1
|
Peng X, Lian Z, O'Brien V, Xiao J, Litchfield BA, Perrard XYD, Xu L, Ni J, Mukherjee A, Simmons T, Dong H, Mullick AE, Crooke R, Pownall HJ, Simon SI, Ballantyne CM, Wu H. Foamy monocytes and atherogenesis in mice with combined hyperlipidemia and effects of antisense knockdown of apoCIII. J Lipid Res 2025; 66:100763. [PMID: 39988193 PMCID: PMC11981816 DOI: 10.1016/j.jlr.2025.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025] Open
Abstract
Hypertriglyceridemia (HTG), particularly in combined hyperlipidemia, increases risk for atherosclerotic cardiovascular disease, but the underlying mechanisms remain incompletely understood. We sought to determine contributions of circulating monocytes to atherosclerosis associated with HTG in combined hyperlipidemia, created by transgenic expression of human apoCIII in Ldlr-/- mice (Ldlr-/-ApoCIIItg) fed Western high-fat diet (WD). Tissue culture with THP-1 and primary human monocytes was used to examine effects of triglyceride (TG)-rich lipoproteins on monocytes. Ldlr-/-ApoCIIItg mice were also treated with apoCIII antisense oligonucleotide (ASO) and examined for foamy monocytes and atherosclerosis. Compared to Ldlr-/- mice, Ldlr-/-ApoCIIItg mice fed WD had early and persistent increases in lipid accumulation within monocytes and enhanced atherosclerosis. Ldlr-/-ApoCIIItg mice versus Ldlr-/- mice had higher levels of CD11c, CD36, and cytokines in foamy monocytes, with increases in foamy monocyte adhesion to vascular cell adhesion molecule-1 and oxidized LDL uptake. Monocytes took up TG-rich lipoprotein in vivo and in vitro and changed phenotypes. Foamy monocytes infiltrated into atherosclerotic lesions, and specific and sustained depletion of CD11c+ (foamy) monocytes profoundly reduced atherosclerosis in Ldlr-/-ApoCIIItg mice on WD. Treatment with apoCIII ASO lowered plasma TG and cholesterol levels, improved foamy monocyte phenotypes, and reduced atherosclerosis in Ldlr-/-ApoCIIItg mice. In conclusion, HTG in combined hyperlipidemia accelerates atherosclerosis, in part, by increasing foamy monocyte formation and infiltration into atherosclerotic plaques. Treatment with apoCIII ASO is a potential new therapy for improving monocyte phenotypes and reducing atherosclerosis in combined hyperlipidemia.
Collapse
Affiliation(s)
- Xueying Peng
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, PR China; Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Zeqin Lian
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Veronica O'Brien
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jing Xiao
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Lu Xu
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jing Ni
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Aparna Mukherjee
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Timothy Simmons
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Henry Dong
- Department of Pediatrics, Children's Hospital of Pittsburgh UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | - Henry J Pownall
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Christie M Ballantyne
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, TX, USA
| | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Zhang Y, Zhang D, Xie Z, Xia T, Zou L, Wang T, Zhong L, Zeng Z, Wang L, Chen G, Liang X. Integrated transcriptomic and metabolomic analysis reveals the effects of EMMPRIN on nucleotide metabolism and 1C metabolism in AS mouse BMDMs. Front Mol Biosci 2025; 11:1460186. [PMID: 40125455 PMCID: PMC11927532 DOI: 10.3389/fmolb.2024.1460186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/27/2024] [Indexed: 03/25/2025] Open
Abstract
Background Extracellular matrix metalloproteinase inducer (EMMPRIN) has been considered as a key promoting factor in atherosclerosis (AS). Some studies have shown that regulating EMMPRIN expression in bone marrow-derived macrophages (BMDMs) of ApoE-/- mice can affect plaque stability, but the mechanism was not clear. Methods AS model mice were built from high-fat-feeding ApoE -/- mice, and were divided into siE group and CON group. The BMDMs and aortas from AS mice were harvested following in vivo treatment with either EMMPRIN short interfering (si)RNA (siEMMPRIN) or negative control siRNA. Transcriptomic and metabolomic profiles were analyzed using RNA-sequencing and Liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. The efficacy of siEMMPRIN was assessed through real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting (WB). Immunofluorescence staining was employed to measure EMMPRIN expression within aortic atherosclerotic plaques. Cell proliferation was monitored using the Cell Counting Kit-8 (CCK8), while flow cytometry was utilized to analyze the cell cycle. Additionally, seahorse analysis and oil red O staining were conducted to verify glucose and lipid metabolism, respectively. Results A total of 3,282 differentially expressed metabolites (DEMs) and 16,138 differentially expressed genes (DEGs) were identified between the CON group and siE group. The nucleotide metabolism and one-carbon (1C) metabolism were identified as major altered pathways at both the transcriptional and metabolic levels. Metabolomic results identified increased levels of glycine, serine, betaine and S-adenosyl-L-methionine (SAM) to S-adenosyl-L-homocysteine (SAH) ratio and decreased levels of dimethylglycine (DMG) and SAH in 1C metabolism, accompanied by the accumulation of nucleotides, nucleosides, and bases in nucleotide metabolism. Transcriptomics results shown that Dnmt, Mthfd2 and Dhfr were downregulated, while Mthfr were upregulated in 1C metabolism. And numerous genes involved in de novo nucleotide synthesis, pentose phosphate pathway (PPP) and dNTP production were significantly inhibited, which may be associated with decreased BMDMs proliferation and cell cycle arrest in the G0/G1 phase in siE group. Multi-omics results also showed changes in glucose and lipid metabolism. Seahorse assay confirmed reduced glycolysis and oxidative phosphorylation (OXPHOS) levels and the Oil Red O staining confirmed the decrease of lipid droplets in siE group. Conclusion The integrated metabolomic and transcriptomic analysis suggested that nucleotide metabolism and 1C metabolism may be major metabolic pathways affected by siEMMPRIN in AS mouse BMDMs. Our study contributes to a better understanding of the role of EMMPRIN in AS development.
Collapse
Affiliation(s)
- Yun Zhang
- First Clinical College, Chongqing Medical University, Chongqing, China
| | - Diyuan Zhang
- Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Zulong Xie
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianli Xia
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lili Zou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhuo Zeng
- First Clinical College, Chongqing Medical University, Chongqing, China
| | - Lingying Wang
- First Clinical College, Chongqing Medical University, Chongqing, China
| | - Guozhu Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xing Liang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Yvan-Charvet L, Barouillet T, Borowczyk C. Haematometabolism rewiring in atherosclerotic cardiovascular disease. Nat Rev Cardiol 2025:10.1038/s41569-024-01108-9. [PMID: 39743562 DOI: 10.1038/s41569-024-01108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 01/04/2025]
Abstract
Atherosclerotic cardiovascular diseases are the most frequent cause of death worldwide. The clinical complications of atherosclerosis are closely linked to the haematopoietic and immune systems, which maintain homeostatic functions and vital processes in the body. The nodes linking metabolism and inflammation are receiving increasing attention because they are inextricably linked to inflammatory manifestations of non-communicable diseases, including atherosclerosis. Although metabolism and inflammation are essential to survival and involve all tissues, we still know little about how these processes influence each other. In an effort to understand these mechanisms, in this Review we explore whether and how potent cardiovascular risk factors and metabolic modifiers of atherosclerosis influence the molecular and cellular machinery of 'haematometabolism' (metabolic-dependent haematopoietic stem cell skewing) and 'efferotabolism' (metabolic-dependent efferocyte reprogramming). These changes might ultimately propagate a quantitative and qualitative drift of the macrophage supply chain and affect the clinical manifestations of atherosclerosis. Refining our understanding of the different metabolic requirements of these processes could open the possibility of developing therapeutics targeting haematometabolism that, in conjunction with improved dietary habits, help rebalance and promote efficient haematopoiesis and efferocytosis and decrease the risk of atherosclerosis complications.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France.
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France.
| | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France
| | - Coraline Borowczyk
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France.
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France.
| |
Collapse
|
4
|
Wei L, Wu H, Wang X, Wen L, Cui B, Cheng Y. Comprehensive review of plant-derived anti-hyperlipidemia peptides: Production, anti-hyperlipidemia mechanism, and structure-activity relationship study. Food Chem 2024; 461:140715. [PMID: 39178542 DOI: 10.1016/j.foodchem.2024.140715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/26/2024] [Accepted: 07/28/2024] [Indexed: 08/26/2024]
Abstract
Hyperlipidemia, an elevated level of cholesterol and/or triglycerides, has become a major public health problem worldwide. Although drugs intervention is effective in treating hyperlipidemia, most of them have adverse side effects. Peptides from natural plants with high anti-hyperlipidemic activity and a strong safety profile have emerged as promising candidates to prevent and ameliorate hyperlipidemia. This review summarizes the recent advances in plant-derived anti-hyperlipidemic peptides in terms of their sources, production, purification, identification, and activity evaluation. The focus is extended to their potential anti-hyperlipidemic mechanisms and structure-function relationships. Bioactive peptides derived from various plant sources, especially peptides containing hydrophobic and/or acidic amino acids, have shown remarkable effects in hyperlipidemic treatment. Their anti-hyperlipidemic effects are mediated by various mechanisms, including regulation of cholesterol metabolism and triglyceride metabolism, inhibition of inflammation-related metabolic syndrome, and modulation of the gut microbiota. Further evaluation of the stability, bioavailability, and clinical efficacy of these peptides is recommended.
Collapse
Affiliation(s)
- Liuyi Wei
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Hao Wu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Xufeng Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Bo Cui
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China; School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China.
| |
Collapse
|
5
|
Flesher K, Mathew A, Borovskiy Y, Laudanski K. Examination of Postoperative Changes in Lipid Profile and Glycemic Markers After Coronary Artery Bypass Graft, Percutaneous Intervention Vs Aortic Valve Replacement Demonstrated a Shift in Risk Factors for Coronary Artery Disease. J Multidiscip Healthc 2024; 17:4559-4569. [PMID: 39371402 PMCID: PMC11453132 DOI: 10.2147/jmdh.s470819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/24/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Surgery-related stress may affect the metabolome, leading to abnormal lipid profiles and ineffective glycemic control. Here, we gauge these changes as they may accelerate atherosclerosis, limiting the benefits of interventions aimed at improving coronary artery disease (CAD) progression. Patients and Methods Electronic medical records were queried to identify patients undergoing coronary artery bypass grafting (CABG), percutaneous coronary intervention (PCI), or aortic valve replacement (AVR). 7573 records denoted lipid profile (cholesterol, LDL, HDL, VLDL, triglycerides) and glucose metabolism impairment (HbA1c). Pre-procedure lipid and glucose laboratory values were compared with periods representing acute periprocedural inflammation (1-3 months), resolution of acute inflammation (3-6 months), convalescence (6-12 months), and medium- (1-2 years), and long-term periods (2-5 years). Results Baseline values differed between groups (AVR: Cholesterol↑↓, LDL↓↑, HDL↓, Triglycerides↑, HbA1c↓; CABG: Cholesterol↓, LDL↓, HDL↓, Triglycerides↓, HbA1c↓; PCI: Cholesterol↑↓, LDL↑↓, HDL↑↓, Triglycerides↓, HbA1c↓). Interestingly, total cholesterol and LDL had opposite trajectories after CABG vs AVR even five years after surgical procedure and the effects were moderate as denoted by d-Cohen statistics. HDL declined acutely after CABG and AVR but not after PCI. Triglycerides were elevated for 2 years after AVR but depressed after CABG and PCI. HbA1c remained depressed for up to 5 years after any studied procedure. Conclusion Our data suggest surgical procedures result in prolonged lipid profile and glycemic metabolism disturbances, particularly after aortic valve replacement, indicating more aggressive post-surgical treatment of these metabolic abnormalities may be warranted.
