1
|
Zhou C, Liao X, Zhou Z, Mo C, Yang Y, Liao H, Liu M, Zhang Q, Li Q, Tian X, Zhou R, Cao H. A humanized neutralizing antibody protects against human adenovirus type 7 infection in humanized desmoglein-2 and CD46 double-receptor transgenic mice. Virol J 2024; 21:294. [PMID: 39548554 PMCID: PMC11568553 DOI: 10.1186/s12985-024-02572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Human adenovirus type 7 (HAdV7) has become a major public health threat due to its widespread transmission, severe associated pneumonia, and a lack of effective anti-HAdV7 drugs. The aim of the current study is to design a humanized monoclonal antibody (mAb) demonstrating efficacy against HAdV-7 infections in vitro and in vivo. METHODS The humanized neutralizing antibody, 3G5-hu, was derived from the murine mAb 3G5. Antibody activity was evaluated using a flow cytometry-based neutralization (FCN) assay to identify humanized mAbs retaining potent neutralizing activity. Additionally, a humanized hDSG2/hCD46 dual-receptor transgenic mouse model was developed to simulate HAdV-7 infection. RESULTS Using recombinant HAdV-7 expressing enhanced green fluorescent protein and clinically isolated wild-type HAdV-7, the half-maximal effective concentration of 3G5-hu against HAdV-7 was determined to be < 30 ng/mL. Notably, 3G5-hu exhibits high specificity for the hexon protein of the HAdV-7 capsid (affinity: KD = 9.02 × 10- 11 M). Microneutralization studies with wild-type HAdV-7 and rAd7EGFP confirmed that humanized mAb 3G5-hu neutralizes 10-30 ng/mL HAdV-7 (approximately 67-200 pM). Furthermore, hDSG2/hCD46 double-receptor transgenic mice are more susceptible to HAdV-7 infection than single-receptor transgenic mice. Meanwhile, the humanized mAb 3G5-hu provides good protection against HAdV-7 infection in hDSG2/hCD46 knock-in transgenic mice. CONCLUSIONS The newly designed humanized mAb 3G5-hu specifically neutralizes HAdV-7 in vitro and in vivo. 3G5-hu elicits protection against HAdV-7 infection in hDSG2/hCD46 knock-in transgenic mice. The findings of this study provide insights to guide the future development of preventative and therapeutic treatments for HAdV-7 infection.
Collapse
MESH Headings
- Animals
- Mice, Transgenic
- Adenoviruses, Human/immunology
- Adenoviruses, Human/genetics
- Humans
- Antibodies, Neutralizing/immunology
- Mice
- Membrane Cofactor Protein/genetics
- Membrane Cofactor Protein/immunology
- Antibodies, Viral/immunology
- Desmoglein 2/immunology
- Desmoglein 2/genetics
- Adenovirus Infections, Human/immunology
- Adenovirus Infections, Human/prevention & control
- Adenovirus Infections, Human/virology
- Disease Models, Animal
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Capsid Proteins/immunology
- Capsid Proteins/genetics
- Neutralization Tests
Collapse
Affiliation(s)
- Chengxing Zhou
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | | | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Chuncong Mo
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yujie Yang
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Hui Liao
- Guangzhou National Laboratory, Guangzhou, China
| | - Minglei Liu
- Guangzhou National Laboratory, Guangzhou, China
| | - Qiong Zhang
- Guangzhou National Laboratory, Guangzhou, China
| | - Qiuru Li
- Guangzhou National Laboratory, Guangzhou, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Rong Zhou
- Guangzhou National Laboratory, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Ametrano A, Miranda B, Moretta R, Dardano P, De Stefano L, Oreste U, Coscia MR. A structural peculiarity of Antarctic fish IgM drives the generation of an engineered mAb by CRISPR/Cas9. Front Bioeng Biotechnol 2024; 12:1315633. [PMID: 39119272 PMCID: PMC11306039 DOI: 10.3389/fbioe.2024.1315633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
IgM is the major circulating Ig isotype in teleost fish, showing in Antarctic fish unique features such as an extraordinary long hinge region, which plays a crucial role in antibody structure and function. In this work, we describe the replacement of the hinge region of a murine monoclonal antibody (mAb) with the peculiar hinge from Antarctic fish IgM. We use the CRISPR/Cas9 system as a powerful tool for generating the engineered mAb. Then, we assessed its functionality by using an innovative plasmonic substrate based on bimetallic nanoislands (AgAuNIs). The affinity constant of the modified mAb was 2.5-fold higher than that obtained from wild-type mAb against the specific antigen. Here, we show the suitability of the CRISPR/Cas9 method for modifying a precise region in immunoglobulin gene loci. The overall results could open a frontier in further structural modifications of mAbs for biomedical and diagnostic purposes.
Collapse
Affiliation(s)
- Alessia Ametrano
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Naples, Italy
| | - Bruno Miranda
- Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, Naples, Italy
| | | | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, Naples, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, Naples, Italy
| | - Umberto Oreste
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Naples, Italy
| | - Maria Rosaria Coscia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Naples, Italy
| |
Collapse
|
3
|
Strawn IK, Steiner PJ, Newton MS, Baumer ZT, Whitehead TA. A method for generating user-defined circular single-stranded DNA from plasmid DNA using Golden Gate intramolecular ligation. Biotechnol Bioeng 2023; 120:3057-3066. [PMID: 37366288 PMCID: PMC10527171 DOI: 10.1002/bit.28471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Construction of user-defined long circular single stranded DNA (cssDNA) and linear single stranded DNA (lssDNA) is important for various biotechnological applications. Many current methods for synthesis of these ssDNA molecules do not scale to multikilobase constructs. Here we present a robust methodology for generating user-defined cssDNA employing Golden Gate assembly, a nickase, and exonuclease degradation. Our technique is demonstrated for three plasmids with insert sizes ranging from 2.1 to 3.4 kb, requires no specialized equipment, and can be accomplished in 5 h with a yield of 33%-43% of the theoretical. To produce lssDNA, we evaluated different CRISPR-Cas9 cleavage conditions and reported a 52 ± 8% cleavage efficiency of cssDNA. Thus, our current method does not compete with existing protocols for lssDNA generation. Nevertheless, our protocol can make long, user-defined cssDNA readily available to biotechnology researchers.
