1
|
Harris TJC. Dynamic Plasma Membrane Topography Linked With Arp2/3 Actin Network Induction During Cell Shape Change. Bioessays 2025; 47:e70004. [PMID: 40159841 PMCID: PMC12101052 DOI: 10.1002/bies.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Recent studies show the importance of mesoscale changes to plasma membrane (PM) topography during cell shape change. Local folding and flattening of the cell surface is mechanosensitive, changing in response to both microenvironment structural elements and intracellular cytoskeletal activities. These topography changes elicit local mechanical signaling events that act in conjunction with molecular signal transduction pathways to remodel the cell cortex. Experimental manipulations of local PM curvature show its sufficiency for recruiting Arp2/3 actin network induction pathways. Additionally, studies of diverse cell shape changes-ranging from neutrophil migration to early Drosophila embryo cleavage to neural stem cell asymmetric division-show that local generation of PM folding is linked with local Arp2/3 actin network induction, which then remodels the PM topography during dynamic control of cell structure. These examples are reviewed in detail, together with known and potential causes of PM topography changes, downstream effects, and higher-order feedback.
Collapse
Affiliation(s)
- Tony J. C. Harris
- Department of Cell & Systems BiologyUniversity of TorontoTorontoCanada
| |
Collapse
|
2
|
Bansal AK, Rao M. Nonequilibrium asymmetry in the living cell membrane. Faraday Discuss 2025. [PMID: 40338126 DOI: 10.1039/d4fd00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
We will discuss how sustained nonequilibrium processes operating at the plasma membrane (PM) determine the dynamical organisation (both lateral and transverse) of lipids, their maintenance and control, under physiological conditions. These nonequilibrium processes include active contractile stresses arising from the inevitable interaction of the inner leaflet of the PM with the adjoining actomyosin cortex, and active flipping of specific lipids. Recently, we showed that the inner leaflet phosphatidylserine (PS) interacts with the actomyosin cortex and engages in a strong transbilayer coupling across the leaflets. Here we develop an active Flory-Huggins theory for the mesoscale segregation of liquid-ordered (lo)-liquid-disordered (ld) domains in an asymmetric membrane bilayer, that incorporates both active contractile stresses at the inner leaflet and transbilayer coupling across the leaflets. The interplay between chemical potential gradients, transbilayer coupling and active stresses drives a rich pattern of mesoscale lo domains - static, strongly fluctuating and moving active emulsions - even at temperatures beyond the equilibrium phase transition temperature. We study conditions under which domain registry and slippage could be observed. We end with a discussion on the role of active flippases on PS in maintaining the active mesoscale organisation.
Collapse
Affiliation(s)
- Ajay Kumar Bansal
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore 560 065, India.
| | - Madan Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore 560 065, India.
| |
Collapse
|
3
|
Verkhratsky A, Li B, Niu J, Lin SS, Su Y, Jin WN, Li Y, Jiang S, Yi C, Shi FD, Tang Y. Neuroglial Advances: New Roles for Established Players. J Neurochem 2025; 169:e70080. [PMID: 40371609 DOI: 10.1111/jnc.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Neuroglial cells perform numerous physiological functions and contribute to the pathogenesis of all diseases of the nervous system. Neuroglial neuroprotection defines the resilience of the nervous tissue to exo- and endogenous pathological challenges, while neuroglial defence determines the progression and outcome of neurological disorders. IN this paper, we overview previously unknown but recently discovered roles of various types of neuroglial cells in diverse physiological and pathological processes. First, we describe the role of ependymal glia in the regulation of cerebrospinal fluid flow from the spinal cord to peripheral tissues through the spinal nerves. This newly discovered pathway provides a highway for the CNS-body volume transmission. Next, we present the mechanism by which astrocytes control migration and differentiation of oligodendrocyte precursor cells (OPCs). In pre- and early postnatal CNS, OPCs migrate using vasculature (which is yet free from glia limitans perivascularis) as a pathfinder. Newly forming astrocytic perivascular endfeet signal (through semaphorin-plexin cascade) to OPCs that detach from the vessels and start to differentiate into myelinating oligodendrocytes. We continue the astrocyte theme by demonstrating the neuroprotective role of APOE-laden astrocytic extracellular vesicles in neuromyelitis optica. Next, we explore the link between astrocytic morphology and stress-induced depression. We discuss the critical role of astrocytic ezrin, the cytosolic linker defining terminal astrocyte arborisation and resilience to stress: overexpression of ezrin in prefrontal cortical astrocytes makes mice resistant to stress, whereas ezrin knockdown increases animals vulnerability to stress. Subsequently, we highlight the pathophysiological role of oligodendroglial lineage in schizophrenia by describing novel hypertrophied OPCs in the post-mortem patient's tissue and in a mouse model with OPCs overexpressing alternative splice variant DISC1-Δ3. These DISC1-Δ3-OPCs demonstrated overactivated Wnt/β-catenin signalling pathway and were sufficient to trigger pathological behaviours. Finally, we deliberate on the pathological role of astrocytic and microglial connexin 43 hemichannels in Alzheimer's disease and present a new formula of Cx43 hemichannel inhibitor with increased blood-brain barrier penetration and brain retention.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
- Celica, BIOMEDICAL, Technology Park 24, Ljubljana, Slovenia
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Si-Si Lin
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wei-Na Jin
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifan Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Shihe Jiang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China
| | - Fu-Dong Shi
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Vogel GF, Klee KMC, Demir AM, Garczarczyk-Asim D, Hess MW, Huber LA, Müller T, Janecke AR. Congenital enteropathy caused by ezrin deficiency. Hum Genet 2025; 144:505-514. [PMID: 40137958 PMCID: PMC12033192 DOI: 10.1007/s00439-025-02738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Ezrin, encoded by EZR, is a central module of epithelial polarity and links membrane proteins to the actin cytoskeleton directly or indirectly through scaffold proteins in the epithelium. Ezrin knockout mice fail to thrive and do not survive past weaning. We identified a homozygous EZR loss-of-function (LoF) variant, c.356dup, by exome sequencing in an infant with intractable diarrhea and failure to thrive, who died from septicemia at 5 months of age. The variant localized within a homozygous region of 13.2 Mb in the proband, is consistent with inheritance identical-by-descent from the consanguineous parents, and segregated with disease in the proband's family. EZR transcript analyses in a heterozygous carrier showed that the variant triggers nonsense-mediated mRNA decay. Homozygous EZR LoF variants have not been reported in public databases. In this study, we generated a Caco-2 EZR knockout cell line to investigate the role of ezrin in human intestinal epithelia. Our analyses used electron and immunofluorescence microscopy to assess structural changes in the knockout cells. We observed significant disorganization of the terminal web region, microvillus rarefaction and abnormal branching. Furthermore, the absence of ezrin resulted in the mislocalization of the ezrin-interacting scaffold protein Na+/H + exchanger regulatory factor-1. In conclusion, this represents the first documentation of complete ezrin deficiency in humans, highlighting the essential and non-redundant functions of the protein in maintaining intestinal physiology.
Collapse
Affiliation(s)
- Georg F Vogel
- Department of Paediatrics I, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Katharina M C Klee
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Arzu Meltem Demir
- Ankara University, Faculty of Medicine, Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Ankara, 06110, Türkiye
| | - Dorota Garczarczyk-Asim
- Department of Paediatrics I, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Michael W Hess
- Institute of Histology und Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Andreas R Janecke
- Department of Paediatrics I, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria.
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| |
Collapse
|
5
|
Mierke CT. Softness or Stiffness What Contributes to Cancer and Cancer Metastasis? Cells 2025; 14:584. [PMID: 40277910 PMCID: PMC12026216 DOI: 10.3390/cells14080584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Beyond the genomic and proteomic analysis of bulk and single cancer cells, a new focus of cancer research is emerging that is based on the mechanical analysis of cancer cells. Therefore, several biophysical techniques have been developed and adapted. The characterization of cancer cells, like human cancer cell lines, started with their mechanical characterization at mostly a single timepoint. A universal hypothesis has been proposed that cancer cells need to be softer to migrate and invade tissues and subsequently metastasize in targeted organs. Thus, the softness of cancer cells has been suggested to serve as a universal physical marker for the malignancy of cancer types. However, it has turned out that there exists the opposite phenomenon, namely that stiffer cancer cells are more migratory and invasive and therefore lead to more metastases. These contradictory results question the universality of the role of softness of cancer cells in the malignant progression of cancers. Another problem is that the various biophysical techniques used can affect the mechanical properties of cancer cells, making it even more difficult to compare the results of different studies. Apart from the instrumentation, the culture and measurement conditions of the cancer cells can influence the mechanical measurements. The review highlights the main advances of the mechanical characterization of cancer cells, discusses the strength and weaknesses of the approaches, and questions whether the passive mechanical characterization of cancer cells is still state-of-the art. Besides the cell models, conditions and biophysical setups, the role of the microenvironment on the mechanical characteristics of cancer cells is presented and debated. Finally, combinatorial approaches to determine the malignant potential of tumors, such as the involvement of the ECM, the cells in a homogeneous or heterogeneous association, or biological multi-omics analyses, together with the dynamic-mechanical analysis of cancer cells, are highlighted as new frontiers of research.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Sciences, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Leitner N, Simsek I, Hlavaty J, Schäfer-Somi S, Walter I. Immunohistochemical assessment of ERM proteins (ezrin, radixin, moesin) in the ovaries of different species. Tissue Cell 2025; 93:102644. [PMID: 39637489 DOI: 10.1016/j.tice.2024.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
The ezrin/radixin/moesin proteins play a central role in cross-linking plasma membrane proteins with the actin cytoskeleton. Despite intensive ERM protein research in many tissues and pathologies, little is known about these proteins in healthy tissues of reproductive organs. Therefore, we examined ezrin, phosphorylated ezrin/radixin/moesin (pan-pERM), radixin, and moesin distribution at the cellular level by means of immunohistochemistry in ovaries of the following animal species: mouse, dog, cat, sheep, pig, horse, and cynomolgus monkey. Ezrin was expressed in oocytes, ovarian surface, granulosa cells and corpus luteum. A characteristic, predominantly membranous pan-pERM staining pattern was observed in ovarian surface epithelium, oocyte, granulosa cells and corpus luteum. Moesin immunoreactivity was present in all ovarian structures with a prominent signal in endothelial cells of blood vessels. Oocytes, granulosa cells and corpus luteum revealed mainly nuclear radixin staining. Staining pattern and subcellular localization (membranous, cytoplasmic, nuclear) varied between different animal species and between particular ERM proteins as well. This data may help gain new insights into the physiological function of ERM proteins in biological events in the female reproductive system.
Collapse
Affiliation(s)
- Natascha Leitner
- Department of Biomedical Sciences and Pathobiology, Center of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Ismi Simsek
- Department of Biomedical Sciences and Pathobiology, Center of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Juraj Hlavaty
- Department of Biomedical Sciences and Pathobiology, Center of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Sabine Schäfer-Somi
- Department of Small Animals and Horses, Clinical Center for Reproduction University of Veterinary Medicine, Vienna, Austria.
| | - Ingrid Walter
- Department of Biomedical Sciences and Pathobiology, Center of Pathobiology, University of Veterinary Medicine, Vienna, Austria; VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
7
|
Nakazawa N, Grenci G, Kameo Y, Takeda N, Sawada T, Kurisu J, Zhang Z, Toma K, Adachi T, Nonomura K, Kengaku M. PIEZO1-dependent mode switch of neuronal migration in heterogeneous microenvironments in the developing brain. Cell Rep 2025; 44:115405. [PMID: 40053456 DOI: 10.1016/j.celrep.2025.115405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/09/2025] Open
Abstract
The migration of newborn neurons is essential for brain morphogenesis and circuit formation, yet controversy exists regarding how neurons generate the driving force against strong mechanical stresses in crowded neural tissues. We found that cerebellar granule neurons employ a mechanosensing mechanism to switch the driving forces to maneuver in irregular brain tissue. In two-dimensional (2D) cultures, actomyosin is enriched in the leading process, exerting traction force on the cell soma. In tissue or 3D confinement, however, actomyosin concentrates at the posterior cell membrane, generating contractile forces that assist passage through narrow spaces, working alongside the traction force in the leading process. The 3D migration is initiated by the activation of a mechanosensitive channel, PIEZO1. PIEZO1-induced calcium influx in the soma triggers the PKC-ezrin cascade, which recruits actomyosin and transmits its contractile force to the posterior plasma membrane. Thus, migrating neurons adapt their motility modes in distinct extracellular environments in the developing brain.
