1
|
Sabbah HN, Alder NN, Sparagna GC, Bruce JE, Stauffer BL, Chao LH, Pitceathly RDS, Maack C, Marcinek DJ. Contemporary insights into elamipretide's mitochondrial mechanism of action and therapeutic effects. Biomed Pharmacother 2025; 187:118056. [PMID: 40294492 DOI: 10.1016/j.biopha.2025.118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/31/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
Mitochondria are cellular hubs integral for metabolism, signaling, and survival. Mitochondrial dysfunction is centrally involved in the aging process and an expansive array of disease states. Elamipretide is a novel mitochondria-targeting peptide that is under investigation for treating several disorders related to mitochondrial dysfunction. This review summarizes recent data that expand our understanding of the mechanism of action (MOA) of elamipretide. Elamipretide is a potential first-in-class therapeutic that targets the inner mitochondrial membrane. Despite initial descriptions of elamipretide's MOA involving reactive oxygen species scavenging, the last ten years have provided a significant expansion of how this peptide influences mitochondrial bioenergetics. The cardiolipin binding properties of elamipretide have been corroborated by different investigative teams with new findings about the consequences of elamipretide-cardiolipin interactions. In particular, new studies have shown elamipretide-mediated modulation of mitochondrial membrane electrostatic potentials and assembly of cardiolipin-dependent proteins that are centrally involved in mitochondrial physiology. These effects contribute to elamipretide's ability to improve mitochondrial function, structure, and bioenergetics. In animal studies, elamipretide-mediated amelioration of organ dysfunction has been observed in models of cardiac and skeletal muscle myopathies as well as ocular pathologies. A number of clinical trials with elamipretide have been recently completed, and a summary of the results focusing on Barth syndrome, primary mitochondrial myopathy, and age-related macular degeneration, is also provided herein. Elamipretide continues to show promise as a potential therapy for mitochondrial disorders. New basic science advances have improved understanding of elamipretide's MOA, enabling a better understanding of the molecular consequences of elamipretide-cardiolipin interactions.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Henry Ford Health, Detroit, MI, USA.
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Genevieve C Sparagna
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brian L Stauffer
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Cardiology, Department of Medicine, Denver Health and Hospital Authority, Denver, CO, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Christoph Maack
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany; Medical Clinic 1, University Clinic Würzburg, Würzburg, Germany
| | - David J Marcinek
- Departments of Radiology and Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Hock DH, Caruana NJ, Semcesen LN, Lake NJ, Formosa LE, Amarasekera SSC, Stait T, Tregoning S, Frajman LE, Bournazos AM, Robinson DRL, Ball M, Reljic B, Ryder B, Wallis MJ, Vasudevan A, Beck C, Peters H, Lee J, Tan NB, Freckmann ML, Karlaftis V, Attard C, Monagle P, Samarasinghe A, Brown R, Bi W, Lek M, McFarland R, Taylor RW, Ryan MT, Cooper ST, Stark Z, Christodoulou J, Compton AG, Thorburn DR, Stroud DA. Untargeted proteomics enables ultra-rapid variant prioritisation in mitochondrial and other rare diseases. Genome Med 2025; 17:58. [PMID: 40400026 DOI: 10.1186/s13073-025-01467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 04/02/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Only half of individuals with suspected rare diseases receive a genetic diagnosis following genomic testing. A genetic diagnosis allows access to appropriate care, restores reproductive confidence and reduces the number of potentially unnecessary interventions. A major barrier is the lack of disease agnostic functional tests suitable for implementation in routine diagnostics that can provide evidence supporting pathogenicity of novel variants, especially those refractory to RNA sequencing. METHODS Focusing on mitochondrial disease, we describe an untargeted mass-spectrometry based proteomics pipeline that can quantify proteins encoded by > 50% of Mendelian disease genes and > 80% of known mitochondrial disease genes in clinically relevant sample types, including peripheral blood mononuclear cells (PBMCs). In total we profiled > 90 individuals including undiagnosed individuals suspected of mitochondrial disease and a supporting cohort of disease controls harbouring pathogenic variants in nuclear and mitochondrial genes. Proteomics data were benchmarked against pathology accredited respiratory chain enzymology to assess the performance of proteomics as a functional test. Proteomics testing was subsequently applied to individuals with suspected mitochondrial disease, including a critically ill infant with a view toward rapid interpretation of variants identified in ultra-rapid genome sequencing. RESULTS Proteomics testing provided evidence to support variant pathogenicity in 83% of individuals in a cohort with confirmed mitochondrial disease, outperforming clinical respiratory chain enzymology. Freely available bioinformatic tools and criteria developed for this study ( https://rdms.app/ ) allow mitochondrial dysfunction to be identified in proteomics data with high confidence. Application of proteomics to undiagnosed individuals led to 6 additional diagnoses, including a mitochondrial phenocopy disorder, highlighting the disease agnostic nature of proteomics. Use of PBMCs as a sample type allowed rapid return of proteomics data supporting pathogenicity of novel variants identified through ultra-rapid genome sequencing in as little as 54 h. CONCLUSIONS This study provides a framework to support the integration of a single untargeted proteomics test into routine diagnostic practice for the diagnosis of mitochondrial and potentially other rare genetic disorders in clinically actionable timelines, offering a paradigm shift for the functional validation of genetic variants.
