1
|
Mendes M, Morais AS, Carlos A, Sousa JJ, Pais AC, Mihăilă SM, Vitorino C. Organ-on-a-chip: Quo vademus? Applications and regulatory status. Colloids Surf B Biointerfaces 2025; 249:114507. [PMID: 39826309 DOI: 10.1016/j.colsurfb.2025.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Organ-on-a-chip systems, also referred to as microphysiological systems (MPS), represent an advance in bioengineering microsystems designed to mimic key aspects of human organ physiology and function. Drawing inspiration from the intricate and hierarchical architecture of the human body, these innovative platforms have emerged as invaluable in vitro tools with wide-ranging applications in drug discovery and development, as well as in enhancing our understanding of disease physiology. The facility to replicate human tissues within physiologically relevant three-dimensional multicellular environments empowers organ-on-a-chip systems with versatility throughout different stages of the drug development process. Moreover, these systems can be tailored to mimic specific disease states, facilitating the investigation of disease progression, drug responses, and potential therapeutic interventions. In particular, they can demonstrate, in early-phase pre-clinical studies, the safety and toxicity profiles of potential therapeutic compounds. Furthermore, they play a pivotal role in the in vitro evaluation of drug efficacy and the modeling of human diseases. One of the most promising prospects of organ-on-a-chip technology is to simulate the pathophysiology of specific subpopulations and even individual patients, thereby being used in personalized medicine. By mimicking the physiological responses of diverse patient groups, these systems hold the promise of revolutionizing therapeutic strategies, guiding them towards tailored intervention to the unique needs of each patient. This review presents the development status and evolution of microfluidic platforms that have facilitated the transition from cells to organs recreated on chips and some of the opportunities and applications offered by organ-on-a-chip technology. Additionally, the current potential and future perspectives of these microphysiological systems and the challenges this technology still faces are discussed.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Ana Sofia Morais
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Carlos
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Alberto Canelas Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Silvia M Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal.
| |
Collapse
|
2
|
Jang BH, Jung SH, Kwon S, Park SJ, Kang JH. Red Blood Cell-Induced Bacterial Margination Improves Microbial Hemoadsorption on Engineered Cell-Depleted Thrombi, Restoring Severe Bacteremia in Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417498. [PMID: 40285645 DOI: 10.1002/advs.202417498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/14/2025] [Indexed: 04/29/2025]
Abstract
Extracorporeal hemoadsorption for treating bacteremia has exhibited limited success due to the lack of a clear strategy for effectively bringing bacterial cells into contact with the surface and universal bacteria-capturing substances. Here, a novel extracorporeal device is reported that can eliminate various intact bacteria from whole blood, employing microfluidic bacterial margination and engineered cell-depleted thrombus (CDT) presenting bacterial adhesin receptors. The critical strain rate of red blood cells (RBCs) (0.83 × 10-2) and the flow path height within about 300 µm required for RBC axial migration in the flows are found. The subsequent RBC-bacteria collisions induced bacterial margination, facilitating their effective capture on the CDT surface on the channel wall. Fibrinogen and fibronectin in CDT are found to primarily contribute to capturing various bacteria. The extracorporeal CDT filters (eCDTF), which integrate all these principles, demonstrate significant depletion of major antibiotic-resistant and human fecal bacteria from the whole blood in vitro. Remarkable reductions in bacterial load and inflammatory markers in the rats lethally infected with methicillin-resistant Staphylococcus aureus are further confirmed, resulting in the restoration from bacteremia following extracorporeal treatment. The demonstration may propose a new design principle for hemoadsorption devices and elucidate the limited success of conventional treatments.
Collapse
Affiliation(s)
- Bong Hwan Jang
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Su Hyun Jung
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Seyong Kwon
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Sung Jin Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Joo H Kang
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
3
|
Wang D, Zhou J, Sun X, Niu X. The Essence of Nature Can be the Simplest (3) Holistic Energy: Extracellular Fenton Reactions of All Cells. Chem Biodivers 2025:e202500942. [PMID: 40263106 DOI: 10.1002/cbdv.202500942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Cooperative mechanisms are widely regarded as pivotal drivers in the evolutionary transition from unicellular to multicellular life. However, the mechanism of how multicellular organisms integrate the individual energy of all cells into holistic energy and how exactly the holistic energy is manifested remains poorly understood. Traditionally, relying on ATP within heart muscle cells to drive a permanent heartbeat (called cardiac contraction) is responsible for the vital holistic biological process of transporting and distributing oxygen and nutrients to cells throughout the body, but the limited ATP reserve in cardiac muscle challenges this paradigm. Recent studies suggest that cellular energy production involves dual pathways: canonical ATP synthesis and extracellular Fenton reactions. Here, we propose a novel paradigm wherein the circulatory system serves as a collective platform for integrating extracellular Fenton reaction capabilities of all cells, generating sustained and powerful energy to drive the heartbeat and maintain body temperature. This cooperative mechanism for holistic energy aligns with Bergmann's rule and the holistic principles of traditional Chinese medicine (TCM). Holistic energy in circulatory system supports pulse diagnosis that evaluates systemic health through vascular dynamics. Furthermore, the interaction and balance between holistic energy and individual energy can also explain the rationality of tumor occurrence.
Collapse
Affiliation(s)
- Donglou Wang
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, P. R. China
| | - Jiao Zhou
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, P. R. China
| | - Xingrong Sun
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, P. R. China
| | - Xuemei Niu
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, P. R. China
| |
Collapse
|
4
|
Meng Z, Huang H, Guo J, Wang D, Tao X, Dai Q, Bai Y, Ma C, Huang L, Fu Y, Lu C, Wang H, Wang Q, Li X, Ren H. Promote Sepsis Recovery through the Inhibition of Immunothrombosis via a Combination of Probenecid Nanocrystals and Cefotaxime Sodium. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21013-21032. [PMID: 40152149 DOI: 10.1021/acsami.5c05609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Sepsis is a life-threatening organ dysfunction syndrome caused by a dysregulated host immune response to pathogenic infection. Due to its high mortality rate, it has been a major global public health problem. Recent studies have shown that the formation of immunothrombosis plays as a "double-edged sword" in the pathogenesis of sepsis, and how to properly regulate immunothrombosis to avoid organ damage and end the high-inflammation state as early as possible are the key steps for sepsis therapy. Considering the complexity of sepsis therapy, the development of an effective combined therapeutic strategy is the goal of this study. First, the insoluble Panexin1 (Panx1) channel inhibitor probenecid (Prob) was prepared as nanocrystals and administered via intramuscular injection. At the same time, septic mice were intravenously injected with cefotaxime sodium through the tail vein for combination therapy. After treatment, the number of infection foci and the level of serum inflammatory factors in septic mice were significantly reduced, and also neutrophil NETosis was significantly inhibited; thus, the survival rate of septic mice was dramatically increased. Pathological analysis revealed that the combination treatment was safe and effective and could significantly reduce the formation of immunothrombosis in septic mice.
Collapse
Affiliation(s)
- Zhengjie Meng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haixiao Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Jiaqi Guo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Dong Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xinyue Tao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Qihao Dai
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Yunhao Bai
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Chenyu Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Luming Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Yangkai Fu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Chenyu Lu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Hengjian Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Qiyue Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xueming Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Hao Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Noda Y, Noguchi T, Nagano T, Aoki W, Ueda M. Bacterial removal using liposomes and an anionic adsorber. J Biosci Bioeng 2025; 139:249-256. [PMID: 39730254 DOI: 10.1016/j.jbiosc.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/29/2024]
Abstract
Extracorporeal blood purification techniques using magnetic beads, which physically remove bacteria, fungi, viruses, and cytokines (disease agents) from the blood causing sepsis, have been studied. However, magnetic bead influx, which causes hemolysis and cytotoxicity, is an important issue. This study proposed a novel method for removing Escherichia coli from the blood using liposomes with high biocompatibility. To realize this method, a pegylated cationic liposome conjugated with antibodies (PCLA) that can simultaneously adsorb disease agents with the conjugated liposome antibodies and adhere to electrostatic absorbers was developed. E. coli was successfully adsorbed by PCLA in phosphate-buffered saline and electrostatically removed with a high removal efficiency of the antigen-antibody reaction (approximately 100 %). The removal efficiency of the antigen-antibody reaction in filtered bovine blood was approximately 50 %, demonstrating E. coli removal in the blood using the same method. Results suggested that this method can remove various disease agents from the blood by changing the antibody type.
Collapse
Affiliation(s)
- Yohei Noda
- Technology and Intellectual Property HQ, TDK Corporation, Ichikawa, Chiba 272-8558, Japan.
| | - Tomohiro Noguchi
- Technology and Intellectual Property HQ, TDK Corporation, Ichikawa, Chiba 272-8558, Japan
| | - Takashi Nagano
- Technology and Intellectual Property HQ, TDK Corporation, Ichikawa, Chiba 272-8558, Japan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Wang X, Liang S, Gan Q, Cai B, Liu C. Current status and future perspectives of the diagnostic of plant bacterial pathogens. FRONTIERS IN PLANT SCIENCE 2025; 16:1547974. [PMID: 40093602 PMCID: PMC11906676 DOI: 10.3389/fpls.2025.1547974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
Diagnostic of plant bacterial pathogens underwent a leapfrog development from culture-based strategies to culture-free detection. Conventional diagnostics, such antibody- and PCR-based methods, are sensitive to identify pre-enriched pathogens in naturally infected crops at the late stage. However, they suffer from shortcomings relating to rapidity, signal strength, and a significant reduction in sensitivity in real plant extract. Progress has been made to address these challenges through development of labelled and non-labelled optical spectroscopy. Specifically, the micro-Raman spectroscopy enables fast, label-free, and non-invasive discrimination of viable but non-culturable pathogens at a single-cell level. A comprehensive spectroscopic database is always a prerequisite for identification, yet these spectroscopy-based methods are insufficient to detect previously unknown plant pathogens. The advance of single-cell sequencing and synthetic biology is beginning to address these crucial problems and is being used in related practical applications. Success will continue to be found at the interfaces between disciplines.
Collapse
Affiliation(s)
- Xu Wang
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Shuiying Liang
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Qinhua Gan
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
- Hainan Provincial Key Laboratory of Tropical Hydrobiotechnology, Hainan University, Haikou, China
| | - Bo Cai
- Post-Entry Quarantine Station for Tropical Plant, Haikou Customs District, Hainan, China
| | - Caixia Liu
- Technology Center of Qingdao Customs District, Qingdao, China
| |
Collapse
|
7
|
Su WL, Chiu SK, Shen CH, Chen YT. Molecular Biomarkers and More Efficient Therapies for Sepsis. Biomedicines 2025; 13:468. [PMID: 40002880 PMCID: PMC11852965 DOI: 10.3390/biomedicines13020468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Sepsis remains a leading cause of morbidity and mortality worldwide, representing a substantial burden on healthcare systems [...].
