1
|
Xiong L, Huang YX, Mao L, Xu Y, Deng YQ. Targeting gut microbiota and its associated metabolites as a potential strategy for promoting would healing in diabetes. World J Diabetes 2025; 16:98788. [DOI: 10.4239/wjd.v16.i5.98788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/03/2025] [Accepted: 03/05/2025] [Indexed: 04/25/2025] Open
Abstract
Impaired healing of diabetic wounds is one of the most important complications of diabetes, often leading to lower limb amputations and incurring significant economic and psychosocial costs. Unfortunately, there are currently no effective prevention or treatment strategies available. Recent research has reported that an imbalance in the gut microbiota, known as dysbiosis, was linked to the onset of type 2 diabetes, as well as the development and progression of diabetic complications. Indeed, the gut microbiota has emerged as a promising therapeutic approach for treating type 2 diabetes and related diseases. However, there is few of literatures specifically discussing the relationship between gut microbiota and diabetic wounds. This review aims to explore the potential role of the gut microbiota, especially probiotics, and its associated byproducts such as short chain fatty acids, bile acids, hydrogen sulfide, and tryptophan metabolites on wound healing to provide fresh insights and novel perspectives for the treatment of chronic wounds in diabetes.
Collapse
Affiliation(s)
- Ling Xiong
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Ya-Xin Huang
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Lan Mao
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yong-Qiong Deng
- Department of Dermatology & STD, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610000, Sichuan Province, China
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
2
|
Feng S, Jin Y, Ni X, Zheng H, Wu L, Xia Y, Zhou C, Liang T, Zhu Y, Xu J, Wu Q, Yang Y, Zhao L, Zhuang S, Li X. FGF1 ΔHBS ameliorates DSS-induced ulcerative colitis by reducing neutrophil recruitment through the MAPK pathway. Br J Pharmacol 2025. [PMID: 40258390 DOI: 10.1111/bph.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 02/17/2025] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND AND PURPOSE Inflammatory bowel diseases (IBDs) constitute chronic inflammatory disease of the gastrointestinal tract, with escalating global prevalence. There is a pressing demand for safe and effective treatments for IBDs. Fibroblast growth factor 1 (FGF1) variant FGF1ΔHBS, characterised by reduced mitogenic capacity, has shown promising therapeutic potential in various inflammatory conditions, including obesity and diabetic nephropathy. Hence, exploring the therapeutic impact of FGF1ΔHBS on colitis is warranted. EXPERIMENTAL APPROACH The protective role of FGF1ΔHBS was evaluated using a dextran sulphate sodium (DSS)-induced colitis model in mice. RNA-seq analysis was performed on colonic tissues. Inflammatory factor expression was examined by quantitative real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay. Flow cytometry and immunofluorescence staining were employed to confirm the inhibitory effect of FGF1ΔHBS on neutrophil recruitment. Western blotting was performed to explore the mitogen-activated protein kinase (MAPK) signalling pathway. KEY RESULTS FGF1ΔHBS significantly alleviated DSS-induced colitis, as indicated by reduced Disease Activity Index scores and less histological injury to the colon. Additionally, FGF1ΔHBS decreased the expression of pro-inflammatory factors. Mechanistically, FGF1ΔHBS inhibited neutrophil-associated chemokine expression in intestinal epithelial cells by suppressing the MAPK signalling pathway, thereby reducing neutrophil recruitment and attenuating neutrophil-mediated intestinal inflammation. CONCLUSION AND IMPLICATIONS FGF1ΔHBS protects against DSS-induced colitis in mice by inhibiting neutrophil recruitment through MAPK activity suppression, suggesting a potential therapeutic strategy for preventing IBDs.
Collapse
Affiliation(s)
- Shuang Feng
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Yanyan Jin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Xinrui Ni
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Haoxin Zheng
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Linling Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Ying Xia
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Changzhi Zhou
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tong Liang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yunfei Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Juyi Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qijin Wu
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Yong Yang
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Longwei Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Shentian Zhuang
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xianjing Li
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Madhukaran S, Fomina YY, Mahendroo M. Cervical function in pregnancy and disease: new insights from single-cell analysis. Am J Obstet Gynecol 2025; 232:S81-S94. [PMID: 40253084 DOI: 10.1016/j.ajog.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 04/21/2025]
Abstract
The uterine cervix plays an essential role in regulating fertility, maintaining pregnancy, remodeling in preparation for parturition, and protecting the reproductive tract from infection. A compromise in cervical function contributes to adverse clinical outcomes. Understanding molecular events that drive the multifunctional and temporally defined roles of the cervix is necessary to effectively treat infertility, reproductive tract infections, preterm birth, labor dystocia, and cervical cancer. The application of single-cell technologies to study cervical pathophysiology, while in its infancy, underscores the potential of these approaches in developing clinically relevant biomarkers of disease and preventative therapies. This review focuses on insights gained from single-cell transcriptomic studies in human and mouse cervical tissue and highlights outstanding questions in the field. One collective advance from single-cell analysis is the dynamic plasticity of cervical epithelial cells during the reproductive cycle in health and disease. Single-cell comparisons between upper and lower regions of the reproductive tract also highlight the distinct and divergent immunological responses elicited in the cervix during the reproductive lifespan. These findings may reconcile prior controversies in the role of proinflammatory mediators during parturition. In addition to providing obstetric insights, single-cell technologies elucidate the molecular pathways that drive cervical cancer progression. Thus far, these technologies have uncovered cellular heterogeneity in the tumor microenvironment and have identified potential cancer stem cells. While single-cell technology alone will not uncover all the molecular underpinnings contributing to preterm birth or cervical cancer, the insights derived from this valuable technology will accelerate our understanding of cervical biology in health and disease, which ultimately will help develop biomarkers for disease prediction and prevention therapies.
Collapse
Affiliation(s)
- ShanmugaPriyaa Madhukaran
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yevgenia Y Fomina
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Mala Mahendroo
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
4
|
Elias JE, Debela M, Sewell GW, Stopforth RJ, Partl H, Heissbauer S, Holland LM, Karlsen TH, Kaser A, Kaneider NC. GPR35 prevents osmotic stress induced cell damage. Commun Biol 2025; 8:478. [PMID: 40121360 PMCID: PMC11929815 DOI: 10.1038/s42003-025-07848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
GPR35 is an orphan G-protein coupled receptor that has been implicated in the development of cancer. GPR35 regulates the Na+/K+-ATPase's pump and signalling function. Here we show GPR35's critical role in ion flux that in turn controls cellular osmotic pressure and Na+-dependent transport in HepG2 and SW480 cells. GPR35 deficiency results in increased levels of intracellular Na+, osmotic stress and changes in osmolytes leading to increased cells size and decreased glutamine import in vitro and in vivo. The GPR35-T108M risk variant, which increases risk for primary sclerosing cholangitis and inflammatory bowel disease, leads to lower intracellular Na+ levels, and enhanced glutamine uptake. High salt diet (HSD) in wildtype mice resembles the intestinal epithelial phenotype of their Gpr35-/- littermates with decreased Goblet cell size and numbers. This indicates that GPR35's regulation of the Na+/K+-ATPase controls ion homeostasis, osmosis and Na+-dependent transporters.
Collapse
Affiliation(s)
- Joshua E Elias
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, CB2 0AW, UK
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Mekdes Debela
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Gavin W Sewell
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, CB2 0AW, UK
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Richard J Stopforth
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Hannah Partl
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Sophie Heissbauer
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Lorraine M Holland
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Tom H Karlsen
- Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, CB2 0AW, UK
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Nicole C Kaneider
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, CB2 0AW, UK.
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
5
|
Artola-Borán M, Kirsche L, Fallegger A, Leary P, Tanriover M, Goodwin T, Geiger G, Hapfelmeier S, Yousefi S, Simon HU, Arnold IC, Müller A. IgA facilitates the persistence of the mucosal pathogen Helicobacter pylori. Mucosal Immunol 2025; 18:232-247. [PMID: 39581230 DOI: 10.1016/j.mucimm.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
IgA antibodies have an important role in clearing mucosal pathogens. In this study, we have examined the contribution of IgA to the immune control of the gastrointestinal bacterial pathogens Helicobacter pylori and Citrobacter rodentium. Both bacteria trigger a strong local IgA response that results in bacterial IgA coating in mice and in gastritis patients. Class switching to IgA depends on Peyer's patches, T-cells, eosinophils, and eosinophil-derived TGF-β in both models. In the case of H. pylori, IgA secretion and bacterial coating also depend on a functional bacterial type IV secretion system, which drives the generation of Th17 cells and the IL-17-dependent expression of the polymeric immunoglobulin receptor PIGR. IgA-/- mice are hypercolonized with C. rodentium in all examined tissues, suffer from more severe weight loss and develop more colitis. In contrast, H. pylori is controlled more efficiently in IgA-/- mice than their WT counterparts. The effects of IgA deficiency of the offspring can be compensated by maternal IgA delivered by WT foster mothers. We attribute the improved immune control observed in IgA-/- mice to IgA-mediated protection from complement killing, as H. pylori colonization is restored to wild type levels in a composite strain lacking both IgA and the central complement component C3. IgA antibodies can thus have protective or detrimental activities depending on the infectious agent.
Collapse
Affiliation(s)
- Mariela Artola-Borán
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Lydia Kirsche
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Angela Fallegger
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Peter Leary
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland; Functional Genomics Center Zürich, University of Zürich/ETHZ, Zürich, Switzerland
| | - Mine Tanriover
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Tanja Goodwin
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Gavin Geiger
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | | | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, 16816 Neuruppin, Germany
| | - Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland; Comprehensive Cancer Center Zürich, Zürich, Switzerland.
| |
Collapse
|
6
|
Liu J, Zhao J, Zhang YL, Zhang C, Yang GD, Tian WS, Zhou BH, Wang HW. Underlying Mechanism of Fluoride Inhibits Colonic Gland Cells Proliferation by Inducing an Inflammation Response. Biol Trace Elem Res 2025; 203:973-985. [PMID: 38995434 DOI: 10.1007/s12011-024-04212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 07/13/2024]
Abstract
The integrity of colonic gland cells is a prerequisite for normal colonic function and maintenance. To evaluate the underlying injury mechanisms in colonic gland cells induced by excessive fluoride (F), forty-eight female Kunming mice were randomly allocated into four groups and treated with different concentrations of NaF (0, 25, 50, and 100 mg F-/L) for 70 days. As a result, the integrity of the colonic mucosa and the cell layer was seriously damaged after F treatment, as manifested by atrophy of the colonic glands, colonic cell surface collapse, breakage of microvilli, and mitochondrial vacuolization. Alcian blue and periodic acid Schiff staining revealed that F decreased the number of goblet cells and glycoprotein secretion. Furthermore, F increased the protein expression of TLR4, NF-κB, and ERK1/2 and decreased IL-6, interfered with NF-κB signaling, following induced colonic gland cells inflammation. The accumulation of F inhibited proliferation via the JAK/STAT signaling pathway, as characterized by decreased mRNA and protein expression of JAK, STAT3, STAT5, PCNA, and Ki67 in colon tissue. Additionally, the expression of CDK4 was up-regulated by increased F concentration. In conclusion, excessive F triggered colonic inflammation and inhibited colonic gland cell proliferation via regulation of the NF-κB and JAK/STAT signaling pathways, leading to histopathology and barrier damage in the colon. The results explain the damaging effect of the F-induced inflammatory response on the colon from the perspective of cell proliferation and provide a new idea for explaining the potential mechanism of F-induced intestinal damage.