Collapse
Affiliation(s)
- Isabell K. Strawn
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305, USA
| | - Paul J. Steiner
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305, USA
| | - Matilda S. Newton
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305, USA
- Current address: Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Zachary T. Baumer
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305, USA
| | - Timothy A. Whitehead
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305, USA
| |
Collapse
|
4
|
Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Moawad AA, Alwanian WM, Almansour NM, Rahmani AH, Khan AA. Innovative Strategies of Reprogramming Immune System Cells by Targeting CRISPR/Cas9-Based Genome-Editing Tools: A New Era of Cancer Management. Int J Nanomedicine 2023; 18:5531-5559. [PMID: 37795042 PMCID: PMC10547015 DOI: 10.2147/ijn.s424872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023] Open
Abstract
The recent developments in the study of clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) system have revolutionized the art of genome-editing and its applications for cellular differentiation and immune response behavior. This technology has further helped in understanding the mysteries of cancer progression and possible designing of novel antitumor immunotherapies. CRISPR/Cas9-based genome-editing is now often used to engineer universal T-cells, equipped with recombinant T-cell receptor (TCR) or chimeric antigen receptor (CAR). In addition, this technology is used in cytokine stimulation, antibody designing, natural killer (NK) cell transfer, and to overcome immune checkpoints. The innovative potential of CRISPR/Cas9 in preparing the building blocks of adoptive cell transfer (ACT) immunotherapy has opened a new window of antitumor immunotherapy and some of them have gained FDA approval. The manipulation of immunogenetic regulators has opened a new interface for designing, implementation and interpretation of CRISPR/Cas9-based screening in immuno-oncology. Several cancers like lymphoma, melanoma, lung, and liver malignancies have been treated with this strategy, once thought to be impossible. The safe and efficient delivery of CRISPR/Cas9 system within the immune cells for the genome-editing strategy is a challenging task which needs to be sorted out for efficient immunotherapy. Several targeting approaches like virus-mediated, electroporation, microinjection and nanoformulation-based methods have been used, but each procedure offers some limitations. Here, we elaborate the recent updates of cancer management through immunotherapy in partnership with CRISPR/Cas9 technology. Further, some innovative methods of targeting this genome-editing system within the immune system cells for reprogramming them, as a novel strategy of anticancer immunotherapy is elaborated. In addition, future prospects and clinical trials are also discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Amira A Moawad
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
5
|
Huber M, Casares-Arias J, Fässler R, Müller DJ, Strohmeyer N. In mitosis integrins reduce adhesion to extracellular matrix and strengthen adhesion to adjacent cells. Nat Commun 2023; 14:2143. [PMID: 37059721 PMCID: PMC10104879 DOI: 10.1038/s41467-023-37760-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
To enter mitosis, most adherent animal cells reduce adhesion, which is followed by cell rounding. How mitotic cells regulate adhesion to neighboring cells and extracellular matrix (ECM) proteins is poorly understood. Here we report that, similar to interphase, mitotic cells can employ integrins to initiate adhesion to the ECM in a kindlin- and talin-dependent manner. However, unlike interphase cells, we find that mitotic cells cannot engage newly bound integrins to actomyosin via talin or vinculin to reinforce adhesion. We show that the missing actin connection of newly bound integrins leads to transient ECM-binding and prevents cell spreading during mitosis. Furthermore, β1 integrins strengthen the adhesion of mitotic cells to adjacent cells, which is supported by vinculin, kindlin, and talin1. We conclude that this dual role of integrins in mitosis weakens the cell-ECM adhesion and strengthens the cell-cell adhesion to prevent delamination of the rounding and dividing cell.
Collapse
Affiliation(s)
- Maximilian Huber
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland
| | - Javier Casares-Arias
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland.
| | - Nico Strohmeyer
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland.
| |
Collapse
|
6
|
Generation of a single-cell B cell atlas of antibody repertoires and transcriptomes to identify signatures associated with antigen specificity. iScience 2023; 26:106055. [PMID: 36852274 PMCID: PMC9958373 DOI: 10.1016/j.isci.2023.106055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Although new genomics-based pipelines have potential to augment antibody discovery, these methods remain in their infancy due to an incomplete understanding of the selection process that governs B cell clonal selection, expansion, and antigen specificity. Furthermore, it remains unknown how factors such as aging and reduction of tolerance influence B cell selection. Here we perform single-cell sequencing of antibody repertoires and transcriptomes of murine B cells following immunizations with a model therapeutic antigen target. We determine the relationship between antibody repertoires, gene expression signatures, and antigen specificity across 100,000 B cells. Recombinant expression and characterization of 227 monoclonal antibodies revealed the existence of clonally expanded and class-switched antigen-specific B cells that were more frequent in young mice. Although integrating multiple repertoire features such as germline gene usage and transcriptional signatures failed to distinguish antigen-specific from nonspecific B cells, other features such as immunoglobulin G (IgG) subtype and sequence composition correlated with antigen specificity.
Collapse
|
7
|
Edelstein J, Fritz M, Lai SK. Challenges and opportunities in gene editing of B cells. Biochem Pharmacol 2022; 206:115285. [PMID: 36241097 DOI: 10.1016/j.bcp.2022.115285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/29/2023]
Abstract
B cells have long been an underutilized target in immune cell engineering, despite a number of unique attributes that could address longstanding challenges in medicine. Notably, B cells evolved to secrete large quantities of antibodies for prolonged periods, making them suitable platforms for long-term protein delivery. Recent advances in gene editing technologies, such as CRISPR-Cas, have improved the precision and efficiency of engineering and expanded potential applications of engineered B cells. While most work on B cell editing has focused on ex vivo modification, a body of recent work has also advanced the possibility of in vivo editing applications. In this review, we will discuss both past and current approaches to B cell engineering, and its promising applications in immunology research and therapeutic gene editing.
Collapse
Affiliation(s)
- Jasmine Edelstein
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Marshall Fritz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Immunology and Microbiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Rutkauskaite J, Berger S, Stavrakis S, Dressler O, Heyman J, Casadevall I Solvas X, deMello A, Mazutis L. High-throughput single-cell antibody secretion quantification and enrichment using droplet microfluidics-based FRET assay. iScience 2022; 25:104515. [PMID: 35733793 PMCID: PMC9207670 DOI: 10.1016/j.isci.2022.104515] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/05/2021] [Accepted: 05/29/2022] [Indexed: 01/30/2023] Open
Abstract
High-throughput screening and enrichment of antibody-producing cells have many important applications. Herein, we present a droplet microfluidic approach for high-throughput screening and sorting of antibody-secreting cells using a Förster resonance electron transfer (FRET)-based assay. The FRET signal is mediated by the specific binding of the secreted antibody to two fluorescently labeled probes supplied within a droplet. Functional hybridoma cells expressing either membrane-bound or secreted monoclonal antibodies (mAbs), or both, were efficiently differentiated in less than 30 min. The antibody secretion rate by individual hybridoma cells was recorded in the range of 14,000 Abs/min, while the density of membrane-bound fraction was approximately 100 Abs/μm2. Combining the FRET assay with droplet-based single-cell sorting, an 800-fold enrichment of antigen-specific cells was achieved after one round of sorting. The presented system overcomes several key limitations observed in conventional FACS-based screening methods and should be applicable to assaying various other secreted proteins. FRET-based screening assay of antibody-secreting cells in microfluidic droplets Membrane-bound and secreted antibodies of the same cell are efficiently differentiated Using mouse hybridoma cells antibody secretion assay is completed in 30 min FRET-based droplet sorting enables over 800-fold enrichment in one round of sorting
Collapse
Affiliation(s)
- Justina Rutkauskaite
- Institute of Biotechnology, Life Sciences Centre, Vilnius University, 7 Sauletekio ave., 10257 Vilnius, Lithuania.,Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Simon Berger
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Oliver Dressler
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - John Heyman
- Harvard University, SEAS, 9 Oxford St., Cambridge, MA 02139, USA
| | | | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Linas Mazutis
- Institute of Biotechnology, Life Sciences Centre, Vilnius University, 7 Sauletekio ave., 10257 Vilnius, Lithuania
| |
Collapse
|
9
|
Phenotypic determinism and stochasticity in antibody repertoires of clonally expanded plasma cells. Proc Natl Acad Sci U S A 2022; 119:e2113766119. [PMID: 35486691 PMCID: PMC9170022 DOI: 10.1073/pnas.2113766119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
B cell clonal selection and expansion from a genetically diverse antibody repertoire guides the immune response to a target antigen. It remains unclear if clonal selection and expansion follow any deterministic rules or are stochastic with regards to phenotypic antibody properties such as antigen-binding, affinity, and epitope specificity. We perform the in-depth genotypic and phenotypic characterization of antibody repertoires following immunization in mice. We identify the degree to which clonal expansion is driven by antibody binding, affinity, and epitope specificity and as such may provide greater insight into vaccine-induced immunity. The capacity of humoral B cell-mediated immunity to effectively respond to and protect against pathogenic infections is largely driven by the presence of a diverse repertoire of polyclonal antibodies in the serum, which are produced by plasma cells (PCs). Recent studies have started to reveal the balance between deterministic mechanisms and stochasticity of antibody repertoires on a genotypic level (i.e., clonal diversity, somatic hypermutation, and germline gene usage). However, it remains unclear if clonal selection and expansion of PCs follow any deterministic rules or are stochastic with regards to phenotypic antibody properties (i.e., antigen-binding, affinity, and epitope specificity). Here, we report on the in-depth genotypic and phenotypic characterization of clonally expanded PC antibody repertoires following protein immunization. We find that clonal expansion drives antigen specificity of the most expanded clones (top ∼10), whereas among the rest of the clonal repertoire antigen specificity is stochastic. Furthermore, we report both on a polyclonal repertoire and clonal lineage level that antibody-antigen binding affinity does not correlate with clonal expansion or somatic hypermutation. Last, we provide evidence for convergence toward targeting dominant epitopes despite clonal sequence diversity among the most expanded clones. Our results highlight the extent to which clonal expansion can be ascribed to antigen binding, affinity, and epitope specificity, and they have implications for the assessment of effective vaccines.