Collapse
Affiliation(s)
- Wen-Lin Su
- Division of Pulmonary and Critical Care Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289, Jianguo Rd., Xindian Dist., New Taipei City 23142, Taiwan
- School of Medicine, Tzu Chi University, No. 701, Sec. 3, Chung Yang Rd., Hualien City 970, Taiwan; (S.-K.C.); (Y.-T.C.)
| | - Sheng-Kang Chiu
- School of Medicine, Tzu Chi University, No. 701, Sec. 3, Chung Yang Rd., Hualien City 970, Taiwan; (S.-K.C.); (Y.-T.C.)
- Division of Infectious Diseases, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation. No. 289, Jianguo Rd., Xindian Dist., New Taipei City 23142, Taiwan
| | - Chih-Hao Shen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center No. 325, Sec. 2, Cheng-Kung Road, Neihu 114, Taipei 11490, Taiwan;
| | - Yi-Ting Chen
- School of Medicine, Tzu Chi University, No. 701, Sec. 3, Chung Yang Rd., Hualien City 970, Taiwan; (S.-K.C.); (Y.-T.C.)
- Department of Critical Care Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Chung Yang Rd., Hualien City 970, Taiwan
| |
Collapse
|
8
|
Paisrisarn P, Chattrairat K, Nakamura Y, Nagashima K, Yanagida T, Baba Y, Yasui T. Non-toxic core-shell nanowires for in vitro extracellular vesicle scavenging. Chem Commun (Camb) 2025; 61:2269-2272. [PMID: 39714130 DOI: 10.1039/d4cc03767g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Extracellular vesicles (EVs) from cancer cells promote abnormal growth in normal cells, potentially leading to cancer proliferation. We developed a nanowire-based EV-elimination device that efficiently eliminated EVs without toxicity. This method restored normal growth in mammary gland cells cultured with breast adenocarcinoma-derived EVs containing medium treated with the device.
Collapse
Affiliation(s)
- Piyawan Paisrisarn
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kunanon Chattrairat
- Department of Life Science and Technology, Institute of Science Tokyo, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.
| | - Yuta Nakamura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kazuki Nagashima
- Research Institute for Electronic Science (RIES), Hokkaido University, Kita, Sapporo, Hokkaido 001-0020, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takao Yasui
- Department of Life Science and Technology, Institute of Science Tokyo, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.
- Institute of Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
9
|
Luo X, Wong YC, Chen X, Tan H, Wen W. In-vitro blood purification using tiny pinch holographic optical tweezers based on deep learning. Biosens Bioelectron 2025; 267:116781. [PMID: 39293268 DOI: 10.1016/j.bios.2024.116781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
In-vitro blood purification is essential to a wide range of medical treatments, requiring fine-grained analysis and precise separation of blood components. Despite existing methods that can extract specific components from blood by size or by magnetism, there is not yet a general approach to efficiently filter blood components on demand. In this work, we introduce the first programmable non-contact blood purification system for accurate blood component detection and extraction. To accurately identify different cells and artificial particles in the blood, we collected and annotated a new blood component object detection dataset and trained a collection of deep-learning-based object detectors upon it. To precisely capture and extract desired blood components, we fabricated a microfluidic chip and set up a customized holographic optical tweezer to trap and move cells/particles in the blood. Empirically, we demonstrate that our proposed system can perform real-time blood fractionation with high precision reaching up to 96.89%, as well as high efficiency. Its scalability and flexibility open new research directions in blood treatment.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, The Hong Kong University of Science and Technology, China
| | - Yu Ching Wong
- Department of Physics, The Hong Kong University of Science and Technology, China
| | - Xiangyu Chen
- Department of Computer Science, Cornell University, Ithaca, 14850, New York, United States
| | - Handong Tan
- Department of Individualized Interdisciplinary Program (Advanced Materials), The Hong Kong University of Science and Technology, China
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, China; Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, 511400, China.
| |
Collapse
|
10
|
Chen Y, Li R, Shen H, Li N, Gao W, Guo H, Feng B, Yu S. Highly sensitive and rapid detection of Vibrio parahaemolyticus using a dual-recognition platform based on functionalized quantum dots and aptamer. Mikrochim Acta 2024; 191:732. [PMID: 39511044 DOI: 10.1007/s00604-024-06821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
As one of the most harmful pathogenic bacteria in shrimp aquaculture, Vibrio parahaemolyticus often causes massive mortality in shrimp. Accurate and rapid detection of V. parahaemolyticus in shrimp farming is essential for avoiding huge economic losses caused by related diseases. In this study, we designed a dual-recognition platform for efficient identification and quantification of V. parahaemolyticus. First, the target bacterium was captured with magnetic beads functionalized by aptamers (Apt-MBs), and then, the broad-spectrum fluorescent probe FcMBL@CdSe-ZnS was used to detect the bacterium based on the interactions between fragment crystallizable mannose-binding lectin (FcMBL) and pathogenic bacteria. The proposed dual-recognition strategy centered around aptamers and FcMBL@CdSe-ZnS was applied to definite quantification of V. parahaemolyticus over a wide range of 10-108 CFU/mL with a limit of detection of 4 CFU/mL within 55 min. The feasibility was demonstrated by using the platform to detect V. parahaemolyticus from shrimp intestine, aquaculture water, and seawater.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Ruiwen Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Hao Shen
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Nana Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Wenjing Gao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Haipeng Guo
- School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Bin Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| | - Shaoning Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
11
|
Houser BJ, Camacho AN, Bryner CA, Ziegler M, Wood JB, Spencer AJ, Gautam RP, Okonkwo TP, Wagner V, Smith SJ, Chesnel K, Harrison RG, Pitt WG. Bacterial Binding to Polydopamine-Coated Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58226-58240. [PMID: 39420634 DOI: 10.1021/acsami.4c11169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In medical infections such as blood sepsis and in food quality control, fast and accurate bacteria analysis is required. Using magnetic nanoparticles (MNPs) for bacterial capture and concentration is very promising for rapid analysis. When MNPs are functionalized with the proper surface chemistry, they have the ability to bind to bacteria and aid in the removal and concentration of bacteria from a sample for further analysis. This study introduces a novel approach for bacterial concentration using polydopamine (pDA), a highly adhesive polymer often purported to create antibacterial and antibiofouling coatings on medical devices. Although pDA has been generally studied for its ability to coat surfaces and reduce biofilm growth, we have found that when coated on magnetic nanoclusters (MNCs), more specifically iron oxide nanoclusters, it effectively binds to and can remove from suspension some types of bacteria. This study investigated the binding of pDA-coated MNCs (pDA-MNCs) to various Gram-negative and Gram-positive bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and several E. coli strains. MNCs were successfully coated with pDA, and these functionalized MNCs bound a wide variety of bacterial strains. The efficiency of removing bacteria from a suspension can range from 0.99 for S. aureus to 0.01 for an E. coli strain. Such strong capture and differential capture have important applications in collecting bacteria from dilute samples found in medical diagnostics, food and water quality monitoring, and other industries.
Collapse
Affiliation(s)
- Bowen J Houser
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Alyson N Camacho
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Camille A Bryner
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Masa Ziegler
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Justin B Wood
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Ashley J Spencer
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Rajendra P Gautam
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Tochukwu P Okonkwo
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Victoria Wagner
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Stacey J Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Karine Chesnel
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Roger G Harrison
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
12
|
Gerile S, Shen Q, Kang J, Liu W, Dong A. Current advances in black phosphorus-based antibacterial nanoplatform for infection therpy. Colloids Surf B Biointerfaces 2024; 241:114037. [PMID: 38878660 DOI: 10.1016/j.colsurfb.2024.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 07/29/2024]
Abstract
Black phosphorus (BP) has attracted much attention due to its excellent physiochemical properties. However, due to its biodegradability and simple antibacterial mechanism, using only BP nanomaterials to combat bacterial infections caused by drug-resistant pathogens remains a significant challenge. In order to improve the antibacterial efficiency and avoid the emergence of drug resistance, BP nanomaterials have been combined with other functional materials to form black phosphorus-based antibacterial nanoplatform (BPANP), which provides unprecedented opportunities for the treatment of drug-resistant infections. This article reviews the performance of BPANP and its multiple antibacterial mechanisms while emphatically introducing its design direction and latest application progress in antibacterial fields. Moreover, this paper additionally summarizes and discusses the current challenges and inadequacies of BPANP that need to be improved in future research. We believe that this review will provide researchers with an up-to-date and multifaceted reference, and provide new ideas for designing effective strategies against drug-resistant bacteria.
Collapse
Affiliation(s)
- Saren Gerile
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Qiudi Shen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| | - Wenxin Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, PR China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
13
|
Gu H, Chen Y, Lüders A, Bertrand T, Hanedan E, Nielaba P, Bechinger C, Nelson BJ. Scalable high-throughput microfluidic separation of magnetic microparticles. DEVICE 2024; 2:100403. [PMID: 39081390 PMCID: PMC11285115 DOI: 10.1016/j.device.2024.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/05/2024] [Accepted: 05/01/2024] [Indexed: 08/02/2024]
Abstract
Surface-engineered magnetic microparticles are used in chemical and biomedical engineering due to their ease of synthesis, high surface-to-volume ratio, selective binding, and magnetic separation. To separate them from fluid suspensions, existing methods rely on the magnetic force introduced by the local magnetic field gradient. However, this strategy has poor scalability because the magnetic field gradient decreases rapidly as one moves away from the magnets. Here, we present a scalable high-throughput magnetic separation strategy using a rotating permanent magnet and two-dimensional arrays of micromagnets. Under a dynamic magnetic field, nickel micromagnets allow the surrounding magnetic microparticles to self-assemble into large clusters and effectively propel themselves through the flow. The collective speed of the microparticle swarm reaches about two orders of magnitude higher than the gradient-based separation method over a wide range of operating frequencies and distances from a rotating magnet.
Collapse
Affiliation(s)
- Hongri Gu
- Department of Physics, University of Konstanz, Konstanz 78464, Germany
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| | - Yonglin Chen
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| | - Anton Lüders
- Department of Physics, University of Konstanz, Konstanz 78464, Germany
| | - Thibaud Bertrand
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| | - Emre Hanedan
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| | - Peter Nielaba
- Department of Physics, University of Konstanz, Konstanz 78464, Germany
| | - Clemens Bechinger
- Department of Physics, University of Konstanz, Konstanz 78464, Germany
| | - Bradley J. Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| |
Collapse
|
14
|
Liang H, Wang Y, Liu F, Duan G, Long J, Jin Y, Chen S, Yang H. The Application of Rat Models in Staphylococcus aureus Infections. Pathogens 2024; 13:434. [PMID: 38921732 PMCID: PMC11206676 DOI: 10.3390/pathogens13060434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a major human pathogen and can cause a wide range of diseases, including pneumonia, osteomyelitis, skin and soft tissue infections (SSTIs), endocarditis, mastitis, bacteremia, and so forth. Rats have been widely used in the field of infectious diseases due to their unique advantages, and the models of S. aureus infections have played a pivotal role in elucidating their pathogenic mechanisms and the effectiveness of therapeutic agents. This review outlined the current application of rat models in S. aureus infections and future prospects for rat models in infectious diseases caused by S. aureus.
