1
|
Bonelli F, Moosavizadeh S, Fasolo E, Di Nella A, Barbaro V, Zorzi I, Krampera M, Tóthová JD, Ponzin D, Ritter T, Ferrari S, Rodella U. Development and optimization of an ex vivo model of corneal epithelium damage with 1-heptanol: Investigating the influence of donor clinical parameters and MSC-sEV treatment on healing capacity. Ocul Surf 2025; 36:224-236. [PMID: 39914484 DOI: 10.1016/j.jtos.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
PURPOSE To develop and characterize a reproducible human corneal epithelial wound-healing model using 1-heptanol, and to investigate the healing potential of Bone Marrow-derived Mesenchymal Stromal Cell small Extracellular Vesicles (MSC-sEV) and the influence of donor characteristics on epithelial healing. METHODS Eighty-eight (n = 88) human corneoscleral tissues unsuitable for transplantation were employed. Corneal epithelial damage was induced with 1-heptanol and monitored every 24 h up to 96 h using fluorescein and trypan blue staining. Histological assessment was performed on untreated and damaged tissues. Damaged areas were measured with FIJI software, and healing rates were calculated. MSC-sEV were isolated with size exclusion chromatography and characterized for their size, morphology and biomarkers. Their impact on healing was assessed in both in vitro scratch assays on cultured human corneal epithelial cells and on ex vivo 1-heptanol-damaged corneas. RESULTS Histological analysis revealed detached corneal epithelium in the central area, while other layers remained unaffected. Healing rate peaked at 48 h post-damage. Trypan blue and Fluorescein staining correlated and the former highlighted a higher initial healing rate than the latter. Diabetic and heart-beating brain-deceased donors showed impaired healing rates. MSC-sEV (79.8 nm, spherical bilayer, positive for TSG101, CD9, CD63, and CD81) significantly improved epithelial wound healing in both in vitro and ex vivo models. CONCLUSION 1-heptanol effectively induces reproducible corneal epithelial damage, and the ex vivo organ-cultured human cornea heals the epithelium within 96 h. Diabetes and donation from heart-beating brain-deceased donors reduce healing capacity. MSC-sEV boost epithelial repair in damaged corneas.
Collapse
Affiliation(s)
| | - Seyedmohammad Moosavizadeh
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Science, University of Galway, Galway, Ireland; SFI Research Centre for Medical Devices (Curam), University of Galway, Galway, Ireland
| | - Elisa Fasolo
- Fondazione Banca Degli Occhi Del Veneto ETS, Venice, Italy
| | - Alessia Di Nella
- Hematology and Bone Marrow Transplant Unit, Section of Biomedicine of Innovation, Department of Engineering for Innovative Medicine (DIMI), University of Verona, Italy
| | | | - Ilaria Zorzi
- Fondazione Banca Degli Occhi Del Veneto ETS, Venice, Italy
| | - Mauro Krampera
- Hematology and Bone Marrow Transplant Unit, Section of Biomedicine of Innovation, Department of Engineering for Innovative Medicine (DIMI), University of Verona, Italy
| | | | - Diego Ponzin
- Fondazione Banca Degli Occhi Del Veneto ETS, Venice, Italy
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Science, University of Galway, Galway, Ireland; SFI Research Centre for Medical Devices (Curam), University of Galway, Galway, Ireland
| | | | - Umberto Rodella
- Fondazione Banca Degli Occhi Del Veneto ETS, Venice, Italy; Research and Development, AL.CHI.MI.A. S.R.L, Ponte San Nicolò, Italy
| |
Collapse
|
2
|
Issac L, Dolev D, Irit B, Assaf D, Levy I. Assessment of insulin-degrading enzyme inhibitor for the treatment of corneal erosion in a rat model. Graefes Arch Clin Exp Ophthalmol 2025; 263:1015-1021. [PMID: 39714747 PMCID: PMC12095391 DOI: 10.1007/s00417-024-06717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Diabetes poses a risk to diabetic keratopathy in up to two-thirds of patients. Insulin-degrading enzyme (IDE) is a protease that can break down insulin and several growth factors and may impair wound healing. Increased IDE levels have been found in fluid from diabetic skin ulcers. This study sought to determine the effect of IDE inhibitor on corneal wound healing in a rat model. METHODS Thirty-four male Wistar rats were divided into two groups: no diabetes and streptozocin-induced diabetes. Six weeks later, a 4-mm central corneal erosion was created under anesthesia in the right eye of all rats. In each group, half the rats were treated with ADT21 drops (IDE inhibitor) and half with NaCl 0.9% (sham) drops, four times daily. Image J analysis was performed to evaluate the area of erosion and healing rate. RESULTS There was a trend for more rapid healing in rats treated with IDEI than NaCl drops, regardless of the diabetic condition. Comparison of erosion closure over time revealed that the wounds closed significantly more quickly in the non-diabetic rats treated with IDEI than in the non-diabetic rats treated with NaCl (p = 0.045), overall mean closure time 56.00 h, 95% CI [50.54, 61.46]. No such difference was seen in the diabetic group. CONCLUSIONS To our knowledge, this is the first study to test ADT21 drops as a novel treatment for corneal wound repair. Our results suggest a potential benefit of IDE inhibitor for treating corneal injury.
Collapse
Affiliation(s)
- Levy Issac
- Department of Ophthalmology and Laboratory of Eye Research, Rabin Medical Center - Beilinson Hospital, Felsenstein Medical Research Center , 39 Jabotinski St., Petach Tikva, 49100, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dollberg Dolev
- Department of Ophthalmology and Laboratory of Eye Research, Rabin Medical Center - Beilinson Hospital, Felsenstein Medical Research Center , 39 Jabotinski St., Petach Tikva, 49100, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Bahar Irit
- Department of Ophthalmology and Laboratory of Eye Research, Rabin Medical Center - Beilinson Hospital, Felsenstein Medical Research Center , 39 Jabotinski St., Petach Tikva, 49100, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dotan Assaf
- Department of Ophthalmology and Laboratory of Eye Research, Rabin Medical Center - Beilinson Hospital, Felsenstein Medical Research Center , 39 Jabotinski St., Petach Tikva, 49100, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Issac Levy
- Department of Ophthalmology and Laboratory of Eye Research, Rabin Medical Center - Beilinson Hospital, Felsenstein Medical Research Center , 39 Jabotinski St., Petach Tikva, 49100, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
Bastion MLC, Wan Abdul Halim WH, Mohd Said M, Sadu Singh BK, Abdul Ghani A. Topical Insulin in Artificial Tears Stability Study: Short-term Physical, Chemical and Microbiological Stability Study of 0.5 Units (25 IU/mL) of Topical Insulin in Artificial Tears. Eye Contact Lens 2025; 51:220-226. [PMID: 40036826 DOI: 10.1097/icl.0000000000001175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 03/06/2025]
Abstract
OBJECTIVES Topical insulin (TI) at 25 IU/mL effectively normalizes healing of corneal epithelium and dry eye in diabetic patients. We aim to determine physicochemical stability and sterility of TI in sodium hyaluronate 0.18% (TI-artificial tears [AT]) in an eye drop formulation. METHODS The physicochemical stability of TI-AT at 5°C±3°C and 30°C±2°C in sterile low-density polyethylene bottles was studied. Samples were put in conditions of simulated use and analyzed weekly for stability parameters (visual inspection, turbidity, ultraviolet spectral absorption, osmolality, and pH) and culture growth. Insulin was quantified using the stability-indicating high-performance liquid chromatographic method with diode-array detection with RP-C18 column, o -nitrophenol as an internal standard, and ultraviolet detection at 214 nm. Stability was set according to British Pharmacopoeia with 90% to 110% of initial concentration (with 95% confidence interval) considered acceptable. RESULTS All tested physicochemical and sterility parameters remained stable for 1 month in both temperature conditions with stable TI concentrations. CONCLUSION Topical insulin-artificial tears is stable in both room temperature and refrigeration. Topical insulin-artificial tears can be prescribed with a 1-month shelf life.
Collapse
Affiliation(s)
- Mae-Lynn Catherine Bastion
- Department of Ophthalmology (M.-L.C.B., W.H.W.A.H.), Faculty of Medicine, Universiti Kebangsaan Malaysia; Hospital Canselor Tuanku Muhriz (M.-L.C.B., W.H.W.A.H.), Universiti Kebangsaan Malaysia Medical Centre (UKMMC); Faculty of Pharmacy (M.M.S., A.A.G.), Universiti Kebangsaan Malaysia Kuala Lumpur Campus (UKMKL), Kuala Lumpur, Malaysia; Department of Pharmacy (B.K.S.S.), Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia; and School of Optometry (W.H.W.A.H.), Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | | | | | | | | |
Collapse
|
4
|
Meng F, Zhou Y, Bao T, Pang Y, Shao Q, Wang L, Zhao J, Li W, Xu H, Yang Y, Zhang B. Impact of Hyperglycemia on Tear Film and Meibomian Gland Dysfunction: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2025; 18:327-333. [PMID: 39925463 PMCID: PMC11806745 DOI: 10.2147/dmso.s500595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025] Open
Abstract
Purpose Elevated blood glucose levels may disrupt tear film and meibomian gland function, contributing to dry eye disease (DED) and meibomian gland dysfunction (MGD). This study aimed to explore the relationship between hyperglycemia and DED parameters. Methods A cross-sectional study at Chifeng Chaoju Eye Hospital (June-August 2024) included 56 participants with DED symptoms. Tear meniscus height (TMH), non-invasive tear film breakup time (FNIBUT, ANIBUT), bulbar redness, and meibomian gland atrophy (U-LAMG, L-LAMG) were assessed using a non-invasive ocular surface analyzer. Fasting blood glucose levels stratified patients into high (≥7 mmol/l) and normal (<7 mmol/l) groups, and their association with DED parameters was analyzed. Results Among 56 patients (mean age 52.5 ± 18.0 years), those with elevated glucose levels (n=28) had more severe DED symptoms (OSDI, p = 0.046), lower TMH, FNIBUT, ANIBUT, and higher bulbar redness scores (all p < 0.05). In contrast, lower glucose levels were associated with greater U-LAMG and L-LAMG atrophy (p < 0.05). Glucose positively correlated with intraocular pressure (IOP), redness, U-LAMG, and L-LAMG but negatively correlated with TMH, FNIBUT, and ANIBUT (all p < 0.05). Conclusion Hyperglycemia is linked to impaired tear film stability, meibomian gland function, and DED symptoms. Ocular surface disorders in individuals with diabetes may be prevented by effective glycemic control.
Collapse
Affiliation(s)
- Fanhua Meng
- Department of Retinal, Chifeng Chaoju Eye Hospital, Chifeng, People’s Republic of China
| | - Yuan Zhou
- Department of Ocular Surface, Baotou Chaoju Eye Hospital, Baotou, People’s Republic of China
| | - Tong Bao
- Department of Retinal, Chifeng Chaoju Eye Hospital, Chifeng, People’s Republic of China
| | - Yunlei Pang
- Department of Retinal, Chifeng Chaoju Eye Hospital, Chifeng, People’s Republic of China
| | - Qinglei Shao
- Department of Retinal, Chifeng Chaoju Eye Hospital, Chifeng, People’s Republic of China
| | - Lifeng Wang
- Department of Retinal, Chifeng Chaoju Eye Hospital, Chifeng, People’s Republic of China
| | - Jing Zhao
- Department of Retinal, Chifeng Chaoju Eye Hospital, Chifeng, People’s Republic of China
| | - Wenchao Li
- Department of Retinal, Chifeng Chaoju Eye Hospital, Chifeng, People’s Republic of China
| | - Haiyan Xu
- Department of Retinal, Chifeng Chaoju Eye Hospital, Chifeng, People’s Republic of China
| | - Yajun Yang
- Department of Retinal, Chifeng Chaoju Eye Hospital, Chifeng, People’s Republic of China
- Department of Ocular Surface, Baotou Chaoju Eye Hospital, Baotou, People’s Republic of China
| | - Bozhou Zhang
- Department of Retinal, Chifeng Chaoju Eye Hospital, Chifeng, People’s Republic of China
- Department of Ocular Surface, Baotou Chaoju Eye Hospital, Baotou, People’s Republic of China
| |
Collapse
|
5
|
Zhang F, Xu W, Deng Z, Huang J. A bibliometric and visualization analysis of electrochemical biosensors for early diagnosis of eye diseases. Front Med (Lausanne) 2025; 11:1487981. [PMID: 39867928 PMCID: PMC11757256 DOI: 10.3389/fmed.2024.1487981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Electrochemical biosensors can provide an economical, accurate and rapid method for early screening of disease biomarkers in clinical medicine due to their high sensitivity, selectivity, portability, low cost and easy manufacturing, and multiplexing capability. Tear, a fluid naturally secreted by the human body, is not only easily accessible but also contains a great deal of biological information. However, no bibliometric studies focus on applying electrochemical sensors in tear/eye diseases. Therefore, we utilized VOSviewer and CiteSpace, to perform a detailed bibliometric analysis of 114 papers in the field of research on the application of tear in electrochemical biosensors screened from Web of Science with the combination of Scimago Graphica and Microsoft Excel for visualization to show the current research hotspots and future trends. The results show that the research in this field started in 2008 and experienced an emerging period in recent years. Researchers from China and the United States mainly contributed to the thriving research areas, with 41 and 29 articles published, respectively. Joseph Wang from the University of California San Diego is the most influential author in the field, and Biosensors & Bioelectronics is the journal with the most published research and the most cited journal. The highest appearance keywords were "biosensor" and "tear glucose," while the most recent booming keywords "diagnosis" and "in-vivo" were. In conclusion, this study elucidates current trends, hotspots, and emerging frontiers, and provides future biomarkers of ocular and systemic diseases by electrochemical sensors in tear with new ideas and opinions.
