1
|
Bi Q, Zhao J, Nie J, Huang F. Metabolic pathway analysis of tumors using stable isotopes. Semin Cancer Biol 2025; 113:9-24. [PMID: 40348000 DOI: 10.1016/j.semcancer.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 04/14/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Metabolic reprogramming is pivotal in malignant transformation and cancer progression. Tumor metabolism is shaped by a complex interplay of both intrinsic and extrinsic factors that are not yet fully elucidated. It is of great value to unravel the complex metabolic activity of tumors in patients. Metabolic flux analysis (MFA) is a versatile technique for investigating tumor metabolism in vivo, it has increasingly been applied to the assessment of metabolic activity in cancer in the past decade. Stable-isotope tracing have shown that human tumors use diverse nutrients to fuel central metabolic pathways, such as the tricarboxylic acid cycle and macromolecule synthesis. Precisely how tumors use different fuels, and the contribution of alternative metabolic pathways in tumor progression, remain areas of intensive investigation. In this review, we systematically summarize the evidence from in vivo stable- isotope tracing in tumors and describe the catabolic and anabolic processes involved in altered tumor metabolism. We also discuss current challenges and future perspectives for MFA of human cancers, which may provide new approaches in diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Qiufen Bi
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
| | - Junzhang Zhao
- Department of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Jun Nie
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Huang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China.
| |
Collapse
|
2
|
Lopez-Pajares V, Bhaduri A, Zhao Y, Gowrishankar G, Donohue LKH, Guo MG, Siprashvili Z, Miao W, Nguyen DT, Yang X, Li AM, Tung ASH, Shanderson RL, Winge MCG, Meservey LM, Srinivasan S, Meyers RM, Guerrero A, Ji AL, Garcia OS, Tao S, Gambhir SS, Long JZ, Ye J, Khavari PA. Glucose modulates IRF6 transcription factor dimerization to enable epidermal differentiation. Cell Stem Cell 2025; 32:795-810.e10. [PMID: 40120584 PMCID: PMC12048241 DOI: 10.1016/j.stem.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/18/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
Non-energetic roles for glucose are largely unclear, as is the interplay between transcription factors (TFs) and ubiquitous biomolecules. Metabolomic analyses uncovered elevation of intracellular glucose during differentiation of diverse cell types. Human and mouse tissue engineered with glucose sensors detected a glucose gradient that peaked in the outermost differentiated layers of the epidermis. Free glucose accumulation was essential for epidermal differentiation and required the SGLT1 glucose transporter. Glucose affinity chromatography uncovered glucose binding to diverse regulatory proteins, including the IRF6 TF. Direct glucose binding enabled IRF6 dimerization, DNA binding, genomic localization, and induction of IRF6 target genes, including essential pro-differentiation TFs GRHL1, GRHL3, HOPX, and PRDM1. These data identify a role for glucose as a gradient morphogen that modulates protein multimerization in cellular differentiation.
Collapse
Affiliation(s)
- Vanessa Lopez-Pajares
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Aparna Bhaduri
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Yang Zhao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gayatri Gowrishankar
- Departments of Bioengineering and Radiology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Laura K H Donohue
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Margaret G Guo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Biomedical Informatics, Stanford University, Stanford, CA 94305, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weili Miao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Duy T Nguyen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xue Yang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Albert M Li
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University, Stanford, CA 94350, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Ronald L Shanderson
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Marten C G Winge
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lindsey M Meservey
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Suhas Srinivasan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robin M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Angela Guerrero
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew L Ji
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Omar S Garcia
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shiying Tao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sanjiv S Gambhir
- Departments of Bioengineering and Radiology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University, Stanford, CA 94350, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94304, USA.
| |
Collapse
|
3
|
Li Z, Chen S, Wu X, Liu F, Zhu J, Chen J, Lu X, Chi R. Research advances in branched-chain amino acid metabolism in tumors. Mol Cell Biochem 2025; 480:2707-2723. [PMID: 39576465 DOI: 10.1007/s11010-024-05163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/10/2024] [Indexed: 01/06/2025]
Abstract
The metabolic reprogramming of amino acids is an important component of tumor metabolism. Branched-chain amino acids (BCAAs) perform important functions in tumor progression. They are the important amino donor and are involved in the synthesis of various non-essential amino acids, nucleotides, and polyamines to satisfy the increased demand for nitrogen sources. This review summarizes the studies related to abnormalities in BCAA metabolism during tumorigenesis and the potential therapeutic targets. The expression of BCAA transporters was significantly upregulated in tumor cells, which increases BCAA uptake. High expression of the BCAA transaminases is prevalent in various tumors, however, the dehydrogenation step of BCAA catabolism is inhibited in tumors. This review shows that BCAA metabolic reprogramming is an important tumor metabolic feature, and metabolic genes of BCAAs play a crucial role in tumor metabolism, representing a good auxiliary target for early clinical diagnosis and treatment. In addition, BCAAs are indispensable for maintaining immune system function, and dietary supplementation with BCAAs can enhance the activity of immune cells. Therefore, BCAA supplementation in tumor patients may affect the interaction between the immune system and tumors.
Collapse
Affiliation(s)
- Zheng Li
- The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | | | - Xuechao Wu
- Wuxi Neurosurgical Institute, Wuxi, China
- Department of Neurosurgery, Jiangnan University, Medical Center, Wuxi, China
| | - Fei Liu
- Department of Neurosurgery, Jiangnan University, Medical Center, Wuxi, China
| | - Jing Zhu
- College of Nursing and Health Innovation, The University of Texas Arlington, Arlington, TX, 76010, USA
| | - Jiayi Chen
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, Jilin, China.
| | - Xiaojie Lu
- The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China.
- Nanjing Medical University, Nanjing, China.
- Wuxi Neurosurgical Institute, Wuxi, China.
- Department of Neurosurgery, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, 214002, China.
| | - Rui Chi
- The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China.
- Department of Laboratory Medicine, Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, 214002, China.
| |
Collapse
|
4
|
Düz SA, Mumcu A, Doğan B, Sarıdoğan E, Tuncay G, Onat T, Karaer A. Metabolomics approach using HR-MAS NMR spectroscopy for the assessment of metabolic profiles of uterine fibroids. Anal Biochem 2025; 704:115885. [PMID: 40311774 DOI: 10.1016/j.ab.2025.115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025]
Abstract
The aim of this study is to determine dysregulated metabolites and metabolic pathways in uterine fibroids and in the myometrial tissue from which uterine fibroids are derived. Fifteen (15) patients underwent hysterectomy because of uterine fibroids and 14 controls were included in this study. 1H HR-MAS NMR spectroscopy data were obtained from uterine fibroid tissue, the adjacent healthy myometrial tissue from cases, and myometrial tissue from controls. PCA and PLS-DA score plots from multivariate statistical analysis of pre-processed spectral data demonstrated a distinction between cases and control groups. The levels of lactate, alanine, glutamate, glutamine, methionine, acetone, isocitrate, choline, glycerophosphocholine, phosphocholine, o-phosphoethanolamine, taurine, myo-inositol, p-methylhistidine, phenylacetate, ascorbate, glucose, and methylhistidine were significantly higher in uterine fibroid tissue compared to the neighboring healthy myometrial tissue. Additionally, when adjacent healthy myometrial tissue was compared to control myometrial tissue, significantly lower levels of valine, leucine, isoleucine, ethanol, arginine, N-acetyl tyrosine, acetone, p-methylhistidine, glucose, phenylacetate, myo-inositol, and alpha-glucose were observed. The study provides a foundational framework by revealing the metabolomic heterogeneity of uterine fibroids. Strategies should be developed to target the metabolic alterations that contribute to the growth of these common tumors.
Collapse
Affiliation(s)
- Senem Arda Düz
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Türkiye; Department of Obstetrics and Gynecology, Inonu University, School of Medicine, Malatya, Türkiye
| | - Akın Mumcu
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Türkiye; Laboratory of NMR, Scientific and Technological Research Center, Inonu University, Malatya, Türkiye
| | - Berat Doğan
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Türkiye; Department of Biomedical Engineering, Faculty of Engineering, Inonu University, Malatya, Türkiye
| | - Erdinç Sarıdoğan
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Türkiye; Department of Obstetrics and Gynecology, Inonu University, School of Medicine, Malatya, Türkiye
| | - Görkem Tuncay
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Türkiye; Department of Obstetrics and Gynecology, Inonu University, School of Medicine, Malatya, Türkiye
| | - Taylan Onat
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Türkiye; Department of Obstetrics and Gynecology, Inonu University, School of Medicine, Malatya, Türkiye
| | - Abdullah Karaer
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Türkiye; Department of Obstetrics and Gynecology, Inonu University, School of Medicine, Malatya, Türkiye.
| |
Collapse
|
5
|
Lemos I, Freitas-Dias C, Hipólito A, Ramalho J, Carteni F, Gonçalves LG, Mazzoleni S, Serpa J. Cell-Free DNA (cfDNA) Regulates Metabolic Remodeling in the ES-2 Ovarian Carcinoma Cell Line, Influencing Cell Proliferation, Quiescence, and Chemoresistance in a Cell-of-Origin-Specific Manner. Metabolites 2025; 15:244. [PMID: 40278372 PMCID: PMC12029194 DOI: 10.3390/metabo15040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Background: The cell-free DNA (cfDNA) is an extracellular fragmented DNA found in body fluids in physiological and pathophysiological contexts. In cancer, cfDNA has been pointed out as a marker for disease diagnosis, staging, and prognosis; however, little is known about its biological role. Methods: The role of cfDNA released by ES-2 ovarian cancer cells was investigated, along with the impact of glucose bioavailability and culture duration in the cfDNA-induced phenotype. The effect of cfDNA on ES-2 cell proliferation was evaluated by proliferation curves, and cell migration was assessed through wound healing. We explored the impact of different cfDNA variants on ES-2 cells' metabolic profile using nuclear magnetic resonance (NMR) spectroscopy and cisplatin resistance through flow cytometry. Moreover, we assessed the protein levels of DNA-sensitive Toll-like receptor 9 (TLR9) by immunofluorescence and its colocalization with lysosome-associated membrane protein 1 (LAMP1). Results: This study demonstrated that despite inducing similar effects, different variants of cfDNA promote different effects on cells derived from the ES-2 cell line. We observed instant reactions of adopting the metabolic profile that brings back the cell functioning of more favorable culture conditions supporting proliferation and resembling the cell of origin of the cfDNA variant, as observed in unselected ES-2 cells. However, as a long-term selective factor, certain cfDNA variants induced quiescence that favors the chemoresistance of a subset of cancer cells. Conclusions: Therefore, different tumoral microenvironments may generate cfDNA variants that will impact cancer cells differently, orchestrating the disease fate.
Collapse
Affiliation(s)
- Isabel Lemos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Catarina Freitas-Dias
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Ana Hipólito
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - José Ramalho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
| | - Fabrizio Carteni
- Lab Applied Ecology and System Dynamics, Dipartimento di Agraria, Università di Napoli “Federico II”, Portici, 80055 Naples, Italy; (F.C.); (S.M.)
| | - Luís G. Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal;
| | - Stefano Mazzoleni
- Lab Applied Ecology and System Dynamics, Dipartimento di Agraria, Università di Napoli “Federico II”, Portici, 80055 Naples, Italy; (F.C.); (S.M.)
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| |
Collapse
|
6
|
Park WY, Montufar C, Zaganjor E. Mitochondrial substrate oxidation regulates distinct cell differentiation outcomes. Trends Cell Biol 2025; 35:274-277. [PMID: 40011089 PMCID: PMC11972143 DOI: 10.1016/j.tcb.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Mitochondrial metabolism, signaling, and dynamics are key regulators of cell fate. While glycolysis supports stemness, mitochondrial expansion and oxidative phosphorylation (OXPHOS) facilitate differentiation. This forum presents emerging evidence that the type of substrate, whether amino acids, carbohydrates, or fatty acids, oxidized by mitochondria significantly influences differentiation outcomes.
Collapse
Affiliation(s)
- Woo Yong Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Claudia Montufar
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
7
|
Lemos I, Freitas-Dias C, Hipólito A, Ramalho J, Carteni F, Gonçalves LG, Mazzoleni S, Serpa J. Cell-Free DNA (cfDNA) Regulates Metabolic Remodeling, Sustaining Proliferation, Quiescence, and Migration in MDA-MB-231, a Triple-Negative Breast Carcinoma (TNBC) Cell Line. Metabolites 2025; 15:227. [PMID: 40278356 PMCID: PMC12029764 DOI: 10.3390/metabo15040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Background: The clinical relevance of circulating cell-free DNA (cfDNA) in oncology has gained significant attention, with its potential as a biomarker for cancer diagnosis and monitoring. However, its precise role in cancer biology and progression remains unclear. cfDNA in cancer patients' blood has been shown to activate signaling pathways, such as those mediated by toll-like receptors (TLRs), suggesting its involvement in cancer cell adaptation to the tumor microenvironment. Methods: This impact of cfDNA released from MDA-MB-231, a triple-negative breast cancer (TNBC) cell line was assessed, focusing on glucose availability and culture duration. The impact of cfDNA on the proliferation of MDA-MB-231 cells was investigated using proliferation curves, while cellular migration was evaluated through wound healing assays. The metabolic alterations induced by distinct cfDNA variants in MDA-MB-231 cells were investigated through nuclear magnetic resonance (NMR) spectroscopy, and their effect on cisplatin resistance was evaluated using flow cytometry. Furthermore, the expression levels of DNA-sensitive Toll-like receptor 9 (TLR9) were quantified via immunofluorescence, alongside its colocalization with lysosome-associated membrane protein 1 (LAMP1). Results: This study indicates that cfDNA facilitates metabolic adaptation, particularly under metabolic stress, by modulating glucose and glutamine consumption, key pathways in tumor cell metabolism. Exposure to cfDNA induced distinct metabolic shifts, favoring energy production through oxidative phosphorylation. The anti-cancer activity of cfDNA isolated from conditioned media of cells cultured under stressful conditions is influenced by the culture duration, emphasizing the importance of adaptation and se-lection in releasing cfDNA that can drive pro-tumoral processes. Additionally, cfDNA exposure influenced cell proliferation, quiescence, and migration, processes linked to metastasis and treatment resistance. These findings underscore cfDNA as a key mediator of metabolic reprogramming and adaptive responses in cancer cells, contributing to tumor progression and therapy resistance. Furthermore, the activation of TLR9 signaling suggests a mechanistic basis for cfDNA-induced phenotypic changes. Conclusions: Overall, cfDNA serves as a crucial signaling molecule in the tumor microenvironment, orchestrating adaptive processes that enhance cancer cell survival and progression.
