulate the immune system in a similar pattern in these four species. This finding suggests that vertebrates shared similar mechanisms/patterns in recognizing the β-glucans and confirms the benefits of β-glucans across different vertebrate species.
Collapse
Affiliation(s)
- Carlos A F de Oliveira
- Department of Research and Development, Biorigin Company, Fazenda São José s/n, 17290-000 Macatuba, São Paulo, Brazil
| | - Vaclav Vetvicka
- University of Louisville, Department of Pathology, Louisville, KY, USA.
| | - Fábio S Zanuzzo
- Department of Research and Development, Biorigin Company, Fazenda São José s/n, 17290-000 Macatuba, São Paulo, Brazil
| |
Collapse
|
30
|
Oral Prion Neuroinvasion Occurs Independently of PrP C Expression in the Gut Epithelium. J Virol 2018; 92:JVI.01010-18. [PMID: 30021891 PMCID: PMC6146811 DOI: 10.1128/jvi.01010-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/11/2018] [Indexed: 01/22/2023] Open
Abstract
The accumulation of orally acquired prions within Peyer's patches in the small intestine is essential for the efficient spread of disease to the brain. Little is known of how the prions initially establish infection within Peyer's patches. Some gastrointestinal pathogens utilize molecules, such as the cellular prion protein PrPC, expressed on gut epithelial cells to enter Peyer's patches. Acute mucosal inflammation can enhance PrPC expression in the intestine, implying the potential to enhance oral prion disease susceptibility. We used transgenic mice to determine whether the uptake of prions into Peyer's patches was dependent upon PrPC expression in the gut epithelium. We show that orally acquired prions can establish infection in Peyer's patches independently of PrPC expression in gut epithelial cells. Our data suggest that the magnitude of PrPC expression in the epithelium lining the small intestine is unlikely to be an important factor which influences oral prion disease susceptibility. The early replication of certain prion strains within Peyer's patches in the small intestine is essential for the efficient spread of disease to the brain after oral exposure. Our data show that orally acquired prions utilize specialized gut epithelial cells known as M cells to enter Peyer's patches. M cells express the cellular isoform of the prion protein, PrPC, and this may be exploited by some pathogens as an uptake receptor to enter Peyer's patches. This suggested that PrPC might also mediate the uptake and transfer of prions across the gut epithelium into Peyer's patches in order to establish infection. Furthermore, the expression level of PrPC in the gut epithelium could influence the uptake of prions from the lumen of the small intestine. To test this hypothesis, transgenic mice were created in which deficiency in PrPC was specifically restricted to epithelial cells throughout the lining of the small intestine. Our data clearly show that efficient prion neuroinvasion after oral exposure occurred independently of PrPC expression in small intestinal epithelial cells. The specific absence of PrPC in the gut epithelium did not influence the early replication of prions in Peyer's patches or disease susceptibility. Acute mucosal inflammation can enhance PrPC expression in the intestine, implying the potential to enhance oral prion disease pathogenesis and susceptibility. However, our data suggest that the magnitude of PrPC expression in the epithelium lining the small intestine is unlikely to be an important factor which influences the risk of oral prion disease susceptibility. IMPORTANCE The accumulation of orally acquired prions within Peyer's patches in the small intestine is essential for the efficient spread of disease to the brain. Little is known of how the prions initially establish infection within Peyer's patches. Some gastrointestinal pathogens utilize molecules, such as the cellular prion protein PrPC, expressed on gut epithelial cells to enter Peyer's patches. Acute mucosal inflammation can enhance PrPC expression in the intestine, implying the potential to enhance oral prion disease susceptibility. We used transgenic mice to determine whether the uptake of prions into Peyer's patches was dependent upon PrPC expression in the gut epithelium. We show that orally acquired prions can establish infection in Peyer's patches independently of PrPC expression in gut epithelial cells. Our data suggest that the magnitude of PrPC expression in the epithelium lining the small intestine is unlikely to be an important factor which influences oral prion disease susceptibility.