Collapse
|
10
|
Ehling RA, Weber CR, Mason DM, Friedensohn S, Wagner B, Bieberich F, Kapetanovic E, Vazquez-Lombardi R, Di Roberto RB, Hong KL, Wagner C, Pataia M, Overath MD, Sheward DJ, Murrell B, Yermanos A, Cuny AP, Savic M, Rudolf F, Reddy ST. SARS-CoV-2 reactive and neutralizing antibodies discovered by single-cell sequencing of plasma cells and mammalian display. Cell Rep 2022; 38:110242. [PMID: 34998467 PMCID: PMC8692065 DOI: 10.1016/j.celrep.2021.110242] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/22/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023] Open
Abstract
Characterization of COVID-19 antibodies has largely focused on memory B cells; however, it is the antibody-secreting plasma cells that are directly responsible for the production of serum antibodies, which play a critical role in resolving SARS-CoV-2 infection. Little is known about the specificity of plasma cells, largely because plasma cells lack surface antibody expression, thereby complicating their screening. Here, we describe a technology pipeline that integrates single-cell antibody repertoire sequencing and mammalian display to interrogate the specificity of plasma cells from 16 convalescent patients. Single-cell sequencing allows us to profile antibody repertoire features and identify expanded clonal lineages. Mammalian display screening is used to reveal that 43 antibodies (of 132 candidates) derived from expanded plasma cell lineages are specific to SARS-CoV-2 antigens, including antibodies with high affinity to the SARS-CoV-2 receptor-binding domain (RBD) that exhibit potent neutralization and broad binding to the RBD of SARS-CoV-2 variants (of concern/interest).
Collapse
Affiliation(s)
- Roy A Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Derek M Mason
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Florian Bieberich
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Raphaël B Di Roberto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Botnar Research Centre for Child Health, Basel, Switzerland
| | | | - Michele Pataia
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Max D Overath
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Botnar Research Centre for Child Health, Basel, Switzerland; Institute of Microbiology and Immunology, Department of Biology, ETH Zurich, Zurich, Switzerland; Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Andreas P Cuny
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstr. 26, 4058 Basel, Switzerland
| | - Miodrag Savic
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Surgery, Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland; Department of Health, Economics and Health Directorate, Canton Basel-Landschaft, Switzerland
| | - Fabian Rudolf
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstr. 26, 4058 Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Botnar Research Centre for Child Health, Basel, Switzerland.
| |
Collapse
|
11
|
Ametrano A, Coscia MR. Production of a Chimeric Mouse-Fish Monoclonal Antibody by the CRISPR/Cas9 Technology. Methods Mol Biol 2022; 2498:337-350. [PMID: 35727555 DOI: 10.1007/978-1-0716-2313-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The CRISPR/Cas9 system, a defense mechanism naturally occurring in prokaryotes, has been recently repurposed as an RNA-guided DNA targeting platform and widely used as a powerful tool for genome editing. Here we describe how to modify the carboxy-terminal region, called Fragment crystallizable (Fc) region, of a murine monoclonal antibody by replacing the heavy chain constant exons with those from a teleost fish antibody by the CRISPR/Cas9 system. We outline optimal conditions for knockout and knockin mechanisms to edit the Immunoglobulin heavy chain (IgH) constant region gene locus in a murine hybridoma cell line. A chimeric mouse-fish monoclonal antibody can be successfully produced by hybridoma cell lines engineered according to this protocol.
Collapse
Affiliation(s)
- Alessia Ametrano
- Institute of Biochemistry and Cell Biology-National Research Council of Italy, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Maria Rosaria Coscia
- Institute of Biochemistry and Cell Biology-National Research Council of Italy, Naples, Italy.
| |
Collapse
|
12
|
Neumeier D, Pedrioli A, Genovese A, Sandu I, Ehling R, Hong KL, Papadopoulou C, Agrafiotis A, Kuhn R, Shlesinger D, Robbiani D, Han J, Hauri L, Csepregi L, Greiff V, Merkler D, Reddy ST, Oxenius A, Yermanos A. Profiling the specificity of clonally expanded plasma cells during chronic viral infection by single-cell analysis. Eur J Immunol 2021; 52:297-311. [PMID: 34727578 PMCID: PMC9299196 DOI: 10.1002/eji.202149331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/02/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
Plasma cells and their secreted antibodies play a central role in the long-term protection against chronic viral infection. However, due to experimental limitations, a comprehensive description of linked genotypic, phenotypic, and antibody repertoire features of plasma cells (gene expression, clonal frequency, virus specificity, and affinity) has been challenging to obtain. To address this, we performed single-cell transcriptome and antibody repertoire sequencing of the murine BM plasma cell population following chronic lymphocytic choriomeningitis virus infection. Our single-cell sequencing approach recovered full-length and paired heavy- and light-chain sequence information for thousands of plasma cells and enabled us to perform recombinant antibody expression and specificity screening. Antibody repertoire analysis revealed that, relative to protein immunization, chronic infection led to increased levels of clonal expansion, class-switching, and somatic variants. Furthermore, antibodies from the highly expanded and class-switched (IgG) plasma cells were found to be specific for multiple viral antigens and a subset of clones exhibited cross-reactivity to nonviral and autoantigens. Integrating single-cell transcriptome data with antibody specificity suggested that plasma cell transcriptional phenotype was correlated to viral antigen specificity. Our findings demonstrate that chronic viral infection can induce and sustain plasma cell clonal expansion, combined with significant somatic hypermutation, and can generate cross-reactive antibodies.