Collapse
Affiliation(s)
- Jing Liu
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Yu-Ling Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Cai Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Guo-Dong Yang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Wei-Shun Tian
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China.
| |
Collapse
|
7
|
Peng X, Yang Y, Zhong R, Yang Y, Yan F, Liang N, Yuan S. Zinc and Inflammatory Bowel Disease: From Clinical Study to Animal Experiment. Biol Trace Elem Res 2025; 203:624-634. [PMID: 38805169 DOI: 10.1007/s12011-024-04193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract (GI) with a high incidence rate globally, and IBD patients are often accompanied by zinc deficiency. This review aims to summarize the potential therapeutic value of zinc supplementation in IBD clinical patients and animal models. Zinc supplementation can relieve the severity of IBD especially in patients with zinc deficiency. The clinical severity of IBD were mainly evaluated through some scoring methods involving clinical performance, endoscopic observation, blood biochemistry, and pathologic biopsy. Through conducting animal experiments, it has been found that zinc plays an important role in alleviating clinical symptoms and improving pathological lesions. In both clinical observation and animal experiment of IBD, the therapeutic mechanisms of zinc interventions have been found to be related to immunomodulation, intestinal epithelial repair, and gut microbiota's balance. Furthermore, the antioxidant activity of zinc was clarified in animal experiment. Appropriate zinc supplementation is beneficial for IBD therapy, and the present evidence highlights that alleviating zinc-deficient status can effectively improve the severity of clinical symptoms in IBD patients and animal models.
Collapse
Affiliation(s)
- Xi Peng
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Yingxiang Yang
- School of Life Sciences, China West Normal University, Nanchong, 637001, Sichuan, China
| | - Rao Zhong
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Yuexuan Yang
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Chengdu Fifth People's Hospital, Chengdu, China
| | - Na Liang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Shibin Yuan
- School of Life Sciences, China West Normal University, Nanchong, 637001, Sichuan, China.
| |
Collapse
|
8
|
Wei Y, Wang L, Li Y, Ma Q, Liang M, Xu H. Exploring Antibacterial Activity of Fish Protein Hydrolysate In Vitro Against Vibrio Strains and Disease Resistance to V. harveyi in Turbot ( Scophthalmus maximus). AQUACULTURE NUTRITION 2025; 2025:3446155. [PMID: 39949355 PMCID: PMC11824708 DOI: 10.1155/anu/3446155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/07/2025] [Indexed: 02/16/2025]
Abstract
This study was to investigate the in vitro antimicrobial activity of fish protein hydrolysate (FPH) against Vibrio harveyi, V. anguillarum, and V. scophthalmi, as well as the nonspecific immunity, intestinal microbiota, and disease resistance to V. harveyi in turbot. FPH was prepared from Pollock. The antibacterial activity of FPH was measured by the agar well diffusion, turbidometric assay, and plate count. The feeding trial was performed to study the effect of FPH on the resistance against V. harveyi in turbot after feeding three diets containing a high level of fish meal (FM), a high level of soybean meal (SM), and 100 g/kg FPH. Agar well diffusion showed the clearest inhibition zone of FPH was observed against V. harveyi, followed by V. scophthalmi. The bacterial growth curve and plate count showed a slight antibacterial effect of FPH against V. anguillarum. Results of the feeding trial showed that FPH enhanced antioxidant and immune responses before V. harveyi challenge as modulating immunoglobulin M (IgM), catalase (CAT), and myeloperoxidase (MPO) activities in serum, as well as the number of goblet cells in the intestine. Meanwhile, the expression of some pro-inflammatory cytokines (interleukin-1β [il-1β], il-6, and il-8) was downregulated in the FPH group after the V. harveyi challenge. Survival probability in the FPH group increased after challenging to V. harveyi based on the Kaplan-Meier analysis. Results of intestinal microbiota showed the relative abundance of Vibrio in the SM group was the highest, followed by the FPH and control groups. Similarly, the relative abundance of distal intestinal V. harveyi was significantly reduced in the FPH group by analyzing the vhhp2 gene. In conclusion, the present FPH against Vibrio strains was species-specific, with stronger antibacterial activity to V. harveyi. Dietary FPH enhanced the nonspecific immunity and antibacterial activity of turbot, increasing the resistance to V. harveyi.
Collapse
Affiliation(s)
- Yuliang Wei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| | - Lu Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Yanlu Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Qiang Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Mengqing Liang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| | - Houguo Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| |
Collapse
|
9
|
Guo D, Liu C, Zhu H, Cheng Y, Huo X, Guo Y, Qian H. Food-Induced Adverse Reactions: A Review of Physiological Food Quality Control, Mucosal Defense Mechanisms, and Gastrointestinal Physiology. TOXICS 2025; 13:61. [PMID: 39853059 PMCID: PMC11769199 DOI: 10.3390/toxics13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/30/2024] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Although food is essential for the survival of organisms, it can also trigger a variety of adverse reactions, ranging from nutrient intolerances to celiac disease and food allergies. Food not only contains essential nutrients but also includes numerous substances that may have positive or negative effects on the consuming organism. To protect against potentially harmful components, all animals have evolved defense mechanisms, which are similar to antimicrobial defenses but often come at the cost of the organism's health. When these defensive responses are exaggerated or misdirected, they can lead to adverse food reactions, where the costs outweigh the benefits. Furthermore, due to the persistent toxicity of harmful food components, the failure of defense mechanisms can also result in pathological effects triggered by food. This article review presents a food quality control framework that aims to clarify how these reactions relate to normal physiological processes. Organisms utilize several systems to coexist with symbiotic microbes, regulate them, and concurrently avoid, expel, or neutralize harmful pathogens. Similarly, food quality control systems allow organisms to absorb necessary nutrients while defending against low-quality or harmful components in food. Although many microbes are lethal in the absence of antimicrobial defenses, diseases related to microbiome dysregulation, such as inflammatory bowel disease, have significantly increased. Antitoxin defenses also come with costs and may fail due to insufficiencies, exaggerations, or misdirected actions, ultimately leading to adverse food reactions. With the changes in human diet and lifestyle, the failure of defense mechanisms has contributed to the rising incidence of food intolerances. This review explores the mechanisms of antitoxin defenses and analyzes how their failure can lead to adverse food reactions, emphasizing the importance of a comprehensive understanding of food quality control mechanisms for developing more effective treatments for food-triggered diseases.
Collapse
Affiliation(s)
- Dongdong Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chang Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongkang Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiang Huo
- Key Laboratory of Pathogenic Microorganisms for Emerging and Outbreaks of Major Infectious Diseases, Jiangsu Engineering Research Centre for Health Emergency Response, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Feng M, Cheng J, Su Y, Tong J, Wen X, Jin T, Ren M, Song D, Song J, Li X, Xie Q, Liu M. Lactobacillus agilis SNF7 Presents Excellent Antibacteria and Anti-Inflammation Properties in Mouse Diarrhea Induced by Escherichia coli. Int J Mol Sci 2024; 25:13660. [PMID: 39769422 PMCID: PMC11728428 DOI: 10.3390/ijms252413660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Escherichia coli (E. coli) is a common pathogen that causes diarrhea in newborns and animals. Antibiotics are typically used to treat bacterial diarrhea, a global intestinal health issue. Probiotics have gained interest as a potential substitute for antibiotics in the management of E. coli-induced diarrhea and present novel therapeutic options. In this study, the probiotic properties of Lactobacillus agilis SNF7 (L. agilis SNF7) isolated from feces were investigated, and whole genome sequencing was performed to evaluate the properties of the strain. Furthermore, we investigated the protective effects of L. agilis SNF7 in a mouse model of E. coli K99 infection. L. agilis SNF7 exhibits a high survival rate in artificial gastroenteric fluid and bile salt environments, along with an antagonistic effect against E. coli O111:K58 (B4), Staphylococcus aureus (S. aureus), and E. coli K99. Multiple genes with probiotic properties, including bacteriostasis, anti-inflammation, antioxidant, CAZyme, and the utilization of carbohydrate compounds, were identified in genome. L. agilis SNF7 prevented the gut barrier from being damaged by E. coli K99, reducing the clinical manifestations of the infection. Furthermore, L. agilis SNF7 reduced the expression of inflammatory cytokines (IL-6, IL-1β, and TNF-α) by inhibiting the phosphorylation of proteins linked to the NF-κB and MAPK signaling pathways. L. agilis SNF7 improved the intestinal microbial barrier, controlled the balance of the intestinal microecology, and reduced the entry of harmful microbes into the intestine. By controlling gut flora and reducing the inflammatory response, L. agilis SNF7 may be able to prevent and treat E. coli K99 infections. The application of L. agilis SNF7 in the creation of probiotic formulations to stop intestinal illnesses brought on by E. coli infections is clarified by this work.
Collapse
Affiliation(s)
- Mingque Feng
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jia Cheng
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Yalan Su
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Jingdi Tong
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Xiangfu Wen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Tianxiong Jin
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Meiyi Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Deyuan Song
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Jinshang Song
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Xiaohan Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Qinna Xie
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
11
|
Cao X, Chen L, Fan Y, Fu M, Du Q, Chang Z. Black phosphorus quantum dots induced neurotoxicity, intestinal microbiome and metabolome dysbiosis in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176644. [PMID: 39374705 DOI: 10.1016/j.scitotenv.2024.176644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/20/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
The potential toxicity of BPQDs has received considerable attention due to their increasing use in biomedical applications. In this study, the toxicity of BPQDs at concentrations of 5 μg/mL, 50 μg/mL, and 500 μg/mL on the brain-gut axis was assessed in zebrafish. Following 35 days of exposure, the neurotransmitter, locomotor behavior, gut barrier (physical barrier, chemical barrier, and microbial barrier), and gut content metabolism in zebrafish were evaluated. The results indicated that BPQDs induced the locomotor behavior abnormalities, inhibited acetylcholinesterase activity, induced dopaminase activity, and promoted apoptosis in zebrafish brain tissue. Meanwhile, BPQDs caused damage to the physical and chemical barriers in zebrafish intestinal tissue, which increased the permeability of the intestinal mucosa, and induced oxidative stress and apoptosis. The gut microbiota was analyzed by 16S rRNA gene sequencing. The results showed that BPQDs caused dysbiosis of the gut microbiota, resulting in decreased diversity. Specifically, the relative abundance of Firmicutes, Bacteroidetes, and Actinobacteria decreased, while the relative abundance of Proteobacteria and Clostriobacteria increased. At the genus level, the high concentration BPQDs showed a significant increase in Cetobacterium, Pleisionomas, Aeromonas, and other bacteria. Bioinformatic analysis revealed a correlation between the relative abundance of the gut microbiota and antioxidant levels, immune response, and apoptosis. Statistical analysis of the metabolomic revealed significant perturbations in several metabolic pathways, including amino acid, lipid, nucleotide, and energy metabolism. In addition, correlation analysis between microbiota and metabolism confirmed that gut microbiota dysbiosis was closely associated with metabolic dysfunction. The histopathologic injury supported the changes in biomarkers and the expression of related marker genes in the gut-brain axis, indicating the communication between the gut peripheral nerves and the CNS. The results indicate that BPQDs induce gut microbiota dysbiosis, disrupt metabolic function, and induce neurotoxicity, probably by disrupting the homeostasis of the microbiota-gut-brain axis. In summary, this study demonstrates the effects of BPQDs on physiological changes within the zebrafish brain-gut axis and provides valuable data for assessing the toxicological risks of BPQDs in aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaonan Cao
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Lili Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China.
| | - Yingxin Fan
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Mengxiao Fu
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Qiyan Du
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China.
