1
|
Jensen G, Wang X, Kuempel J, Palaskas N, Chen Z, Yu W, Chen Y, Mohammad H, Luo W, Chang J. Immune checkpoint inhibitor-associated myocarditis: a historical and comprehensive review. Am J Physiol Heart Circ Physiol 2025; 328:H734-H751. [PMID: 39925096 DOI: 10.1152/ajpheart.00687.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025]
Abstract
The most fatal side effect associated with revolutionary immune checkpoint inhibitor (ICI) cancer therapies is myocarditis, a rare and devastating complication with a mortality rate approaching 40%. This review comprehensively examines the limited knowledge surrounding this recently recognized condition, emphasizing the absence of evidence-based therapeutic strategies, diagnostic modalities, and reliable biomarkers that hinder effective management. It explores advancements in preclinical models that are uncovering disease mechanisms and enabling the identification of therapeutic targets. These efforts have informed the design of early clinical trials aimed at reducing mortality. With the growing prevalence of ICI therapies in oncology, addressing critical gaps, such as long-term outcomes and risk stratification, has become increasingly urgent. By synthesizing current evidence, this work seeks to enhance understanding and guide the development of strategies to improve patient outcomes and ensure the continued safe use of ICIs in cancer care.
Collapse
Affiliation(s)
- Garrett Jensen
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Xinjie Wang
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Jacob Kuempel
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Nicolas Palaskas
- Department of Cardiology, MD Anderson Cancer Center, Houston, Texas, United States
| | - Zhishi Chen
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Wei Yu
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Yanping Chen
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Haseeb Mohammad
- Texas A&M University College of Medicine, Houston, Texas, United States
| | - Weijia Luo
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Jiang Chang
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
2
|
Aquino JR, Fox CR, Parks GD. Role of Defective Interfering Particles in Complement-Mediated Lysis of Parainfluenza Virus-Infected Cells. Viruses 2025; 17:488. [PMID: 40284931 PMCID: PMC12031084 DOI: 10.3390/v17040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
RNA viruses pose a significant global public health burden due to their high mutation rates, zoonotic potential, and ability to evade immune responses. A common aspect of their replication is the generation of defective interfering particles (DIPs), which contain truncated defective viral genomes (DVGs) that depend on full-length standard (STD) virus for replication. DVGs have gained recognition as they are increasingly detected in clinical samples from natural infections. While their role in modulating type I interferon (IFN-I) responses is well established, their impact on the complement (C') system is not understood. In this study, we examined how DVGs influence C'-mediated lysis during parainfluenza virus 5 (PIV5) infection using real-time in vitro cell viability assays. Our results demonstrated that C' effectively killed human lung epithelial cells infected with STD PIV5, whereas co-infection with DIP-enriched stocks significantly suppressed C'-mediated killing through mechanisms that were dependent on DVG replication but independent of IFN-I production. The titration of DI units in co-infection with STD PIV5 showed a strong linear relationship between DIP-mediated decreases in surface viral glycoprotein expression and the inhibition of C'-mediated lysis. Our findings reveal a previously unrecognized function of DVGs in modulating C' pathways, shedding light on their potential role in viral persistence and immune evasion.
Collapse
Affiliation(s)
| | | | - Griffith D. Parks
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.R.A.); (C.R.F.)
| |
Collapse
|
3
|
Zhang Y, Wang X, Gu Y, Liu T, Zhao X, Cheng S, Duan L, Huang C, Wu S, Gao S. Complement C3 of tumor-derived extracellular vesicles promotes metastasis of RCC via recruitment of immunosuppressive myeloid cells. Proc Natl Acad Sci U S A 2025; 122:e2420005122. [PMID: 39847320 PMCID: PMC11789090 DOI: 10.1073/pnas.2420005122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Heterogeneous roles of complement C3 have been implicated in tumor metastasis and are highly context dependent. However, the underlying mechanisms linking C3 to tumor metastasis remain elusive in renal cell carcinoma (RCC). Here, we demonstrate that C3 of RCC cell-derived extracellular vesicles (EVs) contributes to metastasis via polarizing tumor-associated macrophages (TAMs) into the immunosuppressive phenotype and recruiting polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Mechanistically, EV C3 induces the secretion of CCL2 and CXCL1 by lung macrophages and subsequently enhances TAM polarization and PMN-MDSC recruitment. Notably, targeting the CCL2/CCR2 or CXCL1/CXCR2 axis with the inhibitors RS504393 or Navarixin, respectively, effectively suppresses lung metastasis induced by RCC-derived C3 in a mouse model. Clinically, RCC patients with high expression of C3 demonstrate poor prognosis. Collectively, our findings reveal that tumor-derived EV C3 induces an immunosuppressive tumor microenvironment via TAMs, and thus promoting RCC metastasis.
Collapse
Affiliation(s)
- Yibi Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
- Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
| | - Xiaodong Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
- Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
| | - Yinmin Gu
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
| | - Tongfeng Liu
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
- Medical College, Guizhou University, Guiyang550025, China
| | - Xujie Zhao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
| | - Shuwen Cheng
- Medical School of Nanjing University, Nanjing210046, China
| | - Liqiang Duan
- Shanxi Academy of Advanced Research and Innovation, Shanxi Provincial Key Laboratory of Protein Structure Determination, Taiyuan030032, China
| | - Chang Huang
- Medical College, Guizhou University, Guiyang550025, China
| | - Songzhe Wu
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
| | - Shan Gao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
| |
Collapse
|
4
|
Ding T, Liu C, Li Z. The mycobiome in human cancer: analytical challenges, molecular mechanisms, and therapeutic implications. Mol Cancer 2025; 24:18. [PMID: 39815314 PMCID: PMC11734361 DOI: 10.1186/s12943-025-02227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
The polymorphic microbiome is considered a new hallmark of cancer. Advances in High-Throughput Sequencing have fostered rapid developments in microbiome research. The interaction between cancer cells, immune cells, and microbiota is defined as the immuno-oncology microbiome (IOM) axis. Fungal microbes (the mycobiome), although representing only ∼ 0.1-1% of the microbiome, are a critical immunologically active component of the tumor microbiome. Accumulating evidence suggests a possible involvement of commensal and pathogenic fungi in cancer initiation, progression, and treatment responsiveness. The tumor-associated mycobiome mainly consists of the gut mycobiome, the oral mycobiome, and the intratumoral mycobiome. However, the role of fungi in cancer remains poorly understood, and the diversity and complexity of analytical methods make it challenging to access this field. This review aims to elucidate the causal and complicit roles of mycobiome in cancer development and progression while highlighting the issues that need to be addressed in executing such research. We systematically summarize the advantages and limitations of current fungal detection and analysis methods. We enumerate and integrate these recent findings into our current understanding of the tumor mycobiome, accompanied by the prospect of novel and exhilarating clinical implications.
Collapse
Affiliation(s)
- Ting Ding
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Tornyi I, Horváth I. Role of Complement Components in Asthma: A Systematic Review. J Clin Med 2024; 13:3044. [PMID: 38892755 PMCID: PMC11172655 DOI: 10.3390/jcm13113044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Background: Asthma is a chronic inflammatory airway disease characterized by recurrent symptoms in response to a wide range of external stimuli, including allergens, viral infections, and air pollution together with internal host-derived danger signals. The disease is traditionally associated with adaptive immune responses; recent research emphasizes the critical role of innate immunity in its pathogenesis. The complement system, activated as part of the defense mechanisms, plays a crucial role in bridging innate to adaptive immunity. While experimental models demonstrate complement cascade activation in asthma, human studies remain limited. Methods: This systematic review summarizes existing literature on the complement system in asthma patients, gathering data from PubMed, Web of Science, Scopus, and Google Scholar. The protocol was registered in the OSF. Results: Out of 482 initially identified articles, only 24 met the eligibility criteria, revealing disparities in sample origin, methodologies, and populations. Despite observed heterogeneity, a consistent result was found in the elevation of complement regulatory proteins, such as complement Factor H, in samples from patients with asthma compared to those from healthy subjects. Conclusions: The increased level of regulatory proteins, such as Factor H and I highlight that these may influence asthma pathophysiology. The role of complement factors as potential biomarkers of asthma activity and severity needs further evaluation.
Collapse
Affiliation(s)
- Ilona Tornyi
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Ildikó Horváth
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| |
Collapse
|
6
|
Xu JX, Xu FZ, Furbish A, Braxton AM, Brumfield B, Helke KL, Peterson YK. Inhibition of complement C3 prevents osteoarthritis progression in guinea pigs by blocking STAT1 activation. Commun Biol 2024; 7:370. [PMID: 38538870 PMCID: PMC10973449 DOI: 10.1038/s42003-024-06051-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/14/2024] [Indexed: 12/14/2024] Open
Abstract
Osteoarthritis (OA) is one of the leading causes of disability, affecting over 500 million adults worldwide. Previous studies have found that various inflammatory factors can contribute to the pathogenesis of OA, including complement factors in the synovial fluid of OA patients. However, the pathogenesis of this disease is still not known, and the only therapy of severe OA is total joint replacements. Total joint replacements are invasive, expensive, and affect quality of life. Here we show that when human articular chondrocytes are stimulated with pro-inflammatory mediator interleukin-1β (IL-1β) there is an increase in inflammatory factors including complement component 3 (C3). We also found the transcription factor, signal transducer and activator of transcription 1 (STAT1), is responsible for increased C3 expression after IL-1β stimulation in human articular chondrocytes. A specific STAT1 inhibitor, fludarabine, attenuates the hyper-expression of C3 and delays/prevents spontaneous OA in Dunkin-Hartley guinea pigs. Since fludarabine is already clinically used for chemotherapy, this study has great translational potential as a unique disease-modifying osteoarthritis drug (DMOAD) in treating primary OA.
Collapse
Affiliation(s)
- Jen X Xu
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President Street, Charleston, SC, 29425, USA.
| | - Frank Z Xu
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President Street, Charleston, SC, 29425, USA
- UAB Heersink School of Medicine, Alabama, AL, 35233, USA
| | - Amelia Furbish
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President Street, Charleston, SC, 29425, USA
| | - Alicia M Braxton
- Department of Comparative Medicine, Medical University of South Carolina, 114 Doughty Street, Charleston, SC, 29425, USA
| | - Brook Brumfield
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President Street, Charleston, SC, 29425, USA
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, 114 Doughty Street, Charleston, SC, 29425, USA
| | - Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President Street, Charleston, SC, 29425, USA.
| |
Collapse
|
7
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
8
|
Esposito P, Rodriguez C, Gandelman M, Liang J, Ismail N. CD46 expression in the central nervous system of male and female pubescent mice. J Neuroimmunol 2023; 385:578234. [PMID: 37944208 DOI: 10.1016/j.jneuroim.2023.578234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
CD46 is a complementary regulatory protein ubiquitously expressed in human cells, controlling complement system activation. CD46 has further been identified to have several other functions including regulatory T cell induction and intestinal epithelial (IEC) barrier regulation. Activation of CD46 in the IEC can impact intestinal barrier permeability and immune system functioning. CD46 has only been identified in the spermatozoa and retina of mice. In other murine cells, the homologue CRRY is identified to function as the complementary regulator. Due to the identification of CRRY across other wild-type mouse cells and the development of mouse strains transgenic for human CD46, no recent research has been conducted to determine if CD46 is present in non-transgenic mouse strains. Therefore, the current study investigated if CD46 is expressed in the substantia nigra (SN) and caudate putamen (CP) of pubescent CD1 mice and examined the acute effects of pubertal antimicrobial and lipopolysaccharide (LPS) treatment on CD46 expression in the brain. As of 5 weeks of age, mice were administered mixed antimicrobial solution or water with oral gavage twice daily for 7 days. At 6 weeks of age, mice received an intraperitoneal injection of LPS or saline. Mice were euthanized 8 h post-injection and brain samples were collected. Our results indicate that pubescent CD-1 mice express CD46 in the SN and CP. However, LPS-treated mice displayed significantly less CD46 expression in the SN in comparison to saline-treated mice. Furthermore, males displayed more CD46 in the CP compared to females, regardless of LPS and antimicrobial treatments. Our data suggest CD46 is present in CD1 mice and that LPS and antimicrobial treatments impact CD46 protein expression in a sex-dependent manner. These results have important implications for the expression of CD46 in the mouse brain and the understanding of its role in immune system regulation.
Collapse
Affiliation(s)
- Pasquale Esposito
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Cloudia Rodriguez
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Michelle Gandelman
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jacky Liang
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nafissa Ismail
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada; LIFE Research Institute, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
9
|
Nielsen MK, Subhi Y, Falk M, Singh A, Sørensen TL, Nissen MH, Faber C. Complement factor H Y402H polymorphism results in diminishing CD4 + T cells and increasing C-reactive protein in plasma. Sci Rep 2023; 13:19414. [PMID: 37940659 PMCID: PMC10632322 DOI: 10.1038/s41598-023-46827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023] Open
Abstract
Age-related macular degeneration (AMD) is a common cause of visual loss among the elderly. Genetic variants in the gene encoding complement factor H (CFH) have been identified as an AMD susceptibility gene, however, the mechanistic link is debated. Here, we investigated the link between the CFH Y402H genotype and low-grade inflammation. We recruited 153 healthy individuals, 84 participants with dry stages of AMD, and 148 participants with neovascular AMD. All participants were subjected to detailed retinal examination, and interview regarding comorbidities and lifestyle. Blood samples were analyzed for level of C-Reactive Protein (CRP), white blood cell differential count, and stained with fluorescent antibodies to differentiate CD4+ and CD8+ T cells. CFH Y402H genotyping was performed using an allele-specific polymerase chain reaction genotyping assay. Splenocytes from young and aged wild type and Cfh null mutant C57BL/6J mice were examined for CD4+ and CD8+ T cells. Healthy individuals with the CFH Y402H at-risk polymorphism HH had higher levels of CRP and lower proportions of CD4+ T cells compared to persons with the YH or YY polymorphism (P = 0.037, Chi-square). Healthy individuals with the HH polymorphism displayed lower proportions of CD4+ T cells with ageing (P < 0.01, one-way ANOVA), whereas both young and aged Cfh null mutant mice displayed lower proportions of CD4+ T cells (P < 0.001 and P < 0.05; unpaired t test). Participants with dry AMD and the HH polymorphism had similarly lower proportions of CD4+ T cells (P = 0.024, one-way ANOVA), but no difference in CRP-levels. In the neovascular stage of AMD, there was no difference in proportion of CD4+ cells or CRP levels according to genotype. The risk-associated CFH genotype is associated with an age-related decrease in proportion of CD4+ T cells and increased levels of CRP in healthy individuals. This indicates that decreased complement regulation results in extensive changes in innate and adaptive immune compartments that precede development of AMD.