Collapse
Affiliation(s)
- Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia.
| | - Nikeisha J Caruana
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, 3011, Australia
| | - Liana N Semcesen
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, 3800, Australia
| | | | - Tegan Stait
- Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
| | - Simone Tregoning
- Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
| | - Leah E Frajman
- Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
| | - Adam M Bournazos
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
- Children's Medical Research Institute, Westmead, NSW, 2145, Australia
- School of Medical Sciences, Faculty of Medicine, University of Sydney, Camperdown, NSW, 2006, Australia
| | - David R L Robinson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Megan Ball
- Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Metabolic Medicine, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Boris Reljic
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, 3800, Australia
| | - Bryony Ryder
- Paediatric and Adult National Metabolic Service, Te Toka Tumai, Te Whatu Ora Health New Zealand, Auckland, New Zealand
| | - Mathew J Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, TAS, 7001, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7001, Australia
| | | | - Cara Beck
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
| | - Heidi Peters
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Metabolic Medicine, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Joy Lee
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Department of Metabolic Medicine, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Natalie B Tan
- Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Mary-Louise Freckmann
- Department of Clinical Genetics, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Vasiliki Karlaftis
- Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Chantal Attard
- Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Paul Monagle
- Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Haematology, Royal Children's Hospital, Parkville, VIC, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | | | - Rosie Brown
- Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Baylor Genetics, Houston, TX, 77021, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Robert McFarland
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, , Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, NE1 4LP, UK
| | - Robert W Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, , Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, NE1 4LP, UK
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, 3800, Australia
| | - Sandra T Cooper
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
- Children's Medical Research Institute, Westmead, NSW, 2145, Australia
- School of Medical Sciences, Faculty of Medicine, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Zornitza Stark
- Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alison G Compton
- Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
3
|
MacLean AE, Shikha S, Ferreira Silva M, Gramelspacher MJ, Nilsen A, Liebman KM, Pou S, Winter RW, Meir A, Riscoe MK, Doggett JS, Sheiner L, Mühleip A. Structure, assembly and inhibition of the Toxoplasma gondii respiratory chain supercomplex. Nat Struct Mol Biol 2025:10.1038/s41594-025-01531-7. [PMID: 40389671 DOI: 10.1038/s41594-025-01531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/12/2025] [Indexed: 05/21/2025]
Abstract
The apicomplexan mitochondrial electron transport chain is essential for parasite survival and displays a divergent subunit composition. Here we report cryo-electron microscopy structures of an apicomplexan III2-IV supercomplex and of the drug target complex III2. The supercomplex structure reveals how clade-specific subunits form an apicomplexan-conserved III2-IV interface with a unique, kinked architecture, suggesting that supercomplexes evolved independently in different eukaryotic lineages. A knockout resulting in supercomplex disassembly challenges the proposed role of III2-IV in electron transfer efficiency as suggested for mammals. Nevertheless, knockout analysis indicates that III2-IV is critical for parasite fitness. The complexes from the model parasite Toxoplasma gondii were inhibited with the antimalarial atovaquone, revealing interactions underpinning species specificity. They were also inhibited with endochin-like quinolone (ELQ)-300, an inhibitor in late-stage preclinical development. Notably, in the apicomplexan binding site, ELQ-300 is flipped compared with related compounds in the mammalian enzyme. On the basis of the binding modes and parasite-specific interactions discovered, we designed more potent ELQs with subnanomolar activity against T. gondii. Our findings reveal critical evolutionary differences in the role of supercomplexes in mitochondrial biology and provide insight into cytochrome b inhibition, informing future drug discovery.
Collapse
Affiliation(s)
- Andrew E MacLean
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Glasgow Centre for Parasitology, University of Glasgow, Glasgow, UK
| | - Shikha Shikha
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Glasgow Centre for Parasitology, University of Glasgow, Glasgow, UK
| | - Mariana Ferreira Silva
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Glasgow Centre for Parasitology, University of Glasgow, Glasgow, UK
| | | | - Aaron Nilsen
- VA Portland Health Care System, Portland, OR, USA
- Medicinal Chemistry Core, Oregon Health and Science University, Portland, OR, USA
| | | | - Sovitj Pou
- VA Portland Health Care System, Portland, OR, USA
| | | | - Amit Meir
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Michael K Riscoe
- VA Portland Health Care System, Portland, OR, USA
- Department of Microbiology and Molecular Immunology, Oregon Health and Science University, Portland, OR, USA
| | - J Stone Doggett
- VA Portland Health Care System, Portland, OR, USA
- School of Medicine Division of Infectious Diseases, Oregon Health and Science University, Portland, OR, USA
| | - Lilach Sheiner
- School of Infection and Immunity, University of Glasgow, Glasgow, UK.
- Glasgow Centre for Parasitology, University of Glasgow, Glasgow, UK.
| | - Alexander Mühleip
- School of Infection and Immunity, University of Glasgow, Glasgow, UK.
- Glasgow Centre for Parasitology, University of Glasgow, Glasgow, UK.
