1
|
Dinoto A, Pacenti M, Mariotto S, Abate D, Lisi V, Satto S, Vogiatzis S, Chiodega V, Carta S, Ferrari S, Barzon L. Serum levels of neurofilament light chain and glial fibrillary acidic protein correlate with disease severity in patients with West Nile virus infection. Emerg Microbes Infect 2025; 14:2447606. [PMID: 39945666 PMCID: PMC11849020 DOI: 10.1080/22221751.2024.2447606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 11/24/2024] [Accepted: 12/22/2024] [Indexed: 02/18/2025]
Abstract
West Nile virus (WNV) is a neurotropic mosquito-borne orthoflavivirus, representing a relevant public health threat. Identification of biomarkers that would predict the course of WNV infection is of interest for the early identification of patients at risk and for supporting decisions on therapeutic interventions. In this study, serum levels of glial fibrillary acidic protein (sGFAP) and neurofilament light chain (sNfL), which are markers of brain tissue damage and inflammation, were analysed in 103 subjects with laboratory-confirmed WNV infection, comprising 13 asymptomatic blood donors, 23 with WN fever (WNF), 50 with encephalitis/meningoencephalitis (E/ME) and 17 with acute flaccid paralysis (AFP). In addition, 55 WNV-negative subjects with fever, encephalitis or healthy asymptomatic were included as controls. Age-adjusted levels of both sNfL and sGFAP were significantly higher in patients with neuroinvasive disease than in those with fever or asymptomatic (both WNV-positive and WNV-negative), suggesting a broad association of these biomarkers with systemic inflammation and brain injury resulting from infection. In WNV patients, the combined analysis of sNfL and sGFAP early after symptom onset allowed discrimination between neuroinvasive disease and fever with 67.2% sensitivity and 91.3% specificity, but not between E/ME and AFP. Furthermore, high levels of sNfL and sGFAP were significantly associated with prolonged hospital stay, intensive care unit admission and the occurrence of death or severe sequelae. Detection of WNV RNA in CSF was associated with increased sGFAP. In conclusion, our study indicates the potential utility of sNfL and sGFAP as biomarkers of WNV disease severity and adverse outcome.
Collapse
Affiliation(s)
- Alessandro Dinoto
- Section of Neurology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Monia Pacenti
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | - Sara Mariotto
- Section of Neurology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Davide Abate
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Vittoria Lisi
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | - Sorsha Satto
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | | | - Vanessa Chiodega
- Section of Neurology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sara Carta
- Section of Neurology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sergio Ferrari
- Section of Neurology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Luisa Barzon
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Tripathi S, Sengar S, Basu A, Sharma V. LncRNA JINR1 regulates miR-216b-5p/GRP78 and miR-1-3p/DDX5 axis to promote JEV infection and cell death. J Virol 2025; 99:e0006625. [PMID: 40272157 PMCID: PMC12090723 DOI: 10.1128/jvi.00066-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/30/2025] [Indexed: 04/25/2025] Open
Abstract
Japanese encephalitis virus (JEV) infection in the central nervous system (CNS) leads to neuroinflammation and neuronal cell death. Several long non-coding RNAs (lncRNAs) are differentially expressed during viral infection and regulate multiple aspects of viral pathogenesis. Previously, we have shown that JEV/West Nile virus (WNV) infection promotes JEV-induced non-coding RNA 1 (JINR1) expression in SH-SY5Y cells, and it interacts with RNA-binding motif protein 10 (RBM10) to enhance cell death and viral replication. In this study, we show that JEV or WNV infection of the SH-SY5Y cells inhibits the expression of microRNAs (miRNAs) miR-216b-5p and miR-1-3p. These miRNAs bind to the JEV/WNV genome, and their overexpression during JEV/WNV infection reduces viral replication and cell death. Depleting JINR1 or RBM10 during viral infection prevents the downregulation of miR-216b-5p and miR-1-3p. In addition, JINR1 or RBM10 knockdown during JEV/WNV infection enhances the binding of RNA Pol II and H3K4me3 at the promoters of miR-216b-5p and miR-1-3p. JINR1 or RBM10 depletion also prevents the binding of H3K27me3 at the promoters of these miRNAs, suggesting that JINR1 and RBM10 are involved in their transcription repression. Interestingly, JINR1 also acts as a competing endogenous RNA (ceRNA) that directly binds to miR-216b-5p and miR-1-3p, resulting in the upregulation of their targets glucose-regulated protein 78 (GRP78) and DEAD-Box Helicase 5 (DDX5), respectively, which are involved in regulating viral replication. Our findings suggest that JINR1 uses multiple mechanisms to promote JEV and WNV infection in neuronal cells. IMPORTANCE Infection of the central nervous system (CNS) by Japanese encephalitis virus (JEV) or West Nile virus (WNV) leads to neuroinflammation and neuronal cell death. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) regulate viral infection by regulating the expression of host genes. However, knowledge about the interplay between lncRNAs and miRNAs during JEN/WNV infection is limited. We show that JEV/WNV infection inhibits the expression of anti-viral host miRNAs miR-216b-5p and miR-1-3p. These miRNAs inhibit the JEV and WNV replication by directly binding with their genome. JINR1 and its interacting protein, RBM10, inhibit the transcription of miR-216b-5p and miR-1-3p. Interestingly, JINR1 also binds and sequesters miR-216b-5p and miR-1-3p, resulting in upregulation of their targets GRP78 and DDX5, respectively, which promote viral infection. Our findings suggest that lncRNA JINR1 is a potential target for developing anti-virals against JEV/WNV infection.
Collapse
Affiliation(s)
- Shraddha Tripathi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Suryansh Sengar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Walter Z, Li M, Molho M, Berish L, Isopi A, O'Mara M, Dittmar M, Nwaezeapu C, Richards A, McCullagh M, Krogan NJ, Cherry S, Johnson JR, Ramage H. An integrated proteomics approach identifies phosphorylation sites on viral and host proteins that regulate West Nile virus infection. Cell Rep 2025; 44:115728. [PMID: 40381193 DOI: 10.1016/j.celrep.2025.115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 03/22/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
Upon infection, viruses alter the proteome, creating a hospitable environment for infection. Cells respond to limit viral replication, including through protein regulation by post-translational modifications. We use mass spectrometry to define proteome alterations during West Nile virus (WNV) infection. Our studies identify upregulation of HERPUD1, which restricts WNV replication through a mechanism independent of its role in endoplasmic reticulum (ER)-associated degradation (ERAD). We also identify modifications on viral proteins, including a WNV NS3 phosphorylation site that impacts viral replication. Finally, we reveal activation of two host kinases with antiviral activity. We identify phosphorylation at S108 of AMPKβ1, a non-catalytic subunit that regulates activity of the AMPK complex. We also show activation of PAK2 by phosphorylation at S141, which restricts translation of the viral genome. This work contributes to our understanding of the interplay between host and virus while providing a resource to define the changes to the proteome that regulate viral infection.
Collapse
Affiliation(s)
- Zachary Walter
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Minghua Li
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Melissa Molho
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lauren Berish
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew Isopi
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mary O'Mara
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mark Dittmar
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chike Nwaezeapu
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alicia Richards
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; The J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jeffrey R Johnson
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Holly Ramage
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
4
|
Alghamdi A, Alissa M, Alshehri MA. Mechanisms of Immune Evasion of West Nile Virus. Rev Med Virol 2025; 35:e70042. [PMID: 40432246 DOI: 10.1002/rmv.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025]
Abstract
West Nile virus (WNV), a globally distributed flavivirus, poses a significant public health threat, causing West Nile fever and potentially severe neuroinvasive disease in humans. The absence of specific antiviral treatments and licenced human vaccines underscores the importance of understanding WNV pathogenesis, particularly the mechanisms by which it evades host immune responses. This review comprehensively analyzes the multifaceted immune evasion strategies employed by WNV, encompassing the suppression of interferon (IFN) production and signalling through targeting of STAT proteins, IRF3, and RNA sensors, the modulation of antigen presentation via downregulation of MHC molecules and impairment of proteasome function, and the manipulation of cytokine and chemokine responses to dysregulate inflammation and promote viral persistence. Furthermore, WNV exploits the blood-brain barrier (BBB) to gain access to the central nervous system (CNS), both by disrupting the barrier integrity and utilising "Trojan horse" mechanisms. The potential for antibody-dependent enhancement (ADE) further complicates the host-virus interaction. Understanding these immune evasion mechanisms is crucial for deciphering WNV pathogenesis and informing the development of effective vaccines and targeted immunotherapies aimed at preventing and treating WNV-related diseases. Future research should focus on translating this knowledge into tangible clinical benefits for at-risk populations, particularly regarding strategies to induce broadly neutralising antibody responses and robust T-cell immunity while mitigating the risk of ADE.
Collapse
Affiliation(s)
- Abdullah Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
5
|
Meena K, Babu R, Pancholi B, Garabadu D. Exploring therapeutic potential of claudin in Flavivirus infection: A review on current advances and future perspectives. Int J Biol Macromol 2025; 309:142936. [PMID: 40203926 DOI: 10.1016/j.ijbiomac.2025.142936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Flavivirus such as Dengue, Zika, West Nile, Japanese encephalitis, and yellow fever virus, composed of single-stranded positive-sense RNA, predominantly contaminated through arthropods. Flavivirus infection characterises from asymptomatic signs to severe hemorrhagic fever and encephalitis. The host's immune system detects these viruses and provides a defence mechanism to sustain their life and growth. However, flaviviruses through different mechanisms compromise the host's immune defence. The current pharmacotherapeutic strategies against Flavivirus infection target different stages of the Flavivirus life cycle and its proteins. On the contrary, the host's immune defence mechanism is equally important to restrict their growth. It has been suggested that flaviviruses compromise claudins to sustain their life and growth inside the mammalian cells. This review primarily focuses on the effect of Flavivirus on claudins (CLDNs), transmembrane proteins that form tight junctions in mammalian cells. CLDNs are crucial in viral entry and pathogenesis by regulating paracellular permeability, particularly in tissues and the blood-brain barrier. Recent studies indicate that the Dengue and Zika viruses can potentially be treated by targeting specific CLDNs-specifically CLDN 1, CLDN 5, and CLDN 7 to inhibit viral entry and fusion. Additionally, it highlights the current challenges and future prospects in developing claudin-based antiviral agents against Flavivirus infections.
Collapse
Affiliation(s)
- Kiran Meena
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
| | - Raja Babu
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
| | | | - Debapriya Garabadu
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
6
|
Feng C, Li Q, Miao D, Hu X, Huang J, Peng D, Song Y, Zhang D. Mouse models of Tembusu virus infection for differentiating between cluster 2.1 and 2.2 isolates. Vet Microbiol 2025; 304:110474. [PMID: 40101376 DOI: 10.1016/j.vetmic.2025.110474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Tembusu virus (TMUV) cluster 2.1 and 2.2 strains are known to produce lethal neurological disease in mice inoculated by intracerebral (ic) route. Here, we report the comparative clinicopathological findings following experimental infections of 3-week-old BALB/c and Kunming mice with cluster 2.1 isolate H and cluster 2.2 isolate Y. When infected by the subcutaneous (sc) route, both isolates failed to induce disease in mice. When infected by the ic route, both isolates caused lethal neurological disease in mice, with isolate H presenting markedly higher neurovirulence than isolate Y. Further studies with the Kunming mouse model showed that following sc inoculation, both H and Y isolates failed to replicate in brain and spleen, and that following ic inoculation, isolate H replicated to higher levels in brain and spleen than isolate Y. The findings may help to explain non-neuroinvasive property of clusters 2.1 and 2.2 and suggest that enhanced neurovirulence of cluster 2.1 relative to cluster 2.2 is associated with more efficient replication in the central nervous system and in the periphery. Moreover, isolate H induced significantly higher levels of IFN-β, IL-1β, IL-6, TNF-α, Ifit1, and Ifit2 expression relative to isolate Y, indicating a positive correlation between TMUV neurovirulence and magnitude of antiviral innate immune response. The present work demonstrates that the mouse models allow to differentiate between cluster 2.1 and 2.2 isolates and provides mechanistic insights into TMUV-induced disease.