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
12
|
Oliveira ICCS, Marinsek GP, Gonçalves ARN, Lopes BS, Correia LVB, Da Silva RCB, Castro IB, Mari RB. Investigating tributyltin's toxic effects: Intestinal barrier and neuroenteric disruption in rat's jejunum. Neurotoxicology 2024; 105:208-215. [PMID: 39396746 DOI: 10.1016/j.neuro.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The expansion of economic activities in coastal areas has significantly increased chemical contamination, leading to major environmental challenges. Contaminants enter the human body through the food chain, particularly via seafood and water consumption, triggering biomagnification and bioaccumulation processes. The gastrointestinal tract (GIT) acts as a selective barrier, protecting against chemical pollutants and maintaining homeostasis through a complex network of cells and immune responses. This study assessed impact of tributyltin (TBT), a highly toxic organometallic compound used in antifouling coatings for ships, on the GIT and myenteric neural plasticity in young rats. TBT exposure leads to histopathological changes, including epithelial detachment and inflammatory foci, especially at lower environmental doses. The study found that TBT causes significant reductions in villi height, increases in goblet cells and intraepithelial lymphocytes, and disrupts the myenteric plexus, with higher densities of extraganglionic neurons in exposed animals.
Collapse
Affiliation(s)
- I C C S Oliveira
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil.
| | - G P Marinsek
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - A R N Gonçalves
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - B S Lopes
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - L V B Correia
- UNIFESP, Federal University of São Paulo, Institute of Health and Society, Baixada Santista Campus, Santos, SP, Brazil
| | - R C B Da Silva
- UNIFESP, Federal University of São Paulo, Institute of Health and Society, Baixada Santista Campus, Santos, SP, Brazil
| | - I B Castro
- UNIFESP, Federal University of São Paulo, Institute of Marine Science, Baixada Santista Campus, Santos, SP, Brazil
| | - R B Mari
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| |
Collapse
|
13
|
Zheng J, Zeng H, Zhang Q, Ma Y, Li Y, Lin J, Yang Q. Effects of intranasal administration with a symbiotic strain of Bacillus velezensis NSV2 on nasal cavity mucosal barrier in lambs. Vet Res Commun 2024; 49:21. [PMID: 39565462 DOI: 10.1007/s11259-024-10596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 10/03/2024] [Indexed: 11/21/2024]
Abstract
The nasal mucosa is composed of multiple layers of barrier structures and is the first line of defense against infection by respiratory pathogenic microorganisms. A large number of commensal microorganisms are present in the nasal mucosa that mediate and regulate nasal mucosal barrier function. The objective of this research was to investigate the effects of commensal microorganisms on the nasal mucosal barrier. The results revealed that the strain of Bacillus velezensis (B. velezensis) NSV2 from the nasal cavity has good probiotic abilities to resist Pasteurella multocida, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. Lambs were subsequently administered intranasally with B. velezensis NSV2 at 3, 12, 21, and 26 days old, respectively. For the microbial barrier, although B. velezensis NSV2 reduces the diversity of nasal microbiota, it significantly increased the relative abundance of beneficial bacteria in the nasal cavity, and reduced the abundance of potential pathogenic bacteria. For the mucus barrier, the number of goblet cells in the nasal mucosa significantly increased after B. velezensis NSV2 treatment. For the immune barrier, B. velezensis NSV2 also significantly increased the number of IgA+ B cells, CD3+ T cells and dendritic cells in the nasal mucosa, as well as the mRNA expression of interleukin (IL) 6, IL11, CCL2, and CCL20 (P < 0.05). The protein level of CCL20 also significantly raised in nasal washings (P < 0.05). Moreover, the heat-inactivated and culture products of B. velezensis NSV2 also drastically induced the expression of CCL20 in nasal mucosa explants (P < 0.05), but lower than that of the live bacteria. This study demonstrated that a symbiotic strain of B. velezensis NSV2 could improve the nasal mucosal barrier, and emphasized the important role of nasal symbiotic microbiota.
Collapse
Affiliation(s)
- Jian Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Hui Zeng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Qi Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yichao Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Jian Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
14
|
Hou M, Song P, Chen Y, Yang X, Chen P, Cao A, Ni Y. Bile acids supplementation improves colonic mucosal barrier via alteration of bile acids metabolism and gut microbiota composition in goats with subacute ruminal acidosis (SARA). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117313. [PMID: 39536567 DOI: 10.1016/j.ecoenv.2024.117313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Subacute ruminal acidosis (SARA) is a common metabolic disease due to feeding high-concentrate (HC) diets to ruminants, especially dairy cows, in intensive farming system. Long term feeding HC diets commonly induce damages to hindgut barrier, leading to the translocation of harmful substances such as endotoxins (LPS) from lumen to blood, which results in a low-grade inflammation and stress response. Secondary bile acids (SBAs) play an important role in maintaining intestinal homeostasis. However, the function of SBAs on the intestinal epithelial barrier in SARA remains unclear. In this study, 15 growing goats were randomly divided into 3 groups, control group (30 % concentrate of dry matter, CON), SARA group (70 % concentrate of dry matter, SARA), and SARA+BAs group (70 % concentrate of dry matte, supplemented with 3 g/d/goat of BAs, SARA+BAs). The changes of mucosal permeability, gut microbiota and bile acids (BAs) profile was measured in the colon. The results showed that compared to CON group, the level of plasma D-lactate and diamine oxidase activity (DAO) (P < 0.05) was elevated in SARA group, while BAs supplementation significantly decreased plasma DAO (P < 0.05). The thickness of colonic mucosa, goblet cells (GCs) number (P < 0.01) and the abundance of MUC2 and occludin expression (P < 0.05) were significantly decreased in SARA group, while BAs supplementation markedly increased GCs number and improved mucosal barrier. BAs effectively reduced the content of LPS and volatile fatty acids (VFAs) in the colonic digesta (P < 0.05). Furthermore, BAs ameliorated SARA-induced reduction of total BAs (P < 0.001), primary BAs (P < 0.05), and conjugated BAs (P < 0.05) including taurocholic acid (TCA), taurochenodeoxycholic acid (TCDCA) and taurodeoxycholic acid (TDCA), as well as significantly increased hyodeoxycholic acid (HDCA) and lithocholic acid (LCA) contents in colonic digesta. 16S rRNA gene sequence analysis revealed that BAs decreased the abundance of Prevotella and Treponema, but increased the abundance of Akkermansia which was positively correlated with GCs number and MUC2 abundance. BAs supplementation improved the changes in the abundance of Roseburia, Negativibacillus, Lactobacillus, and unclassified_f_prevotellaceae, which were correlated with TCA, TCDCA, and TDCA levels. RNA-Seq results showed that, compared to SARA group, BAs activated the PPAR signaling pathway which was positively correlated with the number of GCs. In summary, BAs supplementation remodels the profiles of gut microbiota and metabolites, activates the PPAR signaling pathway, and eventually ameliorates intestinal mucosal barrier damage.
Collapse
Affiliation(s)
- Manman Hou
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Pin Song
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yue Chen
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoran Yang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Pengnan Chen
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Aizhi Cao
- Industrial Research Institute of Liver Health & Homeostatic Regulation, Shandong Longchang Animal Health Product Co., Ltd., Dezhou 253000, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
15
|
Ren Y, Tian J, Shi W, Feng J, Liu Y, Kang H, He Y. Evaluation of ocular surface inflammation and systemic conditions in patients with systemic lupus erythematosus: a cross-sectional study. BMC Ophthalmol 2024; 24:492. [PMID: 39533209 PMCID: PMC11556210 DOI: 10.1186/s12886-024-03760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE The cross-sectional study was designed to evaluate the association of ocular surface inflammation with systemic conditions in patients with systemic lupus erythematosus (SLE). METHODS The study enrolled 30 SLE patients and 30 controls. Ocular symptoms were evaluated using the Ocular Surface Disease Index (OSDI) questionnaire. Tear samples from all participants were collected for tear multi-cytokine and chemokine concentration analysis. All participants were assessed for dry eye disease (DED), including Schirmer I test, tear break-up time (TBUT), corneal fluorescein staining (CFS), meibomian gland secretion (MGS), lid-parallel conjunctival folds (LIPCOF), corneal clarity, and symblepharon. Besides, all participants were also examined for conjunctival impression cytology to measure the density of conjunctival goblet cells (CGCs). The peripheral blood indicators from SLE patients were also collected to measure the SLE-associated autoantibody specificities and systemic inflammatory indicators. Pearson and Spearman's analysis were uesd to examine the correlation between tear cytokines, CGCs, DED-related indicators, and systemic conditions. RESULTS The two groups were matched for age and gender in this study. 36.67% of eyes (11 in 30) of SLE patients and 13.33% of eyes (4 in 30) of controls were diagnosed with DED. OSDI scores, abnormal TBUT percentages, CFS percentages, and DED grading were all higher in SLE patients than in control group, while density of CGCs was lower. There were no significant differences in Schirmer I test, MGS, LIPCOF, corneal clarity, and symblepharon between SLE patients and controls. The levels of tear chemokine (C-X-C motif) ligand 11 (CXCL11) and cytokine interleukin-7 (IL-7) in patients with SLE were significantly higher than those in control group. Moreover, among SLE patients, the severity of DED and the level of tear chemokine CXCL11 were significantly positively correlated with SLE-associated autoantibody specificities. CONCLUSION Dry eye and tear cytokines and chemokines-mediated ocular surface inflammation persist in SLE patients and are associated with systemic conditions. Therefore, it is necessary for patients with SLE to combine systemic and ocular assessments.
Collapse
Affiliation(s)
- Yuerong Ren
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jing Tian
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Shi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jianing Feng
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Northwest University Affiliated People's Hospital, Xi'an, Shaanxi Province, China
| | - Yingyi Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Huanmin Kang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yan He
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Laboratory, Beijing, China.
| |
Collapse
|
16
|
Wang BN, Zhang XZ, Cong PK, Zheng WW, Wu JY, Long SR, Liu RD, Zhang X, Cui J, Wang ZQ. Trichinellaspiralis C-type lectin mediates larva invasion of gut mucosa via binding to syndecan-1 and damaging epithelial integrity in mice. Int J Biol Macromol 2024; 280:135958. [PMID: 39322156 DOI: 10.1016/j.ijbiomac.2024.135958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
C-type lectin (CTL) plays a vital role in parasite adhesion, invading host's cells and immune escape. The objective of this research was to explore whether recombinant T. spiralis CTL (rTsCTL) binding with syndecan-1 damages intestine epithelial integrity and mediates T. spiralis intrusion in mice. The results showed that rTsCTL interacted with syndecan-1 and activated STAT3 pathway in gut epithelium, decreased tight junctions (TJs) expressions and damaged gut epithelium integrity, promoted T. spiralis intrusion, and increased expression level of inflammatory cytokine and mucin. The syndecan-1 inhibitor (β-xyloside) and STAT3 phosphorylation inhibitor (Stattic) significantly suppressed syndecan-1 expression and STAT3 pathway activation, reduced the expression levels of TJs, pro-inflammatory cytokines (TNF-α and IL-1β), Muc2 and Muc5ac, and declined intestinal permeability in T. spiralis-infected mice. These results revealed that the inhibitors suppressed T. spiralis invasion and development in gut mucosa, decreased intestinal adult burdens and relieved gut inflammation. These findings further testified that the in vivo binding of TsCTL with syndecan-1 destroyed enteral mucosal epithelial integrity and promoted T. spiralis intrusion of gut mucosa via activating STAT3 pathway and decreasing TJs expression. TsCTL could be deemed as a promising vaccine target to interrupt T. spiralis infection.