Collapse
Affiliation(s)
- Naotaka Nakazawa
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Faculty of Science and Engineering, Kindai University, Osaka 577-8502, Japan.
| | - Gianluca Grenci
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Biomedical Engineering Department, National University of Singapore, Singapore 117583, Singapore
| | - Yoshitaka Kameo
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8501, Japan; Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan; College of Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan
| | - Noriko Takeda
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Sawada
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8501, Japan; Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Junko Kurisu
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Zhejing Zhang
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Kenichi Toma
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Taiji Adachi
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8501, Japan; Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Keiko Nonomura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Department of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan; National Institute for Basic Biology, Aichi 444-8585, Japan
| | - Mineko Kengaku
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
8
|
Yang Y, Jin X, Yang L, Xu X, Xie Y, Ai Y, Li X, Ma Y, Xu C, Li Q, Ge X, Yi T, Jiang T, Wang X, Piao Y, Jin X. GNE-317 Reverses MSN-Mediated Proneural-to-Mesenchymal Transition and Suppresses Chemoradiotherapy Resistance in Glioblastoma via PI3K/mTOR. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412517. [PMID: 39921260 PMCID: PMC11948001 DOI: 10.1002/advs.202412517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/11/2025] [Indexed: 02/10/2025]
Abstract
Glioblastoma (GBM) resistance to chemoradiotherapy is a major factor contributing to poor treatment outcomes. This resistance markedly affects the effectiveness of surgery combined with chemoradiotherapy and leads to post-surgical tumor recurrence. Therefore, exploring the mechanisms underlying chemoradiotherapy resistance in GBM is crucial for understanding its progression and improving therapeutic options. This study found that moesin (MSN) acts as a key promotor of chemoradiotherapy resistance in glioma stem cells (GSCs), enhancing their proliferation and stemness maintenance. Mechanistically, MSN activates the downstream PI3K/mTOR signaling pathway, driving the proneural-to-mesenchymal transition (PMT) in GSCs. This process enhances the repair of DNA damage caused by radiotherapy (RT) and temozolomide (TMZ), thereby increasing the resistance of GSCs to chemoradiotherapy. Additionally, GNE-317, a small molecule drug capable of crossing the blood-brain barrier, specifically inhibits MSN and suppresses the activation of downstream PI3K/mTOR signaling. Importantly, the combination of GNE-317 with RT and TMZ exhibits a strong synergistic effect both in vivo and in vitro, achieving better efficacy compared to the traditional combination of RT and TMZ. This study not only advances understanding of the mechanisms underlying chemoradiotherapy resistance in GBM but also provides a promising new approach for enhancing treatment outcomes.
Collapse
Affiliation(s)
- Yong‐Chang Yang
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
- Tianjin Medical UniversityTianjin300060P. R. China
| | - Xing‐Yu Jin
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
- Tianjin Medical UniversityTianjin300060P. R. China
| | - Ling‐Ling Yang
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
- Tianjin Medical UniversityTianjin300060P. R. China
| | - Xing Xu
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
| | - Yang Xie
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
- Tianjin Medical UniversityTianjin300060P. R. China
| | - Yi‐Ding Ai
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
- Tianjin Medical UniversityTianjin300060P. R. China
| | - Xin‐Chao Li
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
- Tianjin Medical UniversityTianjin300060P. R. China
| | - Ye‐Cheng Ma
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
- Tianjin Medical UniversityTianjin300060P. R. China
| | | | - Qi Li
- Tianjin Medical UniversityTianjin300060P. R. China
| | - Xiang‐Lian Ge
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
| | - Tai‐Long Yi
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
| | - Tao Jiang
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijing100054P. R. China
| | - Xiao‐Guang Wang
- Department of Neuro‐Oncology and NeurosurgeryTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060P. R. China
| | - Ying‐Zhe Piao
- Department of Neuro‐Oncology and NeurosurgeryTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060P. R. China
| | - Xun Jin
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
| |
Collapse
|
9
|
Chi S, Ma J, Ding Y, Lu Z, Zhou Z, Wang M, Li G, Chen Y. Integrated multi-omics analysis identifies a machine learning-derived signature for predicting prognosis and therapeutic vulnerability in clear cell renal cell carcinoma. Life Sci 2025; 363:123396. [PMID: 39809381 DOI: 10.1016/j.lfs.2025.123396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
AIMS Clear cell renal cell carcinoma (ccRCC) shows considerable variation within and between tumors, presents varying treatment responses among patients, possibly due to molecular distinctions. This study utilized a multi-center and multi-omics analysis to establish and validate a prognosis and treatment vulnerability signature (PTVS) capable of effectively predicting patient prognosis and drug responsiveness. MATERIALS AND METHODS To address this complexity, we constructed an integrative multi-omics analysis using 10 clustering algorithms on ccRCC patient data. Afterwards, we applied bootstrapping in univariate Cox regression and the Boruta algorithm to pinpoint clinically relevant genes. Based on this, we developed a robust PTVS using seven machine learning algorithms. KEY FINDINGS Our analysis revealed two distinct ccRCC subtypes with differential prognostic implications, notably identifying subtype 2 with poorer outcomes. Patients in the low PTVS group exhibited superior prognosis statistics and an augmented sensitivity to immunotherapy, features consistent with a 'hot tumor' phenotype. Conversely, individuals within the high PTVS group exhibited diminished prognosis statistic and restricted advantages from immunotherapy. Importantly, the PTVS holds future potential as a notable biomarker for guiding personalized treatment strategies, with four prospective targets (CTSK, XDH, PKMYT1, and EGLN2) indicating therapeutic promise in patients scoring high on PTVS. SIGNIFICANCE The integrative analysis of multi-omics data profoundly enhances the molecular stratification of ccRCC, underscoring far-reaching impact of such comprehensive profiling on its therapeutic strategies.
Collapse
Affiliation(s)
- Shengqiang Chi
- Research Center for Data Hub and Security, Zhejiang Laboratory, Hangzhou 311121, China; Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; The Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Jing Ma
- Research Center for Data Hub and Security, Zhejiang Laboratory, Hangzhou 311121, China
| | - Yiming Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zhenwei Zhou
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yuanlei Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
10
|
Sánchez-Sánchez BJ, Marcotti S, Salvador-Garcia D, Díaz-de-la-Loza MDC, Burki M, Davidson AJ, Wood W, Stramer BM. Moesin integrates cortical and lamellar actin networks during Drosophila macrophage migration. Nat Commun 2025; 16:1414. [PMID: 39915456 PMCID: PMC11802916 DOI: 10.1038/s41467-024-55510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Cells are thought to adopt mechanistically distinct migration modes depending on cell-type and environmental factors. These modes are assumed to be driven by mutually exclusive actin cytoskeletal organizations, which are either lamellar (flat, branched network) or cortical (crosslinked to the plasma membrane). Here we exploit Drosophila macrophage (hemocyte) developmental dispersal to reveal that these cells maintain both a lamellar actin network at their cell front and a cortical actin network at the rear. Loss of classical actin cortex regulators, such as Moesin, perturb hemocyte morphology and cell migration. Furthermore, cortical and lamellipodial actin networks are interregulated. Upon phosphorylation and binding to the plasma membrane, Moesin is advected to the rear by lamellar actin flow. Simultaneously, the cortical actin network feeds back on the lamella to help regulate actin flow speed and leading-edge dynamics. These data reveal that hemocyte motility requires both lamellipodial and cortical actin architectures in homeostatic equilibrium.
Collapse
Affiliation(s)
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | - David Salvador-Garcia
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | | | - Mubarik Burki
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | - Andrew J Davidson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, G61 1BD, Glasgow, UK
| | - Will Wood
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh Bioquarter, EH16 4UU, Edinburgh, UK
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK.
| |
Collapse
|
11
|
Chen L, Jiao J, Lei F, Zhou B, Li H, Liao P, Li X, Kang Y, Liu J, Jiang R. Ezrin-mediated astrocyte-synapse signaling regulates cognitive function via astrocyte morphological changes in fine processes in male mice. Brain Behav Immun 2025; 124:177-191. [PMID: 39580057 DOI: 10.1016/j.bbi.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024] Open
Abstract
Astrocytes, which actively participate in cognitive processes, have a complex spongiform morphology, highlighted by extensive ramified fine processes that closely enwrap the pre- and post-synaptic compartments, forming tripartite synapses. However, the role of astrocyte morphology in cognitive processes remains incompletely understood and even controversial. The actin-binding protein Ezrin is highly expressed in astrocytes and is a key structural determinant of astrocyte morphology. Here, we found that Ezrin expression and astrocyte fine process volume in the hippocampus of male mice increased after learning but decreased after lipopolysaccharide injection and in a mouse model of postoperative cognitive dysfunction, both of which involved models with impaired cognitive function. Additionally, astrocytic Ezrin knock-out led to significantly decreased astrocytic fine process volumes, decreased astrocyte-neuron proximity, and induced anxiety-like behaviors and cognitive dysfunction. Astrocytic Ezrin deficiency in the hippocampus was achieved by using a microRNA silencing technique delivered by adeno-associated viruses. Down-regulation of Ezrin in hippocampal astrocytes led to disrupted astrocyte-synapse interactions and impaired synaptic functions, including synaptic transmission and synaptic plasticity, which could be rescued by exogenous administration of D-serine. Remarkably, decreased Ezrin expression and reduced astrocyte fine processes volumes were also observed in aged mice with decreased cognitive function. Moreover, overexpression of astrocytic Ezrin increased astrocyte fine process volumes and improved cognitive function in aged mice. Overall, our results indicate Ezrin-mediated astrocyte fine processes integrity shapes astrocyte-synapse signaling contributing to cognitive function.
Collapse
Affiliation(s)
- Lingmin Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiao Jiao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fan Lei
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bin Zhou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Liao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Kang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
12
|
Gongwer MW, Etienne F, Moca EN, Chappell MS, Blagburn-Blanco SV, Riley JP, Enos AS, Haratian M, Qi A, Rojo R, Wilke SA, Pridans C, DeNardo LA, De Biase LM. Microglia regulate nucleus accumbens synaptic development and circuit function underlying threat avoidance behaviors. RESEARCH SQUARE 2025:rs.3.rs-5837701. [PMID: 39975894 PMCID: PMC11838711 DOI: 10.21203/rs.3.rs-5837701/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
While CNS microglia have well-established roles in synapse pruning during neurodevelopment, only a few studies have identified roles for microglia in synapse formation. These studies focused on the cortex and primary sensory circuits during restricted developmental time periods, leaving substantial gaps in our understanding of the early developmental functions of microglia. Here we investigated how the absence of microglia impacts synaptic development in the nucleus accumbens (NAc), a region critical for emotional regulation and motivated behaviors and where dysfunction is implicated in psychiatric disorders that arise early in life. Using a genetically modified mouse that lacks microglia (Csf1r ΔFIRE/ΔFIRE), we found blunted excitatory synapse formation in the NAc. This effect was most prominent during the second and third postnatal weeks, when we previously found microglia to be overproduced, and was accompanied by an increase in presynaptic release probability and alterations in postsynaptic kinetics. Tissue-level NAc proteomics confirmed that microglial absence impacted numerous proteins involved in synapse structure, trans-synaptic signaling, and pre-synaptic function. However, microglial absence did not perturb levels of astrocyte-derived cues and adhesive proteins that promote synaptogenesis, suggesting that reduced synapse number may be caused by absence of a microglial-derived synaptogenic cue. Although observed electrophysiological synaptic changes were largely normalized by adulthood, we identified lasting effects of microglial absence on threat avoidance behavior, and these behavioral effects were directly associated with alterations of NAc neuronal activity. Together, these results indicate a critical role for microglia in regulating the synaptic landscape of the developing NAc and in establishing functional circuits underlying adult behavioral repertoires.
Collapse
Affiliation(s)
- Michael W Gongwer
- Department of Physiology, University of California Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA, USA
- UCLA Medical Scientist Training Program, University of California Los Angeles, CA, USA
| | - Fanny Etienne
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Eric N Moca
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Megan S Chappell
- Department of Physiology, University of California Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA, USA
| | - Sara V Blagburn-Blanco
- Department of Physiology, University of California Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA, USA
- UCLA Medical Scientist Training Program, University of California Los Angeles, CA, USA
| | - Jack P Riley
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Alexander S Enos
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Melody Haratian
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Alex Qi
- Department of Psychiatry, University of California Los Angeles, CA, USA
| | - Rocio Rojo
- Institution for Regeneration and Repair, University of Edinburgh, Scotland
| | - Scott A Wilke
- Department of Psychiatry, University of California Los Angeles, CA, USA
| | - Clare Pridans
- Institution for Regeneration and Repair, University of Edinburgh, Scotland
| | - Laura A DeNardo
- Department of Physiology, University of California Los Angeles, CA, USA
| | | |
Collapse
|
13
|
Fan JJ, Erickson AW, Carrillo-Garcia J, Wang X, Skowron P, Wang X, Chen X, Shan G, Dou W, Bahrampour S, Xiong Y, Dong W, Abeysundara N, Francisco MA, Pusong RJ, Wang W, Li M, Ying E, Suárez RA, Farooq H, Holgado BL, Wu X, Daniels C, Dupuy AJ, Cadiñanos J, Bradley A, Bagchi A, Moriarity BS, Largaespada DA, Morrissy AS, Ramaswamy V, Mack SC, Garzia L, Dirks PB, Li X, Wanggou S, Egan S, Sun Y, Taylor MD, Huang X. A forward genetic screen identifies potassium channel essentiality in SHH medulloblastoma maintenance. Dev Cell 2025:S1534-5807(25)00001-2. [PMID: 39862856 DOI: 10.1016/j.devcel.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Distinguishing tumor maintenance genes from initiation, progression, and passenger genes is critical for developing effective therapies. We employed a functional genomic approach using the Lazy Piggy transposon to identify tumor maintenance genes in vivo and applied this to sonic hedgehog (SHH) medulloblastoma (MB). Combining Lazy Piggy screening in mice and transcriptomic profiling of human MB, we identified the voltage-gated potassium channel KCNB2 as a candidate maintenance driver. KCNB2 governs cell volume of MB-propagating cells (MPCs), with KCNB2 depletion causing osmotic swelling, decreased plasma membrane tension, and elevated endocytic internalization of epidermal growth factor receptor (EGFR), thereby mitigating proliferation of MPCs to ultimately impair MB growth. KCNB2 is largely dispensable for mouse development and KCNB2 knockout synergizes with anti-SHH therapy in treating MB. These results demonstrate the utility of the Lazy Piggy functional genomic approach in identifying cancer maintenance drivers and elucidate a mechanism by which potassium homeostasis integrates biomechanical and biochemical signaling to promote MB aggression.