Collapse
Affiliation(s)
- Marie Krogh Nielsen
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
| | - Yousif Subhi
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mads Falk
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
| | - Amardeep Singh
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Torben Lykke Sørensen
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mogens Holst Nissen
- Department of Immunology and Microbiology, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Carsten Faber
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Meyer BJ, Kunz N, Seki S, Higgins R, Ghosh A, Hupfer R, Baldrich A, Hirsiger JR, Jauch AJ, Burgener AV, Lötscher J, Aschwanden M, Dickenmann M, Stegert M, Berger CT, Daikeler T, Heijnen I, Navarini AA, Rudin C, Yamamoto H, Kemper C, Hess C, Recher M. Immunologic and Genetic Contributors to CD46-Dependent Immune Dysregulation. J Clin Immunol 2023; 43:1840-1856. [PMID: 37477760 PMCID: PMC10661731 DOI: 10.1007/s10875-023-01547-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Mutations in CD46 predispose to atypical hemolytic uremic syndrome (aHUS) with low penetrance. Factors driving immune-dysregulatory disease in individual mutation carriers have remained ill-understood. In addition to its role as a negative regulator of the complement system, CD46 modifies T cell-intrinsic metabolic adaptation and cytokine production. Comparative immunologic analysis of diseased vs. healthy CD46 mutation carriers has not been performed in detail yet. In this study, we comprehensively analyzed clinical, molecular, immune-phenotypic, cytokine secretion, immune-metabolic, and genetic profiles in healthy vs. diseased individuals carrying a rare, heterozygous CD46 mutation identified within a large single family. Five out of six studied individuals carried a CD46 gene splice-site mutation causing an in-frame deletion of 21 base pairs. One child suffered from aHUS and his paternal uncle manifested with adult-onset systemic lupus erythematosus (SLE). Three mutation carriers had no clinical evidence of CD46-related disease to date. CD4+ T cell-intrinsic CD46 expression was uniformly 50%-reduced but was comparable in diseased vs. healthy mutation carriers. Reconstitution experiments defined the 21-base pair-deleted CD46 variant as intracellularly-but not surface-expressed and haploinsufficient. Both healthy and diseased mutation carriers displayed reduced CD46-dependent T cell mitochondrial adaptation. Diseased mutation carriers had lower peripheral regulatory T cell (Treg) frequencies and carried potentially epistatic, private rare variants in other inborn errors of immunity (IEI)-associated proinflammatory genes, not found in healthy mutation carriers. In conclusion, low Treg and rare non-CD46 immune-gene variants may contribute to clinically manifest CD46 haploinsufficiency-associated immune-dysregulation.
Collapse
Affiliation(s)
- Benedikt J Meyer
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Natalia Kunz
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Complement and Inflammation Research Section, CIRS, DIR, NHLBI, NIH, Bethesda, USA
| | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Adhideb Ghosh
- Dermatology, University Hospital Basel, Basel, Switzerland
- Competence Center for Personalized Medicine, University of Zürich/Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Robin Hupfer
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Adrian Baldrich
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Julia R Hirsiger
- Translational Immunology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Annaïse J Jauch
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Anne-Valérie Burgener
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Jonas Lötscher
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Markus Aschwanden
- Department of Angiology, University Hospital Basel, Basel, Switzerland
| | - Michael Dickenmann
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Mihaela Stegert
- Rheumatology Clinic, University Hospital Basel, Basel, Switzerland
| | - Christoph T Berger
- Translational Immunology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Thomas Daikeler
- Rheumatology Clinic, University Hospital Basel, Basel, Switzerland
- University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Ingmar Heijnen
- Division Medical Immunology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Christoph Rudin
- University Children's Hospital, University of Basel, Basel, Switzerland
| | - Hiroyuki Yamamoto
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Claudia Kemper
- Complement and Inflammation Research Section, CIRS, DIR, NHLBI, NIH, Bethesda, USA
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Mike Recher
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland.
- University Center for Immunology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
11
|
San PP, Jacob S. Role of complement in myasthenia gravis. Front Neurol 2023; 14:1277596. [PMID: 37869140 PMCID: PMC10585143 DOI: 10.3389/fneur.2023.1277596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Myasthenia gravis is a prototypic neuroimmune disorder with autoantibodies targeting the acetylcholine receptor complex at the neuromuscular junction. Patients present with mainly ocular muscle weakness and tend to have a generalized muscle weakness later in the clinical course. The weakness can be severe and fatal when bulbar muscles are heavily involved. Acetylcholine receptor antibodies are present in the majority of patients and are of IgG1 and IgG3 subtypes which can activate the complement system. The complement involvement plays a major role in the neuromuscular junction damage and the supporting evidence in the literature is described in this article. Complement therapies were initially studied and approved for paroxysmal nocturnal hemoglobinuria and in the past decade, those have also been studied in myasthenia gravis. The currently available randomized control trial and real-world data on the efficacy and safety of the approved and investigational complement therapies are summarized in this review.
Collapse
Affiliation(s)
- Pyae Phyo San
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Saiju Jacob
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Neurology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
12
|
Notarantonio AB, D'aveni-Piney M, Pagliuca S, Ashraf Y, Galimard JE, Xhaard A, Marçais A, Suarez F, Brissot E, Feugier P, Urien S, Bouazza N, Jacquelin S, Meatchi T, Bruneval P, Frémeaux-Bacchi V, Peffault De Latour R, Hermine O, Durey-Dragon MA, Rubio MT. Systemic complement activation influences outcomes after allogeneic hematopoietic cell transplantation: A prospective French multicenter trial. Am J Hematol 2023; 98:1559-1570. [PMID: 37483161 DOI: 10.1002/ajh.27030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023]
Abstract
Complement activation has shown a role in murine models of graft-versus-host disease (GVHD) and in endothelial complications after allogeneic hematopoietic cell transplantation (allo-HSCT). However, its impact on post-transplant outcomes has not been so far fully elucidated. Here, we conducted a prospective multicentric trial (NCT01520623) performing serial measurements of complement proteins, regulators, and CH50 activity for 12 weeks after allo-HSCT in 85 patients receiving a myeloablative conditioning (MAC) regimen for various hematological malignancies. Twenty-six out of 85 patients showed an "activated" complement profile through the classical/lectin pathway, defined as a post-transplant decline of C3/C4 and CH50 activity. Time-dependent Cox regression models demonstrated that complement activation within the first weeks after allo-HSCT was associated with increased non-relapse mortality (hazard ratio [HR]: 3.69, 95% confident interval [CI]: 1.55-8.78, p = .003) and poorer overall survival (HR: 2.72, 95% CI: 1.37-5.39, p = .004) due to increased incidence of grade II-IV acute GVHD and in particular gastrointestinal (GI) GVHD (HR: 36.8, 95% CI: 12.4-109.1, p < .001), higher incidences of thrombotic microangiopathy (HR: 8.58, 95% CI: 2.16-34.08, p = .0022), capillary leak syndrome (HR: 7.36, 95% CI: 2.51-21.66, p = .00028), post-engraftment bacterial infections (HR: 2.37, 95% CI: 1.22-4.63, p = .0108), and EBV reactivation (HR: 3.33, 95% CI: 1.31-8.45, p = .0112). Through specific immune staining, we showed the correlation of deposition of C1q, C3d, C4d, and of C5b9 components on endothelial cells in GI GVHD lesions with the histological grade of GVHD. Altogether these findings define the epidemiology and the clinical impact of complement classical/lectin pathway activation after MAC regimens and provide a rational for the use of complement inhibitory therapeutics in a post-allo-HSCT setting.
Collapse
Affiliation(s)
- Anne Béatrice Notarantonio
- Service d'Hématologie, Hôpital Brabois, CHRU Nancy and CNRS UMR 7365, IMoPA, Biopôle de l'Université de Lorraine, Vandoeuvre-les-Nancy, France
| | - Maud D'aveni-Piney
- Service d'Hématologie, Hôpital Brabois, CHRU Nancy and CNRS UMR 7365, IMoPA, Biopôle de l'Université de Lorraine, Vandoeuvre-les-Nancy, France
- Laboratory of Physiopathology of Hematological Disorders and Their Therapeutic Implications, INSERM U1158 Imagine Institute, Université Paris Cité, Paris, France
| | - Simona Pagliuca
- Service d'Hématologie, Hôpital Brabois, CHRU Nancy and CNRS UMR 7365, IMoPA, Biopôle de l'Université de Lorraine, Vandoeuvre-les-Nancy, France
| | - Yayha Ashraf
- Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Université Paris Cité and UMR S 1138, Centre de Recherche des Cordeliers, Paris, France
| | | | - Aliénor Xhaard
- BMT Unit, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), University of Paris VII, Paris, France
| | - Ambroise Marçais
- Service d'Hématologie Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Felipe Suarez
- Service d'Hématologie Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Eolia Brissot
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France
| | - Pierre Feugier
- Service d'Hématologie, Hôpital Brabois, CHRU Nancy and CNRS UMR 7365, IMoPA, Biopôle de l'Université de Lorraine, Vandoeuvre-les-Nancy, France
| | - Saik Urien
- Unité de Recherche Clinique, Paris Centre Necker Cochin, Hôpital Tarnier, Paris, France
| | - Naim Bouazza
- Unité de Recherche Clinique, Paris Centre Necker Cochin, Hôpital Tarnier, Paris, France
| | - Sébastien Jacquelin
- Laboratory of Physiopathology of Hematological Disorders and Their Therapeutic Implications, INSERM U1158 Imagine Institute, Université Paris Cité, Paris, France
| | - Tchao Meatchi
- Service d'Anatomopathologie, Hôpital Européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Patrick Bruneval
- Service d'Anatomopathologie, Hôpital Européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Véronique Frémeaux-Bacchi
- Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Université Paris Cité and UMR S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Régis Peffault De Latour
- BMT Unit, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), University of Paris VII, Paris, France
| | - Olivier Hermine
- Laboratory of Physiopathology of Hematological Disorders and Their Therapeutic Implications, INSERM U1158 Imagine Institute, Université Paris Cité, Paris, France
- Service d'Hématologie Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Marie Agnès Durey-Dragon
- Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Université Paris Cité and UMR S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Marie-Thérèse Rubio
- Service d'Hématologie, Hôpital Brabois, CHRU Nancy and CNRS UMR 7365, IMoPA, Biopôle de l'Université de Lorraine, Vandoeuvre-les-Nancy, France
- Laboratory of Physiopathology of Hematological Disorders and Their Therapeutic Implications, INSERM U1158 Imagine Institute, Université Paris Cité, Paris, France
| |
Collapse
|
13
|
Caillard P, Vigneau C, Halimi JM, Hazzan M, Thervet E, Heitz M, Juillard L, Audard V, Rabant M, Hertig A, Subra JF, Vuiblet V, Guerrot D, Tamain M, Essig M, Lobbedez T, Quemeneur T, Legendre M, Ganea A, Peraldi MN, Vrtovsnik F, Daroux M, Makdassi R, Choukroun G, Titeca-Beauport D. Prognostic value of complement serum C3 level and glomerular C3 deposits in anti-glomerular basement membrane disease. Front Immunol 2023; 14:1190394. [PMID: 37475859 PMCID: PMC10354545 DOI: 10.3389/fimmu.2023.1190394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Background and objectives Activation of the complement system is involved in the pathogenesis of anti-glomerular basement membrane (anti-GBM) disease. Glomerular deposits of complement 3 (C3) are often detected on kidney biopsies. The primary objective of this study was to analyze the prognostic value of the serum C3 level and the presence of C3 glomerular deposits in patients with anti-GBM disease. Methods We conducted a retrospective cohort study of 150 single-positive patients with anti-GBM disease diagnosed between 1997 and 2017. Patients were categorized according to the serum C3 level (forming a low C3 (C3<1.23 g/L) and a high C3 (C3≥1.23 g/L) groups) and positivity for C3 glomerular staining (forming the C3+ and C3- groups). The main outcomes were kidney survival and patient survival. Results Of the 150 patients included, 89 (65%) were men. The median [interquartile range (IQR)] age was 45 [26-64]. At diagnosis, kidney involvement was characterized by a median [IQR] peak serum creatinine (SCr) level of 578 [298-977] µmol/L, and 106 (71%) patients required dialysis. Patients in the low C3 group (72 patients) had more severe kidney disease at presentation, as characterized by higher prevalences of oligoanuria, peak SCr ≥500 µmol/L (69%, vs. 53% in the high C3 group; p=0.03), nephrotic syndrome (42%, vs. 24%, respectively; p=0.02) and fibrous forms on the kidney biopsy (21%, vs. 8%, respectively; p=0.04). Similarly, we observed a negative association between the presence of C3 glomerular deposits (in 52 (41%) patients) and the prevalence of cellular forms (83%, vs. 58% in the C3- group; p=0.003) and acute tubulo-interstitial lesions (60%, vs. 36% in the C3- group; p=0.007). When considering patients not on dialysis at diagnosis, the kidney survival rate at 12 months was poorer in the C3+ group (50% [25-76], vs. 91% [78-100] in the C3- group; p=0.01), with a hazard ratio [95% confidence interval] of 5.71 [1.13-28.85] (p=0.04, after adjusting for SCr). Conclusion In patients with anti-GBM disease, a low serum C3 level and the presence of C3 glomerular deposits were associated with more severe disease and histological kidney involvement at diagnosis. In patients not on dialysis at diagnosis, the presence of C3 deposits was associated with worse kidney survival.