Collapse
Affiliation(s)
- Bo Ning Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Zhuo Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pei Kun Cong
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Wen Zheng
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin Yi Wu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shao Rong Long
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ruo Dan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
17
|
Qiao X, Bao L, Liu G, Cui X. Nanomaterial journey in the gut: from intestinal mucosal interaction to systemic transport. NANOSCALE 2024; 16:19207-19220. [PMID: 39347780 DOI: 10.1039/d4nr02480j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Engineered nanomaterials (NMs) are commonly utilized in food additives, cosmetics, and therapeutic applications due to their advantageous properties. Consequently, humans are frequently exposed to exogenous nanomaterials through oral ingestion, thus making the intestinal mucosal system a primary site for these particles. Understanding the interactions between nanomaterials and the intestinal mucosal system is crucial for harnessing their therapeutic potential and mitigating potential health risks from unintended exposure. This review aims to elucidate recent advancements in the dual effects of nanomaterials on the intestinal mucosal system. Upon entering the gut lumen, nanomaterials will interact with diverse intestinal components, including trillions of gut microbiota, mucus layer, intestinal epithelial cells (IECs), and the intestinal immune system. Additionally, the systemic fate and transportation of nanomaterials to distal organs, such as central nervous system, are also highlighted. These interactions result in a distinct biological effect of nanomaterials on the multilayer structure of intestine, thus displaying complex journeys and outcomes of nanomaterials in the living body. This in-depth exploration of the in vivo destiny and immunological implications of nanomaterials encountering the intestine has the potential to propel advancements in oral drug delivery techniques and motivate future investigations in novel toxicology research.
Collapse
Affiliation(s)
- Xin Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Guanyu Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
18
|
Alvarez-Arguedas S, Mazhar K, Wangzhou A, Sankaranarayanan I, Gaona G, Lafin JT, Mitchell RB, Price TJ, Shiloh MU. Single cell transcriptional analysis of human adenoids identifies molecular features of airway microfold cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619143. [PMID: 39484391 PMCID: PMC11526898 DOI: 10.1101/2024.10.19.619143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The nasal, oropharyngeal, and bronchial mucosa are primary contact points for airborne pathogens like Mycobacterium tuberculosis (Mtb), SARS-CoV-2, and influenza virus. While mucosal surfaces can function as both entry points and barriers to infection, mucosa-associated lymphoid tissues (MALT) facilitate early immune responses to mucosal antigens. MALT contains a variety of specialized epithelial cells, including a rare cell type called a microfold cell (M cell) that functions to transport apical antigens to basolateral antigen-presenting cells, a crucial step in the initiation of mucosal immunity. M cells have been extensively characterized in the gastrointestinal (GI) tract in murine and human models. However, the precise development and functions of human airway M cells is unknown. Here, using single-nucleus RNA sequencing (snRNA-seq), we generated an atlas of cells from the human adenoid and identified 16 unique cell types representing basal, club, hillock, and hematopoietic lineages, defined their developmental trajectories, and determined cell-cell relationships. Using trajectory analysis, we found that human airway M cells develop from progenitor club cells and express a gene signature distinct from intestinal M cells. Surprisingly, we also identified a heretofore unknown epithelial cell type demonstrating a robust interferon-stimulated gene signature. Our analysis of human adenoid cells enhances our understanding of mucosal immune responses and the role of M cells in airway immunity. This work also provides a resource for understanding early interactions of pathogens with airway mucosa and a platform for development of mucosal vaccines.
Collapse
|
19
|
Mesas Vaz C, Guembe Mülberger A, Torrent Burgas M. The battle within: how Pseudomonas aeruginosa uses host-pathogen interactions to infect the human lung. Crit Rev Microbiol 2024:1-36. [PMID: 39381985 DOI: 10.1080/1040841x.2024.2407378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Mesas Vaz
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Guembe Mülberger
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent Burgas
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
20
|
Brown K, Funk K, Figueroa Barrientos A, Bailey A, Shrader S, Feng W, McClain CJ, Song ZH. The Modulatory Effects and Therapeutic Potential of Cannabidiol in the Gut. Cells 2024; 13:1618. [PMID: 39404382 PMCID: PMC11475737 DOI: 10.3390/cells13191618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Cannabidiol (CBD) is a major non-psychotropic phytocannabinoid that exists in the Cannabis sativa plant. CBD has been found to act on various receptors, including both cannabinoid and non-cannabinoid receptors. In addition, CBD has antioxidant effects that are independent of receptors. CBD has demonstrated modulatory effects at different organ systems, such as the central nervous system, immune system, and the gastrointestinal system. Due to its broad effects within the body and its safety profile, CBD has become a topic of therapeutic interest. This literature review summarizes previous research findings with regard to the effect of CBD on the gastrointestinal (GI) system, including its effects at the molecular, cellular, organ, and whole-body levels. Both pre-clinical animal studies and human clinical trials are reviewed. The results of the studies included in this literature review suggest that CBD has significant impact on intestinal permeability, the microbiome, immune cells and cytokines. As a result, CBD has been shown to have therapeutic potential for GI disorders such as inflammatory bowel disease (IBD). Furthermore, through interactions with the gut, CBD may also be helpful in the treatment of disorders outside the GI system, such as non-alcoholic liver disease, postmenopausal disorders, epilepsy, and multiple sclerosis. In the future, more mechanistic studies are warranted to elucidate the detailed mechanisms of action of CBD in the gut. In addition, more well-designed clinical trials are needed to explore the full therapeutic potential of CBD on and through the gut.
Collapse
Affiliation(s)
- Kevin Brown
- College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kyle Funk
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Alexa Figueroa Barrientos
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Ashly Bailey
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Sarah Shrader
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Wenke Feng
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Craig J. McClain
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
21
|
Hu Y, Sun Y, Zhang H, Luo L, Wang H, Zhang R, Ge M. 2-ethylhexyl diphenyl phosphate exposure induces duodenal inflammatory injury through oxidative stress in chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116784. [PMID: 39088896 DOI: 10.1016/j.ecoenv.2024.116784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
2-ethylhexyl diphenyl phosphate (EHDPHP) is a widely used organophosphorus flame retardant and plasticizer, which is commonly found in the environment. EHDPHP not only potentially harms the environment but also causes different degrees of damage to the organism. In this study, the duodenum of chicks was selected as the potential toxic target organ to explore the mechanism of duodenal injury induced by EHDPHP exposure. Ninety one-day-old healthy male chicks were selected and randomly divided into C1(control group), C2(solvent control group), L(800 mg/kg), M(1600 mg/kg), H(3200 mg/kg) according to different doses of EHDPHP after one week of environmental adaptation. The chicks were given continuous gavage for 14 d, 28 d, and 42 d. It was found that constant exposure to EHDPHP caused an increase in duodenal MDA content, a decrease in P-gp, SOD, GSH-Px activities, and a decrease in duodenal mucosal immune factor (sIgA, GSH-Px). The expression of sIgM and mucosal link proteins (CLDN, OCLN, ZO-1, JAM) decreased, and the expression of the inflammatory protein (NF-κB, COX2) in duodenal tissues was up-regulated. The results showed that continuous exposure to EHDPHP could cause duodenal oxidative stress, inflammation, and mucosal barrier damage in chicks, which provided a basis for studying the mechanism of toxic damage caused by EHDPHP in poultry.
Collapse
Affiliation(s)
- Yihan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| | - Yiming Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| | - Haolin Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| | - Linghuan Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China.
| | - Haibin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China.
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| |
Collapse
|
22
|
Martinez-Blanco M, Mukhatayev Z, Chatila TA. Pathogenic mechanisms in the evolution of food allergy. Immunol Rev 2024; 326:219-226. [PMID: 39285835 PMCID: PMC11488529 DOI: 10.1111/imr.13398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The early development of the neonatal immune system is profoundly influenced by exposure to dietary and microbial antigens, which shapes mucosal tolerance. Successful oral tolerance induction is crucially dependent on microbially imprinted immune cells, most notably the RORγt+ regulatory T (Treg) and antigen presenting cells and is essential for preventing food allergy (FA). The development of FA can be envisioned to result from disruptions at key checkpoints (CKPTs) that govern oral tolerance induction. These include gut epithelial sensory and effector circuits that when dysregulated promote pro-allergic gut dysbiosis. They also include microbially imprinted immune regulatory circuits that are disrupted by dysbiosis and pro-allergic immune responses unleashed by the dysregulation of the aforementioned cascades. Understanding these checkpoints is essential for developing therapeutic strategies to restore immune homeostasis in FA.
Collapse
Affiliation(s)
- Monica Martinez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhussipbek Mukhatayev
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Biswas M, Nurunnabi M, Khatun Z. Understanding Mucosal Physiology and Rationale of Formulation Design for Improved Mucosal Immunity. ACS APPLIED BIO MATERIALS 2024; 7:5037-5056. [PMID: 38787767 DOI: 10.1021/acsabm.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The oral and nasal cavities serve as critical gateways for infectious pathogens, with microorganisms primarily gaining entry through these routes. Our first line of defense against these invaders is the mucosal membrane, a protective barrier that shields the body's internal systems from infection while also contributing to vital functions like air and nutrient intake. One of the key features of this mucosal barrier is its ability to protect the physiological system from pathogens. Additionally, mucosal tolerance plays a crucial role in maintaining homeostasis by regulating the pH and water balance within the body. Recognizing the importance of the mucosal barrier, researchers have developed various mucosal formulations to enhance the immune response. Mucosal vaccines, for example, deliver antigens directly to mucosal tissues, triggering local immune stimulation and ultimately inducing systemic immunity. Studies have shown that lipid-based formulations such as liposomes and virosomes can effectively elicit both local and systemic immune responses. Furthermore, mucoadhesive polymeric particles, with their prolonged delivery to target sites, have demonstrated an enhanced immune response. This Review delves into the critical role of material selection and delivery approaches in optimizing mucosal immunity.
Collapse
Affiliation(s)
- Mila Biswas
- Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| |
Collapse
|
24
|
Teng T, Yang Y, Li H, Song J, Ren J, Liu F. Mechanisms of intestinal injury in polychaete Perinereis aibuhitensis caused by low-concentration fluorene pollution: Microbiome and metabonomic analyses. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134925. [PMID: 38889458 DOI: 10.1016/j.jhazmat.2024.134925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
The polychaete Perinereis aibuhitensis is used for bioremediation; however, its ability to remove fluorene, a common environmental pollutant, from sediments remains unclear, especially at low concentrations of fluorene (10 mg/kg). In this study, we explored the mechanism of intestinal injury induced by low concentrations of fluorene and the reason intestinal injury is alleviated in high fluorene concentration groups (100 and 1000 mg/kg) using histology, ecological biomarkers, gut microbiome, and metabolic response analyses. The results show that P. aibuhitensis showed high tolerance to fluorene in sediments, with clearance rates ranging 25-50 %. However, the remediation effect at low fluorene concentrations (10 mg/kg) was poor. This is attributed to promoting the growth of harmful microorganisms such as Microvirga, which can cause metabolic disorders, intestinal flora imbalances, and the generation of harmful substances such as 2-hydroxyfluorene. These can result in severe intestinal injury in P. aibuhitensis, reducing its fluorene clearance rate. However, high fluorene concentrations (100 and 1000 mg/kg) may promote the growth of beneficial microorganisms such as Faecalibacterium, which can replace the dominant harmful microorganisms and improve metabolism to reverse the intestinal injury caused by low fluorene concentrations, ultimately restoring the fluorene-removal ability of P. aibuhitensis. This study demonstrates an effective method for evaluating the potential ecological risks of fluorene pollution in marine sediments and provides guidance for using P. aibuhitensis for remediation.