Collapse
Affiliation(s)
- Hongyue Liang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou 450016, China;
| | - Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Yuefei Jin
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Shuaiyin Chen
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| |
Collapse
|
15
|
Park SJ, Park I, Kim S, Kim MK, Kim S, Jeong H, Kim D, Cho SW, Park TE, Ni A, Lim H, Joo J, Lee JH, Kang JH. Extracorporeal Blood Treatment Using Functional Magnetic Nanoclusters Mitigates Organ Dysfunction of Sepsis in Swine. SMALL METHODS 2024; 8:e2301428. [PMID: 38161256 DOI: 10.1002/smtd.202301428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Mitigating sepsis-induced severe organ dysfunction with magnetic nanoparticles has shown remarkable advances in extracorporeal blood treatment. Nevertheless, treating large septic animals remains challenging due to insufficient magnetic separation at rapid blood flow rates (>6 L h-1) and limited incubation time in an extracorporeal circuit. Herein, superparamagnetic nanoclusters (SPNCs) coated with red blood cell (RBC) membranes are developed, which promptly capture and magnetically separate a wide range of pathogens at high blood flow rates in a swine sepsis model. The SPNCs exhibited an ultranarrow size distribution of clustered iron oxide nanocrystals and exceptionally high saturation magnetization (≈ 90 emu g-1) close to that of bulk magnetite. It is also revealed that CD47 on the RBCs allows the RBC-SPNCs to remain at a consistent concentration in the blood by evading innate immunity. The uniform size distribution of the RBC-SPNCs greatly enhances their effectiveness in eradicating various pathogenic materials in extracorporeal blood. The use of RBC-SPNCs for extracorporeal treatment of swine infected with multidrug-resistant E. coli is validated and found that severe bacteremic sepsis-induced organ dysfunction is significantly mitigated after 12 h. The findings highlight the potential application of RBC-SPNCs for extracorporeal therapy of severe sepsis in large animal models and potentially humans.
Collapse
Affiliation(s)
- Sung Jin Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Inwon Park
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 44919, Republic of Korea
| | - Suhyun Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Min Kyu Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seonghye Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 44919, Republic of Korea
| | - Hwain Jeong
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 44919, Republic of Korea
| | - Dongsung Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 44919, Republic of Korea
| | - Seung Woo Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Aleksey Ni
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hankwon Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
| | - Jae Hyuk Lee
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 44919, Republic of Korea
| | - Joo H Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
16
|
Guo C, Jiang X, Guo X, Liu Z, Wang B, Du Y, Tian Z, Wang Z, Ou L. Dual stimulus-responsive renewable nanoadsorbent for selective adsorption of low-density lipoprotein in serum. Regen Biomater 2024; 11:rbae045. [PMID: 38845854 PMCID: PMC11153342 DOI: 10.1093/rb/rbae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024] Open
Abstract
Selective removal of ultra-high low-density lipoprotein (LDL) from the blood of hyperlipemia patients using hemoperfusion is considered an efficient method to prevent the deterioration of atherosclerotic cardiovascular disease. Based on the exceptional structure-function properties of multistimulus-responsive materials, we developed a magnetic photorenewable nanoadsorbent (Fe3O4@SiO2@Azo-COOH) with outstanding selectivity and regenerative characteristics, featuring functionalized azobenzene as the ligand. The dual-stimulus response endowed Fe3O4@SiO2@Azo-COOH with rapid separation and photoregenerative properties. The adsorbent demonstrated excellent removal efficiency of LDL with an adsorption capacity of 15.06 mg/g, and highly repetitive adsorption performance (≥5 cycles) under irradiation. Fe3O4@SiO2@Azo-COOH also exhibited remarkable adsorption properties and selectivity in human serum, with adsorption capacities of 10.93, 21.26 and 9.80 mg/g for LDL, total cholesterol and triglycerides and only 0.77 mg/g for high-density lipoprotein (HDL), resulting in a 93% selective adsorption difference (LDL/HDL). Complete green regeneration of the nanoadsorbent was achieved through a simple regeneration process, maintaining a recovery rate of 99.4% after five regeneration experiments. By combining dynamic perfusion experiment with micromagnetic microfluidics, the LDL content decreased by 16.6%. Due to its superior adsorption capacity and regenerative properties, the dual stimulus-responsive nanosorbent is considered a potential hemoperfusion adsorbent.
Collapse
Affiliation(s)
- Chen Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xinbang Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xiaofang Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Zhuang Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Biao Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Ziying Tian
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Zimeng Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| |
Collapse
|
17
|
Lai J, Liang J, Chen K, Guan B, Chen Z, Chen L, Fan J, Zhang Y, Li Q, Su J, Chen Q, Lin J. Carrimycin ameliorates lipopolysaccharide and cecal ligation and puncture-induced sepsis in mice. Chin J Nat Med 2024; 22:235-248. [PMID: 38553191 DOI: 10.1016/s1875-5364(24)60600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 04/02/2024]
Abstract
Carrimycin (CA), sanctioned by China's National Medical Products Administration (NMPA) in 2019 for treating acute bronchitis and sinusitis, has recently been observed to exhibit multifaceted biological activities, encompassing anti-inflammatory, antiviral, and anti-tumor properties. Despite these applications, its efficacy in sepsis treatment remains unexplored. This study introduces a novel function of CA, demonstrating its capacity to mitigate sepsis induced by lipopolysaccharide (LPS) and cecal ligation and puncture (CLP) in mice models. Our research employed in vitro assays, real-time quantitative polymerase chain reaction (RT-qPCR), and RNA-seq analysis to establish that CA significantly reduces the levels of pro-inflammatory cytokines, namely tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6), in response to LPS stimulation. Additionally, Western blotting and immunofluorescence assays revealed that CA impedes Nuclear Factor Kappa B (NF-κB) activation in LPS-stimulated RAW264.7 cells. Complementing these findings, in vivo experiments demonstrated that CA effectively alleviates LPS- and CLP-triggered organ inflammation in C57BL/6 mice. Further insights were gained through 16S sequencing, highlighting CA's pivotal role in enhancing gut microbiota diversity and modulating metabolic pathways, particularly by augmenting the production of short-chain fatty acids in mice subjected to CLP. Notably, a comparative analysis revealed that CA's anti-inflammatory efficacy surpasses that of equivalent doses of aspirin (ASP) and TIENAM. Collectively, these findings suggest that CA exhibits significant therapeutic potential in sepsis treatment. This discovery provides a foundational theoretical basis for the clinical application of CA in sepsis management.
Collapse
Affiliation(s)
- Junzhong Lai
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Jiadi Liang
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Kunsen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Biyun Guan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Zhirong Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Linqin Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Jiqiang Fan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Yong Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Qiumei Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China.
| | - Jizhen Lin
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou 350001, China; The Department of Otolaryngology, Head & Neck Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
Xiao-Ping C, Hao Z, Ru-Li F, Jin-Xing L, Yu-Jun D, Ze-Yin L. Recombinant mannan-binding lectin magnetic beads increase pathogen detection in immunocompromised patients. Appl Microbiol Biotechnol 2024; 108:193. [PMID: 38308716 PMCID: PMC10838228 DOI: 10.1007/s00253-024-13019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
The microbiological diagnosis of infection for hematological malignancy patients receiving chemotherapy or allogeneic hematopoietic stem cell transplantation (allo-HSCT) patients relies primarily on standard microbial culture, especially blood culture, which has many shortcomings, such as having low positive rates, being time-consuming and having a limited pathogenic spectrum. In this prospective observational self-controlled test accuracy study, blood, cerebrospinal fluid (CSF), and bronchoalveolar lavage fluid (BALF) samples were collected from chemotherapy or allo-HSCT patients with clinical symptoms of infections who were hospitalized at Peking University First Hospital. Possible pathogens were detected by the method based on recombinant mannan-binding lectin (MBL) magnetic bead enrichment (M1 method) and simultaneously by a standard method. The analytical sensitivity of M1 method was close to that of standard culture method. Besides, the turn-around time of M1-method was significantly shorter than that of standard culture method. Moreover, the M1 method also added diagnostic value through the detection of some clinically relevant microbes missed by the standard method. M1 method could significantly increase the detection efficiency of pathogens (including bacteria and fungi) in immunocompromised patients. KEY POINTS: • The detection results of M1-method had a high coincidence rate with that of standard method • M1 method detected many pathogens which had not been found by standard clinic method.
Collapse
Affiliation(s)
- Chen Xiao-Ping
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zheng Hao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Ru-Li
- Clinical Laboratory of Peking University First Hospital, XiShiKu Street 8, XiCheng District, Beijing, 86-10-83572211, China
| | - Lu Jin-Xing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dong Yu-Jun
- Department of Hematology, Peking University First Hospital, XiShiKu Street 8, XiCheng District, Beijing, 86-10-83572211, China.
| | - Liang Ze-Yin
- Department of Hematology, Peking University First Hospital, XiShiKu Street 8, XiCheng District, Beijing, 86-10-83572211, China.
| |
Collapse
|
19
|
Sepordeh S, Jafari AM, Bazzaz S, Abbasi A, Aslani R, Houshmandi S, Rad AH. Postbiotic as Novel Alternative Agent or Adjuvant for the Common Antibiotic Utilized in the Food Industry. Curr Pharm Biotechnol 2024; 25:1245-1263. [PMID: 37702234 DOI: 10.2174/1389201025666230912123849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Antibiotic resistance is a serious public health problem as it causes previously manageable diseases to become deadly infections that can cause serious disability or even death. Scientists are creating novel approaches and procedures that are essential for the treatment of infections and limiting the improper use of antibiotics in an effort to counter this rising risk. OBJECTIVES With a focus on the numerous postbiotic metabolites formed from the beneficial gut microorganisms, their potential antimicrobial actions, and recent associated advancements in the food and medical areas, this review presents an overview of the emerging ways to prevent antibiotic resistance. RESULTS Presently, scientific literature confirms that plant-derived antimicrobials, RNA therapy, fecal microbiota transplantation, vaccines, nanoantibiotics, haemofiltration, predatory bacteria, immunotherapeutics, quorum-sensing inhibitors, phage therapies, and probiotics can be considered natural and efficient antibiotic alternative candidates. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. Based on preclinical and clinical studies, postbiotics with their unique characteristics in terms of clinical (safe origin, without the potential spread of antibiotic resistance genes, unique and multiple antimicrobial action mechanisms), technological (stability and feasibility of largescale production), and economic (low production costs) aspects can be used as a novel alternative agent or adjuvant for the common antibiotics utilized in the production of animal-based foods. CONCLUSION Postbiotic constituents may be a new approach for utilization in the pharmaceutical and food sectors for developing therapeutic treatments. Further metabolomics investigations are required to describe novel postbiotics and clinical trials are also required to define the sufficient dose and optimum administration frequency of postbiotics.