Collapse
|
31
|
Abstract
Scrapie is a naturally occurring transmissible spongiform encephalopathy (TSE) or prion disease of sheep and goats. Scrapie is a protein misfolding disease where the normal prion protein (PrPC) misfolds into a pathogenic form (PrPSc) that is highly resistant to enzymatic breakdown within the cell and accumulates, eventually leading to neurodegeneration. The amino acid sequence of the prion protein and tissue distribution of PrPSc within affected hosts have a major role in determining susceptibility to and potential environmental contamination with the scrapie agent. Many countries have genotype-based eradication programs that emphasize using rams that express arginine at codon 171 in the prion protein, which is associated with resistance to the classical scrapie agent. In classical scrapie, accumulation of PrPSc within lymphoid and other tissues facilitates environmental contamination and spread of the disease within flocks. A major distinction can be made between classical scrapie strains that are readily spread within populations of susceptible sheep and goats and atypical (Nor-98) scrapie that has unique molecular and phenotype characteristics and is thought to occur spontaneously in older sheep or goats. This review provides an overview of classical and atypical scrapie with consideration of potential transmission of classical scrapie to other mammalian hosts.
Collapse
Affiliation(s)
- Justin J Greenlee
- 1 Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| |
Collapse
|
32
|
Nakamura Y, Kimura S, Hase K. M cell-dependent antigen uptake on follicle-associated epithelium for mucosal immune surveillance. Inflamm Regen 2018; 38:15. [PMID: 30186536 PMCID: PMC6120081 DOI: 10.1186/s41232-018-0072-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/28/2018] [Indexed: 01/22/2023] Open
Abstract
The follicle-associated epithelium (FAE) covering mucosa-associated lymphoid tissue is distinct from the villous epithelium in cellular composition and functions. Interleukin-22 binding protein (IL-22BP), provided by dendritic cells at the sub-epithelial dome region, inhibits the IL-22-mediated secretion of antimicrobial peptides by the FAE. The Notch signal from stromal cells underneath the FAE diminishes goblet cell differentiation. These events dampen the mucosal barrier functions to allow luminal microorganisms to readily gain access to the luminal surface of the FAE. Furthermore, receptor activator of nucleic factor-kappa B ligand (RANKL) from a certain stromal cell type induces differentiation into microfold (M) cells that specialize in antigen uptake in the mucosa. Microfold (M) cells play a key role in mucosal immune surveillance by actively transporting external antigens from the gut lumen to the lymphoid follicle. The molecular basis of antigen uptake by M cells has been gradually identified in the last decade. For example, GPI-anchored molecules (e.g., glycoprotein 2 (GP2) and cellular prion protein (PrPC)) and β1-integrin facilitate the transport of specific types of xenobiotics. The antigen transport by M cells initiates antigen-specific mucosal immune responses represented by the induction of secretory immunoglobulin A (S-IgA). Meanwhile, several invasive pathogens exploit M cells as a portal to establish a systemic infection. Recent findings have uncovered the molecular machinery of differentiation and functions of M cells.
Collapse
Affiliation(s)
- Yutaka Nakamura
- 1Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, 105-0011 Japan.,2Graduate School of Medicine, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Shunsuke Kimura
- 3Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638 Japan
| | - Koji Hase
- 1Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, 105-0011 Japan.,4International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| |
Collapse
|
33
|
Vilette D, Courte J, Peyrin JM, Coudert L, Schaeffer L, Andréoletti O, Leblanc P. Cellular mechanisms responsible for cell-to-cell spreading of prions. Cell Mol Life Sci 2018; 75:2557-2574. [PMID: 29761205 PMCID: PMC11105574 DOI: 10.1007/s00018-018-2823-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.
Collapse
Affiliation(s)
- Didier Vilette
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France.
| | - Josquin Courte
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France
- Laboratoire Physico Chimie Curie, UMR168, UPMC, IPGG, Sorbonne Universités, 6 Rue Jean Calvin, 75005, Paris, France
| | - Jean Michel Peyrin
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France.
| | - Laurent Coudert
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Laurent Schaeffer
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Olivier Andréoletti
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France
| | - Pascal Leblanc
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France.
