1
|
Zhang F, Celis-Gutierrez J, Zhang L, Mellado V, Gelard L, Panigot S, Mori D, Lu L, Voisinne G, Vilarnau Wolek C, Mello M, Burlet-Schiltz O, Gonzalez de Peredo A, Fiore F, Roncagalli R, Liang Y, Malissen M, Malissen B. A CARMIL2 gain-of-function mutation suffices to trigger most CD28 costimulatory functions in vivo. J Exp Med 2025; 222:e20250339. [PMID: 40402149 PMCID: PMC12097149 DOI: 10.1084/jem.20250339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/30/2025] [Accepted: 04/23/2025] [Indexed: 05/23/2025] Open
Abstract
Naive T cell activation requires both TCR and CD28 signals. The CARMIL2 cytosolic protein enables CD28-dependent activation of the NF-κB transcription factor via its ability to link CD28 to the CARD11 adaptor protein. Here, we developed mice expressing a mutation named Carmil2QE and mimicking a mutation found in human T cell malignancies. Naive T cells from Carmil2QE mice contained preformed CARMIL2QE-CARD11 complexes in numbers comparable to those assembling in wild-type T cells after CD28 engagement. Such ready-made CARMIL2QE-CARD11 complexes also formed in CD28-deficient mice where they unexpectedly induced most of the functions that normally result from CD28 engagement in a manner that remains antigen-dependent. In turn, tumor-specific T cells expressing Carmil2QE do not require CD28 engagement and thereby escape to both PD-1 and CTLA-4 inhibition. In conclusion, we uncovered the overarching role played by CARMIL2-CARD11 signals among those triggered by CD28 and exploited them to induce potent solid tumor-specific T cell responses in the absence of CD28 ligands and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Fanghui Zhang
- Centre
d’Immunologie de Marseille-Luminy (CIML), Aix Marseille
Université, Institut national de la santé et de la recherche
médicale (INSERM), Centre national de la recherche scientifique
(CNRS), Marseille, France
- School of Medical
Technology, Xinxiang Medical University,
Xinxiang City, China
| | - Javier Celis-Gutierrez
- Centre
d’Immunologie de Marseille-Luminy (CIML), Aix Marseille
Université, Institut national de la santé et de la recherche
médicale (INSERM), Centre national de la recherche scientifique
(CNRS), Marseille, France
| | - Lichen Zhang
- School of Medical
Technology, Xinxiang Medical University,
Xinxiang City, China
| | - Valentin Mellado
- Centre
d’Immunologie de Marseille-Luminy (CIML), Aix Marseille
Université, Institut national de la santé et de la recherche
médicale (INSERM), Centre national de la recherche scientifique
(CNRS), Marseille, France
- Centre
d’Immunophénomique (CIPHE), Aix Marseille Université,
INSERM, CNRS, Marseille, France
| | - Léna Gelard
- Centre
d’Immunologie de Marseille-Luminy (CIML), Aix Marseille
Université, Institut national de la santé et de la recherche
médicale (INSERM), Centre national de la recherche scientifique
(CNRS), Marseille, France
| | - Sophie Panigot
- Centre
d’Immunologie de Marseille-Luminy (CIML), Aix Marseille
Université, Institut national de la santé et de la recherche
médicale (INSERM), Centre national de la recherche scientifique
(CNRS), Marseille, France
- Centre
d’Immunophénomique (CIPHE), Aix Marseille Université,
INSERM, CNRS, Marseille, France
| | - Daiki Mori
- Centre
d’Immunologie de Marseille-Luminy (CIML), Aix Marseille
Université, Institut national de la santé et de la recherche
médicale (INSERM), Centre national de la recherche scientifique
(CNRS), Marseille, France
- Centre
d’Immunophénomique (CIPHE), Aix Marseille Université,
INSERM, CNRS, Marseille, France
| | - Liaoxun Lu
- School of Medical
Technology, Xinxiang Medical University,
Xinxiang City, China
| | - Guillaume Voisinne
- Centre
d’Immunologie de Marseille-Luminy (CIML), Aix Marseille
Université, Institut national de la santé et de la recherche
médicale (INSERM), Centre national de la recherche scientifique
(CNRS), Marseille, France
| | - Carine Vilarnau Wolek
- Centre
d’Immunologie de Marseille-Luminy (CIML), Aix Marseille
Université, Institut national de la santé et de la recherche
médicale (INSERM), Centre national de la recherche scientifique
(CNRS), Marseille, France
- Centre
d’Immunophénomique (CIPHE), Aix Marseille Université,
INSERM, CNRS, Marseille, France
| | - Marielle Mello
- Centre
d’Immunophénomique (CIPHE), Aix Marseille Université,
INSERM, CNRS, Marseille, France
| | - Odile Burlet-Schiltz
- Institut de
Pharmacologie et de Biologie Structurale (IPBS), Université de
Toulouse, CNRS, Université Toulouse III - Paul Sabatier
(UPS), Toulouse, France
| | - Anne Gonzalez de Peredo
- Institut de
Pharmacologie et de Biologie Structurale (IPBS), Université de
Toulouse, CNRS, Université Toulouse III - Paul Sabatier
(UPS), Toulouse, France
| | - Frédéric Fiore
- Centre
d’Immunophénomique (CIPHE), Aix Marseille Université,
INSERM, CNRS, Marseille, France
| | - Romain Roncagalli
- Centre
d’Immunologie de Marseille-Luminy (CIML), Aix Marseille
Université, Institut national de la santé et de la recherche
médicale (INSERM), Centre national de la recherche scientifique
(CNRS), Marseille, France
| | - Yinming Liang
- School of Medical
Technology, Xinxiang Medical University,
Xinxiang City, China
- Laboratory of Mouse
Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical
University, Xinxiang City, China
| | - Marie Malissen
- Centre
d’Immunologie de Marseille-Luminy (CIML), Aix Marseille
Université, Institut national de la santé et de la recherche
médicale (INSERM), Centre national de la recherche scientifique
(CNRS), Marseille, France
- School of Medical
Technology, Xinxiang Medical University,
Xinxiang City, China
- Centre
d’Immunophénomique (CIPHE), Aix Marseille Université,
INSERM, CNRS, Marseille, France
- Laboratory of
Immunophenomics, School of Medical Technology, Xinxiang Medical
University, Xinxiang City, China
| | - Bernard Malissen
- Centre
d’Immunologie de Marseille-Luminy (CIML), Aix Marseille
Université, Institut national de la santé et de la recherche
médicale (INSERM), Centre national de la recherche scientifique
(CNRS), Marseille, France
- School of Medical
Technology, Xinxiang Medical University,
Xinxiang City, China
- Centre
d’Immunophénomique (CIPHE), Aix Marseille Université,
INSERM, CNRS, Marseille, France
- Laboratory of
Immunophenomics, School of Medical Technology, Xinxiang Medical
University, Xinxiang City, China
| |
Collapse
|
2
|
Lou J, Pandžić E, Böcking T, Deng Q, Rossy J, Gaus K. Step-Wise Assembly of LAT Signaling Clusters Immediately After T Cell Receptor Triggering Contributes to Signal Propagation. Int J Mol Sci 2025; 26:4076. [PMID: 40362315 PMCID: PMC12071625 DOI: 10.3390/ijms26094076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Linker for activation of T cells (LAT) is an essential adaptor protein in early T cell receptor (TCR) signaling that propagates multiple signaling pathways. However, how LAT spatial organization facilitates signal initiation and propagation after TCR triggering is not clear. To differentiate de novo assembly in the plasma membrane from pre-existing LAT vesicles and clusters, we developed imaging protocols and analyses to capture the organization and dynamics of single LAT molecules immediately after TCR engagement. We could observe individual LAT molecules in the plasma membrane that assembled into immobile signaling entities requiring LAT phosphorylation. This step-wise assembly process was temporally highly coordinated via the zeta-chain-associated protein kinase 70 (Zap70)-LAT-growth factor receptor-bound protein 2 (Grb2) pathway. While multiple spatial organization co-existed even within the plasma membrane, our data suggest that de novo plasma membrane assemblies facilitated signal propagation.
Collapse
Affiliation(s)
- Jieqiong Lou
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Elvis Pandžić
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
| | - Qiji Deng
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jérémie Rossy
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Biotechnology Institute Thurgau, University of Konstanz, 78464 Konstanz, Germany
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Cardani-Boulton A, Lin F, Bergmann CC. CD6 regulates CD4 T follicular helper cell differentiation and humoral immunity during murine coronavirus infection. J Virol 2025; 99:e0186424. [PMID: 39679790 PMCID: PMC11784103 DOI: 10.1128/jvi.01864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
During activation, the T cell transmembrane receptor CD6 becomes incorporated into the T cell immunological synapse where it can exert both co-stimulatory and co-inhibitory functions. Given the ability of CD6 to carry out opposing functions, this study sought to determine how CD6 regulates early T cell activation in response to viral infection. Infection of CD6-deficient mice with a neurotropic murine coronavirus resulted in greater activation and expansion of CD4 T cells in the draining lymph nodes. Further analysis demonstrated that there was also preferential differentiation of CD4 T cells into T follicular helper cells, resulting in accelerated germinal center responses and emergence of high-affinity virus-specific antibodies. Given that CD6 conversely supports CD4 T cell activation in many autoimmune models, we probed potential mechanisms of CD6-mediated suppression of CD4 T cell activation during viral infection. Analysis of CD6 binding proteins revealed that infection-induced upregulation of Ubash3a, a negative regulator of T cell receptor (TCR) signaling, was hindered in CD6-deficient lymph nodes. Consistent with greater T cell activation and reduced UBASH3a activity, the T cell receptor signal strength was intensified in CD6-deficient CD4 T cells. These results reveal a novel immunoregulatory role for CD6 in limiting CD4 T cell activation and deterring CD4 T follicular helper cell differentiation, thereby attenuating antiviral humoral immunity. IMPORTANCE CD6 monoclonal blocking antibodies are being therapeutically administered to inhibit T cell activation in autoimmune disorders. However, the multifaceted nature of CD6 allows for multiple and even opposing functions under different circumstances of T cell activation. We therefore sought to characterize how CD6 regulates T cell activation in the context of viral infections using an in vivo murine coronavirus model. In contrast to its role in autoimmunity, but consistent with its function in the presence of superantigens, we found that CD6 deficiency enhances CD4 T cell activation and CD4 T cell help to germinal center-dependent antiviral humoral responses. Finally, we provide evidence that CD6 regulates transcription of its intracellular binding partner UBASH3a, which suppresses T cell receptor (TCR) signaling and consequently T cell activation. These findings highlight the context-dependent flexibility of CD6 in regulating in vivo adaptive immune responses, which may be targeted to enhance antiviral immunity.
Collapse
MESH Headings
- Animals
- Mice
- Immunity, Humoral/immunology
- Cell Differentiation/immunology
- T Follicular Helper Cells/immunology
- Lymphocyte Activation/immunology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Mice, Inbred C57BL
- Germinal Center/immunology
- Mice, Knockout
- CD4-Positive T-Lymphocytes/immunology
- Antigens, CD/immunology
- Antigens, CD/genetics
- T-Lymphocytes, Helper-Inducer/immunology
- Signal Transduction
- Murine hepatitis virus/immunology
- Antibodies, Viral/immunology
Collapse
Affiliation(s)
- Amber Cardani-Boulton
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Feng Lin
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cornelia C. Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Bongrand P. Should Artificial Intelligence Play a Durable Role in Biomedical Research and Practice? Int J Mol Sci 2024; 25:13371. [PMID: 39769135 PMCID: PMC11676049 DOI: 10.3390/ijms252413371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
During the last decade, artificial intelligence (AI) was applied to nearly all domains of human activity, including scientific research. It is thus warranted to ask whether AI thinking should be durably involved in biomedical research. This problem was addressed by examining three complementary questions (i) What are the major barriers currently met by biomedical investigators? It is suggested that during the last 2 decades there was a shift towards a growing need to elucidate complex systems, and that this was not sufficiently fulfilled by previously successful methods such as theoretical modeling or computer simulation (ii) What is the potential of AI to meet the aforementioned need? it is suggested that recent AI methods are well-suited to perform classification and prediction tasks on multivariate systems, and possibly help in data interpretation, provided their efficiency is properly validated. (iii) Recent representative results obtained with machine learning suggest that AI efficiency may be comparable to that displayed by human operators. It is concluded that AI should durably play an important role in biomedical practice. Also, as already suggested in other scientific domains such as physics, combining AI with conventional methods might generate further progress and new applications, involving heuristic and data interpretation.