Collapse
Affiliation(s)
- Pauline Caillard
- Department of Nephrology, Dialysis, and Transplantation, University of Picardie Jules Verne, Amiens University Hospital, Amiens, France
- Mécanismes Physiopathologiques et Conséquences des Calcifications Cardiovasculaires (MP3CV) laboratory, Centre de Recherche en Santé (CURS), Amiens, France
| | - Cécile Vigneau
- Rennes University Hospital, Inserm, Ecole des hautes études en santé publique (EHESP), Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Jean-Michel Halimi
- Department of Nephrology, Tours University Hospital and EA4245, University of Tours, Tours, France
| | - Marc Hazzan
- Nephrology Department, Lille University Hospital, University of Lille, UMR 995, Lille, France
| | - Eric Thervet
- Department of Nephrology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris and INSERM UMRS970, Boulogne-Billancourt, France
| | - Morgane Heitz
- Department of Nephrology and Dialysis, Annecy Genevois Hospital, Pringy, France
| | - Laurent Juillard
- Department of Nephrology, Edouard Herriot Hospital, Hospices Civils de Lyon, Carmen INSERM 1060 and Univ Lyon, Lyon, France
| | - Vincent Audard
- Department of Nephrology and Renal Transplantation, Reference Center-Idiopathic Nephrotic Syndrome, Henri-Mondor Hospital/Albert-Chenevier, Assistance Publique-Hôpitaux de Paris (AP-HP) Créteil, INSERMU955, Paris Est Créteil University, Créteil, France
| | - Marion Rabant
- Pathology Department, Necker University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP). Centre-Université de Paris, Paris, France
| | - Alexandre Hertig
- Department of Nephrology, Dialysis and Transplantation, Foch Hospital, Paris-Saclay University, Suresnes, France
| | - Jean-François Subra
- Department of Nephrology, Dialysis and Transplantation, University Hospital, Angers and Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), INSERM, Nantes University, Angers University, Angers, France
| | - Vincent Vuiblet
- Department of Nephrology and Renal Transplantation, Reims University Hospital, Reims, France
| | - Dominique Guerrot
- Department of Nephrology, Rouen University Hospital, Rouen and INSERM, U1096 Rouen, France
| | - Mathilde Tamain
- Department of Nephrology and Dialysis, Vichy Hospital, Vichy, France
| | - Marie Essig
- Department of Nephrology, Dialysis, and Renal Transplantation, Ambroise-Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris-Saclay University, Boulogne-Billancourt, France
| | - Thierry Lobbedez
- Department of Nephrology, Caen University Hospital, Caen, France and the French Registry of Peritoneal Dialysis, Langue Française, Pontoise, France
| | - Thomas Quemeneur
- Department of Nephrology and Internal Medicine, Valenciennes General Hospital, Valenciennes, France
| | - Mathieu Legendre
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospital, Dijon, France
| | | | - Marie-Noëlle Peraldi
- Department of Nephrology, Dialysis and Renal Transplantation, Necker University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Centre-Université de Paris, Paris, France
| | - François Vrtovsnik
- Nephrology Department, Bichat-Claude Bernard Hospital, APHP, Paris, France. Faculty of Medicine, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Maïté Daroux
- Department of Nephrology, Duchenne Hospital, Boulogne-Sur-Mer, France
| | - Raïfah Makdassi
- Department of Nephrology, Dialysis, and Transplantation, University of Picardie Jules Verne, Amiens University Hospital, Amiens, France
| | - Gabriel Choukroun
- Department of Nephrology, Dialysis, and Transplantation, University of Picardie Jules Verne, Amiens University Hospital, Amiens, France
- Mécanismes Physiopathologiques et Conséquences des Calcifications Cardiovasculaires (MP3CV) laboratory, Centre de Recherche en Santé (CURS), Amiens, France
| | - Dimitri Titeca-Beauport
- Department of Nephrology, Dialysis, and Transplantation, University of Picardie Jules Verne, Amiens University Hospital, Amiens, France
- Mécanismes Physiopathologiques et Conséquences des Calcifications Cardiovasculaires (MP3CV) laboratory, Centre de Recherche en Santé (CURS), Amiens, France
| |
Collapse
|
14
|
Assis DV, Campos ACP, Paschoa AFN, Santos TF, Fonoff ET, Pagano RL. Systemic and Peripheral Mechanisms of Cortical Stimulation-Induced Analgesia and Refractoriness in a Rat Model of Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24097796. [PMID: 37175503 PMCID: PMC10177944 DOI: 10.3390/ijms24097796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023] Open
Abstract
Epidural motor cortex stimulation (MCS) is an effective treatment for refractory neuropathic pain; however, some individuals are unresponsive. In this study, we correlated the effectiveness of MCS and refractoriness with the expression of cytokines, neurotrophins, and nociceptive mediators in the dorsal root ganglion (DRG), sciatic nerve, and plasma of rats with sciatic neuropathy. MCS inhibited hyperalgesia and allodynia in two-thirds of the animals (responsive group), and one-third did not respond (refractory group). Chronic constriction injury (CCI) increased IL-1β in the nerve and DRG, inhibited IL-4, IL-10, and IL-17A in the nerve, decreased β-endorphin, and enhanced substance P in the plasma, compared to the control. Responsive animals showed decreased NGF and increased IL-6 in the nerve, accompanied by restoration of local IL-10 and IL-17A and systemic β-endorphin. Refractory animals showed increased TNF-α and decreased IFNγ in the nerve, along with decreased TNF-α and IL-17A in the DRG, maintaining low levels of systemic β-endorphin. Our findings suggest that the effectiveness of MCS depends on local control of inflammatory and neurotrophic changes, accompanied by recovery of the opioidergic system observed in neuropathic conditions. So, understanding the refractoriness to MCS may guide an improvement in the efficacy of the technique, thus benefiting patients with persistent neuropathic pain.
Collapse
Affiliation(s)
- Danielle V Assis
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil
| | | | - Amanda F N Paschoa
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil
| | - Talita F Santos
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil
| | - Erich T Fonoff
- Division of Functional Neurosurgery, Department of Neurology, University of Sao Paulo Medical School, São Paulo 05402-000, SP, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil
| |
Collapse
|
15
|
Yang X, Wu X, Huang S, Yao Q, Chen X, Song J, Fan Y, Zhao G. C3a/C3aR Affects the Propagation of Cryptosporidium parvum in the Ileum Tissues of Mice by Regulating the Gut Barrier, Cell Proliferation, and CD4 + T Cell Main Effectors. Animals (Basel) 2023; 13:ani13050837. [PMID: 36899694 PMCID: PMC10000055 DOI: 10.3390/ani13050837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Cryptosporidium parvum is an important zoonotic protozoon that threatens the health of humans and animals, but the interaction mechanisms between C. parvum and hosts are poorly understood. Our previous study indicated that the expression levels of C3a and C3aR were up-regulated in mice during C. parvum infection, but the mechanisms of C3a/C3aR signaling during C. parvum infection have not been elucidated. In the present study, an optimized BALB/c suckling mouse model infected with C. parvum was used to explore the function of C3a/C3aR signaling during C. parvum infection. The expression levels of C3aR in the ileum tissues of mice infected with C. parvum were analyzed using real-time PCR, Western blot and immunohistochemistry. The mRNA levels of the Cryptosporidium 18S rRNA gene, tight junction proteins (zo-1, claudin 3, and occludin), intestinal stem cell marker lgr5, cell proliferation marker ki67, Th1 cell-related cytokine ifn-γ, and Treg cell-related cytokine tgf-β in mouse ileum tissues were analyzed by real-time PCR. The pathological injury of ileal mucosa was examined by histopathology analysis. The mRNA expression levels of Cryptosporidium 18S rRNA gene were significantly up-regulated in the ileum tissues of C3aR-inhibited mice during C. parvum infection. Meanwhile, histopathology analysis of ileal mucosa in mice showed that inhibition of C3aR significantly aggravated the changes in villus length, villus diameter, mucosal thickness and the ratio of villus length to crypt depth during C. parvum infection. Further studies found inhibition of C3aR aggravated the down-regulation of occludin at most time points during C. parvum infection. The mRNA levels of ki67 and lgr5 in the ileum tissues of mice infected with C. parvum were significantly down-regulated. Inhibition of C3aR significantly down-regulated the mRNA expression levels of lgr5 at most time points, but significantly up-regulated the mRNA expression levels of ki67 at most time points. The mRNA expression levels of ifn-γ and tgf-β were significantly up-regulated and down-regulated in the ileum tissues of mice infected with C. parvum, respectively. However, inhibition of C3aR significantly increased the mRNA expression levels of ifn-γ and tgf-β in the ileum tissues of mice infected with C. parvum. Taken together, C3a/C3aR signaling could possibly affect the propagation of C. parvum in mouse ileum tissues by regulating the gut barrier, cell proliferation and CD4+ T cell main effectors, which would contribute to our understanding of the interaction between Cryptosporidium and hosts.
Collapse
|
16
|
Washburn RL, Dufour JM. Complementing Testicular Immune Regulation: The Relationship between Sertoli Cells, Complement, and the Immune Response. Int J Mol Sci 2023; 24:ijms24043371. [PMID: 36834786 PMCID: PMC9965741 DOI: 10.3390/ijms24043371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Sertoli cells within the testis are instrumental in providing an environment for spermatogenesis and protecting the developing germ cells from detrimental immune responses which could affect fertility. Though these immune responses consist of many immune processes, this review focuses on the understudied complement system. Complement consists of 50+ proteins including regulatory proteins, immune receptors, and a cascade of proteolytic cleavages resulting in target cell destruction. In the testis, Sertoli cells protect the germ cells from autoimmune destruction by creating an immunoregulatory environment. Most studies on Sertoli cells and complement have been conducted in transplantation models, which are effective in studying immune regulation during robust rejection responses. In grafts, Sertoli cells survive activated complement, have decreased deposition of complement fragments, and express many complement inhibitors. Moreover, the grafts have delayed infiltration of immune cells and contain increased infiltration of immunosuppressive regulatory T cells as compared to rejecting grafts. Additionally, anti-sperm antibodies and lymphocyte infiltration have been detected in up to 50% and 30% of infertile testes, respectively. This review seeks to provide an updated overview of the complement system, describe its relationship with immune cells, and explain how Sertoli cells may regulate complement in immunoprotection. Identifying the mechanism Sertoli cells use to protect themselves and germ cells against complement and immune destruction is relevant for male reproduction, autoimmunity, and transplantation.
Collapse
Affiliation(s)
- Rachel L Washburn
- Immunology and Infectious Diseases, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| |
Collapse
|
17
|
Hourcade DE, Mitchell LM. A Monoclonal Antibody That Provides a Model for C3 Nephritic Factors. Monoclon Antib Immunodiagn Immunother 2023; 42:9-14. [PMID: 36853837 PMCID: PMC9983123 DOI: 10.1089/mab.2022.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/17/2023] [Indexed: 03/01/2023] Open
Abstract
Complement is a major innate defense system that protects the intravascular space from microbial invasion. Complement activation results in the assembly of C3 convertases, serine proteases that cleave complement protein C3, generating bioactive fragments C3a and C3b. The complement response is rapid and robust, largely due to a positive feedback regulatory loop mediated by alternative pathway (AP) C3 convertase. C3 nephritic factors (C3NEFs) are autoantibodies that stabilize AP convertase, resulting in uncontrolled C3 cleavage, which, in principle, can promote critical tissue injury similar to that seen in certain renal conditions. Investigations of C3NEFs are hampered by a challenging issue: each C3NEF is derived from a different donor source, and there is no method to compare one C3NEF to another. We have identified a widely available mouse anti-C3 mAb that, similar to many C3NEFs, can stabilize functional AP convertase in a form resistant to decay acceleration by multiple complement regulators. The antibody requires the presence of properdin to confer convertase stability, and hampers the activity of Salp20, a tic salivary protein that accelerates convertase dissociation by displacing properdin from the convertase complex. This mAb can serve as an urgently needed standard for the investigation of C3NEFs. This study also provides novel insights into the dynamics of AP convertase.