Collapse
Affiliation(s)
- Teng Teng
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China
| | - Yuting Yang
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China
| | - Huihong Li
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China
| | - Jie Song
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China
| | - Junning Ren
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China
| | - Feng Liu
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China.
| |
Collapse
|
25
|
Medina-Rodríguez EM, Martínez-Raga J, Sanz Y. Intestinal Barrier, Immunity and Microbiome: Partners in the Depression Crime. Pharmacol Rev 2024; 76:956-969. [PMID: 39084934 DOI: 10.1124/pharmrev.124.001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024] Open
Abstract
Depression is a highly prevalent disorder and a leading cause of disability worldwide. It has a major impact on the affected individual and on society as a whole. Regrettably, current available treatments for this condition are insufficient in many patients. In recent years, the gut microbiome has emerged as a promising alternative target for treating and preventing depressive disorders. However, the microbes that form this ecosystem do not act alone but are part of a complicated network connecting the gut and the brain that influences our mood. Host cells that are in intimate contact with gut microbes, such as the epithelial cells forming the gut barrier and the immune cells in their vicinity, play a key role in the process. These cells continuously shape immune responses to maintain healthy communication between gut microbes and the host. In this article, we review how the interplay among epithelial cells, the immune system, and gut microbes mediates gut-brain communication to influence mood. We also discuss how advances in our knowledge of the mechanisms underlying the gut-brain axis could contribute to addressing depression. SIGNIFICANCE STATEMENT: This review does not aim to systematically describe intestinal microbes that might be beneficial or detrimental for depression. We have adopted a novel point of view by focusing on potential mechanisms underlying the crosstalk between gut microbes and their intestinal environment to control mood. These pathways could be targeted by well defined and individually tailored dietary interventions, microbes, or microbial metabolites to ameliorate depression and decrease its important social and economic impact.
Collapse
Affiliation(s)
- Eva M Medina-Rodríguez
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| | - José Martínez-Raga
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| | - Yolanda Sanz
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| |
Collapse
|
26
|
Korn LL, Kutyavin VI, Bachtel ND, Medzhitov R. Adverse Food Reactions: Physiological and Ecological Perspectives. Annu Rev Nutr 2024; 44:155-178. [PMID: 38724028 DOI: 10.1146/annurev-nutr-061021-022909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
While food is essential for survival, it can also cause a variety of harmful effects, ranging from intolerance to specific nutrients to celiac disease and food allergies. In addition to nutrients, foods contain myriads of substances that can have either beneficial or detrimental effects on the animals consuming them. Consequently, all animals evolved defense mechanisms that protect them from harmful food components. These "antitoxin" defenses have some parallels with antimicrobial defenses and operate at a cost to the animal's fitness. These costs outweigh benefits when defense responses are exaggerated or mistargeted, resulting in adverse reactions to foods. Additionally, pathological effects of foods can stem from insufficient defenses, due to unabated toxicity of harmful food components. We discuss the structure of antitoxin defenses and how their failures can lead to a variety of adverse food reactions.
Collapse
Affiliation(s)
- Lisa L Korn
- Department of Medicine, Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Vassily I Kutyavin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Nathaniel D Bachtel
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Ruslan Medzhitov
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
27
|
Cheong KL, Liu K, Chen W, Zhong S, Tan K. Recent progress in Porphyra haitanensis polysaccharides: Extraction, purification, structural insights, and their impact on gastrointestinal health and oxidative stress management. Food Chem X 2024; 22:101414. [PMID: 38711774 PMCID: PMC11070828 DOI: 10.1016/j.fochx.2024.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Porphyra haitanensis, a red seaweed species, represents a bountiful and sustainable marine resource. P. haitanensis polysaccharide (PHP), has garnered considerable attention for its numerous health benefits. However, the comprehensive utilization of PHP on an industrial scale has been limited by the lack of comprehensive information. In this review, we endeavor to discuss and summarize recent advancements in PHP extraction, purification, and characterization. We emphasize the multifaceted mechanisms through which PHP promotes gastrointestinal health. Furthermore, we present a summary of compelling evidence supporting PHP's protective role against oxidative stress. This includes its demonstrated potent antioxidant properties, its ability to neutralize free radicals, and its capacity to enhance the activity of antioxidant enzymes. The information presented here also lays the theoretical groundwork for future research into the structural and functional aspects of PHP, as well as its potential applications in functional foods.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Keying Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenting Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China
| |
Collapse
|
28
|
Zhu X, Li Y, Tian X, Jing Y, Wang Z, Yue L, Li J, Wu L, Zhou X, Yu Z, Zhang Y, Guan F, Yang M, Zhang B. REGγ Mitigates Radiation-Induced Enteritis by Preserving Mucin Secretion and Sustaining Microbiome Homeostasis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:975-988. [PMID: 38423356 DOI: 10.1016/j.ajpath.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Radiation-induced enteritis, a significant concern in abdominal radiation therapy, is associated closely with gut microbiota dysbiosis. The mucus layer plays a pivotal role in preventing the translocation of commensal and pathogenic microbes. Although significant expression of REGγ in intestinal epithelial cells is well established, its role in modulating the mucus layer and gut microbiota remains unknown. The current study revealed notable changes in gut microorganisms and metabolites in irradiated mice lacking REGγ, as compared to wild-type mice. Concomitant with gut microbiota dysbiosis, REGγ deficiency facilitated the infiltration of neutrophils and macrophages, thereby exacerbating intestinal inflammation after irradiation. Furthermore, fluorescence in situ hybridization assays unveiled an augmented proximity of bacteria to intestinal epithelial cells in REGγ knockout mice after irradiation. Mechanistically, deficiency of REGγ led to diminished goblet cell populations and reduced expression of key goblet cell markers, Muc2 and Tff3, observed in both murine models, minigut organoid systems and human intestinal goblet cells, indicating the intrinsic role of REGγ within goblet cells. Interestingly, although administration of broad-spectrum antibiotics did not alter the goblet cell numbers or mucin 2 (MUC2) secretion, it effectively attenuated inflammation levels in the ileum of irradiated REGγ absent mice, bringing them down to the wild-type levels. Collectively, these findings highlight the contribution of REGγ in counteracting radiation-triggered microbial imbalances and cell-autonomous regulation of mucin secretion.
Collapse
Affiliation(s)
- Xiangzhan Zhu
- Institute of Pediatric Medicine, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China; School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ya Li
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xue Tian
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Jing
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zimeng Wang
- Department of Pharmacology and Cancer, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingling Yue
- Institute of Pediatric Medicine, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Jianhui Li
- Department of Pathology, Xuchang Central Hospital Affiliated to Henan University of Science and Technology, Xuchang, China
| | - Ling Wu
- Department of Medical Imaging, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Xinkui Zhou
- Institute of Pediatric Medicine, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Zhidan Yu
- Institute of Pediatric Medicine, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Yaodong Zhang
- Institute of Pediatric Medicine, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Minglei Yang
- Department of Orthopedic Oncology, The Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Bianhong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
29
|
Del Castillo D, Lo DD. Deciphering the M-cell niche: insights from mouse models on how microfold cells "know" where they are needed. Front Immunol 2024; 15:1400739. [PMID: 38863701 PMCID: PMC11165056 DOI: 10.3389/fimmu.2024.1400739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Known for their distinct antigen-sampling abilities, microfold cells, or M cells, have been well characterized in the gut and other mucosa including the lungs and nasal-associated lymphoid tissue (NALT). More recently, however, they have been identified in tissues where they were not initially suspected to reside, which raises the following question: what external and internal factors dictate differentiation toward this specific role? In this discussion, we will focus on murine studies to determine how these cells are identified (e.g., markers and function) and ask the broader question of factors triggering M-cell localization and patterning. Then, through the consideration of unconventional M cells, which include villous M cells, Type II taste cells, and medullary thymic epithelial M cells (microfold mTECs), we will establish the M cell as not just a player in mucosal immunity but as a versatile niche cell that adapts to its home tissue. To this end, we will consider the lymphoid structure relationship and apical stimuli to better discuss how the differing cellular programming and the physical environment within each tissue yield these cells and their unique organization. Thus, by exploring this constellation of M cells, we hope to better understand the multifaceted nature of this cell in its different anatomical locales.
Collapse
Affiliation(s)
| | - David D. Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
30
|
Fontinha F, Martins N, Campos G, Peres H, Oliva-Teles A. The Effects of Short-Chain Fatty Acids in Gut Immune and Oxidative Responses of European Sea Bass ( Dicentrarchus labrax): An Ex Vivo Approach. Animals (Basel) 2024; 14:1360. [PMID: 38731364 PMCID: PMC11083385 DOI: 10.3390/ani14091360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
This study aimed to evaluate the intestinal interactions between three short-chain fatty acids (SCFA), namely, acetate, propionate, and butyrate, and pathogenic bacteria (Vibrio anguillarum) in intestinal explants of European sea bass (Dicentrarchus labrax) juveniles. The anterior intestine of 12 fish with an average weight of 100 g (killed by excess anesthesia with 2-phenoxyethanol) were sampled and placed in 24-well plates. The experimental treatments consisted of a control medium and a control plus 1 mM or 10 mM of sodium acetate (SA), sodium butyrate (SB), and sodium propionate (SP). After 2 h of incubation, the explants were challenged with Vibrio anguillarum at 1 × 107 CFU/mL for 2 h. After the bacterial challenge, and regardless of the SCFA treatment, the oxidative stress-related genus catalase (cat) and superoxide dismutase (sod) were down-regulated and glutathione peroxidase (gpx) was up-regulated. Furthermore, the immune-related genes, i.e., the tumor necrosis factor (TNF-α), interleukin 8 (IL-8), transforming growth factor (TGF-β), and nuclear factor (NF-Kβ) were also up-regulated, and interleukin 10 (IL-10) was down-regulated. During the pre-challenge, sodium propionate and sodium butyrate seemed to bind the G-protein coupled receptor (grp40L), increasing its expression. During the challenge, citrate synthase (cs) was down-regulated, indicating that the SCFAs were used as an energy source to increase the immune and oxidative responses. Overall, our results suggest that sodium propionate and sodium butyrate may boost European sea bass immune response at the intestine level.
Collapse
Affiliation(s)
- Filipa Fontinha
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal; (F.F.); (N.M.); (G.C.); (H.P.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n 289, 4450-208 Matosinhos, Portugal
| | - Nicole Martins
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal; (F.F.); (N.M.); (G.C.); (H.P.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n 289, 4450-208 Matosinhos, Portugal
| | - Gabriel Campos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal; (F.F.); (N.M.); (G.C.); (H.P.)
| | - Helena Peres
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal; (F.F.); (N.M.); (G.C.); (H.P.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n 289, 4450-208 Matosinhos, Portugal
| | - Aires Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal; (F.F.); (N.M.); (G.C.); (H.P.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n 289, 4450-208 Matosinhos, Portugal
| |
Collapse
|
31
|
Dong S, Zeng Q, He W, Cheng W, Zhang L, Zhong R, He W, Fang X, Wei H. Effect of Lactobacillus plantarum BFS1243 on a female frailty model induced by fecal microbiota transplantation in germ-free mice. Food Funct 2024; 15:3993-4009. [PMID: 38516869 DOI: 10.1039/d3fo05282f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Frailty, a complex geriatric syndrome, significantly impedes the goal of achieving 'healthy aging'. Increasing evidence suggests a connection between gut microbiota, systemic inflammation, and disease. However, it remains to be determined whether interventions targeting the intestinal flora can effectively ameliorate frailty. Our research involved fecal microbiota transplantation (FMT) experiments on germ-free (GF) mice, dividing these mice into three groups: a group receiving transplants from healthy elderly individuals (HF group), a group of frailty patients (FF group), and the FF group supplemented with Lactobacillus plantarum BFS1243 (FFL group). Our findings indicated a significant shift in the gut microbiota of the FF group, in contrast to the HF group, characterized by decreased Akkermansia and increased Enterocloster, Parabacteroides, and Eisenbergiella. Concurrently, there was a reduction in amino acids and SCFAs, with BFS1243 partially mitigating these changes. The FF group exhibited an upregulation of inflammatory markers, including PGE2, CRP, and TNF-α, and a downregulation of irisin, all of which were moderated by BFS1243 treatment. Furthermore, BFS1243 improved intestinal barrier integrity and physical endurance in the FF mice. Correlation analysis revealed a negative association between SCFA-producing species and metabolites like lysine and butyric acid with pro-inflammatory factors. In conclusion, our study conclusively demonstrated that alterations in the gut microbiota of elderly individuals can lead to physical frailty, likely due to detrimental effects on the intestinal barrier and a pro-inflammatory state. These findings underscore the potential of gut microbiome modulation as a clinical strategy for treating frailty.
