1
|
Klimpert N, Kollo M, Brann DH, Tan C, Barry D, Ma Y, Schaefer AT, Fleischmann A. 3D spatial transcriptomics reveals the molecular structure of input and output pathways in the mouse olfactory bulb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639192. [PMID: 40060607 PMCID: PMC11888228 DOI: 10.1101/2025.02.19.639192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
A core organizing principle of the vertebrate brain is its symmetry along multiple axes. However, the precision with which neurons, circuit modules, and brain regions align to these axes remains poorly understood. Here, we used 3D spatial transcriptomics to reconstruct the anatomical and molecular organization of the mouse olfactory bulb. We mapped the positions of nearly one thousand molecularly distinct glomeruli, the structural and functional units of odor processing, revealing highly symmetric organization across hemispheres. Within each bulb, we delineated a curved axis of symmetry that divides pairs of sister glomeruli. Gene expression in the olfactory epithelium predicted glomerular position with near-glomerular resolution. However, glomerular symmetry did not extend to deeper layer mitral and granule cells, suggesting a reorganization from sensory input to cortical output pathways. Our findings provide the first comprehensive map of the olfactory bulb and reveal how its molecular structure is instructed by epithelial gene expression programs.
Collapse
|
2
|
Kang M, Ahn B, Shin JY, Cho HS, Lee J, Park C. Influence of MHC on genetic diversity and testicular expression of linked olfactory receptor genes. BMC Genomics 2025; 26:115. [PMID: 39915713 PMCID: PMC11800647 DOI: 10.1186/s12864-025-11281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Olfactory receptor (OR) genes are highly polymorphic and form extensive families that recognize a wide range of vertebrate odorants. To explore the genetic diversity of MHC-linked OR genes and their connection to MHC genes, we conducted a combined haplotype analysis of MHC-linked OR and MHC class I genes to determine the influence of MHC on OR diversity, which could be associated with MHC-based mate selection. RESULTS We selected nine MHC-linked OR genes based on their expression levels in pig testes and developed a sequence-based typing method for these genes. We then performed high-resolution typing of these OR genes, along with three major classical MHC class I genes (SLA-1, -2, and - 3), in 48 pigs across six breeds. We observed significantly higher allelic diversity (P < 0.01) in ORs with strong linkage disequilibrium (LD) to SLA compared to those with weak or no LD, and we identified 48 SLA class I-OR haplotypes using the expectation-maximization algorithm. The genetic diversity of SLA-linked ORs was positively correlated with their expression levels in the testis. Specifically, SLA-linked ORs with higher testicular expression (FPKM ≥ 0.1) exhibited an increase in the number of codons under mutually diversifying selection with SLA compared to those with lower expression (FPKM < 0.1). CONCLUSIONS The presence of evolutionary interactions between MHC and linked OR genes supports the potential involvement of MHC-linked ORs in MHC-based mate selection. The use of combined haplotype information for MHC and linked ORs could provide new insights into the reproductive biology of animals.
Collapse
Affiliation(s)
- Mingue Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byeongyong Ahn
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jae Yeol Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hye-Sun Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jongan Lee
- Animal Genome & Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
3
|
Firmino LER, Malnic B. Purification of Nuclear and Cytoplasmic RNA from the Mouse Olfactory Epithelium. Methods Mol Biol 2025; 2915:61-69. [PMID: 40249483 DOI: 10.1007/978-1-0716-4466-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The sense of smell relies on the monoallelic and monogenic expression of odorant receptor (OR) genes. Noncoding RNAs (RNAs that are not translated into proteins) may potentially be involved in the regulation of OR gene expression, but their roles in olfactory tissues remain elusive. Here we describe a protocol for isolating nuclear and cytoplasmic RNA fractions from mouse olfactory epithelium. The dissected tissue is subjected to cellular fractionation and RNA is extracted from the nuclear and cytoplasmic fractions. The purified RNA is then subjected to RT-PCR analysis, to verify the enrichment of nuclear/cytoplasm transcripts and control the quality of the fractionation. Determination of the subcellular localization of different RNAs may contribute to the identification of RNAs with regulatory functions in olfaction.
Collapse
Affiliation(s)
| | - Bettina Malnic
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Butantã, SP, Brazil.
| |
Collapse
|
4
|
Guo J, Kang SG, Huang K, Tong T. Targeting Odorant Receptors in Adipose Tissue with Food-Derived Odorants: A Novel Approach to Obesity Treatment. Foods 2024; 13:3938. [PMID: 39683011 DOI: 10.3390/foods13233938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Odorant receptors (ORs) have long been thought to serve as chemosensors located on the cilia of olfactory sensory neurons (OSNs) in the olfactory epithelium, where they recognize odorant molecules and comprise the largest family of seven transmembrane-domain G protein-coupled receptors (GPCRs). Over the last three decades, accumulating evidence has suggested that ORs are distributed in a variety of peripheral tissues beyond their supposed typical tissue expression in the olfactory epithelium. These ectopic ORs play a role in regulating various cellular, physiological, and pathophysiological phenomena in the body, such as regulation of hypertension, hepatic glucose production, cancer development, and chronic skin disease. Adipose tissue, the key organ in regulating obesity and energy metabolism, has been reported to take advantage of ectopic OR-mediated signaling. In this review, we summarize and provide an in-depth analysis of the current research on the key biological functions of adipose tissue ORs in response to food-derived odorants, as well as the molecular mechanisms underlying their activity.
Collapse
Affiliation(s)
- Jingya Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun 58554, Republic of Korea
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Tao Tong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| |
Collapse
|
5
|
Chen YN, Kostka JK. Beyond anosmia: olfactory dysfunction as a common denominator in neurodegenerative and neurodevelopmental disorders. Front Neurosci 2024; 18:1502779. [PMID: 39539496 PMCID: PMC11557544 DOI: 10.3389/fnins.2024.1502779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Olfactory dysfunction has emerged as a hallmark feature shared among several neurological conditions, including both neurodevelopmental and neurodegenerative disorders. While diseases of both categories have been extensively studied for decades, their association with olfaction has only recently gained attention. Olfactory deficits often manifest already during prodromal stages of these diseases, yet it remains unclear whether common pathophysiological changes along olfactory pathways cause such impairments. Here we probe into the intricate relationship between olfactory dysfunction and neurodegenerative and neurodevelopmental disorders, shedding light on their commonalities and underlying mechanisms. We begin by providing a brief overview of the olfactory circuit and its connections to higher-associated brain areas. Additionally, we discuss olfactory deficits in these disorders, focusing on potential common mechanisms that may contribute to olfactory dysfunction across both types of disorders. We further debate whether olfactory deficits contribute to the disease propagation or are simply an epiphenomenon. We conclude by emphasizing the significance of olfactory function as a potential pre-clinical diagnostic tool to identify individuals with neurological disorders that offers the opportunity for preventive intervention before other symptoms manifest.
Collapse
Affiliation(s)
- Yu-Nan Chen
- Institute of Developmental Neuroscience, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Katharina Kostka
- Institute of Developmental Neuroscience, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Lao Y, Guo J, Fang J, Geng R, Li M, Qin Y, Wu J, Kang SG, Huang K, Tong T. Beyond flavor: the versatile roles of eugenol in health and disease. Food Funct 2024; 15:10567-10581. [PMID: 39373768 DOI: 10.1039/d4fo02428a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Eugenol, a phenylpropanoid compound, is found in various dietary resources and medicinal plants. From a historical perspective, eugenol is widely employed as a flavoring agent in the food and fragrance industries. Here, this review mainly focuses on recent advances in eugenol with respect to its versatile physiological roles in health and disease and discusses the mechanisms. Emerging evidence has highlighted that eugenol exhibits multiple biological activities in cancer, diabetes, obesity, cardiovascular diseases, and neurodegenerative diseases. It also has analgesic, anti-inflammatory, and antioxidant qualities and has lethal or inhibiting effects on various viruses, bacteria, fungi, and parasites. The manuscript also contains some patents that have been filed thus far regarding the production and application of eugenol. Overall, these benefits make eugenol a promising nutritional supplement which fulfils its historical function as a flavoring agent, opening up new possibilities for the creation of therapeutic agents for the treatment of disease.
Collapse
Affiliation(s)
- Yujie Lao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Jingya Guo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Yige Qin
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Jiayi Wu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun, Republic of Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| |
Collapse
|
7
|
Miyamoto K, Stark J, Kathrotia M, Luu A, Victoriano J, Chan CL, Lee D, Root CM. The Orbitofrontal Cortex Is Required for Learned Modulation of Innate Olfactory Behavior. eNeuro 2024; 11:ENEURO.0343-24.2024. [PMID: 39406479 PMCID: PMC11493560 DOI: 10.1523/eneuro.0343-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Animals have evolved innate responses to cues including social, food, and predator odors. In the natural environment, animals are faced with choices that involve balancing risk and reward where innate significance may be at odds with internal need. The ability to update the value of a cue through learning is essential for navigating changing and uncertain environments. However, the mechanisms involved in this modulation are not well defined in mammals. We have established a new olfactory assay that challenges a thirsty mouse to choose an aversive odor over an attractive odor in foraging for water, thus overriding their innate behavioral response to odor. Innately, mice prefer the attractive odor port over the aversive odor port. However, decreasing the probability of water at the attractive port leads mice to prefer the aversive port, reflecting a learned override of the innate response to the odors. The orbitofrontal cortex (OFC) is a fourth-order olfactory brain area, involved in flexible value association, with behaviorally relevant outputs throughout the limbic system. We performed optogenetic and chemogenetic silencing experiments that demonstrate the OFC is necessary for this learned modulation of innate aversion to odor. Further, we characterized odor evoked c-fos expression in learned and control mice and found significant suppression of activity in the bed nucleus of the stria terminalis, lateral septum, and central and medial amygdala. These findings reveal that the OFC is necessary for the learned override of innate behavior and may signal to limbic structures to modulate innate response to odor.