Collapse
Affiliation(s)
- Isabel Lemos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Catarina Freitas-Dias
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Ana Hipólito
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - José Ramalho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
| | - Fabrizio Carteni
- Lab Applied Ecology and System Dynamics, Dipartimento di Agraria, Università di Napoli “Federico II”, Portici, 80055 Naples, Italy; (F.C.); (S.M.)
| | - Luís G. Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal;
| | - Stefano Mazzoleni
- Lab Applied Ecology and System Dynamics, Dipartimento di Agraria, Università di Napoli “Federico II”, Portici, 80055 Naples, Italy; (F.C.); (S.M.)
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| |
Collapse
|
8
|
Griffith CM, Conrotte JF, Paydar P, Xie X, Heins-Marroquin U, Gavotto F, Jäger C, Ellens KW, Linster CL. CLYBL averts vitamin B 12 depletion by repairing malyl-CoA. Nat Chem Biol 2025:10.1038/s41589-025-01857-9. [PMID: 40108300 DOI: 10.1038/s41589-025-01857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Citrate lyase beta-like protein (CLYBL) is a ubiquitously expressed mammalian enzyme known for its role in the degradation of itaconate, a bactericidal immunometabolite produced in activated macrophages. The association of CLYBL loss of function with reduced circulating vitamin B12 levels was proposed to result from inhibition of the B12-dependent enzyme methylmalonyl-CoA mutase by itaconyl-CoA. The discrepancy between the highly inducible and locally confined production of itaconate and the broad expression profile of CLYBL across tissues suggested a role for this enzyme beyond itaconate catabolism. Here we discover that CLYBL additionally functions as a metabolite repair enzyme for malyl-CoA, a side product of promiscuous citric acid cycle enzymes. We found that CLYBL knockout cells, accumulating malyl-CoA but not itaconyl-CoA, show decreased levels of adenosylcobalamin and that malyl-CoA is a more potent inhibitor of methylmalonyl-CoA mutase than itaconyl-CoA. Our work thus suggests that malyl-CoA plays a role in the B12 deficiency observed in individuals with CLYBL loss of function.
Collapse
Affiliation(s)
- Corey M Griffith
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jean-François Conrotte
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Parisa Paydar
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Xinqiang Xie
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ursula Heins-Marroquin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Floriane Gavotto
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Christian Jäger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kenneth W Ellens
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
9
|
Wang H, Ling L, Song W, Gu J, Bing H, Sun J, Guo L, Luo Y, Qi H, Wang X, Wang JD, Zhao J, Xiang W. Discovery of (+)-Methyl Nonactate as a Potential Fungicide against Gummy Stem Blight. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5248-5259. [PMID: 39992285 DOI: 10.1021/acs.jafc.4c09634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Gummy stem blight (GSB), which is caused by Stagonosporopsis cucurbitacearum, threatens pumpkin yields and agriculture. Effective, safe antifungal agents are urgently needed. In this study, fermentation broth supernatant of Streptomyces sp. NEAU-T55 demonstrated considerable antifungal activity against S. cucurbitacearum. Activity-guided isolation identified 2 new and 14 known compounds, with (+)-methyl nonactate (10) determined as the main active ingredient. This compound exhibited strong antifungal activity (EC50 = 0.12 μg mL-1), outperforming difenoconazole (EC50 = 0.17 μg mL-1), and achieved 74.1% control efficacy in the pot experiments. Microscopy revealed that (+)-methyl nonactate impeded mycelial growth and induced morphological alterations. Transcriptomic analysis indicated that (+)-methyl nonactate may inhibit acetolactate synthase, thereby disrupting amino acid metabolism and diminishing precursor availability for the tricarboxylic acid cycle. This research represents the first application of (+)-methyl nonactate for GSB control and provides insights into its antifungal mechanisms, laying the groundwork for its potential development as a novel agricultural antibiotic.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College Life Science, Huzhou University, Huzhou 313000, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ling Ling
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Wenshuai Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Jinzhao Gu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Hui Bing
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Jingzheng Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Lifeng Guo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Yanfang Luo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Huan Qi
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College Life Science, Huzhou University, Huzhou 313000, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ji-Dong Wang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College Life Science, Huzhou University, Huzhou 313000, China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
10
|
LING T, SHI J, FENG T, PEI S, LI S, PIAO H. [Integrative transcriptomics-metabolomics approach to identify metabolic pathways regulated by glutamine synthetase activity]. Se Pu 2025; 43:207-219. [PMID: 40045642 PMCID: PMC11883535 DOI: 10.3724/sp.j.1123.2024.04003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Indexed: 03/09/2025] Open
Abstract
Glutamine synthetase (GS), the only enzyme responsible for de novo glutamine synthesis, plays a significant role in cancer progression. As an example of the consequences of GS mutations, the R324C variant causes congenital glutamine deficiency, which results in brain abnormalities and neonatal death. However, the influence of GS-deficient mutations on cancer cells remains relatively unexplored. In this study, we investigated the effects of GS and GS-deficient mutations, including R324C and previously unreported K241R, which serve as models for GS inactivation. This study provided intriguing insights into the intricate relationship between GS mutations and cancer cell metabolism. Our findings strongly support recent studies that suggest GS deletion leads to the suppression of diverse signaling cascades associated with glutamine metabolism under glutamine-stripping conditions. The affected processes include DNA synthesis, the citric acid cycle, and reactive oxygen species (ROS) detoxification. This suppression originates from the inherent inability of cells to autonomously synthesize glutamine under glutamine-depleted conditions. As a key source of reduced nitrogen, glutamine is crucial for the formation of purine and pyrimidine bases, which are essential building blocks for DNA synthesis. Furthermore, the citric acid cycle is inhibited by the absence of negatively charged glutamate within the mitochondrial matrix, particularly when glutamine is scarce. This deficiency decreases the flux of α-ketoglutarate (α-KG), a principal driver of the citric acid cycle. Intermediate metabolites of the citric acid cycle directly or indirectly contribute to the generation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a core component of redox homeostasis. Using the GS_R324C and GS_K241R mutants, we conducted an integrative transcriptomics and metabolomics analysis. The GS mutants with reduced activity activated multiple amino acid biosynthesis pathways, including arginine-proline, glycine-serine-threonine, and alanine-aspartate-glutamate metabolism. This intriguing behavior led us to hypothesize that despite hindrance of the citric acid cycle, abundant intracellular glutamate is redirected through alternative processes, including transamination. Simultaneously, key metabolic enzymes in the amino acid synthesis pathways, such as glutamic-oxaloacetic transaminase 1 (GOT1), glutamic-pyruvic transaminase 2 (GPT2), pyrroline-5-carboxylate reductase 1 (PYCR1), and phosphoserine aminotransferase 1 (PSAT1), exhibited increased mRNA levels. Additionally, GS deficiency appeared to upregulate the expression of glutamine transporters SLC38A2 and SLC1A5. Thus, restricting extracellular amino acids, such as glutamine, induces a stress response while promoting transcription or translation by a select group of genes, thereby facilitating cellular adaptation. However, similar to GS_WT, both GS_R324C and GS_K241R were modulated by glutamine treatment. Among GS-activity-dependent behaviors, the increased expression of numerous aminoacyl-tRNA synthetases (ARSs), which are critical for aminoacyl-tRNA biosynthesis, remains poorly understood. Most ARS-encoding genes are transcriptionally induced by activating transcription factor 4 (ATF4), the expression of which increases under oxidative stress, endoplasmic reticulum stress, hypoxia, and amino acid limitation. In GS-deficient cells, the increased expression of ATF4 was accompanied by pronounced stress caused by glutamine starvation. Thus, ARS upregulation may predominantly arise from increased ATF4 expression in GS-deficient cells. Additionally, transcriptomic analysis revealed the differential expression of specific genes, regardless of GS activity, suggesting that GS is involved in various processes other than glutamine synthesis, including angiogenesis. Although our omics study was limited to H1299 cells, in subsequent experiments, we validated our findings using additional cell lines, including Hepa1-6 and LN-229. To attain a more comprehensive understanding of the impact of the newly identified GS_K241R mutant, our investigation should be extended to various cell types and mouse models. In summary, we identified and investigated GS-deficient mutations in cancer cells and conducted an integrative transcriptomics-metabolomics analysis with comparisons to wild-type GS. This comprehensive approach provided crucial insights into the intricate pathways modulated by GS activity. Our findings advance the understanding of how GS functions in the context of reprogrammed cellular metabolism, particularly during glutamine deprivation. The altered metabolism triggered by elevated glutamate levels arising from GS mutations highlights the remarkable plasticity of cancer cell metabolism. Notably, considering the increasing research focus on GS as a potential therapeutic target in various cancer types, the findings of this study could provide innovative perspectives for drug development and the formulation of clinical treatment strategies.
Collapse
|
11
|
Li W, Tu J, Zheng J, Das A, Yan Q, Jiang X, Ding W, Bai X, Lai K, Yang S, Yang C, Zou J, Diwan AD, Zheng Z. Gut Microbiome and Metabolome Changes in Chronic Low Back Pain Patients With Vertebral Bone Marrow Lesions. JOR Spine 2025; 8:e70042. [PMID: 39877797 PMCID: PMC11772216 DOI: 10.1002/jsp2.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/26/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025] Open
Abstract
Background Chronic low back pain (LBP) is a significant global health concern, often linked to vertebral bone marrow lesions (BML), particularly fatty replacement (FR). This study aims to explore the relationship between the gut microbiome, serum metabolome, and FR in chronic LBP patients. Methods Serum metabolomic profiling and gut microbiome analysis were conducted in chronic LBP patients with and without FR (LBP + FR, n = 40; LBP, n = 40) and Healthy Controls (HC, n = 31). The study investigates alterations in branched-chain amino acids (BCAAs) levels and identifies key microbial species associated with BCAA metabolism. In vitro experiments elucidate the role of BCAAs in adipogenesis of bone marrow mesenchymal stem cells (BM-MSCs) via the SIRT4 pathway. Results Chronic LBP patients with FR exhibit depleted BCAA levels in their serum metabolome, along with alterations in the gut microbiome. Specific microbial species, including Ruminococcus gnavus, Roseburia hominis, and Lachnospiraceae bacterium 8 1 57FAA, are identified as influential in BCAA metabolism and BM-MSCs metabolism. In vitro experiments demonstrate the ability of BCAAs to induce BM-MSCs adipogenesis through SIRT4 pathway activation. Conclusion This study sheds light on the intricate relationship between the disturbed gut ecosystem, serum metabolites, and FR in chronic LBP. Dysbiosis in the gut microbiome may contribute to altered BCAA degradation, subsequently promoting BM-MSCs adipogenesis and FR. Understanding these interactions provides insights for targeted therapeutic strategies to mitigate chronic LBP associated with FR by restoring gut microbial balance and modulating serum metabolite profiles.