Collapse
Affiliation(s)
- Sashuang Dong
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510030, P. R. China.
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510630, P. R. China.
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, P. R. China
| | - Qi Zeng
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510030, P. R. China.
| | - Weimin He
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510030, P. R. China.
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510630, P. R. China.
| | - Wei Cheng
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510030, P. R. China.
| | - Ling Zhang
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510030, P. R. China.
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, P. R. China
| | - Wen He
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510030, P. R. China.
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510630, P. R. China.
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510030, P. R. China.
| |
Collapse
|
32
|
Xia Y, Chen Z, Huang C, Shi L, Ma W, Chen X, Liu Y, Wang Y, Cai C, Huang Y, Liu W, Shi R, Luo Q. Investigation the mechanism of iron overload-induced colonic inflammation following ferric citrate exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116241. [PMID: 38522287 DOI: 10.1016/j.ecoenv.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Iron overload occurs due to excessive iron intake compared to the body's demand, leading to iron deposition and impairment of multiple organ functions. Our previous study demonstrated that chronic oral administration of ferric citrate (FC) caused colonic inflammatory injury. However, the precise mechanism underlying this inflammatory response remains unclear. The current study aims to investigate the mechanism by which iron overload induced by FC exposure leads to colonic inflammation. To accomplish this, mice were orally exposed to three different concentrations of FC (71 mg/kg/bw (L), 143 mg/kg/bw (M) and 286 mg/kg/bw (H)) for continuous 16 weeks, with the control group receiving ultrapure water (C). Exposure to FC caused disturbances in the excretory system, altered colonic flora alpha diversity, and enriched pathogenic bacteria, such as Mucispirillum, Helicobacter, Desulfovibrio, and Shigella. These changes led to structural disorders of the colonic flora and an inflammatory response phenotype characterized by inflammatory cells infiltration, atrophy of intestinal glands, and irregular thickening of the intestinal wall. Mechanistic studies revealed that FC-exposure activated the NF-κB signaling pathway by up-regulating TLR4, MyD88, and NF-κB mRNA levels and protein expression. This activation resulted in increased production of pro-inflammatory cytokines, further contributing to the colonic inflammation. Additionally, in vitro experiments in SW480 cells confirmed the activation of NF-κB signaling pathway by FC exposure, consistent with the in vivo findings. The significance of this study lies in its elucidation of the mechanism by which iron overload caused by FC exposure leads to colonic inflammation. By identifying the role of pathogenic bacteria and the NF-κB signaling pathway, this study could potentially offer a crucial theoretical foundation for the research on iron overload, as well as provide valuable insights for clinical iron supplementation.
Collapse
Affiliation(s)
- Yu Xia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Animal Disease Prevention and Control and Healthy Breeding Engineering Technology Research Centre, Mianyang Normal University, Mianyang 621000, China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liangqin Shi
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu 611130, China
| | - Wenjing Ma
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiwen Chen
- Animal Disease Prevention and Control and Healthy Breeding Engineering Technology Research Centre, Mianyang Normal University, Mianyang 621000, China
| | - Yucong Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Wang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunyu Cai
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yixiang Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Riyi Shi
- Department of Basic Medical Sciences, Center for Paralysis Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
33
|
Lei Y, Yan Y, Zhong J, Zhao Y, Xu Y, Zhang T, Xiong H, Chen Y, Wang X, Zhang K. Enterococcus durans 98D alters gut microbial composition and function to improve DSS-induced colitis in mice. Heliyon 2024; 10:e28486. [PMID: 38560132 PMCID: PMC10981110 DOI: 10.1016/j.heliyon.2024.e28486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Enterococcus durans, is a potential functional strain with the capacity to regulate intestinal health and ameliorate colonic inflammation. However, the strain requires further investigation regarding its safety profile and potential mechanisms of colitis improvement. In this study, the safety of E. durans 98D (Ed) as a potential probiotic was studied using in vitro methods. Additionally, a dextran sulfate sodium (DSS)-induced murine colitis model was employed to investigate its impact on the intestinal microbiota and colitis. In vitro antimicrobial assays revealed Ed sensitivity to common antibiotics and its inhibitory effect on the growth of Escherichia coli O157, Streptococcus pneumoniae CCUG 37328, and Staphylococcus aureus ATCC 25923. To elucidate the functional properties of Ed, 24 weight-matched 6-week-old female C57BL/6J mice were randomly divided into three groups (n = 8): NC group, Con group (DSS), and Ed group (DSS + Ed). Ed administration demonstrated a protective effect on colitis mice, as evidenced by improvements in body weight, colonic length, reduced disease activity index, histological scores, diminished splenomegaly, and decreased goblet cell loss. Furthermore, Ed downregulated the expression of the pro-inflammatory cytokine genes (IL-6, IL-1β, and TNF-α) and upregulated the expression of the anti-inflammatory cytokine gene IL-10. The 16S rRNA gene sequencing revealed significant alterations in microbial α-diversity, with principal coordinate analysis indicating distinct differences in microbial composition among the three groups. At the phylum level, the relative abundance of Actinomycetota significantly increased in the Ed-treated group. At the genus level, Ed treatment markedly elevated the relative abundance of Paraprevotella, Rikenellaceae_RC9, and Odoribacter in DSS-induced colitis mice. In conclusion, Ed exhibits potential as a safe and effective therapeutic agent for DSS-induced colitis by reshaping the colonic microbiota.
Collapse
Affiliation(s)
| | | | - Junyu Zhong
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yitong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yangbin Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ting Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hui Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ke Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
34
|
Li F, Wang Z, Cao Y, Pei B, Luo X, Liu J, Ge P, Luo Y, Ma S, Chen H. Intestinal Mucosal Immune Barrier: A Powerful Firewall Against Severe Acute Pancreatitis-Associated Acute Lung Injury via the Gut-Lung Axis. J Inflamm Res 2024; 17:2173-2193. [PMID: 38617383 PMCID: PMC11016262 DOI: 10.2147/jir.s448819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
The pathogenesis of severe acute pancreatitis-associated acute lung injury (SAP-ALI), which is the leading cause of mortality among hospitalized patients in the intensive care unit, remains incompletely elucidated. The intestinal mucosal immune barrier is a crucial component of the intestinal epithelial barrier, and its aberrant activation contributes to the induction of sustained pro-inflammatory immune responses, paradoxical intercellular communication, and bacterial translocation. In this review, we firstly provide a comprehensive overview of the composition of the intestinal mucosal immune barrier and its pivotal roles in the pathogenesis of SAP-ALI. Secondly, the mechanisms of its crosstalk with gut microbiota, which is called gut-lung axis, and its effect on SAP-ALI were summarized. Finally, a number of drugs that could enhance the intestinal mucosal immune barrier and exhibit potential anti-SAP-ALI activities were presented, including probiotics, glutamine, enteral nutrition, and traditional Chinese medicine (TCM). The aim is to offer a theoretical framework based on the perspective of the intestinal mucosal immune barrier to protect against SAP-ALI.
Collapse
Affiliation(s)
- Fan Li
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Zhengjian Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yinan Cao
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Boliang Pei
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xinyu Luo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jin Liu
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Peng Ge
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yalan Luo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Shurong Ma
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| |
Collapse
|
35
|
Chen Y, Zhang C, Huang Y, Ma Y, Song Q, Chen H, Jiang G, Gao X. Intranasal drug delivery: The interaction between nanoparticles and the nose-to-brain pathway. Adv Drug Deliv Rev 2024; 207:115196. [PMID: 38336090 DOI: 10.1016/j.addr.2024.115196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Intranasal delivery provides a direct and non-invasive method for drugs to reach the central nervous system. Nanoparticles play a crucial role as carriers in augmenting the efficacy of brain delivery. However, the interaction between nanoparticles and the nose-to-brain pathway and how the various biopharmaceutical factors affect brain delivery efficacy remains unclear. In this review, we comprehensively summarized the anatomical and physiological characteristics of the nose-to-brain pathway and the obstacles that hinder brain delivery. We then outlined the interaction between nanoparticles and this pathway and reviewed the biomedical applications of various nanoparticulate drug delivery systems for nose-to-brain drug delivery. This review aims at inspiring innovative approaches for enhancing the effectiveness of nose-to-brain drug delivery in the treatment of different brain disorders.
Collapse
Affiliation(s)
- Yaoxing Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Chenyun Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yukun Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yuxiao Ma
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongzhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201210, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
36
|
Hao Z, Ding X, Wang J. Effects of gut bacteria and their metabolites on gut health of animals. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:223-252. [PMID: 38763528 DOI: 10.1016/bs.aambs.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The intestine tract is a vital site for the body to acquire nutrients, serving as the largest immune organ. Intestinal health is crucial for maintaining a normal physiological state. Abundant microorganisms reside in the intestine, colonized in a symbiotic manner. These microorganisms can generate various metabolites that influence host physiological activities. Microbial metabolites serve as signaling molecules or metabolic substrates in the intestine, and some intestinal microorganisms act as probiotics and promote intestinal health. Researches on host, probiotics, microbial metabolites and their interactions are ongoing. This study reviews the effects of gut bacteria and their metabolites on intestinal health to provide useful references for animal husbandry.
Collapse
Affiliation(s)
- Zhuang Hao
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China
| | - Xuedong Ding
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China
| | - Jing Wang
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China.
| |
Collapse
|
37
|
Faley SL, Boghdeh NA, Schaffer DK, Spivey EC, Alem F, Narayanan A, Wikswo JP, Brown JA. Gravity-perfused airway-on-a-chip optimized for quantitative BSL-3 studies of SARS-CoV-2 infection: barrier permeability, cytokine production, immunohistochemistry, and viral load assays. LAB ON A CHIP 2024; 24:1794-1807. [PMID: 38362777 PMCID: PMC10929697 DOI: 10.1039/d3lc00894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
Human microphysiological systems, such as organs on chips, are an emerging technology for modeling human physiology in a preclinical setting to understand the mechanism of action of drugs, to evaluate the efficacy of treatment options for human disease and impairment, and to assess drug toxicity. By using human cells co-cultured in three-dimensional constructs, organ chips can provide greater fidelity to the human cellular condition than their two-dimensional predecessors. However, with the rise of SARS-CoV-2 and the global COVID-19 pandemic, it became clear that many microphysiological systems were not compatible with or optimized for studies of infectious disease and operation in a Biosafety Level 3 (BSL-3) environment. Given that one of the early sites of SARS-CoV-2 infection is the airway, we created a human airway organ chip that could operate in a BSL-3 space with high throughput and minimal manipulation, while retaining the necessary physical and physiological components to recapitulate tissue response to infectious agents and the immune response to infection.