Collapse
Affiliation(s)
- Jerry J Fan
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anders W Erickson
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julia Carrillo-Garcia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xin Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Patryk Skowron
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xian Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Xin Chen
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Guanqiao Shan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Shahrzad Bahrampour
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yi Xiong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Weifan Dong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Namal Abeysundara
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michelle A Francisco
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ronwell J Pusong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Wei Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Miranda Li
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Elliot Ying
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Raúl A Suárez
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hamza Farooq
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Borja L Holgado
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaochong Wu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Craig Daniels
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam J Dupuy
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246, USA
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo 33193, Spain
| | - Allan Bradley
- T-Therapeutics Ltd. One Riverside, Granta Park, Cambridge CB21 6AD, UK
| | - Anindya Bagchi
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Branden S Moriarity
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Largaespada
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - A Sorana Morrissy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T8, Canada
| | - Vijay Ramaswamy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Stephen C Mack
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, Center of Excellence in Neuro-Oncology Sciences, St Jude Children's Hospital, Memphis, TN 38105, USA
| | - Livia Garzia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal, QC H4A 3J1, Canada; Cancer Research Program, RI-MUHC, Montreal, QC H4A 3J1, Canada
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Siyi Wanggou
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Sean Egan
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Xi Huang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
14
|
Gongwer MW, Etienne F, Moca EN, Chappell MS, Blagburn-Blanco SV, Riley JP, Enos AS, Haratian M, Qi A, Rojo R, Wilke SA, Pridans C, DeNardo LA, De Biase LM. Microglia regulate nucleus accumbens synaptic development and circuit function underlying threat avoidance behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633068. [PMID: 39868334 PMCID: PMC11761117 DOI: 10.1101/2025.01.15.633068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
While CNS microglia have well-established roles in synapse pruning during neurodevelopment, only a few studies have identified roles for microglia in synapse formation. These studies focused on the cortex and primary sensory circuits during restricted developmental time periods, leaving substantial gaps in our understanding of the early developmental functions of microglia. Here we investigated how the absence of microglia impacts synaptic development in the nucleus accumbens (NAc), a region critical for emotional regulation and motivated behaviors and where dysfunction is implicated in psychiatric disorders that arise early in life. Using a genetically modified mouse that lacks microglia (Csf1r ΔFIRE/ΔFIRE), we found blunted excitatory synapse formation in the NAc. This effect was most prominent during the second and third postnatal weeks, when we previously found microglia to be overproduced, and was accompanied by an increase in presynaptic release probability and alterations in postsynaptic kinetics. Tissue-level NAc proteomics confirmed that microglial absence impacted numerous proteins involved in synapse structure, trans-synaptic signaling, and pre-synaptic function. However, microglial absence did not perturb levels of astrocyte-derived cues and adhesive proteins that promote synaptogenesis, suggesting that reduced synapse number may be caused by absence of a microglial-derived synaptogenic cue. Although observed electrophysiological synaptic changes were largely normalized by adulthood, we identified lasting effects of microglial absence on threat avoidance behavior, and these behavioral effects were directly associated with alterations of NAc neuronal activity. Together, these results indicate a critical role for microglia in regulating the synaptic landscape of the developing NAc and in establishing functional circuits underlying adult behavioral repertoires.
Collapse
Affiliation(s)
- Michael W Gongwer
- Department of Physiology, University of California Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA, USA
- UCLA Medical Scientist Training Program, University of California Los Angeles, CA, USA
| | - Fanny Etienne
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Eric N Moca
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Megan S Chappell
- Department of Physiology, University of California Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA, USA
| | - Sara V Blagburn-Blanco
- Department of Physiology, University of California Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA, USA
- UCLA Medical Scientist Training Program, University of California Los Angeles, CA, USA
| | - Jack P Riley
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Alexander S Enos
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Melody Haratian
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Alex Qi
- Department of Psychiatry, University of California Los Angeles, CA, USA
| | - Rocio Rojo
- Institution for Regeneration and Repair, University of Edinburgh, Scotland
| | - Scott A Wilke
- Department of Psychiatry, University of California Los Angeles, CA, USA
| | - Clare Pridans
- Institution for Regeneration and Repair, University of Edinburgh, Scotland
| | - Laura A DeNardo
- Department of Physiology, University of California Los Angeles, CA, USA
| | | |
Collapse
|
15
|
Junqueira Alves C, Hannah T, Sadia S, Kolsteeg C, Dixon A, Wiener RJ, Nguyen H, Tipping MJ, Silva Ladeira J, Fernandes da Costa Franklin P, de Paula Dutra de Nigro N, Alves Dias R, Zabala Capriles PV, Rodrigues Furtado de Mendonça JP, Slesinger PA, Costa KD, Zou H, Friedel RH. Invasion of glioma cells through confined space requires membrane tension regulation and mechano-electrical coupling via Plexin-B2. Nat Commun 2025; 16:272. [PMID: 39747004 PMCID: PMC11697315 DOI: 10.1038/s41467-024-55056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor with diffuse infiltration. Here, we demonstrate how GBM cells usurp guidance receptor Plexin-B2 for confined migration through restricted space. Using live-cell imaging to track GBM cells negotiating microchannels, we reveal endocytic vesicle accumulation at cell front and filamentous actin assembly at cell rear in a polarized manner. These processes are interconnected and require Plexin-B2 signaling. We further show that Plexin-B2 governs membrane tension and other membrane features such as endocytosis, phospholipid composition, and inner leaflet surface charge, thus providing biophysical mechanisms by which Plexin-B2 promotes GBM invasion. Together, our studies unveil how GBM cells regulate membrane tension and mechano-electrical coupling to adapt to physical constraints and achieve polarized confined migration.
Collapse
Affiliation(s)
- Chrystian Junqueira Alves
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Theodore Hannah
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sita Sadia
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christy Kolsteeg
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Angela Dixon
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert J Wiener
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ha Nguyen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Murray J Tipping
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Júlia Silva Ladeira
- Department of Computer Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | | | - Rodrigo Alves Dias
- Department of Physics, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | | | - Paul A Slesinger
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin D Costa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
16
|
Cai H, Lee SM, Choi Y, Lee B, Im SJ, Kim DH, Choi HJ, Kim JH, Kim Y, Shin BA, Jeon S. Memory Decline and Aberration of Synaptic Proteins in X-Linked Moesin Knockout Male Mice. Psychiatry Investig 2025; 22:10-25. [PMID: 39885788 PMCID: PMC11788833 DOI: 10.30773/pi.2024.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 02/01/2025] Open
Abstract
OBJECTIVE This study aims to investigate may moesin deficiency resulted in neurodevelopmental abnormalities caused by negative impact on synaptic signaling ultimately leading to synaptic structure and plasticity. METHODS Behavioral assessments measured neurodevelopment (surface righting, negative geotaxis, cliff avoidance), anxiety (open field test, elevated plus maze test), and memory (passive avoidance test, Y-maze test) in moesin-knockout mice (KO) compared to wild-type mice (WT). Whole exome sequencing (WES) of brain (KO vs. WT) and analysis of synaptic proteins were performed to determine the disruption of signal pathways downstream of moesin. Risperidone, a therapeutic agent, was utilized to reverse the neurodevelopmental aberrance in moesin KO. RESULTS Moesin-KO pups exhibited decrease in the surface righting ability on postnatal day 7 (p<0.05) and increase in time spent in the closed arms (p<0.01), showing increased anxiety-like behavior. WES revealed mutations in pathway aberration in neuron projection, actin filament-based processes, and neuronal migration in KO. Decreased cell viability (p<0.001) and expression of soluble NSF adapter protein 25 (SNAP25) (p<0.001) and postsynaptic density protein 95 (PSD95) (p<0.01) was observed in days in vitro 7 neurons. Downregulation of synaptic proteins, and altered phosphorylation levels of Synapsin I, mammalian uncoordinated 18 (MUNC18), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB) was observed in KO cortex and hippocampus. Risperidone reversed the memory impairment in the passive avoidance test and the spontaneous alternation percentage in the Y maze test. Risperidone also restored the reduced expression of PSD95 (p<0.01) and the phosphorylation of Synapsin at Ser605 (p<0.05) and Ser549 (p<0.001) in the cortex of moesin-KO. CONCLUSION Moesin deficiency leads to neurodevelopmental delay and memory decline, which may be caused through altered regulation in synaptic proteins and function.
Collapse
Affiliation(s)
- Hua Cai
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Seong Mi Lee
- Department of Neuropsychiatry, Dongguk University School of Medicine, Seoul, Republic of Korea
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Yura Choi
- Department of Neuropsychiatry, Dongguk University School of Medicine, Seoul, Republic of Korea
| | - Bomlee Lee
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Soo Jung Im
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Dong Hyeon Kim
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Hyung Jun Choi
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Jin Hee Kim
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yeni Kim
- Department of Neuropsychiatry, Dongguk University School of Medicine, Seoul, Republic of Korea
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
- Dongguk University International Hospital, Institute of Clinical Psychopharmacology, Goyang, Republic of Korea
| | - Boo Ahn Shin
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Songhee Jeon
- Department of Biomedical Sciences, Center for Glocal Future Biomedical Scientists at Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
17
|
Hu ZY, Deng WH, Cai WJ, Qin XY, Zheng HS, Tan J, Jiang XL, Zheng YZ, Liao HY. FOXF2 may inhibit esophageal squamous cell carcinoma growth and metastasis by regulating the EZR-ERBB2 axis. Transl Cancer Res 2024; 13:6970-6981. [PMID: 39816549 PMCID: PMC11729755 DOI: 10.21037/tcr-2024-2365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
Background FOXF2, a member of the transcription factor FOX family proteins, plays a key role in tumorigenesis and tumor aggressiveness. However, the potential molecular mechanism of FOXF2 in esophageal squamous cell carcinoma (ESCC) remains largely unknown. Exploring its role and mechanism in ESCC progression may help identify new diagnostic markers and therapeutic targets. The aim of this study is to investigate the potential functions of the FOXF2 gene within the context of ESCC and to elucidate the underlying molecular pathways involved. Methods Using the GoMiner database, GeneCard database, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and the COMPARTMENTS subcellular localization database, we identified the most likely downstream molecule of the FOXF2 gene, EZR; the subcellular locations of FOXF2 and EZR; the possible biological pathways [Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)]; and the protein interactions networks of the EZR gene enriched from the OMICS datasets via Metascape. We also used The Cancer Genome Atlas database to analyze the correlation between EZR and ERBB signaling pathway. In addition, we verified the RNA and protein expression of the target genes using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, we employed Western blot analysis and plasmid transfection and lentiviral infection techniques to gene edit FOXF2 and EZR in different EC cells to obtain stable overexpression or knockdown of the cell lines. This was followed by ex vivo and in vivo experiments including migration assay, cell scratch assay, clone formation assay, and a xenotransplantation mouse model to validate the functional phenotype of the gene-edited cells. Results We found that knockdown of FOXF2 expression significantly enhanced the growth, invasion, and metastasis of ESCC cells both in vitro and in vivo. Moreover, we demonstrated that FOXF2 was predominantly expressed in the nucleus and directly interacted with EZR, thereby inhibiting EZR transcriptional expression, resulting in suppressed ERBB2 signal function, ultimately halting ESCC growth and metastasis. Conclusions Taken together, these results reveal the tumor-suppressive functions of FOXF2 in inhibiting EZR-mediated ERBB2 activation, suggesting that FOXF2 could serve as a potential novel predicting prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Zhen-Yu Hu
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei-Hao Deng
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei-Jie Cai
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xian-Yu Qin
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao-Sheng Zheng
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Tan
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Long Jiang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Zhen Zheng
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong-Ying Liao
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Joachim J, Maselli D, Petsolari E, Aman J, Swiatlowska P, Killock D, Chaudhry H, Zarban AA, Sarker M, Fraser P, Cleary SJ, Amison R, Cuthbert I, Yang Y, Meier M, Fraternali F, Brain SD, Shah AM, Ivetic A. TNIK: A redox sensor in endothelial cell permeability. SCIENCE ADVANCES 2024; 10:eadk6583. [PMID: 39705357 DOI: 10.1126/sciadv.adk6583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
Dysregulation of endothelial barrier integrity can lead to vascular leak and potentially fatal oedema. TNF-α controls endothelial permeability during inflammation and requires the actin organizing Ezrin-Radixin-Moesin (ERM) proteins. We identified TRAF2 and NCK-interacting kinase (TNIK) as a kinase directly phosphorylating and activating ERM, specifically at the plasma membrane of primary human endothelial cells. TNIK mediates TNF-α-dependent cellular stiffness and paracellular gap formation in vitro and is essential in driving inflammatory oedema formation in vivo. Unlike its homologs, TNIK activity is negatively and reversibly regulated by H2O2-mediated oxidation of C202 within the kinase domain. TNIK oxidation results in intermolecular disulfide bond formation and loss of kinase activity. Pharmacologic inhibition of endogenous reactive oxygen species production in endothelial cells elevated TNIK-dependent ERM phosphorylation, endothelial cell contraction, and cell rounding. Together, we highlight an interplay between TNIK, ERM phosphorylation, and redox signalling in regulating TNF-induced endothelial cell permeability.