Collapse
Affiliation(s)
- Wentian Li
- Spine Labs, St. George and Sutherland Clinical SchoolUniversity of new South WalesKogarahAustralia
- Gulbali Institute, School of Agricultural, Environmental and Veterinary SciencesCharles Sturt UniversityWagga WaggaAustralia
| | - Ji Tu
- Spine Labs, St. George and Sutherland Clinical SchoolUniversity of new South WalesKogarahAustralia
- Nepean HospitalNepean Blue Mountains Local Health DistrictPenrithAustralia
| | - Jinjian Zheng
- Department of Spine Surgery, the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Abhirup Das
- Spine Labs, St. George and Sutherland Clinical SchoolUniversity of new South WalesKogarahAustralia
| | - Qi Yan
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiaotao Jiang
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Medicine and HealthThe University of new South WalesSydneyAustralia
| | - Wenyuan Ding
- Department of Spinal SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
- Hebei Joint International Research Centre for Spinal DiseasesCenter for Innovation & Translational Medicine, the First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Xupeng Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Charles Perkins Centre and School of Medical SciencesUniversity of SydneySydneyAustralia
| | - Kaitao Lai
- Northcott Neuroscience LaboratoryANZAC Research Institute, Concord HospitalSydneyAustralia
- Tissue Engineering and Microfluidics Laboratory (TE&M)Australian Institute for Bioengineering and Nanotechnology (AIBN), the University of QueenslandSt LuciaAustralia
| | - Sidong Yang
- Department of Spinal SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Cao Yang
- Spine ServiceDepartment of Orthopaedic Surgery, St. George HospitalKogarahAustralia
| | - Jun Zou
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Ashish D. Diwan
- Spine Labs, St. George and Sutherland Clinical SchoolUniversity of new South WalesKogarahAustralia
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhaomin Zheng
- Spine Labs, St. George and Sutherland Clinical SchoolUniversity of new South WalesKogarahAustralia
- Department of Spine Surgery, the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
12
|
Kim YR, Choi TR, Jo SH, Song WS, Kim T, Kim MG, Baek JH, Kwon SY, Choi BG, Seo SW, Jang CS, Yang YH, Kim YG. Deciphering the anti-obesity mechanisms of pharmabiotic probiotics through advanced multiomics analysis. iScience 2025; 28:111890. [PMID: 40017507 PMCID: PMC11867264 DOI: 10.1016/j.isci.2025.111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/23/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
Probiotics with "pharmabiotic" properties are increasingly recognized as effective tools for combating obesity by altering gut microbiota and reducing body fat. However, the molecular mechanisms underlying their anti-obesity effects remain largely unexplored due to the absence of a universal methodology. Herein, we developed a multiomics-based strategy to elucidate how probiotics reduce lipid production in adipocytes. Our initial investigation assessed the impact of probiotics at defined adipocyte differentiation stages. Leveraging these insights, we performed comprehensive multiomics analyses at key intervals to identify the suppression mechanisms of lipid formation. Lactobacillus reuteri, specifically, targets early differentiation stages, inhibits branched-chain amino acid catabolism, and reduces lipid accumulation in adipocytes by suppressing Krüppel-like factor 5. Concurrently, enhanced hypoxia-inducible factor 1 expression impedes adipogenesis by downregulating lipin-1 expression. This study not only demonstrates the effectiveness of our approach in revealing complex host-microbe interactions but also significantly advances probiotic therapeutic development, offering promising avenues for obesity management.
Collapse
Affiliation(s)
- Ye-Rim Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Won-Suk Song
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - TaeHyun Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Gyu Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Ji-Hyun Baek
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Seo-Young Kwon
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Bo-Gyeong Choi
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chol-Soon Jang
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
13
|
Lee Chang KJ, Gorron Gomez E, Ebrahimie E, Dehcheshmeh MM, Frampton DMF, Zhou XR. Transcriptomic Signature of Lipid Production in Australian Aurantiochytrium sp. TC20. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:43. [PMID: 39912956 PMCID: PMC11802676 DOI: 10.1007/s10126-025-10415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
Aurantiochytrium not only excels in producing long-chain polyunsaturated fatty acids such as docosahexaenoic acid for humans, but it is also a source of essential fatty acids with minimal impacts on wild fisheries and is vital in the transfer of atmospheric carbon to oceanic carbon sinks and cycles. This study aims to unveil the systems biology of lipid production in the Australian Aurantiochytrium sp. TC20 by comparing the transcriptomic profiles under optimal growth conditions with increased fatty acid production from the early (Day 1) to late exponential growth phase (Day 3). Particular attention was paid to 227 manually annotated genes involved in lipid metabolism, such as FAS (fatty acid synthetase) and subunits of polyunsaturated fatty acids (PUFA) synthase. PCA analysis showed that differentially expressed genes, related to lipid metabolism, efficiently discriminated Day 3 samples from Day 1, highlighting the key robustness of the developed lipid-biosynthesis signature. Highly significant (pFDR < 0.01) upregulation of polyunsaturated fatty acid synthase subunit B (PFAB) involved in fatty acid synthesis, lipid droplet protein (TLDP) involved in TAG-synthesis, and phosphoglycerate mutase (PGAM-2) involved in glycolysis and gluconeogenesis were observed. KEGG enrichment analysis highlighted significant enrichment of the biosynthesis of unsaturated fatty acids (pFDR < 0.01) and carbon metabolism pathways (pFDR < 0.01). This study provides a comprehensive overview of the transcriptional landscape of Australian Aurantiochytrium sp. TC20 in the process of fatty acid production.
Collapse
Affiliation(s)
| | | | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA, 5371, Australia
- School of Biosciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Manijeh Mohammadi Dehcheshmeh
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | | | - Xue-Rong Zhou
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia
| |
Collapse
|
14
|
Eylem CC, Baysal İ, Yabanoğlu Çiftçi S, Nemutlu E. Tracing of Amino Acids Dynamics in Cell Lines Based on 18O Stable Isotope Labeling. Anal Chem 2025; 97:2143-2152. [PMID: 39844690 DOI: 10.1021/acs.analchem.4c05015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Metabolite levels and turnover rates are necessary to understand metabolomic dynamics in a living organism fully. Amino acids can play distinct roles in various cellular processes, and their abnormal levels are associated with pathological conditions, including cancer. Therefore, their levels, especially turnover rates, may provide enormous information about a phenotype. 13C- or 13C,15N-labeled amino acids have also been commonly used to trace amino acid metabolism. This study presented a new methodology based on 18O labeling for amino acids that relied on monitoring mass isotopologues to calculate the turnover rates of amino acids. The method optimization studies were carried over for selective amino acid monitoring. This methodology provides a rapid, robust, and simple GC-MS method for analyzing the fluxes of amino acid metabolism. The developed method was applied to fetal human colon (FHC) and human colon carcinoma (Caco-2) cell lines to determine cancer-induced shifts in the turnover rates of amino acids. These results defined metabolic reprogramming in Caco-2 cells through increased glutamate and serine turnovers and sharply decreased turnovers of aspartate, threonine, and methionine, therefore pointing to some metabolic vulnerabilities in the metabolism of cancerous cells. The simple mechanism of the developed methodology, the availability of affordable 18O-enriched water, and the ease of application can open a new arena in fluxomics analysis.
Collapse
Affiliation(s)
- Cemil Can Eylem
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara 06230, Turkey
| | - İpek Baysal
- Hacettepe University, Vocational School of Health Services, Ankara 06230, Turkey
| | | | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara 06230, Turkey
| |
Collapse
|
15
|
Guo SY, Hu YT, Rao Y, Jiang Z, Li C, Lin YW, Xu SM, Zhao DD, Wei LY, Huang SL, Li QJ, Tan JH, Chen SB, Huang ZS. L-aspartate ameliorates diet-induced obesity by increasing adipocyte energy expenditure. Diabetes Obes Metab 2025; 27:606-618. [PMID: 39529440 DOI: 10.1111/dom.16053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
AIMS Obesity always leads to profound perturbation of metabolome. Metabolome studies enrich the knowledge on associations between endogenous metabolites and obesity, potentially providing innovative strategies for the development of novel anti-obesity pharmacotherapy. This study aims to identify an endogenous metabolite that regulates energy expenditure and to explore its application for obesity treatment. MATERIALS AND METHODS C57BL/6 mice were fed with a high-fat and high-cholesterol (HFC) diet, comprising 60% fat and 1.2% cholesterol, for 12 weeks to induce obesity. Significant metabolites were identified in the livers of both health and obese mice through comparative hepatic metabolomics analysis. Correlation between serum or adipose L-aspartate level and body weight in obese mice, as well as human body mass index (BMI), was evaluated. In addition, saline or 200 mg/kg L-aspartate was orally administrated to HFC diet mice and HFC diet-induced obese mice for 6-7 weeks. Body weight, adipose tissue weight, glucose tolerance and liver damage were assessed to evaluate the effect on obesity prevention and treatment. Comprehensive lab animal monitoring system (CLAMS) and seahorse assay were employed to investigate the regulatory effect of L-aspartate on energy metabolism in vivo and in vitro, respectively. 3T3-L1 preadipocytes and murine white adipose tissue (WAT) were utilized to examine the impact of L-aspartate on adipocyte adipogenesis and lipogenesis and cellular signalling pathway in vitro and in vivo. RESULTS L-aspartate, an approved drug for liver injury and chronic fatigue, was identified as an endogenous inducer of energy expenditure. Serum or adipose L-aspartate levels were found to be negatively correlated with the severity of obesity in both humans and mice. Administration of L-aspartate to HFC diet mice led to a significant reduction in body weight, with decreases of 14.5% in HFC diet mice and 8.5% in HFC diet-induced obese mice, respectively. In addition, the treatment improved related metabolic syndrome (Figure 2 and Figure S3). These therapeutics were associated with enhancements in whole-body energy expenditure and suppression of adipocyte adipogenesis along with activation of Adenosine 5'-monophosphate-activated protein kinase (AMPK) signalling pathway. CONCLUSION L-aspartate may serve as a novel endogenous inducer of energy expenditure and suppressor of adipogenesis and lipogenesis along with activation of AMPK, thereby offering a promising therapeutic strategy for obesity prevention and treatment.
Collapse
Affiliation(s)
- Shi-Yao Guo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Yu-Tao Hu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Yong Rao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Zhi Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Chan Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Yu-Wei Lin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Shu-Min Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Dan-Dan Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Li-Yuan Wei
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Qing-Jiang Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Mansoori S, Ho MY, Ng KK, Cheng KK. Branched-chain amino acid metabolism: Pathophysiological mechanism and therapeutic intervention in metabolic diseases. Obes Rev 2025; 26:e13856. [PMID: 39455059 PMCID: PMC11711082 DOI: 10.1111/obr.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, are essential for maintaining physiological functions and metabolic homeostasis. However, chronic elevation of BCAAs causes metabolic diseases such as obesity, type 2 diabetes (T2D), and metabolic-associated fatty liver disease (MAFLD). Adipose tissue, skeletal muscle, and the liver are the three major metabolic tissues not only responsible for controlling glucose, lipid, and energy balance but also for maintaining BCAA homeostasis. Under obese and diabetic conditions, different pathogenic factors like pro-inflammatory cytokines, lipotoxicity, and reduction of adiponectin and peroxisome proliferator-activated receptors γ (PPARγ) disrupt BCAA metabolism, leading to excessive accumulation of BCAAs and their downstream metabolites in metabolic tissues and circulation. Mechanistically, BCAAs and/or their downstream metabolites, such as branched-chain ketoacids (BCKAs) and 3-hydroxyisobutyrate (3-HIB), impair insulin signaling, inhibit adipogenesis, induce inflammatory responses, and cause lipotoxicity in the metabolic tissues, resulting in multiple metabolic disorders. In this review, we summarize the latest studies on the metabolic regulation of BCAA homeostasis by the three major metabolic tissues-adipose tissue, skeletal muscle, and liver-and how dysregulated BCAA metabolism affects glucose, lipid, and energy balance in these active metabolic tissues. We also summarize therapeutic approaches to restore normal BCAA metabolism as a treatment for metabolic diseases.
Collapse
Affiliation(s)
- Shama Mansoori
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Melody Yuen‐man Ho
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kelvin Kwun‐wang Ng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kenneth King‐yip Cheng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
- Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
17
|
Zhao Y, Li Z, Ou H, Tan Z, Jiao J. Inferring transcriptomic dynamics implicated in odor fatty acid accumulation in adipose tissue of Hulun Buir sheep from birth to market. BMC Genomics 2024; 25:1261. [PMID: 39741228 DOI: 10.1186/s12864-024-11161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
This study aimed to investigate the temporal accumulation of odor fatty acids (OFAs) in the dorsal subcutaneous adipose tissue, and uncover their dynamic regulatory metabolic pathways from the transcriptomic perspective in lambs from birth to market. Thirty-two Hulun Buir lambs were selected and randomly assigned to four different sampling stages following their growth trajectories: neonatal (day 1), weaning (day 75), mid-fattening (day 150), and late-fattening (day 180) stages. Results indicated that the contents of three OFAs increased progressively as lambs matured, with the most drastic change occurred at mid-fattening vs. weaning. The dynamic transcriptomic profiles exhibited two distinct phases, with differentially expressed genes (DEGs) before weaning were involved in immune homeostasis, whereas those after weaning were associated with nutrient metabolism. Furthermore, DEGs involved in lipid metabolism and branch-chain amino acid degradation pathways exhibited surge in expression at mid-fattening vs. weaning, with acetyl-CoA and branched-chain-CoA as intermediates, and driven by regulation of PPAR and AMPK signaling pathways. Overall, our findings provided novel insight into the critical time window and pivotal candidate genes of OFA synthesis in the adipose tissue, which will assist with the targeted development of nutritional strategies to inhibit OFA accumulation of lambs.
Collapse
Affiliation(s)
- Yechan Zhao
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
- University of the Chinese Academy of Sciences, Beijing, 100193, China
| | - Zhangyan Li
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Huimin Ou
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
- University of the Chinese Academy of Sciences, Beijing, 100193, China
| | - Jinzhen Jiao
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.