Collapse
Affiliation(s)
- Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | - Ioana Sandu
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Roy Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Chrysa Papadopoulou
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Andreas Agrafiotis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Raphael Kuhn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Damiano Robbiani
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jiami Han
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Laura Hauri
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
de Brito PM, Saruga A, Cardoso M, Goncalves J. Methods and cell-based strategies to produce antibody libraries: current state. Appl Microbiol Biotechnol 2021; 105:7215-7224. [PMID: 34524471 DOI: 10.1007/s00253-021-11570-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022]
Abstract
Antibodies are critical components of the adaptive immune system, whose therapeutic applications have been growing exponentially in the last years. Discovery and development of therapeutic antibodies encompasses in vivo immunization, synthetic libraries, and surface display methodologies. To overcome some of their limitations, several platforms in higher eukaryotic cells have been developed. Moreover, these platforms aim to replicate in the bench both primary and secondary antibody diversification mechanisms that occur in vivo. Here, we describe the latest strategies that have been used to mirror both naïve and affinity-maturated antibody repertoire. KEY POINTS: • Therapeutic antibodies are one of the most promising classes of drugs to fight diseases. • Antibodies discovered through hybridoma or display technologies require further engineering. • Innovative antibody discovery platforms in higher eukaryotic cells have been developed.
Collapse
Affiliation(s)
- Paula Matos de Brito
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Av. Professor Gama Pinto, 1649-019, Lisbon, Portugal
| | - Andreia Saruga
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Av. Professor Gama Pinto, 1649-019, Lisbon, Portugal.,INESC MN - Instituto de Engenharia de Sistemas e Computadores - Microsystems and Nanotecnologies, R. Alves Redol 9, 1000-029, Lisbon, Portugal
| | - Miguel Cardoso
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Av. Professor Gama Pinto, 1649-019, Lisbon, Portugal
| | - Joao Goncalves
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Av. Professor Gama Pinto, 1649-019, Lisbon, Portugal.
| |
Collapse
|
14
|
Schibeci Natoli Scialli N, Colitti B, Bertolotti L, Pezzoni G, Martignani E, Melega M, Brocchi E, Rosati S. Genome editing of a hybridoma cell line via the CRISPR/Cas9 system: A new approach for constitutive high-level expression of heterologous proteins in eukaryotic system. Vet Immunol Immunopathol 2021; 238:110286. [PMID: 34171554 DOI: 10.1016/j.vetimm.2021.110286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/22/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
The power of the CRISPR/Cas9 system has revolutionized genome editing in many fields of biology. These applications have expanded exponentially over recent years, including those regarding protein expression technologies. The CRISPR/Cas9 system avoids random integration of the gene of interest and due to this characteristic can be exploited to obtain a stable cell line for the high-yield expression of recombinant proteins. Here we propose a method to edit a hybridoma cell line for the constitutive expression of proteins of interest using the CRISPR/Cas9 system. First, with the scope of optimizing the method, we replaced part of the light chain of immunoglobulin with the Green Fluorescent Protein (GFP) gene, obtaining a precise knock-in in the hybridoma genome. We confirmed the expression and secretion of GFP into the culture medium via fluorimetric analysis, as well as correct genome editing by RNA sequencing. Then, using the same approach, we included the gene encoding a protein of diagnostic interest, the Bovine Herpesvirus 1 glycoprotein E, in the donor DNA. We obtained a stable clone able to secrete gE protein in fusion with GFP into the culture medium. This result was confirmed by ELISA and Western Blot analysis. This study confirms the suitability of this cell line for the production of proteins of diagnostic interest by stable gene expression in a mammalian system. These experiments will enable the technique to be developed from its proof of concept to more specific applications in the field of infectious disease diagnostics.
Collapse
Affiliation(s)
| | - Barbara Colitti
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Luigi Bertolotti
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Giulia Pezzoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 7, 25124, Brescia, Italy
| | - Eugenio Martignani
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Maverick Melega
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Emiliana Brocchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 7, 25124, Brescia, Italy
| | - Sergio Rosati
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy.
| |
Collapse
|
15
|
Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nat Biomed Eng 2021; 5:600-612. [PMID: 33859386 DOI: 10.1038/s41551-021-00699-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
The optimization of therapeutic antibodies is time-intensive and resource-demanding, largely because of the low-throughput screening of full-length antibodies (approximately 1 × 103 variants) expressed in mammalian cells, which typically results in few optimized leads. Here we show that optimized antibody variants can be identified by predicting antigen specificity via deep learning from a massively diverse space of antibody sequences. To produce data for training deep neural networks, we deep-sequenced libraries of the therapeutic antibody trastuzumab (about 1 × 104 variants), expressed in a mammalian cell line through site-directed mutagenesis via CRISPR-Cas9-mediated homology-directed repair, and screened the libraries for specificity to human epidermal growth factor receptor 2 (HER2). We then used the trained neural networks to screen a computational library of approximately 1 × 108 trastuzumab variants and predict the HER2-specific subset (approximately 1 × 106 variants), which can then be filtered for viscosity, clearance, solubility and immunogenicity to generate thousands of highly optimized lead candidates. Recombinant expression and experimental testing of 30 randomly selected variants from the unfiltered library showed that all 30 retained specificity for HER2. Deep learning may facilitate antibody engineering and optimization.
Collapse
|
16
|
Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S. Antibody display technologies: selecting the cream of the crop. Biol Chem 2021; 403:455-477. [PMID: 33759431 DOI: 10.1515/hsz-2020-0377] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Antibody display technologies enable the successful isolation of antigen-specific antibodies with therapeutic potential. The key feature that facilitates the selection of an antibody with prescribed properties is the coupling of the protein variant to its genetic information and is referred to as genotype phenotype coupling. There are several different platform technologies based on prokaryotic organisms as well as strategies employing higher eukaryotes. Among those, phage display is the most established system with more than a dozen of therapeutic antibodies approved for therapy that have been discovered or engineered using this approach. In recent years several other technologies gained a certain level of maturity, most strikingly mammalian display. In this review, we delineate the most important selection systems with respect to antibody generation with an emphasis on recent developments.