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Yan B, Zhou J, Yan F, Gao M, Tang J, Huang L, Luo Y. Unlocking the potential of photobiomodulation therapy for brain neurovascular coupling: The biological effects and medical applications. J Cereb Blood Flow Metab 2025; 45:800-830. [PMID: 39763390 PMCID: PMC11705326 DOI: 10.1177/0271678x241311695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Photobiomodulation (PBM) therapy stands as an innovative neurostimulation modality that has demonstrated both efficacy and safety in improving brain function. This therapy exerts multifaceted influences on neurons, blood vessels, and their intricate interplay known as neurovascular coupling (NVC). Growing evidence indicates that NVC may present a promising target for PBM intervention. However, the detailed mechanisms underlying its therapeutic benefits remain to be fully understood. This review aims to elucidate the potential metabolic pathways and signaling cascades involved in the modulatory effects of PBM, while also exploring the extensive repertoire of PBM applications in neurologic and psychiatric conditions. The prospects of PBM within the realm of NVC investigation are intensively considered, providing deeper insights into the powerful capabilities of PBM therapy and its potential to revolutionize neurostimulation treatments.
Collapse
Affiliation(s)
- Bingzi Yan
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhou
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Fengshuo Yan
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, China
| | - Mingyang Gao
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, China
| | - Jiaji Tang
- Sichuan Becoming Technology Co., LTD, Chengdu, China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Luo
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Marquez J, Viviano S, Beckman E, Thies J, Friedland-Little J, Lam CT, Deniz E, Shelkowitz E. Polyamine metabolism is dysregulated in COXFA4-related mitochondrial disease. HGG ADVANCES 2025; 6:100418. [PMID: 39967265 PMCID: PMC11946867 DOI: 10.1016/j.xhgg.2025.100418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Most of the chemical energy that organisms rely on to support cellular function is generated through oxidative phosphorylation, a metabolic pathway in which electron donors NADH and FADH are oxidized through a series of successive steps to generate adenosine triphosphate. These redox reactions are orchestrated by a series of five protein complexes that sit within the mitochondrial membrane. Deficiency of cytochrome c oxidase, the fourth of these complexes, is a recognized cause of mitochondrial disease. COXFA4 encodes one of the protein subunits of cytochrome c oxidase, and variants in COXFA4 have recently been reported in individuals with a range of symptoms. These symptoms can include feeding difficulties, poor growth, cardiomyopathy, Leigh or Leigh-like disease, and neurodevelopmental delay, although these symptoms vary widely between individuals. However, a mechanistic understanding of the connection between COXFA4 loss and these varied disease manifestations is lacking. Using animal modeling in Xenopus, we explored the ramifications of coxfa4 loss of function on the early developing heart. We then conducted a hypothesis naive analysis of cellular gene expression in the context of COXFA4 deletion and discovered a downstream deficiency in the ornithine decarboxylase pathway. Small-molecule-based modulation of the ornithine decarboxylase pathway in our model modified the extent of disease, including improvement of cardiac function. Our findings point to a mechanism by which COXFA4 dysfunction leads to tissue-specific disease.
Collapse
Affiliation(s)
- Jonathan Marquez
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, USA.
| | - Stephen Viviano
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Pediatric Genomics Discovery Program, Yale School of Medicine, New Haven, CT, USA
| | - Erika Beckman
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Jenny Thies
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Joshua Friedland-Little
- Division of Cardiology, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Christina T Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Pediatric Genomics Discovery Program, Yale School of Medicine, New Haven, CT, USA
| | - Emily Shelkowitz
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, USA.
| |
Collapse
|
6
|
Gupta P, Chakroborty S, Rathod AK, Kumar KR, Bhat S, Ghosh S, Rao T P, Yele K, Bakthisaran R, Nagaraj R, Manna M, Raychaudhuri S. Kingdom-specific lipid unsaturation calibrates sequence evolution in membrane arm subunits of eukaryotic respiratory complexes. Nat Commun 2025; 16:2044. [PMID: 40016208 PMCID: PMC11868549 DOI: 10.1038/s41467-025-57295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Sequence evolution of protein complexes (PCs) is constrained by protein-protein interactions (PPIs). PPI-interfaces are predominantly conserved and hotspots for disease-related mutations. How do lipid-protein interactions (LPIs) constrain sequence evolution of membrane-PCs? We explore Respiratory Complexes (RCs) as a case study as these allow to compare sequence evolution in subunits exposed to both lipids in inner-mitochondrial membrane (IMM) and lipid-free aqueous matrix. We find that lipid-exposed surfaces of the IMM-subunits but not of the matrix subunits are populated with non-PPI disease-causing mutations signifying LPIs in stabilizing RCs. Further, IMM-subunits including their exposed surfaces show high intra-kingdom sequence conservation but remarkably diverge beyond. Molecular Dynamics simulation suggests contrasting LPIs of structurally superimposable but sequence-wise diverged IMM-exposed helices of Complex I (CI) subunit Ndufa1 from human and Arabidopsis depending on kingdom-specific unsaturation of cardiolipin fatty acyl chains. in cellulo assays consolidate inter-kingdom incompatibility of Ndufa1-helices due to the lipid-exposed amino acids. Plant-specific unsaturated fatty acids in human cells also trigger CI-instability. Taken together, we posit that altered LPIs calibrate sequence evolution at the IMM-arms of eukaryotic RCs.