Collapse
Affiliation(s)
- Kiana Miyamoto
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, San Diego, California 92093-0357
| | - Jeremy Stark
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, San Diego, California 92093-0357
| | - Mayuri Kathrotia
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, San Diego, California 92093-0357
| | - Amanda Luu
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, San Diego, California 92093-0357
| | - Joelle Victoriano
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, San Diego, California 92093-0357
| | - Chung Lung Chan
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, San Diego, California 92093-0357
| | - Donghyung Lee
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, San Diego, California 92093-0357
| | - Cory M Root
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, San Diego, California 92093-0357
| |
Collapse
|
8
|
Giaffar H, Shuvaev S, Rinberg D, Koulakov AA. The primacy model and the structure of olfactory space. PLoS Comput Biol 2024; 20:e1012379. [PMID: 39255274 PMCID: PMC11423968 DOI: 10.1371/journal.pcbi.1012379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/25/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024] Open
Abstract
Understanding sensory processing involves relating the stimulus space, its neural representation, and perceptual quality. In olfaction, the difficulty in establishing these links lies partly in the complexity of the underlying odor input space and perceptual responses. Based on the recently proposed primacy model for concentration invariant odor identity representation and a few assumptions, we have developed a theoretical framework for mapping the odor input space to the response properties of olfactory receptors. We analyze a geometrical structure containing odor representations in a multidimensional space of receptor affinities and describe its low-dimensional implementation, the primacy hull. We propose the implications of the primacy hull for the structure of feedforward connectivity in early olfactory networks. We test the predictions of our theory by comparing the existing receptor-ligand affinity and connectivity data obtained in the fruit fly olfactory system. We find that the Kenyon cells of the insect mushroom body integrate inputs from the high-affinity (primacy) sets of olfactory receptors in agreement with the primacy theory.
Collapse
Affiliation(s)
- Hamza Giaffar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Sergey Shuvaev
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Dmitry Rinberg
- Neuroscience Institute, New York University Langone Health, New York, New York, United States of America
- Center for Neural Science, New York University, New York, New York, United States of America
| | - Alexei A. Koulakov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
9
|
Fulton KA, Zimmerman D, Samuel A, Vogt K, Datta SR. Common principles for odour coding across vertebrates and invertebrates. Nat Rev Neurosci 2024; 25:453-472. [PMID: 38806946 DOI: 10.1038/s41583-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Zimmerman
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aravi Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
10
|
Shi K, Jiao Y, Yang L, Yuan G, Jia J. New insights into the roles of olfactory receptors in cardiovascular disease. Mol Cell Biochem 2024; 479:1615-1626. [PMID: 38761351 DOI: 10.1007/s11010-024-05024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
Olfactory receptors (ORs) are G protein coupled receptors (GPCRs) with seven transmembrane domains that bind to specific exogenous chemical ligands and transduce intracellular signals. They constitute the largest gene family in the human genome. They are expressed in the epithelial cells of the olfactory organs and in the non-olfactory tissues such as the liver, kidney, heart, lung, pancreas, intestines, muscle, testis, placenta, cerebral cortex, and skin. They play important roles in the normal physiological and pathophysiological mechanisms. Recent evidence has highlighted a close association between ORs and several metabolic diseases. Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality globally. Furthermore, ORs play an essential role in the development and functional regulation of the cardiovascular system and are implicated in the pathophysiological mechanisms of CVDs, including atherosclerosis (AS), heart failure (HF), aneurysms, and hypertension (HTN). This review describes the specific mechanistic roles of ORs in the CVDs, and highlights the future clinical application prospects of ORs in the diagnosis, treatment, and prevention of the CVDs.
Collapse
Affiliation(s)
- Kangru Shi
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yang Jiao
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ling Yang
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jue Jia
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
11
|
Wang Y, Qiu L, Wang B, Guan Z, Dong Z, Zhang J, Cao S, Yang L, Wang B, Gong Z, Zhang L, Ma W, Liu Z, Zhang D, Wang G, Yin P. Structural basis for odorant recognition of the insect odorant receptor OR-Orco heterocomplex. Science 2024; 384:1453-1460. [PMID: 38870272 DOI: 10.1126/science.adn6881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Insects detect and discriminate a diverse array of chemicals using odorant receptors (ORs), which are ligand-gated ion channels comprising a divergent odorant-sensing OR and a conserved odorant receptor co-receptor (Orco). In this work, we report structures of the ApOR5-Orco heterocomplex from the pea aphid Acyrthosiphon pisum alone and bound to its known activating ligand, geranyl acetate. In these structures, three ApOrco subunits serve as scaffold components that cannot bind the ligand and remain relatively unchanged. Upon ligand binding, the pore-forming helix S7b of ApOR5 shifts outward from the central pore axis, causing an asymmetrical pore opening for ion influx. Our study provides insights into odorant recognition and channel gating of the OR-Orco heterocomplex and offers structural resources to support development of innovative insecticides and repellents for pest control.
Collapse
Affiliation(s)
- Yidong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Song Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lulu Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhou Gong
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Kikuta S, Nagayama S, Hasegawa-Ishii S. Structures and functions of the normal and injured human olfactory epithelium. Front Neural Circuits 2024; 18:1406218. [PMID: 38903957 PMCID: PMC11188711 DOI: 10.3389/fncir.2024.1406218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
The olfactory epithelium (OE) is directly exposed to environmental agents entering the nasal cavity, leaving OSNs prone to injury and degeneration. The causes of olfactory dysfunction are diverse and include head trauma, neurodegenerative diseases, and aging, but the main causes are chronic rhinosinusitis (CRS) and viral infections. In CRS and viral infections, reduced airflow due to local inflammation, inflammatory cytokine production, release of degranulated proteins from eosinophils, and cell injury lead to decreased olfactory function. It is well known that injury-induced loss of mature OSNs in the adult OE causes massive regeneration of new OSNs within a few months through the proliferation and differentiation of progenitor basal cells that are subsequently incorporated into olfactory neural circuits. Although normal olfactory function returns after injury in most cases, prolonged olfactory impairment and lack of improvement in olfactory function in some cases poses a major clinical problem. Persistent inflammation or severe injury in the OE results in morphological changes in the OE and respiratory epithelium and decreases the number of mature OSNs, resulting in irreversible loss of olfactory function. In this review, we discuss the histological structure and distribution of the human OE, and the pathogenesis of olfactory dysfunction associated with CRS and viral infection.
Collapse
Affiliation(s)
- Shu Kikuta
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Nihon University, Tokyo, Japan
| | - Shin Nagayama
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | |
Collapse
|
13
|
Peng YC, Wu J, He X, Dai J, Xia L, Valenzuela-Leon P, Tumas KC, Singh BK, Xu F, Ganesan S, Munir S, Calvo E, Huang R, Liu C, Long CA, Su XZ. NAD activates olfactory receptor 1386 to regulate type I interferon responses in Plasmodium yoelii YM infection. Proc Natl Acad Sci U S A 2024; 121:e2403796121. [PMID: 38809710 PMCID: PMC11161801 DOI: 10.1073/pnas.2403796121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Olfactory receptors (Olfr) are G protein-coupled receptors that are normally expressed on olfactory sensory neurons to detect volatile chemicals or odorants. Interestingly, many Olfrs are also expressed in diverse tissues and function in cell-cell recognition, migration, and proliferation as well as immune responses and disease processes. Here, we showed that many Olfr genes were expressed in the mouse spleen, linked to Plasmodium yoelii genetic loci significantly, and/or had genome-wide patterns of LOD scores (GPLSs) similar to those of host Toll-like receptor genes. Expression of specific Olfr genes such as Olfr1386 in HEK293T cells significantly increased luciferase signals driven by IFN-β and NF-κB promoters, with elevated levels of phosphorylated TBK1, IRF3, P38, and JNK. Mice without Olfr1386 were generated using the CRISPR/Cas9 method, and the Olfr1386-/- mice showed significantly lower IFN-α/β levels and longer survival than wild-type (WT) littermates after infection with P. yoelii YM parasites. Inhibition of G protein signaling and P38 activity could affect cyclic AMP-responsive element promoter-driven luciferase signals and IFN-β mRNA levels in HEK293T cells expressing the Olfr1386 gene, respectively. Screening of malaria parasite metabolites identified nicotinamide adenine dinucleotide (NAD) as a potential ligand for Olfr1386, and NAD could stimulate IFN-β responses and phosphorylation of TBK1 and STAT1/2 in RAW264.7 cells. Additionally, parasite RNA (pRNA) could significantly increase Olfr1386 mRNA levels. This study links multiple Olfrs to host immune response pathways, identifies a candidate ligand for Olfr1386, and demonstrates the important roles of Olfr1386 in regulating type I interferon (IFN-I) responses during malaria parasite infections.
Collapse
Affiliation(s)
- Yu-chih Peng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Jian Wu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Xiao He
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Jin Dai
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Lu Xia
- Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Disease of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410083, People’s Republic of China
| | - Paola Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Keyla C. Tumas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Brajesh K. Singh
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Fangzheng Xu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Sundar Ganesan
- Biological Imaging Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Ruili Huang
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD20892
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| |
Collapse
|
14
|
Stark R. The olfactory bulb: A neuroendocrine spotlight on feeding and metabolism. J Neuroendocrinol 2024; 36:e13382. [PMID: 38468186 DOI: 10.1111/jne.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/13/2024]
Abstract
Olfaction is the most ancient sense and is needed for food-seeking, danger protection, mating and survival. It is often the first sensory modality to perceive changes in the external environment, before sight, taste or sound. Odour molecules activate olfactory sensory neurons that reside on the olfactory epithelium in the nasal cavity, which transmits this odour-specific information to the olfactory bulb (OB), where it is relayed to higher brain regions involved in olfactory perception and behaviour. Besides odour processing, recent studies suggest that the OB extends its function into the regulation of food intake and energy balance. Furthermore, numerous hormone receptors associated with appetite and metabolism are expressed within the OB, suggesting a neuroendocrine role outside the hypothalamus. Olfactory cues are important to promote food preparatory behaviours and consumption, such as enhancing appetite and salivation. In addition, altered metabolism or energy state (fasting, satiety and overnutrition) can change olfactory processing and perception. Similarly, various animal models and human pathologies indicate a strong link between olfactory impairment and metabolic dysfunction. Therefore, understanding the nature of this reciprocal relationship is critical to understand how olfactory or metabolic disorders arise. This present review elaborates on the connection between olfaction, feeding behaviour and metabolism and will shed light on the neuroendocrine role of the OB as an interface between the external and internal environments. Elucidating the specific mechanisms by which olfactory signals are integrated and translated into metabolic responses holds promise for the development of targeted therapeutic strategies and interventions aimed at modulating appetite and promoting metabolic health.