Collapse
Affiliation(s)
- Dennis E. Hourcade
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lynne M. Mitchell
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
18
|
Washburn RL, Martinez-Marin D, Korać K, Sniegowski T, Rodriguez AR, Chilton BS, Hibler T, Pruitt K, Bhutia YD, Dufour JM. The Sertoli Cell Complement Signature: A Suspected Mechanism in Xenograft Survival. Int J Mol Sci 2023; 24:ijms24031890. [PMID: 36768217 PMCID: PMC9916409 DOI: 10.3390/ijms24031890] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The complement system is an important component of transplant rejection. Sertoli cells, an immune regulatory testicular cell, survive long-term when transplanted across immunological barriers; thus, understanding the mechanisms behind this unique survival would be of great benefit to the transplantation field. This study focused on Sertoli cell inhibition of complement as relevant in xenotransplantation. Neonatal pig Sertoli cells (NPSCs) survived activated human complement in vitro while neonatal pig islet (NPI) aggregates and pig aortic endothelial cell (PAEC) survival were diminished to about 65% and 12%, respectively. PAECs cultured in NPSC-conditioned media and human complement demonstrated a 200% increase in survival suggesting that NPSCs secrete complement-inhibiting substances that confer protection. Bioinformatic and molecular analyses identified 21 complement inhibitors expressed by NPSCs with several significantly increased in NPSCs compared to NPIs or PAECs. Lastly, RNA sequencing revealed that NPSCs express 25 other complement factors including cascade components and receptors. Overall, this study identified the most comprehensive Sertoli cell complement signature to date and indicates that the expression of a variety of complement inhibitors ensures a proper regulation of complement through redundant inhibition points. Understanding the regulation of the complement system should be further investigated for extending xenograft viability.
Collapse
Affiliation(s)
- Rachel L. Washburn
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79404, USA
| | - Dalia Martinez-Marin
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79404, USA
| | - Ksenija Korać
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Tyler Sniegowski
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Alexis R. Rodriguez
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Beverly S. Chilton
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Taylor Hibler
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79404, USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79404, USA
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Jannette M. Dufour
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Correspondence:
| |
Collapse
|
19
|
Wang L, Deng Z, Yang J, Zhao Y, Zhou L, Diao L, Li L, Cheng Y. Epigenetic and transcriptomic characterization of maternal-fetal interface in patients with recurrent miscarriage via an integrated multi-omics approach. J Reprod Immunol 2022; 154:103754. [PMID: 36206604 DOI: 10.1016/j.jri.2022.103754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Recurrent miscarriage (RM) occurs in 2.5 % of women aiming at childbirth, with unknown etiology in half of the cases. To identify the molecular features, an integrative study combining bioinformatics and multi-omics from GEO database was performed in these patients. Two datasets (GSE43256 and GSE73025) were integrated to indicate 1657 differentially expressed genes (DE-genes) in villus of females with RM. DE-genes in villus of females with RM mainly focused on cell growth and development. On the other hand, 230 DE-genes in decidua of RM patients were retrieved from GSE113790, and the DE-genes were involved in diverse functions, including transport of nutrients, immune response, extracellular matrix remodeling, and angiogenesis. Additionally, the results of immunologic signatures indicated that immune regulation played roles in both decidua and villus of RM. Interestingly, C1q and TNF related 7 (C1QTNF7), acquired from the intersection of decidua and villus datasets, is crucial in maintaining immune homeostasis, so is its upstream miRNA (miR-149-3p). The enhanced expression of C1QTNF7 in macrophages might inhibit the proliferation and migration of trophoblasts, and further result in pregnancy loss. The present study suggests C1QTNF7 might be a new target for the diagnosis and treatment of RM, but more basic researches are further required to illustrate its mechanism in RM.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong 518045, PR China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Yulin Zhao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong 518045, PR China
| | - Linyan Zhou
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong 518045, PR China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong 518045, PR China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong 518045, PR China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
20
|
Xiao K, Zhang S, Li C. The complement system and complement-like factors in sea cucumber. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104511. [PMID: 36029917 DOI: 10.1016/j.dci.2022.104511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The complement system is an important part of innate immunity and plays an essential role in immune responses. Complement system consists of a series of proteins, its activation results in opsonization and phagocytosis of pathogens. Although the complement system has been studied extensively in vertebrates, considerably less is known about complement in invertebrates, especially in sea cucumber. Here, we reviewed the complement-like factors including Component 3 (C3), Complement factor B (Bf), Mannan-binding lectin (MBL) and globular Complement component 1q Receptor (gC1qR), which had been found in the complement system of sea cucumber. Furthermore, we compared the features of complement components among marine invertebrates and described the evolution of sea cucumber complement system obviously. This review can offer theoretical basis for disease control of the sea cucumber and will provide new insights into immune system of marine invertebrates. Meantime, the complete framework of sea cucumber complement may benefit the aquaculture industry.
Collapse
Affiliation(s)
- Ke Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Siyuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
21
|
Beydoun N, Feinstein MJ. Heart Failure in Chronic Infectious and Inflammatory Conditions: Mechanistic Insights from Clinical Heterogeneity. Curr Heart Fail Rep 2022; 19:267-278. [PMID: 35838874 PMCID: PMC9283814 DOI: 10.1007/s11897-022-00560-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW The balance between inflammation and its resolution plays an important and increasingly appreciated role in heart failure (HF) pathogenesis. In humans, different chronic inflammatory conditions and immune-inflammatory responses to infection can lead to diverse HF manifestations. Reviewing the phenotypic and mechanistic diversity of these HF presentations offers useful clinical and scientific insights. RECENT FINDINGS HF risk is increased in patients with chronic inflammatory and autoimmune disorders and relates to disease severity. Inflammatory condition-specific HF manifestations exist and underlying pathophysiologic causes may differ across conditions. Although inflammatory disease-specific presentations of HF differ, chronic excess in inflammation and auto-inflammation relative to resolution of this inflammation is a common underlying contributor to HF. Further studies are needed to phenotypically refine inflammatory condition-specific HF pathophysiologies and prognoses, as well as potential targets for intervention.
Collapse
Affiliation(s)
- Nour Beydoun
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew J Feinstein
- Division of Cardiology, Department of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Pathology, Northwestern University, Chicago, IL, USA.
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern University Feinberg School of Medicine, 300 E. Superior St, Tarry 3-703, Chicago, IL, 60611, USA.
| |
Collapse
|
22
|
Caputo MB, Elias J, Cesar G, Alvarez MG, Laucella SA, Albareda MC. Role of the Complement System in the Modulation of T-Cell Responses in Chronic Chagas Disease. Front Cell Infect Microbiol 2022; 12:910854. [PMID: 35846776 PMCID: PMC9282465 DOI: 10.3389/fcimb.2022.910854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/26/2022] [Indexed: 01/19/2023] Open
Abstract
Chagas disease, caused by the intracellular pathogen Trypanosoma cruzi, is the parasitic disease with the greatest impact in Latin America and the most common cause of infectious myocarditis in the world. The immune system plays a central role in the control of T. cruzi infection but at the same time needs to be controlled to prevent the development of pathology in the host. It has been shown that persistent infection with T. cruzi induces exhaustion of parasite-specific T cell responses in subjects with chronic Chagas disease. The continuous inflammatory reaction due to parasite persistence in the heart also leads to necrosis and fibrosis. The complement system is a key element of the innate immune system, but recent findings have also shown that the interaction between its components and immune cell receptors might modulate several functions of the adaptive immune system. Moreover, the findings that most of immune cells can produce complement proteins and express their receptors have led to the notion that the complement system also has non canonical functions in the T cell. During human infection by T. cruzi, complement activation might play a dual role in the acute and chronic phases of Chagas disease; it is initially crucial in controlling parasitemia and might later contributes to the development of symptomatic forms of Chagas disease due to its role in T-cell regulation. Herein, we will discuss the putative role of effector complement molecules on T-cell immune exhaustion during chronic human T. cruzi infection.
Collapse
Affiliation(s)
- María Belén Caputo
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - Josefina Elias
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - Gonzalo Cesar
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - María Gabriela Alvarez
- Chagas Section, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - Susana Adriana Laucella
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
- Chagas Section, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - María Cecilia Albareda
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| |
Collapse
|
23
|
Anliker M, Drees D, Loacker L, Hafner S, Griesmacher A, Hoermann G, Fux V, Schennach H, Hörtnagl P, Dopler A, Schmidt S, Bellmann-Weiler R, Weiss G, Marx-Hofmann A, Körper S, Höchsmann B, Schrezenmeier H, Schmidt CQ. Upregulation of Checkpoint Ligand Programmed Death-Ligand 1 in Patients with Paroxysmal Nocturnal Hemoglobinuria Explained by Proximal Complement Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1248-1258. [PMID: 35173033 DOI: 10.4049/jimmunol.2100031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare hemolytic disease driven by impaired complement regulation. Mutations in genes encoding the enzymes that build the GPI anchors are causative, with somatic mutations in the PIG-A gene occurring most frequently. As a result, the important membrane-bound complement regulators CD55 and CD59 are missing on the affected hematopoietic stem cells and their progeny, rendering those cells vulnerable to complement attack. Immune escape mechanisms sparing affected PNH stem cells from removal are suspected in the PNH pathogenesis, but molecular mechanisms have not been elucidated. We hypothesized that exuberant complement activity in PNH results in enhanced immune checkpoint interactions, providing a molecular basis for the potential immune escape in PNH. In a series of PNH patients, we found increased expression levels of the checkpoint ligand programmed death-ligand 1 (PD-L1) on granulocytes and monocytes, as well as in the plasma of PNH patients. Mechanistically, we demonstrate that complement activation leading to the decoration of particles/cells with C3- and/or C4-opsonins increased PD-L1 expression on neutrophils and monocytes as shown for different in vitro models of classical or alternative pathway activation. We further establish in vitro that complement inhibition at the level of C3, but not C5, inhibits the alternative pathway-mediated upregulation of PD-L1 and show by means of soluble PD-L1 that this observation translates into the clinical situation when PNH patients are treated with either C3 or C5 inhibitors. Together, the presented data show that the checkpoint ligand PD-L1 is increased in PNH patients, which correlates with proximal complement activation.
Collapse
Affiliation(s)
- Markus Anliker
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria
| | - Daniela Drees
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Lorin Loacker
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria
| | - Susanne Hafner
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Andrea Griesmacher
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria
| | - Gregor Hoermann
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria.,MLL Munich Leukemia Laboratory, Munich, Germany
| | - Vilmos Fux
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria
| | - Harald Schennach
- Central Institute of Blood Transfusion and Immunology, University Hospital Innsbruck, Innsbruck, Austria
| | - Paul Hörtnagl
- Central Institute of Blood Transfusion and Immunology, University Hospital Innsbruck, Innsbruck, Austria
| | - Arthur Dopler
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Stefan Schmidt
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria; and
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Astrid Marx-Hofmann
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Sixten Körper
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Britta Höchsmann
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany; .,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany;
| |
Collapse
|
24
|
Fox CR, Parks GD. Complement Inhibitors Vitronectin and Clusterin Are Recruited from Human Serum to the Surface of Coronavirus OC43-Infected Lung Cells through Antibody-Dependent Mechanisms. Viruses 2021; 14:v14010029. [PMID: 35062233 PMCID: PMC8780186 DOI: 10.3390/v14010029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Little is known about the role of complement (C’) in infections with highly prevalent circulating human coronaviruses such as OC43, a group of viruses of major public health concern. Treatment of OC43-infected human lung cells with human serum resulted in C3 deposition on their surfaces and generation of C5a, indicating robust C’ activation. Real-time cell viability assays showed that in vitro C’-mediated lysis of OC43 infected cells requires C3, C5 and C6 but not C7, and was substantially delayed as compared to rapid C’-mediated killing of parainfluenza virus type 5 (PIV5)-infected cells. In cells co-infected with OC43 and PIV5, C’-mediated lysis was delayed, similar to OC43 infected cells alone, suggesting that OC43 infection induced dominant inhibitory signals. When OC43-infected cells were treated with human serum, their cell surfaces contained both Vitronectin (VN) and Clusterin (CLU), two host cell C’ inhibitors that can alter membrane attack complex (MAC) formation and C’-mediated killing. VN and CLU were not bound to OC43-infected cells after treatment with antibody-depleted serum. Reconstitution experiments with purified IgG and VN showed that human antibodies are both necessary and sufficient for VN recruitment to OC43-infected lung cells–novel findings with implications for CoV pathogenesis.
Collapse
|
25
|
Martinez CA, Marteinsdottir I, Josefsson A, Sydsjö G, Theodorsson E, Rodriguez-Martinez H. Prenatal stress, anxiety and depression alter transcripts, proteins and pathways associated with immune responses at the maternal-fetal interface†. Biol Reprod 2021; 106:449-462. [PMID: 34935902 PMCID: PMC8934694 DOI: 10.1093/biolre/ioab232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
During pregnancy, the immune system is modified to allow developmental developmental tolerance of the semi-allogeneic fetus and placenta to term. Pregnant women suffering from stress, anxiety and depression show dysfunctions of their immune system that may be responsible for fetal and/or newborn disorders, provided that provided that placental gene regulation is compromised. The present study explored the effects of maternal chronic self-perceived stress, anxiety and depression during pregnancy on the expression of immune related-genes and pathways in term placenta. Pregnancies were clinically monitored with the Beck's Anxiety Inventory (BAI) and Edinburgh Postnatal Depression Scale (EPDS). A cutoff threshold for BAI/EPDS of 10 divided patients into two groups: Index group (≥10, n = 11) and a Control group (<10, n = 11), whose placentae were sampled at delivery. The placental samples were subjected to RNA-Sequencing, demonstrating that stress, anxiety and depression during pregnancy induced a major downregulation of placental transcripts related to immune processes such as T-cell regulation, interleukin and cytokine signaling or innate immune responses. Expression differences of main immune related genes such as CD46, CD15, CD8α & β ILR7α and CCR4 among others, were found in the index group (P < 0.05). Moreover, the key immune-like pathway involved in humoral and cellular immunity named "Primary immunodeficiency" was significantly downregulated in the index group compared to controls. Our results show that mechanisms ruling immune system functions are compromised at the maternal-fetal interface following self-perceived depressive symptoms and anxiety during pregnancy. These findings may help unveil mechanisms ruling the impact of maternal psychiatric symptoms and lead to new prevention/intervention strategies in complicated pregnancies.