Collapse
Affiliation(s)
- Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Giulio Russo
- Abcalis GmbH, Inhoffenstrasse 7, D-38124Braunschweig, Germany.,Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Laura Mohr
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Max-von-Laue-Strasse 13, D-60438Frankfurt am Main, Germany
| | - Janina Klemm
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| |
Collapse
|
17
|
Zhang M, Yang C, Tasan I, Zhao H. Expanding the Potential of Mammalian Genome Engineering via Targeted DNA Integration. ACS Synth Biol 2021; 10:429-446. [PMID: 33596056 DOI: 10.1021/acssynbio.0c00576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inserting custom designed DNA sequences into the mammalian genome plays an essential role in synthetic biology. In particular, the ability to introduce foreign DNA in a site-specific manner offers numerous advantages over random DNA integration. In this review, we focus on two mechanistically distinct systems that have been widely adopted for targeted DNA insertion in mammalian cells, the CRISPR/Cas9 system and site-specific recombinases. The CRISPR/Cas9 system has revolutionized the genome engineering field thanks to its high programmability and ease of use. However, due to its dependence on linearized DNA donor and endogenous cellular pathways to repair the induced double-strand break, CRISPR/Cas9-mediated DNA insertion still faces limitations such as small insert size, and undesired editing outcomes via error-prone repair pathways. In contrast, site-specific recombinases, in particular the Serine integrases, demonstrate large-cargo capability and no dependence on cellular repair pathways for DNA integration. Here we first describe recent advances in improving the overall efficacy of CRISPR/Cas9-based methods for DNA insertion. Moreover, we highlight the advantages of site-specific recombinases over CRISPR/Cas9 in the context of targeted DNA integration, with a special focus on the recent development of programmable recombinases. We conclude by discussing the importance of protein engineering to further expand the current toolkit for targeted DNA insertion in mammalian cells.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Che Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ipek Tasan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
A Functional Screening Strategy for Engineering Chimeric Antigen Receptors with Reduced On-Target, Off-Tumor Activation. Mol Ther 2020; 28:2564-2576. [PMID: 32827460 PMCID: PMC7704745 DOI: 10.1016/j.ymthe.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/27/2020] [Accepted: 08/05/2020] [Indexed: 01/15/2023] Open
Abstract
In recent years, chimeric antigen receptor (CAR) T cell cancer immunotherapies have advanced substantially in the clinic. However, challenges related to safety persist; one major concern occurs when CARs trigger a response to antigen present on healthy cells (on-target, off-tumor response). A strategy to ameliorate this relies on the complex relationship between receptor affinity and signaling, such that one can engineer a CAR that is only activated by tumor cells expressing high antigen levels. Here, we developed a CAR T cell display platform with stable genomic expression and rapid functional screening based on interleukin-2 signaling. Starting with a CAR with high affinity toward its target antigen, we combined CRISPR-Cas9 genome editing and deep mutational scanning to generate a library of antigen-binding domain variants. This library was subjected to multiple rounds of selection based on either antigen binding or cell signaling. Deep sequencing of the resulting libraries and a comparative analysis revealed the enrichment and depletion of specific variants from which we selected CARs that were selectively activated by tumor cells based on antigen expression levels. Our platform demonstrates how directed evolution based on functional screening and deep sequencing-guided selection can be combined to enhance the selectivity and safety of CARs.
Collapse
|
19
|
Abstract
Advances in reading, writing, and editing DNA are providing unprecedented insights into the complexity of immunological systems. This combination of systems and synthetic biology methods is enabling the quantitative and precise understanding of molecular recognition in adaptive immunity, thus providing a framework for reprogramming immune responses for translational medicine. In this review, we will highlight state-of-the-art methods such as immune repertoire sequencing, immunoinformatics, and immunogenomic engineering and their application toward adaptive immunity. We showcase novel and interdisciplinary approaches that have the promise of transforming the design and breadth of molecular and cellular immunotherapies.
Collapse
Affiliation(s)
- Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Roy A. Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| |
Collapse
|
20
|
Parray HA, Shukla S, Samal S, Shrivastava T, Ahmed S, Sharma C, Kumar R. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int Immunopharmacol 2020; 85:106639. [PMID: 32473573 PMCID: PMC7255167 DOI: 10.1016/j.intimp.2020.106639] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/06/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
The advancements in technology and manufacturing processes have allowed the development of new derivatives, biosimilar or advanced improved versions for approved antibodies each year for treatment regimen. There are more than 700 antibody-based molecules that are in different stages of phase I/II/ III clinical trials targeting new unique targets. To date, approximately more than 80 monoclonal antibodies (mAbs) have been approved. A total of 7 novel antibody therapeutics had been granted the first approval either in the United States or European Union in the year 2019, representing approximately 20% of the total number of approved drugs. Most of these licenced mAbs or their derivatives are either of hybridoma origin or their improvised engineered versions. Even with the recent development of high throughput mAb generation technologies, hybridoma is the most favoured method due to its indigenous nature to preserve natural cognate antibody pairing information and preserves innate functions of immune cells. The recent advent of antibody engineering technology has superseded the species level barriers and has shown success in isolation of hybridoma across phylogenetically distinct species. This has led to the isolation of monoclonal antibodies against human targets that are conserved and non-immunogenic in the rodent. In this review, we have discussed in detail about hybridoma technology, its expansion towards different animal species, the importance of antibodies isolated from different animal sources that are useful in biological applications, advantages, and limitations. This review also summarizes the challenges and recent progress associated with hybridoma development, and how it has been overcome in these years to provide new insights for the isolation of mAbs.
Collapse
Affiliation(s)
- Hilal Ahmed Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shivangi Shukla
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| |
Collapse
|
21
|
Adaptive immune receptor repertoires, an overview of this exciting field. Immunol Lett 2020; 221:49-55. [PMID: 32113899 DOI: 10.1016/j.imlet.2020.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/30/2022]
Abstract
The adaptive immune response in jawed vertebrates relies on the huge diversity and specificity of the B cell and T cell antigen receptors, the immunoglobulins (IG) or antibodies and the T cell receptors (TR), respectively. The high level of diversity has represented a barrier to a comprehensive analysis of the adaptive immune response before the emergence of high-throughput sequencing (HTS) technologies. The size and complexity of HTS data requires the generation of novel computational and analytical approaches, which are transforming how the adaptive immune responses are deciphered to understand the clonal dynamics and properties of antigen-specific B and T cells in response to different kind of antigens. This exciting and rapidly evolving field is not only impacting human and clinical immunology but also comparative immunology. We are now closer to understanding the evolution of adaptive immune response in jawed vertebrates. This review provides an overview about classical and current strategies developed to assess the IG/TR diversity and their applications in basic and clinical immunology.
Collapse
|
22
|
Beretta M, Mouquet H. [CRISPR-Cas9 editing of HIV-1 neutralizing human B cells]. Med Sci (Paris) 2020; 35:993-996. [PMID: 31903905 DOI: 10.1051/medsci/2019196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Les anticorps (ou immunoglobulines, Ig) produits par les lymphocytes B sont essentiels aux réponses immunitaires induites par les infections et les vaccins. Les anticorps sont des glycoprotéines hétérodimériques résultant de l’association de deux chaînes lourdes (IgH), et de deux chaînes légères (IgL) d’immunoglobuline. Les chaînes IgH et IgL possèdent des régions « hypervariables », également appelées en anglais complementarity determining regions (CDR), situées dans leurs domaines variables, VH et VL, qui, en se combinant, forment le site de liaison à l’antigène ou paratope.