Collapse
Affiliation(s)
- Pooja Gupta
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Sristi Chakroborty
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Arun K Rathod
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
- CSIR- Central Salt and Marine Chemical Research Institute, Bhavnagar - 364002, Gujrat, India
| | - K Ranjith Kumar
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Shreya Bhat
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Suparna Ghosh
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Pallavi Rao T
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Kameshwari Yele
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Raman Bakthisaran
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - R Nagaraj
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Moutusi Manna
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
- CSIR- Central Salt and Marine Chemical Research Institute, Bhavnagar - 364002, Gujrat, India
| | - Swasti Raychaudhuri
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India.
| |
Collapse
|
7
|
Ergüç A, Albayrak G, Muhammed MT, Karakuş F, Arzuk E, İnce-Ergüç E. Exploring the role of quercetin on doxorubicin and lapatinib-mediated cellular and mitochondrial responses using in vitro and in silico studies. J Chemother 2025:1-15. [PMID: 39988777 DOI: 10.1080/1120009x.2025.2471154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Doxorubicin (DOX) and lapatinib (LAP) have been reported to cause liver toxicity. The roles of mitochondrial and cellular responses in DOX and LAP mediated-hepatotoxicity have not been investigated with or without quercetin (QUE) in HepG2 cells sensitive to mitochondrial damage (high-glucose or galactose media) in addition to in silico studies. Our results revealed that cytosolic pathways might play role a in DOX-induced cytotoxicity rather than mitochondria. QUE exacerbated DOX-induced ATP depletion in both environments. Our data also indicated that cytosolic and mitochondrial pathways might play a role in LAP-induced cytotoxicity. Incubating QUE with LAP increased ATP levels in high-glucose media. Therefore, QUE might have protective effect against LAP-induced cytotoxicity resulting from cytosolic pathways. The findings from in vitro experiments that QUE increased DOX or LAP-induced mitochondrial dysfunction were confirmed by the results from in silico studies indicating that QUE incubated with LAP or DOX might increase mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ali Ergüç
- Department of Pharmaceutical Toxicology, Ondokuz Mayıs University, Samsun, Turkey
- Department of Pharmaceutical Toxicology, İzmir Katip Çelebi University, İzmir, Turkey
| | - Gökay Albayrak
- Department of Pharmaceutical Botany, İzmir Katip Çelebi University, İzmir, Turkey
| | | | - Fuat Karakuş
- Department of Pharmaceutical Toxicology, Van Yuzuncu Yil University, Van, Turkey
| | - Ege Arzuk
- Department of Pharmaceutical Toxicology, Ege University, İzmir, Turkey
| | - Elif İnce-Ergüç
- Department of Pharmaceutical Toxicology, İzmir Katip Çelebi University, İzmir, Turkey
| |
Collapse
|
8
|
Zhang L, Zhang H, Wang T, Li M, Chan AK, Kang H, Foong LC, Liu Q, Pokharel SP, Mattson NM, Singh P, Elsayed Z, Kuang B, Wang X, Rosen ST, Chen J, Yang L, Chou T, Su R, Chen CD. Nuclear Control of Mitochondrial Homeostasis and Venetoclax Efficacy in AML via COX4I1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404620. [PMID: 39716856 PMCID: PMC11809339 DOI: 10.1002/advs.202404620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/14/2024] [Indexed: 12/25/2024]
Abstract
Cell signaling pathways are enriched for biological processes crucial for cellular communication, response to external stimuli, and metabolism. Here, a cell signaling-focused CRISPR screen identified cytochrome c oxidase subunit 4 isoform 1 (COX4I1) as a novel vulnerability in acute myeloid leukemia (AML). Depletion of COX4I1 hindered leukemia cell proliferation and impacted in vivo AML progression. Mechanistically, loss of COX4I1 induced mitochondrial stress and ferroptosis, disrupting mitochondrial ultrastructure and oxidative phosphorylation. CRISPR gene tiling scans, coupled with mitochondrial proteomics, dissected critical regions within COX4I1 essential for leukemia cell survival, providing detailed insights into the mitochondrial Complex IV assembly network. Furthermore, COX4I1 depletion or pharmacological inhibition of Complex IV (using chlorpromazine) synergized with venetoclax, providing a promising avenue for improved leukemia therapy. This study highlights COX4I1, a nuclear encoded mitochondrial protein, as a critical mitochondrial checkpoint, offering insights into its functional significance and potential clinical implications in AML.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Humans
- Mitochondria/metabolism
- Mitochondria/drug effects
- Mitochondria/genetics
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Electron Transport Complex IV/metabolism
- Electron Transport Complex IV/genetics
- Animals
- Mice
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Homeostasis/drug effects
- Cell Line, Tumor
- Antineoplastic Agents/pharmacology
- Cell Proliferation/drug effects
Collapse
Affiliation(s)
- Leisi Zhang
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of HematologyThe First Affiliated Hospital of Soochow University296 Shizi StSuzhouJiangsu215005China
| | - Honghai Zhang
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Ting‐Yu Wang
- Proteome Exploration LaboratoryCalifornia Institute of Technology1200 E California BlvdPasadenaCA91125USA
| | - Mingli Li
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Anthony K.N. Chan
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Hyunjun Kang
- Department of Hematologic Malignancies Translational ScienceBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010
| | - Lai C. Foong
- Proteome Exploration LaboratoryCalifornia Institute of Technology1200 E California BlvdPasadenaCA91125USA
| | - Qiao Liu