Collapse
Affiliation(s)
- Sama Sepordeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sara Bazzaz
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Aslani
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sousan Houshmandi
- Department of Midwifery, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Tang M, Feng J, Xia HF, Xu CM, Wu LL, Wu M, Hong SL, Chen G, Zhang ZL. Continuous magnetic separation microfluidic chip for tumor cell in vivo detection. Chem Commun (Camb) 2023; 59:11955-11958. [PMID: 37727113 DOI: 10.1039/d3cc04062c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Continuously recording the dynamic changes of circulating tumor cells (CTCs) is crucial for tumor metastasis. This paper creates a continuous magnetic separation microfluidic chip that enables rapid and continuous in vivo cell detection. The chip shows its potential to study tumor cell circulation in the blood, offering a new platform for studying the cellular mechanism of tumor metastasis.
Collapse
Affiliation(s)
- Man Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Jiao Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Hou-Fu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China.
| | - Chun-Miao Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Ling-Ling Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Min Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China.
| | - Shao-Li Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China.
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
21
|
Zeng K, Osaid M, van der Wijngaart W. Efficient filter-in-centrifuge separation of low-concentration bacteria from blood. LAB ON A CHIP 2023; 23:4334-4342. [PMID: 37712252 DOI: 10.1039/d3lc00594a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Separating bacteria from infected blood is an important step in preparing samples for downstream bacteria detection and analysis. However, the extremely low bacteria concentration and extremely high blood cell count make efficient separation challenging. In this study, we introduce a method for separating bacteria from blood in a single centrifugation step, which involves sedimentation velocity-based differentiation followed by size-based cross-flow filtration over an inclined filter. Starting from 1 mL spiked whole blood, we recovered 32 ± 4% of the bacteria (Escherichia coli, Klebsiella pneumonia, or Staphylococcus aureus) within one hour while removing 99.4 ± 0.1% of the red blood cells, 98.4 ± 1.4% of the white blood cells, and 90.0 ± 2.6% of the platelets. Changing the device material could further increase bacteria recovery to >50%. We demonstrated bacterial recovery from blood spiked with 10 CFU mL-1. Our simple hands-off efficient separation of low-abundant bacteria approaches clinical expectations, making the new method a promising candidate for future clinical use.
Collapse
Affiliation(s)
- Kaiyang Zeng
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Mohammad Osaid
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden.
| | | |
Collapse
|
22
|
Lee EJ, Krassin ZL, Abaci HE, Mahler GJ, Esch MB. Pumped and pumpless microphysiological systems to study (nano)therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1911. [PMID: 37464464 PMCID: PMC11323280 DOI: 10.1002/wnan.1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 07/20/2023]
Abstract
Fluidic microphysiological systems (MPS) are microfluidic cell culture devices that are designed to mimic the biochemical and biophysical in vivo microenvironments of human tissues better than conventional petri dishes or well-plates. MPS-grown tissue cultures can be used for probing new drugs for their potential primary and secondary toxicities as well as their efficacy. The systems can also be used for assessing the effects of environmental nanoparticles and nanotheranostics, including their rate of uptake, biodistribution, elimination, and toxicity. Pumpless MPS are a group of MPS that often utilize gravity to recirculate cell culture medium through their microfluidic networks, providing some advantages, but also presenting some challenges. They can be operated with near-physiological amounts of blood surrogate (i.e., cell culture medium) that can recirculate in bidirectional or unidirectional flow patterns depending on the device configuration. Here we discuss recent advances in the design and use of both pumped and pumpless MPS with a focus on where pumpless devices can contribute to realizing the potential future role of MPS in evaluating nanomaterials. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Chemistry and Biochemistry, College of Computer, Mathematical and Natural Sciences, University of Maryland, College Park, Maryland, USA
- Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Zachary L Krassin
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York, USA
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University Medical Center, New York, New York, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York, USA
| | - Mandy B Esch
- Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
23
|
Jóskowiak A, Nogueira CL, Costa SP, Cunha AP, Freitas PP, Carvalho CM. A magnetic nanoparticle-based microfluidic device fabricated using a 3D-printed mould for separation of Escherichia coli from blood. Mikrochim Acta 2023; 190:356. [PMID: 37594644 PMCID: PMC10439042 DOI: 10.1007/s00604-023-05924-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Herein, A microfluidic device is described, produced with a 3D-printed master mould that rapidly separates and concentrates Escherichia coli directly from whole blood samples, enabling a reduction in the turnaround time of bloodstream infections (BSIs) diagnosis. Moreover, it promotes the cleansing of the blood samples whose complexity frequently hampers bacterial detection. The device comprises a serpentine mixing channel with two inlets, one for blood samples (spiked with bacteria) and the other for magnetic nanoparticles (MNPs) functionalized with a (bacterio)phage receptor-binding protein (RBP) with high specificity for E. coli. After the magnetic labelling of bacteria throughout the serpentine, the microchannel ends with a trapping reservoir where bacteria-MNPs conjugates are concentrated using a permanent magnet. The optimized sample preparation device successfully recovered E. coli (on average, 66%) from tenfold diluted blood spiked within a wide range of bacterial load (102 CFU to 107 CFU mL-1). The non-specific trapping, tested with Staphylococcus aureus, was at a negligible level of 12%. The assay was performed in 30 min directly from diluted blood thus presenting an advantage over the conventional enrichment in blood cultures (BCs). The device is simple and cheap to fabricate and can be tailored for multiple bacterial separation from complex clinical samples by using RBPs targeting different species. Moreover, the possibility to integrate a biosensing element to detect bacteria on-site can provide a reliable, fast, and cost-effective point-of-care device.
Collapse
Affiliation(s)
- Agnieszka Jóskowiak
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS -Associate Laboratory, Braga and Guimarães, Portugal
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga S/N, 4715-330, Braga, Portugal
| | - Catarina L Nogueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga S/N, 4715-330, Braga, Portugal
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnolnology, Rua Alves Redol, 9, 1000-029, Lisbon, Portugal
| | - Susana P Costa
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS -Associate Laboratory, Braga and Guimarães, Portugal
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga S/N, 4715-330, Braga, Portugal
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnolnology, Rua Alves Redol, 9, 1000-029, Lisbon, Portugal
| | - Alexandra P Cunha
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS -Associate Laboratory, Braga and Guimarães, Portugal
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga S/N, 4715-330, Braga, Portugal
| | - Paulo P Freitas
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga S/N, 4715-330, Braga, Portugal
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnolnology, Rua Alves Redol, 9, 1000-029, Lisbon, Portugal
| | - Carla M Carvalho
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga S/N, 4715-330, Braga, Portugal.
| |
Collapse
|
24
|
Gimondi S, Ferreira H, Reis RL, Neves NM. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation. ACS NANO 2023; 17:14205-14228. [PMID: 37498731 PMCID: PMC10416572 DOI: 10.1021/acsnano.3c01117] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The use of nanoparticles (NPs) in nanomedicine holds great promise for the treatment of diseases for which conventional therapies present serious limitations. Additionally, NPs can drastically improve early diagnosis and follow-up of many disorders. However, to harness their full capabilities, they must be precisely designed, produced, and tested in relevant models. Microfluidic systems can simulate dynamic fluid flows, gradients, specific microenvironments, and multiorgan complexes, providing an efficient and cost-effective approach for both NPs synthesis and screening. Microfluidic technologies allow for the synthesis of NPs under controlled conditions, enhancing batch-to-batch reproducibility. Moreover, due to the versatility of microfluidic devices, it is possible to generate and customize endless platforms for rapid and efficient in vitro and in vivo screening of NPs' performance. Indeed, microfluidic devices show great potential as advanced systems for small organism manipulation and immobilization. In this review, first we summarize the major microfluidic platforms that allow for controlled NPs synthesis. Next, we will discuss the most innovative microfluidic platforms that enable mimicking in vitro environments as well as give insights into organism-on-a-chip and their promising application for NPs screening. We conclude this review with a critical assessment of the current challenges and possible future directions of microfluidic systems in NPs synthesis and screening to impact the field of nanomedicine.
Collapse
Affiliation(s)
- Sara Gimondi
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - Helena Ferreira
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| |
Collapse
|
25
|
Shi Z, Zhang X, Yang X, Zhang X, Ma F, Gan H, Chen J, Wang D, Sun W, Wang J, Wang C, Lyu L, Yang K, Deng L, Qing G. Specific Clearance of Lipopolysaccharide from Blood Based on Peptide Bottlebrush Polymer for Sepsis Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302560. [PMID: 37247257 DOI: 10.1002/adma.202302560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Lipopolysaccharide (LPS) is the primary bacterial toxin that is vital to the pathogenesis and progression of sepsis associated with extremely high morbidity and mortality worldwide. However, specific clearance of LPS from circulating blood is highly challenging because of the structural complexity and its variation between/within bacterial species. Herein, a robust strategy based on phage display screening and hemocompatible peptide bottlebrush polymer design for specific clearance of targeted LPS from circulating blood is proposed. Using LPS extracted from Escherichia coli as an example, a novel peptide (HWKAVNWLKPWT) with high affinity (KD < 1.0 nм), specificity, and neutralization activity (95.9 ± 0.1%) against the targeted LPS is discovered via iterative affinity selection coupled with endotoxin detoxification screening. A hemocompatible bottlebrush polymer bearing the short peptide [poly(PEGMEA-co-PEP-1)] exhibits high LPS selectivity to reduce circulating LPS level from 2.63 ± 0.01 to 0.78 ± 0.05 EU mL-1 in sepsis rabbits via extracorporeal hemoperfusion (LPS clearance ratio > 70%), reversing the LPS-induced leukocytopenia and multiple organ damages significantly. This work provides a universal paradigm for developing a highly selective hemoadsorbent library fully covering the LPS family, which is promising to create a new era of precision medicine in sepsis therapy.
Collapse
Affiliation(s)
- Zhenqiang Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Xiancheng Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Xijing Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Xiaoyu Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Fei Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Junjun Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Wenjing Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Jingxia Wang
- Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Chengdu, 610101, P.R. China
| | - Cunli Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Liting Lyu
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Kaiguang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Lijing Deng
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| |
Collapse
|
26
|
Chen J, Shi Z, Yang X, Zhang X, Wang D, Qian S, Sun W, Wang C, Li Q, Wang Z, Song Y, Qing G. Broad-Spectrum Clearance of Lipopolysaccharides from Blood Based on a Hemocompatible Dihistidine Polymer. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37377344 DOI: 10.1021/acsami.3c05341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Blood infection can release toxic bacterial lipopolysaccharides (LPSs) into bloodstream, trigger a series of inflammatory reactions, and eventually lead to multiple organ dysfunction, irreversible shock, and even death, which seriously threatens human life and health. Herein, a functional block copolymer with excellent hemocompatibility is proposed to enable broad-spectrum clearance of LPSs from whole blood blindly before pathogen identification, facilitating timely rescue from sepsis. A dipeptide ligand of histidine-histidine (HH) was designed as the LPS binding unit, and poly[(trimethylamine N-oxide)-co-(histidine-histidine)], a functional block copolymer combining the LPS ligand of HH and a zwitterionic antifouling unit of trimethylamine N-oxide (TMAO), was then designed by reversible addition-fragmentation chain transfer (RAFT) polymerization. The functional polymer achieved effective clearance of LPSs from solutions and whole blood in a broad-spectrum manner and had good antifouling and anti-interference properties and hemocompatibility. The proposed functional dihistidine polymer provides a novel strategy for achieving broad-spectrum clearance of LPSs, with potential applications in clinical blood purification.