Collapse
Affiliation(s)
- Chonglun Feng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Qiong Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Dongying Miao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Xiaoyang Hu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Jingjing Huang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Duo Peng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Yinuo Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Dabing Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
7
|
Flores HE, Pinzon Burgos EF, Camacho Ortega S, Heredia A, Chua JV. From Antibodies to Immunity: Assessing Correlates of Flavivirus Protection and Cross-Reactivity. Vaccines (Basel) 2025; 13:449. [PMID: 40432061 PMCID: PMC12115660 DOI: 10.3390/vaccines13050449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Flaviviruses are arthropod-borne RNA viruses that can cause a wide range of human diseases, from mild symptoms to severe illness with multiorgan failure and death. Effective prevention of these diseases relies on identifying reliable vaccine targets, typically measured by correlates of protection (CoPs), which help indicate host immunity after vaccination. Current vaccines primarily focus on neutralizing antibodies (nAbs) against the viral envelope E protein, though emerging evidence suggests other potential targets may also be effective in disease prevention. Additionally, there is growing evidence of cross-protection between different flaviviruses when immunity to one virus is achieved, although this can be limited by antibody-dependent enhancement. This review examines the current understanding of flavivirus immunity, CoPs, and the potential for cross-protection in the context of existing vaccine strategies.
Collapse
Affiliation(s)
| | | | | | | | - Joel V. Chua
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (H.E.F.); (E.F.P.B.); (S.C.O.); (A.H.)
| |
Collapse
|
8
|
Pandey S, Gack MU. Tearing down the house of mosquito-transmitted viruses. Proc Natl Acad Sci U S A 2025; 122:e2504932122. [PMID: 40228137 PMCID: PMC12037046 DOI: 10.1073/pnas.2504932122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Affiliation(s)
- Shanti Pandey
- Florida Research and Innovation Center, Cleveland Clinic, FL34987
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, FL34987
| |
Collapse
|
9
|
Ferrari A, Cassaniti I, Rovida F, Lilleri D, Croce S, Trespidi F, Ghirardello S, Gervais A, Zhang SY, Casanova JL, Borghesi A, Baldanti F. Human type I interferons protect Vero E6 and ARPE-19 cells against West Nile virus and are neutralized by pathogenic autoantibodies. Sci Rep 2025; 15:11271. [PMID: 40175402 PMCID: PMC11965296 DOI: 10.1038/s41598-025-89312-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/04/2025] [Indexed: 04/04/2025] Open
Abstract
Auto-antibodies (auto-Abs) that neutralize type I interferons (IFNs) have been implicated in severe viral infections, including ~ 40% of cases of West Nile virus (WNV) neuroinvasive disease (WNND). Developing robust in vitro models to evaluate the protective effects of type I IFNs against viral infection, as well as the disruptive effects of auto-Abs, is essential for understanding disease pathogenesis and identifying patients at risk. In this study, we used Vero E6 and ARPE-19 cell lines to investigate the ability of type I (IFN-α, IFN-β, IFN-ω), type II (IFN-γ), and type III (IFN-λ1) IFNs to restrict WNV infection. Our results demonstrate that IFN-α, IFN-β, and IFN-ω effectively protect ARPE-19 cells from WNV infection, with IFN-β exhibiting the strongest antiviral effect. In contrast, Vero E6 cells required higher concentrations of IFN-ω to achieve comparable protection. Neither IFN-γ nor IFN-λ1 conferred protection in either cell line. We further screened serum samples from WNV-infected patients for auto-Abs neutralizing type I IFNs. Our findings confirm that the ARPE-19-based assay is consistent with other established methods for detecting neutralizing auto-Abs against type I IFNs. This simple and reliable assay offers a valuable tool for assessing the antiviral effects of type I IFNs and the neutralizing activity of auto-Abs in both research and clinical settings. Future studies should aim to validate the clinical utility of the ARPE-19-WNV infection model on a larger scale.
Collapse
Affiliation(s)
- Alessandro Ferrari
- National PhD Programme in One Health approaches to infectious diseases and life science research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Irene Cassaniti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Francesca Rovida
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniele Lilleri
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefania Croce
- UOSD Cell Factory, San Matteo Research Hospital, Pavia, Italy
| | - Francesca Trespidi
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefano Ghirardello
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, Rockefeller Branch, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, Rockefeller Branch, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
10
|
Genoyer E, Wilson J, Ames JM, Stokes C, Moreno D, Etzyon N, Oberst A, Gale M. Exposure of negative-sense viral RNA in the cytoplasm initiates innate immunity to West Nile virus. Mol Cell 2025; 85:1147-1161.e9. [PMID: 39919747 PMCID: PMC11931551 DOI: 10.1016/j.molcel.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/22/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
For many RNA viruses, immunity is triggered when RIG-I-like receptors (RLRs) detect viral RNA. However, only a minority of infected cells undergo innate immune activation. By examining these "first-responder" cells during West Nile virus infection, we found that specific accumulation of antigenomic negative-sense viral RNA (-vRNA) underlies innate immune activation and that RIG-I preferentially interacts with -vRNA. However, flaviviruses sequester -vRNA into membrane-bound replication compartments away from cytosolic sensors. We found that single-stranded -vRNA accumulates outside of replication compartments in first-responder cells, rendering it accessible to RLRs. Exposure of this -vRNA occurs at late time points of infection, is linked to viral assembly, and depends on the expression of viral structural proteins. These findings reveal that, although most infected cells replicate high levels of vRNA, release of -vRNA from replication compartments during assembly occurs at low frequency and is critical for initiation of innate immunity during flavivirus infection.
Collapse
Affiliation(s)
| | - Jonathan Wilson
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Joshua M Ames
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Caleb Stokes
- Department of Immunology, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle Children's Hospital, Seattle, WA, USA
| | - Dante Moreno
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Noa Etzyon
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA, USA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA; Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN, USA; Institute on Infectious Diseases, University of Minnesota School of Medicine, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Bruno L, Nappo MA, Frontoso R, Perrotta MG, Di Lecce R, Guarnieri C, Ferrari L, Corradi A. West Nile Virus (WNV): One-Health and Eco-Health Global Risks. Vet Sci 2025; 12:288. [PMID: 40266979 PMCID: PMC11945822 DOI: 10.3390/vetsci12030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 04/25/2025] Open
Abstract
West Nile virus (WNV) is an important zoonotic pathogen belonging to the Flaviviridae family, which is endemic in some areas and emerging in others. WNV is transmitted by blood-sucking mosquitoes of the genus Culicoides, Aedes, and Anopheles, and the infection can cause different clinical symptoms. The most common and benign illness in humans is West Nile fever (WNF), but a lethal neurological disease (WNND), related to the neuro-invasiveness of WNV lineage 2, represents the highest health risk of WNV infection. The neuro-clinical form is recognized in mammals (land and cetaceans), particularly in humans (elderly or immunosuppressed) and in horses, avian species, and wildlife animals ranging free or in a zoological setting. This review highlights the most relevant data regarding epidemiology, virology, pathogenesis and immunity, clinical signs and differential diagnosis, pathology and imaging, histopathology and gross pathology, economic impact, influence of climate change, and surveillance of WNV. Climate change has favored the wide spread of WNV in many areas of the globe and consequent One-Health and Eco-Health emergencies, influencing the health of human beings, animals, and ecosystems.
Collapse
Affiliation(s)
- Luigi Bruno
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, Castellammare di Stabia, 80053 Naples, Italy;
| | - Maria Anna Nappo
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, Castellammare di Stabia, 80053 Naples, Italy;
| | - Raffaele Frontoso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (I.Z.S.M.), Portici, 80055 Naples, Italy
| | - Maria Gabriella Perrotta
- Ministry of Health, Office 3 exDGSAF of the General Directorate of Animal Health, 00144 Rome, Italy;
| | - Rosanna Di Lecce
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (R.D.L.); (C.G.); (A.C.)
| | - Chiara Guarnieri
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (R.D.L.); (C.G.); (A.C.)
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (R.D.L.); (C.G.); (A.C.)
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (R.D.L.); (C.G.); (A.C.)
| |
Collapse
|
12
|
Qiao W, Xie X, Shi PY, Ooi YS, Carette JE. Druggable genome screens identify SPP as an antiviral host target for multiple flaviviruses. Proc Natl Acad Sci U S A 2025; 122:e2421573122. [PMID: 39969998 PMCID: PMC11874179 DOI: 10.1073/pnas.2421573122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
Mosquito-borne flaviviruses, such as dengue virus (DENV), Zika virus (ZIKV), West Nile virus, and yellow fever virus, pose significant public health threats globally. Extensive efforts have led to the development of promising highly active compounds against DENV targeting viral non-structural protein 4B (NS4B) protein. However, due to the cocirculation of flaviviruses and to prepare for emerging flaviviruses, there is a need for more broadly acting antivirals. Host-directed therapy where one targets a host factor required for viral replication may be active against multiple viruses that use similar replication strategies. Here, we used a CRISPR-Cas9 library that we designed to target the druggable genome and identified signal peptide peptidase (SPP, encoded by Histocompatibility Minor 13, HM13), as a critical host factor in DENV infection. Genetic knockout or introducing mutations that disrupt the proteolytic activity of SPP markedly reduced the replication of multiple flaviviruses. Although their substrates differ, SPP has structural homology with γ-secretase, which has been pursued as a pharmacological target for Alzheimer's disease. Notably, SPP-targeting compounds exhibited potent anti-DENV activity at low nanomolar concentrations across multiple primary and disease-relevant cell types, acting specifically through SPP inhibition rather than γ-secretase inhibition. Importantly, SPP inhibitors were active at low nanomolar concentrations against flaviviruses other than DENV including ZIKV while DENV NS4B inhibitors lost activity. This study emphasizes the strong potential of SPP as a pan-flaviviral target and provides a framework for identifying host druggable targets to screen for broad-spectrum antivirals.
Collapse
Affiliation(s)
- Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Xuping Xie
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX77555
| | - Yaw Shin Ooi
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore169857, Singapore
- Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore138648, Singapore
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
13
|
Byaruhanga T, Astbury S, Hill JD, Tsoleridis T, Chappell JG, Kayiwa JT, Ataliba IJ, Nankya AM, Ball JK, Lutwama JJ, McClure CP. Undiagnosed West Nile virus lineage 2d infection in a febrile patient from South-west Uganda, 2018. IJID REGIONS 2024; 13:100462. [PMID: 39483153 PMCID: PMC11525451 DOI: 10.1016/j.ijregi.2024.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024]
Abstract
We report the retrospective identification and subsequent recovery of a near-complete West Nile Virus lineage 2 genomes from a hospitalized patient with acute febrile illness in Uganda, using a combination of degenerate primer polymerase chain reaction screening and a novel 1200bp nanopore-based whole-genome amplicon sequencing scheme. This represents the first West Nile virus genome to be recovered from a human in Uganda since its discovery in 1937. Basic molecular rather than serological surveillance methods could be more widely deployed in the region to better diagnose febrile infections.