- University of the Chinese Academy of Sciences, Beijing, 100193, China.
| |
Collapse
|
18
|
Ridwan M, Palupi E, Setiawan B, Heksana RAR. Bambara Bean Substitution Improves the Nutritional Content and Increases the Satiety Index of Purple Sweet Potato Bread. Prev Nutr Food Sci 2024; 29:512-521. [PMID: 39759817 PMCID: PMC11699583 DOI: 10.3746/pnf.2024.29.4.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 01/07/2025] Open
Abstract
This study aimed to develop tuber bread from purple sweet potato and bambara beans with high satiety and low glycemic index (GI). Different ratios of purple sweet potato to bambara bean were used: 100:0 (F0), 80:20 (F1), 60:40 (F2), and 40:60 (F3). The satiety index (SI) was determined by assessing the consumption of a 240 kcal isocaloric food and collecting data through a visual analog scale. Blood samples were collected from 11 subjects to determine the GI of the test food. This was achieved using the finger-prick capillary blood sampling method or an EasyTouch glucometer. The results showed that tuber-bread F1 was categorized as high-fiber sources (6.92±0.03 g), whereas F2 and F3 were classified as fiber sources (5.50±0.07 and 5.14±0.11 g, respectively). Significant differences were observed among all formulas. Additionally, formula F3 showed a high SI (160.12%±18.38%) and GI (81.94±2.13), suggesting that the consumption of fiber-rich food may promote feelings of fullness and reduce food cravings. The satiety score analysis of the selected products against standard food yielded a regression equation (y=-0.257x+66.648), showing that tuber-bread F3 extended satiety by up to 95 min compared with white bread. As a result, tuber-bread F3 may help to reduce the consumption of additional food, which is frequently a significant contributor to excessive calorie intake.
Collapse
Affiliation(s)
- Muhammad Ridwan
- Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor 16680, Indonesia
| | - Eny Palupi
- Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor 16680, Indonesia
| | - Budi Setiawan
- Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor 16680, Indonesia
| | - Rista Adhis Rona Heksana
- Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
19
|
Skowronek AK, Jaskulak M, Zorena K. The Potential of Metabolomics as a Tool for Identifying Biomarkers Associated with Obesity and Its Complications: A Scoping Review. Int J Mol Sci 2024; 26:90. [PMID: 39795949 PMCID: PMC11719496 DOI: 10.3390/ijms26010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Obesity and its related diseases, such as type 2 diabetes (T2DM), cardiovascular disease (CVD), and metabolic fatty liver disease (MAFLD), require new diagnostic markers for earlier detection and intervention. The aim of this study is to demonstrate the potential of metabolomics as a tool for identifying biomarkers associated with obesity and its comorbidities in every age group. The presented systematic review makes an important contribution to the understanding of the potential of metabolomics in identifying biomarkers of obesity and its complications, especially considering the influence of branched-chain amino acids (BCAAs), amino acids (AAs) and adipokines on the development of T2DM, MAFLD, and CVD. The unique element of this study is the combination of research results from the last decade in different age groups and a wide demographic range. The review was based on the PubMed and Science Direct databases, and the inclusion criterion was English-language original studies conducted in humans between 2014 and 2024 and focusing on the influence of BCAAs, AAs or adipokines on the above-mentioned obesity complications. Based on the PRISMA protocol, a total of 21 papers were qualified for the review and then assigned to a specific disease entity. The collected data reveal that elevated levels of BCAAs and some AAs strongly correlate with insulin resistance, leading to T2DM, MAFLD, and CVD and often preceding conventional clinical markers. Valine and tyrosine emerge as potential markers of MAFLD progression, while BCAAs are primarily associated with insulin resistance in various demographic groups. Adipokines, although less studied, offer hope for elucidating the metabolic consequences of obesity. The review showed that in the case of CVDs, there is still a lack of studies in children and adolescents, who are increasingly affected by these diseases. Moreover, despite the knowledge that adipokines play an important role in the pathogenesis of obesity, there are no precise findings regarding the correlation between individual adipokines and T2DM, MAFLD, or CVD. In order to be able to introduce metabolites into the basic diagnostics of obesity-related diseases, it is necessary to develop panels of biochemical tests that will combine them with classical markers of selected diseases.
Collapse
Affiliation(s)
| | | | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdansk, 80-210 Gdansk, Poland; (A.K.S.); (M.J.)
| |
Collapse
|
20
|
Liu Z, Wang H, Liang Y, Liu M, Huang Q, Wang M, Zhou J, Bu Q, Zhou H, Lu L. E2F2 Reprograms Macrophage Function By Modulating Material and Energy Metabolism in the Progression of Metabolic Dysfunction-Associated Steatohepatitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410880. [PMID: 39465673 PMCID: PMC11672278 DOI: 10.1002/advs.202410880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Indexed: 10/29/2024]
Abstract
Macrophages are essential for the development of steatosis, hepatic inflammation, and fibrosis in metabolic dysfunction-associated steatohepatitis(MASH). However, the roles of macrophage E2F2 in the progression of MASH have not been elucidated. This study reveals that the expression of macrophage E2F2 is dramatically downregulated in MASH livers from mice and humans, and that this expression is adversely correlated with the severity of the disease. Myeloid-specific E2F2 depletion aggravates intrahepatic inflammation, hepatic stellate cell activation, and hepatocyte lipid accumulation during MASH progression. Mechanistically, E2F2 can inhibit the SLC7A5 transcription directly. E2F2 deficiency upregulates the expression of SLC7A5 to mediate amino acids flux, resulting in enhanced glycolysis, impaired mitochondrial function, and increased macrophages proinflammatory response in a Leu-mTORC1-dependent manner. Moreover, bioinformatics analysis and CUT &Tag assay identify the direct binding of Nrf2 to E2F2 promoter to promote its transcription and nuclear translocation. Genetic or pharmacological activation of Nrf2 effectively activates E2F2 to attenuate the MASH progression. Finally, patients treated with CDK4/6 inhibitors demonstrate reduced E2F2 activity but increased SLC7A5 activity in PBMCs. These findings indicated macrophage E2F2 suppresses MASH progression by reprogramming amino acid metabolism via SLC7A5- Leu-mTORC1 signaling pathway. Activating E2F2 holds promise as a therapeutic strategy for MASH.
Collapse
Affiliation(s)
- Zheng Liu
- Department of General Surgerythe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Hao Wang
- Department of Liver SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Yuan Liang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical University& Research Unit of Liver Transplantation and Transplant ImmunologyChinese Academy of Medical SciencesNanjing210029China
- School of Biological Science & Medical EngineeringSoutheast UniversityNanjing210096China
| | - Mu Liu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical University& Research Unit of Liver Transplantation and Transplant ImmunologyChinese Academy of Medical SciencesNanjing210029China
| | - Qiyuan Huang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical University& Research Unit of Liver Transplantation and Transplant ImmunologyChinese Academy of Medical SciencesNanjing210029China
| | - Mingming Wang
- Department of Liver SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Jinren Zhou
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical University& Research Unit of Liver Transplantation and Transplant ImmunologyChinese Academy of Medical SciencesNanjing210029China
| | - Qingfa Bu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical University& Research Unit of Liver Transplantation and Transplant ImmunologyChinese Academy of Medical SciencesNanjing210029China
| | - Haoming Zhou
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical University& Research Unit of Liver Transplantation and Transplant ImmunologyChinese Academy of Medical SciencesNanjing210029China
| | - Ling Lu
- Affiliated Hospital of Xuzhou Medical UniversityXuzhou220005China
| |
Collapse
|
21
|
Berriel Diaz M, Rohm M, Herzig S. Cancer cachexia: multilevel metabolic dysfunction. Nat Metab 2024; 6:2222-2245. [PMID: 39578650 DOI: 10.1038/s42255-024-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024]
Abstract
Cancer cachexia is a complex metabolic disorder marked by unintentional body weight loss or 'wasting' of body mass, driven by multiple aetiological factors operating at various levels. It is associated with many malignancies and significantly contributes to cancer-related morbidity and mortality. With emerging recognition of cancer as a systemic disease, there is increasing awareness that understanding and treatment of cancer cachexia may represent a crucial cornerstone for improved management of cancer. Here, we describe the metabolic changes contributing to body wasting in cachexia and explain how the entangled action of both tumour-derived and host-amplified processes induces these metabolic changes. We discuss energy homeostasis and possible ways that the presence of a tumour interferes with or hijacks physiological energy conservation pathways. In that context, we highlight the role played by metabolic cross-talk mechanisms in cachexia pathogenesis. Lastly, we elaborate on the challenges and opportunities in the treatment of this devastating paraneoplastic phenomenon that arise from the complex and multifaceted metabolic cross-talk mechanisms and provide a status on current and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Chair Molecular Metabolic Control, Technical University of Munich, Munich, Germany.
| |
Collapse
|
22
|
Green CR, Kolar MJ, McGregor GH, Nelson AT, Wallace M, Metallo CM. Quantifying acyl-chain diversity in isobaric compound lipids containing monomethyl branched-chain fatty acids. J Lipid Res 2024; 65:100677. [PMID: 39490922 PMCID: PMC11621494 DOI: 10.1016/j.jlr.2024.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Compound lipids comprise a diverse group of metabolites present in living systems, and metabolic- and environmentally-driven structural distinctions across this family are increasingly linked to biological function. However, methods for deconvoluting these often isobaric lipid species are lacking or require specialized instrumentation. Notably, acyl-chain diversity within cells may be influenced by nutritional states, metabolic dysregulation, or genetic alterations. Therefore, a reliable, validated method of quantifying structurally similar even-, odd-, and branched-chain acyl groups within intact compound lipids will be invaluable for gaining molecular insights into their biological functions. Here we demonstrate the chromatographic resolution of isobaric lipids containing distinct combinations of straight-chain and branched-chain acyl groups via ultra-high-pressure liquid chromatography (UHPLC)-mass spectrometry (MS) using a C30 liquid chromatography column. Using metabolically engineered adipocytes lacking branched-keto acid dehydrogenase A (Bckdha), we validate this approach through a combination of fatty acid supplementation and metabolic tracing using monomethyl branched-chain fatty acids and valine. We observe the resolution of numerous isobaric triacylglycerols and other compound lipids, demonstrating the resolving utility of this method. This approach adds to the toolbox for laboratories to quantify and characterize acyl chain diversity across the lipidome.
Collapse
Affiliation(s)
- Courtney R Green
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, CA, USA
| | - Matthew J Kolar
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, CA, USA; Department of Dermatology, University of California, San Diego, CA, USA
| | - Grace H McGregor
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, CA, USA
| | - Andrew T Nelson
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Christian M Metallo
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, CA, USA.
| |
Collapse
|
23
|
Wei X, Lu Y, Hong S. Gut Microbiota Modulates Fgf21 Expression and Metabolic Phenotypes Induced by Ketogenic Diet. Nutrients 2024; 16:4028. [PMID: 39683422 DOI: 10.3390/nu16234028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND The ketogenic diet (KD) is a widely used intervention for obesity and diabetes, effectively reducing body weight and blood glucose levels. However, the molecular mechanisms by which the KD influences body weight and glucose metabolism are not fully understood. While previous research has shown that the KD affects the gut microbiota, the exact role of microbiota in mediating its metabolic effects remains unclear. METHODS In this study, we used antibiotics to eliminate the gut microbiota, confirming its necessity for the KD's impact on weight loss and glucose metabolism. We also demonstrated the significant role of FGF21 in these processes, through antibiotics intervention in Fgf21-deficient mice. RESULTS Furthermore, we revealed that the KD alters serum valine levels via the gut microbiota, which in turn regulates hepatic Fgf21 expression and circulating FGF21 levels through the GCN2-eIF2α-ATF5 signaling pathway. Additionally, we demonstrated that valine supplementation inhibits the elevated expression of FGF21, leading to the reduced body weight and improved glucose metabolism of the KD-fed mice. Overall, we found that the gut microbiota from the KD regulates Fgf21 transcription via the GCN2-eIF2α-ATF5 signaling pathway. ultimately affecting body weight and glucose metabolism. CONCLUSION Our findings highlight a complex regulatory network linking the KD, Fgf21 expression, and gut microbiota, offering a theoretical foundation for targeted therapies to enhance the metabolic benefits of the KD.
Collapse
Affiliation(s)
- Xinyi Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yunxu Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
24
|
Green CR, Alaeddine LM, Wessendorf-Rodriguez KA, Turner R, Elmastas M, Hover JD, Murphy AN, Ryden M, Mejhert N, Metallo CM, Wallace M. Impaired branched-chain amino acid (BCAA) catabolism during adipocyte differentiation decreases glycolytic flux. J Biol Chem 2024; 300:108004. [PMID: 39551140 DOI: 10.1016/j.jbc.2024.108004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024] Open
Abstract
Dysregulated branched-chain amino acid (BCAA) metabolism has emerged as a key metabolic feature associated with the obese insulin-resistant state, and adipose BCAA catabolism is decreased in this context. BCAA catabolism is upregulated early in adipogenesis, but the impact of suppressing this pathway on the broader metabolic functions of the resultant adipocyte remains unclear. Here, we use CRISPR/Cas9 to decrease BCKDHA in 3T3-L1 and human pre-adipocytes, and ACAD8 in 3T3-L1 pre-adipocytes to induce a deficiency in BCAA catabolism through differentiation. We characterize the transcriptional and metabolic phenotype of 3T1-L1 cells using RNAseq and 13C metabolic flux analysis within a network spanning glycolysis, tricarboxylic acid (TCA) metabolism, BCAA catabolism, and fatty acid synthesis. While lipid droplet accumulation is maintained in Bckdha-deficient adipocytes, they display a more fibroblast-like transcriptional signature. In contrast, Acad8 deficiency minimally impacts gene expression. Decreased glycolytic flux emerges as the most distinct metabolic feature of 3T3-L1 Bckdha-deficient cells, accompanied by a ∼40% decrease in lactate secretion, yet pyruvate oxidation and utilization for de novo lipogenesis is increased to compensate for the loss of BCAA carbon. Deletion of BCKDHA in human adipocyte progenitors also led to a decrease in glucose uptake and lactate secretion; however, these cells did not upregulate pyruvate utilization, and lipid droplet accumulation and expression of adipocyte differentiation markers was decreased in BCKDH knockout cells. Overall our data suggest that human adipocyte differentiation may be more sensitive to the impact of decreased BCKDH activity than 3T3-L1 cells and that both metabolic and regulatory cross-talk exist between BCAA catabolism and glycolysis in adipocytes. Suppression of BCAA catabolism associated with metabolic syndrome may result in a metabolically compromised adipocyte.