Collapse
Affiliation(s)
- Junjun Chen
- College of Pharmaceutical and Bioengineering, Shenyang University of Chemical Technology, Shenyang 110142, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenqiang Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xijing Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengxu Qian
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenjing Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Cunli Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiongya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhengjian Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yanling Song
- College of Pharmaceutical and Bioengineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
27
|
Friedrich B, Tietze R, Dümig M, Sover A, Boca MA, Schreiber E, Band J, Janko C, Krappmann S, Alexiou C, Lyer S. Magnetic Removal of Candida albicans Using Salivary Peptide-Functionalized SPIONs. Int J Nanomedicine 2023; 18:3231-3246. [PMID: 37337577 PMCID: PMC10276999 DOI: 10.2147/ijn.s409559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/07/2023] [Indexed: 06/21/2023] Open
Abstract
Purpose Magnetic separation of microbes can be an effective tool for pathogen identification and diagnostic applications to reduce the time needed for sample preparation. After peptide functionalization of superparamagnetic iron oxide nanoparticles (SPIONs) with an appropriate interface, they can be used for the separation of sepsis-associated yeasts like Candida albicans. Due to their magnetic properties, the magnetic extraction of the particles in the presence of an external magnetic field ensures the accumulation of the targeted yeast. Materials and Methods In this study, we used SPIONs coated with 3-aminopropyltriethoxysilane (APTES) and functionalized with a peptide originating from GP340 (SPION-APTES-Pep). For the first time, we investigate whether this system is suitable for the separation and enrichment of Candida albicans, we investigated its physicochemical properties and by thermogravimetric analysis we determined the amount of peptide on the SPIONs. Further, the toxicological profile was evaluated by recording cell cycle and DNA degradation. The separation efficiency was investigated using Candida albicans in different experimental settings, and regrowth experiments were carried out to show the use of SPION-APTES-Pep as a sample preparation method for the identification of fungal infections. Conclusion SPION-APTES-Pep can magnetically remove more than 80% of the microorganism and with a high selective host-pathogen distinction Candida albicans from water-based media and about 55% in blood after 8 minutes processing without compromising effects on the cell cycle of human blood cells. Moreover, the separated fungal cells could be regrown without any restrictions.
Collapse
Affiliation(s)
- Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michaela Dümig
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandru Sover
- Faculty of Engineering, Ansbach University of Applied Sciences, Ansbach, Germany
| | - Marius-Andrei Boca
- Faculty of Engineering, Ansbach University of Applied Sciences, Ansbach, Germany
| | - Eveline Schreiber
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Band
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sven Krappmann
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
28
|
Zheng H, Chen X, Li W, Lu J, Chen X. Establishment of a Fast Diagnostic Method for Sepsis Pathogens Based on M1 Bead Enrichment. Curr Microbiol 2023; 80:166. [PMID: 37022487 DOI: 10.1007/s00284-023-03280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Blood culture-based sepsis diagnostic methods usually cannot obtain positive results in a timely manner. Molecular diagnostic methods, such as real-time PCR without blood culture, would be more time-saving and suitable for pathogenic diagnosis of sepsis, while their sensitivities have always been unsatisfactory for the usually low concentration of pathogens in the blood of sepsis patients. In this study, we established a fast diagnostic method using magnetic beads coated with human recombined mannose-binding lectin that makes it possible to concentrate pathogens from human plasma that have low concentrations of pathogens. With subsequent microculture (MC) and real-time PCR, this method allowed the detection of 1-10 CFUs/ml of Staphylococcus aureus, Group A Streptococcus, Escherichia coli, Pseudomonas aeruginosa, Candida tropicalis, or C. albicans from human plasma within 9.5 h, which was 21-80 h earlier than blood culture. The combination of pathogen enrichment and MC made the detection of sepsis-causing pathogens more time-saving and more sensitive than blood culture or real-time PCR alone.
Collapse
Affiliation(s)
- Hao Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiaoli Chen
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wenge Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jinxing Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiaoping Chen
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
29
|
Wang Y, Liu L, Zheng X, Liu X. Membrane-camouflaged biomimetic nanoparticles as potential immunomodulatory solutions for sepsis: An overview. Front Bioeng Biotechnol 2023; 11:1111963. [PMID: 36970623 PMCID: PMC10036601 DOI: 10.3389/fbioe.2023.1111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction due to dysregulated host responses induced by infection. The presence of immune disturbance is key to the onset and development of sepsis but has remarkably limited therapeutic options. Advances in biomedical nanotechnology have provided innovative approaches to rebalancing the host immunity. In particular, the technique of membrane-coating has demonstrated remarkable improvements to therapeutic nanoparticles (NPs) in terms of tolerance and stability while also improving their biomimetic performance for immunomodulatory purposes. This development has led to the emergence of using cell-membrane-based biomimetic NPs in treating sepsis-associated immunologic derangements. In this minireview, we present an overview of the recent advances in membrane-camouflaged biomimetic NPs, highlighting their multifaceted immunomodulatory effects in sepsis such as anti-infection, vaccination, inflammation control, reversing of immunosuppression, and targeted delivery of immunomodulatory agents.
Collapse
Affiliation(s)
- Yanbei Wang
- School of Culture and Tourism, Chongqing City Management College, Chongqing, China
| | - Liping Liu
- School of Culture and Tourism, Chongqing City Management College, Chongqing, China
| | - Xinchuan Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Xinchuan Zheng, ; Xin Liu,
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
- *Correspondence: Xinchuan Zheng, ; Xin Liu,
| |
Collapse
|
30
|
Song Y, Zheng X, Hu J, Ma S, Li K, Chen J, Xu X, Lu X, Wang X. Recent advances of cell membrane-coated nanoparticles for therapy of bacterial infection. Front Microbiol 2023; 14:1083007. [PMID: 36876074 PMCID: PMC9981803 DOI: 10.3389/fmicb.2023.1083007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
The rapid evolution of antibiotic resistance and the complicated bacterial infection microenvironments are serious obstacles to traditional antibiotic therapy. Developing novel antibacterial agents or strategy to prevent the occurrence of antibiotic resistance and enhance antibacterial efficiency is of the utmost importance. Cell membrane-coated nanoparticles (CM-NPs) combine the characteristics of the naturally occurring membranes with those of the synthetic core materials. CM-NPs have shown considerable promise in neutralizing toxins, evading clearance by the immune system, targeting specific bacteria, delivering antibiotics, achieving responsive antibiotic released to the microenvironments, and eradicating biofilms. Additionally, CM-NPs can be utilized in conjunction with photodynamic, sonodynamic, and photothermal therapies. In this review, the process for preparing CM-NPs is briefly described. We focus on the functions and the recent advances in applications of several types of CM-NPs in bacterial infection, including CM-NPs derived from red blood cells, white blood cells, platelet, bacteria. CM-NPs derived from other cells, such as dendritic cells, genetically engineered cells, gastric epithelial cells and plant-derived extracellular vesicles are introduced as well. Finally, we place a novel perspective on CM-NPs' applications in bacterial infection, and list the challenges encountered in this field from the preparation and application standpoint. We believe that advances in this technology will reduce threats posed by bacteria resistance and save lives from infectious diseases in the future.
Collapse
Affiliation(s)
- Yue Song
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Xia Zheng
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Hu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Subo Ma
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kun Li
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junyao Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoyang Lu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaojuan Wang
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Le Guern F, Gaucher A, Cosentino G, Lagune M, Haagsman HP, Roux AL, Prim D, Rottman M. Labeled TEMPO-Oxidized Mannan Differentiates Binding Profiles within the Collectin Families. Int J Mol Sci 2022; 23:16067. [PMID: 36555720 PMCID: PMC9786299 DOI: 10.3390/ijms232416067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Establishing the rapid and accurate diagnosis of sepsis is a key component to the improvement of clinical outcomes. The ability of analytical platforms to rapidly detect pathogen-associated molecular patterns (PAMP) in blood could provide a powerful host-independent biomarker of sepsis. A novel concept was investigated based on the idea that a pre-bound and fluorescent ligand could be released from lectins in contact with high-affinity ligands (such as PAMPs). To create fluorescent ligands with precise avidity, the kinetically followed TEMPO oxidation of yeast mannan and carbodiimide coupling were used. The chemical modifications led to decreases in avidity between mannan and human collectins, such as the mannan-binding lectin (MBL) and human surfactant protein D (SP-D), but not in porcine SP-D. Despite this effect, these fluorescent derivatives were captured by human lectins using highly concentrated solutions. The resulting fluorescent beads were exposed to different solutions, and the results showed that displacements occur in contact with higher affinity ligands, proving that two-stage competition processes can occur in collectin carbohydrate recognition mechanisms. Moreover, the fluorescence loss depends on the discrepancy between the respective avidities of the recognized ligand and the fluorescent mannan. Chemically modulated fluorescent ligands associated with a diversity of collectins may lead to the creation of diagnostic tools suitable for multiplex array assays and the identification of high-avidity ligands.