Collapse
Affiliation(s)
- Pierre Bongrand
- Laboratory Adhesion and Inflammation (LAI), Inserm UMR 1067, Cnrs Umr 7333, Aix-Marseille Université UM 61, 13009 Marseille, France
| |
Collapse
|
5
|
Cardani-Boulton A, Lin F, Bergmann CC. CD6 Regulates CD4 T Follicular Helper Cell Differentiation and Humoral Immunity During Murine Coronavirus Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605237. [PMID: 39091786 PMCID: PMC11291160 DOI: 10.1101/2024.07.26.605237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
During activation the T cell transmembrane receptor CD6 becomes incorporated into the T cell immunological synapse where it can exert both co-stimulatory and co-inhibitory functions. Given the ability of CD6 to carry out opposing functions, this study sought to determine how CD6 regulates early T cell activation in response to viral infection. Infection of CD6 deficient mice with a neurotropic murine coronavirus resulted in greater activation and expansion of CD4 T cells in the draining lymph nodes. Further analysis demonstrated that there was also preferential differentiation of CD4 T cells into T follicular helper cells, resulting in accelerated germinal center responses and emergence of high affinity virus specific antibodies. Given that CD6 conversely supports CD4 T cell activation in many autoimmune models, we probed potential mechanisms of CD6 mediated suppression of CD4 T cell activation during viral infection. Analysis of CD6 binding proteins revealed that infection induced upregulation of Ubash3a, a negative regulator of T cell receptor signaling, was hindered in CD6 deficient lymph nodes. Consistent with greater T cell activation and reduced UBASH3a activity, the T cell receptor signal strength was intensified in CD6 deficient CD4 T cells. These results reveal a novel immunoregulatory role for CD6 in limiting CD4 T cell activation and deterring CD4 T follicular helper cell differentiation, thereby attenuating antiviral humoral immunity.
Collapse
Affiliation(s)
- Amber Cardani-Boulton
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Western Reserve University, Cleveland Clinic, Lerner College of Medicine, Cleveland, OH
| | - Feng Lin
- Case Western Reserve University, Cleveland Clinic, Lerner College of Medicine, Cleveland, OH
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Cornelia C Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Western Reserve University, Cleveland Clinic, Lerner College of Medicine, Cleveland, OH
| |
Collapse
|
6
|
Santos RF, de Sousa Linhares A, Steinberger P, Davis SJ, Oliveira L, Carmo AM. The CD6 interactome orchestrates ligand-independent T cell inhibitory signaling. Cell Commun Signal 2024; 22:286. [PMID: 38790044 PMCID: PMC11127300 DOI: 10.1186/s12964-024-01658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND T-cell membrane scaffold proteins are pivotal in T cell function, acting as versatile signaling hubs. While CD6 forms a large intracellular signalosome, it is distinguished from typical scaffolds like LAT or PAG by possessing a substantial ectodomain that binds CD166, a well-characterized ligand expressed on most antigen-presenting cells (APC), through the third domain (d3) of the extracellular region. Although the intact form of CD6 is the most abundant in T cells, an isoform lacking d3 (CD6∆d3) is transiently expressed on activated T cells. Still, the precise character of the signaling transduced by CD6, whether costimulatory or inhibitory, and the influence of its ectodomain on these activities are unclear. METHODS We expressed CD6 variants with extracellular deletions or cytosolic mutations in Jurkat cells containing eGFP reporters for NF-κB and NF-AT transcription factor activation. Cell activation was assessed by eGFP flow cytometry following Jurkat cell engagement with superantigen-presenting Raji cells. Using imaging flow cytometry, we evaluated the impact of the CD6-CD166 pair on cell adhesiveness during the antigen-dependent and -independent priming of T cells. We also examined the role of extracellular or cytosolic sequences on CD6 translocation to the immunological synapse, using immunofluorescence-based imaging. RESULTS Our investigation dissecting the functions of the extracellular and cytosolic regions of CD6 revealed that CD6 was trafficked to the immunological synapse and exerted tonic inhibition wholly dependent on its cytosolic tail. Surprisingly, however, translocation to the synapse occurred independently of the extracellular d3 and of engagement to CD166. On the other hand, CD6 binding to CD166 significantly increased T cell:APC adhesion. However, this activity was most evident in the absence of APC priming with superantigen, and thus, in the absence of TCR engagement. CONCLUSIONS Our study identifies CD6 as a novel 'on/off' scaffold-receptor capable of modulating responsiveness in two ways. Firstly, and independently of ligand binding, it establishes signaling thresholds through tonic inhibition, functioning as a membrane-bound scaffold. Secondly, CD6 has the capacity for alternative splicing-dependent variable ligand engagement, modulating its checkpoint-like activity.
Collapse
Affiliation(s)
- Rita F Santos
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ESS - IPP School of Health, Polytechnic of Porto, Porto, Portugal
| | - Annika de Sousa Linhares
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Simon J Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Medical Research Council, Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Liliana Oliveira
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Alexandre M Carmo
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Porto, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
7
|
Sun W, Zhu Y, Zou Z, Wang L, Zhong J, Shen K, Lin X, Gao Z, Liu W, Li Y, Xu Y, Ren M, Hu T, Wei C, Gu J, Chen Y. An advanced comprehensive muti-cell-type-specific model for predicting anti-PD-1 therapeutic effect in melanoma. Theranostics 2024; 14:2127-2150. [PMID: 38505619 PMCID: PMC10945348 DOI: 10.7150/thno.91626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Rationale: Immune checkpoint inhibitors targeting the programmed cell death (PD)-1/PD-L1 pathway have promise in patients with advanced melanoma. However, drug resistance usually results in limited patient benefits. Recent single-cell RNA sequencing studies have elucidated that MM patients display distinctive transcriptional features of tumor cells, immune cells and interstitial cells, including loss of antigen presentation function of tumor cells, exhaustion of CD8+T and extracellular matrix secreted by fibroblasts to prevents immune infiltration, which leads to a poor response to immune checkpoint inhibitors (ICIs). However, cell subgroups beneficial to anti-tumor immunity and the model developed by them remain to be further identified. Methods: In this clinical study of neoadjuvant therapy with anti-PD-1 in advanced melanoma, tumor tissues were collected before and after treatment for single-nucleus sequencing, and the results were verified using multicolor immunofluorescence staining and public datasets. Results: This study describes four cell subgroups which are closely associated with the effectiveness of anti-PD-1 treatment. It also describes a cell-cell communication network, in which the interaction of the four cell subgroups contributes to anti-tumor immunity. Furthermore, we discuss a newly developed predictive model based on these four subgroups that holds significant potential for assessing the efficacy of anti-PD-1 treatment. Conclusions: These findings elucidate the primary mechanism of anti-PD-1 resistance and offer guidance for clinical drug administration for melanoma.
Collapse
Affiliation(s)
- Wei Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Yu Zhu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University; Cancer center, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Zijian Zou
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Lu Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University; Cancer center, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Jingqin Zhong
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Kangjie Shen
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University; Cancer center, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Xinyi Lin
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zixu Gao
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University; Cancer center, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Wanlin Liu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Yinlam Li
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University; Cancer center, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Yu Xu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Ming Ren
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University; Cancer center, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Tu Hu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University; Cancer center, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Jianying Gu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University; Cancer center, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Yong Chen
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
8
|
Zhang X, Liang W, Zheng G, Li B. Decoding the deactivation mechanism of R192W mutation of ZAP-70 using molecular dynamics simulations and binding free energy calculations. J Mol Model 2023; 29:371. [PMID: 37953318 DOI: 10.1007/s00894-023-05771-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
CONTEXT ZAP-70 (zeta-chain-associated protein of 70 kDa), serving as a critical regulator for T cell antigen receptor signaling, represents an attractive therapeutic target for autoimmunity disease. How the mechanistical mechanism of ZAP-70 to a human autoimmune syndrome-associated R192W mutation remains unclear. The results indicated that the R192W mutation of ZAP-70 clearly affected the conformational flexibility of the N-terminal ITAM-Y2P. Structural analysis unveiled that the R192W mutation of ZAP-70 caused the exposure of the N-terminal ITAM-Y2P to the solvent. MM-GBSA binding free energy calculations exhibited that the R192W mutation decreased the binding affinity of ITAM-Y2P to the ZAP-70 mutant. Residue-based free energy decomposition further revealed that the protein-peptide interaction networks involving electrostatic interactions provide significant contributions for complex formation. The energy unfavorable residues include Arg43, Arg192, Tyr240, and Lys244 from ZAP-70 and Asn301, Leu303, pY304, and pY315 from ITAM-Y2P in the R192W mutant. Our obtained results may help the understanding of the deactivation mechanism of ZAP-70 induced by the R192W mutation. METHODS In the work, multiple replica molecular dynamics simulations and molecular mechanics-generalized Born surface area (MM-GBSA) method were performed to reveal the doubly phosphorylated ITAMs (ITAM-Y2P)-mediated deactivation mechanism of ZAP-70 induced by the R192W mutation.
Collapse
Affiliation(s)
- Xuehua Zhang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Wenqi Liang
- Department of Emergency, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Guodong Zheng
- Department of VIP Clinic, Changhai Hospital, The First Affiliated Hospital to Naval Medical University, Shanghai, 200433, China.
| | - Bei Li
- Department of VIP Clinic, Changhai Hospital, The First Affiliated Hospital to Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
9
|
Ruminski K, Celis-Gutierrez J, Jarmuzynski N, Maturin E, Audebert S, Malissen M, Camoin L, Voisinne G, Malissen B, Roncagalli R. Mapping the SLP76 interactome in T cells lacking each of the GRB2-family adaptors reveals molecular plasticity of the TCR signaling pathway. Front Immunol 2023; 14:1139123. [PMID: 37006259 PMCID: PMC10057548 DOI: 10.3389/fimmu.2023.1139123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
The propagation and diversification of signals downstream of the T cell receptor (TCR) involve several adaptor proteins that control the assembly of multimolecular signaling complexes (signalosomes). The global characterization of changes in protein-protein interactions (PPI) following genetic perturbations is critical to understand the resulting phenotypes. Here, by combining genome editing techniques in T cells and interactomics studies based on affinity purification coupled to mass spectrometry (AP-MS) analysis, we determined and quantified the molecular reorganization of the SLP76 interactome resulting from the ablation of each of the three GRB2-family adaptors. Our data showed that the absence of GADS or GRB2 induces a major remodeling of the PPI network associated with SLP76 following TCR engagement. Unexpectedly, this PPI network rewiring minimally affects proximal molecular events of the TCR signaling pathway. Nevertheless, during prolonged TCR stimulation, GRB2- and GADS-deficient cells displayed a reduced level of activation and cytokine secretion capacity. Using the canonical SLP76 signalosome, this analysis highlights the plasticity of PPI networks and their reorganization following specific genetic perturbations.
Collapse
Affiliation(s)
- Kilian Ruminski
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Javier Celis-Gutierrez
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Nicolas Jarmuzynski
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Emilie Maturin
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Stephane Audebert
- Institut Paoli-Calmettes, CRCM, Aix Marseille Université, CNRS, INSERM, Marseille Protóomique, Marseille, France
| | - Marie Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Luc Camoin
- Institut Paoli-Calmettes, CRCM, Aix Marseille Université, CNRS, INSERM, Marseille Protóomique, Marseille, France
| | - Guillaume Voisinne
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
- *Correspondence: Romain Roncagalli, ; Bernard Malissen,
| | - Romain Roncagalli
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- *Correspondence: Romain Roncagalli, ; Bernard Malissen,
| |
Collapse
|
10
|
Understanding How Cells Probe the World: A Preliminary Step towards Modeling Cell Behavior? Int J Mol Sci 2023; 24:ijms24032266. [PMID: 36768586 PMCID: PMC9916635 DOI: 10.3390/ijms24032266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Cell biologists have long aimed at quantitatively modeling cell function. Recently, the outstanding progress of high-throughput measurement methods and data processing tools has made this a realistic goal. The aim of this paper is twofold: First, to suggest that, while much progress has been done in modeling cell states and transitions, current accounts of environmental cues driving these transitions remain insufficient. There is a need to provide an integrated view of the biochemical, topographical and mechanical information processed by cells to take decisions. It might be rewarding in the near future to try to connect cell environmental cues to physiologically relevant outcomes rather than modeling relationships between these cues and internal signaling networks. The second aim of this paper is to review exogenous signals that are sensed by living cells and significantly influence fate decisions. Indeed, in addition to the composition of the surrounding medium, cells are highly sensitive to the properties of neighboring surfaces, including the spatial organization of anchored molecules and substrate mechanical and topographical properties. These properties should thus be included in models of cell behavior. It is also suggested that attempts at cell modeling could strongly benefit from two research lines: (i) trying to decipher the way cells encode the information they retrieve from environment analysis, and (ii) developing more standardized means of assessing the quality of proposed models, as was done in other research domains such as protein structure prediction.