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Sheela Pangeni Pokharel
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Nicole M. Mattson
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Priyanka Singh
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Zeinab Elsayed
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Benjamin Kuang
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Xueer Wang
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Steven T. Rosen
- City of Hope Comprehensive Cancer Center1500 E Duarte RdDuarteCA91010USA
| | - Jianjun Chen
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- City of Hope Comprehensive Cancer Center1500 E Duarte RdDuarteCA91010USA
| | - Lu Yang
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
| | - Tsui‐Fen Chou
- Proteome Exploration LaboratoryCalifornia Institute of Technology1200 E California BlvdPasadenaCA91125USA
| | - Rui Su
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- City of Hope Comprehensive Cancer Center1500 E Duarte RdDuarteCA91010USA
| | - Chun‐Wei David Chen
- Department of Systems BiologyBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope1500 E Duarte RdDuarteCA91010USA
- City of Hope Comprehensive Cancer Center1500 E Duarte RdDuarteCA91010USA
| |
Collapse
|
9
|
Liu K, Zhang L, Xu X, Song M, Ding H, Xiao L, Wen J, Zhou C, Bai J, Liu Y. Lactational high weight loss impairs follicular development by causing mitochondrial dysfunction of ovarian cells in sows and mitigated by butyrate supplement. J Adv Res 2025:S2090-1232(25)00069-4. [PMID: 39892609 DOI: 10.1016/j.jare.2025.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025] Open
Abstract
INTRODUCTION In modern sows, lactational high weight loss (HWL), caused by the large litter size and inadequate feed intake, has a negative effect on follicular development after weaning, resulting in poor reproductive performance in the subsequent parity. However, the underlying mechanism remains unclear. OBJECTIVES This research aimed to explore the mechanism that sows HWL during lactation damages follicular development and attempt to improve the reproductive function by treating with butyrate. METHOD Four multiparous sister sows were chosen to build a HWL model for lactating sows through feed restriction during the final week of a 21-day lactation. Spatially transcriptomics (ST) and tissue immunofluorescent staining were then utilized for the antral follicles in the ovarian surface to search for differentially expressed genes and proteins among different cell types. Subsequently, the mouse assay, including immunofluorescent staining, transmission electron microscopy, hormone detection and western blot, were conducted to verify the findings in sows and investigate the effect of butyrate on the follicular development in HWL mice. RESULTS Based on the transcriptomic analysis, differentially expressed genes in granulosa cells, theca cells, and ovarian stromal cells were examined. The findings revealed that HWL disturbs the mitochondrial electron transport chain and steroidogenesis in all three cell types by downregulating the expression of NDUFB3, SDHB, CYCS, COX8A and CYP19A1, as well as upregulating the expression of STAR, CYP11A1 and CYP17A1. Furthermore, results from mouse assays demonstrated that HWL causes apoptosis and alters sex hormone secretion by impairing mitochondrial function and disordering the expression of steroidogenesis key enzymes in ovarian cells, while these effects were partially mitigated by butyrate treatment. CONCLUSION The mitochondrial dysfunction and abnormal steroidogenesis induced by HWL during lactation in ovarian cells harm the follicular development of weaning sows, which could be alleviated by butyrate treatment.
Collapse
Affiliation(s)
- Kexiong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Luyao Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| | - Xiaoling Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Mengyao Song
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Haiquan Ding
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Linli Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Junhui Wen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chunmei Zhou
- Beijing Feifan Biotechnology Co., Ltd., Beijing 100094, China
| | - Jiahua Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
10
|
Anghelescu GDC, Mernea M, Mihăilescu DF. Mapping O- and N-Glycosylation in Transmembrane and Interface Regions of Proteins: Insights from a Database Search Study. Int J Mol Sci 2025; 26:327. [PMID: 39796186 PMCID: PMC11720221 DOI: 10.3390/ijms26010327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Glycosylation is a critical post-translational modification that influences protein folding, stability and function. While extensively studied in extracellular and intracellular regions, glycosylation within transmembrane (TM) regions and at membrane interfaces remains poorly understood. This study aimed to map O- and N-glycosylation sites in these regions using a comprehensive database search and structural validation where possible. Extensive database searches revealed glycosylation sites in a range of membrane proteins. Only the sites falling in the TM regions and at the membrane interface (according to Uniprot annotations) were retained. The location of these sites was confirmed based on available 3D structures. We identified 32 O-glycosylation sites and 7 N-glycosylation sites in the TM domains of 29 proteins. O-GlcNAc sites validated as located within TM regions presented side chains either oriented toward the lipid bilayer or buried within the protein. N-glycosylation sites predicted in protein TM regions were largely confined to interface or extracellular domains. The results obtained here highlight the occurrence of glycosylation in TM regions of proteins and at membrane interfaces. This dataset provides a valuable foundation for the further exploration of structural and functional roles of glycosylation in membrane-associated regions.