Collapse
Affiliation(s)
- Florent Le Guern
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France
- Faculté de Médecine Simone Veil, Université de Versailles St Quentin, INSERM UMR U1173, 2 Avenue de la Source de la Bièvre, 78180 Montigny le Bretonneux, France
| | - Anne Gaucher
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | - Gina Cosentino
- Faculté de Médecine Simone Veil, Université de Versailles St Quentin, INSERM UMR U1173, 2 Avenue de la Source de la Bièvre, 78180 Montigny le Bretonneux, France
| | - Marion Lagune
- Faculté de Médecine Simone Veil, Université de Versailles St Quentin, INSERM UMR U1173, 2 Avenue de la Source de la Bièvre, 78180 Montigny le Bretonneux, France
| | - Henk P. Haagsman
- Section Molecular Host Defence, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Anne-Laure Roux
- Hôpital Raymond Poincaré, AP-HP, GHU Paris Saclay, 104 Bd Poincaré, 92380 Garches, France
- Plateforme des Biomarqueurs Innovants, 104 Bd Poincaré, 92380 Garches, France
| | - Damien Prim
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | - Martin Rottman
- Faculté de Médecine Simone Veil, Université de Versailles St Quentin, INSERM UMR U1173, 2 Avenue de la Source de la Bièvre, 78180 Montigny le Bretonneux, France
- Hôpital Raymond Poincaré, AP-HP, GHU Paris Saclay, 104 Bd Poincaré, 92380 Garches, France
- Plateforme des Biomarqueurs Innovants, 104 Bd Poincaré, 92380 Garches, France
| |
Collapse
|
32
|
Ultrafast Determination of Antimicrobial Resistant Staphylococcus aureus Specifically Captured by Functionalized Magnetic Nanoclusters. ACS Sens 2022; 7:3491-3500. [PMID: 36278860 DOI: 10.1021/acssensors.2c01837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sepsis, the systemic response to infection, is a life-threatening situation for patients and leads to high mortality, especially when caused by antimicrobial resistant pathogens. Prompt diagnosis and identification of the pathogenic bacteria, including their antibiotic resistance, are highly desired to yield a timely decision for treatment. Here, we aim to develop a platform for rapid isolation and efficient identification of Staphylococcus aureus, the most frequently occurring pathogen in sepsis. A peptide (VPHNPGLISLQG, SA5-1), specifically binding to S. aureus, was conjugated to the PEGylated magnetic nanoclusters, successfully enabling the specific capture and enrichment of S. aureus from blood serum. Consequently, fast detection of the antimicrobial resistance of the collected S. aureus was achieved within 30 min using a novel luminescent probe. These magnetic nanoclusters manifest a promising diagnostic prospect to combat sepsis.
Collapse
|
33
|
Kite KA, Loomba S, Elliott TJ, Yongblah F, Lightbown SL, Doyle TJ, Gates L, Alber D, Downey GA, McCurdy MT, Hill JA, Super M, Ingber DE, Klein N, Cloutman-Green E. FcMBL magnetic bead-based MALDI-TOF MS rapidly identifies paediatric blood stream infections from positive blood cultures. PLoS One 2022; 17:e0276777. [PMID: 36413530 PMCID: PMC9681079 DOI: 10.1371/journal.pone.0276777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Rapid identification of potentially life-threatening blood stream infections (BSI) improves clinical outcomes, yet conventional blood culture (BC) identification methods require ~24-72 hours of liquid culture, plus 24-48 hours to generate single colonies on solid media suitable for identification by mass spectrometry (MS). Newer rapid centrifugation techniques, such as the Bruker MBT-Sepsityper® IVD, replace culturing on solid media and expedite the diagnosis of BCs but frequently demonstrate reduced sensitivity for identifying clinically significant Gram-positive bacterial or fungal infections. This study introduces a protocol that utilises the broad-range binding properties of an engineered version of mannose-binding lectin linked to the Fc portion of immunoglobulin (FcMBL) to capture and enrich pathogens combined with matrix-assisted laser desorption-ionisation time-of-flight (MALDI-TOF) MS for enhanced infection identification in BCs. The FcMBL method identified 94.1% (64 of 68) of clinical BCs processed, with a high sensitivity for both Gram-negative and Gram-positive bacteria (94.7 and 93.2%, respectively). The FcMBL method identified more patient positive BCs than the Sepsityper® (25 of 25 vs 17 of 25), notably with 100% (3/3) sensitivity for clinical candidemia, compared to only 33% (1/3) for the Sepsityper®. Additionally, during inoculation experiments, the FcMBL method demonstrated a greater sensitivity, identifying 100% (24/24) of candida to genus level and 9/24 (37.5%) top species level compared to 70.8% (17/24) to genus and 6/24 to species (25%) using the Sepsityper®. This study demonstrates that capture and enrichment of samples using magnetic FcMBL-conjugated beads is superior to rapid centrifugation methods for identification of BCs by MALDI-TOF MS. Deploying the FcMBL method therefore offers potential clinical benefits in sensitivity and reduced turnaround times for BC diagnosis compared to the standard Sepsityper® kit, especially for fungal diagnosis.
Collapse
Affiliation(s)
- Kerry Anne Kite
- Great Ormond Street Institute of Child Health, London, United Kingdom
- * E-mail:
| | - Sahil Loomba
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Thomas J. Elliott
- Department of Mathematics, Imperial College London, London, United Kingdom
- Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | | | - Shanda L. Lightbown
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Thomas J. Doyle
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Lily Gates
- Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Dagmar Alber
- Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | | | - James A. Hill
- BOA Biomedical Inc., Cambridge, MA, United States of America
| | - Michael Super
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Nigel Klein
- Great Ormond Street Institute of Child Health, London, United Kingdom
- Great Ormond Street Hospital, London, United Kingdom
| | - Elaine Cloutman-Green
- Great Ormond Street Institute of Child Health, London, United Kingdom
- Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
34
|
Park SJ, Kwon S, Lee MS, Jang BH, Guzmán-Cedillo AE, Kang JH. Human Cell-Camouflaged Nanomagnetic Scavengers Restore Immune Homeostasis in a Rodent Model with Bacteremia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203746. [PMID: 36070419 DOI: 10.1002/smll.202203746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Bloodstream infection caused by antimicrobial resistance pathogens is a global concern because it is difficult to treat with conventional therapy. Here, scavenger magnetic nanoparticles enveloped by nanovesicles derived from blood cells (MNVs) are reported, which magnetically eradicate an extreme range of pathogens in an extracorporeal circuit. It is quantitatively revealed that glycophorin A and complement receptor (CR) 1 on red blood cell (RBC)-MNVs predominantly capture human fecal bacteria, carbapenem-resistant (CR) Escherichia coli, and extended-spectrum beta-lactamases-positive (ESBL-positive) E. coli, vancomycin-intermediate Staphylococcus aureus (VISA), endotoxins, and proinflammatory cytokines in human blood. Additionally, CR3 and CR1 on white blood cell-MNVs mainly contribute to depleting the virus envelope proteins of Zika, SARS-CoV-2, and their variants in human blood. Supplementing opsonins into the blood significantly augments the pathogen removal efficiency due to its combinatorial interactions between pathogens and CR1 and CR3 on MNVs. The extracorporeal blood cleansing enables full recovery of lethally infected rodent animals within 7 days by treating them twice in series. It is also validated that parameters reflecting immune homeostasis, such as blood cell counts, cytokine levels, and transcriptomics changes, are restored in blood of the fatally infected rats after treatment.
Collapse
Affiliation(s)
- Sung Jin Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Seyong Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Min Seok Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Bong Hwan Jang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Axel E Guzmán-Cedillo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Joo H Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
35
|
Zhou Y, Wu C, Ouyang L, Peng Y, Zhong D, Xiang X, Li J. Application of oXiris-continuous hemofiltration adsorption in patients with sepsis and septic shock: A single-centre experience in China. Front Public Health 2022; 10:1012998. [PMID: 36249210 PMCID: PMC9557776 DOI: 10.3389/fpubh.2022.1012998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/12/2022] [Indexed: 01/27/2023] Open
Abstract
oXiris is a new, high-adsorption membrane filter in continuous hemofiltration adsorption to reduce the inflammatory response in sepsis. The investigators retrospectively reviewed patients with sepsis/septic shock who underwent at least one oXiris-treatment from November 2020 to March 2022. The demographic data, baseline levels before treatment, clinical datas, prognosis, and the occurrence of adverse events during treatment were recorded. 90 patients were enrolled in this study. The hemodynamic indices, sequential organ failure assessment score, lactate, inflammatory biomarkers levels were significantly improved at 12 h and 24 h after treatment. Procalcitonin and interleukin-6 reduction post-treatment of oXiris were most pronounced in infection from skin and soft tissue, urinary and abdominal cavity. Logistic regression analysis showed that pre-treatment sequential organ failure assessment score (p = 0.034), percentage decrease in sequential organ failure assessment score (p = 0.004), and age (p = 0.011) were independent risk factors for intensive care unit mortality. In conclusion, oXiris-continuous hemofiltration adsorption may improve hemodynamic indicators, reduce the use of vasoactive drugs, reduce lactate level and infection indicators. Of note, oXiris improve organ function in sepsis, which may result to higher survival rate.
Collapse
|
36
|
Richter F, Bindschedler S, Calonne-Salmon M, Declerck S, Junier P, Stanley CE. Fungi-on-a-Chip: microfluidic platforms for single-cell studies on fungi. FEMS Microbiol Rev 2022; 46:6674677. [PMID: 36001464 PMCID: PMC9779915 DOI: 10.1093/femsre/fuac039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
This review highlights new advances in the emerging field of 'Fungi-on-a-Chip' microfluidics for single-cell studies on fungi and discusses several future frontiers, where we envisage microfluidic technology development to be instrumental in aiding our understanding of fungal biology. Fungi, with their enormous diversity, bear essential roles both in nature and our everyday lives. They inhabit a range of ecosystems, such as soil, where they are involved in organic matter degradation and bioremediation processes. More recently, fungi have been recognized as key components of the microbiome in other eukaryotes, such as humans, where they play a fundamental role not only in human pathogenesis, but also likely as commensals. In the food sector, fungi are used either directly or as fermenting agents and are often key players in the biotechnological industry, where they are responsible for the production of both bulk chemicals and antibiotics. Although the macroscopic fruiting bodies are immediately recognizable by most observers, the structure, function, and interactions of fungi with other microbes at the microscopic scale still remain largely hidden. Herein, we shed light on new advances in the emerging field of Fungi-on-a-Chip microfluidic technologies for single-cell studies on fungi. We discuss the development and application of microfluidic tools in the fields of medicine and biotechnology, as well as in-depth biological studies having significance for ecology and general natural processes. Finally, a future perspective is provided, highlighting new frontiers in which microfluidic technology can benefit this field.
Collapse
Affiliation(s)
- Felix Richter
- Department of Bioengineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Saskia Bindschedler
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Université catholique de Louvain, Place Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Laboratory of Mycology, Université catholique de Louvain, Place Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Claire E Stanley
- Corresponding author: Department of Bioengineering, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, United Kingdom. E-mail:
| |
Collapse
|
37
|
Astor TL, Borenstein JT. The microfluidic artificial lung: Mimicking nature's blood path design to solve the biocompatibility paradox. Artif Organs 2022; 46:1227-1239. [PMID: 35514275 DOI: 10.1111/aor.14266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
The increasing prevalence of chronic lung disease worldwide, combined with the emergence of multiple pandemics arising from respiratory viruses over the past century, highlights the need for safer and efficacious means for providing artificial lung support. Mechanical ventilation is currently used for the vast majority of patients suffering from acute and chronic lung failure, but risks further injury or infection to the patient's already compromised lung function. Extracorporeal membrane oxygenation (ECMO) has emerged as a means of providing direct gas exchange with the blood, but limited access to the technology and the complexity of the blood circuit have prevented the broader expansion of its use. A promising avenue toward simplifying and minimizing complications arising from the blood circuit, microfluidics-based artificial organ support, has emerged over the past decade as an opportunity to overcome many of the fundamental limitations of the current standard for ECMO cartridges, hollow fiber membrane oxygenators. The power of microfluidics technology for this application stems from its ability to recapitulate key aspects of physiological microcirculation, including the small dimensions of blood vessel structures and gas transfer membranes. An even greater advantage of microfluidics, the ability to configure blood flow patterns that mimic the smooth, branching nature of vascular networks, holds the potential to reduce the incidence of clotting and bleeding and to minimize reliance on anticoagulants. Here, we summarize recent progress and address future directions and goals for this potentially transformative approach to artificial lung support.