Collapse
|
11
|
Henriques SN, Oliveira L, Santos RF, Carmo AM. CD6-mediated inhibition of T cell activation via modulation of Ras. Cell Commun Signal 2022; 20:184. [PMID: 36414966 PMCID: PMC9682754 DOI: 10.1186/s12964-022-00998-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND CD6 is one of many cell surface receptors known to regulate signal transduction upon T cell activation. However, whether CD6 mediates costimulatory or inhibitory signals is controversial. When T cells engage with antigen presenting cells (APCs), CD6 interacts with its ligand CD166 at the cell-cell interface while the cytosolic tail assembles a complex signalosome composed of adaptors and effector enzymes, that may either trigger activating signaling cascades, or instead modulate the intensity of signaling. Except for a few cytosolic adaptors that connect different components of the CD6 signalosome, very little is known about the mechanistic effects of the cytosolic effectors that bind CD6. METHODS Jurkat model T cells were transfected to express wild-type (WT) CD6, or a cytoplasmic truncation, signaling-disabled mutant, CD6Δcyt. The two resulting cell lines were directly activated by superantigen (sAg)-loaded Raji cells, used as APCs, to assess the net signaling function of CD6. The Jurkat cell lines were further adapted to express a FRET-based unimolecular HRas biosensor that reported the activity of this crucial GTPase at the immunological synapse. RESULTS We show that deletion of the cytosolic tail of CD6 enhances T-cell responses, indicating that CD6 restrains T-cell activation. One component of the CD6-associated inhibitory apparatus was found to be the GTPase activating protein of Ras (RasGAP), that we show to associate with CD6 in a phosphorylation-dependent manner. The FRET HRas biosensor that we developed was demonstrated to be functional and reporting the activation of the T cell lines. This allowed to determine that the presence of the cytosolic tail of CD6 results in the down-regulation of HRas activity at the immunological synapse, implicating this fundamental GTPase as one of the targets inhibited by CD6. CONCLUSIONS This study provides the first description of a mechanistic sequence of events underlying the CD6-mediated inhibition of T-cell activation, involving the modulation of the MAPK pathway at several steps, starting with the coupling of RasGAP to the CD6 signalosome, the repression of the activity of Ras, and culminating in the reduction of ERK1/2 phosphorylation and of the expression of the T-cell activation markers CD69 and IL-2R α chain. Video abstract.
Collapse
Affiliation(s)
- Sónia N. Henriques
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal ,grid.5808.50000 0001 1503 7226Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Liliana Oliveira
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Rita F. Santos
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Alexandre M. Carmo
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| |
Collapse
|
12
|
Voisinne G, Locard-Paulet M, Froment C, Maturin E, Menoita MG, Girard L, Mellado V, Burlet-Schiltz O, Malissen B, Gonzalez de Peredo A, Roncagalli R. Kinetic proofreading through the multi-step activation of the ZAP70 kinase underlies early T cell ligand discrimination. Nat Immunol 2022; 23:1355-1364. [PMID: 36045187 PMCID: PMC9477740 DOI: 10.1038/s41590-022-01288-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/15/2022] [Indexed: 12/18/2022]
Abstract
T cells recognize a few high-affinity antigens among a vast array of lower affinity antigens. According to the kinetic proofreading model, antigen discrimination properties could be explained by the gradual amplification of small differences in binding affinities as the signal is transduced downstream of the T cell receptor. Which early molecular events are affected by ligand affinity, and how, has not been fully resolved. Here, we used time-resolved high-throughput proteomic analyses to identify and quantify the phosphorylation events and protein-protein interactions encoding T cell ligand discrimination in antigen-experienced T cells. Although low-affinity ligands induced phosphorylation of the Cd3 chains of the T cell receptor and the interaction of Cd3 with the Zap70 kinase as strongly as high-affinity ligands, they failed to activate Zap70 to the same extent. As a result, formation of the signalosome of the Lat adaptor was severely impaired with low- compared with high-affinity ligands, whereas formation of the signalosome of the Cd6 receptor was affected only partially. Overall, this study provides a comprehensive map of molecular events associated with T cell ligand discrimination.
Collapse
Affiliation(s)
- Guillaume Voisinne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Marie Locard-Paulet
- Département Biologie Structural Biophysique, Institut de Pharmacologie et de Biologie Structurale, Protéomique Génopole Toulouse Midi Pyrénées CNRS UMR, Toulouse, France
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Carine Froment
- Département Biologie Structural Biophysique, Institut de Pharmacologie et de Biologie Structurale, Protéomique Génopole Toulouse Midi Pyrénées CNRS UMR, Toulouse, France
| | - Emilie Maturin
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Marisa Goncalves Menoita
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Laura Girard
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Valentin Mellado
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Odile Burlet-Schiltz
- Département Biologie Structural Biophysique, Institut de Pharmacologie et de Biologie Structurale, Protéomique Génopole Toulouse Midi Pyrénées CNRS UMR, Toulouse, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France.
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France.
| | - Anne Gonzalez de Peredo
- Département Biologie Structural Biophysique, Institut de Pharmacologie et de Biologie Structurale, Protéomique Génopole Toulouse Midi Pyrénées CNRS UMR, Toulouse, France.
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France.
| |
Collapse
|
13
|
Li B, Lu Y, Zhong MC, Qian J, Li R, Davidson D, Tang Z, Zhu K, Argenty J, de Peredo AG, Malissen B, Roncagalli R, Veillette A. Cis interactions between CD2 and its ligands on T cells are required for T cell activation. Sci Immunol 2022; 7:eabn6373. [PMID: 35930657 DOI: 10.1126/sciimmunol.abn6373] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
CD2 is largely described to promote T cell activation when engaged by its ligands, CD48 in mice and CD58 in humans, that are present on antigen-presenting cells (APCs). However, both CD48 and CD58 are also expressed on T cells. By generating new knockout mouse strains lacking CD2 or CD48 in the C57BL/6 background, we determined that whereas CD2 was necessary on T cells for T cell activation, its ligand CD48 was not required on APCs. Rather, CD48 was also needed on T cells. One exception was during cytotoxicity, which required CD48 on T cells and APCs. Fluorescence resonance energy transfer (FRET) studies in nonimmune cells provided evidence that cis interactions between CD2 and CD48 existed within individual cells. CD2-CD48 interactions on T cells enabled more robust T cell receptor (TCR) signals, including protein tyrosine phosphorylation. Using T cells from a CD2 knock-in mouse in which a tag was inserted at the carboxyl terminus of CD2, mass spectrometry analyses revealed that the role of CD2 in T cell activation correlated with its ability to interact with components of the TCR complex and the protein tyrosine kinase Lck. CD2-CD58 provided a similar function in human T cells. Thus, our data imply that T cell-intrinsic cis interactions of CD2 with its ligands are required for TCR signaling and T cell activation. Interactions with ligands on APCs contribute during cytotoxicity.
Collapse
Affiliation(s)
- Bin Li
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Molecular Biology Program, University of Montréal, Montréal, Québec H3T 1J4, Canada
| | - Yan Lu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Jin Qian
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Rui Li
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Dominique Davidson
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Zhenghai Tang
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Kaiwen Zhu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Jérémy Argenty
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS UPS, Toulouse, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.,Molecular Biology Program, University of Montréal, Montréal, Québec H3T 1J4, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
14
|
Mélique S, Yang C, Lesourne R. Negative times negative equals positive, THEMIS sets the rule on thymic selection and peripheral T cell responses. Biomed J 2022; 45:334-346. [PMID: 35346866 PMCID: PMC9250082 DOI: 10.1016/j.bj.2022.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/31/2022] Open
Abstract
The activity of T cells is finely controlled by a set of negative regulators of T-cell antigen receptor (TCR)-mediated signaling. However, how those negative regulators are themselves controlled to prevent ineffective TCR-mediated responses remain poorly understood. Thymocyte-expressed molecule involved in selection (THEMIS) has been characterized over a decade ago as an important player of T cell development. Although the molecular function of THEMIS has long remained puzzling and subject to controversies, latest investigations suggest that THEMIS stimulates TCR-mediated signaling by repressing the tyrosine phosphatases SHP-1 and SHP-2 which exert regulatory function on T cell activation. Recent evidences also point to a role for THEMIS in peripheral T cells beyond its role on thymic selection. Here, we present an overview of the past research on THEMIS in the context of T cell development and peripheral T cell function and discuss the possible implication of THEMIS-based mechanisms on TCR-dependent and independent signaling outcomes.
Collapse
Affiliation(s)
- Suzanne Mélique
- Infinity, University of Toulouse, CNRS5051, INSERM1291, UPS, Toulouse, France
| | - Cui Yang
- Infinity, University of Toulouse, CNRS5051, INSERM1291, UPS, Toulouse, France
| | - Renaud Lesourne
- Infinity, University of Toulouse, CNRS5051, INSERM1291, UPS, Toulouse, France.
| |
Collapse
|
15
|
Ashouri JF, Lo W, Nguyen TTT, Shen L, Weiss A. ZAP70, too little, too much can lead to autoimmunity*. Immunol Rev 2021; 307:145-160. [PMID: 34923645 PMCID: PMC8986586 DOI: 10.1111/imr.13058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 12/21/2022]
Abstract
Establishing both central and peripheral tolerance requires the appropriate TCR signaling strength to discriminate self‐ from agonist‐peptide bound to self MHC molecules. ZAP70, a cytoplasmic tyrosine kinase, directly interacts with the TCR complex and plays a central and requisite role in TCR signaling in both thymocytes and peripheral T cells. By studying ZAP70 hypomorphic mutations in mice and humans with a spectrum of hypoactive or hyperactive activities, we have gained insights into mechanisms of central and peripheral tolerance. Interestingly, both hypoactive and hyperactive ZAP70 can lead to the development of autoimmune diseases, albeit through distinct mechanisms. Immature thymocytes and mature T cells rely on normal ZAP70 function to complete their development in the thymus and to modulate T cell responses in the periphery. Hypoactive ZAP70 function compromises key developmental checkpoints required to establish central tolerance, allowing thymocytes with potentially self‐reactive TCRs a greater chance to escape negative selection. Such ‘forbidden clones’ may escape into the periphery and may pose a greater risk for autoimmune disease development since they may not engage negative regulatory mechanisms as effectively. Hyperactive ZAP70 enhances thymic negative selection but some thymocytes will, nonetheless, escape negative selection and have greater sensitivity to weak and self‐ligands. Such cells must be controlled by mechanisms involved in anergy, expansion of Tregs, and upregulation of inhibitory receptors or signaling molecules. However, such potentially autoreactive cells may still be able to escape control by peripheral negative regulatory constraints. Consistent with findings in Zap70 mutants, the signaling defects in at least one ZAP70 substrate, LAT, can also lead to autoimmune disease. By dissecting the similarities and differences among mouse models of patient disease or mutations in ZAP70 that affect TCR signaling strength, we have gained insights into how perturbed ZAP70 function can lead to autoimmunity. Because of our work and that of others on ZAP70, it is likely that perturbations in other molecules affecting TCR signaling strength will be identified that also overcome tolerance mechanisms and cause autoimmunity. Delineating these molecular pathways could lead to the development of much needed new therapeutic targets in these complex diseases.
Collapse
Affiliation(s)
- Judith F. Ashouri
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Wan‐Lin Lo
- Division of Microbiology and Immunology Department of Pathology University of Utah Salt Lake City Utah USA
| | - Trang T. T. Nguyen
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Lin Shen
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Arthur Weiss
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
- Howard Hughes Medical Institute University of California, San Francisco San Francisco California USA
| |
Collapse
|
16
|
Mori D, Grégoire C, Voisinne G, Celis-Gutierrez J, Aussel R, Girard L, Camus M, Marcellin M, Argenty J, Burlet-Schiltz O, Fiore F, Gonzalez de Peredo A, Malissen M, Roncagalli R, Malissen B. The T cell CD6 receptor operates a multitask signalosome with opposite functions in T cell activation. J Exp Med 2021; 218:211516. [PMID: 33125054 PMCID: PMC7608068 DOI: 10.1084/jem.20201011] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
To determine the respective contribution of the LAT transmembrane adaptor and CD5 and CD6 transmembrane receptors to early TCR signal propagation, diversification, and termination, we describe a CRISPR/Cas9-based platform that uses primary mouse T cells and permits establishment of the composition of their LAT, CD5, and CD6 signalosomes in only 4 mo using quantitative mass spectrometry. We confirmed that positive and negative functions can be solely assigned to the LAT and CD5 signalosomes, respectively. In contrast, the TCR-inducible CD6 signalosome comprised both positive (SLP-76, ZAP70, VAV1) and negative (UBASH3A/STS-2) regulators of T cell activation. Moreover, CD6 associated independently of TCR engagement to proteins that support its implication in inflammatory pathologies necessitating T cell transendothelial migration. The multifaceted role of CD6 unveiled here accounts for past difficulties in classifying it as a coinhibitor or costimulator. Congruent with our identification of UBASH3A within the CD6 signalosome and the view that CD6 constitutes a promising target for autoimmune disease treatment, single-nucleotide polymorphisms associated with human autoimmune diseases have been found in the Cd6 and Ubash3a genes.
Collapse
Affiliation(s)
- Daiki Mori
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Claude Grégoire
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Guillaume Voisinne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Javier Celis-Gutierrez
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Rudy Aussel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Laura Girard
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Mylène Camus
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Jérémy Argenty
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
17
|
Dinur-Schejter Y, Zaidman I, Mor-Shaked H, Stepensky P. The Clinical Aspect of Adaptor Molecules in T Cell Signaling: Lessons Learnt From Inborn Errors of Immunity. Front Immunol 2021; 12:701704. [PMID: 34456914 PMCID: PMC8397411 DOI: 10.3389/fimmu.2021.701704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
Adaptor molecules lack enzymatic and transcriptional activities. Instead, they exert their function by linking multiple proteins into intricate complexes, allowing for transmitting and fine-tuning of signals. Many adaptor molecules play a crucial role in T-cell signaling, following engagement of the T-cell receptor (TCR). In this review, we focus on Linker of Activation of T cells (LAT) and SH2 domain-containing leukocyte protein of 76 KDa (SLP-76). Monogenic defects in these adaptor proteins, with known roles in T-cell signaling, have been described as the cause of human inborn errors of immunity (IEI). We describe the current knowledge based on defects in cell lines, murine models and human patients. Germline mutations in Adhesion and degranulation adaptor protein (ADAP), have not resulted in a T-cell defect.