Collapse
Affiliation(s)
- Fushen Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Weiye Xu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zejun Deng
- School of Materials Science and Engineering, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
6
|
Pei X, Ba M, Yang T, Xuan S, Huang D, Qi D, Lu D, Huang S, Li Z. Leptin Receptor Deficiency-Associated Diabetes Disrupts Lacrimal Gland Circadian Rhythms and Contributes to Dry Eye Syndrome. Invest Ophthalmol Vis Sci 2025; 66:19. [PMID: 39774625 PMCID: PMC11721485 DOI: 10.1167/iovs.66.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Purpose This study investigated the impact of hyperglycemia in type 2 diabetes mellitus (T2DM) on the circadian rhythms and function of lacrimal glands (LGs) in contributing to dry eye syndrome. We assessed the effects of hyperglycemia on circadian gene expression, immune cell recruitment, neural activity, and metabolic pathways, and evaluated the effectiveness of insulin in restoring normal LG function. Methods Using a T2DM mouse model (db/db mice), circadian transcriptomic changes in LGs were analyzed through RNA sequencing over a 24-hour period. Rhythmic expression of core clock genes, immune and neural activity, and metabolic pathways were evaluated. The effects of insulin treatment on these parameters were also assessed. Results Hyperglycemia disrupted the circadian expression of core clock genes in LGs, leading to a 50% reduction in rhythmic gene expression. This was associated with altered immune cell recruitment, impaired neural activity, and metabolic changes. Insulin treatment lowered blood glucose levels but did not restore normal circadian function or tear secretion, exacerbating dry eye syndrome in diabetic mice. Conclusions T2DM significantly disrupts circadian rhythms and function in lacrimal glands, contributing to dry eye syndrome. The limited efficacy of insulin in restoring circadian regulation suggests that hyperglycemia-induced dysfunction in LGs is not solely dependent on blood glucose levels, highlighting the need for therapies targeting circadian rhythms in diabetic ocular complications.
Collapse
Affiliation(s)
- Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Mengru Ba
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Tingting Yang
- Department of Ophthalmology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Shuting Xuan
- Department of Ophthalmology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Duliurui Huang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Department of Ophthalmology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Li H, Zhang Y, Chen Y, Zhu R, Zou W, Chen H, Hu J, Feng S, Zhong Y, Lu X. MUC1‑ND interacts with TRPV1 to promote corneal epithelial cell proliferation in diabetic dry eye mice by partly activating the AKT signaling pathway. Mol Med Rep 2024; 30:213. [PMID: 39370807 PMCID: PMC11450431 DOI: 10.3892/mmr.2024.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024] Open
Abstract
Although both mucin1 (MUC1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) have been reported to be associated with dry eye (DE) disease, whether they interact and their regulatory roles in diabetic DE disease are unknown. Diabetic DE model mice were generated by streptozotocin induction and assessed by corneal fluorescein staining, tear ferning (TF) tests, phenol red thread tests, hematoxylin and eosin staining of corneal sections and periodic acid Schiff staining of conjunctival sections. Cell proliferation was measured by CCK8 assay. Western blotting was performed to measure protein expression. Primary mouse corneal epithelial cells (MCECs) were cultured after enzymatic digestion. Immunofluorescence staining of MCECs and frozen corneal sections was conducted to assess protein expression and colocalization. Coimmunoprecipitation was performed to detect protein‑protein interactions. It was found that, compared with control mice, diabetic DE mice exhibited increased corneal epithelial defects, reduced tear production, poorer TF pattern grades and impaired corneal and conjunctival tissues. In vivo and in vitro experiments showed that hyperglycemia impaired cell proliferation, accompanied by decreased levels of the MUC1 extracellular domain (MUC1‑ND) and TRPV1. Additionally, it was found that capsazepine (a TRPV1 antagonist) inhibited the proliferation of MCECs. Notably, MUC1‑ND was shown to interact with the TRPV1 protein in the control group but not in the diabetic DE group. It was also found that the AKT signaling pathway was attenuated in the diabetic DE mice and downstream of TRPV1. MUC1‑ND interacted with TRPV1, partly activating the AKT signaling pathway to promote MCEC proliferation. The present study found that the interaction of MUC1‑ND with TRPV1 promotes MCEC proliferation by partly activating the AKT signaling pathway, providing new insight into the pathogenesis of corneal epithelial dysfunction in diabetic DE disease.
Collapse
Affiliation(s)
- Haiqiong Li
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Yu Zhang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Yuting Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Rong Zhu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Weikang Zou
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Hui Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Jia Hu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Songfu Feng
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Yanyan Zhong
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| |
Collapse
|
8
|
Zarei-Ghanavati S, Hadi Y, Habibi A, Ashraf Khorasani M, Yoo SH. Cataract and diabetes: review of the literature. J Cataract Refract Surg 2024; 50:1275-1283. [PMID: 39254426 PMCID: PMC11556822 DOI: 10.1097/j.jcrs.0000000000001547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Cataracts can cause visual impairment in diabetic patients. Diabetes mellitus affects different parts of the eye and causes many complications and problems before, during, and after intraocular surgeries. In this review, we will discuss the effects of diabetes on different aspects of cataract surgery and review the current management of diabetic cataracts. Careful preoperative examination of the patient's ocular surface, cornea, iris, and posterior segment, as well as the use of advanced phacoemulsification techniques, new intraocular lenses and the appropriate use of auxiliary medications such as nonsteroidal anti-inflammatory drugs and anti-vascular endothelial growth factors have improved the outcomes of cataract surgery in diabetic patients.
Collapse
Affiliation(s)
- Siamak Zarei-Ghanavati
- From the Department of Ophthalmology, Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (Zarei-Ghanavati); Eye Research Center, Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran (Hadi, Habibi, Ashraf Khorasani); Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida (Yoo)
| | - Yasaman Hadi
- From the Department of Ophthalmology, Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (Zarei-Ghanavati); Eye Research Center, Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran (Hadi, Habibi, Ashraf Khorasani); Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida (Yoo)
| | - Abbas Habibi
- From the Department of Ophthalmology, Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (Zarei-Ghanavati); Eye Research Center, Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran (Hadi, Habibi, Ashraf Khorasani); Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida (Yoo)
| | - Maryam Ashraf Khorasani
- From the Department of Ophthalmology, Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (Zarei-Ghanavati); Eye Research Center, Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran (Hadi, Habibi, Ashraf Khorasani); Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida (Yoo)
| | - Sonia H. Yoo
- From the Department of Ophthalmology, Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (Zarei-Ghanavati); Eye Research Center, Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran (Hadi, Habibi, Ashraf Khorasani); Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida (Yoo)
| |
Collapse
|
9
|
Fang Z, Liu K, Pazo EE, Li F, Chang L, Zhang Z, Zhang C, Huang Y, Yang R, Liu H, Zhang C, Zhao S. Clinical ocular surface characteristics and expression of MUC5AC in diabetics: a population-based study. Eye (Lond) 2024; 38:3145-3152. [PMID: 39069550 PMCID: PMC11543803 DOI: 10.1038/s41433-024-03252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/18/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVES To investigate the clinical characteristics and the expression of mucin 5AC (MUC5AC) in in diabetic and non-diabetic subjects with or without dry eye disease. METHODS A total of 399 participants (796 eyes) aged 50-80 years were enrolled in this study. Participants were divided into 4 groups: non-diabetic without dry eye group (normal group), non-diabetic with dry eye group, diabetic without dry eye group and diabetic with dry eye group. Demographic information, fasting plasma glucose (FBG), and glycated haemoglobin A1C (HbA1C) data were collected. Additionally, ocular surface disease index (OSDI) questionnaire, signs of dry eye, tear osmolarity, and meibomian glands were evaluated. Tear MUC5AC expression and conjunctival goblet cells density (GCD) were tested. RESULTS Compared with non-diabetic with dry eye group, diabetic with dry eye group showed significantly lower tear film osmolarity (TFO), but higher corneal fluorescein and conjunctival lissamine green staining scores. In comparison with diabetic without dry eye group, diabetic with dry eye group showed significantly higher TFO, corneal fluorescein and conjunctival lissamine green staining scorers. The MUC5AC concentration and GCD of diabetic with dry eye group was significantly lower than those of the non-diabetic with dry eye group. Diabetic subjects with higher HbA1c levels (≥7.8%) showed higher TFO and shorter fluorescein tear break time. CONCLUSION Diabetics with dry eye exhibited notably higher corneal fluorescein and conjunctival lissamine green staining scores. Conjunctival goblet cells and MUC5AC were significantly reduced in diabetics. Higher TFO was associated with the duration of diabetes and HbA1c levels.
Collapse
Affiliation(s)
- Zijie Fang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ke Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Emmanuel Eric Pazo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Fei Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lianqing Chang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - ZhongFang Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Caijie Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yue Huang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ruibo Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hui Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Chen Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
10
|
Tîrziu AT, Susan M, Susan R, Sonia T, Harich OO, Tudora A, Varga NI, Tiberiu-Liviu D, Avram CR, Boru C, Munteanu M, Horhat FG. From Gut to Eye: Exploring the Role of Microbiome Imbalance in Ocular Diseases. J Clin Med 2024; 13:5611. [PMID: 39337098 PMCID: PMC11432523 DOI: 10.3390/jcm13185611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The gut microbiome plays a crucial role in human health, and recent research has highlighted its potential impact on ocular health through the gut-eye axis. Dysbiosis, or an imbalance in the gut microbiota, has been implicated in various ocular diseases. Methods: A comprehensive literature search was conducted using relevant keywords in major electronic databases, prioritizing recent peer-reviewed articles published in English. Results: The gut microbiota influences ocular health through immune modulation, maintenance of the blood-retinal barrier, and production of beneficial metabolites. Dysbiosis can disrupt these mechanisms, contributing to ocular inflammation, tissue damage, and disease progression in conditions such as uveitis, age-related macular degeneration, diabetic retinopathy, dry eye disease, and glaucoma. Therapeutic modulation of the gut microbiome through probiotics, prebiotics, synbiotics, and fecal microbiota transplantation shows promise in preclinical and preliminary human studies. Conclusions: The gut-eye axis represents a dynamic and complex interplay between the gut microbiome and ocular health. Targeting the gut microbiome through innovative therapeutic strategies holds potential for improving the prevention and management of various ocular diseases.
Collapse
Affiliation(s)
- Andreea-Talida Tîrziu
- Department of General Medicine, Doctoral School, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Ophthalmology, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Monica Susan
- Centre for Preventive Medicine, Department of Internal Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Razvan Susan
- Centre for Preventive Medicine, Department of Family Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Tanasescu Sonia
- Department of Pediatrics, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Octavia Oana Harich
- Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Adelina Tudora
- Multidisciplinary Doctoral School, Vasile Goldis Western University of Arad, Strada Liviu Rebreanu 86, 310419 Arad, Romania
| | - Norberth-Istvan Varga
- Department of General Medicine, Doctoral School, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dragomir Tiberiu-Liviu
- Medical Semiology II Discipline, Internal Medicine Department, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Cecilia Roberta Avram
- Department of Residential Training and Post-University Courses, "Vasile Goldis" Western University, 310414 Arad, Romania
| | - Casiana Boru
- Department of Medicine, "Vasile Goldis" University of Medicine and Pharmacy, 310414 Arad, Romania
| | - Mihnea Munteanu
- Department of Ophthalmology, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Florin George Horhat
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
11
|
Hsu YN, Chiang WL, Huang JY, Lee CY, Su SC, Yang SF. The Systemic Risk Factors for the Development of Infectious Keratitis after Penetrating Keratoplasty: A Population-Based Cohort Study. Diagnostics (Basel) 2024; 14:2013. [PMID: 39335693 PMCID: PMC11431455 DOI: 10.3390/diagnostics14182013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Penetrating keratoplasty (PK) is a corneal surgery that is employed to repair the full-thickness corneal lesion. This study aimed to survey the possible systemic risk factors of infectious keratitis after penetrating keratoplasty (PK) via the Taiwan National Health Insurance Research Database (NHIRD). A retrospective case-control study was conducted, and 327 patients who received the PK were enrolled after exclusion. The main outcome was the development of infectious keratitis, and people were divided into those with infectious keratitis and those without the outcome. Cox proportional hazard regression was conducted to produce adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) of specific demographic indexes and systemic diseases on infectious keratitis. There were 68 patients who developed infectious keratitis after the whole follow-up period. The diabetes mellitus (DM) (aHR: 1.440, 95% CI: 1.122-2.874, p = 0.0310) and chronic ischemic heart disease (aHR: 1.534, 95% CI: 1.259-3.464, p = 0.0273) groups demonstrated a significant association with infectious keratitis. The DM group also revealed significant influence on infectious keratitis development in all the subgroups (all p < 0.05). Nevertheless, the effect of chronic ischemic heart disease on infectious keratitis was only significant on those aged older than 60 years (p = 0.0094) and both sexes (both p < 0.05). In conclusion, the presence of DM and chronic ischemic heart disease are associated with infectious keratitis after PK. However, local risk factors for infectious keratitis developed in those receiving PK had not been evaluated.
Collapse
Affiliation(s)
- Yung-Nan Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Physical Therapy and Rehabilitation, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan
| | - Whei-Ling Chiang
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan
| | - Jing-Yang Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Center for Health Data Science, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chia-Yi Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Nobel Eye Institute, Taipei 115, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
12
|
Britten-Jones AC, Wang MTM, Samuels I, Jennings C, Stapleton F, Craig JP. Epidemiology and Risk Factors of Dry Eye Disease: Considerations for Clinical Management. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1458. [PMID: 39336499 PMCID: PMC11433936 DOI: 10.3390/medicina60091458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Dry eye disease is a multifactorial condition characterised by tear film instability, hyperosmolarity and ocular surface inflammation. Understanding the epidemiology of dry eye disease and recognising both modifiable and non-modifiable risk factors can assist eye care practitioners in assessing, treating, and managing patients with the condition. This review considers current knowledge surrounding its incidence and prevalence, as well as associated demographic, systemic, ocular, and iatrogenic, and lifestyle-related modifiable risk factors. Population-based prevalence estimates vary according to the diagnostic criteria used to define dry eye disease, as well as severity and demographic characteristics of the population. Considering recent data and variable population demographics, conservative prevalence estimates suggest that 10-20% of the population over 40 years of age report moderate to severe symptoms and/or seek treatment for dry eye disease. Individuals with specific non-modifiable demographic risk factors may be at increased risk of developing dry eye disease. Advanced age, female sex and East Asian ethnicity have been identified as key non-modifiable demographic features predisposing individuals to dry eye disease. Systemic conditions that have been associated with an increased risk of dry eye disease include migraine, Sjögren syndrome, connective tissue disorders, mental health disorders, diabetes mellitus and androgen deficiency. Medications that may contribute to this risk include antidepressants, antihistamines, and hormone replacement therapy. Ocular and iatrogenic risk factors of dry eye disease include blepharitis, Demodex infestation, ocular surgery, blink completeness, contact lens wear, and topical ophthalmic medications. A range of modifiable lifestyle factors that can increase the risk of dry eye disease have also been identified, including low humidity environments, digital screen use, quality of sleep, diet, and eye cosmetic wear. Dry eye is a common disease affecting millions globally. Increasing knowledge regarding its associated risk factors can better prepare the eye care practitioner to successfully manage patients with this ocular surface disease.