Collapse
Affiliation(s)
- Todd L Astor
- Biomembretics, Inc., Boston, Massachusetts, USA.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
38
|
Sorgenfrei M, Hürlimann LM, Remy MM, Keller PM, Seeger MA. Biomolecules capturing live bacteria from clinical samples. Trends Biochem Sci 2022; 47:673-688. [PMID: 35487808 DOI: 10.1016/j.tibs.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/04/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Rapid phenotypic antimicrobial susceptibility testing (AST) requires the enrichment of live bacteria from patient samples, which is particularly challenging in the context of life-threatening bloodstream infections (BSIs) due to low bacterial titers. Over two decades, an extensive array of pathogen-specific biomolecules has been identified to capture live bacteria. The prevailing biomolecules are immune proteins of the complement system, antibodies, aptamers, phage proteins, and antimicrobial peptides. These biomolecules differ by their binder generation technologies and exhibit highly variable specificities, ranging from bacterial strains to most pathogenic bacteria. Here, we summarize how these diverse biomolecules were identified, list examples of successfully reported capture assays, and provide an outlook on the use of nanobodies raised against conserved surface-accessible proteins as promising biomolecules for pathogen capture.
Collapse
Affiliation(s)
- Michèle Sorgenfrei
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Lea M Hürlimann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Mélissa M Remy
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Peter M Keller
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
39
|
Naseri M, Maliha M, Dehghani M, Simon GP, Batchelor W. Rapid Detection of Gram-Positive and -Negative Bacteria in Water Samples Using Mannan-Binding Lectin-Based Visual Biosensor. ACS Sens 2022; 7:951-959. [PMID: 35290028 DOI: 10.1021/acssensors.1c01748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Waterborne bacterial infection is a health threat worldwide, making accurate and timely bacteria detection crucial to prevent waterborne disease outbreaks. Inspired by the intrinsic capability of mannan-binding lectin (MBL) in recognizing the pathogen-associated molecular patterns (PAMPs), a visual biosensor is developed here for the on-site detection of both Gram-positive and -negative bacteria. The biosensor was synthesized by immobilization of the MBL protein onto the blue carboxyl-functionalized polystyrene microparticles (PSM), which is then used in a two-step assay to detect bacterial cells in water samples. The first step involved a 20 min incubation following the MBL-PSM and calcium chloride solution addition to the samples. The second step was to add ethanol to the resultant blue mixture and observe the color change with the naked eye after 15 min. The biosensor had a binary (all-or-none) response, which in the presence of bacterial cells kept its blue color, while in their absence the color changed from blue to colorless. Testing the water samples spiked with four Gram-negative bacteria including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa and two Gram-positive bacteria of Enterococcus faecalis and Staphylococcus aureus showed that the biosensor could detect all tested bacteria with a concentration as low as 101.5 CFU/ml. The performance of biosensor using the water samples from a water treatment plant also confirmed its capability to detect the pathogens in real-life water samples without the need for instrumentation.
Collapse
Affiliation(s)
- Mahdi Naseri
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maisha Maliha
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Mostafa Dehghani
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - George P Simon
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Warren Batchelor
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
40
|
Tjandra KC, Ram-Mohan N, Abe R, Hashemi MM, Lee JH, Chin SM, Roshardt MA, Liao JC, Wong PK, Yang S. Diagnosis of Bloodstream Infections: An Evolution of Technologies towards Accurate and Rapid Identification and Antibiotic Susceptibility Testing. Antibiotics (Basel) 2022; 11:511. [PMID: 35453262 PMCID: PMC9029869 DOI: 10.3390/antibiotics11040511] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Bloodstream infections (BSI) are a leading cause of death worldwide. The lack of timely and reliable diagnostic practices is an ongoing issue for managing BSI. The current gold standard blood culture practice for pathogen identification and antibiotic susceptibility testing is time-consuming. Delayed diagnosis warrants the use of empirical antibiotics, which could lead to poor patient outcomes, and risks the development of antibiotic resistance. Hence, novel techniques that could offer accurate and timely diagnosis and susceptibility testing are urgently needed. This review focuses on BSI and highlights both the progress and shortcomings of its current diagnosis. We surveyed clinical workflows that employ recently approved technologies and showed that, while offering improved sensitivity and selectivity, these techniques are still unable to deliver a timely result. We then discuss a number of emerging technologies that have the potential to shorten the overall turnaround time of BSI diagnosis through direct testing from whole blood-while maintaining, if not improving-the current assay's sensitivity and pathogen coverage. We concluded by providing our assessment of potential future directions for accelerating BSI pathogen identification and the antibiotic susceptibility test. While engineering solutions have enabled faster assay turnaround, further progress is still needed to supplant blood culture practice and guide appropriate antibiotic administration for BSI patients.
Collapse
Affiliation(s)
- Kristel C. Tjandra
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Nikhil Ram-Mohan
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Ryuichiro Abe
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Marjan M. Hashemi
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Jyong-Huei Lee
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
| | - Siew Mei Chin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
| | - Manuel A. Roshardt
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
| | - Joseph C. Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Surgery, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Samuel Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| |
Collapse
|
41
|
Fc-MBL-modified Fe 3O 4 magnetic bead enrichment and fixation in Gram stain for rapid detection of low-concentration bacteria. Mikrochim Acta 2022; 189:169. [PMID: 35364796 DOI: 10.1007/s00604-022-05277-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Functional bacterial enrichment magnetic beads (Fe3O4@SiO2@Fc-MBL) and Gram staining were combined for the fast diagnosis of infecting bacteria in meningitis. Fe3O4@SiO2@Fc-MBL has excellent microbial binding ability and can be used for bacterial enrichment from cerebrospinal fluid (CSF). The enriched bacteria are recognized by Gram stain at very low concentrations (10 CFU·mL-1). The feasibility of this method was verified by five common bacteria in meningitis infection (Gram-positive: Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus capitis; Gram-negative: Klebsiella pneumoniae and Escherichia coli). The extraction efficiency of Fc-MBL-modified Fe3O4 magnetic beads was approximately 90% in artificial CSF for the selected bacteria, with the exception of E. coli (~ 60%). The bacteria were successfully recognized by Gram staining and microscopic observation. Fe3O4@SiO2@Fc-MBL acts by capturing and fixing the bacteria in a magnetic field throughout the experiment. Compared with traditional CSF Gram staining, this new method avoids interference by inflammatory cells and red blood cells during microscopic examination. Furthermore, the sensitivity of this method is much better than the centrifugation smear method. The whole process can be accomplished within 30 min. This novel method may have potential as a clinical tool for analysis of bacteria in the CSF.
Collapse
|
42
|
Friedrich B, Lyer S, Janko C, Unterweger H, Brox R, Cunningham S, Dutz S, Taccardi N, Bikker FJ, Hurle K, Sebald H, Lenz M, Spiecker E, Fester L, Hackstein H, Strauß R, Boccaccini AR, Bogdan C, Alexiou C, Tietze R. Scavenging of bacteria or bacterial products by magnetic particles functionalized with a broad-spectrum pathogen recognition receptor motif offers diagnostic and therapeutic applications. Acta Biomater 2022; 141:418-428. [PMID: 34999260 DOI: 10.1016/j.actbio.2022.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022]
Abstract
Sepsis is a dysregulated host response of severe bloodstream infections, and given its frequency of occurrence and high mortality rate, therapeutic improvements are imperative. A reliable biomimetic strategy for the targeting and separation of bacterial pathogens in bloodstream infections involves the use of the broad-spectrum binding motif of human GP-340, a pattern-recognition receptor of the scavenger receptor cysteine rich (SRCR) superfamily that is expressed on epithelial surfaces but not found in blood. Here we show that these peptides, when conjugated to superparamagnetic iron oxide nanoparticles (SPIONs), can separate various bacterial endotoxins and intact microbes (E. coli, S. aureus, P. aeruginosa and S. marcescens) with high efficiency, especially at low and thus clinically relevant concentrations. This is accompanied by a subsequent strong depletion in cytokine release (TNF, IL-6, IL-1β, Il-10 and IFN-γ), which could have a direct therapeutic impact since escalating immune responses complicates severe bloodstream infections and sepsis courses. SPIONs are coated with aminoalkylsilane and capture peptides are orthogonally ligated to this surface. The particles behave fully cyto- and hemocompatible and do not interfere with host structures. Thus, this approach additionally aims to dramatically reduce diagnostic times for patients with suspected bloodstream infections and accelerate targeted antibiotic therapy. STATEMENT OF SIGNIFICANCE: Sepsis is often associated with excessive release of cytokines. This aspect and slow diagnostic procedures are the major therapeutic obstacles. The use of magnetic particles conjugated with small peptides derived from the binding motif of a broad-spectrum mucosal pathogen recognition protein GP-340 provides a highly efficient scavenging platform. These peptides are not found in blood and therefore are not subject to inhibitory mechanisms like in other concepts (mannose binding lectine, aptamers, antibodies). In this work, data are shown on the broad bacterial binding spectrum, highly efficient toxin depletion, which directly reduces the release of cytokines. Host cells are not affected and antibiotics not adsorbed. The particle bound microbes can be recultured without restriction and thus be used directly for diagnostics.
Collapse
Affiliation(s)
- Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Regine Brox
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Germany
| | - Sarah Cunningham
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Germany
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, Germany
| | - Nicola Taccardi
- Institute of Chemical Reaction Engineering, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), the Netherlands
| | - Katrin Hurle
- GeoZentrum Nordbayern, Mineralogy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Heidi Sebald
- Immunologie und Hygiene, Mikrobiologisches Institut - Klinische Mikrobiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Malte Lenz
- Institute of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Interdisciplinary Center for Nanostructure Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Interdisciplinary Center for Nanostructure Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Lars Fester
- Institute of Anatomy and Cell Biology Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Germany
| | - Richard Strauß
- Department of Medicine 1, Universitätsklinikum Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Christian Bogdan
- Immunologie und Hygiene, Mikrobiologisches Institut - Klinische Mikrobiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany.
| |
Collapse
|
43
|
Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems. Pharmaceutics 2022; 14:pharmaceutics14030586. [PMID: 35335962 PMCID: PMC8950514 DOI: 10.3390/pharmaceutics14030586] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 01/04/2023] Open
Abstract
Antibiotic resistance has become a threat to microbial therapies nowadays. The conventional approaches possess several limitations to combat microbial infections. Therefore, to overcome such complications, novel drug delivery systems have gained pharmaceutical scientists’ interest. Significant findings have validated the effectiveness of novel drug delivery systems such as polymeric nanoparticles, liposomes, metallic nanoparticles, dendrimers, and lipid-based nanoparticles against severe microbial infections and combating antimicrobial resistance. This review article comprises the specific mechanism of antibiotic resistance development in bacteria. In addition, the manuscript incorporated the advanced nanotechnological approaches with their mechanisms, including interaction with the bacterial cell wall, inhibition of biofilm formations, activation of innate and adaptive host immune response, generation of reactive oxygen species, and induction of intracellular effect to fight against antibiotic resistance. A section of this article demonstrated the findings related to the development of delivery systems. Lastly, the role of microfluidics in fighting antimicrobial resistance has been discussed. Overall, this review article is an amalgamation of various strategies to study the role of novel approaches and their mechanism to fight against the resistance developed to the antimicrobial therapies.