Collapse
Affiliation(s)
- Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
15
|
Nakashima A, Takeuchi H. Roles of odorant receptors during olfactory glomerular map formation. Genesis 2024; 62:e23610. [PMID: 38874301 DOI: 10.1002/dvg.23610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
The organization of the olfactory glomerular map involves the convergence of olfactory sensory neurons (OSNs) expressing the same odorant receptor (OR) into glomeruli in the olfactory bulb (OB). A remarkable feature of the olfactory glomerular map formation is that the identity of OR instructs the topography of the bulb, resulting in thousands of discrete glomeruli in mice. Several lines of evidence indicate that ORs control the expression levels of various kinds of transmembrane proteins to form glomeruli at appropriate regions of the OB. In this review, we will discuss how the OR identity is decoded by OSNs into gene expression through intracellular regulatory mechanisms.
Collapse
Affiliation(s)
- Ai Nakashima
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Haruki Takeuchi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Azzopardi SA, Lu HY, Monette S, Rabinowitsch AI, Salmon JE, Matsunami H, Blobel CP. Role of iRhom2 in Olfaction: Implications for Odorant Receptor Regulation and Activity-Dependent Adaptation. Int J Mol Sci 2024; 25:6079. [PMID: 38892263 PMCID: PMC11173328 DOI: 10.3390/ijms25116079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The cell surface metalloprotease ADAM17 (a disintegrin and metalloprotease 17) and its binding partners iRhom2 and iRhom1 (inactive Rhomboid-like proteins 1 and 2) modulate cell-cell interactions by mediating the release of membrane proteins such as TNFα (Tumor necrosis factor α) and EGFR (Epidermal growth factor receptor) ligands from the cell surface. Most cell types express both iRhoms, though myeloid cells exclusively express iRhom2, and iRhom1 is the main iRhom in the mouse brain. Here, we report that iRhom2 is uniquely expressed in olfactory sensory neurons (OSNs), highly specialized cells expressing one olfactory receptor (OR) from a repertoire of more than a thousand OR genes in mice. iRhom2-/- mice had no evident morphological defects in the olfactory epithelium (OE), yet RNAseq analysis revealed differential expression of a small subset of ORs. Notably, while the majority of ORs remain unaffected in iRhom2-/- OE, OSNs expressing ORs that are enriched in iRhom2-/- OE showed fewer gene expression changes upon odor environmental changes than the majority of OSNs. Moreover, we discovered an inverse correlation between the expression of iRhom2 compared to OSN activity genes and that odor exposure negatively regulates iRhom2 expression. Given that ORs are specialized G-protein coupled receptors (GPCRs) and many GPCRs activate iRhom2/ADAM17, we investigated if ORs could activate iRhom2/ADAM17. Activation of an olfactory receptor that is ectopically expressed in keratinocytes (OR2AT4) by its agonist Sandalore leads to ERK1/2 phosphorylation, likely via an iRhom2/ADAM17-dependent pathway. Taken together, these findings point to a mechanism by which odor stimulation of OSNs activates iRhom2/ADAM17 catalytic activity, resulting in downstream transcriptional changes to the OR repertoire and activity genes, and driving a negative feedback loop to downregulate iRhom2 expression.
Collapse
Affiliation(s)
- Stephanie A. Azzopardi
- Weill Cornell Medicine/Rockefeller University/Memorial Sloan-Kettering Cancer Center, Tri-Institutional MD-PhD Program, New York, NY 10021, USA; (S.A.A.); (A.I.R.)
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, NY 10021, USA
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Hsiu-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Sebastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, Hospital for Special Surgery, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Ariana I. Rabinowitsch
- Weill Cornell Medicine/Rockefeller University/Memorial Sloan-Kettering Cancer Center, Tri-Institutional MD-PhD Program, New York, NY 10021, USA; (S.A.A.); (A.I.R.)
- Department of Biochemistry, Cellular and Molecular Biology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jane E. Salmon
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA
| | - Carl P. Blobel
- Weill Cornell Medicine/Rockefeller University/Memorial Sloan-Kettering Cancer Center, Tri-Institutional MD-PhD Program, New York, NY 10021, USA; (S.A.A.); (A.I.R.)
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, NY 10021, USA
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Biochemistry, Cellular and Molecular Biology, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
17
|
Nakashima A, Takeuchi H. Shaping the olfactory map: cell type-specific activity patterns guide circuit formation. Front Neural Circuits 2024; 18:1409680. [PMID: 38860141 PMCID: PMC11163119 DOI: 10.3389/fncir.2024.1409680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
The brain constructs spatially organized sensory maps to represent sensory information. The formation of sensory maps has traditionally been thought to depend on synchronous neuronal activity. However, recent evidence from the olfactory system suggests that cell type-specific temporal patterns of spontaneous activity play an instructive role in shaping the olfactory glomerular map. These findings challenge traditional views and highlight the importance of investigating the spatiotemporal dynamics of neural activity to understand the development of complex neural circuits. This review discusses the implications of new findings in the olfactory system and outlines future research directions.
Collapse
Affiliation(s)
- Ai Nakashima
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Haruki Takeuchi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Chen R, Yan J, Wickham JD, Gao Y. Genomic identification and evolutionary analysis of chemosensory receptor gene families in two Phthorimaea pest species: insights into chemical ecology and host adaptation. BMC Genomics 2024; 25:493. [PMID: 38762533 PMCID: PMC11102633 DOI: 10.1186/s12864-024-10428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/17/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Insects rely on sophisticated sensitive chemosensory systems to sense their complex chemical environment. This sensory process involves a combination of odorant receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) in the chemosensory system. This study focused on the identification and characterization of these three types of chemosensory receptor genes in two closely related Phthorimaea pest species, Phthorimaea operculella (potato tuber moth) and Phthorimaea absoluta (tomato leaf miner). RESULTS Based on manual annotation of the genome, we identified a total of 349 chemoreceptor genes from the genome of P. operculella, including 93 OR, 206 GR and 50 IR genes, while for P. absoluta, we identified 72 OR, 122 GR and 46 IR genes. Through phylogenetic analysis, we observed minimal differences in the number and types of ORs and IRs between the potato tuber moth and tomato leaf miner. In addition, we found that compared with those of tomato leaf miners, the gustatory receptor branch of P. operculella has undergone a large expansion, which may be related to P. absoluta having a narrower host range than P. operculella. Through analysis of differentially expressed genes (DEGs) of male and female antennae, we uncovered 45 DEGs (including 32ORs, 9 GRs, and 4 IRs). CONCLUSIONS Our research provides a foundation for exploring the chemical ecology of these two pests and offers new insights into the dietary differentiation of lepidopteran insects, while simultaneously providing molecular targets for developing environmentally friendly pest control methods based on insect chemoreception.
Collapse
Affiliation(s)
- Ruipeng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junjie Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jacob D Wickham
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia
- Department of Entomology, Rutgers University, 93 Lipman Drive, New Brunswick, New Jersey, USA
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
19
|
Kanata E, Duffié R, Schulz EG. Establishment and maintenance of random monoallelic expression. Development 2024; 151:dev201741. [PMID: 38813842 PMCID: PMC11166465 DOI: 10.1242/dev.201741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This Review elucidates the regulatory principles of random monoallelic expression by focusing on two well-studied examples: the X-chromosome inactivation regulator Xist and the olfactory receptor gene family. Although the choice of a single X chromosome or olfactory receptor occurs in different developmental contexts, common gene regulatory principles guide monoallelic expression in both systems. In both cases, an event breaks the symmetry between genetically and epigenetically identical copies of the gene, leading to the expression of one single random allele, stabilized through negative feedback control. Although many regulatory steps that govern the establishment and maintenance of monoallelic expression have been identified, key pieces of the puzzle are still missing. We provide an overview of the current knowledge and models for the monoallelic expression of Xist and olfactory receptors. We discuss their similarities and differences, and highlight open questions and approaches that could guide the study of other monoallelically expressed genes.
Collapse
Affiliation(s)
- Eleni Kanata
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Edda G. Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
20
|
Throesch BT, Bin Imtiaz MK, Muñoz-Castañeda R, Sakurai M, Hartzell AL, James KN, Rodriguez AR, Martin G, Lippi G, Kupriyanov S, Wu Z, Osten P, Izpisua Belmonte JC, Wu J, Baldwin KK. Functional sensory circuits built from neurons of two species. Cell 2024; 187:2143-2157.e15. [PMID: 38670072 PMCID: PMC11293795 DOI: 10.1016/j.cell.2024.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain. Unexpectedly, the mouse niche reprograms the birth dates of rat neurons in the cortex and hippocampus, supporting rat-mouse synaptic activity. When mouse olfactory neurons are genetically silenced or killed, rat neurons restore information flow to odor processing circuits. Moreover, they rescue the primal behavior of food seeking, although less well than mouse neurons. By revealing that a mouse can sense the world using neurons from another species, we establish neural blastocyst complementation as a powerful tool to identify conserved mechanisms of brain development, plasticity, and repair.
Collapse
Affiliation(s)
- Benjamin T Throesch
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA; Neuroscience Graduate Program, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Muhammad Khadeesh Bin Imtiaz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Masahiro Sakurai
- Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrea L Hartzell
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Kiely N James
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA; Neuroscience Graduate Program, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Alberto R Rodriguez
- Mouse Genetics Core, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Greg Martin
- Mouse Genetics Core, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Giordano Lippi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Sergey Kupriyanov
- Mouse Genetics Core, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Zhuhao Wu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Juan Carlos Izpisua Belmonte
- Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA; Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA; Altos Labs, San Diego, CA, USA
| | - Jun Wu
- Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Kristin K Baldwin
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA; Neuroscience Graduate Program, University of California, San Diego, La Jolla, San Diego, CA, USA; Department of Genetics and Development, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
21
|
Beito MR, Ashraf S, Odogwu D, Harmancey R. Role of Ectopic Olfactory Receptors in the Regulation of the Cardiovascular-Kidney-Metabolic Axis. Life (Basel) 2024; 14:548. [PMID: 38792570 PMCID: PMC11122380 DOI: 10.3390/life14050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Olfactory receptors (ORs) represent one of the largest yet least investigated families of G protein-coupled receptors in mammals. While initially believed to be functionally restricted to the detection and integration of odors at the olfactory epithelium, accumulating evidence points to a critical role for ectopically expressed ORs in the regulation of cellular homeostasis in extranasal tissues. This review aims to summarize the current state of knowledge on the expression and physiological functions of ectopic ORs in the cardiovascular system, kidneys, and primary metabolic organs and emphasizes how altered ectopic OR signaling in those tissues may impact cardiovascular-kidney-metabolic health.