Collapse
Affiliation(s)
- Yael Dinur-Schejter
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah Ein Kerem Medical Center, Jerusalem, Israel.,Allergy and Clinical Immunology Unit, Hadassah Ein-Kerem Medical Center, Jerusalem, Israel
| | - Irina Zaidman
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah Ein Kerem Medical Center, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Monique and Jacques Roboh Department of Genetic Research, Hadassah Ein Kerem Medical Center, Jerusalem, Israel
| | - Polina Stepensky
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah Ein Kerem Medical Center, Jerusalem, Israel
| |
Collapse
|
18
|
Duan Y, Li G, Xu M, Qi X, Deng M, Lin X, Lei Z, Hu Y, Jia Z, Yang Q, Cao G, Liu Z, Wen Q, Li Z, Tang J, Zhang WK, Huang P, Zheng L, Flavell RA, Hao J, Yin Z. CFTR is a negative regulator of γδ T cell IFN-γ production and antitumor immunity. Cell Mol Immunol 2021; 18:1934-1944. [PMID: 32669666 PMCID: PMC8322328 DOI: 10.1038/s41423-020-0499-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/24/2020] [Indexed: 11/09/2022] Open
Abstract
CFTR, a chloride channel and ion channel regulator studied mostly in epithelial cells, has been reported to participate in immune regulation and likely affect the risk of cancer development. However, little is known about the effects of CFTR on the differentiation and function of γδ T cells. In this study, we observed that CFTR was functionally expressed on the cell surface of γδ T cells. Genetic deletion and pharmacological inhibition of CFTR both increased IFN-γ release by peripheral γδ T cells and potentiated the cytolytic activity of these cells against tumor cells both in vitro and in vivo. Interestingly, the molecular mechanisms underlying the regulation of γδ T cell IFN-γ production by CFTR were either TCR dependent or related to Ca2+ influx. CFTR was recruited to TCR immunological synapses and attenuated Lck-P38 MAPK-c-Jun signaling. In addition, CFTR was found to modulate TCR-induced Ca2+ influx and membrane potential (Vm)-induced Ca2+ influx and subsequently regulate the calcineurin-NFATc1 signaling pathway in γδ T cells. Thus, CFTR serves as a negative regulator of IFN-γ production in γδ T cells and the function of these cells in antitumor immunity. Our investigation suggests that modification of the CFTR activity of γδ T cells may be a potential immunotherapeutic strategy for cancer.
Collapse
Affiliation(s)
- Yuanyuan Duan
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Guangqiang Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Miaomiao Xu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaofei Qi
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Mingxia Deng
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xuejia Lin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhiwei Lei
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yi Hu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhenghu Jia
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Quanli Yang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Guangchao Cao
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zonghua Liu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qiong Wen
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhenhua Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jie Tang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wei Kevin Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Pingbo Huang
- Division of Life Science, Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Limin Zheng
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Jianlei Hao
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China.
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, China.
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
19
|
Thomé CH, Ferreira GA, Pereira-Martins DA, Augusto Dos Santos G, Almeida-Silveira DR, Weinhäuser I, Antônio de Souza G, Houtsma R, Schuringa JJ, Rego EM, Faça VM. The Expression of NTAL and Its Protein Interactors Is Associated With Clinical Outcomes in Acute Myeloid Leukemia. Mol Cell Proteomics 2021; 20:100091. [PMID: 33971369 PMCID: PMC8220000 DOI: 10.1016/j.mcpro.2021.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/26/2022] Open
Abstract
Non-T cell activation linker (NTAL) membrane protein depletion from lipid rafts by alkylphospholipids or downregulation by shRNA knockdown decreases cell viability through regulation of the Akt/PI3K pathway in mantle cell lymphoma and acute promyelocytic leukemia cells. Here, we confirmed that the knockdown of NTAL in acute myeloid leukemia (AML) cell lines was associated with decreased cell proliferation and survival. Similarly, a xenograft model using AML cells transduced with NTAL-shRNA and transplanted into immunodeficient mice led to a 1.8-fold decrease in tumor burden. Using immunoprecipitation, LC-MS/MS analysis, and label-free protein quantification, we identified interactors of NTAL in two AML cell lines. By evaluating the gene expression signatures of the NTAL protein interactors using the PREdiction of Clinical Outcomes from Genomic Profiles database, we found that 12 NTAL interactors could predict overall survival in AML, in at least two independent cohorts. In addition, patients with AML exhibiting a high expression of NTAL and its interactors were associated with a leukemic granulocyte-macrophage progenitor-like state. Taken together, our data provide evidence that NTAL and its protein interactors are relevant to AML cell proliferation and survival and represent potential therapeutic targets for granulocyte-macrophage progenitor-like leukemias.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival
- Humans
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice, Inbred NOD
- Mice, SCID
- Phosphorylation
- Protein Interaction Maps
- Proto-Oncogene Proteins c-akt/metabolism
- Survival Analysis
- Transcriptome
- Mice
Collapse
Affiliation(s)
- Carolina Hassibe Thomé
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Internal Medicine, Ribeirão Preto Medical School and Center for Cell Based Therapy, University of São Paulo, Ribeirão Preto, Brazil
| | - Germano Aguiar Ferreira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Internal Medicine, Ribeirão Preto Medical School and Center for Cell Based Therapy, University of São Paulo, Ribeirão Preto, Brazil
| | - Diego Antonio Pereira-Martins
- Department of Internal Medicine, Ribeirão Preto Medical School and Center for Cell Based Therapy, University of São Paulo, Ribeirão Preto, Brazil; Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Guilherme Augusto Dos Santos
- Department of Internal Medicine, Ribeirão Preto Medical School and Center for Cell Based Therapy, University of São Paulo, Ribeirão Preto, Brazil
| | - Douglas R Almeida-Silveira
- Hematology Division, LIM31, Medical School of University of São Paulo, São Paulo, Brazil; Department of Hematology, AC Camargo Cancer Center, São Paulo, Brazil
| | - Isabel Weinhäuser
- Department of Internal Medicine, Ribeirão Preto Medical School and Center for Cell Based Therapy, University of São Paulo, Ribeirão Preto, Brazil; Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Roos Houtsma
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan Jacob Schuringa
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Eduardo M Rego
- Department of Internal Medicine, Ribeirão Preto Medical School and Center for Cell Based Therapy, University of São Paulo, Ribeirão Preto, Brazil; Hematology Division, LIM31, Medical School of University of São Paulo, São Paulo, Brazil
| | - Vitor M Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Internal Medicine, Ribeirão Preto Medical School and Center for Cell Based Therapy, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
20
|
Kent A, Longino NV, Christians A, Davila E. Naturally Occurring Genetic Alterations in Proximal TCR Signaling and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:658611. [PMID: 34012443 PMCID: PMC8126620 DOI: 10.3389/fimmu.2021.658611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
T cell-based immunotherapies including genetically engineered T cells, adoptive transfer of tumor-infiltrating lymphocytes, and immune checkpoint blockade highlight the impressive anti-tumor effects of T cells. These successes have provided new hope to many cancer patients with otherwise poor prognoses. However, only a fraction of patients demonstrates durable responses to these forms of therapies and many develop significant immune-mediated toxicity. These heterogeneous clinical responses suggest that underlying nuances in T cell genetics, phenotypes, and activation states likely modulate the therapeutic impact of these approaches. To better characterize known genetic variations that may impact T cell function, we 1) review the function of early T cell receptor-specific signaling mediators, 2) offer a synopsis of known mutations and genetic alterations within the associated molecules, 3) discuss the link between these mutations and human disease and 4) review therapeutic strategies under development or in clinical testing that target each of these molecules for enhancing anti-tumor T cell activity. Finally, we discuss novel engineering approaches that could be designed based on our understanding of the function of these molecules in health and disease.
Collapse
Affiliation(s)
- Andrew Kent
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | - Natalie V. Longino
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Allison Christians
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | - Eduardo Davila
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
21
|
Lo WL, Weiss A. Adapting T Cell Receptor Ligand Discrimination Capability via LAT. Front Immunol 2021; 12:673196. [PMID: 33936119 PMCID: PMC8085316 DOI: 10.3389/fimmu.2021.673196] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Self- and non-self ligand discrimination is a core principle underlying T cell-mediated immunity. Mature αβ T cells can respond to a foreign peptide ligand presented by major histocompatibility complex molecules (pMHCs) on antigen presenting cells, on a background of continuously sensed self-pMHCs. How αβ T cells can properly balance high sensitivity and high specificity to foreign pMHCs, while surrounded by a sea of self-peptide ligands is not well understood. Such discrimination cannot be explained solely by the affinity parameters of T cell antigen receptor (TCR) and pMHC interaction. In this review, we will discuss how T cell ligand discrimination may be molecularly defined by events downstream of the TCR-pMHC interaction. We will discuss new evidence in support of the kinetic proofreading model of TCR ligand discrimination, and in particular how the kinetics of specific phosphorylation sites within the adaptor protein linker for activation of T cells (LAT) determine the outcome of TCR signaling. In addition, we will discuss emerging data regarding how some kinases, including ZAP-70 and LCK, may possess scaffolding functions to more efficiently direct their kinase activities.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
22
|
Saez JJ, Dogniaux S, Shafaq-Zadah M, Johannes L, Hivroz C, Zucchetti AE. Retrograde and Anterograde Transport of Lat-Vesicles during the Immunological Synapse Formation: Defining the Finely-Tuned Mechanism. Cells 2021; 10:cells10020359. [PMID: 33572370 PMCID: PMC7916135 DOI: 10.3390/cells10020359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
LAT is an important player of the signaling cascade induced by TCR activation. This adapter molecule is present at the plasma membrane of T lymphocytes and more abundantly in intracellular compartments. Upon T cell activation the intracellular pool of LAT is recruited to the immune synapse (IS). We previously described two pathways controlling LAT trafficking: retrograde transport from endosomes to the TGN, and anterograde traffic from the Golgi to the IS. We address the specific role of four proteins, the GTPase Rab6, the t-SNARE syntaxin-16, the v-SNARE VAMP7 and the golgin GMAP210, in each pathway. Using different methods (endocytosis and Golgi trap assays, confocal and TIRF microscopy, TCR-signalosome pull down) we show that syntaxin-16 is regulating the retrograde transport of LAT whereas VAMP7 is regulating the anterograde transport. Moreover, GMAP210 and Rab6, known to contribute to both pathways, are in our cellular context, specifically and respectively, involved in anterograde and retrograde transport of LAT. Altogether, our data describe how retrograde and anterograde pathways coordinate LAT enrichment at the IS and point to the Golgi as a central hub for the polarized recruitment of LAT to the IS. The role that this finely-tuned transport of signaling molecules plays in T-cell activation is discussed.
Collapse
Affiliation(s)
- Juan José Saez
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
| | - Stephanie Dogniaux
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
| | - Massiullah Shafaq-Zadah
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, 75005 Paris, France; (M.S.-Z.); (L.J.)
| | - Ludger Johannes
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, 75005 Paris, France; (M.S.-Z.); (L.J.)
| | - Claire Hivroz
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
- Correspondence: (C.H.); (A.E.Z.); Tel.: +33-156-246-438 (A.E.Z.)
| | - Andrés Ernesto Zucchetti
- Institut Curie, Université PSL, U932 INSERM, Integrative Analysis of T Cell Activation Team, 26 Rue d’Ulm, 75248 Paris CEDEX 05, France; (J.J.S.); (S.D.)
- Correspondence: (C.H.); (A.E.Z.); Tel.: +33-156-246-438 (A.E.Z.)
| |
Collapse
|
23
|
Chua XY, Aballo T, Elnemer W, Tran M, Salomon A. Quantitative Interactomics of Lck-TurboID in Living Human T Cells Unveils T Cell Receptor Stimulation-Induced Proximal Lck Interactors. J Proteome Res 2020; 20:715-726. [PMID: 33185455 DOI: 10.1021/acs.jproteome.0c00616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
While Lck has been widely recognized to play a pivotal role in the initiation of the T cell receptor (TCR) signaling pathway, an understanding of the precise regulation of Lck in T cells upon TCR activation remains elusive. Investigation of protein-protein interaction (PPI) using proximity labeling techniques such as TurboID has the potential to provide valuable molecular insights into Lck regulatory networks. By expressing Lck-TurboID in Jurkat T cells, we have uncovered a dynamic, short-range Lck protein interaction network upon 30 min of TCR stimulation. In this novel application of TurboID, we detected 27 early signaling-induced Lck-proximal interactors in living T cells, including known and novel Lck interactors, validating the discovery power of this tool. Our results revealed previously unappreciated Lck PPI which may be associated with cytoskeletal rearrangement, ubiquitination of TCR signaling proteins, activation of the mitogen-activated protein kinase cascade, coalescence of the LAT signalosome, and formation of the immunological synapse. In this study, we demonstrated for the first time in immune cells and for the kinase Lck that TurboID can be utilized to unveil PPI dynamics in living cells at a time scale consistent with early TCR signaling. Data are available via ProteomeXchange with identifier PXD020759.