Collapse
Affiliation(s)
- Alexis Ceecee Britten-Jones
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Michael T. M. Wang
- Department of Ophthalmology, Aotearoa New Zealand National Eye Centre, The University of Auckland, Auckland 1023, New Zealand; (M.T.M.W.); (I.S.); (C.J.)
| | - Isaac Samuels
- Department of Ophthalmology, Aotearoa New Zealand National Eye Centre, The University of Auckland, Auckland 1023, New Zealand; (M.T.M.W.); (I.S.); (C.J.)
| | - Catherine Jennings
- Department of Ophthalmology, Aotearoa New Zealand National Eye Centre, The University of Auckland, Auckland 1023, New Zealand; (M.T.M.W.); (I.S.); (C.J.)
| | - Fiona Stapleton
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Jennifer P. Craig
- Department of Ophthalmology, Aotearoa New Zealand National Eye Centre, The University of Auckland, Auckland 1023, New Zealand; (M.T.M.W.); (I.S.); (C.J.)
| |
Collapse
|
13
|
Zhmud T, Barabino S, Malachkova N. Increased expression of neutrophil CD15 correlates with the severity of anterior ocular surface damage in type II diabetes mellitus. Eur J Ophthalmol 2024; 34:1515-1520. [PMID: 38153338 DOI: 10.1177/11206721231222947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
BACKGROUND Diabetes mellitus is associated with increased risk of ocular surface diseases in elderly. We consider neutrophil CD15 as a potential marker of ocular surface damage in type II diabetes mellitus patients. AIM We aimed to evaluate expression of neutrophil CD15 and correlate it with results of conjunctival impression cytology and routine objective anterior ocular surface tests (TMH, NIBUT, LLT, MGD) in T2DM patients. MATERIALS AND METHODS We prospectively enrolled sixty type II diabetes mellitus patients (120 eyes) into a study group. The control group included forty (80 eyes) age- and sex-matched healthy individuals. All patients underwent comprehensive ophthalmological examination, and tear meniscus height test (TMH), noninvasive tear break-up time (NIBUT), lipid layer thickness measurement (LLT), Meibomian gland dysfunction evaluation (MGD), conjunctival impression cytology (CIC) and expression of CD15. RESULTS Abnormal Nelson's grades of squamous metaplasia (grades 2 and 3) were observed in 50% (60 eyes) of the study group, and 13.8 (11 eyes) of the control group. Fifteen patients with type II diabetes mellitus suffered from grade 3 squamous metaplasia. Nelson's grades of squamous metaplasia have shown a positive correlation with the level of CD15 expression either in the study and control groups (rs = 0.628, p = <0.0001; rs = 0.746, p < 0.0001; respectively). CONCLUSIONS The research shows significantly reduced values of routine objective ocular tests in type II diabetes mellitus patients in comparison to healthy participants older than 60 y.o. Increased CD15 in the peripheral blood is associated with the development of squamous metaplasia and may be used to evaluate the severity of ocular surface damage in type II diabetes mellitus patients.
Collapse
Affiliation(s)
- Tetiana Zhmud
- National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | - Stefano Barabino
- Ocular Surface and Dry Eye Center, ASST Fatebenefratelli-Sacco, Ospedlae L.Sacco-Università di Milano, Milan, Italy
| | | |
Collapse
|
14
|
Zhou T, Dou Z, Cai Y, Zhu D, Fu Y. Tear Fluid Progranulin as a Noninvasive Biomarker for the Monitoring of Corneal Innervation Changes in Patients With Type 2 Diabetes Mellitus. Transl Vis Sci Technol 2024; 13:9. [PMID: 38984913 PMCID: PMC11238880 DOI: 10.1167/tvst.13.7.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Purpose This study aimed to investigate the expression levels of progranulin (PGRN) in the tears of patients with diabetic retinopathy (DR) versus healthy controls. Additionally, we sought to explore the correlation between PGRN levels and the severity of ocular surface complications in patients with diabetes. Methods In this prospective, single-visit, cross-sectional study, patients with DR (n = 48) and age-matched healthy controls (n = 22) were included and underwent dry eye examinations. Tear fluid was collected, and its components were analyzed using the Luminex assay. The subbasal nerve plexus of all participants was evaluated by in vivo confocal microscopy. Results Patients with DR exhibited more severe dry eye symptoms, along with a reduction in nerve fiber density, length, and branch density within the subbasal nerve plexus, accompanied by an increase in the number of dendritic cells. Tear PGRN levels were also significantly lower in patients with diabetes than in normal controls, and the levels of some inflammatory factors (TNF-α, IL-6, and MMP-9) were higher in patients with DR. Remarkably, the PGRN level significantly correlated with nerve fiber density (R = 0.48, P < 0.001), nerve fiber length (R = 0.65, P < 0.001), and nerve branch density (R = 0.69, P < 0.001). Conclusions Tear PGRN levels might reflect morphological changes in the corneal nerve plexus under diabetic conditions, suggesting that PGRN itself is a reliable indicator for predicting the advancement of neurotrophic keratopathy in patients with diabetes. Translational Relevance PGRN insufficiency on the ocular surface under diabetic conditions was found to be closely associated with nerve impairment, providing a novel perspective to discover the pathogenesis of diabetic complications, which could help in developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Tianyi Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Zhiwei Dou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yuchen Cai
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Dongqing Zhu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
15
|
Ghenciu LA, Hațegan OA, Bolintineanu SL, Dănilă AI, Faur AC, Prodan-Bărbulescu C, Stoicescu ER, Iacob R, Șișu AM. Immune-Mediated Ocular Surface Disease in Diabetes Mellitus-Clinical Perspectives and Treatment: A Narrative Review. Biomedicines 2024; 12:1303. [PMID: 38927510 PMCID: PMC11201425 DOI: 10.3390/biomedicines12061303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder marked by hyperglycemia due to defects in insulin secretion, action, or both, with a global prevalence that has tripled in recent decades. This condition poses significant public health challenges, affecting individuals, healthcare systems, and economies worldwide. Among its numerous complications, ocular surface disease (OSD) is a significant concern, yet understanding its pathophysiology, diagnosis, and management remains challenging. This review aims to explore the epidemiology, pathophysiology, clinical manifestations, diagnostic approaches, and management strategies of diabetes-related OSD. The ocular surface, including the cornea, conjunctiva, and associated structures, is vital for maintaining eye health, with the lacrimal functional unit (LFU) playing a crucial role in tear film regulation. In DM, changes in glycosaminoglycan metabolism, collagen synthesis, oxygen consumption, and LFU dysfunction contribute to ocular complications. Persistent hyperglycemia leads to the expression of cytokines, chemokines, and cell adhesion molecules, resulting in neuropathy, tear film abnormalities, and epithelial lesions. Recent advances in molecular research and therapeutic modalities, such as gene and stem cell therapies, show promise for managing diabetic ocular complications. Future research should focus on pathogenetically oriented therapies for diabetic neuropathy and keratopathy, transitioning from animal models to clinical trials to improve patient outcomes.
Collapse
Affiliation(s)
- Laura Andreea Ghenciu
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Ovidiu Alin Hațegan
- Discipline of Anatomy and Embriology, Medicine Faculty, ‘Vasile Goldis’ Western University of Arad, Revolution Boulevard 94, 310025 Arad, Romania
| | - Sorin Lucian Bolintineanu
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.L.B.); (A.-I.D.); (A.C.F.); (C.P.-B.); (R.I.); (A.M.Ș.)
| | - Alexandra-Ioana Dănilă
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.L.B.); (A.-I.D.); (A.C.F.); (C.P.-B.); (R.I.); (A.M.Ș.)
| | - Alexandra Corina Faur
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.L.B.); (A.-I.D.); (A.C.F.); (C.P.-B.); (R.I.); (A.M.Ș.)
| | - Cătălin Prodan-Bărbulescu
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.L.B.); (A.-I.D.); (A.C.F.); (C.P.-B.); (R.I.); (A.M.Ș.)
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- IInd Surgery Clinic, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Emil Robert Stoicescu
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania;
- Department of Radiology and Medical Imaging, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Roxana Iacob
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.L.B.); (A.-I.D.); (A.C.F.); (C.P.-B.); (R.I.); (A.M.Ș.)
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania;
| | - Alina Maria Șișu
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.L.B.); (A.-I.D.); (A.C.F.); (C.P.-B.); (R.I.); (A.M.Ș.)
| |
Collapse
|
16
|
Vanathi M. Ocular surface morbidity related to vitreoretinal interventions. Indian J Ophthalmol 2024; 72:767-768. [PMID: 38804794 PMCID: PMC11232853 DOI: 10.4103/ijo.ijo_1154_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Affiliation(s)
- M Vanathi
- Cornea and Ocular Surface, Cataract and Refractive Services, Dr. R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
17
|
Ramm L, Spoerl E, Terai N, Herber R, Pillunat LE. Association Between Corneal Changes and Retinal Oximetry in Diabetes Mellitus. Clin Ophthalmol 2024; 18:1235-1243. [PMID: 38737594 PMCID: PMC11088381 DOI: 10.2147/opth.s456020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/21/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose Diabetes mellitus (DM) causes different corneal changes that are associated with the severity of diabetic retinopathy. To identify the pathophysiological reasons for this, corneal tomography and optical densitometry (COD) were combined with retinal oximetry. Methods Patients with DM and healthy subjects were included in this pilot study. Spatially resolved corneal thickness and COD were assessed using the Pentacam HR (Oculus). The pachymetry difference (PACDiff) was calculated as an indicator of an increase in the peripheral corneal thickness. Oxygen saturation (SO2) of the retinal vessels was measured using the Retinal Vessel Analyzer (Imedos Systems UG). Subsequently, the associations between corneal and retinal parameters were analyzed. Results Data from 30 patients with DM were compared with those from 30 age-matched healthy subjects. In DM, arterial (P = 0.048) and venous (P < 0.001) SO2 levels were increased, and arteriovenous SO2 difference was decreased (P < 0.001). In patients, PACDiff was higher than that in healthy subjects (P < 0.05), indicating a stronger increase in peripheral corneal thickness. The COD was reduced in DM (P = 0.004). The PACDiff of concentric rings with a diameter of 4 mm (r = -0.404; P = 0.033) to 8 mm (r = -0.522; P = 0.004) was inversely correlated with the arteriovenous SO2 difference. Furthermore, PACDiff 4 mm was negatively associated with arterial SO2 (r = -0.389; P = 0.041), and the COD of the peripheral corneal areas correlated positive with arterial SO2 (COD total 10-12 mm: r = 0.408; P = 0.025). Conclusion These associations might indicate a common pathogenesis of corneal and retinal changes in DM, which could be caused by reduced oxygen supply, mitochondrial dysfunction, oxidative stress, and cytokine effects.
Collapse
Affiliation(s)
- Lisa Ramm
- Department of Ophthalmology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, 01307, Germany
| | - Eberhard Spoerl
- Department of Ophthalmology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, 01307, Germany
| | - Naim Terai
- Department of Ophthalmology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, 01307, Germany
| | - Robert Herber
- Department of Ophthalmology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, 01307, Germany
| | - Lutz E Pillunat
- Department of Ophthalmology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, 01307, Germany
| |
Collapse
|
18
|
Valdés-Arias D, Locatelli EVT, Sepulveda-Beltran PA, Mangwani-Mordani S, Navia JC, Galor A. Recent United States Developments in the Pharmacological Treatment of Dry Eye Disease. Drugs 2024; 84:549-563. [PMID: 38652355 PMCID: PMC11189955 DOI: 10.1007/s40265-024-02031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Dry eye disease (DED) can arise from a variety of factors, including inflammation, meibomian gland dysfunction (MGD), and neurosensory abnormalities. Individuals with DED may exhibit a range of clinical signs, including tear instability, reduced tear production, and epithelial disruption, that are driven by different pathophysiological contributors. Those affected often report a spectrum of pain and visual symptoms that can impact physical and mental aspects of health, placing an overall burden on an individual's well-being. This cumulative impact of DED on an individual's activities and on society underscores the importance of finding diverse and effective management strategies. Such management strategies necessitate an understanding of the underlying pathophysiological mechanisms that contribute to DED in the individual patient. Presently, the majority of approved therapies for DED address T cell-mediated inflammation, with their tolerability and effectiveness varying across different studies. However, there is an emergence of treatments that target additional aspects of the disease, including novel inflammatory pathways, abnormalities of the eyelid margin, and neuronal function. These developments may allow for a more nuanced and precise management strategy for DED. This review highlights the recent pharmacological advancements in DED therapy in the United States. It discusses the mechanisms of action of these new treatments, presents key findings from clinical trials, discusses their current stage of development, and explores their potential applicability to different sub-types of DED. By providing a comprehensive overview of products in development, this review aims to contribute valuable insights to the ongoing efforts in enhancing the therapeutic options available to individuals suffering from DED.
Collapse
Affiliation(s)
- David Valdés-Arias
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th St, Miami, FL, 33136, USA
| | - Elyana V T Locatelli
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th St, Miami, FL, 33136, USA
- Surgical Services, Miami Veterans Affairs Medical Center, 1201 Northwest 16th Street, Miami, FL, 33125, USA
| | | | | | - Juan Carlos Navia
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th St, Miami, FL, 33136, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th St, Miami, FL, 33136, USA.
- Surgical Services, Miami Veterans Affairs Medical Center, 1201 Northwest 16th Street, Miami, FL, 33125, USA.
| |
Collapse
|
19
|
Tang J, Lin Z, Liu X, Li B, Wu X, Lv J, Qi X, Lin S, Dai C, Li T. Analyzing the changing trend of corneal biomechanical properties under different influencing factors in T2DM patients. Sci Rep 2024; 14:8160. [PMID: 38589521 PMCID: PMC11001873 DOI: 10.1038/s41598-024-59005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024] Open
Abstract
To analyze the changing trend of CH and CRF values under different influencing factors in T2DM patients. A total of 650 patients with T2DM were included. We discovered that the course of T2DM, smoking history, BMI, and FBG, DR, HbA1c, TC, TG, and LDL-C levels were common risk factors for T2DM, while HDL-C levels were a protective factor. Analyzing the CH and CRF values according to the course of diabetes, we discovered that as T2DM continued to persist, the values of CH and CRF gradually decreased. Moreover, with the increase in FBG levels and the accumulation of HbA1c, the values of CH and CRF gradually decreased. In addition, in patients with HbA1c (%) > 12, the values of CH and CRF decreased the most, falling by 1.85 ± 0.33 mmHg and 1.28 ± 0.69 mmHg, respectively. Compared with the non-DR group, the CH and CRF values gradually decreased in the mild-NPDR, moderate-NPDR, severe-NPDR and PDR groups, with the lowest CH and CRF values in the PDR group. In patients with T2DM, early measurement of corneal biomechanical properties to evaluate the change trend of CH and CRF values in different situations will help to identify and prevent diabetic keratopathy in a timely manner.