Collapse
Affiliation(s)
- Timothy Byaruhanga
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Uganda Virus Research Institute, Department of Arbovirology, Emerging and Re-emerging infectious diseases, Uganda
- Emerging Virus Research Unit, Department of Virology, Animal and Plant Health Agency, Surrey, UK
| | - Stuart Astbury
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jack D. Hill
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK
| | - Theocharis Tsoleridis
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK
- The Pirbright Institute, Ash Road, Pirbright, Woking, UK
| | - Joseph G. Chappell
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK
| | - John T. Kayiwa
- Uganda Virus Research Institute, Department of Arbovirology, Emerging and Re-emerging infectious diseases, Uganda
| | - Irene J. Ataliba
- Uganda Virus Research Institute, Department of Arbovirology, Emerging and Re-emerging infectious diseases, Uganda
| | - Annet M. Nankya
- Uganda Virus Research Institute, Department of Arbovirology, Emerging and Re-emerging infectious diseases, Uganda
| | - Jonathan K. Ball
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Julius J. Lutwama
- Uganda Virus Research Institute, Department of Arbovirology, Emerging and Re-emerging infectious diseases, Uganda
| | - C. Patrick McClure
- School of Life Sciences, University of Nottingham, Nottingham, UK
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Behari J, Yadav K, Khare P, Kumar B, Kushwaha AK. Recent insights on pattern recognition receptors and the interplay of innate immune responses against West Nile Virus infection. Virology 2024; 600:110267. [PMID: 39437534 DOI: 10.1016/j.virol.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The recent outbreaks of neurotropic West Nile Virus (WNV) in humans are of grave public health concern, requiring a thorough understanding of the host immune response to develop effective therapeutic interventions. Innate immunity contributes to the primary immune response against WNV infection aimed at controlling and eliminating the virus from the body. As soon as WNV infects the body, pattern recognition receptors (PRRs) recognize viral pathogen-associated molecular patterns, particularly viral RNA, and initiate innate immune responses. This review explores the diverse PRRs in sensing WNV infection and orchestrating immune defenses. Specifically, this paper reviews the role of PRRs in WNV infection, encompassing both findings from mouse models and current clinical studies. Activation of PRRs triggers signaling pathways that induce the expression of antiviral proteins to inhibit viral replication. Understanding the intricacies of the immune response is crucial for developing effective vaccines and therapeutic interventions against WNV infection.
Collapse
Affiliation(s)
- Jatin Behari
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Kajal Yadav
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Prashant Khare
- Xenesis Institute, Absolute, 5th Floor, Plot 68, Sector 44, Gurugram, Haryana, 122002, India
| | - Brijesh Kumar
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, UP, India
| | - Ambuj Kumar Kushwaha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
15
|
Lin W, Nagy PD. Co-opted cytosolic proteins form condensate substructures within membranous replication organelles of a positive-strand RNA virus. THE NEW PHYTOLOGIST 2024; 243:1917-1935. [PMID: 38515267 DOI: 10.1111/nph.19691] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
Positive-strand RNA viruses co-opt organellar membranes for biogenesis of viral replication organelles (VROs). Tombusviruses also co-opt pro-viral cytosolic proteins to VROs. It is currently not known what type of molecular organization keeps co-opted proteins sequestered within membranous VROs. In this study, we employed tomato bushy stunt virus (TBSV) and carnation Italian ringspot virus (CIRV) - Nicotiana benthamiana pathosystems to identify biomolecular condensate formation in VROs. We show that TBSV p33 and the CIRV p36 replication proteins sequester glycolytic and fermentation enzymes in unique condensate substructures associated with membranous VROs. We find that p33 and p36 form droplets in vitro driven by intrinsically disordered region. The replication protein organizes partitioning of co-opted host proteins into droplets. VRO-associated condensates are critical for local adenosine triphosphate production to support energy for virus replication. We find that co-opted endoplasmic reticulum membranes and actin filaments form meshworks within and around VRO condensates, contributing to unique composition and structure. We propose that p33/p36 organize liquid-liquid phase separation of co-opted concentrated host proteins in condensate substructures within membranous VROs. Overall, we demonstrate that subverted membranes and condensate substructures co-exist and are critical for VRO functions. The replication proteins induce and connect the two substructures within VROs.
Collapse
Affiliation(s)
- Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40543, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40543, USA
| |
Collapse
|
16
|
Melo-Silva CR, Sigal LJ. Innate and adaptive immune responses that control lymph-borne viruses in the draining lymph node. Cell Mol Immunol 2024; 21:999-1007. [PMID: 38918577 PMCID: PMC11364670 DOI: 10.1038/s41423-024-01188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
The interstitial fluids in tissues are constantly drained into the lymph nodes (LNs) as lymph through afferent lymphatic vessels and from LNs into the blood through efferent lymphatics. LNs are strategically positioned and have the appropriate cellular composition to serve as sites of adaptive immune initiation against invading pathogens. However, for lymph-borne viruses, which disseminate from the entry site to other tissues through the lymphatic system, immune cells in the draining LN (dLN) also play critical roles in curbing systemic viral dissemination during primary and secondary infections. Lymph-borne viruses in tissues can be transported to dLNs as free virions in the lymph or within infected cells. Regardless of the entry mechanism, infected myeloid antigen-presenting cells, including various subtypes of dendritic cells, inflammatory monocytes, and macrophages, play a critical role in initiating the innate immune response within the dLN. This innate immune response involves cellular crosstalk between infected and bystander innate immune cells that ultimately produce type I interferons (IFN-Is) and other cytokines and recruit inflammatory monocytes and natural killer (NK) cells. IFN-I and NK cell cytotoxicity can restrict systemic viral spread during primary infections and prevent serious disease. Additionally, the memory CD8+ T-cells that reside or rapidly migrate to the dLN can contribute to disease prevention during secondary viral infections. This review explores the intricate innate immune responses orchestrated within dLNs that contain primary viral infections and the role of memory CD8+ T-cells following secondary infection or CD8+ T-cell vaccination.
Collapse
Affiliation(s)
- Carolina R Melo-Silva
- Department of Microbiology and Immunology, Thomas Jefferson University, Bluemle Life Sciences Building Room 709, 233 South 10th Street, Philadelphia, PA, 19107, USA.
| | - Luis J Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Bluemle Life Sciences Building Room 709, 233 South 10th Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
17
|
Janova H, Zhao FR, Desai P, Mack M, Thackray LB, Stappenbeck TS, Diamond MS. West Nile virus triggers intestinal dysmotility via T cell-mediated enteric nervous system injury. J Clin Invest 2024; 134:e181421. [PMID: 39207863 PMCID: PMC11527448 DOI: 10.1172/jci181421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Intestinal dysmotility syndromes have been epidemiologically associated with several antecedent bacterial and viral infections. To model this phenotype, we previously infected mice with the neurotropic flavivirus West Nile virus (WNV) and demonstrated intestinal transit defects. Here, we found that within 1 week of WNV infection, enteric neurons and glia became damaged, resulting in sustained reductions of neuronal cells and their networks of connecting fibers. Using cell-depleting antibodies, adoptive transfer experiments, and mice lacking specific immune cells or immune functions, we show that infiltrating WNV-specific CD4+ and CD8+ T cells damaged the enteric nervous system (ENS) and glia, which led to intestinal dysmotility; these T cells used multiple and redundant effector molecules including perforin and Fas ligand. In comparison, WNV-triggered ENS injury and intestinal dysmotility appeared to not require infiltrating monocytes, and damage may have been limited by resident muscularis macrophages. Overall, our experiments support a model in which antigen-specific T cell subsets and their effector molecules responding to WNV infection direct immune pathology against enteric neurons and supporting glia that results in intestinal dysmotility.
Collapse
Affiliation(s)
- Hana Janova
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Fang R. Zhao
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Larissa B. Thackray
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | | | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Pathology and Immunology
- Department of Molecular Microbiology, and
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
18
|
de Oliveira Souza R, Duarte Júnior JWB, Della Casa VS, Santoro Rosa D, Renia L, Claser C. Unraveling the complex interplay: immunopathology and immune evasion strategies of alphaviruses with emphasis on neurological implications. Front Cell Infect Microbiol 2024; 14:1421571. [PMID: 39211797 PMCID: PMC11358129 DOI: 10.3389/fcimb.2024.1421571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Arthritogenic alphaviruses pose a significant public health concern due to their ability to cause joint inflammation, with emerging evidence of potential neurological consequences. In this review, we examine the immunopathology and immune evasion strategies employed by these viruses, highlighting their complex mechanisms of pathogenesis and neurological implications. We delve into how these viruses manipulate host immune responses, modulate inflammatory pathways, and potentially establish persistent infections. Further, we explore their ability to breach the blood-brain barrier, triggering neurological complications, and how co-infections exacerbate neurological outcomes. This review synthesizes current research to provide a comprehensive overview of the immunopathological mechanisms driving arthritogenic alphavirus infections and their impact on neurological health. By highlighting knowledge gaps, it underscores the need for research to unravel the complexities of virus-host interactions. This deeper understanding is crucial for developing targeted therapies to address both joint and neurological manifestations of these infections.
Collapse
Affiliation(s)
- Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Victória Simões Della Casa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Laurent Renia
- ASTAR Infectious Diseases Labs (ASTAR ID Labs), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
19
|
Liu YG, Peng HR, Ren RW, Zhao P, Zhao LJ. CD11b maintains West Nile virus replication through modulation of immune response in human neuroblastoma cells. Virol J 2024; 21:158. [PMID: 39004752 PMCID: PMC11247799 DOI: 10.1186/s12985-024-02427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND West Nile virus (WNV) is a rapidly spreading mosquito-borne virus accounted for neuroinvasive diseases. An insight into WNV-host factors interaction is necessary for development of therapeutic approaches against WNV infection. CD11b has key biological functions and been identified as a therapeutic target for several human diseases. The purpose of this study was to determine whether CD11b was implicated in WNV infection. METHODS SH-SY5Y cells with and without MEK1/2 inhibitor U0126 or AKT inhibitor MK-2206 treatment were infected with WNV. CD11b mRNA levels were assessed by real-time PCR. WNV replication and expression of stress (ATF6 and CHOP), pro-inflammatory (TNF-α), and antiviral (IFN-α, IFN-β, and IFN-γ) factors were evaluated in WNV-infected SH-SY5Y cells with CD11b siRNA transfection. Cell viability was determined by MTS assay. RESULTS CD11b mRNA expression was remarkably up-regulated by WNV in a time-dependent manner. U0126 but not MK-2206 treatment reduced the CD11b induction by WNV. CD11b knockdown significantly decreased WNV replication and protected the infected cells. CD11b knockdown markedly increased TNF-α, IFN-α, IFN-β, and IFN-γ mRNA expression induced by WNV. ATF6 mRNA expression was reduced upon CD11b knockdown following WNV infection. CONCLUSION These results demonstrate that CD11b is involved in maintaining WNV replication and modulating inflammatory as well as antiviral immune response, highlighting the potential of CD11b as a target for therapeutics for WNV infection.
Collapse
Affiliation(s)
- Yan-Gang Liu
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Faculty of Naval Medicine, Naval Medical University, 800 Xiang-Yin Road, Shanghai, 200433, China
| | - Hao-Ran Peng
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Faculty of Naval Medicine, Naval Medical University, 800 Xiang-Yin Road, Shanghai, 200433, China
| | - Rui-Wen Ren
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou, China
| | - Ping Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Faculty of Naval Medicine, Naval Medical University, 800 Xiang-Yin Road, Shanghai, 200433, China.
| | - Lan-Juan Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Faculty of Naval Medicine, Naval Medical University, 800 Xiang-Yin Road, Shanghai, 200433, China.
| |
Collapse
|
20
|
Genoyer E, Wilson J, Ames JM, Stokes C, Moreno D, Etzyon N, Oberst A, Gale M. Exposure of negative-sense viral RNA in the cytoplasm initiates innate immunity to West Nile virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597966. [PMID: 38895355 PMCID: PMC11185705 DOI: 10.1101/2024.06.07.597966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
For many RNA viruses, immunity is triggered when RIG-I-like receptors (RLRs) detect viral RNA. However, only a minority of infected cells undergo innate immune activation. By examining these "first responder" cells during West Nile virus infection, we found that specific accumulation of anti- genomic negative-sense viral RNA (-vRNA) underlies innate immune activation and that RIG-I preferentially interacts with -vRNA. However, flaviviruses sequester -vRNA into membrane-bound replication compartments away from cytosolic sensors. We found that single-stranded -vRNA accumulates outside of replication compartments in "first responder" cells, rendering it accessible to RLRs. Exposure of this -vRNA occurs at late timepoints of infection, is linked to viral assembly, and depends on the expression of viral structural proteins. These findings reveal that while most infected cells replicate high levels of vRNA, release of -vRNA from replication compartments during assembly occurs at low frequency and is critical for initiation of innate immunity during flavivirus infection.