Collapse
Affiliation(s)
- Justin Joachim
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Davide Maselli
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Emmanouela Petsolari
- Randall Centre for Cell and Molecular Biology, King's College London, London SE1 1UL, UK
| | - Jurjan Aman
- Department of Pulmonary Medicine, Amsterdam University Medical Center, location VUMC, Amsterdam, The Netherlands
| | - Pamela Swiatlowska
- Myocardial Function, National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith Hospital, London, UK
| | - David Killock
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Hiba Chaudhry
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Ali A Zarban
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
- Department of Pharmacological Sciences, Faculty of Pharmacy, Jazan University, Saudi Arabia
| | - Mosharraf Sarker
- Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Paul Fraser
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Simon J Cleary
- Institute of Pharmaceutical Science, King's College London, Floor 5, Southwark Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Richard Amison
- School of Cancer and Pharmaceutical Sciences, Pulmonary Pharmacology Unit, King's College London, London, UK
| | - Isabelle Cuthbert
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Yue Yang
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Magda Meier
- School of Genetics and Genomic Medicine, University College London Institute of Child Health, London, UK
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biology, King's College London, London SE1 1UL, UK
- Division of Biosciences, Structural and Molecular Biology Department, University College London, Darwin (SMB) Building, Gower Street, London WC1E 6BT, UK
- Department of Structural and Molecular Biology, Division of Biosciences and Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK Department of Biological Sciences, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| | - Susan D Brain
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Ajay M Shah
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| | - Aleksandar Ivetic
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK
| |
Collapse
|
19
|
Zhang C, Huang Q, Ford NC, Limjunyawong N, Lin Q, Yang F, Cui X, Uniyal A, Liu J, Mahabole M, He H, Wang X, Duff I, Wang Y, Wan J, Zhu G, Raja SN, Jia H, Yang D, Dong X, Cao X, Tseng SC, He S, Guan Y. Human birth tissue products as a non-opioid medicine to inhibit post-surgical pain. eLife 2024; 13:RP101269. [PMID: 39671234 PMCID: PMC11643635 DOI: 10.7554/elife.101269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain. Local application of Clarix Flo (FLO), a human amniotic membrane (AM) product, attenuated established post-surgical pain hypersensitivity without exhibiting known side effects of opioid use in mice. This effect was achieved through direct inhibition of nociceptive dorsal root ganglion (DRG) neurons via CD44-dependent pathways. We further purified the major matrix component, the heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) from human AM that has greater purity and water solubility than FLO. HC-HA/PTX3 replicated FLO-induced neuronal and pain inhibition. Mechanistically, HC-HA/PTX3-induced cytoskeleton rearrangements to inhibit sodium current and high-voltage activated calcium current on nociceptive DRG neurons, suggesting it is a key bioactive component mediating pain relief. Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain. Moreover, we unravel the underlying neuronal mechanisms of pain inhibition induced by FLO and HC-HA/PTX3.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Neil C Ford
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Fei Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Xiang Cui
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Ankit Uniyal
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Jing Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | | | - Hua He
- BioTissue, IncMiamiUnited States
| | - Xuewei Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Department of Orthopaedic Surgery, Johns Hopkins UniversityBaltimoreUnited States
| | - Irina Duff
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Yiru Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Guangwu Zhu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Hongpeng Jia
- Department of Surgery, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Dazhi Yang
- Acrogenic Technologies IncRockvilleUnited States
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins UniversityBaltimoreUnited States
| | | | - Shaoqiu He
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Department of Neurological Surgery, Johns Hopkins University, School of MedicineBaltimoreUnited States
| |
Collapse
|
20
|
Li Y, Zhang X, Tai W, Zhuang X, Shi H, Liao S, Yu X, Mei R, Chen X, Huang Y, Liu Y, Liu J, Liu Y, Zhu Y, Wang P, Tian M, Yu G, Li L, Cheng G. A substitution at the cytoplasmic tail of the spike protein enhances SARS-CoV-2 infectivity and immunogenicity. EBioMedicine 2024; 110:105437. [PMID: 39531918 PMCID: PMC11603013 DOI: 10.1016/j.ebiom.2024.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Global dissemination of SARS-CoV-2 Omicron sublineages has provided a sufficient opportunity for natural selection, thus enabling beneficial mutations to emerge. Characterisation of these mutations uncovers the underlying machinery responsible for the fast transmission of Omicron variants and guides vaccine development for combating the COVID-19 pandemic. METHODS Through systematic bioinformatics analysis of 496,606 sequences of Omicron variants, we obtained 40 amino acid substitutions that occurred with high frequency in the S protein. Utilising pseudoviruses and a trans-complementation system of SARS-CoV-2, we identified the effect of high-frequency mutations on viral infectivity and elucidated the molecular mechanisms. Finally, we evaluated the impact of a key emerging mutation on the immune protection induced by the SARS-CoV-2 VLP mRNA vaccine in a murine model. FINDINGS We identified a proline-to-leucine substitution at the 1263rd residue of the Spike protein, and upon investigating the relative frequencies across multiple Omicron sublineages, we found a trend of increasing frequency for P1263L. The substitution significantly enhances the capacity for S-mediated viral entry and improves the immunogenicity of a virus-like particle mRNA vaccine. Mechanistic studies showed that this mutation is located in the FERM binding motif of the cytoplasmic tail and impairs the interaction between the S protein and the Ezrin/Radixin/Moesin proteins. Additionally, this mutation facilitates the incorporation of S proteins into SARS-CoV-2 virions. INTERPRETATION This study offers mechanistic insight into the constantly increasing transmissibility of SARS-CoV-2 Omicron variants and provides a meaningful optimisation strategy for vaccine development against SARS-CoV-2. FUNDING This study was supported by grants from the National Key Research and Development Plan of China (2021YFC2302405, 2022YFC2303200, 2021YFC2300200 and 2022YFC2303400), the National Natural Science Foundation of China (32188101, 32200772, 82422049, 82241082, 32270182, 82372254, 82271872, 82341046, 32100755 and 82102389), Shenzhen Medical Research Fund (B2404002, A2303036), the Shenzhen Bay Laboratory Startup Fund (21330111), Shenzhen San-Ming Project for Prevention and Research on Vector-borne Diseases (SZSM202211023), Yunnan Provincial Science and Technology Project at Southwest United Graduate School (202302AO370010). The New Cornerstone Science Foundation through the New Cornerstone Investigator Program, and the Xplorer Prize from Tencent Foundation.
Collapse
Affiliation(s)
- Yuhan Li
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xianwen Zhang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China.
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China
| | - Huicheng Shi
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Shumin Liao
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Rui Mei
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xingzhao Chen
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Yanhong Huang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yubin Liu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Jianying Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Yang Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, The University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China.
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Liang Li
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Southwest United Graduate School, Kunming 650092, China.
| |
Collapse
|
21
|
Waechtler BE, Jayasankar R, Morin EP, Robinson DN. Benefits and challenges of reconstituting the actin cortex. Cytoskeleton (Hoboken) 2024; 81:843-863. [PMID: 38520148 PMCID: PMC11417134 DOI: 10.1002/cm.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The cell's ability to change shape is a central feature in many cellular processes, including cytokinesis, motility, migration, and tissue formation. The cell constructs a network of contractile proteins underneath the cell membrane to form the cortex, and the reorganization of these components directly contributes to cellular shape changes. The desire to mimic these cell shape changes to aid in the creation of a synthetic cell has been increasing. Therefore, membrane-based reconstitution experiments have flourished, furthering our understanding of the minimal components the cell uses throughout these processes. Although biochemical approaches increased our understanding of actin, myosin II, and actin-associated proteins, using membrane-based reconstituted systems has further expanded our understanding of actin structures and functions because membrane-cortex interactions can be analyzed. In this review, we highlight the recent developments in membrane-based reconstitution techniques. We examine the current findings on the minimal components needed to recapitulate distinct actin structures and functions and how they relate to the cortex's impact on cellular mechanical properties. We also explore how co-processing of computational models with wet-lab experiments enhances our understanding of these properties. Finally, we emphasize the benefits and challenges inherent to membrane-based, reconstitution assays, ranging from the advantage of precise control over the system to the difficulty of integrating these findings into the complex cellular environment.
Collapse
Affiliation(s)
- Brooke E. Waechtler
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| | - Rajan Jayasankar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, 725 N Wolfe Street, Baltimore, MD 21205
| | - Emma P. Morin
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Medicine, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Oncology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| |
Collapse
|
22
|
Gudneppanavar R, Di Pietro C, H Öz H, Zhang PX, Cheng EC, Huang PH, Tebaldi T, Biancon G, Halene S, Hoppe AD, Kim C, Gonzalez AL, Krause DS, Egan ME, Gupta N, Murray TS, Bruscia EM. Ezrin drives adaptation of monocytes to the inflamed lung microenvironment. Cell Death Dis 2024; 15:864. [PMID: 39613751 PMCID: PMC11607083 DOI: 10.1038/s41419-024-07255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Ezrin, an actin-binding protein, orchestrates the organization of the cortical cytoskeleton and plasma membrane during cell migration, adhesion, and proliferation. Its role in monocytes/macrophages (MΦs) is less understood. Here, we used a monocyte/MΦ-specific ezrin knock-out mouse model to investigate the contribution of ezrin to monocyte recruitment and adaptation to the lung extracellular matrix (ECM) in response to lipopolysaccharide (LPS). Our study revealed that LPS induces ezrin expression in monocytes/MΦs and is essential for monocytes to adhere to lung ECM, proliferate, and differentiate into tissue-resident interstitial MΦs. Mechanistically, the loss of ezrin in monocytes disrupts activation of focal adhesion kinase and AKT serine-threonine protein kinase signaling, essential for lung-recruited monocytes and monocyte-derived MΦs to adhere to the ECM, proliferate, and survive. In summary, our data show that ezrin plays a role beyond structural cellular support, influencing diverse monocytes/MΦ processes and signaling pathways during inflammation, facilitating their differentiation into tissue-resident macrophages.
Collapse
Affiliation(s)
| | - Caterina Di Pietro
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Hasan H Öz
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Ping-Xia Zhang
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Laboratory Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Ee-Chun Cheng
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Pamela H Huang
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Toma Tebaldi
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Hematology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giulia Biancon
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Hematology, School of Medicine, Yale University, New Haven, CT, USA
| | - Stephanie Halene
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Hematology, School of Medicine, Yale University, New Haven, CT, USA
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | - Catherine Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Diane S Krause
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Laboratory Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - Marie E Egan
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Neetu Gupta
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Thomas S Murray
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Emanuela M Bruscia
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA.
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
23
|
Yang Y, Xu B, Lu W. Phosphorylated ERM regulates meiotic maturation in mouse oocytes. Biochem Biophys Res Commun 2024; 734:150602. [PMID: 39243677 DOI: 10.1016/j.bbrc.2024.150602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
The cytoskeleton of mammal oocytes provides structural support to the plasma membrane and contributes to critical cellular dynamic processes such as nuclear positioning, germinal vesicle breakdown, spindle orientation, chromosome segregation, polar body extrusion, and transmembrane signaling pathways. The ERM family (ezrin, radixin and moesin) well known as membrane-cytoskeletal crosslinkers play a crucial role in organizing plasma membrane domains through their capacity to interact with transmembrane proteins and the underlying cytoskeleton. Recent works mainly focused on the structural analysis of the ERM family members and their binding partners, together with multiple functions in cell mitosis, have significantly advanced our understanding of the importance of membrane-cytoskeletal interactions. In the present study, we documented that p-ERM was expressed and localized at cortical and nucleus during mouse oocyte meiosis. p-ERM and microfilaments were colocalized from GV to MII during mouse oocyte maturation. After being treated with cytochalasin B (CB), the F-actin was disassembled. Meanwhile, p-ERM exhibited a diffuse cytoplasmic distribution and no special staining was detected in either the oocyte membrane or condensed chromosomes. p-ERM depletion by trim-away caused the meiotic procedure arrest with a significantly lower polar body extrusion rate. Collectively, these data demonstrate that the subcellular distribution of p-ERM is correlated with microfilaments. Meanwhile, the p-ERM contributes to the first polar extrusion but does not regulate the microfilament assembly.