Collapse
Affiliation(s)
| | | | | | - Romain Harmancey
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.R.B.); (S.A.); (D.O.)
| |
Collapse
|
22
|
Ordway AJ, Helt RN, Johnston RJ. Transcriptional priming and chromatin regulation during stochastic cell fate specification. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230046. [PMID: 38432315 PMCID: PMC10909510 DOI: 10.1098/rstb.2023.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
Stochastic cell fate specification, in which a cell chooses between two or more fates with a set probability, diversifies cell subtypes in development. Although this is a vital process across species, a common mechanism for these cell fate decisions remains elusive. This review examines two well-characterized stochastic cell fate decisions to identify commonalities between their developmental programmes. In the fly eye, two subtypes of R7 photoreceptors are specified by the stochastic ON/OFF expression of a transcription factor, spineless. In the mouse olfactory system, olfactory sensory neurons (OSNs) randomly select to express one copy of an olfactory receptor (OR) gene out of a pool of 2800 alleles. Despite the differences in these sensory systems, both stochastic fate choices rely on the dynamic interplay between transcriptional priming, chromatin regulation and terminal gene expression. The coupling of transcription and chromatin modifications primes gene loci in undifferentiated neurons, enabling later expression during terminal differentiation. Here, we compare these mechanisms, examine broader implications for gene regulation during development and posit key challenges moving forward. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Alison J. Ordway
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Rina N. Helt
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Robert J. Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
23
|
Yusuf N, Monahan K. Epigenetic programming of stochastic olfactory receptor choice. Genesis 2024; 62:e23593. [PMID: 38562011 PMCID: PMC11003729 DOI: 10.1002/dvg.23593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
The mammalian sense of smell relies upon a vast array of receptor proteins to detect odorant compounds present in the environment. The proper deployment of these receptor proteins in olfactory sensory neurons is orchestrated by a suite of epigenetic processes that remodel the olfactory genes in differentiating neuronal progenitors. The goal of this review is to elucidate the central role of gene regulatory processes acting in neuronal progenitors of olfactory sensory neurons that lead to a singular expression of an odorant receptor in mature olfactory sensory neurons. We begin by describing the principal features of odorant receptor gene expression in mature olfactory sensory neurons. Next, we delineate our current understanding of how these features emerge from multiple gene regulatory mechanisms acting in neuronal progenitors. Finally, we close by discussing the key gaps in our understanding of how these regulatory mechanisms work and how they interact with each other over the course of differentiation.
Collapse
Affiliation(s)
- Nusrath Yusuf
- Division of Life Sciences-Molecular Biology and Biochemistry Department, Rutgers University-New Brunswick, New Brunswick, New Jersey, USA
| | - Kevin Monahan
- Division of Life Sciences-Molecular Biology and Biochemistry Department, Rutgers University-New Brunswick, New Brunswick, New Jersey, USA
| |
Collapse
|
24
|
Raja R, Dumontier E, Phen A, Cloutier JF. Insertion of a neomycin selection cassette in the Amigo1 locus alters gene expression in the olfactory epithelium leading to region-specific defects in olfactory receptor neuron development. Genesis 2024; 62:e23594. [PMID: 38590146 DOI: 10.1002/dvg.23594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
During development of the nervous system, neurons connect to one another in a precisely organized manner. Sensory systems provide a good example of this organization, whereby the composition of the outside world is represented in the brain by neuronal maps. Establishing correct patterns of neural circuitry is crucial, as inaccurate map formation can lead to severe disruptions in sensory processing. In rodents, olfactory stimuli modulate a wide variety of behaviors essential for survival. The formation of the olfactory glomerular map is dependent on molecular cues that guide olfactory receptor neuron axons to broad regions of the olfactory bulb and on cell adhesion molecules that promote axonal sorting into specific synaptic units in this structure. Here, we demonstrate that the cell adhesion molecule Amigo1 is expressed in a subpopulation of olfactory receptor neurons, and we investigate its role in the precise targeting of olfactory receptor neuron axons to the olfactory bulb using a genetic loss-of-function approach in mice. While ablation of Amigo1 did not lead to alterations in olfactory sensory neuron axonal targeting, our experiments revealed that the presence of a neomycin resistance selection cassette in the Amigo1 locus can lead to off-target effects that are not due to loss of Amigo1 expression, including unexpected altered gene expression in olfactory receptor neurons and reduced glomerular size in the ventral region of the olfactory bulb. Our results demonstrate that insertion of a neomycin selection cassette into the mouse genome can have specific deleterious effects on the development of the olfactory system and highlight the importance of removing antibiotic resistance cassettes from genetic loss-of-function mouse models when studying olfactory system development.
Collapse
Affiliation(s)
- Reesha Raja
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Emilie Dumontier
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
| | - Alina Phen
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
| | - Jean-François Cloutier
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
25
|
Hirota J. Molecular mechanisms of differentiation and class choice of olfactory sensory neurons. Genesis 2024; 62:e23587. [PMID: 38454646 DOI: 10.1002/dvg.23587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
The sense of smell is intricately linked to essential animal behaviors necessary for individual survival and species preservation. During vertebrate evolution, odorant receptors (ORs), responsible for detecting odor molecules, have evolved to adapt to changing environments, transitioning from aquatic to terrestrial habitats and accommodating increasing complex chemical environments. These evolutionary pressures have given rise to the largest gene family in vertebrate genomes. Vertebrate ORs are phylogenetically divided into two major classes; class I and class II. Class I OR genes, initially identified in fish and frog, have persisted across vertebrate species. On the other hand, class II OR genes are unique to terrestrial animals, accounting for ~90% of mammalian OR genes. In mice, each olfactory sensory neuron (OSN) expresses a single functional allele of a single OR gene from either the class I or class II OR repertoire. This one neuron-one receptor rule is established through two sequential steps: specification of OR class and subsequent exclusive OR expression from the corresponding OR class. Consequently, OSNs acquire diverse neuronal identities during the process of OSN differentiation, enabling animals to detect a wide array of odor molecules. This review provides an overview of the OSN differentiation process through which OSN diversity is achieved, primarily using the mouse as a model animal.
Collapse
Affiliation(s)
- Junji Hirota
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Center for Integrative Biosciences, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
26
|
Fritzsch B, Glover JC. Gene networks and the evolution of olfactory organs, eyes, hair cells and motoneurons: a view encompassing lancelets, tunicates and vertebrates. Front Cell Dev Biol 2024; 12:1340157. [PMID: 38533086 PMCID: PMC10963430 DOI: 10.3389/fcell.2024.1340157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Key developmental pathways and gene networks underlie the formation of sensory cell types and structures involved in chemosensation, vision and mechanosensation, and of the efferents these sensory inputs can activate. We describe similarities and differences in these pathways and gene networks in selected species of the three main chordate groups, lancelets, tunicates, and vertebrates, leading to divergent development of olfactory receptors, eyes, hair cells and motoneurons. The lack of appropriately posited expression of certain transcription factors in lancelets and tunicates prevents them from developing vertebrate-like olfactory receptors and eyes, although they generate alternative structures for chemosensation and vision. Lancelets and tunicates lack mechanosensory cells associated with the sensation of acoustic stimuli, but have gravisensitive organs and ciliated epidermal sensory cells that may (and in some cases clearly do) provide mechanosensation and thus the capacity to respond to movement relative to surrounding water. Although functionally analogous to the vertebrate vestibular apparatus and lateral line, homology is questionable due to differences in the expression of the key transcription factors Neurog and Atoh1/7, on which development of vertebrate hair cells depends. The vertebrate hair cell-bearing inner ear and lateral line thus likely represent major evolutionary advances specific to vertebrates. Motoneurons develop in vertebrates under the control of the ventral signaling molecule hedgehog/sonic hedgehog (Hh,Shh), against an opposing inhibitory effect mediated by dorsal signaling molecules. Many elements of Shh-signaling and downstream genes involved in specifying and differentiating motoneurons are also exhibited by lancelets and tunicates, but the repertoire of MNs in vertebrates is broader, indicating greater diversity in motoneuron differentiation programs.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Joel C. Glover
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Mallick A, Dacks AM, Gaudry Q. Olfactory Critical Periods: How Odor Exposure Shapes the Developing Brain in Mice and Flies. BIOLOGY 2024; 13:94. [PMID: 38392312 PMCID: PMC10886215 DOI: 10.3390/biology13020094] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Neural networks have an extensive ability to change in response to environmental stimuli. This flexibility peaks during restricted windows of time early in life called critical periods. The ubiquitous occurrence of this form of plasticity across sensory modalities and phyla speaks to the importance of critical periods for proper neural development and function. Extensive investigation into visual critical periods has advanced our knowledge of the molecular events and key processes that underlie the impact of early-life experience on neuronal plasticity. However, despite the importance of olfaction for the overall survival of an organism, the cellular and molecular basis of olfactory critical periods have not garnered extensive study compared to visual critical periods. Recent work providing a comprehensive mapping of the highly organized olfactory neuropil and its development has in turn attracted a growing interest in how these circuits undergo plasticity during critical periods. Here, we perform a comparative review of olfactory critical periods in fruit flies and mice to provide novel insight into the importance of early odor exposure in shaping neural circuits and highlighting mechanisms found across sensory modalities.