Collapse
Affiliation(s)
- Maxime Beretta
- Laboratoire d'Immunologie Humorale, Département d'Immunologie, Institut Pasteur, Inserm U1222, 28 rue du Docteur Roux, 75015 Paris, France
| | - Hugo Mouquet
- Laboratoire d'Immunologie Humorale, Département d'Immunologie, Institut Pasteur, Inserm U1222, 28 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
23
|
Pesch T, Bonati L, Kelton W, Parola C, Ehling RA, Csepregi L, Kitamura D, Reddy ST. Molecular Design, Optimization, and Genomic Integration of Chimeric B Cell Receptors in Murine B Cells. Front Immunol 2019; 10:2630. [PMID: 31798579 PMCID: PMC6868064 DOI: 10.3389/fimmu.2019.02630] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
Immune cell therapies based on the integration of synthetic antigen receptors comprise a powerful strategy for the treatment of diverse diseases, most notably T cells engineered to express chimeric antigen receptors (CAR) for targeted cancer therapy. In addition to T lymphocytes, B lymphocytes may also represent valuable immune cells that can be engineered for therapeutic purposes such as protein replacement therapy or recombinant antibody production. In this article, we report a promising concept for the molecular design, optimization, and genomic integration of a novel class of synthetic antigen receptors, chimeric B cell receptors (CBCR). We initially optimized CBCR expression and detection by modifying the extracellular surface tag, the transmembrane regions and intracellular signaling domains. For this purpose, we stably integrated a series of CBCR variants using CRISPR-Cas9 into immortalized B cell hybridomas. Subsequently, we developed a reliable and consistent pipeline to precisely introduce cassettes of several kb size into the genome of primary murine B cells also using CRISPR-Cas9 induced HDR. Finally, we were able to show the robust surface expression and antigen recognition of a synthetic CBCR in primary B cells. We anticipate CBCRs and our approach for engineering primary B cells will be a valuable tool for the advancement of future B cell- based immune cell therapies.
Collapse
Affiliation(s)
- Theresa Pesch
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Lucia Bonati
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - William Kelton
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Cristina Parola
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Life Science Graduate School, Systems Biology, ETH Zürich, University of Zurich, Zurich, Switzerland
| | - Roy A. Ehling
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Life Science Graduate School, Microbiology and Immunology, ETH Zürich, University of Zurich, Zurich, Switzerland
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
24
|
Parola C, Neumeier D, Friedensohn S, Csepregi L, Di Tacchio M, Mason DM, Reddy ST. Antibody discovery and engineering by enhanced CRISPR-Cas9 integration of variable gene cassette libraries in mammalian cells. MAbs 2019; 11:1367-1380. [PMID: 31478465 PMCID: PMC6816377 DOI: 10.1080/19420862.2019.1662691] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antibody engineering in mammalian cells offers the important advantage of expression and screening of libraries in their native conformation, increasing the likelihood of generating candidates with more favorable molecular properties. Major advances in cellular engineering enabled by CRISPR-Cas9 genome editing have made it possible to expand the use of mammalian cells in biotechnological applications. Here, we describe an antibody engineering and screening approach where complete variable light (VL) and heavy (VH) chain cassette libraries are stably integrated into the genome of hybridoma cells by enhanced Cas9-driven homology-directed repair (HDR), resulting in their surface display and secretion. By developing an improved HDR donor format that utilizes in situ linearization, we are able to achieve >15-fold improvement of genomic integration, resulting in a screening workflow that only requires a simple plasmid electroporation. This proved suitable for different applications in antibody discovery and engineering. By integrating and screening an immune library obtained from the variable gene repertoire of an immunized mouse, we could isolate a diverse panel of >40 unique antigen-binding variants. Additionally, we successfully performed affinity maturation by directed evolution screening of an antibody library based on random mutagenesis, leading to the isolation of several clones with affinities in the picomolar range.
Collapse
Affiliation(s)
- Cristina Parola
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | | | - Derek M Mason
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| |
Collapse
|
25
|
van der Schoot JMS, Fennemann FL, Valente M, Dolen Y, Hagemans IM, Becker AMD, Le Gall CM, van Dalen D, Cevirgel A, van Bruggen JAC, Engelfriet M, Caval T, Bentlage AEH, Fransen MF, Nederend M, Leusen JHW, Heck AJR, Vidarsson G, Figdor CG, Verdoes M, Scheeren FA. Functional diversification of hybridoma-produced antibodies by CRISPR/HDR genomic engineering. SCIENCE ADVANCES 2019; 5:eaaw1822. [PMID: 31489367 PMCID: PMC6713500 DOI: 10.1126/sciadv.aaw1822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Hybridoma technology is instrumental for the development of novel antibody therapeutics and diagnostics. Recent preclinical and clinical studies highlight the importance of antibody isotype for therapeutic efficacy. However, since the sequence encoding the constant domains is fixed, tuning antibody function in hybridomas has been restricted. Here, we demonstrate a versatile CRISPR/HDR platform to rapidly engineer the constant immunoglobulin domains to obtain recombinant hybridomas, which secrete antibodies in the preferred format, species, and isotype. Using this platform, we obtained recombinant hybridomas secreting Fab' fragments, isotype-switched chimeric antibodies, and Fc-silent mutants. These antibody products are stable, retain their antigen specificity, and display their intrinsic Fc-effector functions in vitro and in vivo. Furthermore, we can site-specifically attach cargo to these antibody products via chemoenzymatic modification. We believe that this versatile platform facilitates antibody engineering for the entire scientific community, empowering preclinical antibody research.
Collapse
Affiliation(s)
- Johan M. S. van der Schoot
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, Netherlands
| | - Felix L. Fennemann
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, Netherlands
| | - Michael Valente
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, Netherlands
| | - Yusuf Dolen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, Netherlands
| | - Iris M. Hagemans
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, Netherlands
| | - Anouk M. D. Becker
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, Netherlands
| | - Camille M. Le Gall
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, Netherlands
| | - Duco van Dalen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, Netherlands
| | - Alper Cevirgel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, Netherlands
| | - Jaco A. C. van Bruggen
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
| | - Melanie Engelfriet
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
| | - Tomislav Caval
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Arthur E. H. Bentlage
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Plesmanlaan 125, Amsterdam 1066 CX, Netherlands
| | - Marieke F. Fransen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Maaike Nederend
- Laboratory for Translational Immunology, UMC Utrecht, Utrecht, Netherlands
| | | | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Gestur Vidarsson
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Plesmanlaan 125, Amsterdam 1066 CX, Netherlands
| | - Carl G. Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, Netherlands
| | - Ferenc A. Scheeren
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, Netherlands
| |
Collapse
|
26
|
Parthiban K, Perera RL, Sattar M, Huang Y, Mayle S, Masters E, Griffiths D, Surade S, Leah R, Dyson MR, McCafferty J. A comprehensive search of functional sequence space using large mammalian display libraries created by gene editing. MAbs 2019; 11:884-898. [PMID: 31107136 PMCID: PMC6601556 DOI: 10.1080/19420862.2019.1618673] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The construction of large libraries in mammalian cells allows the direct screening of millions of molecular variants for binding properties in a cell type relevant for screening or production. We have created mammalian cell libraries of up to 10 million clones displaying a repertoire of IgG-formatted antibodies on the cell surface. TALE nucleases or CRISPR/Cas9 were used to direct the integration of the antibody genes into a single genomic locus, thereby rapidly achieving stable expression and transcriptional normalization. The utility of the system is illustrated by the affinity maturation of a PD-1-blocking antibody through the systematic mutation and functional survey of 4-mer variants within a 16 amino acid paratope region. Mutating VH CDR3 only, we identified a dominant "solution" involving substitution of a central tyrosine to histidine. This appears to be a local affinity maximum, and this variant was surpassed by a lysine substitution when light chain variants were introduced. We achieve this comprehensive and quantitative interrogation of sequence space by combining high-throughput oligonucleotide synthesis with mammalian display and flow cytometry operating at the multi-million scale.