Collapse
Affiliation(s)
- Cristina A Martinez
- Department of Biomedical & Clinical Sciences, Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Ina Marteinsdottir
- Department of Medicine and Optometry, Faculty of Health and Life Sciences, Linnaeus University, Hus Vita, Kalmar, Sweden
| | - Ann Josefsson
- Department of Biomedical & Clinical Sciences, Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Gunilla Sydsjö
- Department of Biomedical & Clinical Sciences, Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Division of Clinical Chemistry, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences, Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
26
|
A study of the mechanisms responsible for the action of new immunosuppressants and their effects on rat small intestinal transplantation. Transpl Immunol 2021; 70:101497. [PMID: 34785307 DOI: 10.1016/j.trim.2021.101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022]
Abstract
In a series of studies, using an identical rat intestinal transplantation model, we evaluated the effects of several drugs. FK-506 caused a significant attenuation in the proliferation of allogeneic CD4+ T cells and IFN-γ secreting effector functions. FYT720 resulted in a marked reduction in the numbers of lymphocytes, associated with a reduction of T cell recruitment, in grafts. An anti-MAdCAM antibody was next reported to significantly down-regulate CD4+ T cell infiltration in intestinal grafts by blocking the adhesion molecule, and could be useful as an induction therapy. Concerning TAK-779, this CCR5 and CXCR3 antagonist diminished the number of graft-infiltrating cells by suppressing the expression of their receptors in the graft. As a result, it reduced the total number of recipient T cells involved in graft rejection. As the next step, we focused on the participation of monocytes/ macrophages in this field. PQA-18 has been the focus of a novel immunosuppressant that attenuates not only the production of various cytokines, such as IL-2 & TNF-α, on T cells, but the differentiation of macrophages by inhibiting PAK2 as well. In this report, we summarize our previous studies not only regarding the above drugs, but on an anti-complement drug and a JAK inhibitor as well.
Collapse
|
27
|
Zeng J, Xu H, Huang C, Sun Y, Xiao H, Yu G, Zhou H, Zhang Y, Yao W, Xiao W, Hu J, Wu L, Xing J, Wang T, Chen Z, Ye Z, Chen K. CD46 splice variant enhances translation of specific mRNAs linked to an aggressive tumor cell phenotype in bladder cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:140-153. [PMID: 33767911 PMCID: PMC7972933 DOI: 10.1016/j.omtn.2021.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/19/2021] [Indexed: 01/02/2023]
Abstract
CD46 is well known to be involved in diverse biological processes. Although several splice variants of CD46 have been identified, little is known about the contribution of alternative splicing to its tumorigenic functions. In this study, we found that exclusion of CD46 exon 13 is significantly increased in bladder cancer (BCa) samples. In BCa cell lines, enforced expression of CD46-CYT2 (exon 13-skipping isoform) promoted, and CD46-CYT1 (exon 13-containing isoform) attenuated, cell growth, migration, and tumorigenicity in a xenograft model. We also applied interaction proteomics to identify exhaustively the complexes containing the CYT1 or CYT2 domain in EJ-1 cells. 320 proteins were identified that interact with the CYT1 and/or CYT2 domain, and most of them are new interactors. Using an internal ribosome entry site (IRES)-dependent reporter system, we established that CD46 could regulate mRNA translation through an interaction with the translation machinery. We also identified heterogeneous nuclear ribonucleoprotein (hnRNP)A1 as a novel CYT2 binding partner, and this interaction facilitates the interaction of hnRNPA1 with IRES RNA to promote IRES-dependent translation of HIF1a and c-Myc. Strikingly, the splicing factor SRSF1 is highly correlated with CD46 exon 13 exclusion in clinical BCa samples. Taken together, our findings contribute to understanding the role of CD46 in BCa development.
Collapse
Affiliation(s)
- Jin Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, P.R. China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Chunhua Huang
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P.R. China
| | - Yi Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Haibing Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Yangjun Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Weimin Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Wei Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Junhui Hu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jinchun Xing
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, P.R. China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, P.R. China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| |
Collapse
|
28
|
Lu P, Ma Y, Wei S, Liang X. The dual role of complement in cancers, from destroying tumors to promoting tumor development. Cytokine 2021; 143:155522. [PMID: 33849765 DOI: 10.1016/j.cyto.2021.155522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022]
Abstract
Complement is an important branch of innate immunity; however, its biological significance goes far beyond the scope of simple nonspecific defense and involves a variety of physiological functions, including the adaptive immune response. In this review, to unravel the complex relationship between complement and tumors, we reviewed the high diversity of complement components in cancer and the heterogeneity of their production and activation pathways. In the tumor microenvironment, complement plays a dual regulatory role in the occurrence and development of tumors, affecting the outcomes of the immune response. We explored the differential expression levels of various complement components in human cancers via the Oncomine database. The gene expression profiling interactive analysis (GEPIA) tool and Kaplan-Meier plotter (K-M plotter) confirmed the correlation between differentially expressed complement genes and tumor prognosis. The tumor immune estimation resource (TIMER) database was used to statistically analyze the effect of complement on tumor immune infiltration. Finally, with a view to the role of complement in regulating T cell metabolism, complement could be a potential target for immunotherapies. Targeting complement to regulate the antitumor immune response seems to have potential for future treatment strategies. However, there are still many complex problems, such as who will benefit from this therapy and how to select the right therapeutic target and determine the appropriate drug concentration. The solutions to these problems depend on a deeper understanding of complement generation, activation, and regulatory and control mechanisms.
Collapse
Affiliation(s)
- Ping Lu
- Department of Medical Oncology, Hubei Cancer Hospital, the Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Colorectal Cancer Clinical Research Center of HuBei Province, Wuhan, China; Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, China
| | - Yifei Ma
- Department of Gastrointestinal Oncology Surgery, Hubei Cancer Hospital, the Seventh Clinical School Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Colorectal Cancer Clinical Research Center of HuBei Province, Wuhan, China; Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, China
| | - Shaozhong Wei
- Department of Gastrointestinal Oncology Surgery, Hubei Cancer Hospital, the Seventh Clinical School Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Colorectal Cancer Clinical Research Center of HuBei Province, Wuhan, China; Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, China.
| | - Xinjun Liang
- Department of Medical Oncology, Hubei Cancer Hospital, the Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Colorectal Cancer Clinical Research Center of HuBei Province, Wuhan, China; Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, China.
| |
Collapse
|
29
|
Kohn M, Lanfermann C, Laudeley R, Glage S, Rheinheimer C, Klos A. Complement and Chlamydia psittaci: Early Complement-Dependent Events Are Important for DC Migration and Protection During Mouse Lung Infection. Front Immunol 2021; 12:580594. [PMID: 33767691 PMCID: PMC7986412 DOI: 10.3389/fimmu.2021.580594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/10/2021] [Indexed: 11/24/2022] Open
Abstract
The zoonotic intracellular bacterium Chlamydia psittaci causes life-threatening pneumonia in humans. During mouse lung infection, complement factor C3 and the anaphylatoxin C3a augment protection against C. psittaci by a so far unknown mechanism. To clarify how complement contributes to the early, innate and the late, specific immune response and resulting protection, this study addresses the amount of C3, the timing when its presence is required as well as the anaphylatoxin receptor(s) mediating its effects and the complement-dependent migration of dendritic cells. Challenge experiments with C. psittaci on various complement KO mice were combined with transient decomplementation by pharmacological treatment, as well as the analysis of in vivo dendritic cells migration. Our findings reveal that a plasma concentration of C3 close to wildtype levels was required to achieve full protection. The diminished levels of C3 of heterozygote C3+/- mice permitted already relative effective protection and improved survival as compared to C3-/- mice, but overall recovery of these animals was delayed. Complement was in particular required during the first days of infection. However, additionally, it seems to support protection at later stages. Migration of CD103+ dendritic cells from the infected lung to the draining lymph node-as prerequisite of antigen presentation-depended on C3 and C3aR and/or C5aR. Our results provide unique mechanistic insight in various aspects of complement-dependent immune responses under almost identical, rather physiological experimental conditions. Our study contributes to an improved understanding of the role of complement, and C3a in particular, in infections by intracellular bacteria.
Collapse
Affiliation(s)
- Martin Kohn
- Medical School Hannover, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Christian Lanfermann
- Medical School Hannover, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Robert Laudeley
- Medical School Hannover, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Silke Glage
- Medical School Hannover, Institute for Laboratory Animal Science, Hannover, Germany
| | - Claudia Rheinheimer
- Medical School Hannover, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Andreas Klos
- Medical School Hannover, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| |
Collapse
|
30
|
Kohn M, Lanfermann C, Laudeley R, Glage S, Rheinheimer C, Klos A. Complement and Chlamydia psittaci: Non-Myeloid-Derived C3 Predominantly Induces Protective Adaptive Immune Responses in Mouse Lung Infection. Front Immunol 2021; 12:626627. [PMID: 33746963 PMCID: PMC7969653 DOI: 10.3389/fimmu.2021.626627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Recent advances in complement research have revolutionized our understanding of its role in immune responses. The immunomodulatory features of complement in infections by intracellular pathogens, e.g., viruses, are attracting increasing attention. Thereby, local production and activation of complement by myeloid-derived cells seem to be crucial. We could recently show that C3, a key player of the complement cascade, is required for effective defense against the intracellular bacterium Chlamydia psittaci. Avian zoonotic strains of this pathogen cause life-threatening pneumonia with systemic spread in humans; closely related non-avian strains are responsible for less severe diseases of domestic animals with economic loss. To clarify how far myeloid- and non-myeloid cell-derived complement contributes to immune response and resulting protection against C. psittaci, adoptive bone marrow transfer experiments focusing on C3 were combined with challenge experiments using a non-avian (BSL 2) strain of this intracellular bacterium. Surprisingly, our data prove that for C. psittaci-induced pneumonia in mice, non-myeloid-derived, circulating/systemic C3 has a leading role in protection, in particular on the development of pathogen-specific T- and B- cell responses. In contrast, myeloid-derived and most likely locally produced C3 plays only a minor, mainly fine-tuning role. The work we present here describes authentic, although less pronounced, antigen directed immune responses.
Collapse
Affiliation(s)
- Martin Kohn
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Christian Lanfermann
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Robert Laudeley
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Medical School Hannover, Hannover, Germany
| | - Claudia Rheinheimer
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Andreas Klos
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| |
Collapse
|
31
|
Thomson AS, Mai SH, Bouma G, Herdman M, Byrne M, Hottenstein CS, Minetti J, Trulli S, Taylor JD, White JR, Chen S. Structure and Functional Characterization of a Humanized Anti-CCL20 Antibody following Exposure to Serum Reveals the Formation of Immune Complex That Leads to Toxicity. THE JOURNAL OF IMMUNOLOGY 2021; 206:1067-1076. [PMID: 33483346 DOI: 10.4049/jimmunol.2000336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 12/18/2020] [Indexed: 02/02/2023]
Abstract
mAbs have revolutionized the treatment of autoimmune disorders. Even though mAbs have shown impressive efficacy in blocking T cell or B cell activation and/or recruitment to sites of inflammation, this group of biologicals are not devoid of adverse effects. The most serious adverse effects include infusion reactions, including the activation of the complement pathway. In this study, we present a detailed structure-function study of an anti-CCL20 humanized IgG1 mAb that neutralizes CCL20 chemokine and prevents the recruitment of Th17 cells to sites of inflammation. We demonstrate that the anti-CCL20 Ab changes significantly following administration to humans and monkeys and exposure to human serum. Analysis of the drug product revealed that the anti-CCL20 Ab has unexpectedly high C1q binding. This high binding was linked to immune complex formation in vivo but not during in vitro serum incubation. The immune complex contained multiple complement components. Anti-CCL20 Ab-mediated, complement-dependent cytotoxicity occurred when the Ab bound to CCL20 tethered to the cell membrane of target cells. Taken together, these results provide a likely cause for the animal toxicity observed. In addition, anti-CCL20 revealed progressive acidification because of N100 (located in CDR) deamidation over time, which did not directly impact Ag binding. Our study demonstrates that the safety profiling of mAbs should include the evaluation of effector functions in addition to typical stressed conditions.