Collapse
Affiliation(s)
- Juan Tang
- Department of Endocrinology, Ziyang Central Hospital, Sichuan, China
| | - Zhiwu Lin
- Department of Cardiothoracic Surgery, Ziyang Central Hospital, Sichuan, China
| | - Xingde Liu
- Department of Ophthalmology, Ziyang Central Hospital, Sichuan, China
| | - Biao Li
- Department of Ophthalmology, Ziyang Central Hospital, Sichuan, China
| | - Xiaoli Wu
- Department of Ophthalmology, Ziyang Central Hospital, Sichuan, China
| | - Jing Lv
- Department of Orthopedics, Ziyang Central Hospital, Sichuan, China
| | - Xing Qi
- Department of Experimental Medicine, Ziyang Central Hospital, Sichuan, China
| | - Sheng Lin
- Department of Experimental Medicine, Ziyang Central Hospital, Sichuan, China
| | - Chuanqiang Dai
- Department of Orthopedics, Ziyang Central Hospital, Sichuan, China.
| | - Tao Li
- Department of Ophthalmology, Ziyang Central Hospital, Sichuan, China.
| |
Collapse
|
20
|
Pandey S, Singh A, Vannadil H, Agrawal M. Corneal parameters in diabetics versus non-diabetics and correlation with various blood sugar parameters. Rom J Ophthalmol 2024; 68:128-134. [PMID: 39006342 PMCID: PMC11238866 DOI: 10.22336/rjo.2024.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 07/16/2024] Open
Abstract
Aim: To compare corneal parameters in diabetics versus age-group-matched non-diabetics; also, to correlate these parameters with the duration of diabetes, glycated haemoglobin (HbA1c) levels, and severity levels of diabetic retinopathy (DR). Materials and methods: A comparative study was conducted at a tertiary eye-care center from January 2020 to December 2020. Two-hundred patients (400 eyes) with type-2 diabetes (100) and age-sex-matched non-diabetics (100) were included. Corneal morphological parameters like central corneal thickness (CCT), endothelial cell density (ECD), coefficient of variance (CoV), hexagonality (6A), and average cell area were recorded by specular microscopy. These parameters were correlated with the duration of diabetes, severity of disease based upon fasting blood glucose levels, HbA1c, and grade of DR. Mean and standard deviation were calculated, and regular distribution of continuous data was tested using independent sample t-test and ANOVA. Results: Mean ECD (2447.32 ± 269.89/mm2), 6A (45.03 ± 6.71%), and IOP (15.47 ± 2.02 mmHg) changed in diabetic cases and were significantly low in diabetics, whereas, mean average cell area (413 ± 50.19 mm2), standard deviation (167.05 ± 77.91), CCT (525.81 ± 36.69) and CoV (39.84 ± 15.59%), were significantly high in diabetics. Mean CCT had insignificant variation. Subgroup analysis within diabetics showed a statistically significant reduction of ECD, cell count, and 6A with increased duration of diabetes, poor glycaemic control, and raised HbA1c. Discussion: The corneal endothelial analysis is vital in daily clinical practice and provides valuable evidence concerning the viability of corneal endothelium in various intraocular surgeries. Uncontrolled DM harms the cornea with 70% of diabetics resulting in complications like keratopathy. The study highlighted that the increased duration of diabetes raised HbA1c, and poor glycemic control negatively affected corneal morphology. Our study showed a definite reduction in ECD and 6A in diabetics compared to non-diabetics. Conclusion: A definite reduction in the corneal endothelial counts, cell density, and hexagonality was found in type-2 diabetics compared to non-diabetics. Abbreviations: DM = Diabetes Mellitus, CCT = central corneal thickness, ECC = endothelial cell counts, ECD = endothelial cell density, CoV = coefficient of variance, 6A = hexagonality, DR = Diabetic retinopathy, SD = Standard of deviation, IOP = Intraocular pressure.
Collapse
Affiliation(s)
| | - Archana Singh
- Department of Ophthalmology, INHS Asvini, Mumbai, India
| | | | - Mohini Agrawal
- Department of Ophthalmology, Military Hospital, Jalandhar, India
| |
Collapse
|
21
|
Surico PL, Narimatsu A, Forouzanfar K, Singh RB, Shoushtari S, Dana R, Blanco T. Effects of Diabetes Mellitus on Corneal Immune Cell Activation and the Development of Keratopathy. Cells 2024; 13:532. [PMID: 38534376 PMCID: PMC10969384 DOI: 10.3390/cells13060532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent diseases globally, and its prevalence is rapidly increasing. Most patients with a long-term history of DM present with some degree of keratopathy (DK). Despite its high incidence, the underlying inflammatory mechanism of DK has not been elucidated yet. For further insights into the underlying immunopathologic processes, we utilized streptozotocin-induced mice to model type 1 DM (T1D) and B6.Cg-Lepob/J mice to model type 2 DM (T2D). We evaluated the animals for the development of clinical manifestations of DK. Four weeks post-induction, the total frequencies of corneal CD45+CD11b+Ly-6G- myeloid cells, with enhanced gene and protein expression levels for the proinflammatory cytokines TNF-α and IL-1β, were higher in both T1D and T2D animals. Additionally, the frequencies of myeloid cells/mm2 in the sub-basal neural plexus (SBNP) were significantly higher in T1D and T2D compared to non-diabetic mice. DK clinical manifestations were observed four weeks post-induction, including significantly lower tear production, corneal sensitivity, and epitheliopathy. Nerve density in the SBNP and intraepithelial terminal endings per 40x field were lower in both models compared to the normal controls. The findings of this study indicate that DM alters the immune quiescent state of the cornea during disease onset, which may be associated with the progressive development of the clinical manifestations of DK.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tomas Blanco
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (P.L.S.); (A.N.); (K.F.); (R.B.S.); (S.S.); (R.D.)
| |
Collapse
|
22
|
Li F, Yang S, Ma J, Zhao X, Chen M, Wang Y. High-throughput sequencing reveals differences in microbial community structure and diversity in the conjunctival tissue of healthy and type 2 diabetic mice. BMC Microbiol 2024; 24:90. [PMID: 38493114 PMCID: PMC10943819 DOI: 10.1186/s12866-024-03247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/03/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND To investigate the differences in bacterial and fungal community structure and diversity in conjunctival tissue of healthy and diabetic mice. METHODS RNA-seq assays and high-throughput sequencing of bacterial 16 S rDNA and fungal internal transcribed spacer (ITS) gene sequences were used to identify differentially expressed host genes and fungal composition profiles in conjunctival tissues of diabetic BKS-db/db mice and BKS (control) mice. Functional enrichment analysis of differentially expressed genes and the correlation between the relative abundance of bacterial and fungal taxa in the intestinal mucosa were also performed. RESULTS Totally, 449 differential up-regulated genes and 1,006 down-regulated genes were identified in the conjunctival tissues of diabetic mice. The differentially expressed genes were mainly enriched in metabolism-related functions and pathways. A decrease in conjunctival bacterial species diversity and abundance in diabetic mice compared to control mice. In contrast, fungal species richness and diversity were not affected by diabetes. The microbial colonies were mainly associated with cellular process pathways regulating carbohydrate and lipid metabolism, as well as cell growth and death. Additionally, some interactions between bacteria and fungi at different taxonomic levels were also observed. CONCLUSION The present study revealed significant differences in the abundance and composition of bacterial and fungal communities in the conjunctival tissue of diabetic mice compared to control mice. The study also highlighted interactions between bacteria and fungi at different taxonomic levels. These findings may have implications for the diagnosis and treatment of diabetes.
Collapse
Affiliation(s)
- Fengjiao Li
- Department of Opthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shuo Yang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Ji Ma
- Core Laboratory, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, 266042, Shandong, China
| | - Xiaowen Zhao
- Core Laboratory, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, 266042, Shandong, China
| | - Meng Chen
- Department of Opthalmology, Qingdao municipal hospital, Qingdao Municipal Hospital, No. 5 Donghai Middle Road, Shinan District, Qingdao, 266000, China.
| | - Ye Wang
- Core Laboratory, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, 266042, Shandong, China.
| |
Collapse
|
23
|
Sharma P, Ma JX, Karamichos D. Effects of hypoxia in the diabetic corneal stroma microenvironment. Exp Eye Res 2024; 240:109790. [PMID: 38224848 DOI: 10.1016/j.exer.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Corneal dysfunctions associated with Diabetes Mellitus (DM), termed diabetic keratopathy (DK), can cause impaired vision and/or blindness. Hypoxia affects both Type 1 (T1DM) and Type 2 (T2DM) surprisingly, the role of hypoxia in DK is unexplored. The aim of this study was to examine the impact of hypoxia in vitro on primary human corneal stromal cells derived from Healthy (HCFs), and diabetic (T1DMs and T2DMs) subjects, by exposing them to normoxic (21% O2) or hypoxic (2% O2) conditions through 2D and 3D in vitro models. Our data revealed that hypoxia affected T2DMs by slowing their wound healing capacity, leading to significant alterations in oxidative stress-related markers, mitochondrial health, cellular homeostasis, and endoplasmic reticulum health (ER) along with fibrotic development. In T1DMs, hypoxia significantly modulated markers related to membrane permeabilization, oxidative stress via apoptotic marker (BAX), and protein degradation. Hypoxic environment induced oxidative stress (NOQ1 mediated reduction of superoxide in T1DMs and Nrf2 mediated oxidative stress in T2DMs), modulation in mitochondrial health (Heat shock protein 27 (HSP27), and dysregulation of cellular homeostasis (HSP90) in both T1DMs and T2DMs. This data underscores the significant impact of hypoxia on the diabetic cornea. Further studies are warranted to delineate the complex interactions.
Collapse
Affiliation(s)
- Purnima Sharma
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
24
|
Pilkington M, Lloyd D, Guo B, Watson SL, Ooi KGJ. Effects of dietary imbalances of micro- and macronutrients on the ocular microbiome and its implications in dry eye disease. EXPLORATION OF MEDICINE 2024:127-147. [DOI: 10.37349/emed.2024.00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/02/2023] [Indexed: 01/04/2025] Open
Abstract
Dry eye disease (DED) is a complex and multifactorial ocular surface disease affecting a large proportion of the population. There is emerging evidence of the impact of the microbiomes of the ocular surface and gut on the symptoms of DED, with many parallels being drawn to inflammatory diseases of other organ systems. A key factor involved in the promotion of healthy microbiomes, and which has been associated with ocular surface disease, is micro- and macronutrient deficiency. A comprehensive review of how these deficiencies can contribute to DED is absent from the literature. This review reports the composition of healthy ocular and gut microbiomes, and how nutrient deficiencies may impact these floral populations, with linkage to the subsequent impact on ocular health. The review highlights that vitamin B1 and iron are linked to reduced levels of butyrate, a fatty acid implicated in inflammatory conditions such as ulcerative colitis which itself is a condition known to be associated with ocular surface diseases. Vitamin B12 has been shown to have a role in maintaining gut microbial eubiosis and has been linked to the severity of dry eye symptoms. Similar beneficial effects of gut microbial eubiosis were noted with vitamin A and omega-3 polyunsaturated fatty acids. Selenium and calcium have complex interactions with the gut microbiome and have both been implicated in the development of thyroid orbitopathy. Further, diabetes mellitus is associated with ocular surface diseases and changes in the ocular microbiome. A better understanding of how changes in both the gut and eye microbiome impact DED could allow for an improved understanding of DED pathophysiology and the development of new, effective treatment strategies.
Collapse
Affiliation(s)
| | | | - Brad Guo
- Sydney Eye Hospital, Sydney 2000, Australia
| | - Stephanie L. Watson
- Sydney Eye Hospital, Sydney 2000, Australia; Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney 2000, Australia
| | - Kenneth Gek-Jin Ooi
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia; Cornea Research Group, Discipline of Ophthalmology, Save Sight Institute, Sydney Eye Hospital Campus, Sydney 2000, Australia
| |
Collapse
|
25
|
Wang CL, Skeie JM, Allamargot C, Goldstein AS, Nishimura DY, Huffman JM, Aldrich BT, Schmidt GA, Teixeira LBC, Kuehn MH, Yorek M, Greiner MA. Rat Model of Type 2 Diabetes Mellitus Recapitulates Human Disease in the Anterior Segment of the Eye. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00073-7. [PMID: 38403162 DOI: 10.1016/j.ajpath.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
Changes in the anterior segment of the eye due to type 2 diabetes mellitus (T2DM) are not well-characterized, in part due to the lack of a reliable animal model. This study evaluates changes in the anterior segment, including crystalline lens health, corneal endothelial cell density, aqueous humor metabolites, and ciliary body vasculature, in a rat model of T2DM compared with human eyes. Male Sprague-Dawley rats were fed a high-fat diet (45% fat) or normal diet, and rats fed the high-fat diet were injected with streptozotocin i.p. to generate a model of T2DM. Cataract formation and corneal endothelial cell density were assessed using microscopic analysis. Diabetes-related rat aqueous humor alterations were assessed using metabolomics screening. Transmission electron microscopy was used to assess qualitative ultrastructural changes ciliary process microvessels at the site of aqueous formation in the eyes of diabetic rats and humans. Eyes from the diabetic rats demonstrated cataracts, lower corneal endothelial cell densities, altered aqueous metabolites, and ciliary body ultrastructural changes, including vascular endothelial cell activation, pericyte degeneration, perivascular edema, and basement membrane reduplication. These findings recapitulated diabetic changes in human eyes. These results support the use of this model for studying ocular manifestations of T2DM and support a hypothesis postulating blood-aqueous barrier breakdown and vascular leakage at the ciliary body as a mechanism for diabetic anterior segment pathology.