Collapse
Affiliation(s)
- Kelley Flesher
- Department of Neurology, Division of Neurocritical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Amal Mathew
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Yuliya Borovskiy
- Corporate Informational Service, Penn Medicine, Philadelphia, PA, USA
- Data Analytics Core, Penn Medicine, Philadelphia, PA, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Jin Y, Geng Z, Lin K, Gu X, Feng X, Fu S, Wang W, Xie C, Wang Y, Gong F. Expansion of a Novel Subset of L-Selectin + Classical Monocytes in Kawasaki Disease. J Inflamm Res 2024; 17:6193-6201. [PMID: 39281780 PMCID: PMC11397173 DOI: 10.2147/jir.s468472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose Kawasaki disease (KD) is an acute systemic vasculitis that is associated with dysregulated immune responses. Monocytes play a central role in innate immunity. Our previous single-cell RNA sequencing of peripheral blood mononuclear cells (PBMC) revealed a new subset of monocytes in children with KD called L-Selectin+ classical monocytes (SELL+ CM). Therefore, we aimed to investigate the correlation between KD and SELL+ CM. Patients and Methods Peripheral blood samples were collected from 81 KD patients, 18 febrile patients and 36 healthy children before treatment. Among them, ten KD patients were followed up, and samples were obtained before and after intravenous immunoglobulin (IVIG) treatment. Analysis of SELL+ CM was performed using flow cytometry. Additionally, ROC curve analysis was conducted to assess the diagnostic value of SELL+ CM for KD. Results Classical monocytes (CM) expressed the highest levels of L-selectin in children with KD. The ratio of SELL+ CM in CM was significantly higher in KD patients than in febrile and healthy children. Following IVIG treatment, the ratio of SELL+ CM in CM showed a downward trend. The receiver operating characteristic (ROC) curve analysis (the area under the curve, AUC = 0.71) indicated the potential diagnostic value of SELL+ CM in KD. The correlation analysis suggested that SELL+ CM may serve as a new clinical index for patients with KD. Conclusion In KD, the ratio of SELL+ CM in CM significantly increases during the acute phase, which may become a potential biomarker and help facilitate KD diagnosis based on clinical features.
Collapse
Affiliation(s)
- Yihua Jin
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Zhimin Geng
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
- Pediatric Cardiovascular Diseases Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, People's Republic of China
| | - Kun Lin
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Xinyu Gu
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Xiwei Feng
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Songling Fu
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Wei Wang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Chunhong Xie
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Yujia Wang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Fangqi Gong
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| |
Collapse
|
7
|
Mackay CDA, Meechem MB, Patel VB. Macrophages in vascular disease: Roles of mitochondria and metabolic mechanisms. Vascul Pharmacol 2024; 156:107419. [PMID: 39181483 DOI: 10.1016/j.vph.2024.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Macrophages are a dynamic cell type of the immune system implicated in the pathophysiology of vascular diseases and are a major contributor to pathological inflammation. Excessive macrophage accumulation, activation, and polarization is observed in aortic aneurysm (AA), atherosclerosis, and pulmonary arterial hypertension. In general, macrophages become activated and polarized to a pro-inflammatory phenotype, which dramatically changes cell behavior to become pro-inflammatory and infiltrative. These cell types become cumbersome and fail to be cleared by normal mechanisms such as autophagy. The result is a hyper-inflammatory environment causing the recruitment of adjacent cells and circulating immune cells to further augment the inflammatory response. In AA, this leads to excessive ECM degradation and chemokine secretion, ultimately causing macrophages to dominate the immune cell landscape in the aortic wall. In atherosclerosis, monocytes are recruited to the vascular wall, where they polarize to the pro-inflammatory phenotype and induce inflammatory pathway activation. This leads to the development of foam cells, which significantly contribute to neointima and necrotic core formation in atherosclerotic plaques. Pro-inflammatory macrophages, which affect other vascular diseases, present with fragmented mitochondria and corresponding metabolic dysfunction. Targeting macrophage mitochondrial dynamics has proved to be an exciting potential therapeutic approach to combat vascular disease. This review will summarize mitochondrial and metabolic mechanisms of macrophage activation, polarization, and accumulation in vascular diseases.
Collapse
Affiliation(s)
- Cameron D A Mackay
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Megan B Meechem
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
8
|
Martemucci G, Khalil M, Di Luca A, Abdallah H, D’Alessandro AG. Comprehensive Strategies for Metabolic Syndrome: How Nutrition, Dietary Polyphenols, Physical Activity, and Lifestyle Modifications Address Diabesity, Cardiovascular Diseases, and Neurodegenerative Conditions. Metabolites 2024; 14:327. [PMID: 38921462 PMCID: PMC11206163 DOI: 10.3390/metabo14060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Several hallmarks of metabolic syndrome, such as dysregulation in the glucose and lipid metabolism, endothelial dysfunction, insulin resistance, low-to-medium systemic inflammation, and intestinal microbiota dysbiosis, represent a pathological bridge between metabolic syndrome and diabesity, cardiovascular, and neurodegenerative disorders. This review aims to highlight some therapeutic strategies against metabolic syndrome involving integrative approaches to improve lifestyle and daily diet. The beneficial effects of foods containing antioxidant polyphenols, intestinal microbiota control, and physical activity were also considered. We comprehensively examined a large body of published articles involving basic, animal, and human studie, as well as recent guidelines. As a result, dietary polyphenols from natural plant-based antioxidants and adherence to the Mediterranean diet, along with physical exercise, are promising complementary therapies to delay or prevent the onset of metabolic syndrome and counteract diabesity and cardiovascular diseases, as well as to protect against neurodegenerative disorders and cognitive decline. Modulation of the intestinal microbiota reduces the risks associated with MS, improves diabetes and cardiovascular diseases (CVD), and exerts neuroprotective action. Despite several studies, the estimation of dietary polyphenol intake is inconclusive and requires further evidence. Lifestyle interventions involving physical activity and reduced calorie intake can improve metabolic outcomes.
Collapse
Affiliation(s)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (A.D.L.); (A.G.D.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | | |
Collapse
|
9
|
Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, Rom O, Yurdagul A. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 2024; 6:617-638. [PMID: 38532071 PMCID: PMC11055680 DOI: 10.1038/s42255-024-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
Collapse
Affiliation(s)
- Chad Stroope
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brian Coon
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
10
|
Gonzalez AL, Dungan MM, Smart CD, Madhur MS, Doran AC. Inflammation Resolution in the Cardiovascular System: Arterial Hypertension, Atherosclerosis, and Ischemic Heart Disease. Antioxid Redox Signal 2024; 40:292-316. [PMID: 37125445 PMCID: PMC11071112 DOI: 10.1089/ars.2023.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Significance: Chronic inflammation has emerged as a major underlying cause of many prevalent conditions in the Western world, including cardiovascular diseases. Although targeting inflammation has emerged as a promising avenue by which to treat cardiovascular disease, it is also associated with increased risk of infection. Recent Advances: Though previously assumed to be passive, resolution has now been identified as an active process, mediated by unique immunoresolving mediators and mechanisms designed to terminate acute inflammation and promote tissue repair. Recent work has determined that failures of resolution contribute to chronic inflammation and the progression of human disease. Specifically, failure to produce pro-resolving mediators and the impaired clearance of dead cells from inflamed tissue have been identified as major mechanisms by which resolution fails in disease. Critical Issues: Drawing from a rapidly expanding body of experimental and clinical studies, we review here what is known about the role of inflammation resolution in arterial hypertension, atherosclerosis, myocardial infarction, and ischemic heart disease. For each, we discuss the involvement of specialized pro-resolving mediators and pro-reparative cell types, including T regulatory cells, myeloid-derived suppressor cells, and macrophages. Future Directions: Pro-resolving therapies offer the promise of limiting chronic inflammation without impairing host defense. Therefore, it is imperative to better understand the mechanisms underlying resolution to identify therapeutic targets. Antioxid. Redox Signal. 40, 292-316.
Collapse
Affiliation(s)
- Azuah L. Gonzalez
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Matthew M. Dungan
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - C. Duncan Smart
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Meena S. Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amanda C. Doran
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Julla JB, Girard D, Diedisheim M, Saulnier PJ, Tran Vuong B, Blériot C, Carcarino E, De Keizer J, Orliaguet L, Nemazanyy I, Potier C, Khider K, Tonui DC, Ejlalmanesh T, Ballaire R, Mambu Mambueni H, Germain S, Gaborit B, Vidal-Trécan T, Riveline JP, Garchon HJ, Fenaille F, Lemoine S, Carlier A, Castelli F, Potier L, Masson D, Roussel R, Vandiedonck C, Hadjadj S, Alzaid F, Gautier JF, Venteclef N. Blood Monocyte Phenotype Is A Marker of Cardiovascular Risk in Type 2 Diabetes. Circ Res 2024; 134:189-202. [PMID: 38152893 DOI: 10.1161/circresaha.123.322757] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Diabetes is a major risk factor for atherosclerotic cardiovascular diseases with a 2-fold higher risk of cardiovascular events in people with diabetes compared with those without. Circulating monocytes are inflammatory effector cells involved in both type 2 diabetes (T2D) and atherogenesis. METHODS We investigated the relationship between circulating monocytes and cardiovascular risk progression in people with T2D, using phenotypic, transcriptomic, and metabolomic analyses. cardiovascular risk progression was estimated with coronary artery calcium score in a cohort of 672 people with T2D. RESULTS Coronary artery calcium score was positively correlated with blood monocyte count and frequency of the classical monocyte subtype. Unsupervised k-means clustering based on monocyte subtype profiles revealed 3 main endotypes of people with T2D at varying risk of cardiovascular events. These observations were confirmed in a validation cohort of 279 T2D participants. The predictive association between monocyte count and major adverse cardiovascular events was validated through an independent prospective cohort of 757 patients with T2D. Integration of monocyte transcriptome analyses and plasma metabolomes showed a disruption of mitochondrial pathways (tricarboxylic acid cycle, oxidative phosphorylation pathway) that underlined a proatherogenic phenotype. CONCLUSIONS In this study, we provide evidence that frequency and monocyte phenotypic profile are closely linked to cardiovascular risk in patients with T2D. The assessment of monocyte frequency and count is a valuable predictive marker for risk of cardiovascular events in patients with T2D. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT04353869.