Collapse
Affiliation(s)
- Ahana Mallick
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Quentin Gaudry
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
28
|
Okamoto C, Ando K. Molecular dynamics simulation analysis of structural dynamic cross correlation induced by odorant hydrogen-bonding in mouse eugenol ol- factory receptor. Biophys Physicobiol 2024; 21:e210007. [PMID: 38803338 PMCID: PMC11128758 DOI: 10.2142/biophysico.bppb-v21.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 05/29/2024] Open
Abstract
Structural fluctuations and dynamic cross-correlations in the mouse eugenol olfactory receptor (Olfr73) were studied by molecular dynamics (MD) simulation to characterize the dynamic response of the protein upon ligand binding. The initial structure was generated by the artificial intelligence tool AlphaFold2 due to the current lack of experimental data. We focused on the hydrogen (H) bond of the odorant eugenol to Ser113, Asn207, and Tyr260 of the receptor protein, the importance of which has been suggested by previous experimental studies. The H-bond was not observed in docking simulations, but in subsequent MD simulations the H-bond to Ser113 was formed in 2-4 ns. The lifetime of the H-bond was in the range of 1-20 ns. On the trajectory with the most stable (20 ns) H-bond, the structural fluctuation of the α-carbon atoms of the receptor main chain was studied by calculating the root mean square fluctuations, the dynamic cross-correlation map, and the time-dependent dynamic cross-correlation. The analysis suggested a correlation transfer pathway Ser113 → Phe182 → (Leu259 or Tyr260) → Tyr291 induced by the ligand binding with a time scale of 4-6 ns.
Collapse
Affiliation(s)
- Chisato Okamoto
- Department of Information and Sciences, Tokyo Woman’s Christian University, Tokyo 167-8585, Japan
| | - Koji Ando
- Department of Information and Sciences, Tokyo Woman’s Christian University, Tokyo 167-8585, Japan
| |
Collapse
|
29
|
Lalis M, Hladiš M, Khalil SA, Briand L, Fiorucci S, Topin J. M2OR: a database of olfactory receptor-odorant pairs for understanding the molecular mechanisms of olfaction. Nucleic Acids Res 2024; 52:D1370-D1379. [PMID: 37870437 PMCID: PMC10767820 DOI: 10.1093/nar/gkad886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Mammalian sense of smell is triggered by interaction between odorant molecules and a class of proteins, called olfactory receptors (ORs). These receptors, expressed at the surface of olfactory sensory neurons, encode myriad of distinct odors via a sophisticated activation pattern. However, determining the molecular recognition spectrum of ORs remains a major challenge. The Molecule to Olfactory Receptor database (M2OR, https://m2or.chemsensim.fr/) provides curated data that allows an easy exploration of the current state of the research on OR-molecule interaction. We have gathered a database of 75,050 bioassay experiments for 51 395 distinct OR-molecule pairs. Drawn from published literature and public databases, M2OR contains information about OR responses to molecules and their mixtures, receptor sequences and experimental details. Users can obtain information on the activity of a chosen molecule or a group of molecules, or search for agonists for a specific OR or a group of ORs. Advanced search allows for fine-grained queries using various metadata such as species or experimental assay system, and the database can be queried by multiple inputs via a batch search. Finally, for a given search query, users can access and download a curated aggregation of the experimental data into a binarized combinatorial code of olfaction.
Collapse
Affiliation(s)
- Maxence Lalis
- Institut de Chimie de Nice, Université Côte d’Azur, UMR 7272 CNRS, 06108 Nice, France
| | - Matej Hladiš
- Institut de Chimie de Nice, Université Côte d’Azur, UMR 7272 CNRS, 06108 Nice, France
| | - Samar Abi Khalil
- Institut de Chimie de Nice, Université Côte d’Azur, UMR 7272 CNRS, 06108 Nice, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | - Sébastien Fiorucci
- Institut de Chimie de Nice, Université Côte d’Azur, UMR 7272 CNRS, 06108 Nice, France
| | - Jérémie Topin
- Institut de Chimie de Nice, Université Côte d’Azur, UMR 7272 CNRS, 06108 Nice, France
| |
Collapse
|
30
|
Dias BG. Legacies of salient environmental experiences-insights from chemosensation. Chem Senses 2024; 49:bjae002. [PMID: 38219073 PMCID: PMC10825851 DOI: 10.1093/chemse/bjae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 01/15/2024] Open
Abstract
Evidence for parental environments profoundly influencing the physiology, biology, and neurobiology of future generations has been accumulating in the literature. Recent efforts to understand this phenomenon and its underlying mechanisms have sought to use species like rodents and insects to model multi-generational legacies of parental experiences like stress and nutritional exposures. From these studies, we have come to appreciate that parental exposure to salient environmental experiences impacts the cadence of brain development, hormonal responses to stress, and the expression of genes that govern cellular responses to stress in offspring. Recent studies using chemosensory exposure have emerged as a powerful tool to shed new light on how future generations come to be influenced by environments to which parents are exposed. With a specific focus on studies that have leveraged such use of salient chemosensory experiences, this review synthesizes our current understanding of the concept, causes, and consequences of the inheritance of chemosensory legacies by future generations and how this field of inquiry informs the larger picture of how parental experiences can influence offspring biology.
Collapse
Affiliation(s)
- Brian G Dias
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, CA, United States
- Division of Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
31
|
Pacalon J, Audic G, Magnat J, Philip M, Golebiowski J, Moreau CJ, Topin J. Elucidation of the structural basis for ligand binding and translocation in conserved insect odorant receptor co-receptors. Nat Commun 2023; 14:8182. [PMID: 38081900 PMCID: PMC10713630 DOI: 10.1038/s41467-023-44058-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
In numerous insects, the olfactory receptor family forms a unique class of heteromeric cation channels. Recent progress in resolving the odorant receptor structures offers unprecedented opportunities for deciphering their molecular mechanisms of ligand recognition. Unexpectedly, these structures in apo or ligand-bound states did not reveal the pathway taken by the ligands between the extracellular space and the deep internal cavities. By combining molecular modeling with electrophysiological recordings, we identified amino acids involved in the dynamic entry pathway and the binding of VUAA1 to Drosophila melanogaster's odorant receptor co-receptor (Orco). Our results provide evidence for the exact location of the agonist binding site and a detailed and original mechanism of ligand translocation controlled by a network of conserved residues. These findings would explain the particularly high selectivity of Orcos for their ligands.
Collapse
Affiliation(s)
- Jody Pacalon
- Université Côte d'Azur, Institut de Chimie de Nice UMR7272, CNRS, Nice, France
| | | | | | - Manon Philip
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Jérôme Golebiowski
- Department of Brain & Cognitive Sciences, DGIST, 333, Techno JungAng, Daero, HyeongPoong Myeon, Daegu, Republic of Korea
| | | | - Jérémie Topin
- Université Côte d'Azur, Institut de Chimie de Nice UMR7272, CNRS, Nice, France.
| |
Collapse
|
32
|
Nakamuta S, Itoh M, Mori M, Kurita M, Zhang Z, Nikaido M, Miyazaki M, Yokoyama T, Yamamoto Y, Nakamuta N. In situ hybridization analysis of odorant receptor expression in the olfactory organ of the pig-nosed turtle Carettochelys insculpta. Tissue Cell 2023; 85:102255. [PMID: 37922676 DOI: 10.1016/j.tice.2023.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
The turtle olfactory organ consists of upper (UCE) and lower (LCE) chamber epithelium, which send axons to the ventral and dorsal portions of the olfactory bulbs, respectively. Generally, the UCE is associated with glands and contains ciliated olfactory receptor neurons (ORNs), while the LCE is devoid of glands and contains microvillous ORNs. However, the olfactory organ of the pig-nosed turtle Carettochelys insculpta appears to be a single olfactory system morphologically: there are no associated glands; ciliated ORNs are distributed throughout the olfactory organ; and the olfactory bulb is not divided into ventral and dorsal portions. In this study, we analyzed the expression of odorant receptors (ORs), the major olfactory receptors in turtles, in the pig-nosed turtle olfactory organ, via in situ hybridization. Of 690 ORs, 375 were classified as class I and 315 as class II. Some class II ORs were expressed predominantly in the posterior dorsomedial walls of the nasal cavity, while other class II ORs and all class I ORs examined were expressed in the remaining region. These results suggest that the pig-nosed turtle olfactory organ can be divided into two regions according to the expression of ORs.
Collapse
Affiliation(s)
- Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Miho Itoh
- Port of Nagoya Public Aquarium, 1-3 Minato-machi, Minato-ku, Nagoya, Aichi 455-0033, Japan
| | - Masanori Mori
- Port of Nagoya Public Aquarium, 1-3 Minato-machi, Minato-ku, Nagoya, Aichi 455-0033, Japan
| | - Masanori Kurita
- Port of Nagoya Public Aquarium, 1-3 Minato-machi, Minato-ku, Nagoya, Aichi 455-0033, Japan
| | - Zicong Zhang
- Institute for the Advanced Study of Human Biology, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masao Miyazaki
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Takuya Yokoyama
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
33
|
Ferreira JS, Bruschi DP. Tracking the Diversity and Chromosomal Distribution of the Olfactory Receptor Gene Repertoires of Three Anurans Species. J Mol Evol 2023; 91:793-805. [PMID: 37906255 DOI: 10.1007/s00239-023-10135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Olfaction is a crucial capability for most vertebrates and is realized through olfactory receptors in the nasal cavity. The enormous diversity of olfactory receptors has been created by gene duplication, following a birth-and-death model of evolution. The olfactory receptor genes of the amphibians have received relatively little attention up to now, although recent studies have increased the number of species for which data are available. This study analyzed the diversity and chromosomal distribution of the OR genes of three anuran species (Engystomops pustulosus, Bufo bufo and Hymenochirus boettgeri). The OR genes were identified through searches for homologies, and sequence filtering and alignment using bioinformatic tools and scripts. A high diversity of OR genes was found in all three species, ranging from 917 in B. bufo to 1194 in H. boettgeri, and a total of 2076 OR genes in E. pustulosus. Six OR groups were recognized using an evolutionary gene tree analysis. While E. pustulosus has one of the highest numbers of genes of the gamma group (which detect airborne odorants) yet recorded in an anuran, B. bufo presented the smallest number of pseudogene sequences ever identified, with no pseudogenes in either the beta or epsilon groups. Although H. boettgeri shares many morphological adaptations for an aquatic lifestyle with Xenopus, and presented a similar number of genes related to the detection of water-soluble odorants, it had comparatively far fewer genes related to the detection of airborne odorants. This study is the first to describe the complete OR repertoire of the three study species and represents an important contribution to the understanding of the evolution and function of the sense of smell in vertebrates.