| |
Collapse
|
34
|
Qi J, Zhuang J, Lv Y, Lu Y, Wu W. Exploiting or overcoming the dome trap for enhanced oral immunization and drug delivery. J Control Release 2018; 275:92-106. [DOI: 10.1016/j.jconrel.2018.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 02/07/2023]
|
35
|
|
36
|
Mabbott NA. How do PrP Sc Prions Spread between Host Species, and within Hosts? Pathogens 2017; 6:pathogens6040060. [PMID: 29186791 PMCID: PMC5750584 DOI: 10.3390/pathogens6040060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
Prion diseases are sub-acute neurodegenerative diseases that affect humans and some domestic and free-ranging animals. Infectious prion agents are considered to comprise solely of abnormally folded isoforms of the cellular prion protein known as PrPSc. Pathology during prion disease is restricted to the central nervous system where it causes extensive neurodegeneration and ultimately leads to the death of the host. The first half of this review provides a thorough account of our understanding of the various ways in which PrPSc prions may spread between individuals within a population, both horizontally and vertically. Many natural prion diseases are acquired peripherally, such as by oral exposure, lesions to skin or mucous membranes, and possibly also via the nasal cavity. Following peripheral exposure, some prions accumulate to high levels within the secondary lymphoid organs as they make their journey from the site of infection to the brain, a process termed neuroinvasion. The replication of PrPSc prions within secondary lymphoid organs is important for their efficient spread to the brain. The second half of this review describes the key tissues, cells and molecules which are involved in the propagation of PrPSc prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. This section also considers how additional factors such as inflammation and aging might influence prion disease susceptibility.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
37
|
Vertebrate food products as a potential source of prion-like α-synuclein. NPJ PARKINSONS DISEASE 2017; 3:33. [PMID: 29184902 PMCID: PMC5701169 DOI: 10.1038/s41531-017-0035-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 02/08/2023]
Abstract
The aberrant aggregation of the protein α-synuclein is thought to be involved in Parkinson’s disease (PD). However, the factors that lead to initiation and propagation of α-synuclein aggregation are not clearly understood. Recently, the hypothesis that α-synuclein aggregation spreads via a prion-like mechanism originating in the gut has gained much scientific attention. If α-synuclein spreads via a prion-like mechanism, then an important question becomes, what are the origins of this prion-like species? Here we review the possibility that α-synuclein aggregation could be seeded via the ingestion of a prion-like α-synuclein species contained within food products originating from vertebrates. To do this, we highlight current evidence for the gut-to-brain hypothesis of PD, and put this in context of available routes of α-synuclein prion infectivity via the gastrointestinal (GI) tract. We then discuss meat as a ready exogenous source of α-synuclein and how certain risk factors, including inflammation, may allow for dietary α-synuclein to pass from the GI lumen into the host to induce pathology. Lastly, we review epidemiological evidence that dietary factors may be involved in PD. Overall, research to date has yet to directly test the contribution of dietary α-synuclein to the mechanism of initiation and progression of the disease. However, numerous experimental findings, including the potent seeding and spreading behavior of α-synuclein fibrils, seem to support, at least in part, the feasibility of an infection with a prion α-synuclein particle via the GI tract. Further studies are required to determine whether dietary α-synuclein contributes to seeding pathology in the gut.
Collapse
|
38
|
Fujinaga Y, Popoff MR. Translocation and dissemination of botulinum neurotoxin from the intestinal tract. Toxicon 2017; 147:13-18. [PMID: 29074396 DOI: 10.1016/j.toxicon.2017.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/16/2017] [Accepted: 10/22/2017] [Indexed: 12/19/2022]
Abstract
Botulinum neurotoxins (BoNTs) are potent toxins which induce flaccid paralysis by inhibiting the release of acetylcholine at the neuromuscular junctions. They associate with non-toxic proteins (ANTPs or NAPs) to form complexes of various sizes which are resistant to acidic pH and protease degradation. BoNT trafficking from the digestive tract to the target neurons is still a matter of debate. BoNTs use different strategies to pass through the intestinal barrier including passage of BoNT complexes containing hemagglutinins (HAs) via M cells, HA-dependent perturbation of E-cadherin intercellular junctions between enterocytes and paracellular passage of BoNT complexes, and transcytosis of BoNT free of NAPs through certain intestinal epithelial cells. Then, BoNTs target neuronal cells, preferentially cholinergic neurons, in the intestinal mucosa and submucosa. The precise mode of BoNT dissemination until the final target neuro-muscular junctions is still elusive.