Collapse
Affiliation(s)
- Jean-Baptiste Julla
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetology, Endocrinology and Nutrition Department, Lariboisière Hospital, Fédération de Diabétologie, France (J.-B.J., T.V.-T., J.-P.R., J.-F.G.)
| | - Diane Girard
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
| | - Marc Diedisheim
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Clinique Saint Gatien Alliance (NCT+), Saint-Cyr-sur-Loire, France (M.D.)
| | - Pierre-Jean Saulnier
- Poitiers Université, CHU Poitiers, INSERM, Centre d'Investigation Clinique CIC1402, Poitiers, France (P.-J.S.)
| | - Bao Tran Vuong
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
| | - Camille Blériot
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
| | - Elena Carcarino
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
| | - Joe De Keizer
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France (J.D.K., S.H.)
| | - Lucie Orliaguet
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
| | - Ivan Nemazanyy
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
| | - Charline Potier
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
| | - Kennan Khider
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
| | - Dorothy Chepngenoh Tonui
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
| | - Tina Ejlalmanesh
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
| | - Raphaelle Ballaire
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
| | - Hendrick Mambu Mambueni
- Genomics platform UFR Simone Veil 1173; U, University of Versailles Paris-Saclay; Inserm UMR 1173 (H.M.M., H.-J.G.)
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France (S.G.)
| | - Bénédicte Gaborit
- C2VN, INRAE, INSERM, Aix Marseille University, Marseille, France (B.G.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, AP-HM, Marseille, France (B.G.)
| | - Tiphaine Vidal-Trécan
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetology, Endocrinology and Nutrition Department, Lariboisière Hospital, Fédération de Diabétologie, France (J.-B.J., T.V.-T., J.-P.R., J.-F.G.)
| | - Jean-Pierre Riveline
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetology, Endocrinology and Nutrition Department, Lariboisière Hospital, Fédération de Diabétologie, France (J.-B.J., T.V.-T., J.-P.R., J.-F.G.)
| | - Henri-Jean Garchon
- Genomics platform UFR Simone Veil 1173; U, University of Versailles Paris-Saclay; Inserm UMR 1173 (H.M.M., H.-J.G.)
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), MetaboHUB, France (F.F., F.C.)
| | - Sophie Lemoine
- Genomics core facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France (S.L.)
| | - Aurélie Carlier
- Diabetology and Endocrinology Department, Bichat Hospital, Fédération de Diabétologie, France (L.P., A.C., R.R.)
| | - Florence Castelli
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), MetaboHUB, France (F.F., F.C.)
| | - Louis Potier
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetology and Endocrinology Department, Bichat Hospital, Fédération de Diabétologie, France (L.P., A.C., R.R.)
| | - David Masson
- INSERM, LNC UMR1231, Dijon, France (D.M.)
- University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France (D.M.)
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France (D.M.)
- Plateau Automatisé de Biochimie, Dijon University Hospital, France (D.M.)
| | - Ronan Roussel
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetology and Endocrinology Department, Bichat Hospital, Fédération de Diabétologie, France (L.P., A.C., R.R.)
| | - Claire Vandiedonck
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
| | - Samy Hadjadj
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France (J.D.K., S.H.)
| | - Fawaz Alzaid
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Dasman Diabetes Institute, Kuwait (F.A.)
| | - Jean-François Gautier
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetology, Endocrinology and Nutrition Department, Lariboisière Hospital, Fédération de Diabétologie, France (J.-B.J., T.V.-T., J.-P.R., J.-F.G.)
| | - Nicolas Venteclef
- INSERM, Necker Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, IMMEDIAB Laboratory (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., I.N., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
- Diabetes Institute (J.-B.J., D.G., M.D., B.T.V., C.B., E.C., L.O., C.P., K.K., D.C.T., T.E., R.B., T.V.-T., J.-P.R., L.P., R.R., C.V., F.A., J.-F.G., N.V.), Université Paris Cité, France
| |
Collapse
|
12
|
Caimi G, Lo Presti R, Urso C, Brucculeri S, Carlisi M. Neutrophil/HDL-C, Lymphocyte/HDL-C and Monocyte/HDL-C in subjects with asymptomatic carotid atherosclerosis. Clin Hemorheol Microcirc 2024; 88:1-11. [PMID: 38758993 DOI: 10.3233/ch-232019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
BACKGROUND Leukocyte count is a prognostic marker for cardiovascular diseases, with key role in atherosclerosis development. Specific number of neutrophils, lymphocytes and monocytes can predict cardiovascular risk, also in asymptomatic subjects. Among the lipoprotein fractions, HDL-C is a protective factor in the cardiovascular disorders. For the above reason, we have examined the peripheral count of leukocytes, neutrophils, lymphocytes and monocytes, and the ratios between neutrophils/HDL-cholesterol, lymphocytes/HDL-cholesterol, and monocytes/HDL-cholesterol, to evaluate the possible utility of the obtained values in progression of asymptomatic carotid atherosclerosis. METHODS We performed our analysis in a cohort of 100 subjects with asymptomatic carotid atherosclerosis, of which 43 men and 57 women. The data were expressed as medians and IQR. To analyse the differences in leukocyte, neutrophil, lymphocyte, monocytes count and their ratio with HDL-cholesterol the Mann-Whitney test was employed. RESULTS The peripheral count of leukocyte subtypes and the ratios, they change in relation to the number of cardiovascular risk factors and the degree of insulin resistance. CONCLUSIONS In this cohort of subjects, the percentage of observed cardiovascular risk factors significantly affect some leukocyte parameters. These results, allow us to underline the importance of the leukocyte indices in the evaluation of subjects with asymptomatic vascular atherosclerosis.
Collapse
Affiliation(s)
- Gregorio Caimi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Rosalia Lo Presti
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Caterina Urso
- Fondazione Istituto "G. Giglio" Cefalù, Palermo, Italy
| | | | - Melania Carlisi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
13
|
Zhou J, Gao T, Tang W, Qian T, Wang Z, Xu P, Wang L. Progress in the treatment of neonatal hypoxic-ischemic encephalopathy with umbilical cord blood mononuclear cells. Brain Dev 2023; 45:533-546. [PMID: 37806836 DOI: 10.1016/j.braindev.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a common disease among newborns, which is a leading cause of neonatal death and permanent neurological sequelae. Therapeutic hypothermia (TH) is the only method for the treatment of HIE that has been recognized effective clinically at home and abroad, but the efficacy is limited. Recent research suggests that the cord blood-derived mononuclear cells (CB-MNCs), which the refer to blood cells containing one nucleus in the cord blood, exert anti-oxidative, anti-inflammatory, anti-apoptotic effects and play a neuroprotective role in HIE. This review focuses on safety and efficacy, the route of administration, dose, timing and combination treatment of CB-MNCs in HIE.
Collapse
Affiliation(s)
- Jiayu Zhou
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ting Gao
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Wan Tang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Tianyang Qian
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ziming Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Pu Xu
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Laishuan Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China.
| |
Collapse
|
14
|
Skudder-Hill L, Coffey S, Sequeira-Bisson IR, Ko J, Poppitt SD, Petrov MS. Comprehensive analysis of dyslipidemia states associated with fat in the pancreas. Diabetes Metab Syndr 2023; 17:102881. [PMID: 37862954 DOI: 10.1016/j.dsx.2023.102881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND The global burden of cardiovascular diseases continues to rise, and it is increasingly acknowledged that guidelines based on traditional risk factors fail to identify a substantial fraction of people who develop cardiovascular diseases. Fat in the pancreas could be one of the unappreciated risk factors. This study aimed to investigate the associations of dyslipidemia states with fat in the pancreas. METHODS All participants underwent magnetic resonance imaging on the same 3.0 T scanner for quantification of fat in the pancreas, analyzed as both binary (i.e., fatty change of the pancreas) and continuous (i.e., intra-pancreatic fat deposition) variables. Statistical analyses were adjusted for body mass index, glycated hemoglobin, fasting insulin, ethnicity, age, and sex. RESULTS There were 346 participants studied. On most adjusted analyses, high-density lipoprotein cholesterol dyslipidemia was significantly associated with both fatty change of the pancreas (p = 0.010) and intra-pancreatic fat deposition (p = 0.008). Neither low-density lipoprotein cholesterol dyslipidemia nor triglyceride dyslipidemia were significantly associated with fatty change of the pancreas and intra-pancreatic fat deposition. The absence of any dyslipidemia was inversely associated with both fatty change of the pancreas (p = 0.016) and intra-pancreatic fat deposition (p < 0.001). CONCLUSIONS Dyslipidemias are uncoupled when it comes to the relationship with fat in the pancreas, with only high-density lipoprotein cholesterol dyslipidemia having a consistent and strong link with it. The residual cardiovascular diseases risk may be attributed to fatty change of the pancreas.
Collapse
Affiliation(s)
| | - Sean Coffey
- Department of Medicine - HeartOtago, University of Otago, Dunedin, New Zealand
| | - Ivana R Sequeira-Bisson
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, New Zealand
| | - Juyeon Ko
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Sally D Poppitt
- School of Medicine, University of Auckland, Auckland, New Zealand; Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, New Zealand; Riddet Centre of Research Excellence (CoRE) for Food and Nutrition, New Zealand
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
15
|
Duan H, Wang L, Huangfu M, Li H. The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: Mechanisms and therapeutic potentials. Biomed Pharmacother 2023; 165:115276. [PMID: 37542852 DOI: 10.1016/j.biopha.2023.115276] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Short-chain fatty acids (SCFAs) derived from the fermentation of carbohydrates by gut microbiota play a crucial role in regulating host physiology. Among them, acetate, propionate, and butyrate are key players in various biological processes. Recent research has revealed their significant functions in immune and inflammatory responses. For instance, butyrate reduces the development of interferon-gamma (IFN-γ) generating cells while promoting the development of regulatory T (Treg) cells. Propionate inhibits the initiation of a Th2 immune response by dendritic cells (DCs). Notably, SCFAs have an inhibitory impact on the polarization of M2 macrophages, emphasizing their immunomodulatory properties and potential for therapeutics. In animal models of asthma, both butyrate and propionate suppress the M2 polarization pathway, thus reducing allergic airway inflammation. Moreover, dysbiosis of gut microbiota leading to altered SCFA production has been implicated in prostate cancer progression. SCFAs trigger autophagy in cancer cells and promote M2 polarization in macrophages, accelerating tumor advancement. Manipulating microbiota- producing SCFAs holds promise for cancer treatment. Additionally, SCFAs enhance the expression of hypoxia-inducible factor 1 (HIF-1) by blocking histone deacetylase, resulting in increased production of antibacterial effectors and improved macrophage-mediated elimination of microorganisms. This highlights the antimicrobial potential of SCFAs and their role in host defense mechanisms. This comprehensive review provides an in-depth analysis of the latest research on the functional aspects and underlying mechanisms of SCFAs in relation to macrophage activities in a wide range of diseases, including infectious diseases and cancers. By elucidating the intricate interplay between SCFAs and macrophage functions, this review aims to contribute to the understanding of their therapeutic potential and pave the way for future interventions targeting SCFAs in disease management.