Collapse
Affiliation(s)
- Xien Yu Chua
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, United States
| | - Timothy Aballo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - William Elnemer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Melanie Tran
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Arthur Salomon
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
24
|
Simões IT, Aranda F, Casadó-Llombart S, Velasco-de Andrés M, Català C, Álvarez P, Consuegra-Fernández M, Orta-Mascaró M, Merino R, Merino J, Alberola-Ila J, González-Aseguinolaza G, Carreras E, Martínez V, Lozano F. Multifaceted effects of soluble human CD6 in experimental cancer models. J Immunother Cancer 2020; 8:jitc-2019-000172. [PMID: 32217757 PMCID: PMC7174071 DOI: 10.1136/jitc-2019-000172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background CD6 is a lymphocyte surface co-receptor physically associated with the T-cell receptor (TCR)/CD3 complex at the center of the immunological synapse. There, CD6 assists in cell-to-cell contact stabilization and modulation of activation/differentiation events through interaction with CD166/ALCAM (activated leukocyte cell adhesion molecule), its main reported ligand. While accumulating evidence is attracting new interest on targeting CD6 for therapeutic purposes in autoimmune disorders, little is known on its potential in cancer. In an attempt to elucidate the in vivo relevance of blocking CD6-mediated interactions in health and disease, we explored the consequences of expressing high circulating levels of a soluble form CD6 (sCD6) as a decoy receptor. Methods High sCD6 serum levels were achieved by using transgenic C57BL/6 mice expressing human sCD6 under the control of lymphoid-specific transcriptional elements (shCD6LckEμTg) or wild type either transduced with hepatotropic adeno-associated virus coding for mouse sCD6 or undergoing repeated infusions of recombinant human sCD6 protein. Characterization of sCD6-induced changes was performed by ex vivo flow cytometry and functional analyses of mouse lymphoid organ cells. The in vivo relevance of those changes was explored by challenging mice with subcutaneous or metastatic tumors induced by syngeneic cancer cells of different lineage origins. Results Through a combination of in vitro and in vivo studies, we show that circulating sCD6 expression induces defective regulatory T cell (Treg) generation and function, decreased CD166/ALCAM-mediated tumor cell proliferation/migration and impaired galectin-induced T-cell apoptosis, supporting the fact that sCD6 modulates antitumor lymphocyte effector function and tumorigenesis. Accordingly, sCD6 expression in vivo resulted in delayed subcutaneous tumor growth and/or reduced metastasis on challenge of mice with syngeneic cancer cells. Conclusions Evidence is provided for the disruption of CD6 receptor–ligand interactions as a feasible immunomodulatory approach in cancer.
Collapse
Affiliation(s)
- Inês T Simões
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Fernando Aranda
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Sergi Casadó-Llombart
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - María Velasco-de Andrés
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Cristina Català
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Pilar Álvarez
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Cantabria, Spain
| | - Marta Consuegra-Fernández
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Marc Orta-Mascaró
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Ramón Merino
- Instituto de Biomedicina y Biotecnología de Cantabria, CSIC-UC, Santander, Cantabria, Spain
| | - Jesús Merino
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Cantabria, Spain
| | - José Alberola-Ila
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | | | - Esther Carreras
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Vanesa Martínez
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain .,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Barcelona, Spain.,Servei d'Immunologia, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Li Y, Ruth JH, Rasmussen SM, Athukorala KS, Weber DP, Amin MA, Campbell PL, Singer NG, Fox DA, Lin F. Attenuation of Murine Collagen-Induced Arthritis by Targeting CD6. Arthritis Rheumatol 2020; 72:1505-1513. [PMID: 32307907 PMCID: PMC7745675 DOI: 10.1002/art.41288] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE CD6 is an important regulator of T cell function that interacts with the ligands CD166 and CD318. To further clarify the significance of CD6 in rheumatoid arthritis (RA), we examined the effects of targeting CD6 in the mouse model of collagen-induced arthritis (CIA), using CD6-knockout (CD6-KO) mice and CD6-humanized mice that express human CD6 in lieu of mouse CD6 on their T cells. METHODS We immunized wild-type (WT) and CD6 gene-KO mice with a collagen emulsion to induce CIA. For treatment studies using CD6-humanized mice, mice were immunized similarly and a mouse anti-human CD6 IgG (UMCD6) or control IgG was injected on days 7, 14, and 21. Joint tissues were evaluated for tissue damage, leukocyte infiltration, and local inflammatory cytokine production. Collagen-specific Th1, Th9, and Th17 responses and serum levels of collagen-specific IgG subclasses were also evaluated in WT and CD6-KO mice with CIA. RESULTS The absence of CD6 reduced 1) collagen-specific Th9 and Th17, but not Th1 responses, 2) the levels of many proinflammatory joint cytokines, and 3) serum levels of collagen-reactive total IgG and IgG1, but not IgG2a and IgG3. Joint homogenate hemoglobin content was significantly reduced in CD6-KO mice with CIA compared to WT mice with CIA (P < 0.05) (reduced angiogenesis). Moreover, treating CD6-humanized mice with mouse anti-human CD6 monoclonal antibody was similarly effective in reducing joint inflammation in CIA. CONCLUSION Taken together, these data suggest that interaction of CD6 with its ligands is important for the perpetuation of CIA and other inflammatory arthritides that are T cell driven.
Collapse
MESH Headings
- Animals
- Ankle Joint/pathology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Collagen Type II/immunology
- Cytokines/immunology
- Hemoglobins/metabolism
- Immunoglobulin G/immunology
- Mice
- Mice, Inbred DBA
- Mice, Knockout
- Mice, Transgenic
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes/immunology
- Th1 Cells/immunology
- Th17 Cells/immunology
Collapse
Affiliation(s)
- Yan Li
- Department of Immunity and Inflammation, Lerner Research institute, Cleveland Clinic, Cleveland, OH
| | - Jeffrey H. Ruth
- Division of Rheumatology, University of Michigan, Ann Arbor, MI
| | | | | | - Daniel P. Weber
- Division of Rheumatology, University of Michigan, Ann Arbor, MI
| | - M. Asif Amin
- Division of Rheumatology, University of Michigan, Ann Arbor, MI
| | | | - Nora G. Singer
- Division of Rheumatology, MetroHealth Medical Center, Cleveland, OH
| | - David A. Fox
- Division of Rheumatology, University of Michigan, Ann Arbor, MI
| | - Feng Lin
- Department of Immunity and Inflammation, Lerner Research institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
26
|
Celis-Gutierrez J, Blattmann P, Zhai Y, Jarmuzynski N, Ruminski K, Grégoire C, Ounoughene Y, Fiore F, Aebersold R, Roncagalli R, Gstaiger M, Malissen B. Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy. Cell Rep 2020; 27:3315-3330.e7. [PMID: 31189114 PMCID: PMC6581740 DOI: 10.1016/j.celrep.2019.05.041] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/20/2018] [Accepted: 05/10/2019] [Indexed: 01/26/2023] Open
Abstract
Deciphering how TCR signals are modulated by coinhibitory receptors is of fundamental and clinical interest. Using quantitative interactomics, we define the composition and dynamics of the PD-1 and BTLA coinhibitory signalosomes in primary effector T cells and at the T cell-antigen-presenting cell interface. We also solve the existing controversy regarding the role of the SHP-1 and SHP-2 protein-tyrosine phosphatases in mediating PD-1 coinhibition. PD-1 predominantly recruits SHP-2, but when absent, it recruits SHP-1 and remains functional. In contrast, BTLA predominantly recruits SHP-1 and to a lesser extent SHP-2. By separately analyzing the PD-1-SHP-1 and PD-1-SHP-2 complexes, we show that both dampen the TCR and CD28 signaling pathways equally. Therefore, our study illustrates how comparison of coinhibitory receptor signaling via quantitative interactomics in primary T cells unveils their extent of redundancy and provides a rationale for designing combinations of blocking antibodies in cancer immunotherapy on the basis of undisputed modes of action.
Collapse
Affiliation(s)
- Javier Celis-Gutierrez
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France; Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Peter Blattmann
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Yunhao Zhai
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Nicolas Jarmuzynski
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France; Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Kilian Ruminski
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Claude Grégoire
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Youcef Ounoughene
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France; Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Faculty of Science, University of Zurich, 8006 Zurich, Switzerland
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France.
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France; Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France.
| |
Collapse
|
27
|
Complex-centric proteome profiling by SEC-SWATH-MS for the parallel detection of hundreds of protein complexes. Nat Protoc 2020; 15:2341-2386. [PMID: 32690956 DOI: 10.1038/s41596-020-0332-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/17/2020] [Indexed: 01/03/2023]
Abstract
Most catalytic, structural and regulatory functions of the cell are carried out by functional modules, typically complexes containing or consisting of proteins. The composition and abundance of these complexes and the quantitative distribution of specific proteins across different modules are therefore of major significance in basic and translational biology. However, detection and quantification of protein complexes on a proteome-wide scale is technically challenging. We have recently extended the targeted proteomics rationale to the level of native protein complex analysis (complex-centric proteome profiling). The complex-centric workflow described herein consists of size exclusion chromatography (SEC) to fractionate native protein complexes, data-independent acquisition mass spectrometry to precisely quantify the proteins in each SEC fraction based on a set of proteotypic peptides and targeted, complex-centric analysis where prior information from generic protein interaction maps is used to detect and quantify protein complexes with high selectivity and statistical error control via the computational framework CCprofiler (https://github.com/CCprofiler/CCprofiler). Complex-centric proteome profiling captures most proteins in complex-assembled state and reveals their organization into hundreds of complexes and complex variants observable in a given cellular state. The protocol is applicable to cultured cells and can potentially also be adapted to primary tissue and does not require any genetic engineering of the respective sample sources. At present, it requires ~8 d of wet-laboratory work, 15 d of mass spectrometry measurement time and 7 d of computational analysis.
Collapse
|
28
|
NTAL is associated with treatment outcome, cell proliferation and differentiation in acute promyelocytic leukemia. Sci Rep 2020; 10:10315. [PMID: 32587277 PMCID: PMC7316767 DOI: 10.1038/s41598-020-66223-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/15/2020] [Indexed: 01/04/2023] Open
Abstract
Non-T cell activation linker (NTAL) is a lipid raft-membrane protein expressed by normal and leukemic cells and involved in cell signaling. In acute promyelocytic leukemia (APL), NTAL depletion from lipid rafts decreases cell viability through regulation of the Akt/PI3K pathway. The role of NTAL in APL cell processes, and its association with clinical outcome, has not, however, been established. Here, we show that reduced levels of NTAL were associated with increased all-trans retinoic acid (ATRA)-induced differentiation, generation of reactive oxygen species, and mitochondrial dysfunction. Additionally, NTAL-knockdown (NTAL-KD) in APL cell lines led to activation of Ras, inhibition of Akt/mTOR pathways, and increased expression of autophagy markers, leading to an increased apoptosis rate following arsenic trioxide treatment. Furthermore, NTAL-KD in NB4 cells decreased the tumor burden in (NOD scid gamma) NSG mice, suggesting its implication in tumor growth. A retrospective analysis of NTAL expression in a cohort of patients treated with ATRA and anthracyclines, revealed that NTAL overexpression was associated with a high leukocyte count (P = 0.007) and was independently associated with shorter overall survival (Hazard Ratio: 3.6; 95% Confidence Interval: 1.17-11.28; P = 0.026). Taken together, our data highlights the importance of NTAL in APL cell survival and response to treatment.
Collapse
|
29
|
Neier SC, Ferrer A, Wilton KM, Smith SEP, Kelcher AMH, Pavelko KD, Canfield JM, Davis TR, Stiles RJ, Chen Z, McCluskey J, Burrows SR, Rossjohn J, Hebrink DM, Carmona EM, Limper AH, Kappes DJ, Wettstein PJ, Johnson AJ, Pease LR, Daniels MA, Neuhauser C, Gil D, Schrum AG. The early proximal αβ TCR signalosome specifies thymic selection outcome through a quantitative protein interaction network. Sci Immunol 2020; 4:4/32/eaal2201. [PMID: 30770409 DOI: 10.1126/sciimmunol.aal2201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/17/2019] [Indexed: 12/18/2022]
Abstract
During αβ T cell development, T cell antigen receptor (TCR) engagement transduces biochemical signals through a protein-protein interaction (PPI) network that dictates dichotomous cell fate decisions. It remains unclear how signal specificity is communicated, instructing either positive selection to advance cell differentiation or death by negative selection. Early signal discrimination might occur by PPI signatures differing qualitatively (customized, unique PPI combinations for each signal), quantitatively (graded amounts of a single PPI series), or kinetically (speed of PPI pathway progression). Using a novel PPI network analysis, we found that early TCR-proximal signals distinguishing positive from negative selection appeared to be primarily quantitative in nature. Furthermore, the signal intensity of this PPI network was used to find an antigen dose that caused a classic negative selection ligand to induce positive selection of conventional αβ T cells, suggesting that the quantity of TCR triggering was sufficient to program selection outcome. Because previous work had suggested that positive selection might involve a qualitatively unique signal through CD3δ, we reexamined the block in positive selection observed in CD3δ0 mice. We found that CD3δ0 thymocytes were inhibited but capable of signaling positive selection, generating low numbers of MHC-dependent αβ T cells that expressed diverse TCR repertoires and participated in immune responses against infection. We conclude that the major role for CD3δ in positive selection is to quantitatively boost the signal for maximal generation of αβ T cells. Together, these data indicate that a quantitative network signaling mechanism through the early proximal TCR signalosome determines thymic selection outcome.