Collapse
Affiliation(s)
- Courtney R Green
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Lynn M Alaeddine
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Karl A Wessendorf-Rodriguez
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Rory Turner
- School of Agriculture and Food Science, University College Dublin, Belfield, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - Merve Elmastas
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Justin D Hover
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Mikael Ryden
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden; Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Niklas Mejhert
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden; Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Christian M Metallo
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Belfield, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland.
| |
Collapse
|
25
|
Cai X, Li W, Wang L, Shi Y, Gao J, Wang H, Lei T, Lu J. BCAA was more closely associated with visceral fat area than subcutaneous fat area in patients of type 2 diabetes mellitus: a cross-sectional study. BMC Endocr Disord 2024; 24:236. [PMID: 39501211 PMCID: PMC11539729 DOI: 10.1186/s12902-024-01768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Branched-chain amino acid (BCAA) has been reported to be associated with obesity, the association of BCAA with visceral fat area (VFA) and subcutaneous fat area (SFA) remained unclear in patients with type 2 diabetes. METHODS This cross-sectional study was conducted in 284 patients with type 2 diabetes mellitus. Enzyme-linked immunospecific assay was used to measure levels of serum BCAA and branched-chain keto acid (BCKA). VFA and SFA were measured with bio-impedance analysis method. The association between BCAA and VFA was calculated using Pearson correlation and multivariable linear regression analysis. RESULTS There were significant differences in the means of body mass index, waist circumstance, SFA and VFA among the three groups divided by total BCAA tertiles (all p < 0.05). Compared to patients with lower levels of serum BCAA (the lower tertile group), the means of VFA and SFA were significantly larger in the middle and upper tertile groups (all p < 0.05). However, the differences in above obesity parameters were nonsignificant according to various BCKA tertiles. Pearson correlation analysis also demonstrated that BCAA levels were positive associated with each obesity parameter (p < 0.05). Nevertheless, multivariable linear regression analysis showed that levels of serum BCAA were correlated with VFA, BMI and WC (all p < 0.05) rather than SFA after adjusted for other confounders. CONCLUSIONS levels of serum BCAA were more closely correlated with VFA than SFA, prospective studies should be warranted to further explore the mechanism mediating BCAA and visceral fat accumulation in Human beings. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Xinghua Cai
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Wenmin Li
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Liang Wang
- Department of Public Health, College of Health Professions, Marshall University, West Virginia, USA
| | - Yingying Shi
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Jie Gao
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Hongping Wang
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China.
| | - Jun Lu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China.
| |
Collapse
|
26
|
Jian H, Li R, Huang X, Li J, Li Y, Ma J, Zhu M, Dong X, Yang H, Zou X. Branched-chain amino acids alleviate NAFLD via inhibiting de novo lipogenesis and activating fatty acid β-oxidation in laying hens. Redox Biol 2024; 77:103385. [PMID: 39426289 PMCID: PMC11536022 DOI: 10.1016/j.redox.2024.103385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
The adverse metabolic impacts of branched-chain amino acids (BCAA) have been elucidated are mediated by isoleucine and valine. Dietary restriction of isoleucine promotes metabolic health and increases lifespan. However, a high protein diet enriched in BCAA is presently the most useful therapeutic strategy for nonalcoholic fatty liver disease (NAFLD), yet, its underlying mechanism remains largely unknown. Fatty liver hemorrhagic syndrome (FLHS), a specialized laying hen NAFLD model, can spontaneously develop fatty liver and hepatic steatosis under a high-energy and high-protein dietary background that the pathogenesis of FLHS is similar to human NAFLD. The mechanism underlying dietary BCAA control of NAFLD development in laying hens remains unclear. Herein, we demonstrate that dietary supplementation with 67 % High BCAA has unique mitigative impacts on NAFLD in laying hens. A High BCAA diet alleviates NAFLD, by inhibiting the tryptophan-ILA-AHR axis and MAPK9-mediated de novo lipogenesis (DNL), promoting ketogenesis and energy metabolism, and activating PPAR-RXR and pexophagy to promote fatty acid β-oxidation. Furthermore, we uncover that High BCAA strongly activates ubiquitin-proteasome autophagy via downregulating UFMylation to trigger MAPK9-mediated DNL, fatty acid elongation and lipid droplet formation-related proteins ubiquitination degradation, activating PPAR-RXR and pexophagy mediated fatty acid β-oxidation and lipolysis. Together, our data highlight moderating intake of high BCAA by inhibiting the AHR/MAPK9 are promising new strategies in NAFLD and FLHS treatment.
Collapse
Affiliation(s)
- Huafeng Jian
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Ru Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Xuan Huang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Jiankui Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Yan Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | | | - Mingkun Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Xinyang Dong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Hua Yang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xiaoting Zou
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China.
| |
Collapse
|
27
|
Arto C, Rusu EC, Clavero-Mestres H, Barrientos-Riosalido A, Bertran L, Mahmoudian R, Aguilar C, Riesco D, Chicote JU, Parada D, Martínez S, Sabench F, Richart C, Auguet T. Metabolic profiling of tryptophan pathways: Implications for obesity and metabolic dysfunction-associated steatotic liver disease. Eur J Clin Invest 2024; 54:e14279. [PMID: 38940215 DOI: 10.1111/eci.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND AND AIMS The rise in obesity highlights the need for improved therapeutic strategies, particularly in addressing metabolic dysfunction-associated steatotic liver disease (MASLD). We aim to assess the role of tryptophan metabolic pathways in the pathogenesis of obesity and in the different histological stages of MASLD. MATERIALS AND METHODS We used ultra-high performance liquid chromatography to quantify circulating levels of 15 tryptophan-related metabolites from the kynurenine, indole and serotonin pathways. A cohort of 76 subjects was analysed, comprising 18 subjects with normal weight and 58 with morbid obesity, these last being subclassified into normal liver (NL), simple steatosis (SS) and metabolic dysfunction-associated steatohepatitis (MASH). Then, we conducted gene expression analysis of hepatic IDO-1 and kynyrenine-3-monooxygenase (KMO). RESULTS Key findings in obesity revealed a distinct metabolic signature characterized by a higher concentration of different kynurenine-related metabolites, a decrease in indole-3-acetic acid and indole-3-propionic acid, and an alteration in the serotonin pathway. Elevated tryptophan levels were associated with MASLD presence (37.659 (32.577-39.823) μM of tryptophan in NL subjects; 41.522 (38.803-45.276) μM in patients with MASLD). Overall, pathway fluxes demonstrated an induction of tryptophan catabolism via the serotonin pathway in SS subjects and into the kynurenine pathway in MASH. We found decreased IDO-1 and KMO hepatic expression in NL compared to SS. CONCLUSIONS We identified a distinctive metabolic signature in obesity marked by changes in tryptophan catabolic pathways, discernible through altered metabolite profiles. We observed stage-specific alterations in tryptophan catabolism fluxes in MASLD, highlighting the potential utility of targeting these pathways in therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Arto
- Servei Medicina Interna, Hospital Sant Pau i Santa Tecla de Tarragona, Tarragona, Spain
| | - Elena Cristina Rusu
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Helena Clavero-Mestres
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Andrea Barrientos-Riosalido
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Laia Bertran
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Razieh Mahmoudian
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Carmen Aguilar
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - David Riesco
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Medicina Interna, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Javier Ugarte Chicote
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Anatomia Patològica, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - David Parada
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Anatomia Patològica, Hospital Sant Joan de Reus, Avinguda Doctor Josep Laporte, Reus, Spain
| | - Salomé Martínez
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Anatomia Patològica, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Fàtima Sabench
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Departament de Medicina i Cirurgia, Servei de Cirurgia, Hospital Sant Joan de Reus, URV, IISPV, Avinguda Doctor Josep Laporte, Reus, Spain
| | - Cristóbal Richart
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Teresa Auguet
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Medicina Interna, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| |
Collapse
|
28
|
Surrer DB, Schüsser S, König J, Fromm MF, Gessner A. Transport of aromatic amino acids l-tryptophan, l-tyrosine, and l-phenylalanine by the organic anion transporting polypeptide (OATP) 3A1. FEBS J 2024; 291:4732-4743. [PMID: 39206635 DOI: 10.1111/febs.17255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/11/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Amino acids are important for cellular metabolism. Their uptake across the plasma membrane is mediated by transport proteins. Despite the fact that the organic anion transporting polypeptide 4C1 (OATP4C1, Uniprot: Q6ZQN7) mediates transport of l-arginine and l-arginine derivatives, other members of the OATP family have not been characterized as amino acid transporters. The OATP family member OATP3A1 (gene symbol SLCO3A1, Uniprot: Q9UIG8) is ubiquitously expressed in human cells and highly expressed in many cancer tissues and cell lines. However, only a few substrates are known for OATP3A1. Accordingly, knowledge about its biological relevance is restricted. Our aim was to identify new substrates of OATP3A1 to gain insights into its (patho-)physiological function. In an LC-MS-based untargeted metabolomics assay using untreated OATP3A1-overexpressing HEK293 cells and control cells, we identified several amino acids as potential substrates of OATP3A1. Subsequent uptake experiments using exogenously added substrates revealed OATP3A1-mediated transport of l-tryptophan, l-tyrosine, and l-phenylalanine with 194.8 ± 28.7% (P < 0.05), 226.2 ± 18.7% (P < 0.001), and 235.2 ± 13.5% (P < 0.001), respectively, in OATP3A1-overexpressing cells compared to control cells. Furthermore, kinetic transport parameters (Km values) were determined (Trp = 61.5 ± 14.2 μm, Tyr = 220.8 ± 54.5 μm, Phe = 234.7 ± 20.6 μm). In summary, we identified the amino acids l-tryptophan, l-tyrosine, and l-phenylalanine as new substrates of OATP3A1. These findings could be used for a better understanding of (patho-)physiological processes involving increased demand of amino acids, where OATP3A1 should be considered as an important uptake transporter of l-tryptophan, l-tyrosine, and l-phenylalanine.
Collapse
Affiliation(s)
- Daniela B Surrer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Sarah Schüsser
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
29
|
Chen LY, Wang LW, Wen J, Cao JD, Zhou R, Yang JL, Xiao Y, Su T, Huang Y, Guo Q, Zhou HY, Luo XH, Feng X. RNA-binding protein YBX3 promotes PPARγ-SLC3A2 mediated BCAA metabolism fueling brown adipogenesis and thermogenesis. Mol Metab 2024; 90:102053. [PMID: 39481849 PMCID: PMC11570976 DOI: 10.1016/j.molmet.2024.102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE Activating brown adipose tissue (BAT) thermogenesis is a promising approach to combat obesity and metabolic disorders. The post-transcriptional regulation of BAT thermogenesis mediated by RNA-binding proteins (RBPs) is still not fully understood. This study explores the physiological role of novel RBPs in BAT differentiation and thermogenesis. METHODS We used multiple public datasets to screen out novel RBPs responsible for BAT differentiation and thermogenesis. In vitro loss- and gain-of-function experiments were performed in both C3H10T1/2 preadipocytes and mature brown adipocytes to determine the role of Y-box binding protein 3 (YBX3) in brown adipocyte differentiation and thermogenesis. Adeno-associated virus (AAV)-mediated BAT-specific knockdown or overexpression of Ybx3 was applied to investigate the function of YBX3 in vivo. RESULTS YBX3 is a brown adipocyte-enriched RBP induced by cold stimulation and β-adrenergic signaling. Both in vitro loss- and gain-of-function experiments demonstrate that YBX3 is essential for brown adipocyte differentiation and thermogenesis. BAT-specific loss of Ybx3 dampens thermogenesis and exacerbates diet-induced obesity in mice, while overexpression of Ybx3 promotes thermogenesis and confers protection against diet-induced metabolic dysfunction. Transcriptome analysis and mitochondrial stress test indicate that Ybx3 deficiency compromises the mitochondrial oxidative phosphorylation, leading to thermogenic failure. Mechanistically, YBX3 stabilizes the mRNA of Slc3a2 and Pparg, which facilitates branched-chain amino acid (BCAA) influx and catabolism and fuels brown adipocyte differentiation and thermogenesis. CONCLUSIONS YBX3 facilitates BAT fueling BCAA to boost thermogenesis and energy expenditure, which protects against obesity and metabolic dysfunction. Thus, YBX3 could be a promising therapeutic target for obesity.