Collapse
|
27
|
Greiner V, Bou Puerto R, Liu S, Herbel C, Carmona EM, Goldberg MS. CRISPR-Mediated Editing of the B Cell Receptor in Primary Human B Cells. iScience 2019; 12:369-378. [PMID: 30769282 PMCID: PMC6374785 DOI: 10.1016/j.isci.2019.01.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Vaccination approaches have generally focused on the antigen rather than the resultant antibodies generated, which differ greatly in quality and function between individuals. The ability to replace the variable regions of the native B cell receptor (BCR) heavy and light chain loci with defined recombined sequences of a preferred monoclonal antibody could enable curative adoptive cell transfer. We report CRISPR-mediated homologous recombination (HR) into the BCR of primary human B cells. Ribonucleoprotein delivery enabled editing at the model CXCR4 locus, as demonstrated by T7E1 assay, flow cytometry, and TIDE analysis. Insertion via HR was confirmed by sequencing, cross-boundary PCR, and restriction digest. Optimized conditions were used to achieve HR at the BCR variable heavy and light chains. Insertion was confirmed at the DNA level, and transgene expression from the native BCR promoters was observed. Reprogramming the specificity of antibodies in the genomes of B cells could have clinical importance.
Collapse
Affiliation(s)
- Vera Greiner
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Regina Bou Puerto
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Suying Liu
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Christoph Herbel
- Department of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ellese M Carmona
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Michael S Goldberg
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
28
|
Lau CH. Applications of CRISPR-Cas in Bioengineering, Biotechnology, and Translational Research. CRISPR J 2018; 1:379-404. [PMID: 31021245 DOI: 10.1089/crispr.2018.0026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CRISPR technology is rapidly evolving, and the scope of CRISPR applications is constantly expanding. CRISPR was originally employed for genome editing. Its application was then extended to epigenome editing, karyotype engineering, chromatin imaging, transcriptome, and metabolic pathway engineering. Now, CRISPR technology is being harnessed for genetic circuits engineering, cell signaling sensing, cellular events recording, lineage information reconstruction, gene drive, DNA genotyping, miRNA quantification, in vivo cloning, site-directed mutagenesis, genomic diversification, and proteomic analysis in situ. It has also been implemented in the translational research of human diseases such as cancer immunotherapy, antiviral therapy, bacteriophage therapy, cancer diagnosis, pathogen screening, microbiota remodeling, stem-cell reprogramming, immunogenomic engineering, vaccine development, and antibody production. This review aims to summarize the key concepts of these CRISPR applications in order to capture the current state of play in this fast-moving field. The key mechanisms, strategies, and design principles for each technological advance are also highlighted.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biomedical Engineering, City University of Hong Kong , Hong Kong, SAR, China
| |
Collapse
|
29
|
Mason DM, Weber CR, Parola C, Meng SM, Greiff V, Kelton WJ, Reddy ST. High-throughput antibody engineering in mammalian cells by CRISPR/Cas9-mediated homology-directed mutagenesis. Nucleic Acids Res 2018; 46:7436-7449. [PMID: 29931269 PMCID: PMC6101513 DOI: 10.1093/nar/gky550] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/26/2022] Open
Abstract
Antibody engineering is often performed to improve therapeutic properties by directed evolution, usually by high-throughput screening of phage or yeast display libraries. Engineering antibodies in mammalian cells offer advantages associated with expression in their final therapeutic format (full-length glycosylated IgG); however, the inability to express large and diverse libraries severely limits their potential throughput. To address this limitation, we have developed homology-directed mutagenesis (HDM), a novel method which extends the concept of CRISPR/Cas9-mediated homology-directed repair (HDR). HDM leverages oligonucleotides with degenerate codons to generate site-directed mutagenesis libraries in mammalian cells. By improving HDR to a robust efficiency of 15-35% and combining mammalian display screening with next-generation sequencing, we validated this approach can be used for key applications in antibody engineering at high-throughput: rational library construction, novel variant discovery, affinity maturation and deep mutational scanning (DMS). We anticipate that HDM will be a valuable tool for engineering and optimizing antibodies in mammalian cells, and eventually enable directed evolution of other complex proteins and cellular therapeutics.
Collapse
Affiliation(s)
- Derek M Mason
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | - Cristina Parola
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
- Life Science Graduate School, Systems Biology, ETH Zürich, University of Zurich, Zurich 8057, Switzerland
| | - Simon M Meng
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | - Victor Greiff
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | - William J Kelton
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| |
Collapse
|
30
|
Scheller L, Strittmatter T, Fuchs D, Bojar D, Fussenegger M. Generalized extracellular molecule sensor platform for programming cellular behavior. Nat Chem Biol 2018; 14:723-729. [DOI: 10.1038/s41589-018-0046-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
|
31
|
Hung KL, Meitlis I, Hale M, Chen CY, Singh S, Jackson SW, Miao CH, Khan IF, Rawlings DJ, James RG. Engineering Protein-Secreting Plasma Cells by Homology-Directed Repair in Primary Human B Cells. Mol Ther 2018; 26:456-467. [PMID: 29273498 PMCID: PMC5835153 DOI: 10.1016/j.ymthe.2017.11.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 12/15/2022] Open
Abstract
The ability to engineer primary human B cells to differentiate into long-lived plasma cells and secrete a de novo protein may allow the creation of novel plasma cell therapies for protein deficiency diseases and other clinical applications. We initially developed methods for efficient genome editing of primary B cells isolated from peripheral blood. By delivering CRISPR/CRISPR-associated protein 9 (Cas9) ribonucleoprotein (RNP) complexes under conditions of rapid B cell expansion, we achieved site-specific gene disruption at multiple loci in primary human B cells (with editing rates of up to 94%). We used this method to alter ex vivo plasma cell differentiation by disrupting developmental regulatory genes. Next, we co-delivered RNPs with either a single-stranded DNA oligonucleotide or adeno-associated viruses containing homologous repair templates. Using either delivery method, we achieved targeted sequence integration at high efficiency (up to 40%) via homology-directed repair. This method enabled us to engineer plasma cells to secrete factor IX (FIX) or B cell activating factor (BAFF) at high levels. Finally, we show that introduction of BAFF into plasma cells promotes their engraftment into immunodeficient mice. Our results highlight the utility of genome editing in studying human B cell biology and demonstrate a novel strategy for modifying human plasma cells to secrete therapeutic proteins.