Collapse
Affiliation(s)
- Steven C Neier
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alejandro Ferrer
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Katelynn M Wilton
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA.,Medical Scientist Training Program, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Stephen E P Smith
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - April M H Kelcher
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kevin D Pavelko
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jenna M Canfield
- Molecular Pathogenesis and Therapeutics PhD Graduate Program, University of Missouri, Columbia, MO, USA
| | - Tessa R Davis
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Robert J Stiles
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Scott R Burrows
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland 4006, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Deanne M Hebrink
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Eva M Carmona
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dietmar J Kappes
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peter J Wettstein
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Larry R Pease
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA
| | | | - Diana Gil
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA. .,Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, College of Engineering, University of Missouri, Columbia, MO, USA
| | - Adam G Schrum
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA. .,Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, College of Engineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
30
|
Jia J, Wang W, Kuang D, Lu C, Li N, Tong P, Han Y, Sun X, Dai J. mRNA profiling reveals response regulators of decreased fungal keratitis symptoms in a tree shrew model. Gene 2020; 737:144450. [PMID: 32057930 DOI: 10.1016/j.gene.2020.144450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
Fungal keratitis is a corneal disease with a high blindness rate caused by pathogenic fungal infections. The pathogenesis of fungal keratitis and the immune response after fungal infection are still unclear. Notably, the pathological features of fungal keratitis in tree shrews are similar to those in humans. In the present study, mRNA profiling of tree shrew corneas with fungal keratitis was performed. GO and KEGG enrichment analyses were performed on the differentially expressed mRNAs, and the GO biological process ontology was used to analyze functional trends in the differentially expressed mRNAs. In total, 151 downregulated and 71 upregulated mRNAs were shared among the 7-day, 14-day and 30-day infection groups. These differentially expressed mRNAs were significantly enriched in the GO category immune response (GO: 0002376) and the KEGG pathways cytokine receptor binding (KEGG ID: tup04060) and cell adhesion (KEGG ID: tup04514). The downregulated mRNAs were significantly enriched in the corneal epithelial cell adhesion function. Fifty-eight initially upregulated mRNAs gradually decreased in expression, and these mRNAs were significantly enriched in the functions lipopolysaccharide (LPS) and antibacterial polypeptide recognition, cell differentiation, and cell rearrangement. Zeta chain of T-cell receptor associated protein kinase 70 (ZAP70), lymphocyte cytosolic protein 2 (LCP2), C-C motif chemokine and its receptor showed high degrees of connectivity in the protein-protein interaction (PPI) network. We speculate that the decrease in symptoms of tree shrew fungal keratitis may be related to the upregulation of genes involved in immune regulation and macrophage colony stimulation. This study showed that the C-C motif chemokine and its receptor may play a key role in regulating tree shrew fungal keratitis, providing a theoretical basis for studying the pathogenesis of human fungal keratitis.
Collapse
Affiliation(s)
- Jie Jia
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China; Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - WenGuang Wang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China; Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - DeXuan Kuang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China; Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - CaiXia Lu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China; Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Na Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China; Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - PinFen Tong
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China; Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - YuanYuan Han
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China; Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - XiaoMei Sun
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China; Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - JieJie Dai
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China; Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China.
| |
Collapse
|
31
|
Dos Santos NR, Ghysdael J, Tran Quang C. The TCR/CD3 complex in leukemogenesis and as a therapeutic target in T-cell acute lymphoblastic leukemia. Adv Biol Regul 2019; 74:100638. [PMID: 31378701 DOI: 10.1016/j.jbior.2019.100638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) arises from T cell precursors and is characterized by expression of many lineage-specific proteins. While T-cell antigen receptor (TCR) signaling and its strength are central for thymocyte development, mature T cell homeostasis and immune responses, their roles in T-ALL remain undetermined. Indeed, in contrast to mouse models, in which absence of TCR or major histocompatibility complex binding does not impact on leukemogenesis, other mouse models suggest that basal or weak signaling drives leukemia development. However, recent reports indicate that strong TCR signaling can be detrimental to leukemic cells. Indeed, sustained/high level TCR signaling, stimulated by antigen or CD3 antibody, is strongly anti-leukemic in both murine T-ALL expressing endogenous or transgenic TCR and diagnostic T-ALL cases. As discussed, further work should address the efficacy of T-ALL therapeutic targeting with either TCR/CD3 antibodies or TCR-directed chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Nuno R Dos Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| | - Jacques Ghysdael
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, F-91405, Orsay, France.
| | - Christine Tran Quang
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, F-91405, Orsay, France.
| |
Collapse
|
32
|
Ma J, Zheng B, Goswami S, Meng L, Zhang D, Cao C, Li T, Zhu F, Ma L, Zhang Z, Zhang S, Duan M, Chen Q, Gao Q, Zhang X. PD1 Hi CD8 + T cells correlate with exhausted signature and poor clinical outcome in hepatocellular carcinoma. J Immunother Cancer 2019; 7:331. [PMID: 31783783 PMCID: PMC6884778 DOI: 10.1186/s40425-019-0814-7] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND CD8+ T cells differentiate into exhausted status within tumors, including hepatocellular carcinoma (HCC), which constitutes a solid barrier to effective anti-tumor immunity. A detailed characterization of exhausted T cells and their prognostic value in HCC is lacking. METHODS We collected fresh tumor tissues with adjacent non-tumor liver tissues and blood specimens of 56 HCC patients, as well as archived samples from two independent cohorts of HCC patients (n = 358 and n = 254), who underwent surgical resection. Flow cytometry and multiplex immunostaining were used to characterize CD8+ T cells. Patient prognosis was evaluated by Kaplan-Meier analysis and Cox regression analysis. RESULTS CD8+ T cells were classified into three distinct subpopulations: PD1Hi, PD1Int and PD1-. PD1Hi CD8+ T cells were significantly enriched in tumor compared to adjacent non-tumor liver tissues. PD1Hi CD8+ T cells highly expressed exhaustion-related inhibitory receptors (TIM3, CTLA-4, etc.) and transcription factors (Eomes, BATF, etc.). In addition, PD1Hi CD8+ T cells expressed low levels of cytotoxic molecules and displayed a compromised capacity to produce pro-inflammatory cytokines while the expression of anti-inflammatory IL-10 was up-regulated following mitotic stimulation. Furthermore, PD1Hi CD8+ T cells shared features with tissue resident memory T cells and were also characterized in an aberrantly activated status with an apoptosis-prone potential. In two independent cohorts of HCC patients (n = 358 and n = 254), we demonstrated that PD1Hi or TIM3+PD1Hi CD8+ T cells were significantly correlated with poor prognosis, and the latter was positioned in close proximity to PD-L1+ tumor associated macrophages. CONCLUSION The current study unveils the unique features of PD1Hi CD8+ exhausted T cells in HCC, and also suggests that exhausted T cells could act as a biomarker to select the most care-demanding patients for tailored therapies.
Collapse
Affiliation(s)
- Jiaqiang Ma
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, 200031, China
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Bohao Zheng
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Shyamal Goswami
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lu Meng
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dandan Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chunmei Cao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Teng Li
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fangming Zhu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Lijie Ma
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhao Zhang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Shuhao Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Meng Duan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Qin Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
33
|
Voisinne G, Kersse K, Chaoui K, Lu L, Chaix J, Zhang L, Goncalves Menoita M, Girard L, Ounoughene Y, Wang H, Burlet-Schiltz O, Luche H, Fiore F, Malissen M, Gonzalez de Peredo A, Liang Y, Roncagalli R, Malissen B. Quantitative interactomics in primary T cells unveils TCR signal diversification extent and dynamics. Nat Immunol 2019; 20:1530-1541. [PMID: 31591574 PMCID: PMC6859066 DOI: 10.1038/s41590-019-0489-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022]
Abstract
The activation of T cells by the T cell antigen receptor (TCR) results in the formation of signaling protein complexes (signalosomes), the composition of which has not been analyzed at a systems level. Here, we isolated primary CD4+ T cells from 15 gene-targeted mice, each expressing one tagged form of a canonical protein of the TCR-signaling pathway. Using affinity purification coupled with mass spectrometry, we analyzed the composition and dynamics of the signalosomes assembling around each of the tagged proteins over 600 s of TCR engagement. We showed that the TCR signal-transduction network comprises at least 277 unique proteins involved in 366 high-confidence interactions, and that TCR signals diversify extensively at the level of the plasma membrane. Integrating the cellular abundance of the interacting proteins and their interaction stoichiometry provided a quantitative and contextual view of each documented interaction, permitting anticipation of whether ablation of a single interacting protein can impinge on the whole TCR signal-transduction network.
Collapse
Affiliation(s)
- Guillaume Voisinne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Kristof Kersse
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, Département Biologie Structurale Biophysique, Protéomique Génopole Toulouse Midi Pyrénées CNRS UMR 5089, Toulouse, France
| | - Liaoxun Lu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.,Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Julie Chaix
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Lichen Zhang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Marisa Goncalves Menoita
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Laura Girard
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Youcef Ounoughene
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Hui Wang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Département Biologie Structurale Biophysique, Protéomique Génopole Toulouse Midi Pyrénées CNRS UMR 5089, Toulouse, France
| | - Hervé Luche
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France.,Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France.,Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Département Biologie Structurale Biophysique, Protéomique Génopole Toulouse Midi Pyrénées CNRS UMR 5089, Toulouse, France
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China. .,Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France.
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France. .,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France. .,Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
34
|
Huang R, Guo G, Lu L, Fu R, Luo J, Liu Z, Gu Y, Yang W, Zheng Q, Chao T, He L, Wang Y, Niu Z, Wang H, Lawrence T, Malissen M, Malissen B, Liang Y, Zhang L. The three members of the Vav family proteins form complexes that concur to foam cell formation and atherosclerosis. J Lipid Res 2019; 60:2006-2019. [PMID: 31570505 DOI: 10.1194/jlr.m094771] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
During foam cell formation and atherosclerosis development, the scavenger receptor CD36 plays critical roles in lipid uptake and triggering of atherogenicity via the activation of Vav molecules. The Vav family includes three highly conserved members known as Vav1, Vav2, and Vav3. As Vav1 and Vav3 were found to exert function in atherosclerosis development, it remains thus to decipher whether Vav2 also plays a role in the development of atherosclerosis. In this study we found that Vav2 deficiency in RAW264.7 macrophages significantly diminished oxidized LDL uptake and CD36 signaling, demonstrating that each Vav protein family member was required for foam cell formation. Genetic disruption of Vav2 in ApoE-deficient C57BL/6 mice significantly inhibited the severity of atherosclerosis. Strikingly, we further found that the genetic deletion of each member of the Vav protein family by CRISPR/Cas9 resulted in a similar alteration of transcriptomic profiles of macrophages. The three members of the Vav proteins were found to form complexes, and genetic ablation of each single Vav molecule was sufficient to prevent endocytosis of CD36. The functional interdependence of the three Vav family members in foam cell formation was due to their indispensable roles in transcriptomic programing, lipid uptake, and activation of the JNK kinase in macrophages.