Collapse
Affiliation(s)
- Andrew S Thomson
- Biopharm Analytical Sciences, Biopharm Product Development and Supply, GlaxoSmithKline, Collegeville, PA 19426;
| | - Shing H Mai
- Biopharm Analytical Sciences, Biopharm Product Development and Supply, GlaxoSmithKline, Collegeville, PA 19426
| | - Gerben Bouma
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage SG1 2NY, United Kingdom
| | - Michael Herdman
- Clinical Pharmacology and Experimental Medicine, GlaxoSmithKline, Stevenage SG1 2NY, United Kingdom
| | - Michael Byrne
- Biopharm Analytical Sciences, Biopharm Product Development and Supply, GlaxoSmithKline, Collegeville, PA 19426
| | - Charles S Hottenstein
- Bioanalysis, Immunogenicity, and Biomarkers, In Vitro/In Vivo Translation, GlaxoSmithKline, Collegeville, PA 19426; and
| | - Joseph Minetti
- Biopharm Analytical Sciences, Biopharm Product Development and Supply, GlaxoSmithKline, Collegeville, PA 19426
| | - Stephen Trulli
- Biopharm Analytical Sciences, Biopharm Product Development and Supply, GlaxoSmithKline, Collegeville, PA 19426
| | - J David Taylor
- Protein, Cellular and Structural Sciences, Medicine Design, GlaxoSmithKline, Collegeville, PA 19426
| | - John R White
- Biopharm Analytical Sciences, Biopharm Product Development and Supply, GlaxoSmithKline, Collegeville, PA 19426
| | - Shugui Chen
- Biopharm Analytical Sciences, Biopharm Product Development and Supply, GlaxoSmithKline, Collegeville, PA 19426
| |
Collapse
|
32
|
CD46 and Oncologic Interactions: Friendly Fire against Cancer. Antibodies (Basel) 2020; 9:antib9040059. [PMID: 33147799 PMCID: PMC7709105 DOI: 10.3390/antib9040059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/14/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022] Open
Abstract
One of the most challenging aspects of cancer therapeutics is target selection. Recently, CD46 (membrane cofactor protein; MCP) has emerged as a key player in both malignant transformation as well as in cancer treatments. Normally a regulator of complement activation, CD46 is co-expressed as four predominant isoforms on almost all cell types. CD46 is highly overexpressed on a variety of human tumor cells. Clinical and experimental data support an association between increased CD46 expression and malignant transformation and metastasizing potential. Further, CD46 is a newly discovered driver of metabolic processes and plays a role in the intracellular complement system (complosome). CD46 is also known as a pathogen magnet due to its role as a receptor for numerous microbes, including several species of measles virus and adenoviruses. Strains of these two viruses have been exploited as vectors for the therapeutic development of oncolytic agents targeting CD46. In addition, monoclonal antibody-drug conjugates against CD46 also are being clinically evaluated. As a result, there are multiple early-phase clinical trials targeting CD46 to treat a variety of cancers. Here, we review CD46 relative to these oncologic connections.
Collapse
|
33
|
Luo S, Wang M, Wang H, Hu D, Zipfel PF, Hu Y. How Does Complement Affect Hematological Malignancies: From Basic Mechanisms to Clinical Application. Front Immunol 2020; 11:593610. [PMID: 33193442 PMCID: PMC7658260 DOI: 10.3389/fimmu.2020.593610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022] Open
Abstract
Complement, as a central immune surveillance system, can be activated within seconds upon stimulation, thereby displaying multiple immune effector functions. However, in pathologic scenarios (like in tumor progression), activated complement can both display protective effects to control tumor development and passively promotes the tumor growth. Clinical investigations show that patients with several hematological malignancies often display abnormal level of specific complement components, which in turn modulates complement activation or deregulated cascade. In the past decades, complement-dependent cytotoxicity and complement-dependent cell-mediated phagocytosis were fully approved to display vital roles in monoclonal antibody-based immunotherapies, especially in therapies against hematological malignancies. However, tumor-mediated complement evasion presents a big challenge for such a therapy. This review aims to provide an integrative overview on the roles of the complement in tumor promotion, highlights complement mediated effects on antibody-based immunotherapy against distinct hematological tumors, hopefully provides a theoretical basis for the development of complement-based cancer targeted therapies.
Collapse
Affiliation(s)
- Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Romano R, Giardino G, Cirillo E, Prencipe R, Pignata C. Complement system network in cell physiology and in human diseases. Int Rev Immunol 2020; 40:159-170. [PMID: 33063546 DOI: 10.1080/08830185.2020.1833877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The complement system is a multi-functional system representing the first line host defense against pathogens in innate immune response, through three different pathways. Impairment of its function, consisting in deficiency or excessive deregulated activation, may lead to severe systemic infections or autoimmune disorders. These diseases may be inherited or acquired. Despite many diagnostic tools are currently available, ranging from traditional, such as hemolytic or ELISA based assays, to innovative ones, like next generation sequencing techniques, these diseases are often not recognized. As for therapeutic aspects, strategies based on the use of targeted drugs are now widespread. The aim of this review is to present an updated overview of complement system pathophysiology, clinical implications of its dysfunction and to summarize diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Rosaria Prencipe
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| |
Collapse
|
35
|
Dalakas MC, Alexopoulos H, Spaeth PJ. Complement in neurological disorders and emerging complement-targeted therapeutics. Nat Rev Neurol 2020; 16:601-617. [PMID: 33005040 PMCID: PMC7528717 DOI: 10.1038/s41582-020-0400-0] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 12/30/2022]
Abstract
The complement system consists of a network of plasma and membrane proteins that modulate tissue homeostasis and contribute to immune surveillance by interacting with the innate and adaptive immune systems. Dysregulation, impairment or inadvertent activation of complement components contribute to the pathogenesis of some autoimmune neurological disorders and could even contribute to neurodegenerative diseases. In this Review, we summarize current knowledge about the main functions of the complement pathways and the involvement of complement in neurological disorders. We describe the complex network of complement proteins that target muscle, the neuromuscular junction, peripheral nerves, the spinal cord or the brain and discuss the autoimmune mechanisms of complement-mediated myopathies, myasthenia, peripheral neuropathies, neuromyelitis and other CNS disorders. We also consider the emerging role of complement in some neurodegenerative diseases, such as Alzheimer disease, amyotrophic lateral sclerosis and even schizophrenia. Finally, we provide an overview of the latest complement-targeted immunotherapies including monoclonal antibodies, fusion proteins and peptidomimetics that have been approved, that are undergoing phase I–III clinical trials or that show promise for the treatment of neurological conditions that respond poorly to existing immunotherapies. In this Review, Dalakas et al. discuss the complement system, the role it plays in autoimmune neurological disease and neurodegenerative disease, and provide an overview of the latest therapeutics that target complement and that can be used for or have potential in neurological disorders. Complement has an important physiological role in host immune defences and tissue remodelling. The physiological role of complement extends to the regulation of synaptic development. Complement has a key pathophysiological role in autoimmune neurological diseases and mediates the actions of pathogenic autoantibodies, such as acetylcholine receptor antibodies and aquaporin 4 antibodies. For some autoimmune neurological diseases, such as myasthenia gravis and neuromyelitis optica spectrum disorders, approved complement-targeted treatments are now available. Complement also seems to be of pathogenic relevance in neurodegenerative diseases such as Alzheimer disease, in which innate immune-driven inflammation is receiving increasing attention. The field of complement-targeted therapeutics is rapidly expanding, with several FDA-approved agents and others currently in phase II and phase III clinical trials.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA. .,Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Harry Alexopoulos
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter J Spaeth
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
36
|
Lin W, Qi X, Guo W, Liang D, Chen H, Lin B, Deng X. A barrier against reactive oxygen species: chitosan/acellular dermal matrix scaffold enhances stem cell retention and improves cutaneous wound healing. Stem Cell Res Ther 2020; 11:383. [PMID: 32894204 PMCID: PMC7487689 DOI: 10.1186/s13287-020-01901-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
Background Stem cell therapies have gained great attention for providing novel solutions for treatment of various injuries and diseases due to stem cells’ self-renewal, ability to differentiate into various cell types, and favorite paracrine function. Nevertheless, the low retention of transplanted stem cell still limits their clinical applications such as in wound healing in view of an induced harsh microenvironment rich in reactive oxygen species (ROS) during inflammatory reactions. Methods Herein, a novel chitosan/acellular dermal matrix (CHS/ADM) stem cell delivery system is developed, which is of great ROS scavenging activity and significantly attenuates inflammatory response. Result Under ROS microenvironment, this stem cell delivery system acts as a barrier, effectively scavenging an amount of ROS and protecting mesenchymal stem cells (MSCs) from the oxidative stress. It notably regulates intracellular ROS level in MSCs and reduces ROS-induced cellular death. Most importantly, such MSCs delivery system significantly enhances in vivo transplanted stem cell retention, promotes the vessel growth, and accelerates wound healing. Conclusions This novel delivery system, which overcomes the limitations of conventional plain collagen-based delivery system in lacking of ROS-environmental responsive mechanisms, demonstrates a great potential use in stem cell therapies in wound healing.
Collapse
Affiliation(s)
- Wei Lin
- MOE Key Laboratory of Laser Life Science, College of Biophotonics & Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyang Qi
- The Brain Cognition and Brain Disease Institute of Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenjing Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Danyang Liang
- MOE Key Laboratory of Laser Life Science, College of Biophotonics & Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Heting Chen
- MOE Key Laboratory of Laser Life Science, College of Biophotonics & Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Baoping Lin
- MOE Key Laboratory of Laser Life Science, College of Biophotonics & Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyuan Deng
- MOE Key Laboratory of Laser Life Science, College of Biophotonics & Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, China. .,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
37
|
Merle NS, Singh P, Rahman J, Kemper C. Integrins meet complement: The evolutionary tip of an iceberg orchestrating metabolism and immunity. Br J Pharmacol 2020; 178:2754-2770. [PMID: 32562277 PMCID: PMC8359198 DOI: 10.1111/bph.15168] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
Immunologists have recently realized that there is more to the classic innate immune sensor systems than just mere protection against invading pathogens. It is becoming increasingly clear that such sensors, including the inflammasomes, toll-like receptors, and the complement system, are heavily involved in the regulation of basic cell physiological processes and particularly those of metabolic nature. In fact, their "non-canonical" activities make sense as no system directing immune cell activity can perform such task without the need for energy. Further, many of these ancient immune sensors appeared early and concurrently during evolution, particularly during the developmental leap from the single-cell organisms to multicellularity, and therefore crosstalk heavily with each other. Here, we will review the current knowledge about the emerging cooperation between the major inter-cell communicators, integrins, and the cell-autonomous intracellularly and autocrine-active complement, the complosome, during the regulation of single-cell metabolism. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Nicolas S Merle
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Parul Singh
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jubayer Rahman
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
38
|
Go RCP, Corley MJ, Ross GW, Petrovitch H, Masaki KH, Maunakea AK, He Q, Tiirikainen MI. Genome-wide epigenetic analyses in Japanese immigrant plantation workers with Parkinson's disease and exposure to organochlorines reveal possible involvement of glial genes and pathways involved in neurotoxicity. BMC Neurosci 2020; 21:31. [PMID: 32650713 PMCID: PMC7350633 DOI: 10.1186/s12868-020-00582-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/07/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a disease of the central nervous system that progressively affects the motor system. Epidemiological studies have provided evidence that exposure to agriculture-related occupations or agrichemicals elevate a person's risk for PD. Here, we sought to examine the possible epigenetic changes associated with working on a plantation on Oahu, HI and/or exposure to organochlorines (OGC) in PD cases. RESULTS We measured genome-wide DNA methylation using the Illumina Infinium HumanMethylation450K BeadChip array in matched peripheral blood and postmortem brain biospecimens in PD cases (n = 20) assessed for years of plantation work and presence of organochlorines in brain tissue. The comparison of 10+ to 0 years of plantation work exposure detected 7 and 123 differentially methylated loci (DML) in brain and blood DNA, respectively (p < 0.0001). The comparison of cases with 4+ to 0-2 detectable levels of OGCs, identified 8 and 18 DML in brain and blood DNA, respectively (p < 0.0001). Pathway analyses revealed links to key neurotoxic and neuropathologic pathways related to impaired immune and proinflammatory responses as well as impaired clearance of damaged proteins, as found in the predominantly glial cell population in these environmental exposure-related PD cases. CONCLUSIONS These results suggest that distinct DNA methylation biomarker profiles related to environmental exposures in PD cases with previous exposure can be found in both brain and blood.
Collapse
Affiliation(s)
- Rodney C. P. Go
- Pacific Health Research and Education Institute, 3375 Koapaka Street, Suite I-540, Honolulu, HI 96819 USA
- Kuakini Health Systems, 347 N Kuakini St, Honolulu, HI 96817 USA
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, 1665 University Blvd, Birmingham, AL 35294 USA
| | - Michael J. Corley
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawai’i at Manoa, 650 Ilalo St, Honolulu, HI 96813 USA
| | - G. Webster Ross
- Pacific Health Research and Education Institute, 3375 Koapaka Street, Suite I-540, Honolulu, HI 96819 USA
- Veterans Affairs Pacific Islands Health Care System, 459 Patterson Rd, Honolulu, HI 96819 USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, 650 Ilalo St, Honolulu, HI 96817 USA
| | - Helen Petrovitch
- Pacific Health Research and Education Institute, 3375 Koapaka Street, Suite I-540, Honolulu, HI 96819 USA
- Veterans Affairs Pacific Islands Health Care System, 459 Patterson Rd, Honolulu, HI 96819 USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, 650 Ilalo St, Honolulu, HI 96817 USA
| | - Kamal H. Masaki
- Kuakini Health Systems, 347 N Kuakini St, Honolulu, HI 96817 USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, 650 Ilalo St, Honolulu, HI 96817 USA
| | - Alika K. Maunakea
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawai’i at Manoa, 650 Ilalo St, Honolulu, HI 96813 USA
| | - Qimei He
- Pacific Health Research and Education Institute, 3375 Koapaka Street, Suite I-540, Honolulu, HI 96819 USA
- Kuakini Health Systems, 347 N Kuakini St, Honolulu, HI 96817 USA
- Veterans Affairs Pacific Islands Health Care System, 459 Patterson Rd, Honolulu, HI 96819 USA
| | - Maarit I. Tiirikainen
- University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo St, Honolulu, HI 96813 USA
| |
Collapse
|
39
|
Kolev M, West EE, Kunz N, Chauss D, Moseman EA, Rahman J, Freiwald T, Balmer ML, Lötscher J, Dimeloe S, Rosser EC, Wedderburn LR, Mayer-Barber KD, Bohrer A, Lavender P, Cope A, Wang L, Kaplan MJ, Moutsopoulos NM, McGavern D, Holland SM, Hess C, Kazemian M, Afzali B, Kemper C. Diapedesis-Induced Integrin Signaling via LFA-1 Facilitates Tissue Immunity by Inducing Intrinsic Complement C3 Expression in Immune Cells. Immunity 2020; 52:513-527.e8. [PMID: 32187519 PMCID: PMC7111494 DOI: 10.1016/j.immuni.2020.02.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 12/30/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022]
Abstract
Intrinsic complement C3 activity is integral to human T helper type 1 (Th1) and cytotoxic T cell responses. Increased or decreased intracellular C3 results in autoimmunity and infections, respectively. The mechanisms regulating intracellular C3 expression remain undefined. We identified complement, including C3, as among the most significantly enriched biological pathway in tissue-occupying cells. We generated C3-reporter mice and confirmed that C3 expression was a defining feature of tissue-immune cells, including T cells and monocytes, occurred during transendothelial diapedesis, and depended on integrin lymphocyte-function-associated antigen 1 (LFA-1) signals. Immune cells from patients with leukocyte adhesion deficiency type 1 (LAD-1) had reduced C3 transcripts and diminished effector activities, which could be rescued proportionally by intracellular C3 provision. Conversely, increased C3 expression by T cells from arthritis patients correlated with disease severity. Our study defines integrins as key controllers of intracellular complement, demonstrates that perturbations in the LFA-1-C3-axis contribute to primary immunodeficiency, and identifies intracellular C3 as biomarker of severity in autoimmunity.