Collapse
Affiliation(s)
- Hongliang Duan
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - LiJuan Wang
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Mingmei Huangfu
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - Hanyang Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
16
|
Yang Y, Karampoor S, Mirzaei R, Borozdkin L, Zhu P. The interplay between microbial metabolites and macrophages in cardiovascular diseases: A comprehensive review. Int Immunopharmacol 2023; 121:110546. [PMID: 37364331 DOI: 10.1016/j.intimp.2023.110546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
The gut microbiome has emerged as a crucial player in developing and progressing cardiovascular diseases (CVDs). Recent studies have highlighted the role of microbial metabolites in modulating immune cell function and their impact on CVD. Macrophages, which have a significant function in the pathogenesis of CVD, are very vulnerable to the effects of microbial metabolites. Microbial metabolites, such as short-chain fatty acids (SCFAs) and trimethylamine-N-oxide (TMAO), have been linked to atherosclerosis and the regulation of immune functions. Butyrate has been demonstrated to reduce monocyte migration and inhibit monocyte attachment to injured endothelial cells, potentially contributing to the attenuation of the inflammatory response and the progression of atherosclerosis. On the other hand, TMAO, another compound generated by gut bacteria, has been linked to atherosclerosis due to its impact on lipid metabolism and the accumulation of cholesterol in macrophages. Indole-3-propionic acid, a tryptophan metabolite produced solely by microbes, has been found to promote the development of atherosclerosis by stimulating macrophage reverse cholesterol transport (RCT) and raising the expression of ABCA1. This review comprehensively discusses how various microbiota-produced metabolites affect macrophage polarization, inflammation, and foam cell formation in CVD. We also highlight the mechanisms underlying these effects and the potential therapeutic applications of targeting microbial metabolites in treating CVD.
Collapse
Affiliation(s)
- Yongzheng Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Leonid Borozdkin
- Department of Maxillofacial Surgery, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510100, China.
| |
Collapse
|
17
|
Williams H, Mack C, Baraz R, Marimuthu R, Naralashetty S, Li S, Medbury H. Monocyte Differentiation and Heterogeneity: Inter-Subset and Interindividual Differences. Int J Mol Sci 2023; 24:ijms24108757. [PMID: 37240103 DOI: 10.3390/ijms24108757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The three subsets of human monocytes, classical, intermediate, and nonclassical, show phenotypic heterogeneity, particularly in their expression of CD14 and CD16. This has enabled researchers to delve into the functions of each subset in the steady state as well as in disease. Studies have revealed that monocyte heterogeneity is multi-dimensional. In addition, that their phenotype and function differ between subsets is well established. However, it is becoming evident that heterogeneity also exists within each subset, between health and disease (current or past) states, and even between individuals. This realisation casts long shadows, impacting how we identify and classify the subsets, the functions we assign to them, and how they are examined for alterations in disease. Perhaps the most fascinating is evidence that, even in relative health, interindividual differences in monocyte subsets exist. It is proposed that the individual's microenvironment could cause long-lasting or irreversible changes to monocyte precursors that echo to monocytes and through to their derived macrophages. Here, we will discuss the types of heterogeneity recognised in monocytes, the implications of these for monocyte research, and most importantly, the relevance of this heterogeneity for health and disease.
Collapse
Affiliation(s)
- Helen Williams
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Corinne Mack
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Rana Baraz
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Rekha Marimuthu
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sravanthi Naralashetty
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Stephen Li
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Chemical Pathology, NSW Health Pathology, Westmead Hospital and Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia
- . Blacktown/Mt Druitt Clinical School, Blacktown Hospital, Western Sydney University, Blacktown, NSW 2148, Australia
| | - Heather Medbury
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
18
|
Lian Z, Perrard XYD, Antony AK, Peng X, Xu L, Ni J, Zhang B, O’Brien V, Saeed A, Jia X, Hussain A, Yu B, Simon SI, Sacks FM, Hoogeveen RC, Ballantyne CM, Wu H. Dietary Effects on Monocyte Phenotypes in Subjects With Hypertriglyceridemia and Metabolic Syndrome. JACC Basic Transl Sci 2023; 8:460-475. [PMID: 37325398 PMCID: PMC10264566 DOI: 10.1016/j.jacbts.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 06/17/2023]
Abstract
In patients with hypertriglyceridemia, a short-term low-saturated fat vs high-saturated fat diet induced lower plasma lipids and improved monocyte phenotypes. These findings highlight the role of diet fat content and composition for monocyte phenotypes and possibly cardiovascular disease risk in these patients. (Effects of Dietary Interventions on Monocytes in Metabolic Syndrome; NCT03591588).
Collapse
Affiliation(s)
- Zeqin Lian
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | | | | | - Xueying Peng
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Lu Xu
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jing Ni
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Bingqian Zhang
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Veronica O’Brien
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Anum Saeed
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Jia
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, Texas, USA
| | - Aliza Hussain
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, Texas, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, Texas, USA
| | - Scott I. Simon
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Frank M. Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, and Department of Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ron C. Hoogeveen
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Christie M. Ballantyne
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, Texas, USA
| | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
19
|
Tran T, Potteaux S. [Mild dyslipidemia accelerates tumor growth through expansion of immunosuppressive and pro-angiogenic myeloid cells]. Med Sci (Paris) 2023; 39:319-322. [PMID: 37094261 DOI: 10.1051/medsci/2023038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Affiliation(s)
- Thi Tran
- Université Paris Cité, Inserm U970-PARCC, Paris, France
| | - Stéphane Potteaux
- Université Paris Cité, Inserm U976 HIPI, Paris, France - Université de Reims Champagne Ardenne, IRMAIC EA 7509, Reims, France
| |
Collapse
|
20
|
Giraldo P, López de Frutos L, Cebolla JJ. Recommendations for overcoming challenges in the diagnosis of lysosomal acid lipase deficiency. Expert Opin Orphan Drugs 2022. [DOI: 10.1080/21678707.2022.2131393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pilar Giraldo
- Hematology. Hospital Quironsalud. Zaragoza. SPAIN
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG). Zaragoza. SPAIN
- Grupo de Investigación en Enfermedades Metabólicas y Hematológicas Raras (GIIS-012). Instituto de Investigación Sanitaria Aragón (ISS Aragón). SPAIN
| | - Laura López de Frutos
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG). Zaragoza. SPAIN
- Grupo de Investigación en Enfermedades Metabólicas y Hematológicas Raras (GIIS-012). Instituto de Investigación Sanitaria Aragón (ISS Aragón). SPAIN
| | - Jorge J Cebolla
- Grupo de Investigación en Enfermedades Metabólicas y Hematológicas Raras (GIIS-012). Instituto de Investigación Sanitaria Aragón (ISS Aragón). SPAIN
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza. SPAIN
| |
Collapse
|
21
|
Zhang H, Lianto P, Li W, Xu M, Moore JB, Thorne JL. Associations between liver X receptor polymorphisms and blood lipids: A systematic review and meta-analysis. Steroids 2022; 185:109057. [PMID: 35679909 DOI: 10.1016/j.steroids.2022.109057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/07/2022] [Accepted: 06/02/2022] [Indexed: 12/22/2022]
Abstract
Genetic susceptibility to dyslipidaemia remains incompletely understood. The liver X receptors (LXRs), members of the nuclear receptor superfamily of ligand dependent transcription factors, are homeostatic regulators of lipid metabolism. Multiple single nucleotide polymorphisms (SNPs)have been identified previously in the coding and regulatory regions of the LXRs. The aim of this systematic review and meta-analysis was to summarise associations between SNPs of LXRs (α and β isoforms) with blood lipid and lipoprotein traits. Five databases (PubMed, Ovid Embase, Scopus, Web of Science, and the Cochrane Library) were systematically searched for population-based studies that assessed associations between one or more blood lipid/lipoprotein traits and LXR SNPs. Of seventeen articles included in the qualitative synthesis, ten were eligible for meta-analysis. Nine LXRα SNPs and five LXRβ SNPs were identified, and the three most studied LXRα SNPs were quantitatively summarised. Carriers of the minor allele A of LXRα rs12221497 (-115G>A) had higher triglyceride levels than GG homozygotes (0.13 mmol/L; 95%CI: [0.03, 0.23], P = 0.01). Heterozygote carriers of LXRα rs2279238 (297C/T) had higher total cholesterol levels (0.12 mmol/L; (95%CI: [0.01, 0.23], P = 0.04) than either CC or TT homozygotes. For LXRα rs11039155 (-6G>A), no significant differences in blood levels of either triglyceride (P = 0.39) or HDL-C (P = 0.98) were detected between genotypes in meta-analyses. In addition, there were no strong associations for other SNPs of LXRα and LXRβ. This study provides the evidence of an association between LXRα, but not LXRβ, SNPs and blood-lipid traits. Systematic review registration: PROSPERO No. CRD42021246158.
Collapse
Affiliation(s)
- Huifeng Zhang
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; Clinical Nutrition Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Priscilia Lianto
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Weiming Li
- Clinical Nutrition Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Mengfan Xu
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - J Bernadette Moore
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - James L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
22
|
Lu Y, Zhang Y, Zhao X, Shang C, Xiang M, Li L, Cui X. Microbiota-derived short-chain fatty acids: Implications for cardiovascular and metabolic disease. Front Cardiovasc Med 2022; 9:900381. [PMID: 36035928 PMCID: PMC9403138 DOI: 10.3389/fcvm.2022.900381] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) have been on the rise around the globe in the past few decades despite the existing guidelines for prevention and treatment. Short-chain fatty acids (SCFAs) are the main metabolites of certain colonic anaerobic bacterial fermentation in the gastrointestinal tract and have been found to be the key metabolites in the host of CVDs. Accumulating evidence suggest that the end-products of SCFAs (including acetate, propionate, and butyrate) interact with CVDs through maintaining intestinal integrity, anti-inflammation, modulating glucolipid metabolism, blood pressure, and activating gut-brain axis. Recent advances suggest a promising way to prevent and treat CVDs by controlling SCFAs. Hence, this review tends to summarize the functional roles carried out by SCFAs that are reported in CVDs studies. This review also highlights several novel therapeutic interventions for SCFAs to prevent and treat CVDs.