Collapse
Affiliation(s)
- Johnny Sousa Ferreira
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Paraná, Brazil
| | - Daniel Pacheco Bruschi
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Paraná, Brazil.
| |
Collapse
|
34
|
Kang M, Ahn B, Youk S, Jeon H, Soundarajan N, Cho ES, Park W, Park C. Individual and population diversity of 20 representative olfactory receptor genes in pigs. Sci Rep 2023; 13:18668. [PMID: 37907519 PMCID: PMC10618239 DOI: 10.1038/s41598-023-45784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
Understanding the influence of genetic variations in olfactory receptor (OR) genes on the olfaction-influenced phenotypes such as behaviors, reproduction, and feeding is important in animal biology. However, our understanding of the complexity of the OR subgenome is limited. In this study, we analyzed 1120 typing results of 20 representative OR genes belonging to 13 OR families on 14 pig chromosomes from 56 individuals belonging to seven different breeds using a sequence-based OR typing method. We showed that the presence of copy number variations, conservation of locus-specific diversity, abundance of breed-specific alleles, presence of a loss-of-function allele, and low-level purifying selection in pig OR genes could be common characteristics of OR genes in mammals. The observed nucleotide sequence diversity of pig ORs was higher than that of dogs. To the best of our knowledge, this is the first report on the individual- or population-level characterization of a large number of OR family genes in livestock species.
Collapse
Affiliation(s)
- Mingue Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byeongyong Ahn
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seungyeon Youk
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyoim Jeon
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | | | - Eun-Seok Cho
- Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Woncheoul Park
- Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
35
|
Kaczmarek I, Wower I, Ettig K, Kuhn CK, Kraft R, Landgraf K, Körner A, Schöneberg T, Horn S, Thor D. Identifying G protein-coupled receptors involved in adipose tissue function using the innovative RNA-seq database FATTLAS. iScience 2023; 26:107841. [PMID: 37766984 PMCID: PMC10520334 DOI: 10.1016/j.isci.2023.107841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) modulate the function of adipose tissue (AT) in general and of adipocytes, specifically. Although it is well-established that GPCRs are widely expressed in AT, their repertoire as well as their regulation and function in (patho)physiological conditions (e.g., obesity) is not fully resolved. Here, we established FATTLAS, an interactive public database, for improved access and analysis of RNA-seq data of mouse and human AT. After extracting the GPCRome of non-obese and obese individuals, highly expressed and differentially regulated GPCRs were identified. Exemplarily, we describe four receptors (GPR146, MRGPRF, FZD5, PTGER2) and analyzed their functions in a (pre)adipocyte cell model. Besides all receptors being involved in adipogenesis, MRGPRF is essential for adipocyte viability and regulates cAMP levels, while GPR146 modulates adipocyte lipolysis via constitutive activation of Gi proteins. Taken together, by implementing and using FATTLAS we describe four hitherto unrecognized GPCRs associated with AT function and adipogenesis.
Collapse
Affiliation(s)
- Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Isabel Wower
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Katja Ettig
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Christina Katharina Kuhn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Robert Kraft
- Carl Ludwig Institute for Physiology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- School of Medicine, University of Global Health Equity (UGHE), Kigali, Rwanda
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
36
|
Hossain K, Smith M, Santoro SW. A histological protocol for quantifying the birthrates of specific subtypes of olfactory sensory neurons in mice. STAR Protoc 2023; 4:102432. [PMID: 37436902 PMCID: PMC10511921 DOI: 10.1016/j.xpro.2023.102432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
Mammals typically have hundreds of distinct olfactory sensory neuron subtypes, each defined by expression of a specific odorant receptor gene, which undergo neurogenesis throughout life at rates that can depend on olfactory experience. Here, we present a protocol to quantify the birthrates of specific neuron subtypes via the simultaneous detection of corresponding receptor mRNAs and 5-ethynyl-2'-deoxyuridine. For preparation prior to beginning the protocol, we detail procedures for generating odorant receptor-specific riboprobes and experimental mouse olfactory epithelial tissue sections. For complete details on the use and execution of this protocol, please refer to van der Linden et al. (2020).1.
Collapse
Affiliation(s)
- Kawsar Hossain
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Molecular and Cellular Life Sciences Program, University of Wyoming, Laramie, WY 82071, USA
| | - Madeline Smith
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stephen W Santoro
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
37
|
Shaffer C, Barrett LF, Quigley KS. Signal processing in the vagus nerve: Hypotheses based on new genetic and anatomical evidence. Biol Psychol 2023; 182:108626. [PMID: 37419401 PMCID: PMC10563766 DOI: 10.1016/j.biopsycho.2023.108626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Each organism must regulate its internal state in a metabolically efficient way as it interacts in space and time with an ever-changing and only partly predictable world. Success in this endeavor is largely determined by the ongoing communication between brain and body, and the vagus nerve is a crucial structure in that dialogue. In this review, we introduce the novel hypothesis that the afferent vagus nerve is engaged in signal processing rather than just signal relay. New genetic and structural evidence of vagal afferent fiber anatomy motivates two hypotheses: (1) that sensory signals informing on the physiological state of the body compute both spatial and temporal viscerosensory features as they ascend the vagus nerve, following patterns found in other sensory architectures, such as the visual and olfactory systems; and (2) that ascending and descending signals modulate one another, calling into question the strict segregation of sensory and motor signals, respectively. Finally, we discuss several implications of our two hypotheses for understanding the role of viscerosensory signal processing in predictive energy regulation (i.e., allostasis) as well as the role of metabolic signals in memory and in disorders of prediction (e.g., mood disorders).
Collapse
Affiliation(s)
- Clare Shaffer
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| | - Lisa Feldman Barrett
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| |
Collapse
|
38
|
Ben Khemis I, Aouaini F, Bukhari L, Nasr S, Ben Lamine A. Quantitative characterizations of mOR-EG activated by vanilla odorants using advanced statistical physics modeling. Food Chem 2023; 415:135782. [PMID: 36868068 DOI: 10.1016/j.foodchem.2023.135782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
An advanced monolayer adsorption model of an ideal gas was successfully employed to investigate the adsorption of vanillin, vanillin methyl ether, vanillin ethyl ether, and vanillin acetate odorants on mouse eugenol olfactory receptor mOR-EG. In order to understand the adsorption process putatively introduced in olfactory perception, model parameters were analyzed. Hence, fitting results showed that the studied vanilla odorants were linked in mOR-EG binding pockets with a non-parallel orientation, and their adsorption was a multi-molecular process (n > 1). The adsorption energy values that ranged from 14.021 to 19.193 kJ/mol suggested that the four vanilla odorants were physisorbed on mOR-EG (ΔEa < 40 kJ/mol) and the adsorption mechanism may be considered as an exothermic mechanism (ΔEa > 0). The estimated parameters may also be utilized for the quantitative characterization of the interactions of the studied odorants with mOR-EG to determine the corresponding olfactory bands ranging from 8 to 24.5 kJ/mol.
Collapse
Affiliation(s)
- Ismahene Ben Khemis
- Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019 Monastir, Tunisia.
| | - Fatma Aouaini
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Lamies Bukhari
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Samia Nasr
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Abdelmottaleb Ben Lamine
- Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019 Monastir, Tunisia
| |
Collapse
|
39
|
Kikuta S, Han B, Yamasoba T. Heterogeneous Damage to the Olfactory Epithelium in Patients with Post-Viral Olfactory Dysfunction. J Clin Med 2023; 12:5007. [PMID: 37568409 PMCID: PMC10419384 DOI: 10.3390/jcm12155007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
OBJECTIVES Post-viral olfactory dysfunction (PVOD) is a neurogenic disorder caused by a common cold virus. Based on the homology of deduced amino acid sequences, olfactory sensory neurons (OSNs) in both mice and humans express either class I or class II odorant receptor genes encoding class I and class II OSNs. The purpose of this study was to determine whether OSN damage in PVOD occurs uniformly in both neuron types. MATERIALS AND METHODS The characteristics of PVOD patients were compared with those of patients with chronic rhinosinusitis (CRS) or post-traumatic olfactory dysfunction (PTOD). Briefly, subjects underwent orthonasal olfaction tests using five different odors (T&T odors) and a retronasal olfaction test using a single odor (IVO odor). The regions in the mouse olfactory bulb (OB) activated by the T&T and the IVO odors were also examined. RESULTS Multivariate analysis of 307 cases of olfactory dysfunction (PVOD, 118 cases; CRS, 161 cases; and PTOD, 28 cases) revealed that a combination of responses to the IVO odor, but not to the T&T odors, is characteristic of PVOD, with high specificity (p < 0.001). Imaging analysis of GCaMP3 mice showed that the IVO odor selectively activated the OB region in which the axons of class I OSNs converged, whereas the T&T odors broadly activated the OB region in which axons of class I and class II OSNs converged. CONCLUSIONS A response to T&T odors, but not IVO odor, in PVOD suggests that class I OSNs are injured preferentially, and that OSN damage in PVOD may occur heterogeneously in a neuron-type-dependent manner.