Collapse
Affiliation(s)
- Martin Kolev
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Erin E West
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Natalia Kunz
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA
| | - E Ashley Moseman
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Jubayer Rahman
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA
| | - Maria L Balmer
- Department of Biomedicine, Immunobiology, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Jonas Lötscher
- Department of Biomedicine, Immunobiology, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Sarah Dimeloe
- Department of Biomedicine, Immunobiology, University Hospital and University of Basel, Basel 4031, Switzerland; Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Elizabeth C Rosser
- Infection, Immunity, Inflammation Programme, University College London (UCL) Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; Arthritis Research UK Centre for Adolescent Rheumatology at UCL, UCHL and GOSH, London WC1N 1EH, UK
| | - Lucy R Wedderburn
- Infection, Immunity, Inflammation Programme, University College London (UCL) Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; Arthritis Research UK Centre for Adolescent Rheumatology at UCL, UCHL and GOSH, London WC1N 1EH, UK; National Institute for Health Research (NIHR) Biomedical Research Centre at Great Ormond Street NHS Foundation Trust, London WC1N 1EH, UK
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Andrea Bohrer
- Inflammation and Innate Immunity Unit, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Paul Lavender
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK
| | - Andrew Cope
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK
| | - Luopin Wang
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Disease (NIAMS), NIH, Bethesda, MD 20892, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Inflammation Unit, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| | - Dorian McGavern
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Christoph Hess
- Department of Biomedicine, Immunobiology, University Hospital and University of Basel, Basel 4031, Switzerland; Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA.
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK; Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany.
| |
Collapse
|
40
|
Lung P, Yang J, Li Q. Nanoparticle formulated vaccines: opportunities and challenges. NANOSCALE 2020; 12:5746-5763. [PMID: 32124894 DOI: 10.1039/c9nr08958f] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Vaccines harness the inherent properties of the immune system to prevent diseases or treat existing ones. Continuous efforts have been devoted to both gaining a mechanistic understanding of how the immune system operates and designing vaccines with high efficacies and effectiveness. Advancements in nanotechnology in recent years have generated unique opportunities to meet the daunting challenges associated with immunology and vaccine development. Firstly, nanoparticle formulated systems provide ideal model systems for studying the operation of the immune system, making it possible to systematically identify key factors and understand their roles in specific immune responses. Also, the versatile compositions/architectures of nanoparticle systems enable new strategies/novel platforms for developing vaccines with high efficacies and effectiveness. In this review, we discuss the advantages of nanoparticles and the challenges faced during vaccine development, through the framework of the immunological mechanisms of vaccination, with the aim of bridging the gap between immunology and materials science, which are both involved in vaccine design. The knowledge obtained provides general guidelines for future vaccine development.
Collapse
Affiliation(s)
- Pingsai Lung
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | | | | |
Collapse
|
41
|
Gupta P, Tripathy AS. Alternative pathway of complement activation has a beneficial role against Chandipura virus infection. Med Microbiol Immunol 2019; 209:109-124. [PMID: 31781935 PMCID: PMC7223837 DOI: 10.1007/s00430-019-00648-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/19/2019] [Indexed: 12/01/2022]
Abstract
The complement system is a critical component of both innate and adaptive immune responses. It has both protective and pathogenic roles in viral infections. There are no studies regarding the role of complement system in Chandipura virus (CHPV) infection. The current study has investigated the role of complement pathways in the in vitro neutralization of CHPV in Vero E6 cells. Using normal human serum (NHS), heat-inactivated serum (HIS), human serum deficient of complement factor, respective reconstituted serum, assays like in vitro neutralization, real-time PCR, and flow cytometry-based tissue culture-based limited dose assay (TC-LDA) were carried out for assessing the activation of different complement pathways. NHS from 9/10 donors showed complement dependent neutralization, reduction in viral load and decrease in percentage of CHPV-positive cells compared to their HIS counterparts. EGTA or EDTA pretreatment experiments indicated that CHPV neutralization proceeds through the alternative pathway of the complement activation. Our data showed a strong dependence on C3 for the in vitro neutralization of CHPV. Disparity in CHPV neutralization levels between factor B-deficient and reconstituted sera could be attributed to amplification loop/“tick-over” mechanism. Assays using C3, C5, and C8 deficient sera indicated that complement-mediated CHPV neutralization and suppression of CHPV infectivity are primarily through C3 and C5, and not dependent on downstream complement factor C8. With no specific anti-viral treatment/vaccine against Chandipura, the current data, elucidating role of human complement system in the neutralization of CHPV, may help in designing effective therapeutics.
Collapse
Affiliation(s)
- Pooja Gupta
- Hepatitis Group, ICMR-National Institute of Virology, Pune, 130/1, Sus Road, Pashan, Pune, Maharashtra 411021 India
| | - Anuradha S. Tripathy
- Hepatitis Group, ICMR-National Institute of Virology, Pune, 130/1, Sus Road, Pashan, Pune, Maharashtra 411021 India
| |
Collapse
|
42
|
Complement-Mediated Neutralization of a Potent Neurotropic Human Pathogen, Chandipura Virus, Is Dependent on C1q. J Virol 2019; 93:JVI.00994-19. [PMID: 31315998 DOI: 10.1128/jvi.00994-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Among the innate immune sentinels, the complement system is a formidable first line of defense against pathogens, including viruses. Chandipura virus (CHPV), a neurotropic vesiculovirus of the family Rhabdoviridae, is a deadly human pathogen known to cause fatal encephalitis, especially among children. The nature of interaction and the effect of human complement on CHPV are unknown. Here, we report that CHPV is a potent activator of complement and, thus, is highly sensitive to complement proteins in normal human serum (NHS). Utilizing a panel of specific complement component depleted/reconstituted human serum, we have demonstrated that CHPV neutralization is C3, C4, and C1q dependent and independent of factor B, suggesting the importance of the classical pathway in limiting CHPV. Employing a range of biochemical approaches, we showed (i) a direct association of C1q to CHPV, (ii) deposition of complement proteins C3b, C4b, and C1q on CHPV, and (iii) virus aggregation. Depletion of C8, an important component of the pore-forming complex of complement, had no effect on CHPV, further supporting the finding that aggregation and not virolysis is the mechanism of virus neutralization. With no approved vaccines or treatment modalities in place against CHPV, insights into such interactions can be exploited to develop potent vaccines or therapeutics targeting CHPV.IMPORTANCE Chandipura virus is a clinically important human pathogen of the Indian subcontinent. The rapidity of death associated with CHPV infection in addition to the absence of an effective vaccine or therapeutics results in poor clinical prognosis. The biology of the virus and its interaction with the host immune system, including the complement system, are understudied. Our investigation reveals the susceptibility of CHPV to fluid phase complement and also dissects the pathway involved and the mechanism of virus neutralization. Direct binding of C1q, an important upstream component of the classical pathway of complement to CHPV, and the strong dependency on C1q for virus neutralization highlight the significance of identifying such interactions to better understand CHPV pathogenesis and devise strategies to target this deadly pathogen.
Collapse
|
43
|
Dominant role of splenic marginal zone lipid rafts in the classical complement pathway against S. pneumoniae. Cell Death Discov 2019; 5:133. [PMID: 31531231 PMCID: PMC6733876 DOI: 10.1038/s41420-019-0213-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/11/2019] [Accepted: 08/18/2019] [Indexed: 12/28/2022] Open
Abstract
Lipid rafts (LRs) play crucial roles in complex physiological processes, modulating innate and acquired immune responses to pathogens. The transmembrane C-type lectins human dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and its mouse homolog SIGN-R1 are distributed in LRs and expressed on splenic marginal zone (MZ) macrophages. The DC-SIGN-C1q or SIGN-R1-C1q complex could mediate the immunoglobulin (Ig)-independent classical complement pathway against Streptococcus pneumoniae. Precise roles of LRs during this complement pathway are unknown. Here we show that LRs are indispensable for accelerating the DC-SIGN- or SIGN-R1-mediated classical complement pathway against S. pneumoniae, thus facilitating rapid clearance of the pathogen. The trimolecular complex of SIGN-R1-C1q-C4 was exclusively enriched in LRs of splenic MZ macrophages and their localization was essential for activating C3 catabolism and enhancing pneumococcal clearance, which were abolished in SIGN-R1-knockout mice. However, DC-SIGN replacement on splenic MZ macrophage’s LRs of SIGN-R1-depleted mice reversed these defects. Disruption of LRs dramatically reduced pneumococcal uptake and decomposition. Additionally, DC- SIGN, C1q, C4, and C3 were obviously distributed in splenic LRs of cadavers. Therefore, LRs on splenic SIGN-R1+ or DC-SIGN+ macrophages could provide spatially confined and optimal bidirectional platforms, not only for usual intracellular events, for example recognition and phagocytosis of pathogens, but also an unusual extracellular event such as the complement system. These findings improve our understanding of the orchestrated roles of the spleen, unraveling a new innate immune system initiated from splenic MZ LRs, and yielding answers to several long-standing problems, including the need to understand the profound role of LRs in innate immunity, the need to identify how such a small portion of splenic SIGN-R1+ macrophages (<0.05% of splenic macrophages) effectively resist S. pneumoniae, and the need to understand how LRs can promote the protective function of DC-SIGN against S. pneumoniae in the human spleen.
Collapse
|
44
|
Zhu X, Wang Y, Jiang Q, Jiang H, Lu J, Wang Y, Kong Y, Chang Y, Xu L, Peng J, Hou M, Huang X, Zhang X. All- trans retinoic acid protects mesenchymal stem cells from immune thrombocytopenia by regulating the complement-interleukin-1β loop. Haematologica 2019; 104:1661-1675. [PMID: 30679324 PMCID: PMC6669169 DOI: 10.3324/haematol.2018.204446] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Enhanced peripheral complement activation has long been considered as one of the major pathogenic elements of immune thrombocytopenia. A dysfunctional bone marrow microenvironment, especially with regards to mesenchymal stem cells, has been observed in patients with immune thrombocytopenia. However, the potential role of the complement system in the dysfunctional bone marrow microenvironment remains poorly understood. In this study, bone marrow samples from patients with immune thrombocytopenia were divided into two groups based on whether or not complement components were deposited on the surfaces of their mesenchymal stem cells. The mesenchymal cells from the group with complement deposition were less numerous, dysfunctional, had a reduced capacity to proliferate, and showed increased apoptosis as well as abnormal secretion of interleukin-1β and C-X-C motif chemokine ligand 12. In vitro treatment with all-trans retinoic acid increased the number and improved the function of the complement-positive bone marrow mesenchymal stem cells by upregulating DNA hypermethylation of the interleukin-1β promoter. In vivo studies showed that all-trans retinoic acid could rescue the impaired mesenchymal stem cells to support the thrombopoietic niche in both patients with immune thrombocytopenia and a murine model of this disease. Taken together, these results indicate that impairment of mesenchymal stem cells, mediated by the complement-interleukin-1β loop, plays a role in the pathogenesis of immune thrombocytopenia. All-trans retinoic acid represents a promising therapeutic approach in patients with immune thrombocytopenia through its effect of repairing mesenchymal stem cell impairment.
Collapse
Affiliation(s)
- Xiaolu Zhu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Yanan Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Jin Lu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Yazhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Lanping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| |
Collapse
|
45
|
McCulloch L, Allan SM, Emsley HC, Smith CJ, McColl BW. Interleukin-1 receptor antagonist treatment in acute ischaemic stroke does not alter systemic markers of anti-microbial defence. F1000Res 2019; 8:1039. [PMID: 31700615 PMCID: PMC6820822 DOI: 10.12688/f1000research.19308.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2019] [Indexed: 02/01/2023] Open
Abstract
Background: Blockade of the cytokine interleukin-1 (IL-1) with IL-1 receptor antagonist (IL-1Ra) is a candidate treatment for stroke entering phase II/III trials, which acts by inhibiting harmful inflammatory responses. Infection is a common complication after stroke that significantly worsens outcome and is related to stroke-induced deficits in systemic immune function thought to be mediated by the sympathetic nervous system. Therefore, immunomodulatory treatments for stroke, such as IL-1Ra, carry a risk of aggravating stroke-associated infection. Our primary objective was to determine if factors associated with antibody-mediated antibacterial defences were further compromised in patients treated with IL-1Ra after stroke. Methods: We assessed plasma concentrations of immunoglobulin isotypes and complement components in stroke patients treated with IL-1Ra or placebo and untreated non-stroke controls using multiplex protein assays. Activation of the sympathetic nervous system (SNS) was determined by measuring noradrenaline, a major SNS mediator. Results: There were significantly lower plasma concentrations of IgM, IgA, IgG1 and IgG4 in stroke-patients compared to non-stroke controls, however there were no differences between stroke patients treated with placebo or IL-1Ra. Concentrations of complement components associated with the classical pathway were increased and those associated with the alternative pathways decreased in stroke patients, neither being affected by treatment with IL-1Ra. Noradrenaline concentrations were increased after stroke in both placebo and IL-1Ra-treated stroke patients compared to non-stroke controls. Conclusion: These data show treatment with IL-1Ra after stroke does not alter circulating immunoglobulin and complement concentrations and is therefore unlikely to further aggravate stroke-associated infection susceptibility through altered availability of these key anti-microbial mediators.