Collapse
Affiliation(s)
- Cheryl L Wang
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Jessica M Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa; Iowa Lions Eye Bank, Coralville, Iowa
| | - Chantal Allamargot
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa; Office of the Vice President for Research, Central Microscopy Research Facility, University of Iowa, Iowa City, Iowa
| | - Andrew S Goldstein
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa; Iowa Lions Eye Bank, Coralville, Iowa
| | - Darryl Y Nishimura
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa; Iowa Lions Eye Bank, Coralville, Iowa
| | - James M Huffman
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Benjamin T Aldrich
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa; Iowa Lions Eye Bank, Coralville, Iowa
| | - Gregory A Schmidt
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa; Iowa Lions Eye Bank, Coralville, Iowa
| | - Leandro B C Teixeira
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, Wisconsin
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa; Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs Health Care System, Iowa City, Iowa
| | - Mark Yorek
- Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs Health Care System, Iowa City, Iowa
| | - Mark A Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa; Iowa Lions Eye Bank, Coralville, Iowa.
| |
Collapse
|
26
|
Çınar AC, Küpeli Çınar A, Güçlü H. Evaluation of the effect of intravitreal injections on corneal epithelial, scleral and limbal region changes in diabetic retinopathy by AS-OCT. Int Ophthalmol 2024; 44:31. [PMID: 38329554 DOI: 10.1007/s10792-024-02947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/04/2023] [Indexed: 02/09/2024]
Abstract
PURPOSE The aim of the study is to evaluate the effects of diabetic retinopathy and intravitreal injections on the corneal, limbal and scleral areas. METHODS Patients with diabetes mellitus at different diagnosis and treatment levels were compared among themselves and with the control group in terms of corneal, limbal and scleral aspects with the help of anterior segment optical coherence tomography. In addition, clinical tests such as tear break-up time, Schirmer test-I and ocular surface disease index questionnaire were applied to the patients and the difference between the groups was investigated. RESULTS When the groups were examined in terms of BUT, SCH-I and OSDI, there was a statistically significant difference between control group and diabetic group(p < 0.05). In the limbal region, all measurements are higher than in patients with diabetic eye involvement. Thinning was detected in the scleral area with intravitreal injection (p < 0.05). CONCLUSION It should be known that DM may cause undesirable changes in the limbal region, and the importance of non-invasive detection with AS-OCT should not be forgotten. Since intravitreal injections for DME cause thinning of the sclera, it can cause various complications, and it may be recommended to change the quadrant in repetitive injection applications.
Collapse
Affiliation(s)
- Abdulkadir Can Çınar
- Department of Ophtalmology, Trakya University School of Medicine, 22000, Edirne, Turkey.
| | - Ayça Küpeli Çınar
- Department of Ophtalmology, Trakya University School of Medicine, 22000, Edirne, Turkey
| | - Hande Güçlü
- Department of Ophtalmology, Trakya University School of Medicine, 22000, Edirne, Turkey
| |
Collapse
|
27
|
Chen D, Wang L, Guo X, Zhang Z, Xu X, Jin ZB, Liang Q. Evaluation of Limbal Stem Cells in Patients With Type 2 Diabetes: An In Vivo Confocal Microscopy Study. Cornea 2024; 43:67-75. [PMID: 37399570 DOI: 10.1097/ico.0000000000003334] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 07/05/2023]
Abstract
PURPOSE This study aimed to investigate corneal limbus changes in patients with type 2 diabetes mellitus (DM) using in vivo confocal microscopy (IVCM) and explore the correlation between their ocular manifestations and systemic status. METHODS Fifty-five patients with type 2 DM and 20 age-matched controls were included. The following IVCM parameters were compared between the 2 groups: palisades of Vogt (POV), corneal epithelial thickness (CET), basal cell density (BCD), subbasal nerve plexus, and dendritic cell density. All subjects underwent blood and urine sampling for laboratory analysis, including fasting blood glucose, glycated hemoglobin, total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, C-reactive protein, urinary albumin-to-creatinine ratio, urine albumin, and urine creatinine. The correlations between IVCM parameters and blood biomarkers were detected. Receiver operating characteristic curve was used for selecting the cutoff value of risk factors for corneal stem cell injury in patients with DM. RESULTS Compared with controls, patients with DM displayed a significant reduction of POV (superior region, P = 0.033; inferior region, P = 0.003; nasal region, P < 0.001; temporal region, P < 0.001), central CET (44.8 ± 3.6 μm vs. 51.9 ± 3.6 μm, P < 0.001), central corneal BCD (7415.5 ± 563.2 cells/mm 2 vs. 9177.9 ± 977.8 cells/mm 2 , P < 0.001), and peripheral corneal BCD (6181.3 ± 416.5 cells/mm 2 vs. 8576.3 ± 933.2 cells/mm 2 , P < 0.001). Dendritic cell density (41.0 ± 33.7 cells/mm 2 vs. 24.6 ± 7.8 cells/mm 2 , P = 0.001) was significantly higher in the DM group. The following weak correlations were shown between IVCM parameters and blood biomarkers: central corneal BCD was negatively correlated with DM duration (r = -0.3, P = 0.024), TC (r = -0.36, P = 0.007), and LDL (r = -0.39, P = 0.004). The presence of POV in the superior region was negatively correlated with TC (r = -0.34, P = 0.011) and LDL (r = -0.31, P = 0.022). Cutoff values of 1.215 mmol/L for HDL, 1.59 mmol/L for TG, or 4.75 mmol/L for TC were established to distinguish patients with a high risk from a low risk for stem cell damage. CONCLUSIONS Patients with type 2 DM displayed a lower positive rate of typical POV and a decrease in BCD, CET, and subbasal nerve density. The most relevant indicators for stem cell phenotypes were DM duration, TC, and LDL. Lipid status in diabetic patients could be a predictor of risk for developing corneal limbal stem cell deficiency. Further studies with larger sample sizes or basic research are needed to verify the results.
Collapse
Affiliation(s)
- Dan Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Mokhtar SBA, van der Heide FCT, Oyaert KAM, van der Kallen CJH, Berendschot TTJM, Scarpa F, Colonna A, de Galan BE, van Greevenbroek MMJ, Dagnelie PC, Schalkwijk CG, Nuijts RMMA, Schaper NC, Kroon AA, Schram MT, Webers CAB, Stehouwer CDA. (Pre)diabetes and a higher level of glycaemic measures are continuously associated with corneal neurodegeneration assessed by corneal confocal microscopy: the Maastricht Study. Diabetologia 2023; 66:2030-2041. [PMID: 37589735 PMCID: PMC10541833 DOI: 10.1007/s00125-023-05986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 08/18/2023]
Abstract
AIMS/HYPOTHESIS To assess the associations between glucose metabolism status and a range of continuous measures of glycaemia with corneal nerve fibre measures, as assessed using corneal confocal microscopy. METHODS We used population-based observational cross-sectional data from the Maastricht Study of N=3471 participants (mean age 59.4 years, 48.4% men, 14.7% with prediabetes, 21.0% with type 2 diabetes) to study the associations, after adjustment for demographic, cardiovascular risk and lifestyle factors, between glucose metabolism status (prediabetes and type 2 diabetes vs normal glucose metabolism) plus measures of glycaemia (fasting plasma glucose, 2 h post-load glucose, HbA1c, skin autofluorescence [SAF] and duration of diabetes) and composite Z-scores of corneal nerve fibre measures or individual corneal nerve fibre measures (corneal nerve bifurcation density, corneal nerve density, corneal nerve length and fractal dimension). We used linear regression analysis, and, for glucose metabolism status, performed a linear trend analysis. RESULTS After full adjustment, a more adverse glucose metabolism status was associated with a lower composite Z-score for corneal nerve fibre measures (β coefficients [95% CI], prediabetes vs normal glucose metabolism -0.08 [-0.17, 0.03], type 2 diabetes vs normal glucose metabolism -0.14 [-0.25, -0.04]; linear trend analysis showed a p value of 0.001), and higher levels of measures of glycaemia (fasting plasma glucose, 2 h post-load glucose, HbA1c, SAF and duration of diabetes) were all significantly associated with a lower composite Z-score for corneal nerve fibre measures (per SD: -0.09 [-0.13, -0.05], -0.07 [-0.11, -0.03], -0.08 [-0.11, -0.04], -0.05 [-0.08, -0.01], -0.09 [-0.17, -0.001], respectively). In general, directionally similar associations were observed for individual corneal nerve fibre measures. CONCLUSIONS/INTERPRETATION To our knowledge, this is the first population-based study to show that a more adverse glucose metabolism status and higher levels of glycaemic measures were all linearly associated with corneal neurodegeneration after adjustment for an extensive set of potential confounders. Our results indicate that glycaemia-associated corneal neurodegeneration is a continuous process that starts before the onset of type 2 diabetes. Further research is needed to investigate whether early reduction of hyperglycaemia can prevent corneal neurodegeneration.
Collapse
Grants
- the Cardiovascular Center (CVC, Maastricht, the Netherlands)
- Sanofi-Aventis Netherlands B.V. (Gouda, the Netherlands)
- Perimed (Järfälla, Sweden)
- Janssen-Cilag B.V. (Tilburg, the Netherlands)
- CARIM School for Cardiovascular Diseases (Maastricht, the Netherlands)
- MHeNS School of Mental Health and Neuroscience (Maastricht, the Netherlands)
- CAPHRI School for Public Health and Primary Care (Maastricht, the Netherlands)
- Stichting De Weijerhorst (Maastricht, the Netherlands)
- Health Foundation Limburg (Maastricht, the Netherlands)
- uropean Regional Development Fund via OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs
- Stichting Annadal (Maastricht, the Netherlands)
- Novo Nordisk Farma B.V. (Alphen aan den Rijn, the Netherlands)
- NUTRIM School for Nutrition and Translational Research in Metabolism (Maastricht, the Netherlands)
- the Pearl String Initiative Diabetes (Amsterdam, the Netherlands)
Collapse
Affiliation(s)
- Sara B A Mokhtar
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Frank C T van der Heide
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Karel A M Oyaert
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Carla J H van der Kallen
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Tos T J M Berendschot
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Fabio Scarpa
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Alessia Colonna
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Bastiaan E de Galan
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marleen M J van Greevenbroek
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Pieter C Dagnelie
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Nicolaas C Schaper
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Center, Maastricht, the Netherlands
- Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Abraham A Kroon
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- Heart and Vascular Center, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Miranda T Schram
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- Heart and Vascular Center, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Coen D A Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
29
|
An Q, Zou H. Ocular surface microbiota dysbiosis contributes to the high prevalence of dry eye disease in diabetic patients. Crit Rev Microbiol 2023; 49:805-814. [PMID: 36409575 DOI: 10.1080/1040841x.2022.2142090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/02/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
People with diabetes mellitus (DM) are at an increased risk for developing dry eye disease (DED). However, the mechanisms underlying this phenomenon remain unclear. Recent studies have found that the ocular surface microbiota (OSM) differs significantly between patients with DED and healthy people, suggesting that OSM dysbiosis may contribute to the pathogenesis of DED. This hypothesis provides a new possible explanation for why diabetic patients have a higher prevalence of DED than healthy people. The high-glucose environment and the subsequent pathological changes on the ocular surface can cause OSM dysbiosis. The unbalanced microbiota then promotes ocular surface inflammation and alters tear composition, which disturbs the homeostasis of the ocular surface. This "high glucose-OSM dysbiosis" pathway in the pathogenesis of DED with DM (DM-DED) is discussed in this review.
Collapse
Affiliation(s)
- Qingyu An
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
30
|
Weng J, Ross C, Baker J, Alfuraih S, Shamloo K, Sharma A. Diabetes-Associated Hyperglycemia Causes Rapid-Onset Ocular Surface Damage. Invest Ophthalmol Vis Sci 2023; 64:11. [PMID: 37938936 PMCID: PMC10637200 DOI: 10.1167/iovs.64.14.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
Purpose The metabolic alterations due to chronic hyperglycemia are well-known to cause diabetes-associated complications. Short-term hyperglycemia has also been shown to cause many acute changes, including hemodynamic alterations and osmotic, oxidative, and inflammatory stress. The present study was designed to investigate whether diabetes-associated hyperglycemia can cause rapid-onset detrimental effects on the tear film, goblet cells, and glycocalyx and can lead to activation of an inflammatory cascade or cellular stress response in the cornea. Methods Mouse models of type 1 and type 2 diabetes were used. Tear film volume, goblet cell number, and corneal glycocalyx area were measured on days 7, 14, and 28 after the onset of hyperglycemia. Transcriptome analysis was performed to quantify changes in 248 transcripts of genes involved in inflammatory, apoptotic, and stress response pathways. Results Our data demonstrate that type 1 and type 2 diabetes-associated hyperglycemia caused a significant decrease in the tear film volume, goblet cell number, and corneal glycocalyx area. The decrease in tear film and goblet cell number was noted as early as 7 days after onset of hyperglycemia. The severity of ocular surface injury was significantly more in type 1 compared to type 2 diabetes. Diabetes mellitus also caused an increase in transcripts of genes involved in the inflammatory, apoptotic, and cellular stress response pathways. Conclusions The results of the present study demonstrate that diabetes-associated hyperglycemia causes rapid-onset damage to the ocular surface. Thus, short-term hyperglycemia in patients with diabetes mellitus may also play an important role in causing ocular surface injury and dry eye.
Collapse
Affiliation(s)
- Judy Weng
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| | - Christopher Ross
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| | - Jacob Baker
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| | - Saleh Alfuraih
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| | - Kiumars Shamloo
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| | - Ajay Sharma
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| |
Collapse
|
31
|
Elagamy A, Abaalhassan N, Berika M. Evaluation of corneal backward light scattering in type 2 diabetes mellitus. Int J Ophthalmol 2023; 16:1636-1641. [PMID: 37854375 PMCID: PMC10559032 DOI: 10.18240/ijo.2023.10.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/11/2023] [Indexed: 10/20/2023] Open
Abstract
AIM To compare the corneal backward light scattering values in type 2 diabetes mellitus (DM) patients with those of age and sex-matched healthy controls. METHODS The study included 30 patients (30 eyes) with type 2 DM and 30 control subjects (30 eyes). Duration of diabetes, most recent hemoglobin A1c levels, along with the status of diabetic retinopathy, and existing medical treatment of all subjects were recorded. All subjects underwent a complete ophthalmologic examination. In addition, backward light scattering (densitometry) was measured to assess changes in corneal transparency using tomography (Pentacam HR). RESULTS The type 2 DM patients included 12 males and 18 females and control subjects included 16 males and 14 females. The age was 50.40±7.80y (range: 40-68y) of the diabetic group and 49.30±9.50y (rang: 40-73y) of control group. The diabetic group demonstrated significantly higher mean densitometry values of the anterior (6-10 mm) zone (P=0.047), the total anterior layer (P=0.036) and the total cornea (P=0.043) than control group. The corneal densitometry of the diabetic eyes demonstrated no significant correlation with hemoglobin A1c levels and DM duration. CONCLUSION Diabetic group has higher densitometry in anterior corneal (6-10 mm) zone, total anterior cornea, and total cornea and with no correlation with hemoglobin A1c levels and DM duration.