Collapse
|
21
|
Kasule S, Fernholz E, Grant L, Kole A, Grys TE, Kaleta E, Theel ES, Pritt B, Graf EH. Whole-Blood PCR Preferred for Timely Diagnosis of Neuroinvasive West Nile Virus Infections: Lessons From the 2021 Arizona Outbreak. Open Forum Infect Dis 2024; 11:ofae188. [PMID: 38680608 PMCID: PMC11055396 DOI: 10.1093/ofid/ofae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 05/01/2024] Open
Abstract
Background In 2021, the state of Arizona experienced the largest focal outbreak of West Nile virus (WNV) in US history. Timely and accurate diagnostic testing remains a challenge for WNV due to transient viremia and limited immunoassay specificity. Recent studies have identified whole blood (WB) and urine as more sensitive specimen types for the detection of WNV RNA. Methods We evaluated ordering practices, test performance, and patient characteristics of probable and confirmed cases. In total, we identified 190 probable and proven cases, including 127 patients (66.8%) with neuroinvasive disease. Results Among all cases, only 29.5% had WNV polymerase chain reaction (PCR) testing ordered on WB, of which 80.3% resulted as positive, including 7 cases in which WNV serologic testing was negative and 5 cases for which serologic testing was not ordered. In comparison, only 23.7% of cases that had cerebrospinal fluid (CSF) PCR ordered had a positive result, including 3 cases that were negative by PCR on WB. In contrast, WNV PCR on WB detected 12 neuroinvasive cases that were CSF PCR negative. WNV PCR testing in urine was only ordered on 2 patients, both of whom were positive. Crossing cycle threshold (Ct) values were not significantly different between WB and CSF specimen types, nor was there a correlation between Ct value and days from symptom onset at the time of sample collection; all specimen types and time points had Ct values, with 98% above 30. WB was positive by WNV PCR in several patients for >7 days (range, 7-25 days) after symptom onset, as was the CSF PCR. Conclusions Taken together, these findings indicate that WNV PCR testing on WB may be the best initial test for timely diagnosis of WNV infection, irrespective of clinical manifestation; however, if negative in patients with suspected neuroinvasive disease, WNV PCR testing on CSF should be ordered.
Collapse
Affiliation(s)
- Sabirah Kasule
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Phoenix, Arizona, USA
- Division of Infectious Disease, Department of Internal Medicine, BronxCare Health System, Bronx, New York, USA
| | - Emily Fernholz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Leah Grant
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Amy Kole
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Thomas E Grys
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona, USA
| | - Erin Kaleta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona, USA
| | - Elitza S Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bobbi Pritt
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Erin H Graf
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
22
|
Henrio Marcellin DF, Huang J. Exploring Zika Virus Impact on Endothelial Permeability: Insights into Transcytosis Mechanisms and Vascular Leakage. Viruses 2024; 16:629. [PMID: 38675970 PMCID: PMC11054372 DOI: 10.3390/v16040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Treating brain disease is challenging, and the Zika virus (ZIKV) presents a unique obstacle due to its neuroinvasive nature. In this review, we discuss the immunopathogenesis of ZIKV and explore how the virus interacts with the body's immune responses and the role of the protein Mfsd2a in maintaining the integrity of the blood-brain barrier (BBB) during ZIKV neuroinvasion. ZIKV has emerged as a significant public health concern due to its association with severe neurological problems, including microcephaly and Gillain-Barré Syndrome (GBS). Understanding its journey through the brain-particularly its interaction with the placenta and BBB-is crucial. The placenta, which is designed to protect the fetus, becomes a pathway for ZIKV when infected. The BBB is composed of brain endothelial cells, acts as a second barrier, and protects the fetal brain. However, ZIKV finds ways to disrupt these barriers, leading to potential damage. This study explores the mechanisms by which ZIKV enters the CNS and highlights the role of transcytosis, which allows the virus to move through the cells without significantly disrupting the BBB. Although the exact mechanisms of transcytosis are unclear, research suggests that ZIKV may utilize this pathway.
Collapse
Affiliation(s)
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China;
| |
Collapse
|
23
|
Kang Y, Lin W, Nagy PD. Subversion of selective autophagy for the biogenesis of tombusvirus replication organelles inhibits autophagy. PLoS Pathog 2024; 20:e1012085. [PMID: 38484009 DOI: 10.1371/journal.ppat.1012085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/26/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Elaborate viral replication organelles (VROs) are formed to support positive-strand RNA virus replication in infected cells. VRO formation requires subversion of intracellular membranes by viral replication proteins. Here, we showed that the key ATG8f autophagy protein and NBR1 selective autophagy receptor were co-opted by Tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus. Knockdown of ATG8f or NBR1 in plants led to reduced tombusvirus replication, suggesting pro-viral function for selective autophagy. BiFC and proximity-labeling experiments showed that the TBSV p33 replication protein interacted with ATG8f and NBR1 to recruit them to VROs. In addition, we observed that several core autophagy proteins, such as ATG1a, ATG4, ATG5, ATG101 and the plant-specific SH3P2 autophagy adaptor proteins were also re-localized to TBSV VROs, suggesting that TBSV hijacks the autophagy machinery in plant cells. We demonstrated that subversion of autophagy components facilitated the recruitment of VPS34 PI3 kinase and enrichment of phospholipids, such as phosphatidylethanolamine and PI3P phosphoinositide in the VRO membranes. Hijacking of autophagy components into TBSV VROs led to inhibition of autophagic flux. We also found that a fraction of the subverted ATG8f and NBR1 was sequestered in biomolecular condensates associated with VROs. We propose that the VRO-associated condensates trap those autophagy proteins, taking them away from the autophagy pathway. Overall, tombusviruses hijack selective autophagy to provide phospholipid-rich membranes for replication and to regulate the antiviral autophagic flux.
Collapse
Affiliation(s)
- Yuanrong Kang
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
24
|
Cheng Y, Jiao L, Chen J, Chen P, Zhou F, Zhang J, Wang M, Wu Q, Cao S, Lu H, Wu Z, Wang A, Qian Y, Zhu S. Duck Tembusu virus infection activates the MKK3/6-p38 MAPK signaling pathway to promote virus replication. Vet Microbiol 2024; 288:109951. [PMID: 38101078 DOI: 10.1016/j.vetmic.2023.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Duck Tembusu virus (DTMUV) infection poses a serious threat to ducks, chickens, and geese, causing a range of detrimental effects, including reduced egg production, growth retardation, and even death. These consequences lead to substantial economic losses for the Chinese poultry industry. Although it is established that various viral infections can trigger activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway, the precise role and mechanisms underlying p38 MAPK activation in DTMUV infection remain poorly understood. To address this knowledge gap, we conducted a study to investigate whether the replication of DTMUV necessitates the activation of p38 MAPK. We found that DTMUV infection stimulates activation of the MKK3/6-p38 MAPK pathway, and the activation of p38 MAPK increases with viral titer. Subsequently, the use of the small molecule inhibitor SB203580 significantly reduced DTMUV replication by inhibiting p38 MAPK activity. Furthermore, downregulation of p38 MAPK protein expression by siRNA also inhibited DTMUV replication, whereas transient transfection of p38 MAPK protein promoted DTMUV replication. Interestingly, we found that the DTMUV capsid protein activates p38 MAPK, and there is interaction between DTMUV capsid and p38 MAPK. Finally, we found that DTMUV infection induces elevated mRNA expression of IFN-α, IFN-β, IFN-γ, IL-1β, IL-6, and IL-12, which is associated with p38 MAPK activity. These results indicated that virus hijacking of p38 activation is a crucial event for DTMUV replication, and that pharmacological blockade of p38 activation represents a potential anti-DTMUV strategy.
Collapse
Affiliation(s)
- Yuting Cheng
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-pharmaceutical High Technology Research, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Linlin Jiao
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-pharmaceutical High Technology Research, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinying Chen
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-pharmaceutical High Technology Research, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Peiyao Chen
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-pharmaceutical High Technology Research, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Fang Zhou
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-pharmaceutical High Technology Research, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Jilin Zhang
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-pharmaceutical High Technology Research, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Mixue Wang
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-pharmaceutical High Technology Research, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Qingguo Wu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-pharmaceutical High Technology Research, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Shinuo Cao
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-pharmaceutical High Technology Research, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Huipeng Lu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-pharmaceutical High Technology Research, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Zhi Wu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-pharmaceutical High Technology Research, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Anping Wang
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-pharmaceutical High Technology Research, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Yingjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shanyuan Zhu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-pharmaceutical High Technology Research, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China.
| |
Collapse
|
25
|
Lee HJ, Zhao Y, Fleming I, Mehta S, Wang X, Wyk BV, Ronca SE, Kang H, Chou CH, Fatou B, Smolen KK, Levy O, Clish CB, Xavier RJ, Steen H, Hafler DA, Love JC, Shalek AK, Guan L, Murray KO, Kleinstein SH, Montgomery RR. Early cellular and molecular signatures correlate with severity of West Nile virus infection. iScience 2023; 26:108387. [PMID: 38047068 PMCID: PMC10692672 DOI: 10.1016/j.isci.2023.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Infection with West Nile virus (WNV) drives a wide range of responses, from asymptomatic to flu-like symptoms/fever or severe cases of encephalitis and death. To identify cellular and molecular signatures distinguishing WNV severity, we employed systems profiling of peripheral blood from asymptomatic and severely ill individuals infected with WNV. We interrogated immune responses longitudinally from acute infection through convalescence employing single-cell protein and transcriptional profiling complemented with matched serum proteomics and metabolomics as well as multi-omics analysis. At the acute time point, we detected both elevation of pro-inflammatory markers in innate immune cell types and reduction of regulatory T cell activity in participants with severe infection, whereas asymptomatic donors had higher expression of genes associated with anti-inflammatory CD16+ monocytes. Therefore, we demonstrated the potential of systems immunology using multiple cell-type and cell-state-specific analyses to identify correlates of infection severity and host cellular activity contributing to an effective anti-viral response.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yujiao Zhao
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ira Fleming
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sameet Mehta
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiaomei Wang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shannon E. Ronca
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Heather Kang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chih-Hung Chou
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kinga K. Smolen
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Department of Infectious Disease, Precision Vaccines Program, Boston Children’s Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hanno Steen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - J. Christopher Love
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Alex K. Shalek
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Leying Guan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
| | - Kristy O. Murray
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
26
|
Park H, Kwon N, Park G, Jang M, Kwon Y, Yoon Y, An J, Min J, Lee T. Fast-response electrochemical biosensor based on a truncated aptamer and MXene heterolayer for West Nile virus detection in human serum. Bioelectrochemistry 2023; 154:108540. [PMID: 37556929 DOI: 10.1016/j.bioelechem.2023.108540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that can cause West Nile fever, meningitis, encephalitis, and polio. Early detection of WNV is important to prevent infection spread on the field. To commercialize the electrochemical biosensor for WNV, rapid target detection with the cheap manufacture cost is essential. Here, we developed a fast-response electrochemical biosensor consisting of a truncated WNV aptamer/MXene (Ti3C2Tx) bilayer on round-type micro gap. To reduce the target binding time, the application of the alternating current electrothermal flow (ACEF) technology reduced the target detection time to within 10 min, providing a rapid biosensor platform. The MXene nanosheet improved electrochemical signal amplification, and the aptamer produced through systematic evolution of ligands by exponential enrichment process eliminated unnecessary base sequences via truncation and lowered the manufacturing cost. Under optimized conditions, the WNV limit of detection (LOD) and selectivity were measured using electrochemical measurement methods, including cyclic voltammetry and square wave voltammetry. The LOD was 2.57 pM for WNV diluted in deionized water and 1.06 pM for WNV diluted in 10% human serum. The fabricated electrochemical biosensor has high selectivity and allows rapid detection, suggesting the possibility of future application in the diagnosis of flaviviridae virus.