Collapse
Affiliation(s)
- Yingdong Lu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Zhao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang Shang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mi Xiang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Li Li,
| | - Xiangning Cui
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Xiangning Cui,
| |
Collapse
|
23
|
Hashemi F, Saleh-Gohari N, Mousavi A, Yari A, Afzalli A, Saeidi K. Evaluation of Sirtuin1 promoter DNA methylation in peripheral blood monocytes of patients with coronary artery disease. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Lee MKS, Cooney OD, Lin X, Nadarajah S, Dragoljevic D, Huynh K, Onda DA, Galic S, Meikle PJ, Edlund T, Fullerton MD, Kemp BE, Murphy AJ, Loh K. Defective AMPK regulation of cholesterol metabolism accelerates atherosclerosis by promoting HSPC mobilization and myelopoiesis. Mol Metab 2022; 61:101514. [PMID: 35562083 PMCID: PMC9124714 DOI: 10.1016/j.molmet.2022.101514] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives Dysregulation of cholesterol metabolism in the liver and hematopoietic stem and progenitor cells (HSPCs) promotes atherosclerosis development. Previously, it has been shown that HMG-CoA-Reductase (HMGCR), the rate-limiting enzyme in the mevalonate pathway, can be phosphorylated and inactivated by the metabolic stress sensor AMP-activated protein kinase (AMPK). However, the physiological significance of AMPK regulation of HMGCR to atherogenesis has yet to be elucidated. The aim of this study was to determine the role of AMPK/HMGCR axis in the development of atherosclerosis. Methods We have generated a novel atherosclerotic-prone mouse model with defects in the AMPK regulation of HMGCR (Apoe−/−/Hmgcr KI mice). Atherosclerotic lesion size, plaque composition, immune cell and lipid profiles were assessed in Apoe−/− and Apoe−/−/Hmgcr KI mice. Results In this study, we showed that both male and female atherosclerotic-prone mice with a disruption of HMGCR regulation by AMPK (Apoe−/−/Hmgcr KI mice) display increased aortic lesion size concomitant with an increase in plaque-associated macrophages and lipid accumulation. Consistent with this, Apoe−/−/Hmgcr KI mice exhibited an increase in total circulating cholesterol and atherogenic monocytes, Ly6-Chi subset. Mechanistically, increased circulating atherogenic monocytes in Apoe−/−/Hmgcr KI mice was associated with enhanced egress of bone marrow HSPCs and extramedullary myelopoiesis, driven by a combination of elevated circulating 27-hydroxycholesterol and intracellular cholesterol in HSPCs. Conclusions Our results uncovered a novel signalling pathway involving AMPK-HMGCR axis in the regulation of cholesterol homeostasis in HSPCs, and that inhibition of this regulatory mechanism accelerates the development and progression of atherosclerosis. These findings provide a molecular basis to support the use of AMPK activators that currently undergoing Phase II clinical trial such as O–3O4 and PXL 770 for reducing atherosclerotic cardiovascular disease risks. AMPK regulation of HMGCR is critical for the control of endogenous cholesterol synthesis in HSPCs. AMPK-HMGCR signaling regulates HSPCs mobilization and myelopoiesis. Perturbation of AMPK regulation of HMGCR accelerates the development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Man K S Lee
- Division of Immunometabolism, Baker Heart and Diabetes Institute; Melbourne, Australia; Department of Diabetes, Monash University; Melbourne, Australia; Department of Cardiometabolic Health, University of Melbourne; Melbourne, Australia
| | - Olivia D Cooney
- Division of Immunometabolism, Baker Heart and Diabetes Institute; Melbourne, Australia; Department of Diabetes, Monash University; Melbourne, Australia
| | - Xuzhu Lin
- Diabetes and Metabolic Disease, St. Vincent's Institute of Medical Research; Fitzroy, Australia
| | - Shaktypreya Nadarajah
- Diabetes and Metabolic Disease, St. Vincent's Institute of Medical Research; Fitzroy, Australia
| | - Dragana Dragoljevic
- Division of Immunometabolism, Baker Heart and Diabetes Institute; Melbourne, Australia; Department of Diabetes, Monash University; Melbourne, Australia; Department of Cardiometabolic Health, University of Melbourne; Melbourne, Australia
| | - Kevin Huynh
- Metabolomics Laboratory, Baker Heart and Diabetes Institute; Melbourne, Australia
| | - Danise-Ann Onda
- Diabetes and Metabolic Disease, St. Vincent's Institute of Medical Research; Fitzroy, Australia
| | - Sandra Galic
- Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research; Fitzroy, Australia; Department of Medicine, University of Melbourne; Melboourne, Australia
| | - Peter J Meikle
- Department of Diabetes, Monash University; Melbourne, Australia; Department of Cardiometabolic Health, University of Melbourne; Melbourne, Australia; Metabolomics Laboratory, Baker Heart and Diabetes Institute; Melbourne, Australia
| | - Thomas Edlund
- Umeå Centre for Molecular Medicine, Umeå University; Umeå, Sweden; Betagenon AB; Västra Strandgatan 9B, 903 26 Umeå, Sweden
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Canada
| | - Bruce E Kemp
- Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research; Fitzroy, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University; Melbourne, Australia; Department of Medicine, University of Melbourne; Melboourne, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute; Melbourne, Australia; Department of Diabetes, Monash University; Melbourne, Australia; Department of Cardiometabolic Health, University of Melbourne; Melbourne, Australia; Department of Medicine, University of Melbourne; Melboourne, Australia.
| | - Kim Loh
- Diabetes and Metabolic Disease, St. Vincent's Institute of Medical Research; Fitzroy, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University; Melbourne, Australia; Department of Medicine, University of Melbourne; Melboourne, Australia.
| |
Collapse
|
25
|
Jiang M, Yang J, Zou H, Li M, Sun W, Kong X. Monocyte-to-high-density lipoprotein-cholesterol ratio (MHR) and the risk of all-cause and cardiovascular mortality: a nationwide cohort study in the United States. Lipids Health Dis 2022; 21:30. [PMID: 35300686 PMCID: PMC8931976 DOI: 10.1186/s12944-022-01638-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
Background Elevated monocyte-to-high-density lipoprotein-cholesterol ratio (MHR) is relevant to higher all-cause and cardiovascular mortality in patients with coronary artery disease and other comorbidities. However, the predictive values of MHR for mortality in the general population have been underutilized. This study investigated the association of MHR with all-cause and cardiovascular mortality in the adult population of the United States. Methods This study included 34,335 participants (≥20 years) from the National Health and Nutrition Examination Survey 1999–2014 that were grouped according to MHR tertiles. Kaplan-Meier plots and long-rank tests were employed to investigate differences in survival among the groups. Moreover, the relationship of MHR with all-cause and cardiovascular mortality was further explored using multivariate Cox regression and restricted cubic spline analysis. Results During the average follow-up of 93.5 ± 56 months, 4310 (12.6%) participants died, with 754 (2.2%) deaths attributed to cardiovascular diseases. Kaplan-Meier analysis revealed statistically obvious differences in all-cause and cardiovascular mortality among the MHR tertiles (log-rank test: all P < 0.001). In multi-adjusted models, participants in the highest tertile of MHR had an increased risk of all-cause (hazard ratio [HR] = 1.19, 95% confidence interval [CI] 1.10–1.29) and cardiovascular mortality (HR = 1.44, 95% CI 1.17–1.77), compared to those in the lowest tertile. Furthermore, the restricted cubic spline curve indicated that MHR had a non-linear association with all-cause mortality (P < 0.001), and the inflection point of MHR was 0.006. Each 2-fold change in MHR exhibited a 32% decrease (HR = 0.68, 95%CI 0.58–0.82) and a 20% increase (HR = 1.20, 95%CI 1.13–1.27) in the risk of all-cause mortality on the left and right flanks of the inflection point, respectively. Additionally, the risk of cardiovascular mortality increased by 21% per 2-fold change in MHR (HR = 1.21, 95%CI 1.07–1.36) in a linear manner. Conclusions MHR was significantly related to all-cause and cardiovascular mortality in the general population independent of established risk factors.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaming Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huayiyang Zou
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Menghuan Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Sun
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangqing Kong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
26
|
Mawhin MA, Bright RG, Fourre JD, Vloumidi EI, Tomlinson J, Sardini A, Pusey CD, Woollard KJ. Chronic kidney disease mediates cardiac dysfunction associated with increased resident cardiac macrophages. BMC Nephrol 2022; 23:47. [PMID: 35090403 PMCID: PMC8796634 DOI: 10.1186/s12882-021-02593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The leading cause of death in end-stage kidney disease is related to cardiovascular disease. Macrophages are known to be involved in both chronic kidney disease (CKD) and heart failure, however their role in the development of cardiorenal syndrome is less clear. We thus sought to investigate the role of macrophages in uremic cardiac disease. METHODS We assessed cardiac response in two experimental models of CKD and tested macrophage and chemokine implication in monocytopenic CCR2-/- and anti-CXCL10 treated mice. We quantified CXCL10 in human CKD plasma and tested the response of human iPSC-derived cardiomyocytes and primary cardiac fibroblasts to serum from CKD donors. RESULTS We found that reduced kidney function resulted in the expansion of cardiac macrophages, in particular through local proliferation of resident populations. Influx of circulating monocytes contributed to this increase. We identified CXCL10 as a crucial factor for cardiac macrophage expansion in uremic disease. In humans, we found increased plasma CXCL10 concentrations in advanced CKD, and identified the production of CXCL10 in cardiomyocytes and cardiac fibroblasts. CONCLUSIONS This study provides new insight into the role of the innate immune system in uremic cardiomyopathy.
Collapse
Affiliation(s)
- M A Mawhin
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK.
| | - R G Bright
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - J D Fourre
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, UK
| | - E I Vloumidi
- MRC Laboratory of Molecular Biology, Imperial College London, London, UK
| | - J Tomlinson
- Renal Directorate, Imperial College Healthcare NHS Trust, London, UK
| | - A Sardini
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - C D Pusey
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - K J Woollard
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
27
|
Mauersberger C, Hinterdobler J, Schunkert H, Kessler T, Sager HB. Where the Action Is-Leukocyte Recruitment in Atherosclerosis. Front Cardiovasc Med 2022; 8:813984. [PMID: 35087886 PMCID: PMC8787128 DOI: 10.3389/fcvm.2021.813984] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is the leading cause of death worldwide and leukocyte recruitment is a key element of this phenomenon, thus allowing immune cells to enter the arterial wall. There, in concert with accumulating lipids, the invading leukocytes trigger a plethora of inflammatory responses which promote the influx of additional leukocytes and lead to the continued growth of atherosclerotic plaques. The recruitment process follows a precise scheme of tethering, rolling, firm arrest, crawling and transmigration and involves multiple cellular and subcellular players. This review aims to provide a comprehensive up-to-date insight into the process of leukocyte recruitment relevant to atherosclerosis, each from the perspective of endothelial cells, monocytes and macrophages, neutrophils, T lymphocytes and platelets. In addition, therapeutic options targeting leukocyte recruitment into atherosclerotic lesions-or potentially arising from the growing body of insights into its precise mechanisms-are highlighted.