Collapse
Affiliation(s)
- Yukako Fujinaga
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Michel R Popoff
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France.
| |
Collapse
|
39
|
Da Silva C, Wagner C, Bonnardel J, Gorvel JP, Lelouard H. The Peyer's Patch Mononuclear Phagocyte System at Steady State and during Infection. Front Immunol 2017; 8:1254. [PMID: 29038658 PMCID: PMC5630697 DOI: 10.3389/fimmu.2017.01254] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022] Open
Abstract
The gut represents a potential entry site for a wide range of pathogens including protozoa, bacteria, viruses, or fungi. Consequently, it is protected by one of the largest and most diversified population of immune cells of the body. Its surveillance requires the constant sampling of its encounters by dedicated sentinels composed of follicles and their associated epithelium located in specialized area. In the small intestine, Peyer’s patches (PPs) are the most important of these mucosal immune response inductive sites. Through several mechanisms including transcytosis by specialized epithelial cells called M-cells, access to the gut lumen is facilitated in PPs. Although antigen sampling is critical to the initiation of the mucosal immune response, pathogens have evolved strategies to take advantage of this permissive gateway to enter the host and disseminate. It is, therefore, critical to decipher the mechanisms that underlie both host defense and pathogen subversive strategies in order to develop new mucosal-based therapeutic approaches. Whereas penetration of pathogens through M cells has been well described, their fate once they have reached the subepithelial dome (SED) remains less well understood. Nevertheless, it is clear that the mononuclear phagocyte system (MPS) plays a critical role in handling these pathogens. MPS members, including both dendritic cells and macrophages, are indeed strongly enriched in the SED, interact with M cells, and are necessary for antigen presentation to immune effector cells. This review focuses on recent advances, which have allowed distinguishing the different PP mononuclear phagocyte subsets. It gives an overview of their diversity, specificity, location, and functions. Interaction of PP phagocytes with the microbiota and the follicle-associated epithelium as well as PP infection studies are described in the light of these new criteria of PP phagocyte identification. Finally, known alterations affecting the different phagocyte subsets during PP stimulation or infection are discussed.
Collapse
Affiliation(s)
| | - Camille Wagner
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Johnny Bonnardel
- Laboratory of Myeloid Cell Ontogeny and Functional Specialisation, VIB Inflammation Research Center, Ghent, Belgium
| | | | - Hugues Lelouard
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
40
|
Abstract
Three decades after the discovery of prions as the cause of Creutzfeldt-Jakob disease and other transmissible spongiform encephalopathies, we are still nowhere close to finding an effective therapy. Numerous pharmacological interventions have attempted to target various stages of disease progression, yet none has significantly ameliorated the course of disease. We still lack a mechanistic understanding of how the prions damage the brain, and this situation results in a dearth of validated pharmacological targets. In this review, we discuss the attempts to interfere with the replication of prions and to enhance their clearance. We also trace some of the possibilities to identify novel targets that may arise with increasing insights into prion biology.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| | - Asvin K K Lakkaraju
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| |
Collapse
|
41
|
Davenport KA, Hoover CE, Bian J, Telling GC, Mathiason CK, Hoover EA. PrPC expression and prion seeding activity in the alimentary tract and lymphoid tissue of deer. PLoS One 2017; 12:e0183927. [PMID: 28880938 PMCID: PMC5589181 DOI: 10.1371/journal.pone.0183927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/14/2017] [Indexed: 11/19/2022] Open
Abstract
The agent responsible for prion diseases is a misfolded form of a normal protein (PrPC). The prion hypothesis stipulates that PrPC must be present for the disease to manifest. Cervid populations across the world are infected with chronic wasting disease, a horizontally-transmissible prion disease that is likely spread via oral exposure to infectious prions (PrPCWD). Though PrPCWD has been identified in many tissues, there has been little effort to characterize the overall PrPC expression in cervids and its relationship to PrPCWD accumulation. We used immunohistochemistry (IHC), western blot and enzyme-linked immunosorbent assay to describe PrPC expression in naïve white-tailed deer. We used real-time, quaking-induced conversion (RT-QuIC) to detect prion seeding activity in CWD-infected deer. We assessed tissues comprising the alimentary tract, alimentary-associated lymphoid tissue and systemic lymphoid tissue from 5 naïve deer. PrPC was expressed in all tissues, though expression was often very low compared to the level in the CNS. IHC identified specific cell types wherein PrPC expression is very high. To compare the distribution of PrPC to PrPCWD, we examined 5 deer with advanced CWD infection. Using RT-QuIC, we detected prion seeding activity in all 21 tissues. In 3 subclinical deer sacrificed 4 months post-inoculation, we detected PrPCWD consistently in alimentary-associated lymphoid tissue, irregularly in alimentary tract tissues, and not at all in the brain. Contrary to our hypothesis that PrPC levels dictate prion accumulation, PrPC expression was higher in the lower gastrointestinal tissues than in the alimentary-associated lymphoid system and was higher in salivary glands than in the oropharyngeal lymphoid tissue. These data suggest that PrPC expression is not the sole driver of prion accumulation and that alimentary tract tissues accumulate prions before centrifugal spread from the brain occurs.