Collapse
Affiliation(s)
- Shu Kikuta
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Nihon University, 30-1, Oyaguchi Kami-cho, Itabashi-ku, Tokyo 173-8610, Japan
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (B.H.); (T.Y.)
| | - Bing Han
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (B.H.); (T.Y.)
| | - Tatsuya Yamasoba
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (B.H.); (T.Y.)
| |
Collapse
|
40
|
Nakamuta S, Mori M, Ito M, Kurita M, Miyazaki M, Yamamoto Y, Nakamuta N. In situ hybridization analysis of olfactory receptor expression in the sea turtle olfactory organ. Cell Tissue Res 2023:10.1007/s00441-023-03782-6. [PMID: 37266727 DOI: 10.1007/s00441-023-03782-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/08/2023] [Indexed: 06/03/2023]
Abstract
The olfactory organ of turtles consists of an upper chamber epithelium (UCE) with associated glands, and a lower chamber epithelium (LCE) devoid of glands. The UCE and LCE are referred to as the air-nose and the water-nose, respectively, because the UCE is thought to detect airborne odorants, while the LCE detects waterborne odorants. However, it is not clear how the two are used in the olfactory organ. Odorant receptors (ORs) are the major olfactory receptors in turtles; they are classified as class I and II ORs, distinguished by their primary structure. Class I ORs are suggested to be receptive to water-soluble ligands and class II ORs to volatile ligands. This study analyzed the expression of class I and II ORs in hatchlings of the green sea turtle, Chelonia mydas, through in situ hybridization, to determine the localization of OR-expressing cells in the olfactory organ. Class I OR-expressing cells were distributed mainly in the LCE, implying that the LCE is receptive to waterborne odorants. Class II OR-expressing cells were distributed in both the UCE and LCE, implying that the entire olfactory organ is receptive to airborne odorants. The widespread expression of class II ORs may increase opportunities for sea turtles to sense airborne odorants.
Collapse
Affiliation(s)
- Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Masanori Mori
- Port of Nagoya Public Aquarium, 1-3 Minato-machi, Minato-ku, Nagoya, Aichi, 455-0033, Japan
| | - Miho Ito
- Port of Nagoya Public Aquarium, 1-3 Minato-machi, Minato-ku, Nagoya, Aichi, 455-0033, Japan
| | - Masanori Kurita
- Port of Nagoya Public Aquarium, 1-3 Minato-machi, Minato-ku, Nagoya, Aichi, 455-0033, Japan
| | - Masao Miyazaki
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan.
| |
Collapse
|
41
|
Abstract
Immunity to infection has been extensively studied in humans and mice bearing naturally occurring or experimentally introduced germline mutations. Mouse studies are sometimes neglected by human immunologists, on the basis that mice are not humans and the infections studied are experimental and not natural. Conversely, human studies are sometimes neglected by mouse immunologists, on the basis of the uncontrolled conditions of study and small numbers of patients. However, both sides would agree that the infectious phenotypes of patients with inborn errors of immunity often differ from those of the corresponding mutant mice. Why is that? We argue that this important question is best addressed by revisiting and reinterpreting the findings of both mouse and human studies from a genetic perspective. Greater caution is required for reverse-genetics studies than for forward-genetics studies, but genetic analysis is sufficiently strong to define the studies likely to stand the test of time. Genetically robust mouse and human studies can provide invaluable complementary insights into the mechanisms of immunity to infection common and specific to these two species.
Collapse
Affiliation(s)
- Philippe Gros
- McGill University Research Center on Complex Traits, Department of Biochemistry, and Department of Human Genetics, McGill University, Montréal, Québec, Canada;
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, and University of Paris Cité, Imagine Institute and Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
42
|
Inoue R, Fukutani Y, Niwa T, Matsunami H, Yohda M. Identification and Characterization of Proteins That Are Involved in RTP1S-Dependent Transport of Olfactory Receptors. Int J Mol Sci 2023; 24:ijms24097829. [PMID: 37175532 PMCID: PMC10177996 DOI: 10.3390/ijms24097829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Olfaction is mediated via olfactory receptors (ORs) that are expressed on the cilia membrane of olfactory sensory neurons in the olfactory epithelium. The functional expression of most ORs requires the assistance of receptor-transporting proteins (RTPs). We examined the interactome of RTP1S and OR via proximity biotinylation. Deubiquitinating protein VCIP135, the F-actin-capping protein sub-unit alpha-2, and insulin-like growth factor 2 mRNA-binding protein 2 were biotinylated via AirID fused with OR, RTP1S-AirID biotinylated heat shock protein A6 (HSPA6), and double-stranded RNA-binding protein Staufen homolog 2 (STAU2). Co-expression of HSPA6 partially enhanced the surface expression of Olfr544. The surface expression of Olfr544 increased by 50-80%. This effect was also observed when RTP1S was co-expressed. Almost identical results were obtained from the co-expression of STAU2. The interactions of HSPA6 and STAU2 with RTP1S were examined using a NanoBit assay. The results show that the RTP1S N-terminus interacted with the C-terminal domain of HSP6A and the N-terminal domain of STAU2. In contrast, OR did not significantly interact with STAU2 and HSPA6. Thus, HSP6A and STAU2 appear to be involved in the process of OR traffic through interaction with RTP1S.
Collapse
Affiliation(s)
- Ryosuke Inoue
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yosuke Fukutani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
43
|
Mao XL, Chen YX, Yu H, Yang QW. Inhibition of acid sensing ion channels by eugenol in rat trigeminal ganglion neurons. Neurosci Lett 2023; 803:137192. [PMID: 36924928 DOI: 10.1016/j.neulet.2023.137192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Eugenol is widely used as an analgesic in the dental treatment. The underlying mechanisms may involve its modulation of various ion channels. Acid-sensing ion channels (ASICs) are pH sensors and expressed in trigeminal ganglion (TG) neurons. In the present study, we found that eugenol concentration-dependently inhibited ASIC currents in TG neurons with an IC50 of 98.8 ± 7.4 μM. Eugenol decreased the maximum response to acidic pH and did not alter pH0.5 in the concentration-response curve of acidic pH, suggesting a noncompetitive inhibition of ASICs by eugenol. G-proteins were not involved in eugenol-induced inhibition, since pre-application of eugenol also decreased ASIC currents in the presence of the G-protein blocker GDP-β-S. In addition, eugenol also partly inhibited ASIC3 currents in Chinese hamster ovary cells transfected with ASIC3. In conclusion, eugenol partly inhibited ASIC currents in TG neurons in a concentration-dependent, non-competitive and G-protein independent manner. These results suggested that the ASICs could be a molecular target for eugenol in TG neurons, which contributed to its analgesic effect.
Collapse
Affiliation(s)
- Xiao-Li Mao
- Department of Pharmacy, Wuhan First Hospital, Wuhan, China.
| | - Yi-Xuan Chen
- Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Huan Yu
- Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Quan-Wei Yang
- Department of Pharmacy, Wuhan First Hospital, Wuhan, China.
| |
Collapse
|
44
|
Jundi D, Coutanceau JP, Bullier E, Imarraine S, Fajloun Z, Hong E. Expression of olfactory receptor genes in non-olfactory tissues in the developing and adult zebrafish. Sci Rep 2023; 13:4651. [PMID: 36944644 PMCID: PMC10030859 DOI: 10.1038/s41598-023-30895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
Since the discovery of olfactory receptor (OR) genes, their expression in non-olfactory tissues have been reported in rodents and humans. For example, mouse OR23 (mOR23) is expressed in sperm and muscle cells and has been proposed to play a role in chemotaxis and muscle migration, respectively. In addition, mouse mesencephalic dopaminergic neurons express various ORs, which respond to corresponding ligands. As the OR genes comprise the largest multigene family of G protein-coupled receptors in vertebrates (over 400 genes in human and 1000 in rodents), it has been difficult to categorize the extent of their diverse expression in non-olfactory tissues making it challenging to ascertain their function. The zebrafish genome contains significantly fewer OR genes at around 140 genes, and their expression pattern can be easily analyzed by carrying out whole mount in situ hybridization (ISH) assay in larvae. In this study, we found that 31 out of 36 OR genes, including or104-2, or108-1, or111-1, or125-4, or128-1, or128-5, 133-4, or133-7, or137-3 are expressed in various tissues, including the trunk, pharynx, pancreas and brain in the larvae. In addition, some OR genes are expressed in distinct brain regions such as the hypothalamus and the habenula in a dynamic temporal pattern between larvae, juvenile and adult zebrafish. We further confirmed that OR genes are expressed in non-olfactory tissues by RT-PCR in larvae and adults. These results indicate tight regulation of OR gene expression in the brain in a spatial and temporal manner and that the expression of OR genes in non-olfactory tissues are conserved in vertebrates. This study provides a framework to start investigating the function of ORs in the zebrafish brain.
Collapse
Affiliation(s)
- Dania Jundi
- INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, 75005, Paris, France
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli, 1300, Lebanon
| | - Jean-Pierre Coutanceau
- INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, 75005, Paris, France
| | - Erika Bullier
- INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, 75005, Paris, France
| | - Soumaiya Imarraine
- INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, 75005, Paris, France
- CNRS, Laboratoire Jean Perrin-Institut de Biologie Paris Seine (LJP-IBPS), Sorbonne Université, 75005, Paris, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli, 1300, Lebanon
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman, Lebanese University, Tripoli, 1352, Lebanon
| | - Elim Hong
- INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, 75005, Paris, France.