Collapse
Affiliation(s)
- Rong Huang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Guo Guo
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Liaoxun Lu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan Province, China
| | - Rui Fu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Jing Luo
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Zhuangzhuang Liu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan Province, China
| | - Yanrong Gu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Wenyi Yang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Qianqian Zheng
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Tianzhu Chao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan Province, China
| | - Le He
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Ying Wang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan Province, China
| | - Zhiguo Niu
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Toby Lawrence
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.,Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7280, Marseille, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7280, Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7280, Marseille, France
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China .,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan Province, China
| | - Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China .,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| |
Collapse
|
35
|
Saveanu L, Zucchetti AE, Evnouchidou I, Ardouin L, Hivroz C. Is there a place and role for endocyticTCRsignaling? Immunol Rev 2019; 291:57-74. [DOI: 10.1111/imr.12764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Loredana Saveanu
- National French Institute of Health and Medical Research (INSERM) 1149 Center of Research on Inflammation Paris France
- National French Center of Scientific Research (CNRS) ERL8252 Paris France
- Laboratory of Inflamex Excellency Faculty of Medicine Xavier Bichat Site Paris France
- Paris Diderot UniversitySorbonne Paris Cité Paris France
| | - Andres E. Zucchetti
- Institut Curie PSL Research UniversityINSERMU932 “Integrative analysis of T cell activation” team Paris France
| | - Irini Evnouchidou
- National French Institute of Health and Medical Research (INSERM) 1149 Center of Research on Inflammation Paris France
- National French Center of Scientific Research (CNRS) ERL8252 Paris France
- Laboratory of Inflamex Excellency Faculty of Medicine Xavier Bichat Site Paris France
- Paris Diderot UniversitySorbonne Paris Cité Paris France
- Inovarion Paris France
| | - Laurence Ardouin
- Institut Curie PSL Research UniversityINSERMU932 “Integrative analysis of T cell activation” team Paris France
| | - Claire Hivroz
- Institut Curie PSL Research UniversityINSERMU932 “Integrative analysis of T cell activation” team Paris France
| |
Collapse
|
36
|
Yablonski D. Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses. Front Immunol 2019; 10:1704. [PMID: 31402911 PMCID: PMC6669380 DOI: 10.3389/fimmu.2019.01704] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
Antigen receptor signaling pathways are organized by adaptor proteins. Three adaptors, LAT, Gads, and SLP-76, form a heterotrimeric complex that mediates signaling by the T cell antigen receptor (TCR) and by the mast cell high affinity receptor for IgE (FcεRI). In both pathways, antigen recognition triggers tyrosine phosphorylation of LAT and SLP-76. The recruitment of SLP-76 to phospho-LAT is bridged by Gads, a Grb2 family adaptor composed of two SH3 domains flanking a central SH2 domain and an unstructured linker region. The LAT-Gads-SLP-76 complex is further incorporated into larger microclusters that mediate antigen receptor signaling. Gads is positively regulated by dimerization, which promotes its cooperative binding to LAT. Negative regulation occurs via phosphorylation or caspase-mediated cleavage of the linker region of Gads. FcεRI-mediated mast cell activation is profoundly impaired in LAT- Gads- or SLP-76-deficient mice. Unexpectedly, the thymic developmental phenotype of Gads-deficient mice is much milder than the phenotype of LAT- or SLP-76-deficient mice. This distinction suggests that Gads is not absolutely required for TCR signaling, but may modulate its sensitivity, or regulate a particular branch of the TCR signaling pathway; indeed, the phenotypic similarity of Gads- and Itk-deficient mice suggests a functional connection between Gads and Itk. Additional Gads binding partners include costimulatory proteins such as CD28 and CD6, adaptors such as Shc, ubiquitin regulatory proteins such as USP8 and AMSH, and kinases such as HPK1 and BCR-ABL, but the functional implications of these interactions are not yet fully understood. No interacting proteins or function have been ascribed to the evolutionarily conserved N-terminal SH3 of Gads. Here we explore the biochemical and functional properties of Gads, and its role in regulating allergy, T cell development and T-cell mediated immunity.
Collapse
Affiliation(s)
- Deborah Yablonski
- The Immune Cell Signaling Lab, Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
37
|
Jun JE, Kulhanek KR, Chen H, Chakraborty A, Roose JP. Alternative ZAP70-p38 signals prime a classical p38 pathway through LAT and SOS to support regulatory T cell differentiation. Sci Signal 2019; 12:12/591/eaao0736. [PMID: 31337738 DOI: 10.1126/scisignal.aao0736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
T cell receptor (TCR) stimulation activates diverse kinase pathways, which include the mitogen-activated protein kinases (MAPKs) ERK and p38, the phosphoinositide 3-kinases (PI3Ks), and the kinase mTOR. Although TCR stimulation activates the p38 pathway through a "classical" MAPK cascade that is mediated by the adaptor protein LAT, it also stimulates an "alternative" pathway in which p38 is activated by the kinase ZAP70. Here, we used dual-parameter, phosphoflow cytometry and in silico computation to investigate how both classical and alternative p38 pathways contribute to T cell activation. We found that basal ZAP70 activation in resting T cell lines reduced the threshold ("primed") TCR-stimulated activation of the classical p38 pathway. Classical p38 signals were reduced after T cell-specific deletion of the guanine nucleotide exchange factors Sos1 and Sos2, which are essential LAT signalosome components. As a consequence of Sos1/2 deficiency, production of the cytokine IL-2 was impaired, differentiation into regulatory T cells was reduced, and the autoimmune disease EAE was exacerbated in mice. These data suggest that the classical and alternative p38 activation pathways exist to generate immune balance.
Collapse
Affiliation(s)
- Jesse E Jun
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kayla R Kulhanek
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hang Chen
- Departments of Chemical Engineering, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Arup Chakraborty
- Departments of Chemical Engineering, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
38
|
Zucchetti AE, Bataille L, Carpier JM, Dogniaux S, San Roman-Jouve M, Maurin M, Stuck MW, Rios RM, Baldari CT, Pazour GJ, Hivroz C. Tethering of vesicles to the Golgi by GMAP210 controls LAT delivery to the immune synapse. Nat Commun 2019; 10:2864. [PMID: 31253807 PMCID: PMC6599081 DOI: 10.1038/s41467-019-10891-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/08/2019] [Indexed: 01/06/2023] Open
Abstract
The T cell immune synapse is a site of intense vesicular trafficking. Here we show that the golgin GMAP210, known to capture vesicles and organize membrane traffic at the Golgi, is involved in the vesicular transport of LAT to the immune synapse. Upon activation, more GMAP210 interact with LAT-containing vesicles and go together with LAT to the immune synapse. Regulating LAT recruitment and LAT-dependent signaling, GMAP210 controls T cell activation. Using a rerouting and capture assay, we show that GMAP210 captures VAMP7-decorated vesicles. Overexpressing different domains of GMAP210, we also show that GMAP210 allows their specific delivery to the immune synapse by tethering LAT-vesicles to the Golgi. Finally, in a model of ectopic expression of LAT in ciliated cells, we show that GMAP210 tethering activity controls the delivery of LAT to the cilium. Hence, our results reveal a function for the golgin GMAP210 conveying specific vesicles to the immune synapse.
Collapse
Affiliation(s)
- Andres Ernesto Zucchetti
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Laurence Bataille
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Jean-Marie Carpier
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France.,Immunobiology Department, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stéphanie Dogniaux
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Mabel San Roman-Jouve
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Michael W Stuck
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosa M Rios
- Cell Dynamics and Signaling Department, CABIMER-CSIC/US/UPO, 41092, Seville, Spain
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Claire Hivroz
- Institut Curie, PSL Research University, INSERM U932, Integrative analysis of T cell activation team, 26 rue d'Ulm, 75248, Paris Cedex 05, France.
| |
Collapse
|
39
|
Frischknecht L, Britschgi C, Galliker P, Christinat Y, Vichalkovski A, Gstaiger M, Kovacs WJ, Krek W. BRAF inhibition sensitizes melanoma cells to α-amanitin via decreased RNA polymerase II assembly. Sci Rep 2019; 9:7779. [PMID: 31123282 PMCID: PMC6533289 DOI: 10.1038/s41598-019-44112-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/08/2019] [Indexed: 11/21/2022] Open
Abstract
Despite the great success of small molecule inhibitors in the treatment of patients with BRAFV600E mutated melanoma, the response to these drugs remains transient and patients eventually relapse within a few months, highlighting the need to develop novel combination therapies based on the understanding of the molecular changes induced by BRAFV600E inhibitors. The acute inhibition of oncogenic signaling can rewire entire cellular signaling pathways and thereby create novel cancer cell vulnerabilities. Here, we demonstrate that inhibition of BRAFV600E oncogenic signaling in melanoma cell lines leads to destabilization of the large subunit of RNA polymerase II POLR2A (polymerase RNA II DNA-directed polypeptide A), thereby preventing its binding to the unconventional prefoldin RPB5 interactor (URI1) chaperone complex and the successful assembly of RNA polymerase II holoenzymes. Furthermore, in melanoma cell lines treated with mitogen-activated protein kinase (MAPK) inhibitors, α-amanitin, a specific and irreversible inhibitor of RNA polymerase II, induced massive apoptosis. Pre-treatment of melanoma cell lines with MAPK inhibitors significantly reduced IC50 values to α-amanitin, creating a state of collateral vulnerability similar to POLR2A hemizygous deletions. Thus, the development of melanoma specific α-amanitin antibody-drug conjugates could represent an interesting therapeutic approach for combination therapies with BRAFV600E inhibitors.
Collapse
Affiliation(s)
- Lukas Frischknecht
- Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Christian Britschgi
- Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland.,Department of Medical Oncology and Hematology, University Hospital of Zurich and University of Zurich, 8091, Zurich, Switzerland
| | - Patricia Galliker
- Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Yann Christinat
- Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Anton Vichalkovski
- Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Matthias Gstaiger
- Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland.
| | - Wilhelm Krek
- Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
40
|
Osipov A, Murphy A, Zheng L. From immune checkpoints to vaccines: The past, present and future of cancer immunotherapy. Adv Cancer Res 2019; 143:63-144. [PMID: 31202363 DOI: 10.1016/bs.acr.2019.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is a worldwide medical problem with significant repercussions on individual patients and societies as a whole. In order to alter the outcomes of this deadly disease the treatment of cancer over the centuries has undergone a unique evolution. However, utilizing the best treatment modalities and achieving cures or long-term durable responses have been inconsistent and limited, that is until recently. Contemporary research has highlighted a fundamental gap in our understanding of how we approach treating cancer, by revealing the intricate relationship between the immune system and tumors. In this atmosphere, the growth of immunotherapy has not only forever changed our understanding of cancer biology, but the manner by which we treat patients. It's paradigm shifting success has led to the approval of over 10 different immunotherapeutic agents, including checkpoint inhibitors, vaccine-based therapies, oncolytic viruses and T cell directed therapies for nearly 20 different indications across countless tumor types. Despite the breakthroughs that have occurred in the field of immunotherapy, it has not been the panacea for all cancers. With a deeper understanding of the immune system we have been able to peer into tumor immune escape and therapy resistance. Simultaneously this understanding has paved the way for the investigation and development of novel immune system altering agents and combinatorial therapies. In this chapter we review the immune system and its intricate relationship with cancer, the evolution of immunotherapy, its current landscape, and future directions in the context of resistance mechanisms and the challenges faced by immunotherapy against cancer.
Collapse
Affiliation(s)
- Arsen Osipov
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Adrian Murphy
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lei Zheng
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
41
|
Rodríguez-Jorge O, Kempis-Calanis LA, Abou-Jaoudé W, Gutiérrez-Reyna DY, Hernandez C, Ramirez-Pliego O, Thomas-Chollier M, Spicuglia S, Santana MA, Thieffry D. Cooperation between T cell receptor and Toll-like receptor 5 signaling for CD4 + T cell activation. Sci Signal 2019; 12:12/577/eaar3641. [PMID: 30992399 DOI: 10.1126/scisignal.aar3641] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD4+ T cells recognize antigens through their T cell receptors (TCRs); however, additional signals involving costimulatory receptors, for example, CD28, are required for proper T cell activation. Alternative costimulatory receptors have been proposed, including members of the Toll-like receptor (TLR) family, such as TLR5 and TLR2. To understand the molecular mechanism underlying a potential costimulatory role for TLR5, we generated detailed molecular maps and logical models for the TCR and TLR5 signaling pathways and a merged model for cross-interactions between the two pathways. Furthermore, we validated the resulting model by analyzing how T cells responded to the activation of these pathways alone or in combination, in terms of the activation of the transcriptional regulators CREB, AP-1 (c-Jun), and NF-κB (p65). Our merged model accurately predicted the experimental results, showing that the activation of TLR5 can play a similar role to that of CD28 activation with respect to AP-1, CREB, and NF-κB activation, thereby providing insights regarding the cross-regulation of these pathways in CD4+ T cells.
Collapse
Affiliation(s)
- Otoniel Rodríguez-Jorge
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México.,Escuela de Estudios Superiores de Axochiapan, Universidad Autónoma del Estado de Morelos, 62951 Axochiapan, México
| | - Linda A Kempis-Calanis
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México
| | - Wassim Abou-Jaoudé
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France
| | - Darely Y Gutiérrez-Reyna
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México
| | - Céline Hernandez
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France
| | - Oscar Ramirez-Pliego
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México
| | - Morgane Thomas-Chollier
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France
| | | | - Maria A Santana
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México.
| | - Denis Thieffry
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France.
| |
Collapse
|
42
|
Ma C, Wu W, Lin R, Ge Y, Zhang C, Sun S, Cong Y, Li X, Liu Z. Critical Role of CD6highCD4+ T Cells in Driving Th1/Th17 Cell Immune Responses and Mucosal Inflammation in IBD. J Crohns Colitis 2019; 13:510-524. [PMID: 30395204 DOI: 10.1093/ecco-jcc/jjy179] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS CD6 is a crucial regulator of T cell activation and is implicated in the pathogenesis of multiple autoimmune diseases. ALCAM is the first identified endogenous ligand of CD6. We sought to investigate potential roles of CD6 in regulating intestinal mucosal inflammation in inflammatory bowel disease [IBD]. METHODS We analysed the expression of CD6 and ALCAM in the inflamed mucosa of IBD patients using qRT-PCR and immunohistochemistry. Phenotypic properties of CD6low/- and CD6highCD4+ T cells were determined by flow cytometry, qRT-PCR, and ELISA. ALCAM Fc chimeric protein was used to evaluate the role of CD6-ALCAM engagement in regulating IBD CD4+ T cell activation and differentiation. RESULTS Expression of CD6 and its ligand ALCAM was markedly increased in the inflamed mucosa of IBD patients compared with that in normal controls, and was significantly correlated with disease activity indices of IBD patients. Interestingly, CD6highCD4+ T cells of IBD patients exhibited significantly higher pathogenicity compared with CD6low/-CD4+ T cells, characterized by enhanced T cell activation and preferential Th1 and Th17 cell phenotypes, but a markedly decreased proportion of nTreg [CD25highFoxp3+, CD25highCD127low] cells. Importantly, inclusion of ALCAM Fc chimeric protein significantly facilitated IBD CD4+ T cell, especially CD6highCD4+ T cell, differentiation into Th1/Th17 cells compared with hIgG1 Fc-treated controls. CONCLUSIONS These data indicate that overexpression of CD6 and ALCAM in the inflamed mucosa of IBD patients accelerates intestinal mucosal immune responses via promoting CD4+ T cell proliferation and differentiation into Th1/Th17 cells. Thus, CD6 may serve as a novel therapeutic target for treatment of IBD.