Collapse
|
44
|
Lee MS, Hyun H, Park I, Kim S, Jang DH, Kim S, Im JK, Kim H, Lee JH, Kwon T, Kang JH. Quantitative Fluorescence In Situ Hybridization (FISH) of Magnetically Confined Bacteria Enables Early Detection of Human Bacteremia. SMALL METHODS 2022; 6:e2101239. [PMID: 35112812 DOI: 10.1002/smtd.202101239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/02/2022] [Indexed: 06/14/2023]
Abstract
The current diagnosis of bacteremia mainly relies on blood culture, which is inadequate for the rapid and quantitative determination of most bacteria in blood. Here, a quantitative, multiplex, microfluidic fluorescence in situ hybridization method (μFISH) is developed, which enables early and rapid (3-h) diagnosis of bacteremia without the need for prior blood culture. This novel technology employs mannose-binding lectin-coated magnetic nanoparticles, which effectively opsonize a broad range of pathogens, magnetically sequestering them in a microfluidic device. Therein, μFISH probes, based on unique 16S rRNA sequences, enable the identification and quantification of sequestered pathogens both in saline and whole blood, which is more sensitive than conventional polymerase chain reaction. Using μFISH, Escherichia coli (E. coli) is detected in whole blood collected from a porcine disease model and from E. coli-infected patients. Moreover, the proportion of E. coli, relative to other bacterial levels in the blood, is accurately and rapidly determined, which is not possible using conventional diagnostic methods. Blood from E. coli-infected patients is differentiated from healthy donors' blood using cutoff values with a 0.05 significance level. Thus, μFISH is a versatile method that can be used to rapidly identify pathogens and determine their levels relative to other culturable and nonculturable bacteria in biological samples.
Collapse
Affiliation(s)
- Min Seok Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hwi Hyun
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Inwon Park
- Department of Emergency Medicine, Seoul National University Bundang Hospital (SNUBH), Gyeonggi-do, 13620, Republic of Korea
| | - Sungho Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dong-Hyun Jang
- Department of Emergency Medicine, Seoul National University Bundang Hospital (SNUBH), Gyeonggi-do, 13620, Republic of Korea
| | - Seonghye Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital (SNUBH), Gyeonggi-do, 13620, Republic of Korea
| | - Jae-Kyeong Im
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hajin Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jae Hyuk Lee
- Department of Emergency Medicine, Seoul National University Bundang Hospital (SNUBH), Gyeonggi-do, 13620, Republic of Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Joo H Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
45
|
Cheng W, Shi H, Teng M, Yu M, Feng B, Ding C, Yu S, Yang F. Rapid identification of bacterial mixtures in urine using MALDI-TOF MS-based algorithm profiling coupled with magnetic enrichment. Analyst 2022; 147:443-449. [PMID: 34985055 DOI: 10.1039/d1an02098f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Urinary tract infections (UTIs) are a severe public health problem caused by mono- or poly-bacteria. Culture-based methods are routinely used for the diagnosis of UTIs in clinical practice, but those are time consuming. Rapid and unambiguous identification of each pathogen in UTIs can have a significant impact on timely diagnoses and precise treatment. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an alternative method for the identification of pathogens in clinical laboratories. However, a certain number of pure bacteria are required for MALDI-TOF MS analysis. Here, we explored a strategy combining magnetic enrichment and MALDI-TOF MS for the rapid identification of pathogenic bacterial mixtures in urine. Fragment crystallizable mannose-binding lectin-modified Fe3O4 (Fc-MBL@Fe3O4) was used for rapid enrichment and the individual-peak-based similarity model as the analytical tool. Within 30 min, a mixture of the four most prevalent UTI-causing bacteria, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa, was successfully identified using this method. This rapid MALDI-TOF MS-based strategy has potential applications in the clinical identification of UTI pathogens.
Collapse
Affiliation(s)
- Wenmin Cheng
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Haimei Shi
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Mengjing Teng
- Kweichow Moutai Group, Renhuai, Guizhou, 564501, China
| | - Menghuan Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Bin Feng
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Chuanfan Ding
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou, 564501, China
| |
Collapse
|
46
|
Ongwae GM, Chordia MD, Cawley JL, Dalesandro BE, Wittenberg NJ, Pires MM. Targeting of Pseudomonas aeruginosa cell surface via GP12, an Escherichia coli specific bacteriophage protein. Sci Rep 2022; 12:721. [PMID: 35031652 PMCID: PMC8760310 DOI: 10.1038/s41598-021-04627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/28/2021] [Indexed: 11/08/2022] Open
Abstract
Bacteriophages are highly abundant molecular machines that have evolved proteins to target the surface of host bacterial cells. Given the ubiquity of lipopolysaccharides (LPS) on the outer membrane of Gram-negative bacteria, we reasoned that targeting proteins from bacteriophages could be leveraged to target the surface of Gram-negative pathogens for biotechnological applications. To this end, a short tail fiber (GP12) from the T4 bacteriophage, which infects Escherichia coli (E. coli), was isolated and tested for the ability to adhere to whole bacterial cells. We found that, surprisingly, GP12 effectively bound the surface of Pseudomonas aeruginosa cells despite the established preferred host of T4 for E. coli. In efforts to elucidate why this binding pattern was observed, it was determined that the absence of the O-antigen region of LPS on E. coli improved cell surface tagging. This indicated that O-antigens play a significant role in controlling cell adhesion by T4. Probing GP12 and LPS interactions further using deletions of the enzymes involved in the biosynthetic pathway of LPS revealed the inner core oligosaccharide as a possible main target of GP12. Finally, we demonstrated the potential utility of GP12 for biomedical applications by showing that GP12-modified agarose beads resulted in the depletion of pathogenic bacteria from solution.
Collapse
Affiliation(s)
- George M Ongwae
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, USA
| | - Mahendra D Chordia
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jennie L Cawley
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, USA
| | - Brianna E Dalesandro
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | | | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
47
|
Nanobody-based polyvinyl alcohol beads as antifouling adsorbents for selective removal of tumor necrosis factor-α. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
González-Fernández C, Bringas E, Oostenbrink C, Ortiz I. In silico investigation and surmounting of Lipopolysaccharide barrier in Gram-Negative Bacteria: How far has molecular dynamics Come? Comput Struct Biotechnol J 2022; 20:5886-5901. [PMID: 36382192 PMCID: PMC9636410 DOI: 10.1016/j.csbj.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Lipopolysaccharide (LPS), a main component of the outer membrane of Gram-negative bacteria, has crucial implications on both antibiotic resistance and the overstimulation of the host innate immune system. Fighting against these global concerns calls for the molecular understanding of the barrier function and immunostimulatory ability of LPS. Molecular dynamics (MD) simulations have become an invaluable tool for uncovering important findings in LPS research. While the reach of MD simulations for investigating the immunostimulatory ability of LPS has been already outlined, little attention has been paid to the role of MD simulations for exploring its barrier function and synthesis. Herein, we give an overview about the impact of MD simulations on gaining insight into the shield role and synthesis pathway of LPS, which have attracted considerable attention to discover molecules able to surmount antibiotic resistance, either circumventing LPS defenses or disrupting its synthesis. We specifically focus on the enhanced sampling and free energy calculation methods that have been combined with MD simulations to address such research. We also highlight the use of special-purpose MD supercomputers, the importance of appropriate LPS and ions parameterization to obtain reliable results, and the complementary views that MD and wet-lab experiments provide. Thereby, this work, which covers the last five years of research, apart from outlining the phenomena and strategies that are being explored, evidences the valuable insights that are gained by MD, which may be useful to advance antibiotic design, and what the prospects of this in silico method could be in LPS research.
Collapse
Affiliation(s)
- Cristina González-Fernández
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Eugenio Bringas
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, BOKU – University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Inmaculada Ortiz
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
- Corresponding author.
| |
Collapse
|
49
|
Choi G, Tang Z, Guan W. Microfluidic high-throughput single-cell mechanotyping: Devices and
applications. NANOTECHNOLOGY AND PRECISION ENGINEERING 2021. [DOI: 10.1063/10.0006042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Gihoon Choi
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
| | - Zifan Tang
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
| |
Collapse
|
50
|
Zhang YY, Ning BT. Signaling pathways and intervention therapies in sepsis. Signal Transduct Target Ther 2021; 6:407. [PMID: 34824200 PMCID: PMC8613465 DOI: 10.1038/s41392-021-00816-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection. Over decades, advanced understanding of host-microorganism interaction has gradually unmasked the genuine nature of sepsis, guiding toward new definition and novel therapeutic approaches. Diverse clinical manifestations and outcomes among infectious patients have suggested the heterogeneity of immunopathology, while systemic inflammatory responses and deteriorating organ function observed in critically ill patients imply the extensively hyperactivated cascades by the host defense system. From focusing on microorganism pathogenicity, research interests have turned toward the molecular basis of host responses. Though progress has been made regarding recognition and management of clinical sepsis, incidence and mortality rate remain high. Furthermore, clinical trials of therapeutics have failed to obtain promising results. As far as we know, there was no systematic review addressing sepsis-related molecular signaling pathways and intervention therapy in literature. Increasing studies have succeeded to confirm novel functions of involved signaling pathways and comment on efficacy of intervention therapies amid sepsis. However, few of these studies attempt to elucidate the underlining mechanism in progression of sepsis, while other failed to integrate preliminary findings and describe in a broader view. This review focuses on the important signaling pathways, potential molecular mechanism, and pathway-associated therapy in sepsis. Host-derived molecules interacting with activated cells possess pivotal role for sepsis pathogenesis by dynamic regulation of signaling pathways. Cross-talk and functions of these molecules are also discussed in detail. Lastly, potential novel therapeutic strategies precisely targeting on signaling pathways and molecules are mentioned.
Collapse
Affiliation(s)
- Yun-Yu Zhang
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Bo-Tao Ning
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| |
Collapse
|