| |
Collapse
|
45
|
Zhou C, Liu Y, Zhao G, Liu Z, Chen Q, Yue B, Du C, Zhang X. Comparative Analysis of Olfactory Receptor Repertoires Sheds Light on the Diet Adaptation of the Bamboo-Eating Giant Panda Based on the Chromosome-Level Genome. Animals (Basel) 2023; 13:ani13060979. [PMID: 36978520 PMCID: PMC10044402 DOI: 10.3390/ani13060979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
The giant panda (Ailuropoda melanoleuca) is the epitome of a flagship species for wildlife conservation and also an ideal model of adaptive evolution. As an obligate bamboo feeder, the giant panda relies on the olfaction for food recognition. The number of olfactory receptor (OR) genes and the rate of pseudogenes are the main factors affecting the olfactory ability of animals. In this study, we used the chromosome-level genome of the giant panda to identify OR genes and compared the genome sequences of OR genes with five other Ursidae species (spectacled bear (Tremarctos ornatus), American black bear (Ursus americanus), brown bear (Ursus arctos), polar bear (Ursus maritimus) and Asian black bear (Ursus thibetanus)). The giant panda had 639 OR genes, including 408 functional genes, 94 partial OR genes and 137 pseudogenes. Among them, 222 OR genes were detected and distributed on 18 chromosomes, and chromosome 8 had the most OR genes. A total of 448, 617, 582, 521 and 792 OR genes were identified in the spectacled bear, American black bear, brown bear, polar bear and Asian black bear, respectively. Clustering analysis based on the OR protein sequences of the six species showed that the OR genes distributed in 69 families and 438 subfamilies based on sequence similarity, and the six mammals shared 72 OR gene subfamilies, while the giant panda had 31 unique OR gene subfamilies (containing 35 genes). Among the 35 genes, there are 10 genes clustered into 8 clusters with 10 known human OR genes (OR8J3, OR51I1, OR10AC1, OR1S2, OR1S1, OR51S1, OR4M1, OR4M2, OR51T1 and OR5W2). However, the kind of odor molecules can be recognized by the 10 known human OR genes separately, which needs further research. The phylogenetic tree showed that 345 (about 84.56%) functional OR genes were clustered as Class-II, while only 63 (about 15.44%) functional OR genes were clustered as Class-I, which required further and more in-depth research. The potential odor specificity of some giant panda OR genes was identified through the similarity to human protein sequences. Sequences similar to OR2B1, OR10G3, OR11H6 and OR11H7P were giant panda-specific lacking, which may be related to the transformation and specialization from carnivore to herbivore of the giant panda. Since our reference to flavoring agents comes from human research, the possible flavoring agents from giant panda-specific OR genes need further investigation. Moreover, the conserved motifs of OR genes were highly conserved in Ursidae species. This systematic study of OR genes in the giant panda will provide a solid foundation for further research on the olfactory function and variation of the giant panda.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yi Liu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Guangqing Zhao
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Zhengwei Liu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qian Chen
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Chao Du
- Baotou Teachers College, Baotou 014060, China
| | - Xiuyue Zhang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
46
|
Chen Y, Ma T, Zhang T, Ma L. Trends in the evolution of intronless genes in Poaceae. FRONTIERS IN PLANT SCIENCE 2023; 14:1065631. [PMID: 36875616 PMCID: PMC9978806 DOI: 10.3389/fpls.2023.1065631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Intronless genes (IGs), which are a feature of prokaryotes, are a fascinating group of genes that are also present in eukaryotes. In the current study, a comparison of Poaceae genomes revealed that the origin of IGs may have involved ancient intronic splicing, reverse transcription, and retrotranspositions. Additionally, IGs exhibit the typical features of rapid evolution, including recent duplications, variable copy numbers, low divergence between paralogs, and high non-synonymous to synonymous substitution ratios. By tracing IG families along the phylogenetic tree, we determined that the evolutionary dynamics of IGs differed among Poaceae subfamilies. IG families developed rapidly before the divergence of Pooideae and Oryzoideae and expanded slowly after the divergence. In contrast, they emerged gradually and consistently in the Chloridoideae and Panicoideae clades during evolution. Furthermore, IGs are expressed at low levels. Under relaxed selection pressure, retrotranspositions, intron loss, and gene duplications and conversions may promote the evolution of IGs. The comprehensive characterization of IGs is critical for in-depth studies on intron functions and evolution as well as for assessing the importance of introns in eukaryotes.
Collapse
Affiliation(s)
- Yong Chen
- *Correspondence: Tingting Zhang, ; Lei Ma,
| | | | | | - Lei Ma
- *Correspondence: Tingting Zhang, ; Lei Ma,
| |
Collapse
|
47
|
Wang Y, Geng R, Zhao Y, Fang J, Li M, Kang SG, Huang K, Tong T. The gut odorant receptor and taste receptor make sense of dietary components: A focus on gut hormone secretion. Crit Rev Food Sci Nutr 2023; 64:6975-6989. [PMID: 36785901 DOI: 10.1080/10408398.2023.2177610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Odorant receptors (ORs) and taste receptors (TRs) are expressed primarily in the nose and tongue in which they transduce electrical signals to the brain. Advances in deciphering the dietary component-sensing mechanisms in the nose and tongue prompted research on the role of gut chemosensory cells. Acting as the pivotal interface between the body and dietary cues, gut cells "smell" and "taste" dietary components and metabolites by taking advantage of chemoreceptors-ORs and TRs, to maintain physiological homeostasis. Here, we reviewed this novel field, highlighting the latest discoveries pertinent to gut ORs and TRs responding to dietary components, their impacts on gut hormone secretion, and the mechanisms involved. Recent studies indicate that gut cells sense dietary components including fatty acid, carbohydrate, and phytochemical by activating relevant ORs, thereby modulating GLP-1, PYY, CCK, and 5-HT secretion. Similarly, gut sweet, umami, and bitter receptors can regulate the gut hormone secretion and maintain homeostasis in response to dietary components. A deeper understanding of the favorable influence of dietary components on gut hormone secretion via gut ORs and TRs, coupled with the facts that gut hormones are involved in diverse physiological or pathophysiological phenomena, may ultimately lead to a promising treatment for various human diseases.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yuhan Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Muangun, Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, PR China
- Beijing Laboratory for Food Quality and Safety, Beijing, PR China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, PR China
- Beijing Laboratory for Food Quality and Safety, Beijing, PR China
| |
Collapse
|
48
|
Kim B, Haney S, Milan AP, Joshi S, Aldworth Z, Rulkov N, Kim AT, Bazhenov M, Stopfer MA. Olfactory receptor neurons generate multiple response motifs, increasing coding space dimensionality. eLife 2023; 12:79152. [PMID: 36719272 PMCID: PMC9925048 DOI: 10.7554/elife.79152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/31/2023] [Indexed: 02/01/2023] Open
Abstract
Odorants binding to olfactory receptor neurons (ORNs) trigger bursts of action potentials, providing the brain with its only experience of the olfactory environment. Our recordings made in vivo from locust ORNs showed that odor-elicited firing patterns comprise four distinct response motifs, each defined by a reliable temporal profile. Different odorants could elicit different response motifs from a given ORN, a property we term motif switching. Further, each motif undergoes its own form of sensory adaptation when activated by repeated plume-like odor pulses. A computational model constrained by our recordings revealed that organizing responses into multiple motifs provides substantial benefits for classifying odors and processing complex odor plumes: each motif contributes uniquely to encode the plume's composition and structure. Multiple motifs and motif switching further improve odor classification by expanding coding dimensionality. Our model demonstrated that these response features could provide benefits for olfactory navigation, including determining the distance to an odor source.
Collapse
Affiliation(s)
- Brian Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)BethesdaUnited States
- Brown University - National Institutes of Health Graduate Partnership ProgramProvidenceUnited States
| | - Seth Haney
- Department of Medicine, University of California, San DiegoSan DiegoUnited States
| | - Ana P Milan
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Shruti Joshi
- Department of Medicine, University of California, San DiegoSan DiegoUnited States
| | - Zane Aldworth
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)BethesdaUnited States
| | - Nikolai Rulkov
- Biocircuits Institute, University of California, San DiegoLa JollaUnited States
| | - Alexander T Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)BethesdaUnited States
| | - Maxim Bazhenov
- Department of Medicine, University of California, San DiegoSan DiegoUnited States
| | - Mark A Stopfer
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)BethesdaUnited States
| |
Collapse
|
49
|
Nicoli A, Haag F, Marcinek P, He R, Kreißl J, Stein J, Marchetto A, Dunkel A, Hofmann T, Krautwurst D, Di Pizio A. Modeling the Orthosteric Binding Site of the G Protein-Coupled Odorant Receptor OR5K1. J Chem Inf Model 2023; 63:2014-2029. [PMID: 36696962 PMCID: PMC10091413 DOI: 10.1021/acs.jcim.2c00752] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With approximately 400 encoding genes in humans, odorant receptors (ORs) are the largest subfamily of class A G protein-coupled receptors (GPCRs). Despite its high relevance and representation, the odorant-GPCRome is structurally poorly characterized: no experimental structures are available, and the low sequence identity of ORs to experimentally solved GPCRs is a significant challenge for their modeling. Moreover, the receptive range of most ORs is unknown. The odorant receptor OR5K1 was recently and comprehensively characterized in terms of cognate agonists. Here, we report two additional agonists and functional data of the most potent compound on two mutants, L1043.32 and L2556.51. Experimental data was used to guide the investigation of the binding modes of OR5K1 ligands into the orthosteric binding site using structural information from AI-driven modeling, as recently released in the AlphaFold Protein Structure Database, and from homology modeling. Induced-fit docking simulations were used to sample the binding site conformational space for ensemble docking. Mutagenesis data guided side chain residue sampling and model selection. We obtained models that could better rationalize the different activity of active (agonist) versus inactive molecules with respect to starting models and also capture differences in activity related to minor structural differences. Therefore, we provide a model refinement protocol that can be applied to model the orthosteric binding site of ORs as well as that of GPCRs with low sequence identity to available templates.
Collapse
Affiliation(s)
- Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Franziska Haag
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Patrick Marcinek
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Ruiming He
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany.,Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Johanna Kreißl
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Jörg Stein
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Alessandro Marchetto
- Computational Biomedicine, Institute for Advanced Simulations (IAS)-5/Institute for Neuroscience and Medicine (INM)-9, Forschungszentrum Jülich, 52428 Jülich, Germany.,Department of Biology, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52074 Aachen, Germany
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354 Freising, Germany
| | - Dietmar Krautwurst
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
50
|
Nomdedeu-Sancho G, Alsina B. Wiring the senses: Factors that regulate peripheral axon pathfinding in sensory systems. Dev Dyn 2023; 252:81-103. [PMID: 35972036 PMCID: PMC10087148 DOI: 10.1002/dvdy.523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/04/2023] Open
Abstract
Sensory neurons of the head are the ones that transmit the information about the external world to our brain for its processing. Axons from cranial sensory neurons sense different chemoattractant and chemorepulsive molecules during the journey and in the target tissue to establish the precise innervation with brain neurons and/or receptor cells. Here, we aim to unify and summarize the available information regarding molecular mechanisms guiding the different afferent sensory axons of the head. By putting the information together, we find the use of similar guidance cues in different sensory systems but in distinct combinations. In vertebrates, the number of genes in each family of guidance cues has suffered a great expansion in the genome, providing redundancy, and robustness. We also discuss recently published data involving the role of glia and mechanical forces in shaping the axon paths. Finally, we highlight the remaining questions to be addressed in the field.
Collapse
Affiliation(s)
- Gemma Nomdedeu-Sancho
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Berta Alsina
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| |
Collapse
|