Collapse
Affiliation(s)
- Carina Mauersberger
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Hinterdobler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
28
|
Groenen AG, Bazioti V, van Zeventer IA, Chen L, Groot HE, Balder JW, Zhernakova A, van der Harst P, Rimbert A, Kuivenhoven JA, Fu J, Westerterp M. Large HDL particles negatively associate with leukocyte counts independent of cholesterol efflux capacity: A cross sectional study in the population-based LifeLines DEEP cohort. Atherosclerosis 2022; 343:20-27. [DOI: 10.1016/j.atherosclerosis.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 01/14/2022] [Indexed: 12/19/2022]
|
29
|
Hou X, Malainer C, Atanasov AG, Heiß EH, Dirsch VM, Wang L, Wang K. Evodiamine Lowers Blood Lipids by Up-Regulating the PPARγ/ABCG1 Pathway in High-Fat-Diet-Fed Mice. JOURNAL OF NATURAL PRODUCTS 2021; 84:3110-3116. [PMID: 34902249 DOI: 10.1021/acs.jnatprod.1c00881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The natural alkaloid evodiamine enhances cholesterol efflux from cultured THP-1-derived macrophages, but whether it has any impact on blood lipids in vivo remains unknown. In this study, the effect of evodiamine on hyperlipidemia induced by a high-fat diet (HFD) was investigated in mice. Intragastric administrations of evodiamine (10 and 20 mg/kg) for 8 weeks resulted in a significant improvement of metabolic lipid profiles by reducing the plasma levels of triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C). Evodiamine also significantly decreased hepatic lipid accumulation and hepatic total bile acids (TBA). Mechanistically, evodiamine increased ATP-binding cassette transporter G1 (ABCG1) mRNA and protein expression and up-regulated peroxisome proliferator-activated receptor gamma (PPARγ) expression in the liver. Taken together, the natural product evodiamine lowers blood lipids in HFD-fed mice likely through promoting the PPARγ-ABCG1 signaling pathway.
Collapse
Affiliation(s)
- Xingming Hou
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, Shandong, China
| | - Clemens Malainer
- Department of Pharmaceutical Sciences, Faculty of Life Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Atanas G Atanasov
- Department of Pharmaceutical Sciences, Faculty of Life Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Elke H Heiß
- Department of Pharmaceutical Sciences, Faculty of Life Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmaceutical Sciences, Faculty of Life Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Limei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, Shandong, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266071, Shandong, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, Shandong, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266071, Shandong, China
| |
Collapse
|
30
|
Yvan-Charvet L, Westerterp M. LDL-cholesterol drives reversible myelomonocytic skewing in human bone marrow. Eur Heart J 2021; 42:4321-4323. [PMID: 34508568 DOI: 10.1093/eurheartj/ehab630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
Radial BMD and serum CTX-I can predict the progression of carotid plaque in rheumatoid arthritis: a 3-year prospective cohort study. Arthritis Res Ther 2021; 23:258. [PMID: 34641970 PMCID: PMC8513174 DOI: 10.1186/s13075-021-02642-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Patients with rheumatoid arthritis (RA) are almost twice as likely to develop cardiovascular disease (CVD) as those without. However, traditional CVD risks have been shown to underperform in RA patients; thus, we aimed to identify new surrogate risk factors to better reflect their atherosclerotic burden. METHODS A total of 380 RA patients with carotid atherosclerosis data were analyzed in this prospective cohort study. The primary outcome was carotid plaque progression over the 3-year follow-up period. Risk parameters assessed for the progression of carotid plaque were categorized as demographics, traditional CVD risks, RA-related risks, and bone parameters. RESULTS The progression of carotid plaque was associated with the level of rheumatoid factor (p = 0.025), serum C-terminal telopeptide of type-I collagen (CTX-I) (p = 0.014), and femur and distal radius bone mass density (BMD) (p = 0.007 and 0.004, respectively), as well as traditional CVD risk factors. In multivariable analyses, the bone parameters of serum CTX-I and distal radius BMD proved to be independent predictors of the progression of carotid plaque along with hyperlipidemia, smoking, and baseline carotid plaque (all, p < 0.05). Adding both serum CTX-I and distal radius BMD increased the carotid plaque progression prediction model's percentage of explained variance from 24 to 30%. CONCLUSION High serum CTX-I and lower radius BMD, reflecting high bone turnover, were independent risk factors for the progression of carotid plaque in RA patients, implicating the direct or indirect role of bone metabolism on the atherosclerotic burden.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Lipid-mediated atherogenesis is hallmarked by a chronic inflammatory state. Low-density lipoprotein cholesterol (LDL-C), triglyceride rich lipoproteins (TRLs), and lipoprotein(a) [Lp(a)] are causally related to atherosclerosis. Within the paradigm of endothelial activation and subendothelial lipid deposition, these lipoproteins induce numerous pro-inflammatory pathways. In this review, we will outline the effects of lipoproteins on systemic inflammatory pathways in atherosclerosis. RECENT FINDINGS Apolipoprotein B-containing lipoproteins exert a variety of pro-inflammatory effects, ranging from the local artery to systemic immune cell activation. LDL-C, TRLs, and Lp(a) induce endothelial dysfunction with concomitant activation of circulating monocytes through enhanced lipid accumulation. The process of trained immunity of the innate immune system, predominantly induced by LDL-C particles, hallmarks the propagation of the low-grade inflammatory response. In concert, bone marrow activation induces myeloid skewing, further contributing to immune cell mobilization and plaque progression. SUMMARY Lipoproteins and inflammation are intertwined in atherogenesis. Elucidating the inflammatory pathways will provide new opportunities for therapeutic agents.
Collapse
Affiliation(s)
- Jordan M. Kraaijenhof
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - G. Kees Hovingh
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - Erik S.G. Stroes
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - Jeffrey Kroon
- Amsterdam UMC, University of Amsterdam, Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Lipid metabolism, inflammation, and foam cell formation in health and metabolic disorders: targeting mTORC1. J Mol Med (Berl) 2021; 99:1497-1509. [PMID: 34312684 DOI: 10.1007/s00109-021-02117-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
Metabolic homeostasis is important for maintaining a healthy lifespan. Lipid metabolism is particularly necessary for the maintenance of metabolic energy sources and their storage, and the structure and function of cell membranes, as well as for the regulation of nutrition through lipogenesis, lipolysis, and lipophagy. Dysfunctional lipid metabolism leads to the development of metabolic disorders, such as atherosclerosis, diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD). Furthermore, dyslipidaemia causes inflammatory responses and foam cell formation. Mechanistic target of rapamycin (mTOR) signalling is a key regulator of diverse cellular processes, including cell metabolism and cell fate. mTOR complex 1 (mTORC1) is involved in lipid metabolism and immune responses in the body. Therefore, the mTORC1 signalling pathway has been suggested as a potential therapeutic target for the treatment of metabolic disorders. In this review, we focus on the roles of mTORC1 in lipid metabolism and inflammation, and present current evidence on its involvement in the development and progression of metabolic disorders.
Collapse
|
34
|
Feng X, Chen W, Ni X, Little PJ, Xu S, Tang L, Weng J. Metformin, Macrophage Dysfunction and Atherosclerosis. Front Immunol 2021; 12:682853. [PMID: 34163481 PMCID: PMC8215340 DOI: 10.3389/fimmu.2021.682853] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Metformin is one of the most widely prescribed hypoglycemic drugs and has the potential to treat many diseases. More and more evidence shows that metformin can regulate the function of macrophages in atherosclerosis, including reducing the differentiation of monocytes and inhibiting the inflammation, oxidative stress, polarization, foam cell formation and apoptosis of macrophages. The mechanisms by which metformin regulates the function of macrophages include AMPK, AMPK independent targets, NF-κB, ABCG5/8, Sirt1, FOXO1/FABP4 and HMGB1. On the basis of summarizing these studies, we further discussed the future research directions of metformin: single-cell RNA sequencing, neutrophil extracellular traps (NETs), epigenetic modification, and metformin-based combination drugs. In short, macrophages play an important role in a variety of diseases, and improving macrophage dysfunction may be an important mechanism for metformin to expand its pleiotropic pharmacological profile. In addition, the combination of metformin with other drugs that improve the function of macrophages (such as SGLT2 inhibitors, statins and IL-1β inhibitors/monoclonal antibodies) may further enhance the pleiotropic therapeutic potential of metformin in conditions such as atherosclerosis, obesity, cancer, dementia and aging.
Collapse
Affiliation(s)
- Xiaojun Feng
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Wenxu Chen
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Xiayun Ni
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Peter J. Little
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, Australia
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China( USTC), Hefei, China
| | - Liqin Tang
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China( USTC), Hefei, China
| |
Collapse
|
35
|
Gao X, Liu Y, Tian Y, Rao C, Shi F, Bu H, Liu J, Zhang Y, Shan W, Ding Z, Sun L. Prognostic value of peripheral blood inflammatory cell subsets in patients with acute coronary syndrome undergoing percutaneous coronary intervention. J Int Med Res 2021; 49:3000605211010059. [PMID: 33900867 PMCID: PMC8755652 DOI: 10.1177/03000605211010059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective This study aimed to investigate the predictive value of inflammatory cells in peripheral blood on the prognosis of patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI). Methods Patients (n=1558) were consecutively enrolled and the median follow-up was 1142 days. Patients were divided into the major adverse cardiac events (MACE) 1 group (n=63) (all-cause mortality [n=58] and rehospitalization for severe heart failure [n=5], no MACE1 group (n=1495), MACE2 group (n=38) (cardiac mortality [n=33] and rehospitalization for severe heart failure [n=5]), and no MACE2 group (n=1520). The neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and platelet-to-lymphocyte ratio (PLR) were analyzed. Results The NLR, MLR, and PLR were higher in the MACE groups than in the no MACE groups. Different subsets of inflammatory cells had similar diagnostic values for MACE. Kaplan–Meier curves showed that the survival time gradually decreased with an increase in the degree of risk as determined by the NLR, MLR, and PLR. The risk of MACE was highest in the extremely high-risk group. Conclusion Peripheral blood inflammatory cell subsets can predict MACE in patients with ACS undergoing PCI. These cell subsets could be important laboratory markers for the prognosis and clinical treatment of these patients.