Collapse
Affiliation(s)
- Yifeng Yang
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Baozeng Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Wenfa Lu
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
24
|
Heydecker M, Shitara A, Chen D, Tran DT, Masedunskas A, Tora MS, Ebrahim S, Appaduray MA, Galeano Niño JL, Bhardwaj A, Narayan K, Hardeman EC, Gunning PW, Weigert R. Coordination of force-generating actin-based modules stabilizes and remodels membranes in vivo. J Cell Biol 2024; 223:e202401091. [PMID: 39172125 PMCID: PMC11344176 DOI: 10.1083/jcb.202401091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Membrane remodeling drives a broad spectrum of cellular functions, and it is regulated through mechanical forces exerted on the membrane by cytoplasmic complexes. Here, we investigate how actin filaments dynamically tune their structure to control the active transfer of membranes between cellular compartments with distinct compositions and biophysical properties. Using intravital subcellular microscopy in live rodents we show that a lattice composed of linear filaments stabilizes the granule membrane after fusion with the plasma membrane and a network of branched filaments linked to the membranes by Ezrin, a regulator of membrane tension, initiates and drives to completion the integration step. Our results highlight how the actin cytoskeleton tunes its structure to adapt to dynamic changes in the biophysical properties of membranes.
Collapse
Affiliation(s)
- Marco Heydecker
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Akiko Shitara
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pharmacology, Asahi University School of Dentistry, Gifu, Japan
| | - Desu Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Duy T. Tran
- NIDCR Imaging Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Andrius Masedunskas
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Muhibullah S. Tora
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Seham Ebrahim
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mark A. Appaduray
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Jorge Luis Galeano Niño
- EMBL Australia, Single Molecule Science node, University of New South Wales Sydney, Sydney, Australia
| | - Abhishek Bhardwaj
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Edna C. Hardeman
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Peter W. Gunning
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Malik S, Ali SA, Mehdi AM, Raza A, Bashir S, Baig DN. A pilot study: Examining cytoskeleton gene expression profiles in Pakistani children with autism spectrum disorder. Int J Dev Neurosci 2024; 84:769-778. [PMID: 39285780 DOI: 10.1002/jdn.10372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Finding effective pharmacological interventions to address the complex array of neurodevelopmental disorders is currently an urgent imperative within the scientific community as these conditions present significant challenges for patients and their families, often impacting cognitive, emotional, and social development. In this study, we aimed to explore non-invasive method to diagnose autism spectrum disorders (ASD) within Pakistan children population and to identify clinical drugs for its treatment. AIMS The current report outlines a comprehensive bidirectional investigation showcasing the successful utilization of saliva samples to quantify the expression patterns of profilins (PFN1, 2, and 3); and ERM (ezrin, radixin, and moesin) proteins; and additionally moesin pseudogene 1 and moesin pseudogene 1 antisense (MSNP1AS). Subsequently, these expression profiles were employed to forecast interactions between drugs and genes in children diagnosed with ASD. METHODS This study sought to delve into the intricate gene expression profiles using qualitative polymerase chain reaction of profilin isoforms (PFN1, 2, and 3) and ERM genes extracted from saliva samples obtained from children diagnosed with ASD. Through this analysis, we aimed to elucidate potential molecular mechanisms underlying ASD pathogenesis, shedding light on novel biomarkers and therapeutic targets for this complex neurological condition. (n = 22). Subsequently, we implemented a diagnostic model utilizing sparse partial least squares discriminant analysis (sPLS-DA) to predict drugs against our genes of interest. Furthermore, connectivity maps were developed to illustrate the predicted associations of 24 drugs with the genes expression. RESULTS Our study results showed varied expression profile of cytoskeleton linked genes. Similarly, sPLS-DA model precisely predicted drug to genes response. Sixteen of the examined drugs had significant positive correlations with the expression of the targeted genes whereas eight of the predicted drugs had shown negative correlations. CONCLUSION Here we report the role of cytoskeleton linked genes (PFN and ERM) in co-relation to ASD. Furthermore, variable yet significant quantitative expression of these genes successfully predicted drug-gene interactions as shown with the help of connectivity maps that can be used to support the clinical use of these drugs to treat individuals with ASD in future studies.
Collapse
Affiliation(s)
- Sana Malik
- Kauser Abdullah Malik School of Life Sciences, Forman Christian College (A Chartered University) Lahore, Lahore, Pakistan
| | - Syed Aoun Ali
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Ahmed Murtaza Mehdi
- Diamantina Institute, Faculty of Medicine, Translational Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Amir Raza
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (Sialkot Campus), Sialkot, Pakistan
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Deeba Noreen Baig
- Kauser Abdullah Malik School of Life Sciences, Forman Christian College (A Chartered University) Lahore, Lahore, Pakistan
- University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
26
|
Park JJ, Lee SJ, Baek M, Lee OJ, Nam S, Kim J, Kim JY, Shin EY, Kim EG. FRMD6 determines the cell fate towards senescence: involvement of the Hippo-YAP-CCN3 axis. Cell Death Differ 2024; 31:1398-1409. [PMID: 38926528 PMCID: PMC11519602 DOI: 10.1038/s41418-024-01333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Cellular senescence, a hallmark of aging, is pathogenically linked to the development of aging-related diseases. This study demonstrates that FRMD6, an upstream component of the Hippo/YAP signaling cascade, is a key regulator of senescence. Proteomic analysis revealed that FRMD6 is upregulated in senescent IMR90 fibroblasts under various senescence-inducing conditions. Silencing FRMD6 mitigated the senescence of IMR90 cells, suggesting its requirement in senescence. Conversely, the overexpression of FRMD6 alone induced senescence in cells and in lung tissue, establishing a causal link. The elevated FRMD6 levels correlated well with increased levels of the inhibitory phosphorylated YAP/TAZ. We identified cellular communication network factor 3 (CCN3), a key component of the senescence-associated secretory phenotype regulated by YAP, whose administration attenuated FRMD6-induced senescence in a dose-dependent manner. Mechanistically, FRMD6 interacted with and activated MST kinase, which led to YAP/TAZ inactivation. The expression of FRMD6 was regulated by the p53 and SMAD transcription factors in senescent cells. Accordingly, the expression of FRMD6 was upregulated by TGF-β treatment that activates those transcription factors. In TGF-β-treated IMR90 cells, FRMD6 mainly segregated with p21, a senescence marker, but rarely segregated with α-SMA, a myofibroblast marker, which suggests that FRMD6 has a role in directing cells towards senescence. Similarly, in TGF-β-enriched environments, such as fibroblastic foci (FF) from patients with idiopathic pulmonary fibrosis, FRMD6 co-localized with p16 in FF lining cells, while it was rarely detected in α-SMA-positive myofibroblasts that are abundant in FF. In sum, this study identifies FRMD6 as a novel regulator of senescence and elucidates the contribution of the FRMD6-Hippo/YAP-CCN3 axis to senescence.
Collapse
Affiliation(s)
- Jung-Jin Park
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea
| | - Su Jin Lee
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea
| | - Minwoo Baek
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea
| | - Ok-Jun Lee
- Department of Pathology, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21565, Republic of Korea
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Eun-Young Shin
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea.
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
27
|
Verdys P, Rey Barroso J, Girel A, Vermeil J, Bergert M, Sanchez T, Métais A, Mangeat T, Bellard E, Bigot C, Astarie-Dequeker C, Labrousse A, Girard JP, Maridonneau-Parini I, Vérollet C, Lagarrigue F, Diz-Muñoz A, Heuvingh J, Piel M, du Roure O, Le Cabec V, Carréno S, Poincloux R. Ezrin, radixin, and moesin are dispensable for macrophage migration and cellular cortex mechanics. EMBO J 2024; 43:4822-4845. [PMID: 39026000 PMCID: PMC11535515 DOI: 10.1038/s44318-024-00173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
The cellular cortex provides crucial mechanical support and plays critical roles during cell division and migration. The proteins of the ERM family, comprised of ezrin, radixin, and moesin, are central to these processes by linking the plasma membrane to the actin cytoskeleton. To investigate the contributions of the ERM proteins to leukocyte migration, we generated single and triple ERM knockout macrophages. Surprisingly, we found that even in the absence of ERM proteins, macrophages still form the different actin structures promoting cell migration, such as filopodia, lamellipodia, podosomes, and ruffles. Furthermore, we discovered that, unlike every other cell type previously investigated, the single or triple knockout of ERM proteins does not affect macrophage migration in diverse contexts. Finally, we demonstrated that the loss of ERMs in macrophages does not affect the mechanical properties of their cortex. These findings challenge the notion that ERMs are universally essential for cortex mechanics and cell migration and support the notion that the macrophage cortex may have diverged from that of other cells to allow for their uniquely adaptive cortical plasticity.
Collapse
Affiliation(s)
- Perrine Verdys
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Canada
| | - Javier Rey Barroso
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Adeline Girel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Joseph Vermeil
- PMMH, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Martin Bergert
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thibaut Sanchez
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Arnaud Métais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Thomas Mangeat
- LITC Core Facility, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Claire Bigot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Arnaud Labrousse
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Frédéric Lagarrigue
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julien Heuvingh
- PMMH, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Olivia du Roure
- PMMH, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Véronique Le Cabec
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Sébastien Carréno
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Canada.
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
28
|
Kwak MJ, Choi SJ, Cai WT, Cho BR, Han J, Park JW, Riecken LB, Morrison H, Choi SY, Kim WY, Kim JH. Manipulation of radixin phosphorylation in the nucleus accumbens core modulates risky choice behavior. Prog Neurobiol 2024; 242:102681. [PMID: 39437882 DOI: 10.1016/j.pneurobio.2024.102681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Ezrin-Radixin-Moesin (ERM) proteins are actin-binding proteins that contribute to morphological changes in dendritic spines. Despite their significant role in regulating spine structure, the role of ERM proteins in the nucleus accumbnes (NAcc) is not well known, especially in in the context of risk-reward decision-making. Here, we measured the relationship between synaptic excitation and inhibition (E/I ratio) from medium spiny neurons in the NAcc core obtained in the rat after a rat gambling task (rGT). Then, after surgery of a phosphomimetic pseudo-active mutant form of radixin (Rdx-T564D) in the NAcc core, we examined its role in synaptic plasticity and the accompanying risk-choice behavior in rGT. We found that basal E/I ratio in the NAcc core was higher in risk-averse rats than risk-seeking rats. However, it was significantly reduced in risk-averse rats similar to that in risk-seeking rats in the presence of Rdx-T564D in the NAcc core. Furthermore, the head sizes of spines were shifted in risk-averse rats expressing Rdx-T564D in the NAcc core, similar to those observed in risk-seeking rats. The effects of Rdx-T564D in risk-averse rats were again manifested as behavioral changes, with reduced selection of optimal choices and increased selection of disadvantageous ones. In this study, we demonstrated that manipulation of radixin phosphorylation status in the NAcc core can alter glutamatergic synaptic transmission and spine structure at this site, as well as risk choice behaviors in the rGT. These novel findings illustrate that radixin in the NAcc core plays a significant role in determining risk preference during the rGT.
Collapse
Affiliation(s)
- Myung Ji Kwak
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Su Jeong Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Wen Ting Cai
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Bo Ram Cho
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Joonyeup Han
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jong Woo Park
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | | | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipman Institute, Jena 07745, Germany
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea.
| | - Wha Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Jeong-Hoon Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
29
|
Chong ZZ, Souayah N. Radixin: Roles in the Nervous System and Beyond. Biomedicines 2024; 12:2341. [PMID: 39457653 PMCID: PMC11504607 DOI: 10.3390/biomedicines12102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Radixin is an ERM family protein that includes radixin, moesin, and ezrin. The importance of ERM family proteins has been attracting more attention, and studies on the roles of ERM in biological function and the pathogenesis of some diseases are accumulating. In particular, we have found that radixin is the most dramatically changed ERM protein in elevated glucose-treated Schwann cells. METHOD We systemically review the literature on ERM, radixin in focus, and update the roles of radixin in regulating cell morphology, interaction, and cell signaling pathways. The potential of radixin as a therapeutic target in neurodegenerative diseases and cancer was also discussed. RESULTS Radixin research has focused on its cell functions, activation, and pathogenic roles in some diseases. Radixin and other ERM proteins maintain cell shape, growth, and motility. In the nervous system, radixin has been shown to prevent neurodegeneration and axonal growth. The activation of radixin is through phosphorylation of its conserved threonine residues. Radixin functions in cell signaling pathways by binding to membrane proteins and relaying the cell signals into the cells. Deficiency of radixin has been involved in the pathogenic process of diseases in the central nervous system and diabetic peripheral nerve injury. Moreover, radixin also plays a role in cell growth and drug resistance in multiple cancers. The trials of therapeutic potential through radixin modulation have been accumulating. However, the exact mechanisms underlying the roles of radixin are far from clarification. CONCLUSIONS Radixin plays various roles in cells and is involved in developing neurodegenerative diseases and many types of cancers. Therefore, radixin may be considered a potential target for developing therapeutic strategies for its related diseases. Further elucidation of the function and the cell signaling pathways that are linked to radixin may open the avenue to finding novel therapeutic strategies for diseases in the nervous system and other body systems.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, New Jersey Medical School, Rutgers University, 185 S. Orange Ave, Newark, NJ 07103, USA
| | - Nizar Souayah
- Department of Neurology, New Jersey Medical School, Rutgers University, 185 S. Orange Ave, Newark, NJ 07103, USA
- Department of Neurology, New Jersey Medical School, Rutgers University, 90 Bergen Street DOC 8100, Newark, NJ 07101, USA
| |
Collapse
|
30
|
De Belly H, Gallen AF, Strickland E, Estrada DC, Zager PJ, Burkhardt JK, Turlier H, Weiner OD. Long range mutual activation establishes Rho and Rac polarity during cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.01.616161. [PMID: 40236007 PMCID: PMC11996577 DOI: 10.1101/2024.10.01.616161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
In migrating cells, the GTPase Rac organizes a protrusive front, whereas Rho organizes a contractile back. How these GTPases are appropriately positioned at the opposite poles of a migrating cell is unknown. Here we leverage optogenetics, manipulation of cell mechanics, and mathematical modeling to reveal a surprising long-range mutual activation of the front and back polarity programs that complements their well-known local mutual inhibition. This long-range activation is rooted in two distinct modes of mechanochemical crosstalk. Local Rac-based protrusion stimulates Rho activation at the opposite side of the cell via membrane tension-based activation of mTORC2. Conversely, local Rho-based contraction induces cortical-flow-based remodeling of membrane-to-cortex interactions leading to PIP2 release, PIP3 generation, and Rac activation at the opposite side of the cell. We develop a minimal unifying mechanochemical model of the cell to explain how this long-range mechanical facilitation complements local biochemical inhibition to enable robust global Rho and Rac partitioning. Finally, we validate the importance of this long-range facilitation in the context of chemoattractant-based cell polarization and migration in primary human lymphocytes. Our findings demonstrate that the actin cortex and plasma membrane function as an integrated mechanochemical system for long-range partitioning of Rac and Rho during cell migration and likely other cellular contexts.