Collapse
Affiliation(s)
- Lin-Yun Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Li-Wen Wang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Jie Wen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Jing-Dong Cao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Rui Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Jin-Lin Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Hai-Yan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Xu Feng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China.
| |
Collapse
|
30
|
Prechtl L, Carrard J, Gallart-Ayala H, Borreggine R, Teav T, Königstein K, Wagner J, Knaier R, Infanger D, Streese L, Hinrichs T, Hanssen H, Ivanisevic J, Schmidt-Trucksäss A. Circulating amino acid signature features urea cycle alterations associated with coronary artery disease. Sci Rep 2024; 14:25848. [PMID: 39468229 PMCID: PMC11519371 DOI: 10.1038/s41598-024-76835-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Coronary artery disease (CAD) remains a leading cause of death worldwide and imposes a substantial socioeconomic burden on healthcare. Improving risk stratification in clinical practice could help to combat this burden. As amino acids are biologically active metabolites whose involvement in CAD remains largely unknown, this study investigated associations between circulating amino acid levels and CAD phenotypes. A high-coverage quantitative liquid chromatography-mass spectrometry approach was applied to acquire the serum amino acids profile of age- and sex-coarsened-matched patients with CAD (n = 46, 66.9 years, 74.7% male) and healthy individuals (n = 120, 67.4 years, 74.7% male) from the COmPLETE study. Multiple linear regressions were performed to investigate associations between amino acid levels and (a) the health status (CAD vs. healthy), (b) the number of affected coronary arteries, or (c) the left ventricular ejection fraction. Regressions were adjusted for age, sex, daily physical activity, sampling, and fasting time. Urea cycle amino acids (ornithine, citrulline, homocitrulline, aspartate, and arginine) were significantly and negatively associated with CAD, the number of affected coronary arteries, and the left ventricular ejection fraction. Lysine, histidine, and the glutamine/glutamate ratio were also significantly and negatively associated with the CAD phenotypes. Overall, patients with CAD displayed lower levels of urea cycle amino acids, highlighting a potential role for urea cycle amino acid profiling in cardiovascular risk stratification.Trial registrationThe study was registered on https://www.clinicaltrials.gov (NCT03986892) on June 5, 2019.
Collapse
Affiliation(s)
- Luisa Prechtl
- School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow, G12 8TA, Scotland
| | - Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland.
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV-Rue du Bugnon 19, 1005, Lausanne, Switzerland
| | - Rébecca Borreggine
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV-Rue du Bugnon 19, 1005, Lausanne, Switzerland
| | - Tony Teav
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV-Rue du Bugnon 19, 1005, Lausanne, Switzerland
| | - Karsten Königstein
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Jonathan Wagner
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Raphael Knaier
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Denis Infanger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Lukas Streese
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Timo Hinrichs
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Henner Hanssen
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV-Rue du Bugnon 19, 1005, Lausanne, Switzerland.
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
| |
Collapse
|
31
|
Wang J, Zhao Q, Liu H, Guo L, Ma C, Kang W. Regulating role of Pleurotus ostreatus insoluble dietary fiber in high fat diet induced obesity in rats based on proteomics and metabolomics analyses. Int J Biol Macromol 2024; 282:136857. [PMID: 39454905 DOI: 10.1016/j.ijbiomac.2024.136857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
This study aims to reveal the effects of Pleurotus ostreatus insoluble dietary fiber (POIDF) on liver protein and cecal metabolites in obese rats and its potential mechanism by intestinal microbes. It was found that POIDF contained the structural characteristics of cellulose and hemicellulose, as well as amorphous diffraction peaks. POIDF could reduce the body weight and organ index of obese rats, regulate dyslipidemia, and improve the pathological changes of liver and epididymis fat. Further experimental results showed that POIDF could regulate the abundance of bacteria related to lipid metabolism, and maintain intestinal homeostasis. The metabolomics results showed that the fatty acyls pathway in the cecum contents was the pathway with the highest concentration of small molecule metabolites. POIDF supplementation regulated the expression of liver key proteins, as well as biosynthesis of amino acids, steroid biosynthesis, arachidonic acid metabolism and PPAR signaling pathway. Omics association analysis found that POIDF could further regulate liver proteins and their signaling pathways, regulate the levels of fatty acyls and amino acid metabolites in the gut and the enrichment of related pathways, and play a therapeutic or preventive role in obesity after degradation by intestinal microbiota.
Collapse
Affiliation(s)
- Jinmei Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; College of Agriculture, Henan University, Kaifeng 475004, China
| | - Qingchun Zhao
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Hui Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Lin Guo
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; College of Agriculture, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| |
Collapse
|
32
|
Pająk M, Fichna J, Woźniczka M. Protonation constants of endo- and exogenous L-amino acids and their derivatives in aqueous and mixed solution: Unraveling molecular secrets. Q Rev Biophys 2024; 57:e10. [PMID: 39422089 DOI: 10.1017/s0033583524000118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The aim of this review is to summarize the progress made in the determination of the protonation constants of biologically active ligands: endo- and exogenous L-amino acids and their derivatives in aqueous and mixed solutions using different experimental techniques. The knowledge of the protonation constants of the aforementioned ligands is crucial for the determination of the equilibrium constants of complex formation and thus for the understanding of complex biological reactions such as transamination, racemization, and decarboxylation. Thus, the protonation constants of ligands are a measure of their ability to form complexes with metal ions. This knowledge not only helps to understand fundamental biochemical processes, but also has practical applications in areas such as drug design, where ligands are often targeted for therapeutic purposes. The activity of the ligands tends to increase after complexation and their order is consistent with the values of the stepwise dissociation constants of the complexes formed. Understanding the properties of ligands by determining their protonation constants in different environments and their interactions with surrounding molecules is crucial to unraveling the complexity of biological systems.
Collapse
Affiliation(s)
- Marek Pająk
- Department of Physical and Biocoordination Chemistry, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Magdalena Woźniczka
- Department of Physical and Biocoordination Chemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
33
|
Pinette JA, Myers JW, Park WY, Bryant HG, Eddie AM, Wilson GA, Montufar C, Shaikh Z, Vue Z, Nunn ER, Bessho R, Cottam MA, Haase VH, Hinton AO, Spinelli JB, Cartailler JP, Zaganjor E. Disruption of nucleotide biosynthesis reprograms mitochondrial metabolism to inhibit adipogenesis. J Lipid Res 2024; 65:100641. [PMID: 39245323 PMCID: PMC11913791 DOI: 10.1016/j.jlr.2024.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
A key organismal response to overnutrition involves the development of new adipocytes through the process of adipogenesis. Preadipocytes sense changes in the systemic nutrient status and metabolites can directly modulate adipogenesis. We previously identified a role of de novo nucleotide biosynthesis in adipogenesis induction, whereby inhibition of nucleotide biosynthesis suppresses the expression of the transcriptional regulators PPARγ and C/EBPα. Here, we set out to identify the global transcriptomic changes associated with the inhibition of nucleotide biosynthesis. Through RNA sequencing (RNAseq), we discovered that mitochondrial signatures were the most altered in response to inhibition of nucleotide biosynthesis. Blocking nucleotide biosynthesis induced rounded mitochondrial morphology, and altered mitochondrial function, and metabolism, reducing levels of tricarboxylic acid cycle intermediates, and increasing fatty acid oxidation (FAO). The loss of mitochondrial function induced by suppression of nucleotide biosynthesis was rescued by exogenous expression of PPARγ. Moreover, inhibition of FAO restored PPARγ expression, mitochondrial protein expression, and adipogenesis in the presence of nucleotide biosynthesis inhibition, suggesting a regulatory role of nutrient oxidation in differentiation. Collectively, our studies shed light on the link between substrate oxidation and transcription in cell fate determination.
Collapse
Affiliation(s)
- Julia A Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jacob W Myers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Woo Yong Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Heather G Bryant
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Alex M Eddie
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Genesis A Wilson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Claudia Montufar
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Zayedali Shaikh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Elizabeth R Nunn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ryoichi Bessho
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew A Cottam
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Volker H Haase
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Research and Medical Services, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jean-Philippe Cartailler
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Diabetes Research Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
34
|
Al-Amodi HS, Kamel HF. Altered Metabolites in Hepatocellular Carcinoma (HCC) Paving the Road for Metabolomics Signature and Biomarkers for Early Diagnosis of HCC. Cureus 2024; 16:e71968. [PMID: 39569240 PMCID: PMC11576499 DOI: 10.7759/cureus.71968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 11/22/2024] Open
Abstract
Globally, hepatocellular carcinoma (HCC) is one of the most commonly encountered cancers. Because the current early diagnostic tests for HCC are not very sensitive, most cases of the disease are discovered late when it is in its terminal stage. Cellular metabolism changes during carcinogenesis to enable cancer cells to adapt to the hypoxic milieu, boost anabolic synthesis, promote survival, and evade apoptotic death signals. Omic techniques represent a breakthrough in the field of diagnostic technology. For example, Metabolomics analysis could be used to identify these metabolite alterations. Understanding the metabolic alterations linked to HCC is crucial for improving high-risk patients' surveillance and understanding the illness's biology. This review highlights the metabolic alterations linked to energy production in cancer cells, as well as the significantly altered metabolites and pathways associated with hepatocarcinogenesis, including acylcarnitines (ACs), amino acids, proteins, lipids, carbohydrates, glucose, and lactate, which reflect the anabolic and catabolic changes occurring in these cells. Additionally, it discusses the clinical implications of recent metabolomics that may serve as potential biomarkers for early diagnosis and monitoring of the progression of HCC.
Collapse
Affiliation(s)
| | - Hala F Kamel
- Biochemistry, Umm Al-Qura University, Makkah, SAU
- Medical Biochemistry and Molecular Biology, Ain Shams University, Cairo, EGY
| |
Collapse
|
35
|
Jonker PB, Muir A. Metabolic ripple effects - deciphering how lipid metabolism in cancer interfaces with the tumor microenvironment. Dis Model Mech 2024; 17:dmm050814. [PMID: 39284708 PMCID: PMC11423921 DOI: 10.1242/dmm.050814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Cancer cells require a constant supply of lipids. Lipids are a diverse class of hydrophobic molecules that are essential for cellular homeostasis, growth and survival, and energy production. How tumors acquire lipids is under intensive investigation, as these mechanisms could provide attractive therapeutic targets for cancer. Cellular lipid metabolism is tightly regulated and responsive to environmental stimuli. Thus, lipid metabolism in cancer is heavily influenced by the tumor microenvironment. In this Review, we outline the mechanisms by which the tumor microenvironment determines the metabolic pathways used by tumors to acquire lipids. We also discuss emerging literature that reveals that lipid availability in the tumor microenvironment influences many metabolic pathways in cancers, including those not traditionally associated with lipid biology. Thus, metabolic changes instigated by the tumor microenvironment have 'ripple' effects throughout the densely interconnected metabolic network of cancer cells. Given the interconnectedness of tumor metabolism, we also discuss new tools and approaches to identify the lipid metabolic requirements of cancer cells in the tumor microenvironment and characterize how these requirements influence other aspects of tumor metabolism.
Collapse
Affiliation(s)
- Patrick B Jonker
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
36
|
Wang XP, Yan D, Jin XP, Zhang WY, Shi T, Wang X, Song W, Xiong X, Guo D, Chen S. The role of amino acid metabolism alterations in acute ischemic stroke: From mechanism to application. Pharmacol Res 2024; 207:107313. [PMID: 39025169 DOI: 10.1016/j.phrs.2024.107313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Acute ischemic stroke (AIS) is the most prevalent type of stroke, and due to its high incidence, disability rate, and mortality rate, it imposes a significant burden on the health care system. Amino acids constitute one of the most crucial metabolic products within the human body, and alterations in their metabolic pathways have been identified in the microenvironment of AIS, thereby influencing the pathogenesis, severity, and prognosis of AIS. The amino acid metabolism characteristics in AIS are complex. On one hand, the dynamic progression of AIS continuously reshapes the amino acid metabolism pattern. Conversely, changes in the amino acid metabolism pattern also exert a double-edged effect on AIS. This interaction is bidirectional, dynamic, heterogeneous, and dose-specific. Therefore, the distinctive metabolic reprogramming features surrounding amino acids during the AIS process are systematically summarized in this paper, aiming to provide potential investigative strategies for the early diagnosis, treatment approaches, and prognostic enhancement of AIS.
Collapse
Affiliation(s)
- Xiang-Ping Wang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Dan Yan
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311202, China
| | - Xia-Ping Jin
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Wen-Yan Zhang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Tao Shi
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Xiang Wang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Wenjuan Song
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Xing Xiong
- Traditional Chinese Medical Hospital of Xiaoshan, The Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 311200, China
| | - Duancheng Guo
- Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Sheng Chen
- First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang Province 311200, China.
| |
Collapse
|
37
|
Hu Y, Wu A, Yan H, Pu J, Luo J, Zheng P, Luo Y, Yu J, He J, Yu B, Chen D. Secondary bile acids are associated with body lipid accumulation in obese pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:246-256. [PMID: 39281048 PMCID: PMC11402430 DOI: 10.1016/j.aninu.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 09/18/2024]
Abstract
The aim of this study was to investigate the reasons for the differences in lipid accumulation between lean and obese pigs. The bile acids with varying levels within two types of pigs were found and then in vitro experiments were conducted to identify whether these bile acids can directly affect lipid accumulation. Fourteen pigs, including seven lean and seven obese pigs with body weights of approximately 80 kg, were fed the same diet at an amount approximately equivalent to 3% of their respective body weights daily for 42 d. In vitro, 3T3-L1 preadipocytes were cultured in medium with high glucose levels and were differentiated into mature adipocytes using differentiation medium. Then, bile acids were added to mature adipocytes for 4 d. The results showed that there was a difference in body lipids levels and gut microbiota composition between obese and lean pigs (P < 0.05). According to the results of gut microbial function prediction, the bile acid biosynthesis in colonic digesta of obese pigs were different from that in lean pig. Sixty-five bile acids were further screened by metabolomics, of which 4 were upregulated (P < 0.05) and 2 were downregulated (P < 0.05) in obese pigs compared to lean pigs. The results of the correlation analysis demonstrated that chenodeoxycholic acid-3-β-D-glucuronide (CDCA-3Gln) and ω-muricholic acid (ω-MCA) had a negative correlation with abdominal fat weight and abdominal fat rate, while isoallolithocholic acid (IALCA) was positively associated with crude fat in the liver and abdominal fat rate. There was a positive correlation between loin muscle area and CDCA-3Gln and ω-MCA (P < 0.05), however, IALCA and 3-oxodeoxycholic acid (3-oxo-DCA) were negatively associated with loin eye muscle area (P < 0.05). Isoallolithocholic acid increased the gene expression of peroxisome proliferator-activated receptor gamma (PPARG) and the number of lipid droplets (P < 0.05), promoting the lipid storage when IALCA was added to 3T3-L1 mature adipocytes in vitro. In conclusion, the concentration of bile acids, especially gut microbiota related-secondary bile acids, in obese pigs was different from that in lean pigs, which may contribute to lipid accumulation within obese pigs.