Collapse
Affiliation(s)
- Hanbin Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Nayeon Kwon
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Goeun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Moonbong Jang
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Yein Kwon
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Yejin Yoon
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jeongyun An
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| |
Collapse
|
27
|
Auroni TT, Arora K, Natekar JP, Pathak H, Elsharkawy A, Kumar M. The critical role of interleukin-6 in protection against neurotropic flavivirus infection. Front Cell Infect Microbiol 2023; 13:1275823. [PMID: 38053527 PMCID: PMC10694511 DOI: 10.3389/fcimb.2023.1275823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
West Nile virus (WNV) and Japanese encephalitis virus (JEV) are emerging mosquito-borne flaviviruses causing encephalitis globally. No specific drug or therapy exists to treat flavivirus-induced neurological diseases. The lack of specific therapeutics underscores an urgent need to determine the function of important host factors involved in flavivirus replication and disease progression. Interleukin-6 (IL-6) upregulation has been observed during viral infections in both mice and humans, implying that it may influence the disease outcome significantly. Herein, we investigated the function of IL-6 in the pathogenesis of neurotropic flavivirus infections. First, we examined the role of IL-6 in flavivirus-infected human neuroblastoma cells, SK-N-SH, and found that IL-6 neutralization increased the WNV or JEV replication and inhibited the expression of key cytokines. We further evaluated the role of IL-6 by infecting primary mouse cells derived from IL-6 knockout (IL-6-/-) mice and wild-type (WT) mice with WNV or JEV. The results exhibited increased virus yields in the cells lacking the IL-6 gene. Next, our in vivo approach revealed that IL-6-/- mice had significantly higher morbidity and mortality after subcutaneous infection with the pathogenic WNV NY99 or JEV Nakayama strain compared to WT mice. The non-pathogenic WNV Eg101 strain did not cause mortality in WT mice but resulted in 60% mortality in IL-6-/- mice, indicating that IL-6 is required for the survival of mice after the peripheral inoculation of WNV or JEV. We also observed significantly higher viremia and brain viral load in IL-6-/- mice than in WT mice. Subsequently, we explored innate immune responses in WT and IL-6-/- mice after WNV NY99 infection. Our data demonstrated that the IL-6-/- mice had reduced levels of key cytokines in the serum during early infection but elevated levels of proinflammatory cytokines in the brain later, along with suppressed anti-inflammatory cytokines. In addition, mRNA expression of IFN-α and IFN-β was significantly lower in the infected IL-6-/- mice. In conclusion, these data suggest that the lack of IL-6 exacerbates WNV or JEV infection in vitro and in vivo by causing an increase in virus replication and dysregulating host immune response.
Collapse
Affiliation(s)
| | | | | | | | | | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
28
|
Jain S, Vimal N, Angmo N, Sengupta M, Thangaraj S. Dengue Vaccination: Towards a New Dawn of Curbing Dengue Infection. Immunol Invest 2023; 52:1096-1149. [PMID: 37962036 DOI: 10.1080/08820139.2023.2280698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dengue is an infectious disease caused by dengue virus (DENV) and is a serious global burden. Antibody-dependent enhancement and the ability of DENV to infect immune cells, along with other factors, lead to fatal Dengue Haemorrhagic Fever and Dengue Shock Syndrome. This necessitates the development of a robust and efficient vaccine but vaccine development faces a number of hurdles. In this review, we look at the epidemiology, genome structure and cellular targets of DENV and elaborate upon the immune responses generated by human immune system against DENV infection. The review further sheds light on various challenges in development of a potent vaccine against DENV which is followed by presenting a current account of different vaccines which are being developed or have been licensed.
Collapse
Affiliation(s)
- Sidhant Jain
- Independent Researcher, Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, India
| | - Neha Vimal
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Nilza Angmo
- Maitreyi College, University of Delhi, Delhi, India
| | - Madhumita Sengupta
- Janki Devi Bajaj Government Girls College, University of Kota, Kota, India
| | - Suraj Thangaraj
- Swami Ramanand Teerth Rural Government Medical College, Maharashtra University of Health Sciences, Ambajogai, India
| |
Collapse
|
29
|
Lin SC, Zhao FR, Janova H, Gervais A, Rucknagel S, Murray KO, Casanova JL, Diamond MS. Blockade of interferon signaling decreases gut barrier integrity and promotes severe West Nile virus disease. Nat Commun 2023; 14:5973. [PMID: 37749080 PMCID: PMC10520062 DOI: 10.1038/s41467-023-41600-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023] Open
Abstract
The determinants of severe disease caused by West Nile virus (WNV) and why only ~1% of individuals progress to encephalitis remain poorly understood. Here, we use human and mouse enteroids, and a mouse model of pathogenesis, to explore the capacity of WNV to directly infect gastrointestinal (GI) tract cells and contribute to disease severity. At baseline, WNV poorly infects human and mouse enteroid cultures and enterocytes in mice. However, when STAT1 or type I interferon (IFN) responses are absent, GI tract cells become infected, and this is associated with augmented GI tract and blood-brain barrier (BBB) permeability, accumulation of gut-derived molecules in the brain, and more severe WNV disease. The increased gut permeability requires TNF-α signaling, and is absent in WNV-infected IFN-deficient germ-free mice. To link these findings to human disease, we measured auto-antibodies against type I IFNs in serum from WNV-infected human cohorts. A greater frequency of auto- and neutralizing antibodies against IFN-α2 or IFN-ω is present in patients with severe WNV infection, whereas virtually no asymptomatic WNV-infected subjects have such antibodies (odds ratio 24 [95% confidence interval: 3.0 - 192.5; P = 0.003]). Overall, our experiments establish that blockade of type I IFN signaling extends WNV tropism to enterocytes, which correlates with increased gut and BBB permeability, and more severe disease.
Collapse
Affiliation(s)
- Shih-Ching Lin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fang R Zhao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hana Janova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, EU, 75015, France
- Paris Cité University, Imagine Institute, Paris, EU, 75015, France
| | - Summer Rucknagel
- Gnotobiotic Research, Education, and Transgenic Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kristy O Murray
- Department of Pediatrics, Section of Pediatric Tropical Medicine, William T. Shearer Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, EU, 75015, France
- Paris Cité University, Imagine Institute, Paris, EU, 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, New York, NY, 10065, USA
- Department of Paediatrics, Necker Hospital for Sick Children, Paris, EU, 75015, France
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
30
|
Kouroupis D, Charisi K, Pyrpasopoulou A. The Ongoing Epidemic of West Nile Virus in Greece: The Contribution of Biological Vectors and Reservoirs and the Importance of Climate and Socioeconomic Factors Revisited. Trop Med Infect Dis 2023; 8:453. [PMID: 37755914 PMCID: PMC10536956 DOI: 10.3390/tropicalmed8090453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
Emerging infectious diseases have inflicted a significant health and socioeconomic burden upon the global population and governments worldwide. West Nile virus, a zoonotic, mosquito-borne flavivirus, was originally isolated in 1937 from a febrile patient in the West Nile Province of Uganda. It remained confined mainly to Africa, the Middle East, and parts of Europe and Australia until 1999, circulating in an enzootic mosquito-bird transmission cycle. Since the beginning of the 21st century, a new, neurotropic, more virulent strain was isolated from human outbreaks initially occurring in North America and later expanding to South and South-eastern Europe. Since 2010, when the first epidemic was recorded in Greece, annual incidence has fluctuated significantly. A variety of environmental, biological and socioeconomic factors have been globally addressed as potential regulators of the anticipated intensity of the annual incidence rate; circulation within the zoonotic reservoirs, recruitment and adaptation of new potent arthropod vectors, average winter and summer temperatures, precipitation during the early summer months, and socioeconomic factors, such as the emergence and progression of urbanization and the development of densely populated areas in association with insufficient health policy measures. This paper presents a review of the biological and socioenvironmental factors influencing the dynamics of the epidemics of West Nile virus (WNV) cases in Greece, one of the highest-ranked European countries in terms of annual incidence. To date, WNV remains an unpredictable opponent as is also the case with other emerging infectious diseases, forcing the National Health systems to develop response strategies, control the number of infections, and shorten the duration of the epidemics, thus minimizing the impact on human and material resources.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Konstantina Charisi
- Infectious Diseases Unit, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Athina Pyrpasopoulou
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
- Infectious Diseases Unit, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| |
Collapse
|
31
|
Gervais A, Rovida F, Avanzini MA, Croce S, Marchal A, Lin SC, Ferrari A, Thorball CW, Constant O, Le Voyer T, Philippot Q, Rosain J, Angelini M, Pérez Lorenzo M, Bizien L, Achille C, Trespidi F, Burdino E, Cassaniti I, Lilleri D, Fornara C, Sammartino JC, Cereda D, Marrocu C, Piralla A, Valsecchi C, Ricagno S, Cogo P, Neth O, Marín-Cruz I, Pacenti M, Sinigaglia A, Trevisan M, Volpe A, Marzollo A, Conti F, Lazzarotto T, Pession A, Viale P, Fellay J, Ghirardello S, Aubart M, Ghisetti V, Aiuti A, Jouanguy E, Bastard P, Percivalle E, Baldanti F, Puel A, MacDonald MR, Rice CM, Rossini G, Murray KO, Simonin Y, Nagy A, Barzon L, Abel L, Diamond MS, Cobat A, Zhang SY, Casanova JL, Borghesi A. Autoantibodies neutralizing type I IFNs underlie West Nile virus encephalitis in ∼40% of patients. J Exp Med 2023; 220:e20230661. [PMID: 37347462 PMCID: PMC10287549 DOI: 10.1084/jem.20230661] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Mosquito-borne West Nile virus (WNV) infection is benign in most individuals but can cause encephalitis in <1% of infected individuals. We show that ∼35% of patients hospitalized for WNV disease (WNVD) in six independent cohorts from the EU and USA carry auto-Abs neutralizing IFN-α and/or -ω. The prevalence of these antibodies is highest in patients with encephalitis (∼40%), and that in individuals with silent WNV infection is as low as that in the general population. The odds ratios for WNVD in individuals with these auto-Abs relative to those without them in the general population range from 19.0 (95% CI 15.0-24.0, P value <10-15) for auto-Abs neutralizing only 100 pg/ml IFN-α and/or IFN-ω to 127.4 (CI 87.1-186.4, P value <10-15) for auto-Abs neutralizing both IFN-α and IFN-ω at a concentration of 10 ng/ml. These antibodies block the protective effect of IFN-α in Vero cells infected with WNV in vitro. Auto-Abs neutralizing IFN-α and/or IFN-ω underlie ∼40% of cases of WNV encephalitis.