Collapse
Affiliation(s)
- Laura McCulloch
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Stuart M. Allan
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, M13 9PT, UK
| | - Hedley C. Emsley
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YW, UK
| | - Craig J. Smith
- Division of Cardiovascular Sciences, University of Manchester, Manchester, M13 9PT, UK
- Greater Manchester Comprehensive Stroke Centre, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, M6 8HD, UK
| | - Barry W. McColl
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| |
Collapse
|
46
|
McCulloch L, Allan SM, Emsley HC, Smith CJ, McColl BW. Interleukin-1 receptor antagonist treatment in acute ischaemic stroke does not alter systemic markers of anti-microbial defence. F1000Res 2019; 8:1039. [PMID: 31700615 PMCID: PMC6820822 DOI: 10.12688/f1000research.19308.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 10/15/2023] Open
Abstract
Background: Blockade of the cytokine interleukin-1 (IL-1) with IL-1 receptor antagonist (IL-1Ra) is a candidate treatment for stroke entering phase II/III trials, which acts by inhibiting harmful inflammatory responses. Infection is a common complication after stroke that significantly worsens outcome and is related to stroke-induced deficits in systemic immune function thought to be mediated by the sympathetic nervous system. Therefore, immunomodulatory treatments for stroke, such as IL-1Ra, carry a risk of aggravating stroke-associated infection. Our primary objective was to determine if factors associated with antibody-mediated antibacterial defences were further compromised in patients treated with IL-1Ra after stroke. Methods: We assessed plasma concentrations of immunoglobulin isotypes and complement components in stroke patients treated with IL-1Ra or placebo and untreated non-stroke controls using multiplex protein assays. Activation of the sympathetic nervous system (SNS) was determined by measuring noradrenaline, a major SNS mediator. Results: There were significantly lower plasma concentrations of IgM, IgA, IgG1 and IgG4 in stroke-patients compared to non-stroke controls, however there were no differences between stroke patients treated with placebo or IL-1Ra. Concentrations of complement components associated with the classical pathway were increased and those associated with the alternative pathways decreased in stroke patients, neither being affected by treatment with IL-1Ra. Noradrenaline concentrations were increased after stroke in both placebo and IL-1Ra-treated stroke patients compared to non-stroke controls. Conclusion: These data show treatment with IL-1Ra after stroke does not alter circulating immunoglobulin and complement concentrations and is therefore unlikely to further aggravate stroke-associated infection susceptibility through reduced availability of these key anti-microbial mediators.
Collapse
Affiliation(s)
- Laura McCulloch
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Stuart M. Allan
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, M13 9PT, UK
| | - Hedley C. Emsley
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YW, UK
| | - Craig J. Smith
- Division of Cardiovascular Sciences, University of Manchester, Manchester, M13 9PT, UK
- Greater Manchester Comprehensive Stroke Centre, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, M6 8HD, UK
| | - Barry W. McColl
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| |
Collapse
|
47
|
Lin J, Wang Z, Wang J, Yang Q. Microarray analysis of infectious bronchitis virus infection of chicken primary dendritic cells. BMC Genomics 2019; 20:557. [PMID: 31286855 PMCID: PMC6615177 DOI: 10.1186/s12864-019-5940-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Avian infectious bronchitis virus (IBV) is a major respiratory disease-causing agent in birds that leads to significant losses. Dendritic cells (DCs) are specialised cells responsible for sampling antigens and presenting them to T cells, which also play an essential role in recognising and neutralising viruses. Recent studies have suggested that non-coding RNAs may regulate the functional program of DCs. Expression of host non-coding RNAs changes markedly during infectious bronchitis virus infection, but their role in regulating host immune function has not been explored. Here, microarrays of mRNAs, miRNAs, and lncRNAs were globally performed to analyse how avian DCs respond to IBV. Results First, we found that IBV stimulation did not enhance the maturation ability of avian DCs. Interestingly, inactivated IBV was better able than IBV to induce DC maturation and activate lymphocytes. We identified 1093 up-regulated and 845 down-regulated mRNAs in IBV-infected avian DCs. Gene Ontology analysis suggested that cellular macromolecule and protein location (GO-BP) and transcription factor binding (GO-MF) were abundant in IBV-stimulated avian DCs. Meanwhile, pathway analysis indicated that the oxidative phosphorylation and leukocyte transendothelial migration signalling pathways might be activated in the IBV group. Moreover, alteration of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) was detected in IBV-stimulated avian DCs. In total, 19 significantly altered (7 up and 12 down) miRNAs and 101 (75 up and 26 down) lncRNAs were identified in the IBV-treated group. Further analysis showed that the actin cytoskeleton and MAPK signal pathway were related to the target genes of IBV-stimulated miRNAs. Finally, our study identified 2 TF-microRNA and 53 TF–microRNA–mRNA interactions involving 1 TF, 2 miRNAs, and 53 mRNAs in IBV-stimulated avian DCs. Conclusions Our research suggests a new mechanism to explain why IBV actively blocks innate responses needed for inducing immune gene expression and also provides insight into the pathogenic mechanisms of avian IBV. Electronic supplementary material The online version of this article (10.1186/s12864-019-5940-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Lin
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China.,College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Zhisheng Wang
- National Veterinary Product Engineering Research Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jialu Wang
- College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Qian Yang
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China. .,College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
48
|
Li C, Lu Y, Chen Q, Hu H, Zhao X, Qiao M, Chen D. Tailored Polymers with Complement Activation Ability To Improve Antitumor Immunity. Mol Pharm 2019; 16:2648-2660. [PMID: 31046290 DOI: 10.1021/acs.molpharmaceut.9b00195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The complement system plays an important role in host innate immunity, and its activation can be exploited as a potential strategy for vaccine adjuvants. Herein, a pH-responsive micellar vaccine platform (COOH-NPs) was developed using a carboxyl-modified diblock copolymer of poly(2-ethyl-2-oxazoline)-poly(d,l-lactide) (COOH-PEOz-PLA). The copolymer self-assembled into micelles with hydroxyl groups shielding on the surface, which activated the complement system for the enhanced immune responses. Compared with the control nanoparticles (OCH3-NPs), COOH-NPs significantly enhanced lymph node-resident dendritic cell maturation, antigen-specific IgG production, antigen-specific CD4+ and CD8+ T-cell activation, and the amount of memory T-cell generation in vivo. Furthermore, immunization with COOH-NPs/OVA in E.G7-OVA tumor-bearing mice not only remarkably inhibited tumor growth but also prolonged the survival of tumor-bearing mice. These results indicated that COOH-NPs with the capability of complement activation efficiently boosted the immune responses for the antitumor effect. The study demonstrated the significance of taking advantage of a complement-activating vaccine platform for cancer immunotherapy.
Collapse
Affiliation(s)
- Chenxi Li
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Yue Lu
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Qing Chen
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Haiyang Hu
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Xiuli Zhao
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Mingxi Qiao
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Dawei Chen
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China.,School of Pharmacy , Soochow University , Suzhou 215123 , China
| |
Collapse
|
49
|
Lee J, Aoki T, Thumkeo D, Siriwach R, Yao C, Narumiya S. T cell-intrinsic prostaglandin E 2-EP2/EP4 signaling is critical in pathogenic T H17 cell-driven inflammation. J Allergy Clin Immunol 2019; 143:631-643. [PMID: 29935220 PMCID: PMC6354914 DOI: 10.1016/j.jaci.2018.05.036] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/03/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND IL-23 is the key cytokine for generation of pathogenic IL-17-producing helper T (TH17) cells, which contribute critically to autoimmune diseases. However, how IL-23 generates pathogenic TH17 cells remains to be elucidated. OBJECTIVES We sought to examine the involvement, molecular mechanisms, and clinical implications of prostaglandin (PG) E2-EP2/EP4 signaling in induction of IL-23-driven pathogenic TH17 cells. METHODS The role of PGE2 in induction of pathogenic TH17 cells was investigated in mouse TH17 cells in culture in vitro and in an IL-23-induced psoriasis mouse model in vivo. Clinical relevance of the findings in mice was examined by using gene expression profiling of IL-23 and PGE2-EP2/EP4 signaling in psoriatic skin from patients. RESULTS IL-23 induces Ptgs2, encoding COX2 in TH17 cells, and produces PGE2, which acts back on the PGE receptors EP2 and EP4 in these cells and enhances IL-23-induced expression of an IL-23 receptor subunit gene, Il23r, by activating signal transducer and activator of transcription (STAT) 3, cAMP-responsive element binding protein 1, and nuclear factor κ light chain enhancer of activated B cells (NF-κB) through cyclic AMP-protein kinase A signaling. This PGE2 signaling also induces expression of various inflammation-related genes, which possibly function in TH17 cell-mediated pathology. Combined deletion of EP2 and EP4 selectively in T cells suppressed accumulation of IL-17A+ and IL-17A+IFN-γ+ pathogenic Th17 cells and abolished skin inflammation in an IL-23-induced psoriasis mouse model. Analysis of human psoriatic skin biopsy specimens shows positive correlation between PGE2 signaling and the IL-23/TH17 pathway. CONCLUSIONS T cell-intrinsic EP2/EP4 signaling is critical in IL-23-driven generation of pathogenic TH17 cells and consequent pathogenesis in the skin.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cyclic AMP/metabolism
- Dinoprostone/metabolism
- Disease Models, Animal
- Gene Expression Profiling
- Humans
- Imiquimod
- Inflammation/immunology
- Interleukin-23/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Psoriasis/immunology
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Signal Transduction
- Th17 Cells/immunology
Collapse
Affiliation(s)
- Jinju Lee
- Core Research for Evolutional Science and Technology (CREST), Medical Innovation Center, Kyoto, Japan; Kyoto University, Graduate School of Biostudies, Kyoto, Japan
| | - Tomohiro Aoki
- Core Research for Evolutional Science and Technology (CREST), Medical Innovation Center, Kyoto, Japan; Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Dean Thumkeo
- Core Research for Evolutional Science and Technology (CREST), Medical Innovation Center, Kyoto, Japan; Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ratklao Siriwach
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chengcan Yao
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Shuh Narumiya
- Core Research for Evolutional Science and Technology (CREST), Medical Innovation Center, Kyoto, Japan; Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
50
|
Eyoh E, McCallum P, Killick J, Amanfo S, Mutapi F, Astier AL. The anthelmintic drug praziquantel promotes human Tr1 differentiation. Immunol Cell Biol 2019; 97:512-518. [PMID: 30623486 DOI: 10.1111/imcb.12229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 12/20/2022]
Abstract
Praziquantel (PZQ) is an anthelminthic human and veterinary drug used to treat trematode and cestode worms. Changes in immune responses have been demonstrated in humans following curative PZQ treatment of schistosome infections. These changes have been attributed to the removal of immunosupressive worms and immune responses to parasite antigens exposed from dying worms. To date, there has been no study investigating the potential direct effect of PZQ on the host immune cells. Herein, we analyzed the effect of PZQ on human CD4+ T cells classically costimulated by CD3/CD28 or costimulated by the complement regulator CD46 to induce Type 1 regulatory T cells (Tr1). Our results show that PZQ enhanced T-cell proliferation, increased secretion of IL-17 and IL-10 but had no effect on secretion of GM-CSF or IFNγ. Moreover, PZQ increased the coexpression of CD49b and LAG-3, a hallmark of Tr1 cells, suggesting increased Tr1 differentiation. Indeed, supernatants from PZQ-treated cells were able to decrease bystander T-cell activation, and this was partly reduced when blocking IL-10. Hence, our study demonstrates that PZQ directly modulates human T-cell activation and promotes Tr1 differentiation, suggesting that PZQ may have immunomodulatory functions in parasite-unrelated human inflammatory diseases.
Collapse
Affiliation(s)
- Enwono Eyoh
- Institute of Immunology & Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, King's Buildings, Edinburgh, UK
| | - Patrick McCallum
- Institute of Immunology & Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, King's Buildings, Edinburgh, UK
| | - Justin Killick
- The MRC Centre for Inflammation Research, Edinburgh Centre for MS research, University of Edinburgh, Edinburgh, UK
| | - Seth Amanfo
- Institute of Immunology & Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, King's Buildings, Edinburgh, UK
| | - Francisca Mutapi
- Institute of Immunology & Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, King's Buildings, Edinburgh, UK.,NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), Ashworth Laboratories, University of Edinburgh, King's Buildings, Edinburgh, UK
| | - Anne L Astier
- The MRC Centre for Inflammation Research, Edinburgh Centre for MS research, University of Edinburgh, Edinburgh, UK.,Centre de Physiopathologie Toulouse-Purpan (CPTP) INSERM U1043, CNRS U5282, Université de Toulouse, Toulouse, France
| |
Collapse
|