Collapse
Affiliation(s)
- Amira Elagamy
- Department of Optometry and Vision Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Najd Abaalhassan
- Ministry of Health Quality and Patient Safety, Riyadh 11433, Saudi Arabia
| | - Mohamed Berika
- Rehabilitation Science Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| |
Collapse
|
32
|
Nureen L, Di Girolamo N. Limbal Epithelial Stem Cells in the Diabetic Cornea. Cells 2023; 12:2458. [PMID: 37887302 PMCID: PMC10605319 DOI: 10.3390/cells12202458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Continuous replenishment of the corneal epithelium is pivotal for maintaining optical transparency and achieving optimal visual perception. This dynamic process is driven by limbal epithelial stem cells (LESCs) located at the junction between the cornea and conjunctiva, which is otherwise known as the limbus. In patients afflicted with diabetes, hyperglycemia-induced impairments in corneal epithelial regeneration results in persistent epithelial and other defects on the ocular surface, termed diabetic keratopathy (DK), which progressively diminish vision and quality of life. Reports of delayed corneal wound healing and the reduced expression of putative stem cell markers in diabetic relative to healthy eyes suggest that the pathogenesis of DK may be associated with the abnormal activity of LESCs. However, the precise role of these cells in diabetic corneal disease is poorly understood and yet to be comprehensively explored. Herein, we review existing literature highlighting aberrant LESC activity in diabetes, focusing on factors that influence their form and function, and emerging therapies to correct these defects. The consequences of malfunctioning or depleted LESC stocks in DK and limbal stem cell deficiency (LSCD) are also discussed. These insights could be exploited to identify novel targets for improving the management of ocular surface complications that manifest in patients with diabetes.
Collapse
Affiliation(s)
| | - Nick Di Girolamo
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
33
|
Chen Z, Xiao Y, Jia Y, Lin Q, Qian Y, Cui L, Xiang Z, Li M, Yang C, Zou H. Metagenomic analysis of microbiological changes on the ocular surface of diabetic children and adolescents with a dry eye. BMC Microbiol 2023; 23:286. [PMID: 37803284 PMCID: PMC10557306 DOI: 10.1186/s12866-023-03013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/11/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Microbiome changes on the ocular surface may cause dry eyes. A metagenome assay was used to compare the microbiome composition and function of the ocular surface between diabetic children and adolescents with dry eye, diabetic children and adolescents without dry eye, and normal children. MATERIALS AND METHODS Twenty children and adolescents aged 8 to 16 with diabetes were selected from the Shanghai Children and Adolescent Diabetes Eye Study. Ten healthy children and adolescents belonging to the same age group were selected from the outpatient clinic during the same period. The participants were classified into the dry eye group (DM-DE group, n = 10), the non-dry eye group (DM-NDE group, n = 10) and the normal group (NDM group, n = 10). A conjunctival sac swab was collected for metagenomic sequencing, and the relationship between the microbiome composition and functional gene differences on the ocular surface with dry eye was studied. RESULTS The classification composition and metabolic function of the microorganisms on the ocular surface of children in the 3 groups were analyzed. It was found that children's ocular microbiota was composed of bacteria, viruses and fungi. There were significant differences in α diversity and β diversity of microbial composition of ocular surface between DM-DE group and NDM group(P<0.05). There were significant differences in α and β diversity of metabolic pathways between the two groups(P<0.05). The functional pathways of ocular surface microorganisms in diabetic children with dry eyes were mainly derived from human disease, antibiotic resistance genes, carbohydrate, coenzyme and lipid transport and metabolism-related functional genes; In normal children, the functional pathways were mainly derived from replication, recombination, repair, signal transduction and defense-related functional genes. CONCLUSION The DM-DE group have unique microbial composition and functional metabolic pathways. The dominant species and unique metabolic pathways of the ocular surface in the DM-DE group may be involved in the pathogenesis of dry eye in diabetic children.
Collapse
Affiliation(s)
- Zhangling Chen
- Department of Ophthalmology, Shanghai General Hospital, Nanjing Medical University, Shanghai, China
- Department of Ophthalmology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Ying Xiao
- Department of Ophthalmology, Children's Hospital of Fudan University, Shanghai, China
| | - Yan Jia
- Department of Ophthalmology, Children's Hospital of Fudan University, Shanghai, China
| | - Qiurong Lin
- Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, Shanghai, China
| | - Yu Qian
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lipu Cui
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoyu Xiang
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingfang Li
- Department of Ophthalmology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Chenhao Yang
- Department of Ophthalmology, Children's Hospital of Fudan University, Shanghai, China.
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Nanjing Medical University, Shanghai, China.
- Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, Shanghai, China.
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
34
|
Campagnoli LIM, Varesi A, Barbieri A, Marchesi N, Pascale A. Targeting the Gut-Eye Axis: An Emerging Strategy to Face Ocular Diseases. Int J Mol Sci 2023; 24:13338. [PMID: 37686143 PMCID: PMC10488056 DOI: 10.3390/ijms241713338] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The human microbiota refers to a large variety of microorganisms (bacteria, viruses, and fungi) that live in different human body sites, including the gut, oral cavity, skin, and eyes. In particular, the presence of an ocular surface microbiota with a crucial role in maintaining ocular surface homeostasis by preventing colonization from pathogen species has been recently demonstrated. Moreover, recent studies underline a potential association between gut microbiota (GM) and ocular health. In this respect, some evidence supports the existence of a gut-eye axis involved in the pathogenesis of several ocular diseases, including age-related macular degeneration, uveitis, diabetic retinopathy, dry eye, and glaucoma. Therefore, understanding the link between the GM and these ocular disorders might be useful for the development of new therapeutic approaches, such as probiotics, prebiotics, symbiotics, or faecal microbiota transplantation through which the GM could be modulated, thus allowing better management of these diseases.
Collapse
Affiliation(s)
| | - Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | - Annalisa Barbieri
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| | - Alessia Pascale
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| |
Collapse
|
35
|
Markoulli M, Ahmad S, Arcot J, Arita R, Benitez-Del-Castillo J, Caffery B, Downie LE, Edwards K, Flanagan J, Labetoulle M, Misra SL, Mrugacz M, Singh S, Sheppard J, Vehof J, Versura P, Willcox MDP, Ziemanski J, Wolffsohn JS. TFOS Lifestyle: Impact of nutrition on the ocular surface. Ocul Surf 2023; 29:226-271. [PMID: 37100346 DOI: 10.1016/j.jtos.2023.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
Nutrients, required by human bodies to perform life-sustaining functions, are obtained from the diet. They are broadly classified into macronutrients (carbohydrates, lipids, and proteins), micronutrients (vitamins and minerals) and water. All nutrients serve as a source of energy, provide structural support to the body and/or regulate the chemical processes of the body. Food and drinks also consist of non-nutrients that may be beneficial (e.g., antioxidants) or harmful (e.g., dyes or preservatives added to processed foods) to the body and the ocular surface. There is also a complex interplay between systemic disorders and an individual's nutritional status. Changes in the gut microbiome may lead to alterations at the ocular surface. Poor nutrition may exacerbate select systemic conditions. Similarly, certain systemic conditions may affect the uptake, processing and distribution of nutrients by the body. These disorders may lead to deficiencies in micro- and macro-nutrients that are important in maintaining ocular surface health. Medications used to treat these conditions may also cause ocular surface changes. The prevalence of nutrition-related chronic diseases is climbing worldwide. This report sought to review the evidence supporting the impact of nutrition on the ocular surface, either directly or as a consequence of the chronic diseases that result. To address a key question, a systematic review investigated the effects of intentional food restriction on ocular surface health; of the 25 included studies, most investigated Ramadan fasting (56%), followed by bariatric surgery (16%), anorexia nervosa (16%), but none were judged to be of high quality, with no randomized-controlled trials.
Collapse
Affiliation(s)
- Maria Markoulli
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia.
| | - Sumayya Ahmad
- Icahn School of Medicine of Mt. Sinai, New York, NY, USA
| | - Jayashree Arcot
- Food and Health, School of Chemical Engineering, UNSW Sydney, Australia
| | - Reiko Arita
- Department of Ophthalmology, Itoh Clinic, Saitama, Japan
| | | | | | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Katie Edwards
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Judith Flanagan
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia; Vision CRC, USA
| | - Marc Labetoulle
- Ophthalmology Department, Hospital Bicêtre, APHP, Paris-Saclay University, Le Kremlin-Bicêtre, France; IDMIT (CEA-Paris Saclay-Inserm U1184), Fontenay-aux-Roses, France
| | - Stuti L Misra
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | | | - Sumeer Singh
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - John Sheppard
- Virginia Eye Consultants, Norfolk, VA, USA; Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jelle Vehof
- Departments of Ophthalmology and Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK; Department of Ophthalmology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Piera Versura
- Cornea and Ocular Surface Analysis - Translation Research Laboratory, Ophthalmology Unit, DIMEC Alma Mater Studiorum Università di Bologna, Italy; IRCCS AOU di Bologna Policlinico di Sant'Orsola, Bologna, Italy
| | - Mark D P Willcox
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Jillian Ziemanski
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James S Wolffsohn
- College of Health & Life Sciences, School of Optometry, Aston University, Birmingham, UK
| |
Collapse
|
36
|
Amorim M, Martins B, Fernandes R. Immune Fingerprint in Diabetes: Ocular Surface and Retinal Inflammation. Int J Mol Sci 2023; 24:9821. [PMID: 37372968 DOI: 10.3390/ijms24129821] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes is a prevalent global health issue associated with significant morbidity and mortality. Diabetic retinopathy (DR) is a well-known inflammatory, neurovascular complication of diabetes and a leading cause of preventable blindness in developed countries among working-age adults. However, the ocular surface components of diabetic eyes are also at risk of damage due to uncontrolled diabetes, which is often overlooked. Inflammatory changes in the corneas of diabetic patients indicate that inflammation plays a significant role in diabetic complications, much like in DR. The eye's immune privilege restricts immune and inflammatory responses, and the cornea and retina have a complex network of innate immune cells that maintain immune homeostasis. Nevertheless, low-grade inflammation in diabetes contributes to immune dysregulation. This article aims to provide an overview and discussion of how diabetes affects the ocular immune system's main components, immune-competent cells, and inflammatory mediators. By understanding these effects, potential interventions and treatments may be developed to improve the ocular health of diabetic patients.
Collapse
Affiliation(s)
- Madania Amorim
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Beatriz Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
37
|
Morya AK, Ramesh PV, Kaur K, Gurnani B, Heda A, Bhatia K, Sinha A. Diabetes more than retinopathy, it's effect on the anterior segment of eye. World J Clin Cases 2023; 11:3736-3749. [PMID: 37383113 PMCID: PMC10294174 DOI: 10.12998/wjcc.v11.i16.3736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023] Open
Abstract
Diabetes mellitus (DM) is one of the chronic metabolic noncommunicable diseases that has attained worldwide epidemics. It threatens healthy life around the globe, with mild-to-severe secondary complications and leads to significant illness including nephropathy, neuropathy, retinopathy, and macrovascular abnormalities including peripheral vasculopathy, and ischaemic heart disease. Research into diabetic retinopathy (DR), which affects one-third of persons with diabetes, has made considerable strides in recent years. In addition, it can lead to several anterior segment complications such as glaucoma, cataract, cornea, conjunctiva, lacrimal glands and other ocular surface diseases. Uncontrolled DM also caused gradual damage to corneal nerves and epithelial cells, which raises the likelihood of anterior segment diseases including corneal ulcers, dry eye disease, and chronic epithelial abnormalities. Although DR and other associated ocular complications are well-known, the complexity of its aetiology and diagnosis makes therapeutic intervention challenging. Strict glycaemic control, early detection and regular screening, and meticulous management is the key to halting the progression of the disease. In this review manuscript, we aim to provide an in-depth understanding of the broad spectrum of diabetic complications in the anterior segment of the ocular tissues and illustrate the progression of diabetes and its pathophysiology, epidemiology, and prospective therapeutic targets. This first such review article will highlight the role of diagnosing and treating patients with a plethora of anterior segment diseases associated with diabetes, which are often neglected.
Collapse
Affiliation(s)
- Arvind Kumar Morya
- Department of Ophthalmology, All India Institute of Medical Sciences, Hyderabad 508126, Telangana, India
| | - Prasanna Venkatesh Ramesh
- Glaucoma and Research, Mahathma Eye Hospital Private Limited, Tennur, Trichy 620001, Tamil Nadu, India
| | - Kirandeep Kaur
- Pediatric Ophthalmology and Strabismus, Sadguru Netra Chikitsalaya, Sadguru Seva Sangh Trust, Janaki-Kund, Chitrakoot 485334, Madhya Pradesh, India
| | - Bharat Gurnani
- Cornea and Refractive Services, Sadguru Netra Chikitsalaya, Sadguru Seva Sangh Trust, Janaki- Kund, Chitrakoot 485334, Madhya Pradesh, India
| | - Aarti Heda
- Department of Ophthalmology, National Institute of Ophthalmology, Pune 411000, Maharashtra, India
| | - Karan Bhatia
- Department of Ophthalmology, Manaktala Eye and Maternity Home, Meerut 250001, Uttar Pradesh, India
| | - Aprajita Sinha
- Department of Ophthalmology, Worcestershire Acute Hospital, Worcestershire 01601, United Kingdom
| |
Collapse
|
38
|
Zhang N, Wen K, Liu Y, Huang W, Liang X, Liang L. High Prevalence of Demodex Infestation is Associated With Poor Blood Glucose Control in Type 2 Diabetes Mellitus: A Cross-Sectional Study in the Guangzhou Diabetic Eye Study. Cornea 2023; 42:670-674. [PMID: 36729706 DOI: 10.1097/ico.0000000000003116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/28/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE The aim of this study was to investigate the association between type 2 diabetes mellitus (T2DM) and ocular Demodex mite infection. METHOD About 381 patients with T2DM from nearby communities were enrolled, and 163 age-matched and sex-matched nondiabetic patients from the cataract clinic were included as the control group. All subjects underwent personal history and demographic data collection, ocular examination, and lash sampling, followed by microscopic identification and counting of Demodex mites. Binocular fundus photography was performed for diabetic patients. Statistical correlation between ocular Demodex infestation and T2DM and blood glucose control status was performed. RESULTS The Demodex mite infestation rate (62.5% vs. 44.8%, P < 0.001) and count [3 (0-12) vs. 2 (0-9.6), P = 0.01], especially of Demodex brevis (18.9% vs. 4.9%, P < 0.001) [0 (0-1) vs. 0 (0-0), P < 0.001], were significantly higher in the T2DM patient group than that in the control group. The ratio of Demodex brevis to Demodex folliculorum in the T2DM patient group was significantly higher than that in the control group (1:3 vs. 1:9, P < 0.001). Diabetic patients presented with more cylindrical dandruff (55.1% vs. 39.3%, P = 0.001). Ocular Demodex infestation was strongly associated with poor blood glucose control (HbA 1 c > 7%) (odds ratio = 1.82; 95% confidence interval, 1.12-2.94; P = 0.2) and female sex (odds ratio = 1.69, 95% confidence interval, 1.08-2.65, P = 0.02). No association was found between Demodex infestation and the severity of diabetic retinopathy. CONCLUSIONS Patients with T2DM, especially those with poor blood glucose control, tend to have a higher prevalence of ocular Demodex infestation, suggesting that high blood glucose is a risk factor for demodicosis .