Collapse
Affiliation(s)
- Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Francesca Rovida
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Maria Antonietta Avanzini
- Laboratory of Pediatric Hemato-Oncology and Bone Marrow Transplantation, San Matteo Research Hospital, Pavia, Italy
| | - Stefania Croce
- UOSD Cell Factory, San Matteo Research Hospital, Pavia, Italy
| | - Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Shih-Ching Lin
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Alessandro Ferrari
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Christian W. Thorball
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Orianne Constant
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, Montpellier, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Micol Angelini
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| | - Malena Pérez Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Cristian Achille
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| | - Francesca Trespidi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| | - Elisa Burdino
- Laboratory of Microbiology and Virology, Amedeo di Savoia Hospital, ASL Città di Torino, Turin, Italy
| | - Irene Cassaniti
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Daniele Lilleri
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Chiara Fornara
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | | | | | - Chiara Marrocu
- Department of Biomedical Sciences for Health, Postgraduate School of Public Health, University of Milan, Milan, Italy
| | - Antonio Piralla
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Chiara Valsecchi
- Laboratory of Pediatric Hemato-Oncology and Bone Marrow Transplantation, San Matteo Research Hospital, Pavia, Italy
| | - Stefano Ricagno
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Molecular and Translational Cardiology, San Donato Hospital, Milan, Italy
| | - Paola Cogo
- Department of Medicine (DAME), Division of Pediatrics, University of Udine, Udine, Italy
| | - Olaf Neth
- Inborn Errors of Immunity Laboratory, Biomedicine Institute in Seville (IBiS), University of Seville/CSIC, “Red de Investigación Translacional en Infectología Pediátrica”, Seville, Spain
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Virgen del Rocío University Hospital, Seville, Spain
| | - Inés Marín-Cruz
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Virgen del Rocío University Hospital, Seville, Spain
| | - Monia Pacenti
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | | | - Marta Trevisan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Andrea Volpe
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padova University Hospital, Padova, Italy
| | - Francesca Conti
- Pediatric Unit, University Hospital of Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Section of Microbiology, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Pediatric Unit, University Hospital of Bologna, Bologna, Italy
| | - Pierluigi Viale
- Infectious Diseases Unit, University Hospital of Bologna, Bologna, Italy
| | - Jacques Fellay
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | | | - Mélodie Aubart
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Neurology Department, Necker-Enfants-Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Valeria Ghisetti
- Laboratory of Microbiology and Virology, Amedeo di Savoia Hospital, ASL Città di Torino, Turin, Italy
| | - Alessandro Aiuti
- Pediatric Immunohematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris, Paris, France
| | - Elena Percivalle
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Giada Rossini
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Kristy O. Murray
- Department of Pediatrics, Section of Pediatric Tropical Medicine, Center for Human Immunobiology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, Montpellier, France
| | - Anna Nagy
- National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary
| | - Luisa Barzon
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Alessandro Borghesi
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| |
Collapse
|
32
|
Koller KK, Kernbach ME, Reese D, Unnasch TR, Martin LB. House Sparrows Vary Seasonally in Their Ability to Transmit West Nile Virus. Physiol Biochem Zool 2023; 96:332-341. [PMID: 37713719 DOI: 10.1086/725888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
AbstractSeasonality in infectious disease prevalence is predominantly attributed to changes in exogenous risk factors. For vectored pathogens, high abundance, activity, and/or diversity of vectors can exacerbate disease risk for hosts. Conversely, many host defenses, particularly immune responses, are seasonally variable. Seasonality in host defenses has been attributed, in part, to the proximate (i.e., metabolic) and ultimate (i.e., reproductive fitness) costs of defense. In this study, our goal was to discern whether any seasonality is observable in how a common avian host, the house sparrow (Passer domesticus), copes with a common zoonotic arbovirus, the West Nile virus (WNV), when hosts are studied under controlled conditions. We hypothesized that if host biorhythms play a role in vector-borne disease seasonality, birds would be most vulnerable to WNV when breeding and/or molting (i.e., when other costly physiological activities are underway) and thus most transmissive of WNV at these times of year (unless birds died from infection). Overall, the results only partly supported our hypothesis. Birds were most transmissive of WNV in fall (after their molt is complete and when WNV is most prevalent in the environment), but WNV resistance, WNV tolerance, and WNV-dependent mortality did not vary among seasons. These results collectively imply that natural arboviral cycles could be partially underpinned by endogenous physiological changes in hosts. However, other disease systems warrant study, as this result could be specific to the nonnative and highly commensal nature of the house sparrow or a consequence of the relative recency of the arrival of WNV to the United States.
Collapse
|
33
|
Lata K, Charles S, Mangala Prasad V. Advances in computational approaches to structure determination of alphaviruses and flaviviruses using cryo-electron microscopy. J Struct Biol 2023; 215:107993. [PMID: 37414374 DOI: 10.1016/j.jsb.2023.107993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Advancements in the field of cryo-electron microscopy (cryo-EM) have greatly contributed to our current understanding of virus structures and life cycles. In this review, we discuss the application of single particle cryo-electron microscopy (EM) for the structure elucidation of small enveloped icosahedral viruses, namely, alpha- and flaviviruses. We focus on technical advances in cryo-EM data collection, image processing, three-dimensional reconstruction, and refinement strategies for obtaining high-resolution structures of these viruses. Each of these developments enabled new insights into the alpha- and flavivirus architecture, leading to a better understanding of their biology, pathogenesis, immune response, immunogen design, and therapeutic development.
Collapse
Affiliation(s)
- Kiran Lata
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sylvia Charles
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India; Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
34
|
Lu AY, Gustin A, Newhouse D, Gale M. Viral Protein Accumulation of Zika Virus Variants Links with Regulation of Innate Immunity for Differential Control of Viral Replication, Spread, and Response to Interferon. J Virol 2023; 97:e0198222. [PMID: 37162358 PMCID: PMC10231147 DOI: 10.1128/jvi.01982-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023] Open
Abstract
Asian lineage Zika virus (ZIKV) strains emerged globally, causing outbreaks linked with critical clinical disease outcomes unless the virus is effectively restricted by host immunity. We have previously shown that retinoic acid-inducible gene-I (RIG-I) senses ZIKV to trigger innate immunity to direct interferon (IFN) production and antiviral responses that can control ZIKV infection. However, ZIKV proteins have been demonstrated to antagonize IFN. Here, we conducted in vitro analyses to assess how divergent prototypic ZIKV variants differ in virologic properties, innate immune regulation, and infection outcome. We comparatively assessed African lineage ZIKV/Dakar/1984/ArD41519 (ZIKV/Dakar) and Asian lineage ZIKV/Malaysia/1966/P6740 (ZIKV/Malaysia) in a human epithelial cell infection model. De novo viral sequence determination identified amino acid changes within the ZIKV/Dakar genome compared to ZIKV/Malaysia. Viral growth analyses revealed that ZIKV/Malaysia accumulated viral proteins and genome copies earlier and to higher levels than ZIKV/Dakar. Both ZIKV strains activated RIG-I/IFN regulatory factor (IRF3) and NF-κB pathways to induce inflammatory cytokine expression and types I and III IFNs. However, ZIKV/Malaysia, but not ZIKV/Dakar, potently blocked downstream IFN signaling. Remarkably, ZIKV/Dakar protein accumulation and genome replication were rescued in RIG-I knockout (KO) cells late in acute infection, resulting in ZIKV/Dakar-mediated blockade of IFN signaling. We found that RIG-I signaling specifically restricts viral protein accumulation late in acute infection where early accumulation of viral proteins in infected cells confers enhanced ability to limit IFN signaling, promoting viral replication and spread. Our results demonstrate that RIG-I-mediated innate immune signaling imparts restriction of ZIKV protein accumulation, which permits IFN signaling and antiviral actions controlling ZIKV infection. IMPORTANCE ZIKV isolates are classified under African or Asian lineages. Infection with emerging Asian lineage-derived ZIKV strains is associated with increased incidence of neurological symptoms that were not previously reported during infection with African or preemergent Asian lineage viruses. In this study, we utilized in vitro models to compare the virologic properties of and innate immune responses to two prototypic ZIKV strains from distinct lineages: African lineage ZIKV/Dakar and Asian lineage ZIKV/Malaysia. Compared to ZIKV/Dakar, ZIKV/Malaysia accumulates viral proteins earlier, replicates to higher levels, and robustly blocks IFN signaling during acute infection. Early accumulation of ZIKV/Malaysia NS5 protein confers enhanced ability to antagonize IFN signaling, dampening innate immune responses to promote viral spread. Our data identify the kinetics of viral protein accumulation as a major regulator of host innate immunity, influencing host-mediated control of ZIKV replication and spread. Importantly, these findings provide a novel framework for evaluating the virulence of emerging variants.
Collapse
Affiliation(s)
- Amy Y. Lu
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Andrew Gustin
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Daniel Newhouse
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
35
|
Talmi-Frank D, Byas AD, Murrieta R, Weger-Lucarelli J, Rückert C, Gallichotte EN, Yoshimoto JA, Allen C, Bosco-Lauth AM, Graham B, Felix TA, Brault AC, Ebel GD. Intracellular Diversity of WNV within Circulating Avian Peripheral Blood Mononuclear Cells Reveals Host-Dependent Patterns of Polyinfection. Pathogens 2023; 12:767. [PMID: 37375457 DOI: 10.3390/pathogens12060767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Arthropod-borne virus (arbovirus) populations exist as mutant swarms that are maintained between arthropods and vertebrates. West Nile virus (WNV) population dynamics are host-dependent. In American crows, purifying selection is weak and population diversity is high compared to American robins, which have 100- to 1000-fold lower viremia. WNV passed in robins leads to fitness gains, whereas that passed in crows does not. Therefore, we tested the hypothesis that high crow viremia allows for higher genetic diversity within individual avian peripheral blood mononuclear cells (PBMCs), reasoning that this could have produced the previously observed host-specific differences in genetic diversity and fitness. Specifically, we infected cells and birds with a molecularly barcoded WNV and sequenced viral RNA from single cells to quantify the number of WNV barcodes in each. Our results demonstrate that the richness of WNV populations within crows far exceeds that in robins. Similarly, rare WNV variants were maintained by crows more frequently than by robins. Our results suggest that increased viremia in crows relative to robins leads to the maintenance of defective genomes and less prevalent variants, presumably through complementation. Our findings further suggest that weaker purifying selection in highly susceptible crows is attributable to this higher viremia, polyinfections and complementation.
Collapse
Affiliation(s)
- Dalit Talmi-Frank
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Alex D Byas
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Reyes Murrieta
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - James Weger-Lucarelli
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Emily N Gallichotte
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Janna A Yoshimoto
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Chris Allen
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Angela M Bosco-Lauth
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Barbara Graham
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Todd A Felix
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Lakewood, CO 80228, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Gregory D Ebel
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
36
|
Fiacre L, Lowenski S, Bahuon C, Dumarest M, Lambrecht B, Dridi M, Albina E, Richardson J, Zientara S, Jiménez-Clavero MÁ, Pardigon N, Gonzalez G, Lecollinet S. Evaluation of NS4A, NS4B, NS5 and 3'UTR Genetic Determinants of WNV Lineage 1 Virulence in Birds and Mammals. Viruses 2023; 15:v15051094. [PMID: 37243180 DOI: 10.3390/v15051094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
West Nile virus (WNV) is amplified in an enzootic cycle involving birds as amplifying hosts. Because they do not develop high levels of viremia, humans and horses are considered to be dead-end hosts. Mosquitoes, especially from the Culex genus, are vectors responsible for transmission between hosts. Consequently, understanding WNV epidemiology and infection requires comparative and integrated analyses in bird, mammalian, and insect hosts. So far, markers of WNV virulence have mainly been determined in mammalian model organisms (essentially mice), while data in avian models are still missing. WNV Israel 1998 (IS98) is a highly virulent strain that is closely genetically related to the strain introduced into North America in 1999, NY99 (genomic sequence homology > 99%). The latter probably entered the continent at New York City, generating the most impactful WNV outbreak ever documented in wild birds, horses, and humans. In contrast, the WNV Italy 2008 strain (IT08) induced only limited mortality in birds and mammals in Europe during the summer of 2008. To test whether genetic polymorphism between IS98 and IT08 could account for differences in disease spread and burden, we generated chimeric viruses between IS98 and IT08, focusing on the 3' end of the genome (NS4A, NS4B, NS5, and 3'UTR regions) where most of the non-synonymous mutations were detected. In vitro and in vivo comparative analyses of parental and chimeric viruses demonstrated a role for NS4A/NS4B/5'NS5 in the decreased virulence of IT08 in SPF chickens, possibly due to the NS4B-E249D mutation. Additionally, significant differences between the highly virulent strain IS98 and the other three viruses were observed in mice, implying the existence of additional molecular determinants of virulence in mammals, such as the amino acid changes NS5-V258A, NS5-N280K, NS5-A372V, and NS5-R422K. As previously shown, our work also suggests that genetic determinants of WNV virulence can be host-dependent.