Collapse
Affiliation(s)
- Kristen A. Davenport
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Clare E. Hoover
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jifeng Bian
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Glenn C. Telling
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Candace K. Mathiason
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Edward A. Hoover
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
42
|
Marín-Moreno A, Fernández-Borges N, Espinosa JC, Andréoletti O, Torres JM. Transmission and Replication of Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:181-201. [PMID: 28838661 DOI: 10.1016/bs.pmbts.2017.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of progressive, invariably fatal diseases that affect the nervous system of many mammals including humans. The key molecular event in the pathogenesis of TSEs is the conversion of the cellular prion protein PrPC into a disease-associated isoform PrPSc. The "protein-only hypothesis" argues that PrPSc itself is the infectious agent. In effect, PrPSc can adopt several structures that represent different prion strains. The interspecies transmission of TSEs is difficult because of differences between the host and donor primary PrP sequence. However, transmission is not impossible as this occurred when bovine spongiform encephalopathy spread to humans causing variant Creutzfeldt-Jakob disease (vCJD). This event determined a need for a thorough understanding of prion replication and transmission so that we could be one step ahead of further threats for human health. This chapter focuses on these concepts and on new insights gained into prion propagation mechanisms.
Collapse
Affiliation(s)
| | | | - Juan C Espinosa
- Centro de Investigación en Sanidad Animal, CISA-INIA, Madrid, Spain
| | - Olivier Andréoletti
- UMR INRA-ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Juan M Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, Madrid, Spain.
| |
Collapse
|
43
|
Mabbott NA. Immunology of Prion Protein and Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:203-240. [PMID: 28838662 DOI: 10.1016/bs.pmbts.2017.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many natural prion diseases are acquired peripherally, such as following the oral consumption of contaminated food or pasture. After peripheral exposure many prion isolates initially accumulate to high levels within the host's secondary lymphoid tissues. The replication of prions within these tissues is essential for their efficient spread to the brain where they ultimately cause neurodegeneration. This chapter describes our current understanding of the critical tissues, cells, and molecules which the prions exploit to mediate their efficient propagation from the site of exposure (such as the intestine) to the brain. Interactions between the immune system and prions are not only restricted to the secondary lymphoid tissues. Therefore, an account of how the activation status of the microglial in the brain can also influence progression of prion disease pathogenesis is provided. Prion disease susceptibility may also be influenced by additional factors such as chronic inflammation, coinfection with other pathogens, and aging. Finally, the potential for immunotherapy to provide a means of safe and effective prophylactic or therapeutic intervention in these currently untreatable diseases is considered.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Midlothian, United Kingdom.
| |
Collapse
|
44
|
Oral Prion Disease Pathogenesis Is Impeded in the Specific Absence of CXCR5-Expressing Dendritic Cells. J Virol 2017; 91:JVI.00124-17. [PMID: 28275192 PMCID: PMC5411578 DOI: 10.1128/jvi.00124-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/02/2017] [Indexed: 01/09/2023] Open
Abstract
After oral exposure, the early replication of certain prion strains upon stromal cell-derived follicular dendritic cells (FDC) in the Peyer's patches in the small intestine is essential for the efficient spread of disease to the brain. However, little is known of how prions are initially conveyed from the gut lumen to establish infection on FDC. Our previous data suggest that mononuclear phagocytes such as CD11c+ conventional dendritic cells play an important role in the initial propagation of prions from the gut lumen into Peyer's patches. However, whether these cells conveyed orally acquired prions toward FDC within Peyer's patches was not known. The chemokine CXCL13 is expressed by FDC and follicular stromal cells and modulates the homing of CXCR5-expressing cells toward the FDC-containing B cell follicles. Here, novel compound transgenic mice were created in which a CXCR5 deficiency was specifically restricted to CD11c+ cells. These mice were used to determine whether CXCR5-expressing conventional dendritic cells propagate prions toward FDC after oral exposure. Our data show that in the specific absence of CXCR5-expressing conventional dendritic cells the early accumulation of prions upon FDC in Peyer's patches and the spleen was impaired, and disease susceptibility significantly reduced. These data suggest that CXCR5-expressing conventional dendritic cells play an important role in the efficient propagation of orally administered prions toward FDC within Peyer's patches in order to establish host infection.IMPORTANCE Many natural prion diseases are acquired by oral consumption of contaminated food or pasture. Once the prions reach the brain they cause extensive neurodegeneration, which ultimately leads to death. In order for the prions to efficiently spread from the gut to the brain, they first replicate upon follicular dendritic cells within intestinal Peyer's patches. How the prions are first delivered to follicular dendritic cells to establish infection was unknown. Understanding this process is important since treatments which prevent prions from infecting follicular dendritic cells can block their spread to the brain. We created mice in which mobile conventional dendritic cells were unable to migrate toward follicular dendritic cells. In these mice the early accumulation of prions on follicular dendritic cells was impaired and oral prion disease susceptibility was reduced. This suggests that prions exploit conventional dendritic cells to facilitate their initial delivery toward follicular dendritic cells to establish host infection.