Collapse
Affiliation(s)
- Nuan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
39
|
Li Z, Han Y, Ji Y, Sun K, Chen Y, Hu K. The effect of a-Lipoic acid (ALA) on oxidative stress, inflammation, and apoptosis in high glucose-induced human corneal epithelial cells. Graefes Arch Clin Exp Ophthalmol 2023; 261:735-748. [PMID: 36058948 PMCID: PMC9988813 DOI: 10.1007/s00417-022-05784-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Oxidative stress and inflammation had been proved to play important role in the progression of diabetic keratopathy (DK). The excessive accumulation of AGEs and their bond to AGE receptor (RAGE) in corneas that cause the formation of oxygen radicals and the release of inflammatory cytokines, induce cell apoptosis. Our current study was aimed to evaluate the effect of ALA on AGEs accumulation as well as to study the molecular mechanism of ALA against AGE-RAGE axis mediated oxidative stress, apoptosis, and inflammation in HG-induced HCECs, so as to provide cytological basis for the treatment of DK. METHODS HCECs were cultured in a variety concentration of glucose medium (5.5, 10, 25, 30, 40, and 50 mM) for 48 h. The cell proliferation was evaluated by CCK-8 assay. Apoptosis was investigated with the Annexin V- fluorescein isothiocyanate (V-FITC)/PI kit, while, the apoptotic cells were determined by flow cytometer and TUNEL cells apoptosis Kit. According to the results of cell proliferation and cell apoptosis, 25 mM glucose medium was used in the following HG experiment. The effect of ALA on HG-induced HCECs was evaluated. The HCECs were treated with 5.5 mM glucose (normal glucose group, NG group), 5.5 mM glucose + 22.5 mM mannitol (osmotic pressure control group, OP group), 25 mM glucose (high glucose group, HG group) and 25 mM glucose + ALA (HG + ALA group) for 24 and 48 h. The accumulation of intracellular AGEs was detected by ELISA kit. The RAGE, catalase (CAT), superoxide dismutase 2 (SOD2), cleaved cysteine-aspartic acid protease-3 (Cleaved caspase-3), Toll-like receptors 4 (TLR4), Nod-like receptor protein 3 (NLRP3) inflammasome, interleukin 1 beta (IL-1 ß), and interleukin 18 (IL-18) were quantified by RT-PCR, Western blotting, and Immunofluorescence, respectively. Reactive oxygen species (ROS) production was evaluated by fluorescence microscope and fluorescence microplate reader. RESULTS When the glucose medium was higher than 25 mM, cell proliferation was significantly inhibited and apoptosis ratio was increased (P < 0.001). In HG environment, ALA treatment alleviated the inhibition of HCECs in a dose-dependent manner, 25 μM ALA was the minimum effective dose. ALA could significantly reduce the intracellular accumulation of AGEs (P < 0.001), activate protein and genes expression of CAT and SOD2 (P < 0.001), and therefore inhibited ROS-induced oxidative stress and cells apoptosis. Besides, ALA could effectively down-regulate the protein and gene level of RAGE, TLR4, NLRP3, IL-1B, IL-18 (P < 0.05), and therefore alleviated AGEs-RAGE-TLR4-NLRP3 pathway-induced inflammation in HG-induced HCECs. CONCLUSION Our study indicated that ALA could be a desired treatment for DK due to its potential capacity of reducing accumulation of advanced glycation end products (AGEs) and down-regulating AGE-RAGE axis-mediated oxidative stress, cell apoptosis, and inflammation in high glucose (HG)-induced human corneal epithelial cells (HCECs), which may provide cytological basis for therapeutic targets that are ultimately of clinical benefit.
Collapse
Affiliation(s)
- Zhen Li
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
- Department of Ophthalmology, The People’s Hospital of Leshan, Leshan, Sichuan Province China
| | - Yu Han
- Department of Ophthalmology, The People’s Hospital of Leshan, Leshan, Sichuan Province China
| | - Yan Ji
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Kexin Sun
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
- Chongqing Medical University, Chongqing, China
| | - Yanyi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
- Chongqing Medical University, Chongqing, China
| | - Ke Hu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
- Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
Lin JB, Shen X, Pfeifer CW, Shiau F, Santeford A, Ruzycki PA, Clark BS, Liu Q, Huang AJW, Apte RS. Dry eye disease in mice activates adaptive corneal epithelial regeneration distinct from constitutive renewal in homeostasis. Proc Natl Acad Sci U S A 2023; 120:e2204134120. [PMID: 36595669 PMCID: PMC9926235 DOI: 10.1073/pnas.2204134120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
Many epithelial compartments undergo constitutive renewal in homeostasis but activate unique regenerative responses following injury. The clear corneal epithelium is crucial for vision and is renewed from limbal stem cells (LSCs). Using single-cell RNA sequencing, we profiled the mouse corneal epithelium in homeostasis, aging, diabetes, and dry eye disease (DED), where tear deficiency predisposes the cornea to recurrent injury. In homeostasis, we capture the transcriptional states that accomplish continuous tissue turnover. We leverage our dataset to identify candidate genes and gene networks that characterize key stages across homeostatic renewal, including markers for LSCs. In aging and diabetes, there were only mild changes with <15 dysregulated genes. The constitutive cell types that accomplish homeostatic renewal were conserved in DED but were associated with activation of cell states that comprise "adaptive regeneration." We provide global markers that distinguish cell types in homeostatic renewal vs. adaptive regeneration and markers that specifically define DED-elicited proliferating and differentiating cell types. We validate that expression of SPARC, a marker of adaptive regeneration, is also induced in corneal epithelial wound healing and accelerates wound closure in a corneal epithelial cell scratch assay. Finally, we propose a classification system for LSC markers based on their expression fidelity in homeostasis and disease. This transcriptional dissection uncovers the dramatically altered transcriptional landscape of the corneal epithelium in DED, providing a framework and atlas for future study of these ocular surface stem cells in health and disease.
Collapse
Affiliation(s)
- Joseph B. Lin
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Division of Biology and Biomedical Sciences Neurosciences Graduate Program, Washington University School of Medicine, St. Louis, MO63110
| | - Xiaolei Shen
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO63110
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
| | - Charles W. Pfeifer
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Division of Biology and Biomedical Sciences Neurosciences Graduate Program, Washington University School of Medicine, St. Louis, MO63110
| | - Fion Shiau
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
| | - Andrea Santeford
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
| | - Philip A. Ruzycki
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
| | - Brian S. Clark
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Qin Liu
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO63110
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
| | - Andrew J. W. Huang
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
| | - Rajendra S. Apte
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO63110
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
41
|
Bu Y, Shih KC, Wong HL, Kwok SS, Lo ACY, Chan JYK, Ng ALK, Chan TCY, Jhanji V, Tong L. The association between altered intestinal microbiome, impaired systemic and ocular surface immunity, and impaired wound healing response after corneal alkaline-chemical injury in diabetic mice. Front Immunol 2023; 14:1063069. [PMID: 36798135 PMCID: PMC9927643 DOI: 10.3389/fimmu.2023.1063069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Purpose We aim to investigate the effect of sustained hyperglycemia on corneal epithelial wound healing, ocular surface and systemic immune response, and microbiome indices in diabetic mice compared to controls after alkaline chemical injury of the eye. Methods Corneal alkaline injury was induced in the right eye of Ins2Akita (Akita) mice and wild-type mice. The groups were observed at baseline and subsequently days 0, 3, and 7 after injury. Corneal re-epithelialization was observed under slit lamp with fluorescein staining using a cobalt blue light filter. Enucleated cornea specimens were compared at baseline and after injury for changes in cornea thickness under hematoxylin and eosin staining. Tear cytokine and growth factor levels were measured using protein microarray assay and compared between groups and time points. Flow cytometry was conducted on peripheral blood and ocular surface samples to determine CD3+CD4+ cell count. Fecal samples were collected, and gut microbiota composition and diversity pattern were measured using shotgun sequencing. Results Akita mice had significantly delayed corneal wound healing compared to controls. This was associated with a reduction in tear levels of vascular endothelial growth factor A, angiopoietin 2, and insulin growth factor 1 on days 0, 3, and 7 after injury. Furthermore, there was a distinct lack of upregulation of peripheral blood and ocular surface CD3+CD4+ cell counts in response to injury in Akita mice compared to controls. This was associated with a reduction in intestinal microbiome diversity indices in Akita mice compared to controls after injury. Specifically, there was a lower abundance of Firmicutes bacterium M10-2 in Akita mice compared to controls after injury. Conclusion In diabetic mice, impaired cornea wound healing was associated with an inability to mount systemic and local immune response to ocular chemical injury. Baseline and post-injury differences in intestinal microbial diversity and abundance patterns between diabetic mice and controls may potentially play a role in this altered response.
Collapse
Affiliation(s)
- Yashan Bu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kendrick Co Shih
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ho Lam Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sum Sum Kwok
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Amy Cheuk-Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Joseph Yau-Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Alex Lap-Ki Ng
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Tommy Chung-Yan Chan
- Department of Ophthalmology, Hong Kong Sanatorium and Hospital, Hong Kong, Hong Kong SAR, China
| | - Vishal Jhanji
- Department Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Louis Tong
- Cornea and External Eye Disease Service, Singapore National Eye Centre, Singapore, Singapore.,Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore
| |
Collapse
|
42
|
Meng Z, Yang M, Wen H, Zhou S, Xiong C, Wang Y. A systematic review of the safety of tirzepatide-a new dual GLP1 and GIP agonist - is its safety profile acceptable? Front Endocrinol (Lausanne) 2023; 14:1121387. [PMID: 37051199 PMCID: PMC10084319 DOI: 10.3389/fendo.2023.1121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
AIMS Tirzepatide is a novel dual glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 receptor agonist (GLP-1 RA). At present, there is no controversy over its effectiveness, but its safety. We conducted a systematic review to assess the safety of tirzepatide. METHODS We searched PubMed, Embase and Cochrane databases for randomized controlled trials (RCTs) of tirzepatide from databases inception to August 28, 2022 and used the Cochrane Systematic Assessment Manual Risk of Bias Assessment Tool (version 5.1) and modified Jadad scale to assess risk of bias. The systematic review was conducted via Revman5.4. RESULTS Nine RCTs with a total of 9818 patients were included. The overall safety profile of tirzepatide is similar to GLP-1RAs, except for the hypoglycemia (tirzepatide 15mg, pooled RR=3.83, 95% CI [1.19- 12.30], P=0.02) and discontinuation (tirzepatide 10mg, pooled RR=1.75,95%CI[1.16-2.63], P=0.007 and 15mg, pooled RR=2.03, 95%CI [1.37-3.01], P=0.0004). It also showed that the dose escalation could not rise the occurrence rates of total, severe, gastrointestinal adverse events and hypoglycemia (P>0.05); Compared with 5mg, tirzepatide 10mg and 15mg were associated with more frequent nausea (P<0.001), discontinuation (P<0.05) and injection-site reaction (P<0.01); The rates of vomiting and diarrhea were dose-dependence at the range of 5-15mg. CONCLUSION The safety profile of tirzepatide is generally acceptable, similar to GLP-1 RAs. It is necessary to pay attention to its specific adverse events (hypoglycemia and discontinuation) at high doses (10mg or higher). Nausea, vomiting, diarrhea, discontinuation and injection-site reaction were dose-dependence among specific dose ranges.As the heterogeneity in different studies by interventions, the results may be with biases and the further confirmation is needed. Meanwhile, more well-designed trials are needed to control the confounding factors and ensure adequate sample size.
Collapse
Affiliation(s)
- Zhuqing Meng
- Department of Pharmacy, Mianyang Fulin Hospital, Mianyang, Sichuan, China
| | - Min Yang
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Haibo Wen
- Department of Pharmacy, Mianyang Fulin Hospital, Mianyang, Sichuan, China
| | - Su Zhou
- Department of Pharmacy, Sichuan GEM Flower Hospital, Chengdu, Sichuan, China
| | - Chuan Xiong
- Department of Pharmacy, Mianyang Fulin Hospital, Mianyang, Sichuan, China
| | - Yu Wang
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
- *Correspondence: Yu Wang,
| |
Collapse
|
43
|
Chen Z, Jia Y, Xiao Y, Lin Q, Qian Y, Xiang Z, Cui L, Qin X, Chen S, Yang C, Zou H. Microbiological Characteristics of Ocular Surface Associated With Dry Eye in Children and Adolescents With Diabetes Mellitus. Invest Ophthalmol Vis Sci 2022; 63:20. [PMID: 36538004 PMCID: PMC9769747 DOI: 10.1167/iovs.63.13.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose To analyze the characteristics of ocular surface microbial composition in children and adolescents with diabetes mellitus and dry eye (DE) by tear analysis. Methods We selected 65 children and adolescents aged 8 to 16 years with DE and non-DE diabetes mellitus and 33 healthy children in the same age group from the Shanghai Children and Adolescent Diabetes Eye Study. Tears were collected for high-throughput sequencing of the V3 and V4 region of 16S rRNA. The ocular surface microbiota in diabetic DE (DM-DE; n = 31), diabetic with non-DE (DM-NDE; n = 34), and healthy (NDM; n = 33) groups were studied. QIIME2 software was used to analyze the microbiota of each group. Results The DM-DE group had the highest amplicon sequence variants, and the differences in α-diversity and β-diversity of micro-organisms in the ocular surfaces of DM-DE, diabetic with non-DE, and healthy eyes were statistically significant (P < 0.05). Bacteroidetes (15.6%), Tenericutes (9.3%), Firmicutes (21.8%), and Lactococcus (7.9%), Bacteroides (7.8%), Acinetobacter (3.9%), Clostridium (0.8%), Lactobacillus (0.8%) and Streptococcus (0.2%) were the specific phyla and genera, respectively, in the DM-DE group. Conclusions Compared with the patients with non-DE and healthy children, the microbial diversity of the ocular surface in children and adolescents with diabetes mellitus and DE was higher with unique bacterial phyla and genera composition.