Collapse
Affiliation(s)
- King L Hung
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Iana Meitlis
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Malika Hale
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Chun-Yu Chen
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Swati Singh
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Shaun W Jackson
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Iram F Khan
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.
| | - Richard G James
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
32
|
Khoshnejad M, Brenner JS, Motley W, Parhiz H, Greineder CF, Villa CH, Marcos-Contreras OA, Tsourkas A, Muzykantov VR. Molecular engineering of antibodies for site-specific covalent conjugation using CRISPR/Cas9. Sci Rep 2018; 8:1760. [PMID: 29379029 PMCID: PMC5789018 DOI: 10.1038/s41598-018-19784-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/08/2018] [Indexed: 11/09/2022] Open
Abstract
Site-specific modification of antibodies has become a critical aspect in the development of next-generation immunoconjugates meeting criteria of clinically acceptable homogeneity, reproducibility, efficacy, ease of manufacturability, and cost-effectiveness. Using CRISPR/Cas9 genomic editing, we developed a simple and novel approach to produce site-specifically modified antibodies. A sortase tag was genetically incorporated into the C-terminal end of the third immunoglobulin heavy chain constant region (CH3) within a hybridoma cell line to manufacture antibodies capable of site-specific conjugation. This enabled an effective enzymatic site-controlled conjugation of fluorescent and radioactive cargoes to a genetically tagged mAb without impairment of antigen binding activity. After injection in mice, these immunoconjugates showed almost doubled specific targeting in the lung vs. chemically conjugated maternal mAb, and concomitant reduction in uptake in the liver and spleen. The approach outlined in this work provides a facile method for the development of more homogeneous, reproducible, effective, and scalable antibody conjugates for use as therapeutic and diagnostic tools.
Collapse
Affiliation(s)
- Makan Khoshnejad
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jacob S Brenner
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - William Motley
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Hamideh Parhiz
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colin F Greineder
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carlos H Villa
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oscar A Marcos-Contreras
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Abstract
From the perspective of academic and small research laboratories, the most common and practical strategy for recombinant expression of full-length monoclonal antibodies is to perform transient plasmid transfection of mammalian cells, resulting in small-scale and limited protein production. The generation of stable antibody producing mammalian cell lines enables larger-scale and consistent expression, however this approach is rarely pursued due to the time-consuming and expensive process of single colony screening and characterization. In order to bridge the gap between the simplicity of transient transfection and consistent production by stable cell lines, we describe a method to stably integrate antibody genes into the endogenous immunogenomic loci of hybridoma cells using CRISPR/Cas9 genome editing. Initially, the antibody variable light (VL) chain is deleted by multiplexed Cas9 cleavage; subsequently, the variable heavy (VH) chain is replaced by a fluorescent reporter gene (mRuby) by Cas9-assisted homology-directed repair (HDR). This cell line is customized by replacing mRuby with a synthetic antibody (consisting of a VL, light constant region and VH) by once again using Cas9-assisted HDR. Due to hybridomas' inherent ability to surface display and secrete antibodies, they provide a suitable host for both the selection and the production process, substantially streamlining the process for stable cell line generation, and thus we refer to this platform as plug-and-(dis)play (PnP) hybridomas.
Collapse
|
34
|
Parola C, Neumeier D, Reddy ST. Integrating high-throughput screening and sequencing for monoclonal antibody discovery and engineering. Immunology 2017; 153:31-41. [PMID: 28898398 DOI: 10.1111/imm.12838] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022] Open
Abstract
Monoclonal antibody discovery and engineering is a field that has traditionally been dominated by high-throughput screening platforms (e.g. hybridomas and surface display). In recent years the emergence of high-throughput sequencing has made it possible to obtain large-scale information on antibody repertoire diversity. Additionally, it has now become more routine to perform high-throughput sequencing on antibody repertoires to also directly discover antibodies. In this review, we provide an overview of the progress in this field to date and show how high-throughput screening and sequencing are converging to deliver powerful new workflows for monoclonal antibody discovery and engineering.
Collapse
Affiliation(s)
- Cristina Parola
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Life Science Zurich Graduate School, Systems Biology, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
35
|
Sun Z, Yan L, Tang J, Qian Q, Lenberg J, Zhu D, Liu W, Wu K, Wang Y, Lu S. Brief introduction of current technologies in isolation of broadly neutralizing HIV-1 antibodies. Virus Res 2017; 243:75-82. [PMID: 29051051 PMCID: PMC7114535 DOI: 10.1016/j.virusres.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022]
Abstract
HIV/AIDS has become a worldwide pandemic. Before an effective HIV-1 vaccine eliciting broadly neutralizing monoclonal antibodies (bnmAbs) is fully developed, passive immunization for prevention and treatment of HIV-1 infection may alleviate the burden caused by the pandemic. Among HIV-1 infected individuals, about 20% of them generated cross-reactive neutralizing antibodies two to four years after infection, the details of which could provide knowledge for effective vaccine design. Recent progress in techniques for isolation of human broadly neutralizing antibodies has facilitated the study of passive immunization. The isolation and characterization of large panels of potent human broadly neutralizing antibodies has revealed new insights into the principles of antibody-mediated neutralization of HIV. In this paper, we review the current effective techniques in broadly neutralizing antibody isolation.
Collapse
Affiliation(s)
- Zehua Sun
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States.
| | - Lixin Yan
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China.
| | - Jiansong Tang
- Department of Technical Specialist, China Bioengineering Technology Group Limited, Unit 209,Building 16W, Hong Kong Science Park, Shatin, NT, HK, 999077, Hong Kong
| | - Qian Qian
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States
| | - Jerica Lenberg
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States; Augustana University, 2001 S Summit Avenue, Sioux Falls, SD, 571977, United States
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, 77030, United States
| | - Wan Liu
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China
| | - Kao Wu
- Glyn O. Philips Hydrocolloid Research Center at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Yilin Wang
- University of California, Irvine. 100 Pacific, Irvine, CA, 92618, United States
| | - Shiqiang Lu
- AIDS Institute, Faculty of Medicine, The University of Hong Kong, No21 Sassoon Road, 999077, Hong Kong, Hong Kong.
| |
Collapse
|
36
|
Kelton W, Waindok AC, Pesch T, Pogson M, Ford K, Parola C, Reddy ST. Reprogramming MHC specificity by CRISPR-Cas9-assisted cassette exchange. Sci Rep 2017; 7:45775. [PMID: 28374766 PMCID: PMC5379551 DOI: 10.1038/srep45775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/02/2017] [Indexed: 11/20/2022] Open
Abstract
The development of programmable nucleases has enabled the application of new genome engineering strategies for cellular immunotherapy. While targeted nucleases have mostly been used to knock-out or knock-in genes in immune cells, the scarless exchange of entire immunogenomic alleles would be of great interest. In particular, reprogramming the polymorphic MHC locus could enable the creation of matched donors for allogeneic cellular transplantation. Here we show a proof-of-concept for reprogramming MHC-specificity by performing CRISPR-Cas9-assisted cassette exchange. Using murine antigen presenting cell lines (RAW264.7 macrophages), we demonstrate that the generation of Cas9-induced double-stranded breaks flanking the native MHC-I H2-Kd locus led to exchange of an orthogonal H2-Kb allele. MHC surface expression allowed for easy selection of reprogrammed cells by flow cytometry, thus obviating the need for additional selection markers. MHC-reprogrammed cells were fully functional as they could present H2-Kd-restricted peptide and activate cognate T cells. Finally, we investigated the role of various donor template formats on exchange efficiency, discovering that templates that underwent in situ linearization resulted in the highest MHC-reprogramming efficiency. These findings highlight a potential new approach for the correcting of MHC mismatches in cellular transplantation.
Collapse
Affiliation(s)
- William Kelton
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Ann Cathrin Waindok
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Theresa Pesch
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Mark Pogson
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Kyle Ford
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Cristina Parola
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|