Collapse
|
45
|
Pathways of Prion Spread during Early Chronic Wasting Disease in Deer. J Virol 2017; 91:JVI.00077-17. [PMID: 28250130 DOI: 10.1128/jvi.00077-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/23/2017] [Indexed: 11/20/2022] Open
Abstract
Among prion infections, two scenarios of prion spread are generally observed: (i) early lymphoid tissue replication or (ii) direct neuroinvasion without substantial antecedent lymphoid amplification. In nature, cervids are infected with chronic wasting disease (CWD) prions by oral and nasal mucosal exposure, and studies of early CWD pathogenesis have implicated pharyngeal lymphoid tissue as the earliest sites of prion accumulation. However, knowledge of chronological events in prion spread during early infection remains incomplete. To investigate this knowledge gap in early CWD pathogenesis, we exposed white-tailed deer to CWD prions by mucosal routes and performed serial necropsies to assess PrPCWD tissue distribution by real-time quaking-induced conversion (RT-QuIC) and tyramide signal amplification immunohistochemistry (TSA-IHC). Although PrPCWD was not detected by either method in the initial days (1 and 3) postexposure, we observed PrPCWD seeding activity and follicular immunoreactivity in oropharyngeal lymphoid tissues at 1 and 2 months postexposure (MPE). At 3 MPE, PrPCWD replication had expanded to all systemic lymphoid tissues. By 4 MPE, the PrPCWD burden in all lymphoid tissues had increased and approached levels observed in terminal disease, yet there was no evidence of nervous system invasion. These results indicate the first site of CWD prion entry is in the oropharynx, and the initial phase of prion amplification occurs in the oropharyngeal lymphoid tissues followed by rapid dissemination to systemic lymphoid tissues. This lymphoid replication phase appears to precede neuroinvasion.IMPORTANCE Chronic wasting disease (CWD) is a universally fatal transmissible spongiform encephalopathy affecting cervids, and natural infection occurs through oral and nasal mucosal exposure to infectious prions. Terminal disease is characterized by PrPCWD accumulation in the brain and lymphoid tissues of affected animals. However, the initial sites of prion accumulation and pathways of prion spread during early CWD infection remain unknown. To investigate the chronological events of early prion pathogenesis, we exposed deer to CWD prions and monitored the tissue distribution of PrPCWD over the first 4 months of infection. We show CWD uptake occurs in the oropharynx with initial prion replication in the draining oropharyngeal lymphoid tissues, rapidly followed by dissemination to systemic lymphoid tissues without evidence of neuroinvasion. These data highlight the two phases of CWD infection: a robust prion amplification in systemic lymphoid tissues prior to neuroinvasion and establishment of a carrier state.
Collapse
|
46
|
Hussain N. Regulatory aspects in the pharmaceutical development of nanoparticle drug delivery systems designed to cross the intestinal epithelium and M-cells. Int J Pharm 2017; 514:15-23. [PMID: 27863658 DOI: 10.1016/j.ijpharm.2016.07.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 12/11/2022]
Abstract
This article reviews the field of oral uptake of nanoparticles across the gastrointestinal epithelium for the period 2006-2016. Analysis is conducted from the viewpoint of i) M-cell genetics and model development, ii) drug targeting to Peyer's patches and M-cells, and iii) physicochemical interactions of nanoparticles in the intestinal milieu. In light of these recent developments, regulatory considerations in the development of orally-absorbable nanoparticle drug products are discussed and focused on Module 3.2.P sub-sections of the Common Technical Document. Particular attention is paid to novel excipients, ligands and the non-standard method of manufacture. The novelty of this drug delivery system demands not only a multi-disciplinary scientific and regulatory approach but also a risk-adjusted consideration for a system defined by both processes and specifications. Given the current state of scientific development in the field it is suggested (in the author's personal opinion) that the design of nanoparticulate drug delivery systems should be kept as simple as possible (from a regulatory and manufacturing perspective) and to target the entire gastrointestinal epithelium.