Collapse
Affiliation(s)
- Shannon L Faley
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | - Niloufar A Boghdeh
- Biomedical Research Laboratory, Institute of Biohealth Innovation, George Mason University, Manassas, VA 20110, USA
| | - David K Schaffer
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
| | - Eric C Spivey
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | - Farhang Alem
- Biomedical Research Laboratory, Institute of Biohealth Innovation, George Mason University, Manassas, VA 20110, USA
| | - Aarthi Narayanan
- Biomedical Research Laboratory, Institute of Biohealth Innovation, George Mason University, Manassas, VA 20110, USA
- College of Science, Department of Biology, George Mason University, Fairfax, VA 22030, USA
| | - John P Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jacquelyn A Brown
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
38
|
Acosta JE, Burns JL, Hillyer LM, Van K, Brendel EBK, Law C, Ma DWL, Monk JM. Effect of Lifelong Exposure to Dietary Plant and Marine Sources of n-3 Polyunsaturated Fatty Acids on Morphologic and Gene Expression Biomarkers of Intestinal Health in Early Life. Nutrients 2024; 16:719. [PMID: 38474847 DOI: 10.3390/nu16050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Altered intestinal health is also associated with the incidence and severity of many chronic inflammatory conditions, which could be attenuated via dietary n-3 PUFA interventions. However, little is known about the effect of lifelong exposure to n-3 PUFA from plant and marine sources (beginning in utero via the maternal diet) on early life biomarkers of intestinal health. Harems of C57Bl/6 mice were randomly assigned to one of three isocaloric AIN-93G modified diets differing in their fat sources consisting of the following: (i) 10% safflower oil (SO, enriched in n-6 PUFA), (ii) 3% flaxseed oil + 7% safflower oil (FX, plant-based n-3 PUFA-enriched diet), or (iii) 3% menhaden fish oil + 7% safflower oil (MO, marine-based n-3 PUFA-enriched diet). Mothers remained on these diets throughout pregnancy and offspring (n = 14/diet) continued on the same parental diet until termination at 3 weeks of age. In ileum, villi:crypt length ratios were increased in both the FX and MO dietary groups compared to SO (p < 0.05). Ileum mRNA expression of critical intestinal health biomarkers was increased by both n-3 PUFA-enriched diets including Relmβ and REG3γ compared to SO (p < 0.05), whereas only the FX diet increased mRNA expression of TFF3 and Muc2 (p < 0.05) and only the MO diet increased mRNA expression of ZO-1 (p < 0.05). In the proximal colon, both the FX and MO diets increased crypt lengths compared to SO (p < 0.05), whereas only the MO diet increased goblet cell numbers compared to SO (p < 0.05). Further, the MO diet increased proximal colon mRNA expression of Relmβ and REG3γ (p < 0.05) and both MO and FX increased mRNA expression of Muc2 compared to SO (p < 0.05). Collectively, these results demonstrate that lifelong exposure to dietary n-3 PUFA, beginning in utero, from both plant and marine sources, can support intestinal health development in early life. The differential effects between plant and marine sources warrants further investigation for optimizing health.
Collapse
Affiliation(s)
- Julianna E Acosta
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jessie L Burns
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Lyn M Hillyer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kelsey Van
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Elaina B K Brendel
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Camille Law
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
39
|
Hensel IV, Éliás S, Steinhauer M, Stoll B, Benfatto S, Merkt W, Krienke S, Lorenz HM, Haas J, Wildemann B, Resnik-Docampo M. SLE serum induces altered goblet cell differentiation and leakiness in human intestinal organoids. EMBO Mol Med 2024; 16:547-574. [PMID: 38316934 PMCID: PMC10940301 DOI: 10.1038/s44321-024-00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Human intestinal epithelial cells are the interface between luminal content and basally residing immune cells. They form a tight monolayer that constantly secretes mucus creating a multilayered protective barrier. Alterations in this barrier can lead to increased permeability which is common in systemic lupus erythematosus (SLE) patients. However, it remains unexplored how the barrier is affected. Here, we present an in vitro model specifically designed to examine the effects of SLE on epithelial cells. We utilize human colon organoids that are stimulated with serum from SLE patients. Combining transcriptomic with functional analyses revealed that SLE serum induced an expression profile marked by a reduction of goblet cell markers and changed mucus composition. In addition, organoids exhibited imbalanced cellular composition along with enhanced permeability, altered mitochondrial function, and an interferon gene signature. Similarly, transcriptomic analysis of SLE colon biopsies revealed a downregulation of secretory markers. Our work uncovers a crucial connection between SLE and intestinal homeostasis that might be promoted in vivo through the blood, offering insights into the causal connection of barrier dysfunction and autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Wolfgang Merkt
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Krienke
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
40
|
Hong M, Chong SZ, Goh YY, Tong L. Two-Photon and Multiphoton Microscopy in Anterior Segment Diseases of the Eye. Int J Mol Sci 2024; 25:1670. [PMID: 38338948 PMCID: PMC10855705 DOI: 10.3390/ijms25031670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Two-photon excitation microscopy (TPM) and multiphoton fluorescence microscopy (MPM) are advanced forms of intravital high-resolution functional microscopy techniques that allow for the imaging of dynamic molecular processes and resolve features of the biological tissues of interest. Due to the cornea's optical properties and the uniquely accessible position of the globe, it is possible to image cells and tissues longitudinally to investigate ocular surface physiology and disease. MPM can also be used for the in vitro investigation of biological processes and drug kinetics in ocular tissues. In corneal immunology, performed via the use of TPM, cells thought to be intraepithelial dendritic cells are found to resemble tissue-resident memory T cells, and reporter mice with labeled plasmacytoid dendritic cells are imaged to understand the protective antiviral defenses of the eye. In mice with limbal progenitor cells labeled by reporters, the kinetics and localization of corneal epithelial replenishment are evaluated to advance stem cell biology. In studies of the conjunctiva and sclera, the use of such imaging together with second harmonic generation allows for the delineation of matrix wound healing, especially following glaucoma surgery. In conclusion, these imaging models play a pivotal role in the progress of ocular surface science and translational research.
Collapse
Affiliation(s)
- Merrelynn Hong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- Training and Education Department, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Singapore 138632, Singapore;
| | - Yun Yao Goh
- Lee Kong Chian School of Medicine, National Technical University, Singapore 639798, Singapore;
| | - Louis Tong
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore 168751, Singapore
- Ocular Surface Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Eye Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
41
|
Kwon SJ, Khan MS, Kim SG. Intestinal Inflammation and Regeneration-Interdigitating Processes Controlled by Dietary Lipids in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:1311. [PMID: 38279309 PMCID: PMC10816399 DOI: 10.3390/ijms25021311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a disease of chronic inflammatory conditions of the intestinal tract due to disturbance of the inflammation and immune system. Symptoms of IBD include abdominal pain, diarrhea, bleeding, reduced weight, and fatigue. In IBD, the immune system attacks the intestinal tract's inner wall, causing chronic inflammation and tissue damage. In particular, interlukin-6 and interlukin-17 act on immune cells, including T cells and macrophages, to amplify the immune responses so that tissue damage and morphological changes occur. Of note, excessive calorie intake and obesity also affect the immune system due to inflammation caused by lipotoxicity and changes in lipids supply. Similarly, individuals with IBD have alterations in liver function after sustained high-fat diet feeding. In addition, excess dietary fat intake, along with alterations in primary and secondary bile acids in the colon, can affect the onset and progression of IBD because inflammatory cytokines contribute to insulin resistance; the factors include the release of inflammatory cytokines, oxidative stress, and changes in intestinal microflora, which may also contribute to disease progression. However, interfering with de novo fatty acid synthase by deleting the enzyme acetyl-CoA-carboxylase 1 in intestinal epithelial cells (IEC) leads to the deficiency of epithelial crypt structures and tissue regeneration, which seems to be due to Lgr5+ intestinal stem cell function. Thus, conflicting reports exist regarding high-fat diet effects on IBD animal models. This review will focus on the pathological basis of the link between dietary lipids intake and IBD and will cover the currently available pharmacological approaches.
Collapse
Affiliation(s)
| | | | - Sang Geon Kim
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.J.K.); (M.S.K.)
| |
Collapse
|
42
|
Riehl L, Fürst J, Kress M, Rykalo N. The importance of the gut microbiome and its signals for a healthy nervous system and the multifaceted mechanisms of neuropsychiatric disorders. Front Neurosci 2024; 17:1302957. [PMID: 38249593 PMCID: PMC10797776 DOI: 10.3389/fnins.2023.1302957] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Increasing evidence links the gut microbiome and the nervous system in health and disease. This narrative review discusses current views on the interaction between the gut microbiota, the intestinal epithelium, and the brain, and provides an overview of the communication routes and signals of the bidirectional interactions between gut microbiota and the brain, including circulatory, immunological, neuroanatomical, and neuroendocrine pathways. Similarities and differences in healthy gut microbiota in humans and mice exist that are relevant for the translational gap between non-human model systems and patients. There is an increasing spectrum of metabolites and neurotransmitters that are released and/or modulated by the gut microbiota in both homeostatic and pathological conditions. Dysbiotic disruptions occur as consequences of critical illnesses such as cancer, cardiovascular and chronic kidney disease but also neurological, mental, and pain disorders, as well as ischemic and traumatic brain injury. Changes in the gut microbiota (dysbiosis) and a concomitant imbalance in the release of mediators may be cause or consequence of diseases of the central nervous system and are increasingly emerging as critical links to the disruption of healthy physiological function, alterations in nutrition intake, exposure to hypoxic conditions and others, observed in brain disorders. Despite the generally accepted importance of the gut microbiome, the bidirectional communication routes between brain and gut are not fully understood. Elucidating these routes and signaling pathways in more detail offers novel mechanistic insight into the pathophysiology and multifaceted aspects of brain disorders.
Collapse
Affiliation(s)
| | | | | | - Nadiia Rykalo
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
43
|
Sah RK, Nandan A, Kv A, S P, S S, Jose A, Venkidasamy B, Nile SH. Decoding the role of the gut microbiome in gut-brain axis, stress-resilience, or stress-susceptibility: A review. Asian J Psychiatr 2024; 91:103861. [PMID: 38134565 DOI: 10.1016/j.ajp.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Increased exposure to stress is associated with stress-related disorders, including depression, anxiety, and neurodegenerative conditions. However, susceptibility to stress is not seen in every individual exposed to stress, and many of them exhibit resilience. Thus, developing resilience to stress could be a big breakthrough in stress-related disorders, with the potential to replace or act as an alternative to the available therapies. In this article, we have focused on the recent advancements in gut microbiome research and the potential role of the gut-brain axis (GBA) in developing resilience or susceptibility to stress. There might be a complex interaction between the autonomic nervous system (ANS), immune system, endocrine system, microbial metabolites, and bioactive lipids like short-chain fatty acids (SCFAs), neurotransmitters, and their metabolites that regulates the communication between the gut microbiota and the brain. High fiber intake, prebiotics, probiotics, plant supplements, and fecal microbiome transplant (FMT) could be beneficial against gut dysbiosis-associated brain disorders. These could promote the growth of SCFA-producing bacteria, thereby enhancing the gut barrier and reducing the gut inflammatory response, increase the expression of the claudin-2 protein associated with the gut barrier, and maintain the blood-brain barrier integrity by promoting the expression of tight junction proteins such as claudin-5. Their neuroprotective effects might also be related to enhancing the expression of brain-derived neurotrophic factor (BDNF) and glucagon-like peptide (GLP-1). Further investigations are needed in the field of the gut microbiome for the elucidation of the mechanisms by which gut dysbiosis contributes to the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Athira Kv
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India.
| | - Prashant S
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Sathianarayanan S
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Mangalore, India
| | - Asha Jose
- JSS College of Pharmacy, JSS Academy of Higher Education and research, Ooty 643001, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
44
|
Chandrasekhar P, Kaliyaperumal R. Revolutionizing Brain Drug Delivery: Buccal Transferosomes on the Verge of a Breakthrough. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:262-275. [PMID: 39356098 DOI: 10.2174/0126673878312336240802113811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 10/03/2024]
Abstract
The buccal cavity, also known as the oral cavity, is a complex anatomical structure that plays a crucial role in various physiological processes. It serves as a gateway to the digestive system and facilitates the initial stages of food digestion and absorption. However, its significance extends beyond mere digestion as it presents a promising route for drug delivery, particularly to the brain. Transferosomes are lipid-based vesicles that have gained significant attention in the field of drug delivery due to their unique structure and properties. These vesicles are composed of phospholipids that form bilayer structures capable of encapsulating both hydrophilic and lipophilic drugs. Strategies for the development of buccal transferosomes for brain delivery have emerged as promising avenues for pharmaceutical research. This review aims to explore the various approaches and challenges associated with harnessing the potential of buccal transferosomes as a means of enhancing drug delivery to the brain. By understanding the structure and function of both buccal tissue and transferosomes, researchers can develop effective formulation methods and characterization techniques to optimize drug delivery. Furthermore, strategic approaches and success stories in buccal transferosome development are highlighted, showcasing inspiring examples that demonstrate their potential to revolutionize brain delivery.