Collapse
Affiliation(s)
- Giorgiana Diana Carmen Anghelescu
- Doctoral School in Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenței Str., 050095 Bucharest, Romania;
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenței Str., 050095 Bucharest, Romania;
| | - Dan Florin Mihăilescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenței Str., 050095 Bucharest, Romania;
| |
Collapse
|
11
|
Ergüç A, Albayrak G, Muhammed MT, Karakuş F, Arzuk E. Mitochondrial toxicity of selected natural compounds: in vitro assessment and in silico molecular docking and dynamics simulation. Drug Chem Toxicol 2025; 48:199-209. [PMID: 39411844 DOI: 10.1080/01480545.2024.2412775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 02/07/2025]
Abstract
Prangos uechtritzii Boiss & Hausskn stands out for its rich bioactive constituents including prantschimgin (PRA), imperatorin (IMP), suberosin (SUB), adicardin (ADI), and oxypeucedanin hydrate (OPH) in the Apiaceae family. Although these molecules contribute to several biological activities, their mitochondrial toxicity were not illuminated in depth with the appropriate in vitro and in silico models. Cell viability studies investigated the cytotoxic activities of molecules in HepG2 cells by replacing glucose with galactose due to Warburg effects. Mitochondrial toxicity (mitotoxicity) parameters such as cellular adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP) levels were assessed with cytotoxic concentrations of selected molecules. Molecular docking and dynamics studies were also conducted against mitochondrial electron transport chain (ETC) complexes (I-V) with selected compounds. In vitro results showed that PRA, SUB, and IMP reduced cell viability more in galactose media compared to high glucose media in a dose-dependent manner. PRA, IMP, and SUB decreased ATP levels and MMP, especially in the galactose medium. The in silico study revealed that PRA, IMP, and SUB might bind to complexes I-V at different levels. The docking study demonstrated that PRA had the highest binding potential with the complexes, higher than the standard ligands in some cases. The molecular dynamics (MD) simulation study showed that PRA formed stable complexes with complexes II, III, and IV. In addition, PRA was anticipated to remain inside the binding site of complex II most stably during the 230 ns simulation period. Our study suggests that PRA, IMP, and SUB exhibit mitotoxicity.
Collapse
Affiliation(s)
- Ali Ergüç
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, Türkiye
| | - Gökay Albayrak
- Department of Pharmaceutical Botany, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, Türkiye
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Türkiye
| | - Fuat Karakuş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Türkiye
| | - Ege Arzuk
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, İzmir, Türkiye
| |
Collapse
|
12
|
Pham L, Arroum T, Wan J, Pavelich L, Bell J, Morse PT, Lee I, Grossman LI, Sanderson TH, Malek MH, Hüttemann M. Regulation of mitochondrial oxidative phosphorylation through tight control of cytochrome c oxidase in health and disease - Implications for ischemia/reperfusion injury, inflammatory diseases, diabetes, and cancer. Redox Biol 2024; 78:103426. [PMID: 39566165 PMCID: PMC11617887 DOI: 10.1016/j.redox.2024.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
Mitochondria are essential to cellular function as they generate the majority of cellular ATP, mediated through oxidative phosphorylation, which couples proton pumping of the electron transport chain (ETC) to ATP production. The ETC generates an electrochemical gradient, known as the proton motive force, consisting of the mitochondrial membrane potential (ΔΨm, the major component in mammals) and ΔpH across the inner mitochondrial membrane. Both ATP production and reactive oxygen species (ROS) are linked to ΔΨm, and it has been shown that an imbalance in ΔΨm beyond the physiological optimal intermediate range results in excessive ROS production. The reaction of cytochrome c oxidase (COX) of the ETC with its small electron donor cytochrome c (Cytc) is the proposed rate-limiting step in mammals under physiological conditions. The rate at which this redox reaction occurs controls ΔΨm and thus ATP and ROS production. Multiple mechanisms are in place that regulate this reaction to meet the cell's energy demand and respond to acute stress. COX and Cytc have been shown to be regulated by all three main mechanisms, which we discuss in detail: allosteric regulation, tissue-specific isoforms, and post-translational modifications for which we provide a comprehensive catalog and discussion of their functional role with 55 and 50 identified phosphorylation and acetylation sites on COX, respectively. Disruption of these regulatory mechanisms has been found in several common human diseases, including stroke and myocardial infarction, inflammation including sepsis, and diabetes, where changes in COX or Cytc phosphorylation lead to mitochondrial dysfunction contributing to disease pathophysiology. Identification and subsequent targeting of the underlying signaling pathways holds clear promise for future interventions to improve human health. An example intervention is the recently discovered noninvasive COX-inhibitory infrared light therapy that holds promise to transform the current standard of clinical care in disease conditions where COX regulation has gone awry.