Collapse
|
31
|
Kristó I, Kovács Z, Szabó A, Borkúti P, Gráf A, Sánta ÁT, Pettkó-Szandtner A, Ábrahám E, Honti V, Lipinszki Z, Vilmos P. Moesin contributes to heat shock gene response through direct binding to the Med15 subunit of the Mediator complex in the nucleus. Open Biol 2024; 14:240110. [PMID: 39353569 PMCID: PMC11444770 DOI: 10.1098/rsob.240110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 10/04/2024] Open
Abstract
The members of the evolutionary conserved actin-binding Ezrin, Radixin and Moesin (ERM) protein family are involved in numerous key cellular processes in the cytoplasm. In the last decades, ERM proteins, like actin and other cytoskeletal components, have also been shown to be functional components of the nucleus; however, the molecular mechanism behind their nuclear activities remained unclear. Therefore, our primary aim was to identify the nuclear protein interactome of the single Drosophila ERM protein, Moesin. We demonstrate that Moesin directly interacts with the Mediator complex through direct binding to its Med15 subunit, and the presence of Moesin at the regulatory regions of the Hsp70Ab heat shock gene was found to be Med15-dependent. Both Moesin and Med15 bind to heat shock factor (Hsf), and they are required for proper Hsp gene expression under physiological conditions. Moreover, we confirmed that Moesin, Med15 and Hsf are able to bind the monomeric form of actin and together they form a complex in the nucleus. These results elucidate a mechanism by which ERMs function within the nucleus. Finally, we present the direct interaction of the human orthologues of Drosophila Moesin and Med15, which highlights the evolutionary significance of our finding.
Collapse
Affiliation(s)
- Ildikó Kristó
- Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
| | - Zoltán Kovács
- Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
| | - Anikó Szabó
- Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
| | - Péter Borkúti
- Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
| | - Alexandra Gráf
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
| | - Ádám Tamás Sánta
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged , Szeged, Hungary
- Delta Bio 2000 Ltd. , Szeged 6726, Hungary
| | | | - Edit Ábrahám
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre , Szeged, Hungary
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
| | - Viktor Honti
- Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
| | - Zoltán Lipinszki
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre , Szeged, Hungary
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
| | - Péter Vilmos
- Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
| |
Collapse
|
32
|
Zhang C, Huang Q, Ford NC, Limjunyawong N, Lin Q, Yang F, Cui X, Uniyal A, Liu J, Mahabole M, He H, Wang XW, Duff I, Wang Y, Wan J, Zhu G, Raja SN, Jia H, Yang D, Dong X, Cao X, Tseng SC, He SQ, Guan Y. Human birth tissue products as a non-opioid medicine to inhibit post-surgical pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.19.594874. [PMID: 38826432 PMCID: PMC11142121 DOI: 10.1101/2024.05.19.594874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain. Local application of Clarix Flo (FLO), a human amniotic membrane (AM) product, attenuated established post-surgical pain hypersensitivity without exhibiting known side effects of opioid use in mice. This effect was achieved through direct inhibition of nociceptive dorsal root ganglion (DRG) neurons via CD44-dependent pathways. We further purified the major matrix component, the heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) from human AM that has greater purity and water solubility than FLO. HC-HA/PTX3 replicated FLO-induced neuronal and pain inhibition. Mechanistically, HC-HA/PTX3 induced cytoskeleton rearrangements to inhibit sodium current and high-voltage activated calcium current on nociceptive neurons, suggesting it is a key bioactive component mediating pain relief. Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain. Moreover, we unravel the underlying mechanisms of pain inhibition induced by FLO and HC-HA/PTX3.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Neil C. Ford
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Fei Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xiang Cui
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Ankit Uniyal
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Jing Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | | | - Hua He
- BioTissue, Inc., Miami, Florida, USA
| | - Xue-Wei Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Orthopaedic Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Irina Duff
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Yiru Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Guangwu Zhu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Hongpeng Jia
- Department of Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Dazhi Yang
- Acrogenic Technologies Inc., Rockville, Maryland, 20847, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | | | - Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
33
|
Marshall-Burghardt S, Migueles-Ramírez RA, Lin Q, El Baba N, Saada R, Umar M, Mavalwala K, Hayer A. Excitable Rho dynamics control cell shape and motility by sequentially activating ERM proteins and actomyosin contractility. SCIENCE ADVANCES 2024; 10:eadn6858. [PMID: 39241071 PMCID: PMC11378911 DOI: 10.1126/sciadv.adn6858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/31/2024] [Indexed: 09/08/2024]
Abstract
Migration of endothelial and many other cells requires spatiotemporal regulation of protrusive and contractile cytoskeletal rearrangements that drive local cell shape changes. Unexpectedly, the small GTPase Rho, a crucial regulator of cell movement, has been reported to be active in both local cell protrusions and retractions, raising the question of how Rho activity can coordinate cell migration. Here, we show that Rho activity is absent in local protrusions and active during retractions. During retractions, Rho rapidly activated ezrin-radixin-moesin proteins (ERMs) to increase actin-membrane attachment, and, with a delay, nonmuscle myosin 2 (NM2). Rho activity was excitable, with NM2 acting as a slow negative feedback regulator. Strikingly, inhibition of SLK/LOK kinases, through which Rho activates ERMs, caused elongated cell morphologies, impaired Rho-induced cell contractions, and reverted Rho-induced blebbing. Together, our study demonstrates that Rho activity drives retractions by sequentially enhancing ERM-mediated actin-membrane attachment for force transmission and NM2-dependent contractility.
Collapse
Affiliation(s)
- Seph Marshall-Burghardt
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
- Graduate Program in Biology, McGill University, Montréal, Québec, Canada
| | - Rodrigo A Migueles-Ramírez
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
- PhD Program in Quantitative Life Sciences, McGill University, Montréal, Québec, Canada
| | - Qiyao Lin
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
- Graduate Program in Biology, McGill University, Montréal, Québec, Canada
| | - Nada El Baba
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
- Graduate Program in Biology, McGill University, Montréal, Québec, Canada
| | - Rayan Saada
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Mustakim Umar
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Kian Mavalwala
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Arnold Hayer
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
| |
Collapse
|
34
|
Dufrancais O, Verdys P, Plozza M, Métais A, Juzans M, Sanchez T, Bergert M, Halper J, Panebianco CJ, Mascarau R, Gence R, Arnaud G, Neji MB, Maridonneau-Parini I, Cabec VL, Boerckel JD, Pavlos NJ, Diz-Muñoz A, Lagarrigue F, Blin-Wakkach C, Carréno S, Poincloux R, Burkhardt JK, Raynaud-Messina B, Vérollet C. Moesin controls cell-cell fusion and osteoclast function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593799. [PMID: 38798563 PMCID: PMC11118517 DOI: 10.1101/2024.05.13.593799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cell-cell fusion is an evolutionarily conserved process that is essential for many functions, including fertilisation and the formation of placenta, muscle and osteoclasts, multinucleated cells that are unique in their ability to resorb bone. The mechanisms of osteoclast multinucleation involve dynamic interactions between the actin cytoskeleton and the plasma membrane that are still poorly characterized. Here, we found that moesin, a cytoskeletal linker protein member of the Ezrin/Radixin/Moesin (ERM) protein family, is activated during osteoclast maturation and plays an instrumental role in both osteoclast fusion and function. In mouse and human osteoclast precursors, moesin inhibition favors their ability to fuse into multinucleated osteoclasts. Accordingly, we demonstrated that moesin depletion decreases membrane-to-cortex attachment and enhances the formation of tunneling nanotubes (TNTs), F-actin-based intercellular bridges that we reveal here to trigger cell-cell fusion. Moesin also controls HIV-1- and inflammation-induced cell fusion. In addition, moesin regulates the formation of the sealing zone, the adhesive structure determining osteoclast bone resorption area, and thus controls bone degradation, via a β3-integrin/RhoA/SLK pathway. Supporting our results, moesin - deficient mice present a reduced density of trabecular bones and increased osteoclast abundance and activity. These findings provide a better understanding of the regulation of cell-cell fusion and osteoclast biology, opening new opportunities to specifically target osteoclast activity in bone disease therapy.
Collapse
|
35
|
Brandt N, Köper F, Hausmann J, Bräuer AU. Spotlight on plasticity-related genes: Current insights in health and disease. Pharmacol Ther 2024; 260:108687. [PMID: 38969308 DOI: 10.1016/j.pharmthera.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The development of the central nervous system is highly complex, involving numerous developmental processes that must take place with high spatial and temporal precision. This requires a series of complex and well-coordinated molecular processes that are tighly controlled and regulated by, for example, a variety of proteins and lipids. Deregulations in these processes, including genetic mutations, can lead to the most severe maldevelopments. The present review provides an overview of the protein family Plasticity-related genes (PRG1-5), including their role during neuronal differentiation, their molecular interactions, and their participation in various diseases. As these proteins can modulate the function of bioactive lipids, they are able to influence various cellular processes. Furthermore, they are dynamically regulated during development, thus playing an important role in the development and function of synapses. First studies, conducted not only in mouse experiments but also in humans, revealed that mutations or dysregulations of these proteins lead to changes in lipid metabolism, resulting in severe neurological deficits. In recent years, as more and more studies have shown their involvement in a broad range of diseases, the complexity and broad spectrum of known and as yet unknown interactions between PRGs, lipids, and proteins make them a promising and interesting group of potential novel therapeutic targets.
Collapse
Affiliation(s)
- Nicola Brandt
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Franziska Köper
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jens Hausmann
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
36
|
Alonso-Matilla R, Lam AR, Miettinen TP. Cell-intrinsic mechanical regulation of plasma membrane accumulation at the cytokinetic furrow. Proc Natl Acad Sci U S A 2024; 121:e2320769121. [PMID: 38990949 PMCID: PMC11260091 DOI: 10.1073/pnas.2320769121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Cytokinesis is the process where the mother cell's cytoplasm separates into daughter cells. This is driven by an actomyosin contractile ring that produces cortical contractility and drives cleavage furrow ingression, resulting in the formation of a thin intercellular bridge. While cytoskeletal reorganization during cytokinesis has been extensively studied, less is known about the spatiotemporal dynamics of the plasma membrane. Here, we image and model plasma membrane lipid and protein dynamics on the cell surface during leukemia cell cytokinesis. We reveal an extensive accumulation and folding of the plasma membrane at the cleavage furrow and the intercellular bridge, accompanied by a depletion and unfolding of the plasma membrane at the cell poles. These membrane dynamics are caused by two actomyosin-driven biophysical mechanisms: the radial constriction of the cleavage furrow causes local compression of the apparent cell surface area and accumulation of the plasma membrane at the furrow, while actomyosin cortical flows drag the plasma membrane toward the cell division plane as the furrow ingresses. The magnitude of these effects depends on the plasma membrane fluidity, cortex adhesion, and cortical contractility. Overall, our work reveals cell-intrinsic mechanical regulation of plasma membrane accumulation at the cleavage furrow that is likely to generate localized differences in membrane tension across the cytokinetic cell. This may locally alter endocytosis, exocytosis, and mechanotransduction, while also serving as a self-protecting mechanism against cytokinesis failures that arise from high membrane tension at the intercellular bridge.