Collapse
Affiliation(s)
- Pavuluri Chandrasekhar
- Department of Pharmaceutics, Faculty of Pharmacy, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, 600073, India
| | - Rajaganapathy Kaliyaperumal
- Department of Pharmacology, Faculty of Pharmacy, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, 600073, India
| |
Collapse
|
45
|
Li G, Gao M, Zhang S, Dai T, Wang F, Geng J, Rao J, Qin X, Qian J, Zuo L, Zhou M, Liu L, Zhou H. Sleep Deprivation Impairs Intestinal Mucosal Barrier by Activating Endoplasmic Reticulum Stress in Goblet Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:85-100. [PMID: 37918798 DOI: 10.1016/j.ajpath.2023.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Sleep deficiency is associated with intestinal inflammatory conditions and is increasingly recognized as a public health concern worldwide. However, the effects of sleep deficiency on intestinal goblet cells (GCs), which play a major role in intestinal barrier formation, remain elusive. Herein, the effects of sleep deprivation on intestinal GCs were determined using a sleep-deprivation mouse model. Sleep deprivation impaired the intestinal mucosal barrier and decreased the expression of tight junction proteins. According to single-cell RNA sequencing and histologic assessments, sleep deprivation significantly reduced GC numbers and mucin protein levels in intestinal tissues. Furthermore, sleep deprivation initiated endoplasmic reticulum stress by activating transcription factor 6 and binding Ig protein. Treatment with melatonin, an endoplasmic reticulum stress regulator, significantly alleviated endoplasmic reticulum stress responses in intestinal GCs. In addition, melatonin increased the villus length, reduced the crypt depth, and restored intestinal barrier function in mice with sleep deprivation. Overall, the findings revealed that sleep deprivation could impair intestinal mucosal barrier integrity and GC function. Targeting endoplasmic reticulum stress could represent an ideal strategy for treating sleep deficiency-induced gastrointestinal disorders.
Collapse
Affiliation(s)
- Gaoxiang Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; School of Life Sciences, Anhui Medical University, Hefei, China
| | - Mengru Gao
- Clinical Pathology Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Clinical Pathology Center, Anhui Public Health Clinical Center, Hefei, China
| | - Shuangshuang Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Tianliang Dai
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Fei Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jinke Geng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jia Rao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xuejia Qin
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Jizhao Qian
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Li Zuo
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Meng Zhou
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hong Zhou
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; School of Life Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
46
|
Nie C, Zhao Y, Wang P, Wang R, Li Y, Wang X, Fang B, Wang X, Zhan J, Zhu L, Chen C, Zhang W, Liao H, Liu R. Momordica charantia Polysaccharide intervention ameliorates the symptoms of dextran sulfate sodium (DSS)-induced colitis by modulating gut microbiota and inhibiting inflammation. J Funct Foods 2024; 112:105970. [DOI: 10.1016/j.jff.2023.105970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
|
47
|
Greenfield KG, Harlow OS, Witt LT, Dziekan EM, Tamar CR, Meier J, Brumbaugh JE, Levy ER, Knoop KA. Neonatal intestinal colonization of Streptococcus agalactiae and the multiple modes of protection limiting translocation. Gut Microbes 2024; 16:2379862. [PMID: 39042143 PMCID: PMC11268251 DOI: 10.1080/19490976.2024.2379862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a predominant pathogen of neonatal sepsis, commonly associated with early-onset neonatal sepsis. GBS has also been associated with cases of late-onset sepsis potentially originating from the intestine. Previous findings have shown GBS can colonize the infant intestinal tract as part of the neonatal microbiota. To better understand GBS colonization dynamics in the neonatal intestine, we collected stool and milk samples from prematurely born neonates for identification of potential pathogens in the neonatal intestinal microbiota. GBS was present in approximately 10% of the cohort, and this colonization was not associated with maternal GBS status, delivery route, or gestational weight. Interestingly, we observed the relative abundance of GBS in the infant stool negatively correlated with maternal IgA concentration in matched maternal milk samples. Using a preclinical murine model of GBS infection, we report that both vertical transmission and direct oral introduction resulted in intestinal colonization of GBS; however, translocation beyond the intestine was limited. Finally, vaccination of dams prior to breeding induced strong immunoglobulin responses, including IgA responses, which were associated with reduced mortality and GBS intestinal colonization. Taken together, we show that maternal IgA may contribute to infant immunity by limiting the colonization of GBS in the intestine.
Collapse
Affiliation(s)
| | | | - Lila T Witt
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Jane E Brumbaugh
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Emily R Levy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kathryn A Knoop
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
48
|
Zhang R, Zhang XZ, Guo X, Han LL, Wang BN, Zhang X, Liu RD, Cui J, Wang ZQ. The protective immunity induced by Trichinella spiralis galectin against larval challenge and the potential of galactomannan as a novel adjuvant. Res Vet Sci 2023; 165:105075. [PMID: 37931574 DOI: 10.1016/j.rvsc.2023.105075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Previous studies showed that recombinant Trichinella spiralis galectin (rTsgal) promoted larval invasion of gut epithelial cells, while anti-rTsgal antibodies inhibited the invasion. Galactomannan (GM) is a polysaccharide capable of regulating immune response. The aim of this study was to evaluate protective immunity induced by rTsgal immunization and the potential of GM as a novel adjuvant. The results showed that vaccination of mice with rTsgal+ISA201 and rTsgal+GM elicited a Th1/Th2 immune response. Mice immunized with rTsgal+ISA201 and rTsgal+GM exhibited significantly higher levels of serum anti-rTsgal antibodies, mucosal sIgA and cellular immune responses, but level of specific antibodies and cytokines of rTsgal+GM group was lower than the rTsgal+ISA201 group. Immunization of mice with rTsgal+ISA201 and rTsgal+GM showed a 50.5 and 40.16% reduction of intestinal adults, and 52.04 and 37.53% reduction of muscle larvae after challenge. Moreover, the numbers of goblet cells and expression level of mucin 2, Muc5ac and pro-inflammatory cytokines (TNF-α and IL-1β) in gut tissues of vaccinated mice were obviously decreased, while Th2 inducing cytokine (IL-4) expression was evidently increased. Galactomannan enhanced protective immunity, alleviated intestinal and muscle inflammation of infected mice. The results indicated that rTsgal+ISA201 vaccination induced a more prominent gut local as well as systemic immune response and protection compared to rTsgal+GM vaccination. The results suggested that Tsgal could be considered as a candidate vaccine target against Trichinella infection and galactomannan might be a potential novel candidate adjuvant of anti-Trichinella vaccines.
Collapse
Affiliation(s)
- Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Ning Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
49
|
Siddik MAB, Francis P, Rohani MF, Azam MS, Mock TS, Francis DS. Seaweed and Seaweed-Based Functional Metabolites as Potential Modulators of Growth, Immune and Antioxidant Responses, and Gut Microbiota in Fish. Antioxidants (Basel) 2023; 12:2066. [PMID: 38136186 PMCID: PMC10740464 DOI: 10.3390/antiox12122066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Seaweed, also known as macroalgae, represents a vast resource that can be categorized into three taxonomic groups: Rhodophyta (red), Chlorophyta (green), and Phaeophyceae (brown). They are a good source of essential nutrients such as proteins, minerals, vitamins, and omega-3 fatty acids. Seaweed also contains a wide range of functional metabolites, including polyphenols, polysaccharides, and pigments. This study comprehensively discusses seaweed and seaweed-derived metabolites and their potential as a functional feed ingredient in aquafeed for aquaculture production. Past research has discussed the nutritional role of seaweed in promoting the growth performance of fish, but their effects on immune response and gut health in fish have received considerably less attention in the published literature. Existing research, however, has demonstrated that dietary seaweed and seaweed-based metabolite supplementation positively impact the antioxidant status, disease resistance, and stress response in fish. Additionally, seaweed supplementation can promote the growth of beneficial bacteria and inhibit the proliferation of harmful bacteria, thereby improving gut health and nutrient absorption in fish. Nevertheless, an important balance remains between dietary seaweed inclusion level and the resultant metabolic alteration in fish. This review highlights the current state of knowledge and the associated importance of continued research endeavors regarding seaweed and seaweed-based functional metabolites as potential modulators of growth, immune and antioxidant response, and gut microbiota composition in fish.
Collapse
Affiliation(s)
- Muhammad A. B. Siddik
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia; (P.F.); (T.S.M.); (D.S.F.)
| | - Prue Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia; (P.F.); (T.S.M.); (D.S.F.)
| | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | | | - Thomas S. Mock
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia; (P.F.); (T.S.M.); (D.S.F.)
| | - David S. Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia; (P.F.); (T.S.M.); (D.S.F.)
| |
Collapse
|
50
|
Zou W, Liu Y, Zhang W, Lin B, Shen W, Li Y, He Q, Jin J. Short-term use of ceftriaxone sodium leads to intestinal barrier disruption and ultrastructural changes of kidney in SD rats. Ren Fail 2023; 45:2230322. [PMID: 37466047 PMCID: PMC10360976 DOI: 10.1080/0886022x.2023.2230322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE Antibiotic treatments are known to disturb gut microbiota, but their effects on the mucosal barrier and extraintestinal diseases are rarely discussed. The aim of this study was to evaluate and visualize the impact of antibiotics on colonic mucus and the microbial community, and to assess whether intestinal dysbacteriosis is involved in the pathogenesis and progression of extraintestinal diseases in vivo. MATERIALS AND METHODS Twenty-one SD rats were randomly assigned into three groups followed by different experimental treatments. The albumin-creatinine ratio, urinary protein and occult blood semi-quantified test were tested. Fecal samples were collected at different time points (0,4, and 12 weeks) for 16S rRNA gene sequencing. Colon and kidney specimens were examined using light microscopy and transmission electron microscopy (TEM) to identify morphological changes. RESULTS Ceftriaxone intervention for one week did not cause any symptoms of diarrhea or weight loss, but the alpha and beta diversities of gut microbiota decreased quickly and significantly, a lower Firmicutes/Bacteroidetes (F/B) ratio was observed. At week 12, although the alpha and beta diversities increased to a level similar to that of the control (CON) group, LEfSe analysis indicated that the microbial community composition still differed significantly in each group. In addition, KEGG metabolic prediction revealed different metabolic functions in each group. TEM examination of colon revealed that dramatic morphological changes were observed in the ceftriaxone (Cef) group, wherein microvilli were misaligned and shortened significantly and morphologically intact bacteria were seen on the epithelial cell surface. TEM examination of kidneys from the Cef group showed characteristic glomerular changes in the form of widely irregularly thickened glomerular basement membrane (GBM) and foot process fusion or effacement; mild thickening of the GBM and foot process fusion was detected when ceftriaxone and Resatorvid (TAK242, an inhibitor of TLR4 signaling) are used together in the ceftriaxone + TAK242 (TAK) group. CONCLUSIONS Short-term use of ceftriaxone induced dynamic changes of gut microbiota and lead to intestinal barrier disruption and ultrastructural changes of kidneys in the SD rats. Moreover, interference with the TLR4-dependent signaling pathway can alleviate the damage to the intestinal barrier and kidney.
Collapse
Affiliation(s)
- Wenli Zou
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yueming Liu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Zhang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bo Lin
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Shen
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiwen Li
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiang He
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Juan Jin
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|