Collapse
Affiliation(s)
- Lise Fiacre
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE, 97170 Petit-Bourg, France
- ASTRE, CIRAD, INRAe, University of Montpellier, 34000 Montpellier, France
| | - Steeve Lowenski
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Céline Bahuon
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Marine Dumarest
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | | | - Maha Dridi
- SCIENSANO, Avian Virology and Immunology, 1180 Brussels, Belgium
| | - Emmanuel Albina
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE, 97170 Petit-Bourg, France
- ASTRE, CIRAD, INRAe, University of Montpellier, 34000 Montpellier, France
| | - Jennifer Richardson
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Stéphan Zientara
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Miguel-Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Carretera Algete-El Casar s/n, 28130 Valdeolmos, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28001 Madrid, Spain
| | | | - Gaëlle Gonzalez
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Sylvie Lecollinet
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| |
Collapse
|
37
|
Crum KJ, Batiste R. Bilateral Upper Extremity Tremors in West Nile Encephalitis. Cureus 2023; 15:e37168. [PMID: 37168156 PMCID: PMC10166338 DOI: 10.7759/cureus.37168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
West Nile encephalitis is a rare complication of infection from the West Nile virus (WNv). Viral encephalitis can mimic manifestations of other neurologic diseases. The purpose of this article is to report a case of a 60-year-old female who developed bilateral upper extremity tremors with West Nile encephalitis. She presented to a hospital in Southern Louisiana with persistent high fevers and new onset confusion. She soon developed tremors which persisted throughout her hospitalization. Computerized tomography (CT) of the head revealed no abnormalities. Cerebral spinal fluid (CSF) was remarkable for WNv IgM, and supportive care was pursued. After nearly three weeks, she was transferred to a skilled nursing facility for further care. The presentation of movement disorder with confusion usually raises concern for injury to the brain or spinal cord or other neurologic illnesses. Despite the presentation of movement disorders or other neurologic manifestations, viral etiologies should remain high on the differential when the patient has additional symptoms, such as fever and elevated white blood cell (WBC) count, to limit inappropriate diagnostic testing and treatment.
Collapse
|
38
|
Bennett AK, Richner M, Mun MD, Richner JM. Type I IFN stimulates lymph node stromal cells from adult and old mice during a West Nile virus infection. Aging Cell 2023; 22:e13796. [PMID: 36802099 PMCID: PMC10086524 DOI: 10.1111/acel.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/20/2023] Open
Abstract
Advanced age is a significant risk factor during viral infection due to an age-associated decline in the immune response. Older individuals are especially susceptible to severe neuroinvasive disease after West Nile virus (WNV) infection. Previous studies have characterized age-associated defects in hematopoietic immune cells during WNV infection that culminate in diminished antiviral immunity. Situated amongst immune cells in the draining lymph node (DLN) are structural networks of nonhematopoietic lymph node stromal cells (LNSCs). LNSCs are comprised of numerous, diverse subsets, with critical roles in the coordination of robust immune responses. The contributions of LNSCs to WNV immunity and immune senescence are unclear. Here, we examine LNSC responses to WNV within adult and old DLNs. Acute WNV infection triggered cellular infiltration and LNSC expansion in adults. Comparatively, aged DLNs exhibited diminished leukocyte accumulation, delayed LNSC expansion, and altered fibroblast and endothelial cell subset composition, signified by fewer LECs. We established an ex vivo culture system to probe LNSC function. Adult and old LNSCs both recognized an ongoing viral infection primarily through type I IFN signaling. Gene expression signatures were similar between adult and old LNSCs. Aged LNSCs were found to constitutively upregulate immediate early response genes. Collectively, these data suggest LNSCs uniquely respond to WNV infection. We are the first to report age-associated differences in LNSCs on the population and gene expression level during WNV infection. These changes may compromise antiviral immunity, leading to increased WNV disease in older individuals.
Collapse
Affiliation(s)
- Allison K. Bennett
- Department of Microbiology and ImmunologyUniversity of Illinois College of MedicineChicagoIllinoisUSA
| | - Michelle Richner
- Department of Microbiology and ImmunologyUniversity of Illinois College of MedicineChicagoIllinoisUSA
| | - Madeline D. Mun
- Department of Microbiology and ImmunologyUniversity of Illinois College of MedicineChicagoIllinoisUSA
| | - Justin M. Richner
- Department of Microbiology and ImmunologyUniversity of Illinois College of MedicineChicagoIllinoisUSA
| |
Collapse
|
39
|
Benzarti E, Murray KO, Ronca SE. Interleukins, Chemokines, and Tumor Necrosis Factor Superfamily Ligands in the Pathogenesis of West Nile Virus Infection. Viruses 2023; 15:v15030806. [PMID: 36992514 PMCID: PMC10053297 DOI: 10.3390/v15030806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen that can lead to encephalitis and death in susceptible hosts. Cytokines play a critical role in inflammation and immunity in response to WNV infection. Murine models provide evidence that some cytokines offer protection against acute WNV infection and assist with viral clearance, while others play a multifaceted role WNV neuropathogenesis and immune-mediated tissue damage. This article aims to provide an up-to-date review of cytokine expression patterns in human and experimental animal models of WNV infections. Here, we outline the interleukins, chemokines, and tumor necrosis factor superfamily ligands associated with WNV infection and pathogenesis and describe the complex roles they play in mediating both protection and pathology of the central nervous system during or after virus clearance. By understanding of the role of these cytokines during WNV neuroinvasive infection, we can develop treatment options aimed at modulating these immune molecules in order to reduce neuroinflammation and improve patient outcomes.
Collapse
Affiliation(s)
- Emna Benzarti
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kristy O Murray
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shannon E Ronca
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
40
|
Nasraoui N, Moussa MLB, Ayedi Y, Mastouri M, Trabelsi A, Raies A, Wölfel R, Moussa MB. A sero-epidemiological investigation of West Nile virus among patients without any records of their symptoms from three different hospitals from Tunisia. Acta Trop 2023; 242:106905. [PMID: 36948235 DOI: 10.1016/j.actatropica.2023.106905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
West Nile virus is one of the most known arboviruses around the world, along with Dengue virus, Toscana virus, Chikungunya (CHIK). In Tunisia, many epidemics of WNV had occurred in the past. The last one dated from 2018. The aim of our work was to perform a sero-epidemiological investigation on WNV without any records of their symptoms from three different hospitals from Tunisia. Patients without any records of their symptoms of the infection of West Nile Virus (WNV) infection were included in the period from October 2017 to January 2020 from three different Virology departments in the country (the Military Hospital in Tunis, Fattouma Bourguiba Hospital in Monastir and Sahloul Hospital in Sousse). A venous blood sample was taken from all patients at the bend of the elbow using a sterile syringe under aseptic conditions. Serological investigation for WNV was conducted through ELISA and IFI assays. RT-PCR was used to confirm the infection. The study included 353 patients. Twenty-eighty percent (28.8%) of the population were tested positive for IgM antibodies, males were having less positive antibodies than women (24.6% vs. 36.3%, p<0.05). In the city of Sousse, positive IgM were found more than in the other cities. As for IgG, 19.2% of the patients were having positive antibodies. No significant association was found between genders (p>0.05). One quarter of the IgM antibodies were tested positive using IFI technique, with no difference between genders (p>0.05). Only 9.2% of the samples were positive by PCR. Our results highlight the importance of establishing sustainable entomological systems and effective clinical ones and of promoting appropriate biological control strategies to optimize the limitation of the circulation of WNV as well as other arboviruses to inhibit their harmful effects on health.
Collapse
Affiliation(s)
- Nadya Nasraoui
- Department of Medical Virology, Military Hospital of Tunis, Tunisia
| | | | - Yosr Ayedi
- Department of Epidemiology and Biostatistics, Abderrahmane Mami Hospital, Ariana, Tunisia.
| | - Maha Mastouri
- Department of Medical Microbiology, Fatouma Bourguiba Hospital, Monastir, Tunisia
| | | | - Ali Raies
- Laboratory of Active Microorganisms and Biomolecules, Faculty of Sciences, Tunis
| | - Roman Wölfel
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | |
Collapse
|
41
|
Agliani G, Giglia G, Marshall EM, Gröne A, Rockx BH, van den Brand JM. Pathological features of West Nile and Usutu virus natural infections in wild and domestic animals and in humans: A comparative review. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
42
|
N-sulfonyl peptide-hybrids as a new class of dengue virus protease inhibitors. Eur J Med Chem 2023; 251:115227. [PMID: 36893626 DOI: 10.1016/j.ejmech.2023.115227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Dengue virus (DENV) from the Flaviviridae family causes an epidemic disease that seriously threatens human life. The viral serine protease NS2B-NS3 is a promising target for drug development against DENV and other flaviviruses. We here report the design, synthesis, and in-vitro characterization of potent peptidic inhibitors of DENV protease with a sulfonyl moiety as N-terminal cap, thereby creating sulfonamide-peptide hybrids. The in-vitro target affinities of some synthesized compounds were in the nanomolar range, with the most promising derivative reaching a Ki value of 78 nM against DENV-2 protease. The synthesized compounds did not have relevant off-target activity nor cytotoxicity. The metabolic stability of compounds against rat liver microsomes and pancreatic enzymes was remarkable. In general, the integration of sulfonamide moieties at the N-terminus of peptidic inhibitors proved to be a promising and attractive strategy for further drug development against DENV infections.
Collapse
|
43
|
Nakano T, Katayama Y, Sakamoto M, Shimizu Y, Inoie M, Shimizu N, Yamanaka H, Tsuge I, Saito S, Morimoto N. Establishment of a keratinocyte and fibroblast bank for clinical applications in Japan. J Artif Organs 2023; 26:45-52. [PMID: 35511369 DOI: 10.1007/s10047-022-01331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
Abstract
Regenerative medicine products using allogeneic cells, such as allogeneic cultured epidermis (allo-CE), have become a more critical therapeutic method for the treatment of burns. However, there are no clinically available allo-CE products in Japan. Therefore, establishing a quality-controlled cell bank is mandatory to create regenerative medical products using allogeneic cells. In this study, we selected ten patients from the Department of Plastic Surgery of Kyoto University Hospital to become cell donors. We performed medical interviews and blood sampling for the donor to ensure virus safety. We examined the tissues and isolated cells by performing a nucleic acid test (NAT). To establish a master cell bank, quality evaluation was performed according to the International Conference of Harmonization (ICH) Q5A. Serological tests of the blood samples from the ten donors showed that two of them were ineligible. The cells registered in the cell bank were found to be compatible after virus testing was performed, and a master cell bank was constructed. Hence, we established a keratinocyte and fibroblast bank of clinically usable human cultured cells in Japan for the first time.
Collapse
Affiliation(s)
- Takashi Nakano
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507, Japan
| | - Yasuhiro Katayama
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507, Japan.
| | - Michiharu Sakamoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507, Japan
| | | | | | | | - Hiroki Yamanaka
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507, Japan
| | - Itaru Tsuge
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507, Japan
| | - Susumu Saito
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507, Japan
| |
Collapse
|
44
|
The Current Landscape of Bioactive Molecules against DENV: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:2236210. [PMID: 36818227 PMCID: PMC9937760 DOI: 10.1155/2023/2236210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 02/12/2023]
Abstract
With a 30-fold increase in incidence over the previous 50 years, dengue fever is now the most widespread viral disease transmitted by mosquitoes in the world. The intricate interaction of the human defense system, hereditary predisposition, and specific bitterness elements is more likely to be the pathogenesis of dengue. There are presently no viable treatments for dengue. Synthetic drugs which are used against this ailment also show major side effects. There must be a deeper understanding of the underlying mechanism generating severe symptoms to develop auguring markers, cutting-edge diagnostics, and treatments and finally a well-rounded and secure antiserum. Hence, the aim is to search for safer and more potent drugs derived from plants. Plants or herbs are mainly targeting replication or its enzyme or specific stereotypes, though an exact mechanism of phytoconstituents interfering with the viral replication is still undiscovered. The present attempt provided the update with the objective to bringing up forward pathophysiological eventualities involved in dengue virus along with the naturally derived treatment relevant to provide the impregnable therapy by evading the noxious symptoms for dengue fever. Governor's plum, Cryptocarya chartacea, magnolia berry, and Chinese ginger are such plants exhibiting many effective phytoconstituents against DENV and can be further explored for novel drug discovery by medicinal scientists.