Collapse
Affiliation(s)
| | - Alice R. Lam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
37
|
Alonso-Matilla R, Provenzano PP, Odde DJ. Biophysical modeling identifies an optimal hybrid amoeboid-mesenchymal phenotype for maximal T cell migration speeds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.29.564655. [PMID: 39026744 PMCID: PMC11257493 DOI: 10.1101/2023.10.29.564655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Despite recent experimental progress in characterizing cell migration mechanics, our understanding of the mechanisms governing rapid cell movement remains limited. To effectively limit tumor growth, antitumoral T cells need to rapidly migrate to find and kill cancer cells. To investigate the upper limits of cell speed, we developed a new hybrid stochastic-mean field model of bleb-based cell motility. We first examined the potential for adhesion-free bleb-based migration and show that cells migrate inefficiently in the absence of adhesion-based forces, i.e., cell swimming. While no cortical contractility oscillations are needed for cells to swim in viscoelastic media, high-to-low cortical contractility oscillations are necessary for cell swimming in viscous media. This involves a high cortical contractility phase with multiple bleb nucleation events, followed by an intracellular pressure buildup recovery phase at low cortical tensions, resulting in modest net cell motion. However, our model suggests that cells can employ a hybrid bleb- and adhesion-based migration mechanism for rapid cell motility and identifies conditions for optimality. The model provides a momentum-conserving mechanism underlying rapid single-cell migration and identifies factors as design criteria for engineering T cell therapies to improve movement in mechanically complex environments.
Collapse
Affiliation(s)
- Roberto Alonso-Matilla
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN, USA
| | - Paolo P. Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, USA
- Department of Hematology, Oncology, and Transplantation, University of Minnesota, USA
- Stem Cell Institute, University of Minnesota, USA
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, USA
| |
Collapse
|
38
|
Strandberg H, Hagströmer CJ, Werin B, Wendler M, Johanson U, Törnroth-Horsefield S. Structural Basis for the Interaction between the Ezrin FERM-Domain and Human Aquaporins. Int J Mol Sci 2024; 25:7672. [PMID: 39062914 PMCID: PMC11277499 DOI: 10.3390/ijms25147672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The Ezrin/Radixin/Moesin (ERM) family of proteins act as cross-linkers between the plasma membrane and the actin cytoskeleton. This mechanism plays an essential role in processes related to membrane remodeling and organization, such as cell polarization, morphogenesis and adhesion, as well as in membrane protein trafficking and signaling pathways. For several human aquaporin (AQP) isoforms, an interaction between the ezrin band Four-point-one, Ezrin, Radixin, Moesin (FERM)-domain and the AQP C-terminus has been demonstrated, and this is believed to be important for AQP localization in the plasma membrane. Here, we investigate the structural basis for the interaction between ezrin and two human AQPs: AQP2 and AQP5. Using microscale thermophoresis, we show that full-length AQP2 and AQP5 as well as peptides corresponding to their C-termini interact with the ezrin FERM-domain with affinities in the low micromolar range. Modelling of the AQP2 and AQP5 FERM complexes using ColabFold reveals a common mode of binding in which the proximal and distal parts of the AQP C-termini bind simultaneously to distinct binding sites of FERM. While the interaction at each site closely resembles other FERM-complexes, the concurrent interaction with both sites has only been observed in the complex between moesin and its C-terminus which causes auto-inhibition. The proposed interaction between AQP2/AQP5 and FERM thus represents a novel binding mode for extrinsic ERM-interacting partners.
Collapse
Affiliation(s)
| | | | | | | | | | - Susanna Törnroth-Horsefield
- Department of Biochemistry and Structural Biology, Lund University, 221 00 Lund, Sweden; (H.S.); (C.J.H.); (B.W.); (M.W.); (U.J.)
| |
Collapse
|
39
|
Sun B, Liu L, Han L, Li Q, Wu Q, Hou J, Wang W, Ying W, Zhou Q, Qian F, Lu W, Wang X, Sun J. Novel Mutation in the Moesin (MSN) Gene Leads to Immunodeficiency with Epstein-Barr Virus (EBV) Infection and Dermatomyositis-Like Symptoms. J Clin Immunol 2024; 44:155. [PMID: 38922539 DOI: 10.1007/s10875-024-01755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE Moesin (MSN) deficiency is a recently reported combined immunodeficiency, and few cases have been reported to date. We describe a Chinese patient with a novel mutation causing MSN deficiency and a novel phenotype. METHODS Clinical and immunological data were collected. Whole-exome sequencing was performed to identify gene mutations. MSN protein expression and T cell proliferation and activation were determined by flow cytometry. Cell migration was confirmed with a Transwell assay. Autoantibody levels were analyzed using antigen microarrays. RESULTS The patient was a 10-year-old boy who presented with recurrent fever, oral ulcers and dermatomyositis-like symptoms, such as periorbital edema, facial swelling, elevated creatine kinase levels, and abnormal electromyography and muscle biopsy results. Epstein-Barr virus (EBV) DNA was detected in the serum, cells and tissues of this patient. He further developed nasal-type NK/T-cell lymphoma. A novel hemizygous mutation (c.68 A > G, p.N23S) in the MSN gene was found. The immunological phenotype of this patient included persistent decreases in T and B lymphocyte counts but normal immunoglobulin IgG levels. The patient had attenuated MSN protein expression and impaired T-cell proliferation and migration. The proportions of Tfh cells and CD21low B cells in the patient were higher than those in the controls. Moreover, 82 IgG and 102 IgM autoantibodies were more abundant in the patient than in the healthy controls. CONCLUSIONS The novel mutation N23S is pathogenic and leads to a severe clinical phenotype. EBV infection, tumor, and dermatomyositis-like autoimmune symptoms may be associated with MSN deficiency, further expanding the understanding of the disease.
Collapse
Affiliation(s)
- Bijun Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Luyao Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Lingli Han
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qifan Li
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qi Wu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jia Hou
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Feng Qian
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wei Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 200032, China.
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children Medical Center, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
40
|
Prever L, Squillero G, Hirsch E, Gulluni F. Linking phosphoinositide function to mitosis. Cell Rep 2024; 43:114273. [PMID: 38843397 DOI: 10.1016/j.celrep.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
Phosphoinositides (PtdIns) are a family of differentially phosphorylated lipid second messengers localized to the cytoplasmic leaflet of both plasma and intracellular membranes. Kinases and phosphatases can selectively modify the PtdIns composition of different cellular compartments, leading to the recruitment of specific binding proteins, which control cellular homeostasis and proliferation. Thus, while PtdIns affect cell growth and survival during interphase, they are also emerging as key drivers in multiple temporally defined membrane remodeling events of mitosis, like cell rounding, spindle orientation, cytokinesis, and abscission. In this review, we summarize and discuss what is known about PtdIns function during mitosis and how alterations in the production and removal of PtdIns can interfere with proper cell division.
Collapse
Affiliation(s)
- Lorenzo Prever
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Gabriele Squillero
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Emilio Hirsch
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| | - Federico Gulluni
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| |
Collapse
|
41
|
Carpanese V, Festa M, Prosdocimi E, Bachmann M, Sadeghi S, Bertelli S, Stein F, Velle A, Abdel-Salam MAL, Romualdi C, Pusch M, Checchetto V. Interactomic exploration of LRRC8A in volume-regulated anion channels. Cell Death Discov 2024; 10:299. [PMID: 38909013 PMCID: PMC11193767 DOI: 10.1038/s41420-024-02032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/24/2024] Open
Abstract
Ion channels are critical in enabling ion movement into and within cells and are important targets for pharmacological interventions in different human diseases. In addition to their ion transport abilities, ion channels interact with signalling and scaffolding proteins, which affects their function, cellular positioning, and links to intracellular signalling pathways. The study of "channelosomes" within cells has the potential to uncover their involvement in human diseases, although this field of research is still emerging. LRRC8A is the gene that encodes a crucial protein involved in the formation of volume-regulated anion channels (VRACs). Some studies suggest that LRRC8A could be a valuable prognostic tool in different types of cancer, serving as a biomarker for predicting patients' outcomes. LRRC8A expression levels might be linked to tumour progression, metastasis, and treatment response, although its implications in different cancer types can be varied. Here, publicly accessible databases of cancer patients were systematically analysed to determine if a correlation between VRAC channel expression and survival rate exists across distinct cancer types. Moreover, we re-evaluated the impact of LRRC8A on cellular proliferation and migration in colon cancer via HCT116 LRRC8A-KO cells, which is a current topic of debate in the literature. In addition, to investigate the role of LRRC8A in cellular signalling, we conducted biotin proximity-dependent identification (BioID) analysis, revealing a correlation between VRAC channels and cell-cell junctions, mechanisms that govern cellular calcium homeostasis, kinases, and GTPase signalling. Overall, this dataset improves our understanding of LRRC8A/VRAC and explores new research avenues while identifying promising therapeutic targets and promoting inventive methods for disease treatment.
Collapse
Affiliation(s)
| | - Margherita Festa
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
- Institute of Biophysics, CNR, Via De Marini, 6 16149, Genova, Italy
| | | | - Magdalena Bachmann
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
- Daba Farber Cancer Research Institute, Boston, MA, USA
| | - Soha Sadeghi
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Sara Bertelli
- Institute of Biophysics, CNR, Via De Marini, 6, 16149, Genova, Italy
- Humboldt Universität Berlin, AG Zelluläre Biophysik, Dorotheenstr, 19-21 10099, Berlin, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Angelo Velle
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Mostafa A L Abdel-Salam
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Chiara Romualdi
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
- Padua Center for Network Medicine, University of Padua, Via F. Marzolo 8, 315126, Padova, Italy
| | - Michael Pusch
- Institute of Biophysics, CNR, Via De Marini, 6, 16149, Genova, Italy
- RAISE Ecosystem, Genova, Italy
| | | |
Collapse
|
42
|
Piszker W, Simunovic M. The fusion of physics and biology in early mammalian embryogenesis. Curr Top Dev Biol 2024; 160:31-64. [PMID: 38937030 DOI: 10.1016/bs.ctdb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Biomechanics in embryogenesis is a dynamic field intertwining the physical forces and biological processes that shape the first days of a mammalian embryo. From the first cell fate bifurcation during blastulation to the complex symmetry breaking and tissue remodeling in gastrulation, mechanical cues appear critical in cell fate decisions and tissue patterning. Recent strides in mouse and human embryo culture, stem cell modeling of mammalian embryos, and biomaterial design have shed light on the role of cellular forces, cell polarization, and the extracellular matrix in influencing cell differentiation and morphogenesis. This chapter highlights the essential functions of biophysical mechanisms in blastocyst formation, embryo implantation, and early gastrulation where the interplay between the cytoskeleton and extracellular matrix stiffness orchestrates the intricacies of embryogenesis and placenta specification. The advancement of in vitro models like blastoids, gastruloids, and other types of embryoids, has begun to faithfully recapitulate human development stages, offering new avenues for exploring the biophysical underpinnings of early development. The integration of synthetic biology and advanced biomaterials is enhancing the precision with which we can mimic and study these processes. Looking ahead, we emphasize the potential of CRISPR-mediated genomic perturbations coupled with live imaging to uncover new mechanosensitive pathways and the application of engineered biomaterials to fine-tune the mechanical conditions conducive to embryonic development. This synthesis not only bridges the gap between experimental models and in vivo conditions to advancing fundamental developmental biology of mammalian embryogenesis, but also sets the stage for leveraging biomechanical insights to inform regenerative medicine.
Collapse
Affiliation(s)
- Walter Piszker
- Department of Chemical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, NY, United States; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, United States
| | - Mijo Simunovic
- Department of Chemical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, NY, United States; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, United States; Department of Genetics and Development, Columbia Irving Medical Center, New York, NY, United States.
| |
Collapse
|
43
|
Ichioka S, Satooka H, Maruo Y, Hirata T. Moesin deficiency leads to lupus-like nephritis with accumulation of CXCL13-producing patrolling monocytes. Biochem Biophys Res Commun 2024; 712-713:149943. [PMID: 38640733 DOI: 10.1016/j.bbrc.2024.149943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Moesin is a member of the ezrin-radixin-moesin (ERM) family of proteins that link plasma membrane proteins to the cortical cytoskeleton and thus regulate diverse cellular processes. Mutations in the human moesin gene cause a primary immunodeficiency called X-linked moesin-associated immunodeficiency (X-MAID), which may be complicated by an autoimmune phenotype with kidney involvement. We previously reported that moesin-deficient mice exhibit lymphopenia similar to that of X-MAID and develop a lupus-like autoimmune phenotype with age. However, the mechanism through which moesin defects cause kidney pathology remains obscure. Here, we characterized immune cell infiltration and chemokine expression in the kidney of moesin-deficient mice. We found accumulation of CD4+ T and CD11b+ myeloid cells and high expression of CXCL13, whose upregulation was detected before the onset of overt nephritis. CD4+ T cell population contained IFN-γ-producing effectors and expressed the CXCL13 receptor CXCR5. Among myeloid cells, Ly6Clo patrolling monocytes and MHCIIlo macrophages markedly accumulated in moesin-deficient kidneys and expressed high CXCL13 levels, implicating the CXCL13-CXCR5 axis in nephritis development. Functionally, Ly6Clo monocytes from moesin-deficient mice showed reduced migration toward sphingosine 1-phosphate. These findings suggest that moesin plays a role in regulating patrolling monocyte homeostasis, and that its defects lead to nephritis associated with accumulation of CXCL13-producing monocytes and macrophages.