Collapse
Affiliation(s)
- Xiuxin Gao
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Yixiang Liu
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Yanan Tian
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Chongyou Rao
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Fei Shi
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Haiwei Bu
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Jingyi Liu
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Ying Zhang
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Weichao Shan
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Zhenjiang Ding
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Lixian Sun
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| |
Collapse
|
36
|
Lin P, Ji HH, Li YJ, Guo SD. Macrophage Plasticity and Atherosclerosis Therapy. Front Mol Biosci 2021; 8:679797. [PMID: 34026849 PMCID: PMC8138136 DOI: 10.3389/fmolb.2021.679797] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a chronic disease starting with the entry of monocytes into the subendothelium and the subsequent differentiation into macrophages. Macrophages are the major immune cells in atherosclerotic plaques and are involved in the dynamic progression of atherosclerotic plaques. The biological properties of atherosclerotic plaque macrophages determine lesion size, composition, and stability. The heterogenicity and plasticity of atherosclerotic macrophages have been a hotspot in recent years. Studies demonstrated that lipids, cytokines, chemokines, and other molecules in the atherosclerotic plaque microenvironment regulate macrophage phenotype, contributing to the switch of macrophages toward a pro- or anti-atherosclerosis state. Of note, M1/M2 classification is oversimplified and only represent two extreme states of macrophages. Moreover, M2 macrophages in atherosclerosis are not always protective. Understanding the phenotypic diversity and functions of macrophages can disclose their roles in atherosclerotic plaques. Given that lipid-lowering therapy cannot completely retard the progression of atherosclerosis, macrophages with high heterogeneity and plasticity raise the hope for atherosclerosis regression. This review will focus on the macrophage phenotypic diversity, its role in the progression of the dynamic atherosclerotic plaque, and finally discuss the possibility of treating atherosclerosis by targeting macrophage microenvironment.
Collapse
Affiliation(s)
- Ping Lin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Hong-Hai Ji
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
37
|
Cicek MC, Gunseren KO, Aydin YM, Yildiz A, Elgin E, Ersoy A. Monocyte-to-High-Density Lipoprotein Cholesterol Ratio Is Independently Associated With All-Cause Mortality in Deceased Donor Kidney Transplant Recipients. EXP CLIN TRANSPLANT 2021; 19:1041-1047. [PMID: 33877042 DOI: 10.6002/ect.2021.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES The primary objective of this study was to evaluate the impact of monocyte-to-high-density lipoprotein cholesterol ratio on all-cause mortality in deceased donor kidney transplant recipients. MATERIALS AND METHODS This was a retrospective observational study in which all deceased donor kidney transplant recipients were included. Relevant data for analyses included clinical and demographic features, laboratory values, number of HLA matches, occurrence of delayed graft function, cold ischemia time, and survival status. Kaplan-Meier survival analysis and Cox proportional hazards analysis were performed to determine the effects of monocyte-to-high-density lipoprotein cholesterol ratio on all-cause mortality. RESULTS Our study included 325 deceased donor kidney transplant recipients (43.1% females, mean age of 44.5 ± 11.2 years). Median value of monocyte-to-high-density lipoprotein cholesterol ratio was 14.0 (interquartile range, 9.94-21.03). The total median observation time was 227 weeks (range, 115-345 weeks). Twenty deaths (12.3%) occurred during the follow-up period in recipients with monocyte-to-highdensity lipoprotein cholesterol ratio below median value, whereas 47 deaths (29%) occurred in recipients with ratio above the median (P < .001). Log-rank test showed significantly higher mortality in the group with monocyte-to high density lipoprotein cholesterol ratio higher than median (P = .001). In the multivariate Cox model, delayed graft function, duration of dialysis, cold ischemia time, and monocyte-to-high-density lipoprotein cholesterol ratio group appeared as independent predictors of all-cause mortality. CONCLUSIONS Monocyte-to-high-density lipoprotein cholesterol ratio before kidney transplant seems to affect survival independently in deceased donor kidney transplant recipients.
Collapse
Affiliation(s)
- Mehmet Cagatay Cicek
- From the Department of Urology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | | | | | | | | | | |
Collapse
|
38
|
Marchini T, Mitre LS, Wolf D. Inflammatory Cell Recruitment in Cardiovascular Disease. Front Cell Dev Biol 2021; 9:635527. [PMID: 33681219 PMCID: PMC7930487 DOI: 10.3389/fcell.2021.635527] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis, the main underlying pathology for myocardial infarction and stroke, is a chronic inflammatory disease of middle-sized to large arteries that is initiated and maintained by leukocytes infiltrating into the subendothelial space. It is now clear that the accumulation of pro-inflammatory leukocytes drives progression of atherosclerosis, its clinical complications, and directly modulates tissue-healing in the infarcted heart after myocardial infarction. This inflammatory response is orchestrated by multiple soluble mediators that enhance inflammation systemically and locally, as well as by a multitude of partially tissue-specific molecules that regulate homing, adhesion, and transmigration of leukocytes. While numerous experimental studies in the mouse have refined our understanding of leukocyte accumulation from a conceptual perspective, only a few anti-leukocyte therapies have been directly validated in humans. Lack of tissue-tropism of targeted factors required for leukocyte accumulation and unspecific inhibition strategies remain the major challenges to ultimately translate therapies that modulate leukocytes accumulation into clinical practice. Here, we carefully describe receptor and ligand pairs that guide leukocyte accumulation into the atherosclerotic plaque and the infarcted myocardium, and comment on potential future medical therapies.
Collapse
Affiliation(s)
- Timoteo Marchini
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Lucía Sol Mitre
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
39
|
Cortes‐Selva D, Fairfax K. Schistosome and intestinal helminth modulation of macrophage immunometabolism. Immunology 2021; 162:123-134. [PMID: 32614982 PMCID: PMC7808165 DOI: 10.1111/imm.13231] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages are fundamental to sustain physiological equilibrium and to regulate the pathogenesis of parasitic and metabolic processes. The functional heterogeneity and immune responses of macrophages are shaped by cellular metabolism in response to the host's intrinsic factors, environmental cues and other stimuli during disease. Parasite infections induce a complex cascade of cytokines and metabolites that profoundly remodel the metabolic status of macrophages. In particular, helminths polarize macrophages to an M2 state and induce a metabolic shift towards reliance on oxidative phosphorylation, lipid oxidation and amino acid metabolism. Accumulating data indicate that helminth-induced activation and metabolic reprogramming of macrophages underlie improvement in overall whole-body metabolism, denoted by improved insulin sensitivity, body mass in response to high-fat diet and atherogenic index in mammals. This review aims to highlight the metabolic changes that occur in human and murine-derived macrophages in response to helminth infections and helminth products, with particular interest in schistosomiasis and soil-transmitted helminths.
Collapse
Affiliation(s)
- Diana Cortes‐Selva
- Division of Microbiology and ImmunologyDepartment of PathologyUniversity of UtahSalt Lake CityUTUSA
- Janssen BiotherapeuticsJanssen R&DSpring HousePAUSA
| | - Keke Fairfax
- Division of Microbiology and ImmunologyDepartment of PathologyUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
40
|
LeBlond ND, Ghorbani P, O'Dwyer C, Ambursley N, Nunes JRC, Smith TKT, Trzaskalski NA, Mulvihill EE, Viollet B, Foretz M, Fullerton MD. Myeloid deletion and therapeutic activation of AMPK do not alter atherosclerosis in male or female mice. J Lipid Res 2020; 61:1697-1706. [PMID: 32978273 PMCID: PMC7707174 DOI: 10.1194/jlr.ra120001040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The dysregulation of myeloid-derived cell metabolism can drive atherosclerosis. AMP-activated protein kinase (AMPK) controls various aspects of macrophage dynamics and lipid homeostasis, which are important during atherogenesis. Using LysM-Cre to drive the deletion of both the α1 and α2 catalytic subunits (MacKO), we aimed to clarify the role of myeloid-specific AMPK signaling in male and female mice made acutely atherosclerotic by injection of AAV vector encoding a gain-of-function mutant PCSK9 (PCSK9-AAV) and WD feeding. After 6 weeks of WD feeding, mice received a daily injection of either the AMPK activator A-769662 or a vehicle control for an additional 6 weeks. Following this (12 weeks total), we assessed myeloid cell populations and differences between genotype or sex were not observed. Similarly, aortic sinus plaque size, lipid staining, and necrotic area did not differ in male and female MacKO mice compared with their littermate floxed controls. Moreover, therapeutic intervention with A-769662 showed no treatment effect. There were also no observable differences in the amount of circulating total cholesterol or triglyceride, and only minor differences in the levels of inflammatory cytokines between groups. Finally, CD68+ area and markers of autophagy showed no effect of either lacking AMPK signaling or AMPK activation. Our data suggest that while defined roles for each catalytic AMPK subunit have been identified, complete deletion of myeloid AMPK signaling does not significantly impact atherosclerosis. Additionally, these findings suggest that intervention with the first-generation AMPK activator A-769662 is not able to stem the progression of atherosclerosis.
Collapse
Affiliation(s)
- Nicholas D LeBlond
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Peyman Ghorbani
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Conor O'Dwyer
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Nia Ambursley
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Julia R C Nunes
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Tyler K T Smith
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Natasha A Trzaskalski
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada.
| |
Collapse
|
41
|
Dragoljevic D, Lee MKS, Louis C, Shihata W, Kraakman MJ, Hansen J, Masters SL, Hanaoka BY, Nagareddy PR, Lancaster GI, Wicks IP, Murphy AJ. Inhibition of interleukin-1β signalling promotes atherosclerotic lesion remodelling in mice with inflammatory arthritis. Clin Transl Immunology 2020; 9:e1206. [PMID: 33204425 PMCID: PMC7652637 DOI: 10.1002/cti2.1206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Rheumatoid arthritis (RA), an inflammatory joint disorder, independently increases the risk of cardiovascular disease (CVD). IL-1β contributes to both RA and CVD. We hypothesised that inhibiting IL-1 signalling with the IL-1R antagonist, anakinra, would dampen inflammation and promote resolution of atherosclerosis in arthritic mice. METHODS Low-density lipoprotein receptor (Ldlr)-deficient mice were fed a Western-type diet for 14 weeks to develop atherosclerotic plaques. Mice were then switched to a chow diet, promoting lesion regression, and randomised to a control group or into groups where arthritis was induced by passive transfer of K/BxN arthritogenic serum. The arthritic mice were further randomised to vehicle or anakinra. RESULTS Arthritis impaired atherosclerotic lesion regression when cholesterol was lowered. This was associated with a higher burden of plaque macrophages, likely due to monocytosis, driven by myelopoiesis in the bone marrow and spleen. Interestingly, delayed intervention with anakinra had no effect on arthritis in these mice. However, a significant improvement in atherosclerotic plaque remodelling to a more stable phenotype was observed. This was associated with fewer circulating monocytes, caused by a reduction in splenic extramedullary myelopoiesis. CONCLUSION We show that inhibiting IL-1 signalling in arthritic mice with pre-existing atherosclerosis promotes lesion remodelling to a more stable phenotype, that is less likely to rupture and cause ischemic events such as myocardial infarction. This suggests that IL-1R antagonism may suppress CVD complications in patients with RA. Furthermore, inhibiting IL-1β signalling in other patients with inflammatory diseases that also predispose to CVD may also benefit from anti-IL-1 therapy.