Collapse
Affiliation(s)
- Yaolian Hu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Aimin Wu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Junning Pu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
38
|
Reifenberg P, Zimmer A. Branched-chain amino acids: physico-chemical properties, industrial synthesis and role in signaling, metabolism and energy production. Amino Acids 2024; 56:51. [PMID: 39198298 PMCID: PMC11358235 DOI: 10.1007/s00726-024-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Branched-chain amino acids (BCAAs)-leucine (Leu), isoleucine (Ile), and valine (Val)-are essential nutrients with significant roles in protein synthesis, metabolic regulation, and energy production. This review paper offers a detailed examination of the physico-chemical properties of BCAAs, their industrial synthesis, and their critical functions in various biological processes. The unique isomerism of BCAAs is presented, focusing on analytical challenges in their separation and quantification as well as their solubility characteristics, which are crucial for formulation and purification applications. The industrial synthesis of BCAAs, particularly using bacterial strains like Corynebacterium glutamicum, is explored, alongside methods such as genetic engineering aimed at enhancing production, detailing the enzymatic processes and specific precursors. The dietary uptake, distribution, and catabolism of BCAAs are reviewed as fundamental components of their physiological functions. Ultimately, their multifaceted impact on signaling pathways, immune function, and disease progression is discussed, providing insights into their profound influence on muscle protein synthesis and metabolic health. This comprehensive analysis serves as a resource for understanding both the basic and complex roles of BCAAs in biological systems and their industrial application.
Collapse
Affiliation(s)
- Philipp Reifenberg
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich‑Weiss‑Strasse 4, 64287, Darmstadt, Germany
| | - Aline Zimmer
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| |
Collapse
|
39
|
Wang J, Han L, Liu Z, Zhang W, Zhang L, Jing J, Gao A. Targeting IGF2BP1 alleviated benzene hematotoxicity by reprogramming BCAA metabolism and fatty acid oxidation. Chem Biol Interact 2024; 398:111107. [PMID: 38866309 DOI: 10.1016/j.cbi.2024.111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Benzene is the main environmental pollutant and risk factor of childhood leukemia and chronic benzene poisoning. Benzene exposure leads to hematopoietic stem and progenitor cell (HSPC) dysfunction and abnormal blood cell counts. However, the key regulatory targets and mechanisms of benzene hematotoxicity are unclear. In this study, we constructed a benzene-induced hematopoietic damage mouse model to explore the underlying mechanisms. We identified that Insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) was significantly reduced in benzene-exposed mice. Moreover, targeting IGF2BP1 effectively mitigated damages to hematopoietic function and hematopoietic molecule expression caused by benzene in mice. On the mechanics, by metabolomics and transcriptomics, we discovered that branched-chain amino acid (BCAA) metabolism and fatty acid oxidation were key metabolic pathways, and Branched-chain amino acid transaminase 1 (BCAT1) and Carnitine palmitoyltransferase 1a (CPT1A) were critical metabolic enzymes involved in IGF2BP1-mediated hematopoietic injury process. The expression of the above molecules in the benzene exposure population was also examined and consistent with animal experiments. In conclusion, targeting IGF2BP1 alleviated hematopoietic injury caused by benzene exposure, possibly due to the reprogramming of BCAA metabolism and fatty acid oxidation via BCAT1 and CPT1A metabolic enzymes. IGF2BP1 is a potential regulatory and therapeutic target for benzene hematotoxicity.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lin Han
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ziyan Liu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Wei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jiaru Jing
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ai Gao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
40
|
Li NZ, Wang ZX, Zhang F, Feng CZ, Chen Y, Liu DJ, Chen SB, Jin Y, Zhang YL, Xie YY, Huang QH, Wang L, Li B, Sun XJ. Threonine dehydrogenase regulates neutrophil homeostasis but not H3K4me3 levels in zebrafish. FEBS J 2024; 291:3367-3383. [PMID: 38652546 DOI: 10.1111/febs.17138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
l-threonine dehydrogenase (Tdh) is an enzyme that links threonine metabolism to epigenetic modifications and mitochondria biogenesis. In vitro studies show that it is critical for the regulation of trimethylation of histone H3 lysine 4 (H3K4me3) levels and cell fate determination of mouse embryonic stem cells (mESCs). However, whether Tdh regulates a developmental process in vivo and, if it does, whether it also primarily regulates H3K4me3 levels in this process as it does in mESCs, remains elusive. Here, we revealed that, in zebrafish hematopoiesis, tdh is preferentially expressed in neutrophils. Knockout of tdh causes a decrease in neutrophil number and slightly suppresses their acute injury-induced migration, but, unlike the mESCs, the level of H3K4me3 is not evidently reduced in neutrophils sorted from the kidney marrow of adult tdh-null zebrafish. These phenotypes are dependent on the enzymatic activity of Tdh. Importantly, a soluble supplement of nutrients that are able to fuel the acetyl-CoA pool, such as pyruvate, glucose and branched-chain amino acids, is sufficient to rescue the reduction in neutrophils caused by tdh deletion. In summary, our study presents evidence for the functional requirement of Tdh-mediated threonine metabolism in a developmental process in vivo. It also provides an animal model for investigating the nutritional regulation of myelopoiesis and immune response, as well as a useful tool for high-throughput drug/nutrition screening.
Collapse
Affiliation(s)
- Ning-Zhe Li
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Zi-Xuan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Fan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Chang-Zhou Feng
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
- Department of Clinical Laboratory, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Jiangsu, China
| | - Yi Chen
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Dian-Jia Liu
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Shu-Bei Chen
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Yi Jin
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Yuan-Liang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Yin-Yin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Qiu-Hua Huang
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bing Li
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| | - Xiao-Jian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| |
Collapse
|
41
|
Sprenger RR, Bilgin M, Ostenfeld MS, Bjørnshave A, Rasmussen JT, Ejsing CS. Dietary intake of a MFGM/EV-rich concentrate promotes accretion of very long odd-chain sphingolipids and increases lipid metabolic turnover at the whole-body level. Food Res Int 2024; 190:114601. [PMID: 38945615 DOI: 10.1016/j.foodres.2024.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024]
Abstract
Lipids from cow milk fat globule membranes (MFGMs) and extracellular vesicles (EVs) are considered beneficial for neurodevelopment, cognitive maintenance and human health in general. Nevertheless, it is largely unknown whether intake of infant formulas and medical nutrition products rich in these particles promote accretion of specific lipids and whether this affects metabolic homeostasis. To address this, we carried out a 16-week dietary intervention study where mice were supplemented with a MFGM/EV-rich concentrate, a control diet supplemented with a whey protein concentrate and devoid of milk lipids, or regular chow. Assessment of commonly used markers of metabolic health, including body weight, glucose intolerance and liver microanatomy, demonstrated no differences across the dietary regimes. In contrast, in-depth lipidomic analysis revealed accretion of milk-derived very long odd-chain sphingomyelins and ceramides in blood plasma and multiple tissues of mice fed the MFGM/EV diet. Furthermore, lipidomic flux analysis uncovered that mice fed the MFGM/EV diet have increased lipid metabolic turnover at the whole-body level. These findings help fill a long-lasting knowledge gap between the intake of MFGM/EV-containing foods and the health-promoting effects of their lipid constituents. In addition, the findings suggest that dietary sphingomyelins or ceramide-breakdown products with very long-chains can be used as structural components of cellular membranes, lipoprotein particles and signaling molecules that modulate metabolic homeostasis and health.
Collapse
Affiliation(s)
- Richard R Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Mesut Bilgin
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | | | | | - Jan T Rasmussen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
42
|
Lu T, Zheng Y, Chen X, Lin Z, Liu C, Yuan C. miR-743b-3p promotes hepatic lipogenesis via branched-chain amino acids (BCAA) metabolism by targeting PPM1K in aged mice. Arch Gerontol Geriatr 2024; 123:105424. [PMID: 38565071 DOI: 10.1016/j.archger.2024.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Lipid metabolism disorders appear to play an important role in the ageing process, thus understanding the cellular and molecular mechanisms underlying the association of ageing with elevated vulnerability to lipid metabolism related diseases is crucial towards promoting quality of life in old age. MicroRNAs (miRNAs) have emerged as crucial regulators of lipid metabolism, and some miRNAs have key roles in ageing. METHODS In this study, we investigated changes in liver lipid metabolism of ageing mice and the mechanisms of the altered expression of miRNAs in the ageing liver which contributes to the age-dependent increase in lipid synthesis. Here we found that miR-743b-3p was higher expressed in the liver tissues of ageing mice through the small RNA sequencing and bioinformatics analysis, and its target PPM1K was predicted and confirmed the target relationship of miR-743b-3p with PPM1K in the aged mouse liver tissues and the cultured senescent hepatocytes in vitro. Moreover, using the transfected miR-743b-3p mimics/inhibitors into the senescent hepatocyte AML12. RESULTS We found that miR-743b-3p inhibition reversed the hepatocyte senescence, and finally decreased the expression of genes involved in lipid synthesis(Chrebp, Fabp4, Acly and Pparγ) through increasing the target gene expression of PPM1K which regulated the expression of branched-chain amino acids (BCAA) metabolism-related genes (Bckdhα, Bckdk, Bcat2, Dbt). CONCLUSIONS These results identify that age-induced expression of miR-743b-3p inhibits its target PPM1K which induces BCAA metabolic disorder and regulates hepatocyte lipid accumulation during ageing.
Collapse
Affiliation(s)
- Ting Lu
- Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, China Three Gorges University, School of Medicine, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Ying Zheng
- Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, China Three Gorges University, School of Medicine, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xiaoling Chen
- Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, China Three Gorges University, School of Medicine, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Zhiyong Lin
- Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, China Three Gorges University, School of Medicine, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Chaoqi Liu
- Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, China Three Gorges University, School of Medicine, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Chengfu Yuan
- Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, China Three Gorges University, School of Medicine, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, School of Medicine, Yichang, 443002, China.
| |
Collapse
|
43
|
Mathioudaki A, Fanni G, Eriksson JW, Pereira MJ. Metabolomic Profiling of Adipose Tissue in Type 2 Diabetes: Associations with Obesity and Insulin Resistance. Metabolites 2024; 14:411. [PMID: 39195507 DOI: 10.3390/metabo14080411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
The global prevalence of Type 2 Diabetes (T2D) poses significant public health challenges due to its associated severe complications. Insulin resistance is central to T2D pathophysiology, particularly affecting adipose tissue function. This cross-sectional observational study investigates metabolic alterations in subcutaneous adipose tissue (SAT) associated with T2D to identify potential therapeutic targets. We conducted a comprehensive metabolomic analysis of SAT from 40 participants (20 T2D, 20 ND-T2D), matched for sex, age, and BMI (Body Mass Index). Metabolite quantification was performed using GC/MS and LC/MS/MS platforms. Correlation analyses were conducted to explore associations between metabolites and clinical parameters. We identified 378 metabolites, including significant elevations in TCA cycle (tricarboxylic acid cycle) intermediates, branched-chain amino acids (BCAAs), and carbohydrates, and a significant reduction in the nucleotide-related metabolites in T2D subjects compared to those without T2D. Obesity exacerbated these alterations, particularly in amino acid metabolism. Adipocyte size negatively correlated with BCAAs, while adipocyte glucose uptake positively correlated with unsaturated fatty acids and glycerophospholipids. Our findings reveal distinct metabolic dysregulation in adipose tissue in T2D, particularly in energy metabolism, suggesting potential therapeutic targets for improving insulin sensitivity and metabolic health. Future studies should validate these findings in larger cohorts and explore underlying mechanisms to develop targeted interventions.