Collapse
Affiliation(s)
- Satoko Ichioka
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan; Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Hiroki Satooka
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Takako Hirata
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
44
|
Tsai FC, Guérin G, Pernier J, Bassereau P. Actin-membrane linkers: Insights from synthetic reconstituted systems. Eur J Cell Biol 2024; 103:151402. [PMID: 38461706 DOI: 10.1016/j.ejcb.2024.151402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
At the cell surface, the actin cytoskeleton and the plasma membrane interact reciprocally in a variety of processes related to the remodeling of the cell surface. The actin cytoskeleton has been known to modulate membrane organization and reshape the membrane. To this end, actin-membrane linking molecules play a major role in regulating actin assembly and spatially direct the interaction between the actin cytoskeleton and the membrane. While studies in cells have provided a wealth of knowledge on the molecular composition and interactions of the actin-membrane interface, the complex molecular interactions make it challenging to elucidate the precise actions of the actin-membrane linkers at the interface. Synthetic reconstituted systems, consisting of model membranes and purified proteins, have been a powerful approach to elucidate how actin-membrane linkers direct actin assembly to drive membrane shape changes. In this review, we will focus only on several actin-membrane linkers that have been studied by using reconstitution systems. We will discuss the design principles of these reconstitution systems and how they have contributed to the understanding of the cellular functions of actin-membrane linkers. Finally, we will provide a perspective on future research directions in understanding the intricate actin-membrane interaction.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| | - Gwendal Guérin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France
| | - Julien Pernier
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94800, France
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| |
Collapse
|
45
|
Kasuba KC, Buccino AP, Bartram J, Gaub BM, Fauser FJ, Ronchi S, Kumar SS, Geissler S, Nava MM, Hierlemann A, Müller DJ. Mechanical stimulation and electrophysiological monitoring at subcellular resolution reveals differential mechanosensation of neurons within networks. NATURE NANOTECHNOLOGY 2024; 19:825-833. [PMID: 38378885 PMCID: PMC11186759 DOI: 10.1038/s41565-024-01609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024]
Abstract
A growing consensus that the brain is a mechanosensitive organ is driving the need for tools that mechanically stimulate and simultaneously record the electrophysiological response of neurons within neuronal networks. Here we introduce a synchronized combination of atomic force microscopy, high-density microelectrode array and fluorescence microscopy to monitor neuronal networks and to mechanically characterize and stimulate individual neurons at piconewton force sensitivity and nanometre precision while monitoring their electrophysiological activity at subcellular spatial and millisecond temporal resolution. No correlation is found between mechanical stiffness and electrophysiological activity of neuronal compartments. Furthermore, spontaneously active neurons show exceptional functional resilience to static mechanical compression of their soma. However, application of fast transient (∼500 ms) mechanical stimuli to the neuronal soma can evoke action potentials, which depend on the anchoring of neuronal membrane and actin cytoskeleton. Neurons show higher responsivity, including bursts of action potentials, to slower transient mechanical stimuli (∼60 s). Moreover, transient and repetitive application of the same compression modulates the neuronal firing rate. Seemingly, neuronal networks can differentiate and respond to specific characteristics of mechanical stimulation. Ultimately, the developed multiparametric tool opens the door to explore manifold nanomechanobiological responses of neuronal systems and new ways of mechanical control.
Collapse
Affiliation(s)
| | | | - Julian Bartram
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Benjamin M Gaub
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Felix J Fauser
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | - Sydney Geissler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Michele M Nava
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
46
|
Mukhopadhyay U, Mandal T, Chakraborty M, Sinha B. The Plasma Membrane and Mechanoregulation in Cells. ACS OMEGA 2024; 9:21780-21797. [PMID: 38799362 PMCID: PMC11112598 DOI: 10.1021/acsomega.4c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Cells inhabit a mechanical microenvironment that they continuously sense and adapt to. The plasma membrane (PM), serving as the boundary of the cell, plays a pivotal role in this process of adaptation. In this Review, we begin by examining well-studied processes where mechanoregulation proves significant. Specifically, we highlight examples from the immune system and stem cells, besides discussing processes involving fibroblasts and other cell types. Subsequently, we discuss the common molecular players that facilitate the sensing of the mechanical signal and transform it into a chemical response covering integrins YAP/TAZ and Piezo. We then review how this understanding of molecular elements is leveraged in drug discovery and tissue engineering alongside a discussion of the methodologies used to measure mechanical properties. Focusing on the processes of endocytosis, we discuss how cells may respond to altered membrane mechanics using endo- and exocytosis. Through the process of depleting/adding the membrane area, these could also impact membrane mechanics. We compare pathways from studies illustrating the involvement of endocytosis in mechanoregulation, including clathrin-mediated endocytosis (CME) and the CLIC/GEEC (CG) pathway as central examples. Lastly, we review studies on cell-cell fusion during myogenesis, the mechanical integrity of muscle fibers, and the reported and anticipated roles of various molecular players and processes like endocytosis, thereby emphasizing the significance of mechanoregulation at the PM.
Collapse
Affiliation(s)
- Upasana Mukhopadhyay
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Tithi Mandal
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | | | - Bidisha Sinha
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
47
|
Picas L, André-Arpin C, Comunale F, Bousquet H, Tsai FC, Rico F, Maiuri P, Pernier J, Bodin S, Nicot AS, Laporte J, Bassereau P, Goud B, Gauthier-Rouvière C, Miserey S. BIN1 regulates actin-membrane interactions during IRSp53-dependent filopodia formation. Commun Biol 2024; 7:549. [PMID: 38724689 PMCID: PMC11082164 DOI: 10.1038/s42003-024-06168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Amphiphysin 2 (BIN1) is a membrane and actin remodeling protein mutated in congenital and adult centronuclear myopathies. Here, we report an unexpected function of this N-BAR domain protein BIN1 in filopodia formation. We demonstrated that BIN1 expression is necessary and sufficient to induce filopodia formation. BIN1 is present at the base of forming filopodia and all along filopodia, where it colocalizes with F-actin. We identify that BIN1-mediated filopodia formation requires IRSp53, which allows its localization at negatively-curved membrane topologies. Our results show that BIN1 bundles actin in vitro. Finally, we identify that BIN1 regulates the membrane-to-cortex architecture and functions as a molecular platform to recruit actin-binding proteins, dynamin and ezrin, to promote filopodia formation.
Collapse
Affiliation(s)
- Laura Picas
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS UMR 9004, Montpellier, France.
| | - Charlotte André-Arpin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS UMR 9004, Montpellier, France
| | - Franck Comunale
- CRBM, University of Montpellier, CNRS UMR 5237, Montpellier, France
| | - Hugo Bousquet
- Institut Curie, CNRS UMR 144, PSL Research University, Paris, France
| | - Feng-Ching Tsai
- Institut Curie, CNRS UMR 168, PSL Research University, Paris, France
| | - Félix Rico
- Aix-Marseille Université, U1325 INSERM, DyNaMo, Turing center for living systems, Marseille, France
| | - Paolo Maiuri
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Julien Pernier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphane Bodin
- CRBM, University of Montpellier, CNRS UMR 5237, Montpellier, France
| | - Anne-Sophie Nicot
- Grenoble Alpes University, INSERM U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Jocelyn Laporte
- Department of Translational Medicine, IGBMC, U1258, UMR7104 Strasbourg University, Collège de France, Illkirch, France
| | | | - Bruno Goud
- Institut Curie, CNRS UMR 144, PSL Research University, Paris, France
| | | | - Stéphanie Miserey
- Institut Curie, CNRS UMR 144, PSL Research University, Paris, France.
| |
Collapse
|
48
|
Wang S, Ma S, Li H, Dao M, Li X, Karniadakis GE. Two-component macrophage model for active phagocytosis with pseudopod formation. Biophys J 2024; 123:1069-1084. [PMID: 38532625 PMCID: PMC11079866 DOI: 10.1016/j.bpj.2024.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/20/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Macrophage phagocytosis is critical for the immune response, homeostasis regulation, and tissue repair. This intricate process involves complex changes in cell morphology, cytoskeletal reorganization, and various receptor-ligand interactions controlled by mechanical constraints. However, there is a lack of comprehensive theoretical and computational models that investigate the mechanical process of phagocytosis in the context of cytoskeletal rearrangement. To address this issue, we propose a novel coarse-grained mesoscopic model that integrates a fluid-like cell membrane and a cytoskeletal network to study the dynamic phagocytosis process. The growth of actin filaments results in the formation of long and thin pseudopods, and the initial cytoskeleton can be disassembled upon target entry and reconstructed after phagocytosis. Through dynamic changes in the cytoskeleton, our macrophage model achieves active phagocytosis by forming a phagocytic cup utilizing pseudopods in two distinct ways. We have developed a new algorithm for modifying membrane area to prevent membrane rupture and ensure sufficient surface area during phagocytosis. In addition, the bending modulus, shear stiffness, and cortical tension of the macrophage model are investigated through computation of the axial force for the tubular structure and micropipette aspiration. With this model, we simulate active phagocytosis at the cytoskeletal level and investigate the mechanical process during the dynamic interplay between macrophage and target particles.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuhao Ma
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang, China
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang, China.
| | | |
Collapse
|
49
|
Di Meo D, Kundu T, Ravindran P, Shah B, Püschel AW. Pip5k1γ regulates axon formation by limiting Rap1 activity. Life Sci Alliance 2024; 7:e202302383. [PMID: 38438249 PMCID: PMC10912816 DOI: 10.26508/lsa.202302383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
During their differentiation, neurons establish a highly polarized morphology by forming axons and dendrites. Cortical and hippocampal neurons initially extend several short neurites that all have the potential to become an axon. One of these neurites is then selected as the axon by a combination of positive and negative feedback signals that promote axon formation and prevent the remaining neurites from developing into axons. Here, we show that Pip5k1γ is required for the formation of a single axon as a negative feedback signal that regulates C3G and Rap1 through the generation of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). Impairing the function of Pip5k1γ results in a hyper-activation of the Fyn/C3G/Rap1 pathway, which induces the formation of supernumerary axons. Application of a hyper-osmotic shock to modulate membrane tension has a similar effect, increasing Rap1 activity and inducing the formation of supernumerary axons. In both cases, the induction of supernumerary axons can be reverted by expressing constitutively active Pip5k. Our results show that PI(4,5)P2-dependent membrane properties limit the activity of C3G and Rap1 to ensure the extension of a single axon.
Collapse
Affiliation(s)
- Danila Di Meo
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany
| | - Trisha Kundu
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany
| | - Priyadarshini Ravindran
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
| | - Bhavin Shah
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
| | - Andreas W Püschel
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany
| |
Collapse
|
50
|
Yu H, Luo C, Linghu R, Yang J, Wu H. Ezrin Contributes to the Damage of Airway Epithelial Barrier Related to Diabetes Mellitus. J Inflamm Res 2024; 17:2609-2621. [PMID: 38689797 PMCID: PMC11060175 DOI: 10.2147/jir.s449487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Background Diabetes mellitus predisposes individuals to respiratory infections. The airway epithelial barrier provides defense against inhaled antigens and pathogens. Ezrin, is a component of the membrane-cytoskeleton that maintains the cellular morphology, intercellular adhesion, and barrier function of epithelial cells. This study aimed to explore the role of ezrin in airway epithelial barrier damage and correlate its expression and activation with diabetes mellitus. Methods This study was performed in a murine model of diabetes mellitus and with human bronchial epithelial BEAS-2B cells using real-time PCR, Western blotting, immunohistochemical and immunofluorescence staining. Ezrin was knocked down in BEAS-2B cells using siRNA. Ezrin phosphorylation levels were measured to determine activation status. The integrity of the airway epithelial barrier was assessed in vivo by characterizing morphological structure, and in vitro in BEAS-2B cells by measuring tight junction protein expression, transepithelial electrical resistance (TER) and permeability. Results We demonstrated that ezrin expression levels were lower in the lung tissue and airway epithelium of diabetic mice than those in control mice. The morphological structure of the airway epithelium was altered in diabetic mice. High glucose levels downregulated the expression and distribution of ezrin and connexin 43, reduced the expression of tight junction proteins, and altered the epithelial barrier characteristics of BEAS-2B cells. Ezrin knockdown had effects similar to those of high glucose levels. Moreover, a specific inhibitor of ezrin Thr567 phosphorylation (NSC305787) inhibited epithelial barrier formation. Conclusion These results demonstrate that ezrin expression and activation are associated with airway epithelial damage in diabetes mellitus. These findings provide new insights into the molecular pathogenesis of pulmonary infections in diabetes mellitus and may lead to novel therapeutic interventions for airway epithelial barrier damage.
Collapse
Affiliation(s)
- Hongmei Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Cheng Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ru Linghu
- Department of Internal Medicine, Hospital of Chongqing University, Chongqing, People’s Republic of China
| | - Juan Yang
- Department of Respiratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Haiqiao Wu
- Department of Respiratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| |
Collapse
|