Collapse
Affiliation(s)
- Dragana Dragoljevic
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
- Department of ImmunologyMonash UniversityMelbourneVICAustralia
| | - Man Kit Sam Lee
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
- Department of ImmunologyMonash UniversityMelbourneVICAustralia
| | - Cynthia Louis
- Inflammation DivisionWalter and Eliza Hall Institute of Medical ResearchMelbourneVICAustralia
| | - Waled Shihata
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Michael J Kraakman
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Jacinta Hansen
- Inflammation DivisionWalter and Eliza Hall Institute of Medical ResearchMelbourneVICAustralia
| | - Seth L Masters
- Inflammation DivisionWalter and Eliza Hall Institute of Medical ResearchMelbourneVICAustralia
| | - Beatriz Y Hanaoka
- Department of SurgeryOhio State University Wexner Medical CenterColumbusOHUSA
| | | | - Graeme I Lancaster
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
- Department of ImmunologyMonash UniversityMelbourneVICAustralia
| | - Ian P Wicks
- Inflammation DivisionWalter and Eliza Hall Institute of Medical ResearchMelbourneVICAustralia
- Rheumatology UnitRoyal Melbourne HospitalMelbourneVICAustralia
| | - Andrew J Murphy
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
- Department of ImmunologyMonash UniversityMelbourneVICAustralia
| |
Collapse
|
42
|
Guak H, Krawczyk CM. Implications of cellular metabolism for immune cell migration. Immunology 2020; 161:200-208. [PMID: 32920838 DOI: 10.1111/imm.13260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cell migration is an essential, energetically demanding process in immunity. Immune cells navigate the body via chemokines and other immune mediators, which are altered under inflammatory conditions of injury or infection. Several factors determine the migratory abilities of different types of immune cells in diverse contexts, including the precise co-ordination of cytoskeletal remodelling, the expression of specific chemokine receptors and integrins, and environmental conditions. In this review, we present an overview of recent advances in our understanding of the relationship of each of these factors with cellular metabolism, with a focus on the spatial organization of glycolysis and mitochondria, reciprocal regulation of chemokine receptors and the influence of environmental changes.
Collapse
Affiliation(s)
- Hannah Guak
- Department of Physiology, McGill University, Montreal, QC, Canada.,Metabolic and Nutritional Programming Group, Van Andel Institute, Grand Rapids, MI, USA
| | - Connie M Krawczyk
- Metabolic and Nutritional Programming Group, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
43
|
Escárcega RO, García-Carrasco M, Mendoza-Pinto C. The Cardio-Rheumatology Approach to Atherosclerotic Cardiovascular Disease. ACTA ACUST UNITED AC 2020; 16:311-312. [PMID: 32718860 DOI: 10.1016/j.reuma.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/03/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Ricardo O Escárcega
- Heart and Vascular Institute, Lee Health System and Florida Heart Associates, Fort Myers, FL, USA
| | - Mario García-Carrasco
- Systemic Autoimmune Diseases Research Unit and Rheumatology/Immunology Department, BUAP School of Medicine, Puebla, Mexico
| | - Claudia Mendoza-Pinto
- Systemic Autoimmune Diseases Research Unit and Rheumatology/Immunology Department, BUAP School of Medicine, Puebla, Mexico.
| |
Collapse
|
44
|
Li P, Huang J, Xiao N, Cai X, Yang Y, Deng J, Zhang LH, Du B. Sacha inchi oil alleviates gut microbiota dysbiosis and improves hepatic lipid dysmetabolism in high-fat diet-fed rats. Food Funct 2020; 11:5827-5841. [PMID: 32648886 DOI: 10.1039/d0fo01178a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dietary ω-3 polyunsaturated fatty acids (PUFAs) are beneficial for humans against the development of hyperlipidaemia, but the underlying mechanisms are still poorly understood. Here, we demonstrated that oral consumption of sacha inchi oil, which is rich in α-linolenic acid, alleviated dyslipidemia, hepatic steatosis and inflammatory infiltration in high-fat diet (HFD)-fed rats. Sacha inchi oil administration reversed gut microbiota dysbiosis and altered the gut microbiota metabolome and in particular prevented bile acid dysmetabolism caused by a HFD. Sacha inchi oil intake ameliorated hepatic lipid dysmetabolism in HFD-fed rats, via potentiating the biosynthesis and reuptake of bile acids, reducing the de novo lipogenesis, promoting fatty acid beta-oxidation, and alleviating the dysregulation of glycerolipid, glycerophospholipid, and sphingolipid metabolisms. The results showed that dietary sacha inchi oil can alleviate gut microbiota dysbiosis and reduce lipid dysmetabolism in HFD rats, and provide novel insights into the molecular mechanisms by which plant-derived ω-3 PUFAs prevent the development of hyperlipidaemia.
Collapse
Affiliation(s)
- Pan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Rundgren IM, Ryningen A, Anderson Tvedt TH, Bruserud Ø, Ersvær E. Immunomodulatory Drugs Alter the Metabolism and the Extracellular Release of Soluble Mediators by Normal Monocytes. Molecules 2020; 25:molecules25020367. [PMID: 31963193 PMCID: PMC7024334 DOI: 10.3390/molecules25020367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) are used in the treatment of hematological malignancies, especially multiple myeloma. IMiDs have direct anticancer effects but also indirect effects via cancer-supporting stromal cells. Monocytes are a stromal cell subset whose metabolism is modulated by the microenvironment, and they communicate with neighboring cells through extracellular release of soluble mediators. Toll-like receptor 4 (TLR4) is then a common regulator of monocyte metabolism and mediator release. Our aim was to investigate IMiD effects on these two monocyte functions. We compared effects of thalidomide, lenalidomide, and pomalidomide on in vitro cultured normal monocytes. Cells were cultured in medium alone or activated by lipopolysaccharide (LPS), a TLR4 agonist. Metabolism was analyzed by the Seahorse XF 96 cell analyzer. Mediator release was measured as culture supernatant levels. TLR4 was a regulator of both monocyte metabolism and mediator release. All three IMiDs altered monocyte metabolism especially when cells were cultured with LPS; this effect was strongest for lenalidomide that increased glycolysis. Monocytes showed a broad soluble mediator release profile. IMiDs decreased TLR4-induced mediator release; this effect was stronger for pomalidomide than for lenalidomide and especially thalidomide. To conclude, IMiDs can alter the metabolism and cell–cell communication of normal monocytes, and despite their common molecular target these effects differ among various IMiDs.
Collapse
Affiliation(s)
- Ida Marie Rundgren
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering, Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, 5020 Bergen, Norway; (I.M.R.); (A.R.); (E.E.)
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Anita Ryningen
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering, Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, 5020 Bergen, Norway; (I.M.R.); (A.R.); (E.E.)
| | | | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- Correspondence:
| | - Elisabeth Ersvær
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering, Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, 5020 Bergen, Norway; (I.M.R.); (A.R.); (E.E.)
| |
Collapse
|
46
|
|
47
|
Schnitzler JG, Dallinga-Thie GM, Kroon J. The Role of (Modified) Lipoproteins in Vascular Function: A Duet Between Monocytes and the Endothelium. Curr Med Chem 2019; 26:1594-1609. [PMID: 29546830 DOI: 10.2174/0929867325666180316121015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/24/2022]
Abstract
Over the last century, many studies have demonstrated that low-density lipoprotein (LDL) is a key risk factor of cardiovascular diseases (CVD) related to atherosclerosis. Thus, for these CVD patients, LDL lowering agents are commonly used in the clinic to reduce the risk for CVD. LDL, upon modification, will develop distinct inflammatory and proatherogenic potential, leading to impaired endothelial integrity, influx of immune cells and subsequent increased foam cell formation. LDL can also directly affect peripheral monocyte composition, rendering them in a more favorable position to migrate and accumulate in the subendothelial space. It has become apparent that other lipoprotein particles, such as triglyceride- rich lipoproteins or remnants (TRL) and lipoprotein(a) [Lp(a)] may also impact on atherogenic pathways. Evidence is accumulating that Lp(a) can promote peripheral monocyte activation, eventually leading to increased transmigration through the endothelium. Similarly, remnant cholesterol has been identified to play a key role in endothelial dysfunction and monocyte behavior. In this review, we will discuss recent developments in understanding the role of different lipoproteins in the context of inflammation at both the level of the monocyte and the endothelium.
Collapse
Affiliation(s)
- Johan G Schnitzler
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Geesje M Dallinga-Thie
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Woollard KJ, Murphy AJ. The Endless Summer: Thermoneutrality Prevents Monocytosis and Reduces Atherosclerosis. Circ Res 2019; 121:596-598. [PMID: 28860315 DOI: 10.1161/circresaha.117.311721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kevin J Woollard
- From the Division of Immunology and Inflammation, Imperial College London, United Kingdom (K.J.W); and Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.)
| | - Andrew J Murphy
- From the Division of Immunology and Inflammation, Imperial College London, United Kingdom (K.J.W); and Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.)
| |
Collapse
|
49
|
Analysis of monocitary subpopulations in relation to cardiovascular risk factors. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2019; 31:152-159. [PMID: 30967277 DOI: 10.1016/j.arteri.2019.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/17/2019] [Accepted: 02/06/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Monocytes play an important role in atherosclerotic progression having both pro and anti-inflammatory effects depending on different circulating monocyte subpopulations. The objective of this study is to characterize these subpopulations and their association with cardiovascular risk factors. METHODS Transversal study including 102 selected patients, mean age: 65 years-old (range 41-86), 69% males. A set of specific antibodies against classical monocytes (Mon1, CD14+CD16- CD300e+HLADR+), intermediate (Mon2, CD14+CD16+CD300e+HLADR+) and non-classical (Mon3, CD14-CD16+CD300e+HLADR+) was assayed. Three groups of patients were included: 17 asymptomatic with more than one cardiovascular risk factor (group 1), 56 subjects asymptomatic but with vascular pathology assessed by ultrasound or microalbuminuria (group 2) and 19 patients with a previous atherothrombotic event (group 3). The cardiovascular risk was determined by Framingham and REGICOR scores. RESULTS An association between study groups and the percentage of Mon1 and Mon2 was observed (ANOVA, p<.05), being independent of age and sex for Mon2. Likewise Mon1 and Mon2 subpopulations were associated with cardiovascular adverse events (β=0.86, p=.02 y β=0.1 p=.002, respectively), independently of age and sex in the case of Mon2. Moreover the percentage of Mon3 was associated with the presence of several cardiovascular risk factors (β=0.21, p=.04) in the univariate analysis. In addition, there was a correlation between the levels of Mon1 and Mon2 and leukocytes (r=0.7, p<.001 and r=0.26, p=.01, respectively). CONCLUSIONS The analysis of monocyte subpopulations may be clinically useful to stratify the inflammatory profile related to the different cardiovascular risk groups.
Collapse
|
50
|
Cholesterol efflux drives stem cell expansion in hypercholesterolaemia. Nat Rev Cardiol 2019; 16:323. [PMID: 30926905 DOI: 10.1038/s41569-019-0187-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|