Collapse
Affiliation(s)
- Argyri Mathioudaki
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, 75185 Uppsala, Sweden
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, 75185 Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, 75185 Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, 75185 Uppsala, Sweden
| |
Collapse
|
44
|
Bidgood CL, Philp LK, Rockstroh A, Lehman M, Nelson CC, Sadowski MC, Gunter JH. Targeting valine catabolism to inhibit metabolic reprogramming in prostate cancer. Cell Death Dis 2024; 15:513. [PMID: 39025852 PMCID: PMC11258138 DOI: 10.1038/s41419-024-06893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Metabolic reprogramming and energetic rewiring are hallmarks of cancer that fuel disease progression and facilitate therapy evasion. The remodelling of oxidative phosphorylation and enhanced lipogenesis have previously been characterised as key metabolic features of prostate cancer (PCa). Recently, succinate-dependent mitochondrial reprogramming was identified in high-grade prostate tumours, as well as upregulation of the enzymes associated with branched-chain amino acid (BCAA) catabolism. In this study, we hypothesised that the degradation of the BCAAs, particularly valine, may play a critical role in anapleurotic refuelling of the mitochondrial succinate pool, as well as the maintenance of intracellular lipid metabolism. Through the suppression of BCAA availability, we report significantly reduced lipid content, strongly indicating that BCAAs are important lipogenic fuels in PCa. This work also uncovered a novel compensatory mechanism, whereby fatty acid uptake is increased in response to extracellular valine deprivation. Inhibition of valine degradation via suppression of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) resulted in a selective reduction of malignant prostate cell proliferation, decreased intracellular succinate and impaired cellular respiration. In combination with a comprehensive multi-omic investigation that incorporates next-generation sequencing, metabolomics, and high-content quantitative single-cell imaging, our work highlights a novel therapeutic target for selective inhibition of metabolic reprogramming in PCa.
Collapse
Affiliation(s)
- Charles L Bidgood
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, Australia.
| | - Lisa K Philp
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, Australia
| | - Anja Rockstroh
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, Australia
| | - Melanie Lehman
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, Australia
- University of British Columbia, Vancouver Prostate Centre, Department of Urologic Sciences, Vancouver, BC, Canada
| | - Colleen C Nelson
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, Australia
| | - Martin C Sadowski
- University of Bern, Institute for Tissue Medicine and Pathology, Bern, Switzerland
| | - Jennifer H Gunter
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
45
|
Niba ETE, Awano H, Nishimura N, Koide H, Matsuo M, Shinohara M. Differential metabolic secretion between muscular dystrophy mouse-derived spindle cell sarcomas and rhabdomyosarcomas drives tumor type development. Am J Physiol Cell Physiol 2024; 327:C34-C47. [PMID: 38646787 DOI: 10.1152/ajpcell.00523.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
The dystrophin gene (Dmd) is recognized for its significance in Duchenne muscular dystrophy (DMD), a lethal and progressive skeletal muscle disease. Some patients with DMD and model mice with muscular dystrophy (mdx) spontaneously develop various types of tumors, among which rhabdomyosarcoma (RMS) is the most prominent. By contrast, spindle cell sarcoma (SCS) has rarely been reported in patients or mdx mice. In this study, we aimed to use metabolomics to better understand the rarity of SCS development in mdx mice. Gas chromatography-mass spectrometry was used to compare the metabolic profiles of spontaneously developed SCS and RMS tumors from mdx mice, and metabolite supplementation assays and silencing experiments were used to assess the effects of metabolic differences in SCS tumor-derived cells. The levels of 75 metabolites exhibited differences between RMS and SCS, 25 of which were significantly altered. Further characterization revealed downregulation of nonessential amino acids, including alanine, in SCS tumors. Alanine supplementation enhanced the growth, epithelial mesenchymal transition, and invasion of SCS cells. Reduction of intracellular alanine via knockdown of the alanine transporter Slc1a5 reduced the growth of SCS cells. Lower metabolite secretion and reduced proliferation of SCS tumors may explain the lower detection rate of SCS in mdx mice. Targeting of alanine depletion pathways may have potential as a novel treatment strategy.NEW & NOTEWORTHY To the best of our knowledge, SCS has rarely been identified in patients with DMD or mdx mice. We observed that RMS and SCS tumors that spontaneously developed from mdx mice with the same Dmd genetic background exhibited differences in metabolic secretion. We proposed that, in addition to dystrophin deficiency, the levels of secreted metabolites may play a role in the determination of tumor-type development in a Dmd-deficient background.
Collapse
Affiliation(s)
- Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, Yonago, Japan
| | - Noriyuki Nishimura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Koide
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masafumi Matsuo
- Graduate School of Science, Technology and Innovation , Kobe University, Kobe, Japan
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
46
|
Abdualkader AM, Karwi QG, Lopaschuk GD, Al Batran R. The role of branched-chain amino acids and their downstream metabolites in mediating insulin resistance. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13040. [PMID: 39007094 PMCID: PMC11239365 DOI: 10.3389/jpps.2024.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Elevated levels of circulating branched-chain amino acids (BCAAs) and their associated metabolites have been strongly linked to insulin resistance and type 2 diabetes. Despite extensive research, the precise mechanisms linking increased BCAA levels with these conditions remain elusive. In this review, we highlight the key organs involved in maintaining BCAA homeostasis and discuss how obesity and insulin resistance disrupt the intricate interplay among these organs, thus affecting BCAA balance. Additionally, we outline recent research shedding light on the impact of tissue-specific or systemic modulation of BCAA metabolism on circulating BCAA levels, their metabolites, and insulin sensitivity, while also identifying specific knowledge gaps and areas requiring further investigation. Finally, we summarize the effects of BCAA supplementation or restriction on obesity and insulin sensitivity.
Collapse
Affiliation(s)
- Abdualrahman Mohammed Abdualkader
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
- Montreal Diabetes Research Center, Montréal, QC, Canada
- Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, QC, Canada
| | - Qutuba G. Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Gary D. Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Rami Al Batran
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
- Montreal Diabetes Research Center, Montréal, QC, Canada
- Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, QC, Canada
| |
Collapse
|
47
|
Aldehoff AS, Karkossa I, Goerdeler C, Krieg L, Schor J, Engelmann B, Wabitsch M, Landgraf K, Hackermüller J, Körner A, Rolle-Kampczyk U, Schubert K, von Bergen M. Unveiling the dynamics of acetylation and phosphorylation in SGBS and 3T3-L1 adipogenesis. iScience 2024; 27:109711. [PMID: 38840842 PMCID: PMC11152682 DOI: 10.1016/j.isci.2024.109711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/11/2023] [Accepted: 04/06/2024] [Indexed: 06/07/2024] Open
Abstract
Obesity, characterized by enlarged and dysfunctional adipose tissue, is among today's most pressing global public health challenges with continuously increasing prevalence. Despite the importance of post-translational protein modifications (PTMs) in cellular signaling, knowledge of their impact on adipogenesis remains limited. Here, we studied the temporal dynamics of transcriptome, proteome, central carbon metabolites, and the acetyl- and phosphoproteome during adipogenesis using LC-MS/MS combined with PTM enrichment strategies on human (SGBS) and mouse (3T3-L1) adipocyte models. Both cell lines exhibited unique PTM profiles during adipogenesis, with acetylated proteins being enriched for central energy metabolism, while phosphorylated proteins related to insulin signaling and organization of cellular structures. As candidates with strong correlation to the adipogenesis timeline we identified CD44 and the acetylation sites FASN_K673 and IDH_K272. While results generally aligned between SGBS and 3T3-L1 cells, details appeared cell line specific. Our datasets on SGBS and 3T3-L1 adipogenesis dynamics are accessible for further mining.
Collapse
Affiliation(s)
- Alix Sarah Aldehoff
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Cornelius Goerdeler
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Laura Krieg
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Jana Schor
- Department of Computational Biology and Chemistry, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Beatrice Engelmann
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University Hospital for Children and Adolescents Ulm, Ulm, Germany
| | - Kathrin Landgraf
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jörg Hackermüller
- Department of Computational Biology and Chemistry, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
- Department of Computer Science, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG) of the Helmholtz-Centre Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
48
|
Carry PM, Vanderlinden LA, Johnson RK, Buckner T, Steck AK, Kechris K, Yang IV, Fingerlin TE, Fiehn O, Rewers M, Norris JM. Longitudinal changes in DNA methylation during the onset of islet autoimmunity differentiate between reversion versus progression of islet autoimmunity. Front Immunol 2024; 15:1345494. [PMID: 38915393 PMCID: PMC11194352 DOI: 10.3389/fimmu.2024.1345494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Background Type 1 diabetes (T1D) is preceded by a heterogenous pre-clinical phase, islet autoimmunity (IA). We aimed to identify pre vs. post-IA seroconversion (SV) changes in DNAm that differed across three IA progression phenotypes, those who lose autoantibodies (reverters), progress to clinical T1D (progressors), or maintain autoantibody levels (maintainers). Methods This epigenome-wide association study (EWAS) included longitudinal DNAm measurements in blood (Illumina 450K and EPIC) from participants in Diabetes Autoimmunity Study in the Young (DAISY) who developed IA, one or more islet autoantibodies on at least two consecutive visits. We compared reverters - individuals who sero-reverted, negative for all autoantibodies on at least two consecutive visits and did not develop T1D (n=41); maintainers - continued to test positive for autoantibodies but did not develop T1D (n=60); progressors - developed clinical T1D (n=42). DNAm data were measured before (pre-SV visit) and after IA (post-SV visit). Linear mixed models were used to test for differences in pre- vs post-SV changes in DNAm across the three groups. Linear mixed models were also used to test for group differences in average DNAm. Cell proportions, age, and sex were adjusted for in all models. Median follow-up across all participants was 15.5 yrs. (interquartile range (IQR): 10.8-18.7). Results The median age at the pre-SV visit was 2.2 yrs. (IQR: 0.8-5.3) in progressors, compared to 6.0 yrs. (IQR: 1.3-8.4) in reverters, and 5.7 yrs. (IQR: 1.4-9.7) in maintainers. Median time between the visits was similar in reverters 1.4 yrs. (IQR: 1-1.9), maintainers 1.3 yrs. (IQR: 1.0-2.0), and progressors 1.8 yrs. (IQR: 1.0-2.0). Changes in DNAm, pre- vs post-SV, differed across the groups at one site (cg16066195) and 11 regions. Average DNAm (mean of pre- and post-SV) differed across 22 regions. Conclusion Differentially changing DNAm regions were located in genomic areas related to beta cell function, immune cell differentiation, and immune cell function.
Collapse
Affiliation(s)
- Patrick M. Carry
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Aurora, CO, United States
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, United States
- Department of Biomedical Informatics, School of Medicine, University of Colorado, Aurora, CO, United States
| | | | - Randi K. Johnson
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, United States
- Department of Biomedical Informatics, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Teresa Buckner
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, United States
- Department of Kinesiology, Nutrition, and Dietetics, University of Northern Colorado, Greeley, CO, United States
| | - Andrea K. Steck
- Barbara Davis Center, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Katerina Kechris
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, United States
- Department of Biomedical Informatics, School of Medicine, University of Colorado, Aurora, CO, United States
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, United States
| | - Ivana V. Yang
- Department of Biomedical Informatics, School of Medicine, University of Colorado, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Tasha E. Fingerlin
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, United States
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, United States
- Department of Immunology and Genomic Medicine, National Jewish Health, Aurora, CO, United States
| | - Oliver Fiehn
- University of California Davis West Coast Metabolomics Center, Davis, CA, United States
| | - Marian Rewers
- Barbara Davis Center, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, United States
| |
Collapse
|
49
|
Tan J, Virtue S, Norris DM, Conway OJ, Yang M, Bidault G, Gribben C, Lugtu F, Kamzolas I, Krycer JR, Mills RJ, Liang L, Pereira C, Dale M, Shun-Shion AS, Baird HJ, Horscroft JA, Sowton AP, Ma M, Carobbio S, Petsalaki E, Murray AJ, Gershlick DC, Nathan JA, Hudson JE, Vallier L, Fisher-Wellman KH, Frezza C, Vidal-Puig A, Fazakerley DJ. Limited oxygen in standard cell culture alters metabolism and function of differentiated cells. EMBO J 2024; 43:2127-2165. [PMID: 38580776 PMCID: PMC11148168 DOI: 10.1038/s44318-024-00084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 04/07/2024] Open
Abstract
The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic, but pericellular oxygen levels, which are affected by oxygen diffusivity and consumption, are rarely reported. Here, we provide evidence that several cell types in culture actually experience local hypoxia, with important implications for cell metabolism and function. We focused initially on adipocytes, as adipose tissue hypoxia is frequently observed in obesity and precedes diminished adipocyte function. Under standard conditions, cultured adipocytes are highly glycolytic and exhibit a transcriptional profile indicative of physiological hypoxia. Increasing pericellular oxygen diverted glucose flux toward mitochondria, lowered HIF1α activity, and resulted in widespread transcriptional rewiring. Functionally, adipocytes increased adipokine secretion and sensitivity to insulin and lipolytic stimuli, recapitulating a healthier adipocyte model. The functional benefits of increasing pericellular oxygen were also observed in macrophages, hPSC-derived hepatocytes and cardiac organoids. Our findings demonstrate that oxygen is limiting in many terminally-differentiated cell types, and that considering pericellular oxygen improves the quality, reproducibility and translatability of culture models.
Collapse
Affiliation(s)
- Joycelyn Tan
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Sam Virtue
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Dougall M Norris
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Olivia J Conway
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ming Yang
- MRC Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Cologne, 50931, Germany
| | - Guillaume Bidault
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Christopher Gribben
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Fatima Lugtu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Ioannis Kamzolas
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - James R Krycer
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Lu Liang
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Conceição Pereira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Martin Dale
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Amber S Shun-Shion
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Harry Jm Baird
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - James A Horscroft
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Alice P Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Marcella Ma
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stefania Carobbio
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
- Centro de Investigacion Principe Felipe, Valencia, 46012, Spain
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Cologne, 50931, Germany
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Centro de Investigacion Principe Felipe, Valencia, 46012, Spain.
| | - Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
50
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|