Collapse
Affiliation(s)
- Nasir Hussain
- Medicines and Healthcare Products Regulatory Agency, Paediatric Unit, Special Populations Group, Vigilance and Risk Management of Medicines Division, 151 Buckingham Palace Road, London, SW1W 9SZ, United Kingdom.
| |
Collapse
|
47
|
Donaldson DS, Sehgal A, Rios D, Williams IR, Mabbott NA. Increased Abundance of M Cells in the Gut Epithelium Dramatically Enhances Oral Prion Disease Susceptibility. PLoS Pathog 2016; 12:e1006075. [PMID: 27973593 PMCID: PMC5156364 DOI: 10.1371/journal.ppat.1006075] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer's patches is essential for the efficient spread of disease to the brain. To replicate within Peyer's patches, the prions must first cross the gut epithelium. M cells are specialised epithelial cells within the epithelia covering Peyer's patches that transcytose particulate antigens and microorganisms. M cell-development is dependent upon RANKL-RANK-signalling, and mice in which RANK is deleted only in the gut epithelium completely lack M cells. In the specific absence of M cells in these mice, the accumulation of prions within Peyer's patches and the spread of disease to the brain was blocked, demonstrating a critical role for M cells in the initial transfer of prions across the gut epithelium in order to establish host infection. Since pathogens, inflammatory stimuli and aging can modify M cell-density in the gut, these factors may also influence oral prion disease susceptibility. Mice were therefore treated with RANKL to enhance M cell density in the gut. We show that prion uptake from the gut lumen was enhanced in RANKL-treated mice, resulting in shortened survival times and increased disease susceptibility, equivalent to a 10-fold higher infectious titre of prions. Together these data demonstrate that M cells are the critical gatekeepers of oral prion infection, whose density in the gut epithelium directly limits or enhances disease susceptibility. Our data suggest that factors which alter M cell-density in the gut epithelium may be important risk factors which influence host susceptibility to orally acquired prion diseases.
Collapse
Affiliation(s)
- David S. Donaldson
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, United Kingdom
| | - Anuj Sehgal
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, United Kingdom
| | - Daniel Rios
- Dept. Pathology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ifor R. Williams
- Dept. Pathology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Neil A. Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Wyckoff AC, Kane S, Lockwood K, Seligman J, Michel B, Hill D, Ortega A, Mangalea MR, Telling GC, Miller MW, Vercauteren K, Zabel MD. Clay Components in Soil Dictate Environmental Stability and Bioavailability of Cervid Prions in Mice. Front Microbiol 2016; 7:1885. [PMID: 27933048 PMCID: PMC5120086 DOI: 10.3389/fmicb.2016.01885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic wasting disease (CWD) affects cervids and is the only known prion disease to affect free-ranging wildlife populations. CWD spread continues unabated, and exact mechanisms of its seemingly facile spread among deer and elk across landscapes in North America remain elusive. Here we confirm that naturally contaminated soil contains infectious CWD prions that can be transmitted to susceptible model organisms. We show that smectite clay content of soil potentiates prion binding capacity of different soil types from CWD endemic and non-endemic areas, likely contributing to environmental stability of bound prions. The smectite clay montmorillonite (Mte) increased prion retention and bioavailability in vivo. Trafficking experiments in live animals fed bound and unbound prions showed that mice retained significantly more Mte-bound than unbound prions. Mte promoted rapid uptake of prions from the stomach to the intestines via enterocytes and M cells, and then to macrophages and eventually CD21+ B cells in Peyer's patches and spleens. These results confirm clay components in soil as an important vector in CWD transmission at both environmental and organismal levels.