Collapse
Affiliation(s)
- Zhangling Chen
- Department of Ophthalmology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai, China,Department of Ophthalmology, Shanghai General Hospital, Nanjing Medical University, Shanghai, China
| | - Yan Jia
- Department of Ophthalmology, Children's Hospital of Fudan University, Shanghai, China
| | - Ying Xiao
- Department of Ophthalmology, Children's Hospital of Fudan University, Shanghai, China
| | - Qiurong Lin
- Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, Shanghai, China
| | - Yu Qian
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoyu Xiang
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lipu Cui
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinran Qin
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuli Chen
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenhao Yang
- Department of Ophthalmology, Children's Hospital of Fudan University, Shanghai, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Nanjing Medical University, Shanghai, China,Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, Shanghai, China,Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China,National Clinical Research Center for Eye Diseases, Shanghai, China,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
44
|
Suwajanakorn O, Puangsricharern V, Kittipibul T, Chatsuwan T. Ocular surface microbiome in diabetes mellitus. Sci Rep 2022; 12:21527. [PMID: 36513692 PMCID: PMC9747965 DOI: 10.1038/s41598-022-25722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
This cross-sectional, age- and gender-matched study included 20 eyes of non-diabetic subjects (non-DM group) and 60 eyes of type 2 diabetes mellitus (DM group). Subgroups of DM were classified by diabetic retinopathy (DR) staging into no DR (DM-no DR), non-proliferative DR (DM-NPDR), proliferative DR (DM-PDR), and by glycemic control (well-controlled DM; HbA1c < 7%, poorly controlled DM; HbA1c ≥ 7%). Conjunctival swabs were performed for ocular surface microbiome analysis using conventional culture and next-generation sequencing analysis (NGS). A higher culture-positive rate was found in DM (15%) than in non-DM group (5%) (p value = 0.437). Pathogenic organisms and antibiotic-resistant strains were detected in the DR groups (DM-NPDR and DM-PDR). The NGS analysis showed that potentially pathogenic bacteria such as Enterobacteriaceae, Neisseriaceae, Escherichia-Shigella, and Pseudomonas predominated in DM, especially in DR. There was dissimilarity in the ocular surface microbiome between DM and non-DM groups. The subgroup analysis showed that the DR group had significantly different microbial community from DM-no DR and non-DM groups (p value < 0.05). The microbial community in the poorly controlled DM was also significantly different from well-controlled DM and non-DM groups (p < 0.001). Using the NGS method, our study is the first to signify the importance of DR and glycemic control status, which affect the changes in the ocular surface microbiome.
Collapse
Affiliation(s)
- Orathai Suwajanakorn
- grid.7922.e0000 0001 0244 7875Cornea and Refractive Surgery Unit, Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand ,grid.411628.80000 0000 9758 8584Excellence Center of Cornea and Limbal Stem Cell Transplantation, Department of Ophthalmology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Vilavun Puangsricharern
- grid.7922.e0000 0001 0244 7875Cornea and Refractive Surgery Unit, Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand ,grid.411628.80000 0000 9758 8584Excellence Center of Cornea and Limbal Stem Cell Transplantation, Department of Ophthalmology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Thanachaporn Kittipibul
- grid.7922.e0000 0001 0244 7875Cornea and Refractive Surgery Unit, Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand ,grid.411628.80000 0000 9758 8584Excellence Center of Cornea and Limbal Stem Cell Transplantation, Department of Ophthalmology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Tanittha Chatsuwan
- grid.7922.e0000 0001 0244 7875Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
45
|
Fortingo N, Melnyk S, Sutton SH, Watsky MA, Bollag WB. Innate Immune System Activation, Inflammation and Corneal Wound Healing. Int J Mol Sci 2022; 23:14933. [PMID: 36499260 PMCID: PMC9740891 DOI: 10.3390/ijms232314933] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Corneal wounds resulting from injury, surgeries, or other intrusions not only cause pain, but also can predispose an individual to infection. While some inflammation may be beneficial to protect against microbial infection of wounds, the inflammatory process, if excessive, may delay corneal wound healing. An examination of the literature on the effect of inflammation on corneal wound healing suggests that manipulations that result in reductions in severe or chronic inflammation lead to better outcomes in terms of corneal clarity, thickness, and healing. However, some acute inflammation is necessary to allow efficient bacterial and fungal clearance and prevent corneal infection. This inflammation can be triggered by microbial components that activate the innate immune system through toll-like receptor (TLR) pathways. In particular, TLR2 and TLR4 activation leads to pro-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) activation. Similarly, endogenous molecules released from disrupted cells, known as damage-associated molecular patterns (DAMPs), can also activate TLR2, TLR4 and NFκB, with the resultant inflammation worsening the outcome of corneal wound healing. In sterile keratitis without infection, inflammation can occur though TLRs to impact corneal wound healing and reduce corneal transparency. This review demonstrates the need for acute inflammation to prevent pathogenic infiltration, while supporting the idea that a reduction in chronic and/or excessive inflammation will allow for improved wound healing.
Collapse
Affiliation(s)
- Nyemkuna Fortingo
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
| | - Samuel Melnyk
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
| | - Sarah H. Sutton
- Department of Medical Illustration, Augusta University, Augusta, GA 30907, USA
| | - Mitchell A. Watsky
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
46
|
Impact of High Glucose on Ocular Surface Glycocalyx Components: Implications for Diabetes-Associated Ocular Surface Damage. Int J Mol Sci 2022; 23:ijms232214289. [PMID: 36430770 PMCID: PMC9696111 DOI: 10.3390/ijms232214289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Diabetes mellitus causes several detrimental effects on the ocular surface, including compromised barrier function and an increased risk of infections. The glycocalyx plays a vital role in barrier function. The present study was designed to test the effect of a high glucose level on components of glycocalyx. Stratified human corneal and conjunctival epithelial cells were exposed to a high glucose concentration for 24 and 72 h. Changes in Mucin (MUC) 1, 4, 16 expression were quantified using real-time PCR and ELISA. Rose bengal and jacalin staining were used to assess the spatial distribution of MUC16 and O-glycosylation. Changes in the gene expression of five glycosyltransferases and forty-two proteins involved in cell proliferation and the cell cycle were also quantified using PCR and a gene array. High glucose exposure did not affect the level or spatial distribution of membrane-tethered MUC 1, 4, and 16 either in the corneal or conjunctival epithelial cells. No change in gene expression in glycosyltransferases was observed, but a decrease in the gene expression of proteins involved in cell proliferation and the cell cycle was observed. A high-glucose-mediated decrease in gene expression of proteins involved in cellular proliferation of corneal and conjunctival epithelial cells may be one of the mechanisms underlying a diabetes-associated decrease in ocular surface's glycocalyx.
Collapse
|
47
|
Chen TM, Lasarev MR, Eaton JS. Retrospective investigation of perioperative risk factors for immediate postoperative corneal erosions in dogs undergoing phacoemulsification. Vet Ophthalmol 2022; 26:191-204. [DOI: 10.1111/vop.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/15/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Tiffany Mei Chen
- Department of Surgical Sciences, School of Veterinary Medicine University of Wisconsin Madison USA
| | - Michael R. Lasarev
- Biostatistics and Medical Informatics, School of Medicine and Public Health University of Wisconsin Madison USA
| | - Joshua Seth Eaton
- Department of Surgical Sciences, School of Veterinary Medicine University of Wisconsin Madison USA
| |
Collapse
|
48
|
Shrestha P, Whelchel AE, Nicholas SE, Liang W, Ma JX, Karamichos D. Monocarboxylate Transporters: Role and Regulation in Corneal Diabetes. Anal Cell Pathol (Amst) 2022; 2022:6718566. [PMID: 36340268 PMCID: PMC9629935 DOI: 10.1155/2022/6718566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/01/2022] [Indexed: 03/23/2024] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases that is known to cause structural and functional ocular complications. In the human cornea, DM-related complications affect the epithelium, stroma, and nerves. Monocarboxylate transporters (MCTs) are a family of proton-linked plasma membrane transporters that carry monocarboxylates across plasma membranes. In the context of corneal health and disease, their role, presence, and function are largely undetermined and solely focused on the most common MCT isoforms, 1 through 4. In this study, we investigated the regulation of MCT1, 2, 4, 5, 8, and 10, in corneal DM, using established 3D self-assembled extracellular matrix (ECM) in vitro models. Primary stromal corneal fibroblasts were isolated from healthy (HCFs), type I (T1DMs), and type II (T2DMs) DM donors. Monoculture 3D constructs were created by stimulating stromal cells on transwells with stable vitamin C for two or four weeks. Coculture 3D constructs were created by adding SH-SY5Y neurons at two different densities, 12 k and 500 k, on top of the monocultures. Our data showed significant upregulation of MCT1 at 4 weeks for HCF, T1DM, and T2DM monocultures, as well as the 500 k nerve cocultures. MCT8 was significantly upregulated in HCF and T1DM monocultures and all of the 500 k nerve cocultures. Further, MCT10 was only expressed at 4 weeks for all cocultures and was limited to HCFs and T1DMs in monocultures. Immunofluorescence analysis showed cytoplasmic MCT expression for all cell types and significant downregulation of both MCT2 and MCT4 in HCFs, when compared to T1DMs and T2DMs. Herein, we reveal the existence and modulation of MCTs in the human diabetic cornea in vitro. Changes appeared dependent on neuronal density, suggesting that MCTs are very likely critical to the neuronal defects observed in diabetic keratopathy/neuropathy. Further studies are warranted in order to fully delineate the role of MCTs in corneal diabetes.
Collapse
Affiliation(s)
- Pawan Shrestha
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Amy E. Whelchel
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK 73104, USA
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Wentao Liang
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK 73104, USA
- Department of Biochemistry, Wake Forest University School of Medicine, 575 N Patterson Ave, Winston-Salem, NC 27101, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, 575 N Patterson Ave, Winston-Salem, NC 27101, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| |
Collapse
|
49
|
Antičić-Eichwalder M, Lex S, Sarny S, Schweighofer J, Marić I, El-Shabrawi Y. Effects of Type 2 Diabetes Mellitus and Smoking on Changes in Corneal Endothelial Morphology and Cell Density. Cornea 2022; 41:1255-1259. [PMID: 34812784 PMCID: PMC9473709 DOI: 10.1097/ico.0000000000002917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to compare the corneal endothelial morphology and cell density of diabetic smokers and nonsmokers with 50 to 70 age-matched healthy subjects and to determine whether smoking increases the effects of type 2 diabetes mellitus (DM) on these corneal parameters. METHODS This prospective cohort study included 200 patients who were assigned to 4 groups, including smokers with type 2 DM (group 1), nonsmokers with type 2 DM (group 2), healthy smokers (group 3), and healthy nonsmokers (control group, group 4). Noncontact specular microscopy was used to measure central endothelial cell density (ECD), coefficient of variation of cell area, percentage of hexagonal cells, and central corneal pachymetry (CCT). RESULTS According to the ECD and CCT values ( P < 0.001 and P = 0.013, respectively), a significant difference was observed between the groups. The mean ECD was lowest in diabetic smokers (1917 ± 399 cells/mm 2 ). Healthy smokers and diabetic smokers had significantly lower ECD compared with the control group ( P = 0.03 and P < 0.001, respectively). Healthy smokers and diabetic smokers had significantly lower ECD compared with diabetic nonsmokers ( P = 0.012 and P < 0.001, respectively). The cornea was significantly thicker in the diabetic smokers than in the control group ( P = 0.013). CONCLUSIONS The coexistence of DM and smoking causes a significant decrease in ECD and an increase in CCT. Cigarette smoking is more harmful to corneal endothelial cells than DM alone.
Collapse
Affiliation(s)
| | - Susanne Lex
- Department of Ophthalmology, General Hospital Klagenfurt, Klagenfurt, Austria; and
| | - Stephanie Sarny
- Department of Ophthalmology, General Hospital Klagenfurt, Klagenfurt, Austria; and
| | - Jakob Schweighofer
- Department of Ophthalmology, General Hospital Klagenfurt, Klagenfurt, Austria; and
| | - Ivana Marić
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Yosuf El-Shabrawi
- Department of Ophthalmology, General Hospital Klagenfurt, Klagenfurt, Austria; and
| |
Collapse
|
50
|
Acute Foggy Corneal Epithelial Disease: Seeking Clinical Features and Risk Factors. J Clin Med 2022; 11:jcm11175092. [PMID: 36079023 PMCID: PMC9457359 DOI: 10.3390/jcm11175092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Purpose: Here, we describe the clinical characteristics and predisposing factors of acute foggy corneal epithelial disease, a rare disease newly found during COVID-19 pandemic; (2) Methods: In this single-arm, ambispective case series study, ten patients with acute foggy corneal epithelial disease admitted between May 2020 and March 2021 were enrolled. Their detailed medical history and clinical and ophthalmic findings were recorded and analyzed; (3) Results: All the patients were female (100%), aged from 28 to 61 years (mean age of 40.4 ± 9.3 years). Seven cases (70%) had excessive eye use, and six cases (60%) had stayed up late and were overworked. Ten subjects (100%) presented with acute onset and a self-healing tendency. There was a mild-to-moderate decrease in the corrected visual acuity (0.35 ± 0.21 (LogMAR)). Slit-lamp examination showed diffuse dust-like opacity and edema in the epithelial layer of the cornea. By in vivo confocal microscope, epithelial cells presented characteristically a “relief-like” appearance. Anterior segment optical coherence tomography examination revealed that the mean epithelial thickness was increased (69.25 ± 4.31 μm, p < 0.01); (4) Conclusions: Acute foggy corneal epithelial disease is a rare disease in clinic, which tends to occur in young and middle-aged females. The typical clinical symptom is sudden foggy vision, which occurs repeatedly and can be relieved without treatment. Sex, an abnormal menstrual cycle, overuse of the eyes, fatigue and pressure might be risk factors. Changes in lifestyle and eye use habit during the COVID-19 pandemic may have possibly contributed to this disease incidence.
Collapse
|