Collapse
Affiliation(s)
- Caiyun Ma
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Wei Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Ritian Lin
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yadong Ge
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Cui Zhang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Suofeng Sun
- Department of Gastroenterology, Henan Provincial People's Hospital, Henan University School of Medicine, Zhengzhou, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, USA
| | - Xiuling Li
- Department of Gastroenterology, Henan Provincial People's Hospital, Henan University School of Medicine, Zhengzhou, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
43
|
Abstract
T cells are central to the vertebrate immune system. Two distinct types of T cells, αβT and γδT cells, express different types of T cell antigen receptors (TCRs), αβTCR and γδTCR, respectively, that are composed of different sets of somatically rearranged TCR chains and CD3 subunits. γδT cells have recently attracted considerable attention due to their ability to produce abundant cytokines and versatile roles in host defense, tissue regeneration, inflammation, and autoimmune diseases. Both αβT and γδT cells develop in the thymus. Unlike the development of αβT cells, which depends on αβTCR-mediated positive and negative selection, the development of γδT cells, including the requirement of γδTCR, has been less well understood. αβT cells differentiate into effector cells in the peripheral tissues, whereas γδT cells acquire effector functions during their development in the thymus. In this review, we will discuss the current state of knowledge of the molecular mechanism of TCR signal transduction and its role in the thymic development of γδT cells, particularly highlighting a newly discovered mechanism that controls proinflammatory γδT cell development.
Collapse
|
44
|
Hörner M, Eble J, Yousefi OS, Schwarz J, Warscheid B, Weber W, Schamel WWA. Light-Controlled Affinity Purification of Protein Complexes Exemplified by the Resting ZAP70 Interactome. Front Immunol 2019; 10:226. [PMID: 30863395 PMCID: PMC6399385 DOI: 10.3389/fimmu.2019.00226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Multiprotein complexes control the behavior of cells, such as of lymphocytes of the immune system. Methods to affinity purify protein complexes and to determine their interactome by mass spectrometry are thus widely used. One drawback of these methods is the presence of false positives. In fact, the elution of the protein of interest (POI) is achieved by changing the biochemical properties of the buffer, so that unspecifically bound proteins (the false positives) may also elute. Here, we developed an optogenetics-derived and light-controlled affinity purification method based on the light-regulated reversible protein interaction between phytochrome B (PhyB) and its phytochrome interacting factor 6 (PIF6). We engineered a truncated variant of PIF6 comprising only 22 amino acids that can be genetically fused to the POI as an affinity tag. Thereby the POI can be purified with PhyB-functionalized resin material using 660 nm light for binding and washing, and 740 nm light for elution. Far-red light-induced elution is effective but very mild as the same buffer is used for the wash and elution. As proof-of-concept, we expressed PIF-tagged variants of the tyrosine kinase ZAP70 in ZAP70-deficient Jurkat T cells, purified ZAP70 and associating proteins using our light-controlled system, and identified the interaction partners by quantitative mass spectrometry. Using unstimulated T cells, we were able to detect the known interaction partners, and could filter out all other proteins.
Collapse
Affiliation(s)
- Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Eble
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - O Sascha Yousefi
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Jennifer Schwarz
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang W A Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Centre for Chronic Immunodeficiency CCI, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
45
|
Yablonski D. Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses. Front Immunol 2019; 10:1704. [PMID: 31402911 DOI: 10.3389/fimmu.2019.01704/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 05/22/2023] Open
Abstract
Antigen receptor signaling pathways are organized by adaptor proteins. Three adaptors, LAT, Gads, and SLP-76, form a heterotrimeric complex that mediates signaling by the T cell antigen receptor (TCR) and by the mast cell high affinity receptor for IgE (FcεRI). In both pathways, antigen recognition triggers tyrosine phosphorylation of LAT and SLP-76. The recruitment of SLP-76 to phospho-LAT is bridged by Gads, a Grb2 family adaptor composed of two SH3 domains flanking a central SH2 domain and an unstructured linker region. The LAT-Gads-SLP-76 complex is further incorporated into larger microclusters that mediate antigen receptor signaling. Gads is positively regulated by dimerization, which promotes its cooperative binding to LAT. Negative regulation occurs via phosphorylation or caspase-mediated cleavage of the linker region of Gads. FcεRI-mediated mast cell activation is profoundly impaired in LAT- Gads- or SLP-76-deficient mice. Unexpectedly, the thymic developmental phenotype of Gads-deficient mice is much milder than the phenotype of LAT- or SLP-76-deficient mice. This distinction suggests that Gads is not absolutely required for TCR signaling, but may modulate its sensitivity, or regulate a particular branch of the TCR signaling pathway; indeed, the phenotypic similarity of Gads- and Itk-deficient mice suggests a functional connection between Gads and Itk. Additional Gads binding partners include costimulatory proteins such as CD28 and CD6, adaptors such as Shc, ubiquitin regulatory proteins such as USP8 and AMSH, and kinases such as HPK1 and BCR-ABL, but the functional implications of these interactions are not yet fully understood. No interacting proteins or function have been ascribed to the evolutionarily conserved N-terminal SH3 of Gads. Here we explore the biochemical and functional properties of Gads, and its role in regulating allergy, T cell development and T-cell mediated immunity.
Collapse
Affiliation(s)
- Deborah Yablonski
- The Immune Cell Signaling Lab, Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
46
|
Gonçalves CM, Henriques SN, Santos RF, Carmo AM. CD6, a Rheostat-Type Signalosome That Tunes T Cell Activation. Front Immunol 2018; 9:2994. [PMID: 30619347 PMCID: PMC6305463 DOI: 10.3389/fimmu.2018.02994] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
Following T cell receptor triggering, T cell activation is initiated and amplified by the assembly at the TCR/CD3 macrocomplex of a multitude of stimulatory enzymes that activate several signaling cascades. The potency of signaling is, however, modulated by various inhibitory components already at the onset of activation, long before co-inhibitory immune checkpoints are expressed to help terminating the response. CD5 and CD6 are surface glycoproteins of T cells that have determinant roles in thymocyte development, T cell activation and immune responses. They belong to the superfamily of scavenger receptor cysteine-rich (SRCR) glycoproteins but whereas the inhibitory role of CD5 has been established for long, there is still controversy on whether CD6 may have similar or antagonistic functions on T cell signaling. Analysis of the structure and molecular associations of CD5 and CD6 indicates that these molecules assemble at the cytoplasmic tail a considerable number of signaling effectors that can putatively transduce diverse types of intracellular signals. Biochemical studies have concluded that both receptors can antagonize the flow of TCR-mediated signaling; however, the impact that CD5 and CD6 have on T cell development and T cell-mediated immune responses may be different. Here we analyze the signaling function of CD6, the common and also the different properties it exhibits comparing with CD5, and interpret the functional effects displayed by CD6 in recent animal models.
Collapse
Affiliation(s)
- Carine M Gonçalves
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Sónia N Henriques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar and Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Rita F Santos
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar and Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Alexandre M Carmo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Porto, Portugal
| |
Collapse
|
47
|
Breuning J, Brown MH. A sequence conserved between CD5 and CD6 binds an FERM domain and exerts a restraint on T-cell activation. Immunology 2018; 156:270-276. [PMID: 30460991 PMCID: PMC6376265 DOI: 10.1111/imm.13025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022] Open
Abstract
CD5 and CD6 are related surface receptors that limit and promote T‐cell responses. Co‐stimulatory effects of CD6 depend on binding a cell surface ligand, CD166, and recruitment of the intracellular adaptor proteins GADS and SLP‐76 by C‐terminal phosphotyrosines. We have continued to identify interactions of CD5 and CD6 to understand their roles in T‐cell activation. In a screen to identify binding partners for peptides containing a cytoplasmic sequence, SDSDY conserved between CD5 and CD6, we identified ezrin radixin moesin (ERM) proteins, which link plasma membrane proteins to actin. Purified radixin FERM domain bound directly to CD5 and CD6 SDSDY peptides in a phosphorylation‐dependent manner (KD = 0·5‐2 μm) at 37°. In human T‐cell blasts, mutation of the CD6 SDSDY sequence enhanced CD69 expression in response to CD3 monoclonal antibody. In this proximal readout, interactions of the SDSDY sequence were dominant compared with the C‐terminal tyrosines of CD6. In contrast, in a more downstream readout, interleukin‐2 expression, in response to immobilized CD3 and CD6 monoclonal antibodies, the C‐terminal tyrosines were dominant. The data suggest that varying functional effects of CD6 and potentially CD5 depend on interactions of different cytoplasmic regions with the cytoskeleton and alter depending on the stimuli.
Collapse
Affiliation(s)
- Johannes Breuning
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Marion H Brown
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
48
|
Voisinne G, Gonzalez de Peredo A, Roncagalli R. CD5, an Undercover Regulator of TCR Signaling. Front Immunol 2018; 9:2900. [PMID: 30581443 PMCID: PMC6292949 DOI: 10.3389/fimmu.2018.02900] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/26/2018] [Indexed: 11/28/2022] Open
Abstract
T cells are critical components of adaptive immunity. As such, their activation is regulated by the T cell receptor (TCR) that constantly scan peptides associated with major histocompatibility complexes (MHC). TCR engagement initiates a series of molecular events leading to cytokine secretion, proliferation, and differentiation of T cells. As a second coincident event, activation of co-stimulatory molecules, such as CD28, synergize with the TCR in order to prolong and/or amplify intracellular signals. With the recent advances in immunotherapies targeting T cells, co-inhibitory receptors are of growing interest for immunologists due to their potential modulatory properties on T cell functions. However, special attention should be dedicated to avoid unwanted clinical outcomes (1). In particular, Manichean categorization of receptors based on incomplete functional knowledge can lead to an over-simplistic view of complex cellular regulations. Thus, analysis of the functions that characterize these receptors in diverse physiological contexts remains essential for their rational use in therapeutic protocols. Here we focus on CD5, a transmembrane receptor that regulates T cell functions and development but remains poorly characterized at the molecular level. We will review its roles in physiological conditions and suggest potential molecular effectors that could account for CD5-dependent regulation of TCR signaling.
Collapse
Affiliation(s)
- Guillaume Voisinne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Département Biologie Structural Biophysique, Protéomique Génopole Toulouse Midi Pyrénées CNRS UMR 5089, Toulouse, France
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| |
Collapse
|
49
|
Sciuto MR, Coppola V, Iannolo G, De Maria R, Haas TL. Two-Step Co-Immunoprecipitation (TIP). ACTA ACUST UNITED AC 2018; 125:e80. [DOI: 10.1002/cpmb.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Maria Rita Sciuto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità; Rome Italy
| | - Valeria Coppola
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità; Rome Italy
| | - Gioacchin Iannolo
- Regenerative Medicine and Biomedical Technologies Unit, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT; Palermo Italy
| | - Ruggero De Maria
- Institute of General Pathology, Università Cattolica del Sacro Cuore; Rome Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome Italy
| | - Tobias L. Haas
- Institute of General Pathology, Università Cattolica del Sacro Cuore; Rome Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome Italy
| |
Collapse
|
50
|
Breuning J, Philip B, Brown MH. Addition of the C-terminus of CD6 to a chimeric antigen receptor enhances cytotoxicity and does not compromise expression. Immunology 2018; 156:130-135. [PMID: 30300924 PMCID: PMC6328988 DOI: 10.1111/imm.13009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/23/2022] Open
Abstract
T cells expressing chimeric antigen receptors (CARs) are a promising new cancer immunotherapy that has now reached the clinic. CARs are synthetic receptors that redirect T cells towards a tumour‐associated antigen and activate them through various fused signalling regions, for example derived from CD3ζ, 4‐1BB or CD28. Analysis of the optimal combination of CAR components including signalling domains is not yet comprehensive and may vary with the particular application. The C‐terminus of the T‐cell surface receptor CD6 is critical for its co‐stimulatory effects and signals through two phospho‐tyrosine motifs that bind to the intracellular adaptor proteins GADS and SLP‐76. Addition of the C terminus of CD6 did not compromise CAR expression, showing it was a stable moiety that can be used independently of the native receptor. A third‐generation CAR containing 4‐1BB, CD3ζ and the C terminus of CD6 (4‐1BBz‐CD6) enhanced interferon‐γ release and cytotoxicity when compared with the second‐generation 4‐1BB CD3ζ (4‐1BBz) CAR. The CD6 C terminus is a valuable addition to potential components for modular design of CARs to improve effector function, particularly cytotoxicity.
Collapse
Affiliation(s)
| | - Brian Philip
- Cancer Institute, University College, London, UK
| | | |
Collapse
|