Collapse
Affiliation(s)
- A Christy Wyckoff
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Prion Research Center at Colorado State University Fort Collins, CO, USA
| | - Sarah Kane
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Prion Research Center at Colorado State University Fort Collins, CO, USA
| | - Krista Lockwood
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Prion Research Center at Colorado State University Fort Collins, CO, USA
| | - Jeff Seligman
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Prion Research Center at Colorado State University Fort Collins, CO, USA
| | - Brady Michel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Prion Research Center at Colorado State University Fort Collins, CO, USA
| | - Dana Hill
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Prion Research Center at Colorado State University Fort Collins, CO, USA
| | - Aimee Ortega
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Prion Research Center at Colorado State University Fort Collins, CO, USA
| | - Mihnea R Mangalea
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Prion Research Center at Colorado State University Fort Collins, CO, USA
| | - Glenn C Telling
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Prion Research Center at Colorado State University Fort Collins, CO, USA
| | | | - Kurt Vercauteren
- National Wildlife Research Center, Wildlife Services, United States Department of Agriculture Fort Collins, CO, USA
| | - Mark D Zabel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Prion Research Center at Colorado State University Fort Collins, CO, USA
| |
Collapse
|
49
|
Sehgal A, Kobayashi A, Donaldson DS, Mabbott NA. c-Rel is dispensable for the differentiation and functional maturation of M cells in the follicle-associated epithelium. Immunobiology 2016; 222:316-326. [PMID: 27663963 PMCID: PMC5152706 DOI: 10.1016/j.imbio.2016.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/30/2016] [Accepted: 09/17/2016] [Indexed: 01/22/2023]
Abstract
M cells reside within the follicle-associated epithelium (FAE) overlying the gut-associated lymphoid tissues. These unique phagocytic epithelial cells enable the mucosal immune system to sample antigens within the lumen of the intestine. The differentiation of M cells from uncommitted precursors in the FAE is dependent on the production of receptor activator of nuclear factor-κB ligand (RANKL) by subepithelial stromal cells. The ligation of a variety of cell surface receptors activates the nuclear factor-κB (NF-κB) family of transcription factors which in-turn induce the transcription of multiple target genes. RANKL-stimulation can stimulate the nuclear translocation of the NF-κB subunit c-Rel. We therefore used c-Rel-deficient mice to determine whether the differentiation and functional maturation of M cells in the Peyer's patches was dependent on c-Rel. Our data show that c-Rel-deficiency does not influence the expression of RANKL or RANK in Peyer's patches, or the induction of M-cell differentiation in the FAE. RANKL-stimulation in the differentiating M cells induces the expression of SpiB which is essential for their subsequent maturation. However, SpiB expression in the FAE was also unaffected in the absence of c-Rel. As a consequence, the functional maturation of M cells was not impaired in the Peyer's patches of c-Rel-deficient mice. Although our data showed that the specific expression of CCL20 and ubiquitin D in the FAE was not impeded in the absence of c-Rel, the expression of ubiquitin D was dramatically reduced in the B cell-follicles of c-Rel-deficient mice. Coincident with this, we also observed that the status of follicular dendritic cells in the B cell-follicles was dramatically reduced in Peyer's patches from c-Rel-deficient mice. Taken together, our data show that c-Rel is dispensable for the RANKL-mediated differentiation and functional maturation of M cells.
Collapse
Affiliation(s)
- Anuj Sehgal
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - David S Donaldson
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
50
|
Donaldson DS, Mabbott NA. The influence of the commensal and pathogenic gut microbiota on prion disease pathogenesis. J Gen Virol 2016; 97:1725-1738. [PMID: 27193137 DOI: 10.1099/jgv.0.000507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Prion diseases are a unique group of transmissible, chronic, neurodegenerative disorders. Following peripheral exposure (e.g. oral), prions often accumulate first within the secondary lymphoid tissues before they infect the central nervous system (CNS). Prion replication within secondary lymphoid tissues is crucial for the efficient spread of disease to the CNS. Once within the CNS, the responses of innate immune cells within it can have a significant influence on neurodegeneration and disease progression. Recently, there have been substantial advances in our understanding of how cross-talk between the host and the vast community of commensal microorganisms present at barrier surfaces such as the gut influences the development and regulation of the host's immune system. These effects are evident not only in the mucosal immune system in the gut, but also in the CNS. The actions of this microbial community (the microbiota) have many important beneficial effects on host health, from metabolism of nutrients and regulation of host development to protection from pathogen infection. However, the microbiota can also have detrimental effects in some circumstances. In this review we discuss the many and varied interactions between prions, the host and the gut microbiota. Particular emphasis is given to the ways by which changes to the composition of the commensal gut microbiota or congruent pathogen infection may influence prion disease pathogenesis and/or disease susceptibility. Understanding how these factors influence prion pathogenesis and disease susceptibility is important for assessing the risk to infection and the design of novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- David S Donaldson
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|