Collapse
|
45
|
Frank DT, Byas AD, Murrieta R, Weger-Lucarelli J, Rückert C, Gallichotte E, Yoshimoto JA, Allen C, Bosco-Lauth AM, Graham B, Felix TA, Brault A, Ebel GD. Intracellular diversity of WNV within circulating avian peripheral blood mononuclear cells reveals host-dependent patterns of polyinfection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525959. [PMID: 36747638 PMCID: PMC9900929 DOI: 10.1101/2023.01.27.525959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Error-prone replication of RNA viruses generates the genetic diversity required for adaptation within rapidly changing environments. Thus, arthropod-borne virus (arbovirus) populations exist in nature as mutant swarms that are maintained between arthropods and vertebrates. Previous studies have demonstrated that West Nile virus (WNV) population dynamics are host dependent: In American crows, which experience extremely high viremia, purifying selection is weak and population diversity is high compared to American robins, which have 100 to 1000-fold lower viremia. WNV passed in robins experiences fitness gains, whereas that passed in crows does not. Therefore, we tested the hypothesis that high crow viremia allows higher genetic diversity within individual avian peripheral-blood mononuclear cells (PBMCs), reasoning that this could have produced the previously observed host-specific differences in genetic diversity and fitness. Specifically, we infected cells and birds with a novel, barcoded version of WNV and sequenced viral RNA from single cells to quantify the number of WNV barcodes that each contained. Our results demonstrate that the richness of WNV populations within crows far exceeds that in robins. Similarly, rare WNV variants were maintained by crows more frequently than by robins. Our results suggest that increased viremia in crows relative to robins leads to maintenance of defective genomes and less prevalent variants, presumably through complementation. Our findings further suggest that weaker purifying selection in highly susceptible crows is attributable to this higher viremia, polyinfections and complementation. These studies further document the role of particular, ecologically relevant hosts in shaping virus population structure. Author Summary WNV mutational diversity in vertebrates is species-dependent. In crows, low frequency variants are common, and viral populations are more diverse. In robins, fewer mutations become permanent fixtures of the overall viral population. We infected crows, robins and a chicken cell line with a genetically marked (barcoded) WNV. Higher levels of virus led to multiple unique WNV genomes infecting individual cells, even when a genotype was present at low levels in the input viral stock. Our findings suggest that higher levels of circulating virus in natural hosts allow less fit viruses to survive in RNA virus populations through complementation by more fit viruses. This is significant as it allows less represented and less fit viruses to be maintained at low levels until they potentially emerge when virus environments change. Overall our data reveal new insights on the relationships between host susceptibility to high viremia and virus evolution.
Collapse
Affiliation(s)
- Dalit Talmi Frank
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Alex D. Byas
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Reyes Murrieta
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - James Weger-Lucarelli
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, Nevada, USA
| | - Emily Gallichotte
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Janna A. Yoshimoto
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Chris Allen
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Angela M. Bosco-Lauth
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Barbara Graham
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Todd A. Felix
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Golden, CO, USA
| | - Aaron Brault
- Division of Vector-borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Fort Collins, Colorado, USA
| | - Gregory D. Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
46
|
Mei R, Heng X, Liu X, Chen G. Glycopolymers for Antibacterial and Antiviral Applications. Molecules 2023; 28:molecules28030985. [PMID: 36770653 PMCID: PMC9919862 DOI: 10.3390/molecules28030985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Diseases induced by bacterial and viral infections are common occurrences in our daily life, and the main prevention and treatment strategies are vaccination and taking antibacterial/antiviral drugs. However, vaccines can only be used for specific viral infections, and the abuse of antibacterial/antiviral drugs will create multi-drug-resistant bacteria and viruses. Therefore, it is necessary to develop more targeted prevention and treatment methods against bacteria and viruses. Proteins on the surface of bacteria and viruses can specifically bind to sugar, so glycopolymers can be used as potential antibacterial and antiviral drugs. In this review, the research of glycopolymers for bacterial/viral detection/inhibition and antibacterial/antiviral applications in recent years are summarized.
Collapse
Affiliation(s)
- Ruoyao Mei
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Xingyu Heng
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren−Ai Road, Suzhou 215123, China
| | - Xiaoli Liu
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren−Ai Road, Suzhou 215123, China
- Correspondence: (X.L.); (G.C.)
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren−Ai Road, Suzhou 215123, China
- Correspondence: (X.L.); (G.C.)
| |
Collapse
|
47
|
Bennett AK, Richner M, Mun MD, Richner JM. Type I IFN stimulates lymph node stromal cells from adult and old mice during a West Nile virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522898. [PMID: 36711838 PMCID: PMC9881888 DOI: 10.1101/2023.01.05.522898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Advanced age is a significant risk factor during viral infection due to an age-associated decline in the immune response. Older individuals are especially susceptible to severe neuroinvasive disease after West Nile virus (WNV) infection. Previous studies have characterized age-associated defects in hematopoietic immune cells during WNV infection that culminate in diminished antiviral immunity. Situated amongst immune cells in the draining lymph node (DLN) are structural networks of nonhematopoietic lymph node stromal cells (LNSCs). LNSCs are comprised of numerous, diverse subsets, with critical roles in the coordination of robust immune responses. The contributions of LNSCs to WNV immunity and immune senescence are unclear. Here, we examine LNSC responses to WNV within adult and old DLNs. Acute WNV infection triggered cellular infiltration and LNSC expansion in adult. Comparatively, aged DLNs exhibited diminished leukocyte accumulation, delayed LNSC expansion, and altered fibroblast and endothelial cell subset composition, signified by fewer LECs. We established an ex vivo culture system to probe LNSC function. Adult and old LNSCs both recognized an ongoing viral infection primarily through type I IFN signaling. Gene expression signatures were similar between adult and old LNSCs. Aged LNSCs were found to constitutively upregulate immediate early response genes. Collectively, these data suggest LNSCs uniquely respond to WNV infection. We are the first to report age-associated differences in LNSCs on the population- and gene expression-level during WNV infection. These changes may compromise antiviral immunity, leading to increased WNV disease in older individuals.
Collapse
|
48
|
Avraham R, Melamed S, Achdout H, Erez N, Israeli O, Barlev-Gross M, Pasmanik-Chor M, Paran N, Israely T, Vitner EB. Antiviral activity of glucosylceramide synthase inhibitors in alphavirus infection of the central nervous system. Brain Commun 2023; 5:fcad086. [PMID: 37168733 PMCID: PMC10165247 DOI: 10.1093/braincomms/fcad086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/23/2022] [Accepted: 03/23/2023] [Indexed: 05/13/2023] Open
Abstract
Virus-induced CNS diseases impose a considerable human health burden worldwide. For many viral CNS infections, neither antiviral drugs nor vaccines are available. In this study, we examined whether the synthesis of glycosphingolipids, major membrane lipid constituents, could be used to establish an antiviral therapeutic target. We found that neuroinvasive Sindbis virus altered the sphingolipid levels early after infection in vitro and increased the levels of gangliosides GA1 and GM1 in the sera of infected mice. The alteration in the sphingolipid levels appears to play a role in neuroinvasive Sindbis virus replication, as treating infected cells with UDP-glucose ceramide glucosyltransferase (UGCG) inhibitors reduced the replication rate. Moreover, the UGCG inhibitor GZ-161 increased the survival rates of Sindbis-infected mice, most likely by reducing the detrimental immune response activated by sphingolipids in the brains of Sindbis virus-infected mice. These findings suggest a role for glycosphingolipids in the host immune response against neuroinvasive Sindbis virus and suggest that UGCG inhibitors should be further examined as antiviral therapeutics for viral infections of the CNS.
Collapse
Affiliation(s)
- Roy Avraham
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Hagit Achdout
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Moria Barlev-Gross
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Science, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Einat B Vitner
- Correspondence to: Einat B. Vitner Department of Infectious Diseases Israel Institute for Biological Research P.O.B 19, 7410001 Ness-Ziona, Israel E-mail:
| |
Collapse
|
49
|
Daniels BP, Oberst A. Outcomes of RIP Kinase Signaling During Neuroinvasive Viral Infection. Curr Top Microbiol Immunol 2023; 442:155-174. [PMID: 32253569 PMCID: PMC7781604 DOI: 10.1007/82_2020_204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuroinvasive viral diseases are a considerable and growing burden on global public health. Despite this, these infections remain poorly understood, and the molecular mechanisms that govern protective versus pathological neuroinflammatory responses to infection are a matter of intense investigation. Recent evidence suggests that necroptosis, an immunogenic form of programmed cell death, may contribute to the pathogenesis of viral encephalitis. However, the receptor-interacting protein (RIP) kinases that coordinate necroptosis, RIPK1 and RIPK3, also appear to have unexpected, cell death-independent functions in the central nervous system (CNS) that promote beneficial neuroinflammation during neuroinvasive infection. Here, we review the emerging evidence in this field, with additional discussion of recent work examining roles for RIPK signaling and necroptosis during noninfectious pathologies of the CNS, as these studies provide important additional insight into the potential for specialized neuroimmune functions for the RIP kinases.
Collapse
Affiliation(s)
- Brian P Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
50
|
Patroca da Silva S, Barbosa de Almeida Medeiros D, Ribeiro Cruz AC, Marques França AF, Diniz Nunes BT, Guerreiro Rodrigues DS, Pinto da Silva EV, Almada GL, Neves Casseb LM, Correia Rodrigues da Cunha MA, Dias Pestana Santos MG, Dilcher M, Britto SG, Martins Romano AP, Chiang JO, Martins LC. Co-infection of Peruvian horse sickness virus and West Nile virus associated with neurological diseases in horses from Brazil. Heliyon 2022; 8:e12097. [PMID: 36561679 PMCID: PMC9763762 DOI: 10.1016/j.heliyon.2022.e12097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/04/2022] [Accepted: 10/25/2022] [Indexed: 12/12/2022] Open
Abstract
In 2018, during the surveillance for West Nile virus (WNV) in horses with neurological clinical signs in the state of Espírito Santo (Brazil), 19 animals were investigated, and 52 biological samples were collected for WNV diagnostic. One brain sample was positive for WNV by RT-qPCR and the virus was isolated in C6/36 cell culture and sequenced. We obtained a nearly complete genome of WNV co-infected with Peruvian horse sickness virus (PHSV) in the cell culture. After confirmation of PHSV by next-generation sequencing, a new PHSV RT-qPCR protocol was developed, which was used to detect another horse positive only for PHSV. This assay provides a simple and direct method for easy identification of PHSV from biological samples from horses and may become a useful tool in the epidemiological surveillance of this virus. It is the first case of PHSV in Brazil, and only the third country overall to report, 23 years after the first confirmed notification in Peru. Moreover, it is the first reported co-infection of PHSV and WNV in a horse with neurological signs, confirmed by RT-qPCR.
Collapse
Affiliation(s)
- Sandro Patroca da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Pará, Brazil
- Corresponding author.
| | - Daniele Barbosa de Almeida Medeiros
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Pará, Brazil
| | - Ana Cecília Ribeiro Cruz
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Pará, Brazil
| | - Ana Flávia Marques França
- Secretariat of Health of Espírito Santo state, Av. Mal. Mascarenhas de Moraes, 2025 - Bento Ferreira, 29050-755, Vitória, Espírito Santo, Brazil
| | - Bruno Tardelli Diniz Nunes
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Pará, Brazil
| | - Daniela Sueli Guerreiro Rodrigues
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Pará, Brazil
| | - Eliana Vieira Pinto da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Pará, Brazil
| | - Gilton Luiz Almada
- Secretariat of Health of Espírito Santo state, Av. Mal. Mascarenhas de Moraes, 2025 - Bento Ferreira, 29050-755, Vitória, Espírito Santo, Brazil
| | - Lívia Medeiros Neves Casseb
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Pará, Brazil
| | | | - Maria Guadalupe Dias Pestana Santos
- Secretariat of Health of Venécia Municipality, Rua Ibiraçu, 26, Bairro Margareth, Nova Venécia/ES, CEP 29.830-000, Venécia, Espírito Santo, Brazil
| | - Meik Dilcher
- Microbiology Department, Canterbury Health Laboratories, 524 Hagley Avenue, Christchurch 8041, New Zealand
| | - Sávio Guimarães Britto
- Secretariat of Health of Espírito Santo state, Av. Mal. Mascarenhas de Moraes, 2025 - Bento Ferreira, 29050-755, Vitória, Espírito Santo, Brazil
| | | | - Jannifer Oliveira Chiang
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Pará, Brazil
| | - Lívia Caricio Martins
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, s/n CEP 67.030-000, Ananindeua, Pará, Brazil
- Corresponding author.
| |
Collapse
|