Collapse
Affiliation(s)
- Lucynda Pham
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Lauren Pavelich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA; Division of Pediatric Critical Care, Children's Hospital of Michigan, Central Michigan University, Detroit, MI, 48201, USA.
| | - Paul T Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea.
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Thomas H Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Moh H Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
13
|
Lake NJ, Ma K, Liu W, Battle SL, Laricchia KM, Tiao G, Puiu D, Ng KK, Cohen J, Compton AG, Cowie S, Christodoulou J, Thorburn DR, Zhao H, Arking DE, Sunyaev SR, Lek M. Quantifying constraint in the human mitochondrial genome. Nature 2024; 635:390-397. [PMID: 39415008 PMCID: PMC11646341 DOI: 10.1038/s41586-024-08048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Mitochondrial DNA (mtDNA) has an important yet often overlooked role in health and disease. Constraint models quantify the removal of deleterious variation from the population by selection and represent powerful tools for identifying genetic variation that underlies human phenotypes1-4. However, nuclear constraint models are not applicable to mtDNA, owing to its distinct features. Here we describe the development of a mitochondrial genome constraint model and its application to the Genome Aggregation Database (gnomAD), a large-scale population dataset that reports mtDNA variation across 56,434 human participants5. Specifically, we analyse constraint by comparing the observed variation in gnomAD to that expected under neutrality, which was calculated using a mtDNA mutational model and observed maximum heteroplasmy-level data. Our results highlight strong depletion of expected variation, which suggests that many deleterious mtDNA variants remain undetected. To aid their discovery, we compute constraint metrics for every mitochondrial protein, tRNA and rRNA gene, which revealed a range of intolerance to variation. We further characterize the most constrained regions within genes through regional constraint and identify the most constrained sites within the entire mitochondrial genome through local constraint, which showed enrichment of pathogenic variation. Constraint also clustered in three-dimensional structures, which provided insight into functionally important domains and their disease relevance. Notably, we identify constraint at often overlooked sites, including in rRNA and noncoding regions. Last, we demonstrate that these metrics can improve the discovery of deleterious variation that underlies rare and common phenotypes.
Collapse
Affiliation(s)
- Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.
| | - Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Stephanie L Battle
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Natural Sciences, Bowie State University, Bowie, MD, USA
| | - Kristen M Laricchia
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Grace Tiao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Daniela Puiu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kenneth K Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Alison G Compton
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Shannon Cowie
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Hongyu Zhao
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shamil R Sunyaev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Raabe J, Wittig I, Laurette P, Stathopoulou K, Brand T, Schulze T, Klampe B, Orthey E, Cabrera-Orefice A, Meisterknecht J, Thiemann E, Laufer SD, Shibamiya A, Reinsch M, Fuchs S, Kaiser J, Yang J, Zehr S, Wrona KM, Lorenz K, Lukowski R, Hansen A, Gilsbach R, Brandes RP, Ulmer BM, Eschenhagen T, Cuello F. Physioxia rewires mitochondrial complex composition to protect stem cell viability. Redox Biol 2024; 77:103352. [PMID: 39341035 PMCID: PMC11466565 DOI: 10.1016/j.redox.2024.103352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are an invaluable tool to study molecular mechanisms on a human background. Culturing stem cells at an oxygen level different from their microenvironmental niche impacts their viability. To understand this mechanistically, dermal skin fibroblasts of 52 probands were reprogrammed into hiPSCs, followed by either hyperoxic (20 % O2) or physioxic (5 % O2) culture and proteomic profiling. Analysis of chromosomal stability by Giemsa-banding revealed that physioxic -cultured hiPSC clones exhibited less pathological karyotypes than hyperoxic (e.g. 6 % vs. 32 % mosaicism), higher pluripotency as evidenced by higher Stage-Specific Embryonic Antigen 3 positivity, higher glucose consumption and lactate production. Global proteomic analysis demonstrated lower abundance of several subunits of NADH:ubiquinone oxidoreductase (complex I) and an underrepresentation of pathways linked to oxidative phosphorylation and cellular senescence. Accordingly, release of the pro-senescent factor IGFBP3 and β-galactosidase staining were lower in physioxic hiPSCs. RNA- and ATAC-seq profiling revealed a distinct hypoxic transcription factor-binding footprint, amongst others higher expression of the HIF1α-regulated target NDUFA4L2 along with increased chromatin accessibility of the NDUFA4L2 gene locus. While mitochondrial DNA content did not differ between groups, physioxic hiPSCs revealed lower polarized mitochondrial membrane potential, altered mitochondrial network appearance and reduced basal respiration and electron transfer capacity. Blue-native polyacrylamide gel electrophoresis coupled to mass spectrometry of the mitochondrial complexes detected higher abundance of NDUFA4L2 and ATP5IF1 and loss of incorporation into complex IV or V, respectively. Taken together, physioxic culture of hiPSCs improved chromosomal stability, which was associated with downregulation of oxidative phosphorylation and senescence and extensive re-wiring of mitochondrial complex composition.
Collapse
Affiliation(s)
- Janice Raabe
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ilka Wittig
- Functional Proteomics Center, Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhein-Main, Frankfurt, Germany
| | - Patrick Laurette
- Institute of Experimental Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Konstantina Stathopoulou
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Thomas Schulze
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Birgit Klampe
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ellen Orthey
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Alfredo Cabrera-Orefice
- Functional Proteomics Center, Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Jana Meisterknecht
- Functional Proteomics Center, Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Ellen Thiemann
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sandra D Laufer
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Aya Shibamiya
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Marina Reinsch
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sigrid Fuchs
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jennifer Kaiser
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jiaqi Yang
- Institute of Pharmacy, Experimental Pharmacology, University Tübingen, 72076 Tübingen, Germany
| | - Simonida Zehr
- DZHK (German Center for Cardiovascular Research), Partner Site Rhein-Main, Frankfurt, Germany; Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Kinga M Wrona
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Robert Lukowski
- Institute of Pharmacy, Experimental Pharmacology, University Tübingen, 72076 Tübingen, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ralf Gilsbach
- Institute of Experimental Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Ralf P Brandes
- DZHK (German Center for Cardiovascular Research), Partner Site Rhein-Main, Frankfurt, Germany; Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Bärbel M Ulmer
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
15
|
Reyna-Bolaños I, Solís-García EP, Vargas-Vargas MA, Peña-Montes DJ, Saavedra-Molina A, Cortés-Rojo C, Calderón-Cortés E. Polydatin Prevents Electron Transport Chain Dysfunction and ROS Overproduction Paralleled by an Improvement in Lipid Peroxidation and Cardiolipin Levels in Iron-Overloaded Rat Liver Mitochondria. Int J Mol Sci 2024; 25:11104. [PMID: 39456885 PMCID: PMC11508176 DOI: 10.3390/ijms252011104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Increased intramitochondrial free iron is a key feature of various liver diseases, leading to oxidative stress, mitochondrial dysfunction, and liver damage. Polydatin is a polyphenol with a hepatoprotective effect, which has been attributed to its ability to enhance mitochondrial oxidative metabolism and antioxidant defenses, thereby inhibiting reactive oxygen species (ROS) dependent cellular damage processes and liver diseases. However, it has not been explored whether polydatin is able to exert its effects by protecting the phospholipid cardiolipin against damage from excess iron. Cardiolipin maintains the integrity and function of electron transport chain (ETC) complexes and keeps cytochrome c bound to mitochondria, avoiding uncontrolled apoptosis. Therefore, the effect of polydatin on oxidative lipid damage, ETC activity, cytochrome levels, and ROS production was explored in iron-exposed rat liver mitochondria. Fe2+ increased lipid peroxidation, decreased cardiolipin and cytochromes c + c1 and aa3 levels, inhibited ETC complex activities, and dramatically increased ROS production. Preincubation with polydatin prevented all these effects to a variable degree. These results suggest that the hepatoprotective mechanism of polydatin involves the attenuation of free radical production by iron, which enhances cardiolipin levels by counteracting membrane lipid peroxidation. This prevents the loss of cytochromes, improves ETC function, and decreases mitochondrial ROS production.
Collapse
Affiliation(s)
- Itzel Reyna-Bolaños
- Instituto Tecnológico Superior de Ciudad Hidalgo, Tecnológico Nacional de México, Ciudad Hidalgo 61100, Michoacán, Mexico; (I.R.-B.); (E.P.S.-G.)
| | - Elsa Paola Solís-García
- Instituto Tecnológico Superior de Ciudad Hidalgo, Tecnológico Nacional de México, Ciudad Hidalgo 61100, Michoacán, Mexico; (I.R.-B.); (E.P.S.-G.)
| | - Manuel Alejando Vargas-Vargas
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.A.V.-V.); (D.J.P.-M.); (A.S.-M.)
| | - Donovan J. Peña-Montes
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.A.V.-V.); (D.J.P.-M.); (A.S.-M.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.A.V.-V.); (D.J.P.-M.); (A.S.-M.)
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.A.V.-V.); (D.J.P.-M.); (A.S.-M.)
| | - Elizabeth Calderón-Cortés
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58260, Michoacán, Mexico
| |
Collapse
|
16
|
Kumar M, Mehan S, Kumar A, Sharma T, Khan Z, Tiwari A, Das Gupta G, Narula AS. Therapeutic efficacy of Genistein in activation of neuronal AC/cAMP/CREB/PKA and mitochondrial ETC-Complex pathways in experimental model of autism: Evidence from CSF, blood plasma and brain analysis. Brain Res 2024; 1846:149251. [PMID: 39384128 DOI: 10.1016/j.brainres.2024.149251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024]
Abstract
Autism is a complex neurodevelopmental condition characterized by repetitive behaviors, impaired social communication, and various associated conditions such as depression and anxiety. Its multifactorial etiology includes genetic, environmental, dietary, and gastrointestinal contributions. Pathologically, Autism is linked to mitochondrial dysfunction, oxidative stress, neuroinflammation, and neurotransmitter imbalances involving GABA, glutamate, dopamine, and oxytocin. Propionic acid (PRPA) is a short-chain fatty acid produced by gut bacteria, influencing central nervous system functions. Elevated PRPA levels can exacerbate Autism-related symptoms by disrupting metabolic processes and crossing the blood-brain barrier. Our research investigates the neuroprotective potential of Genistein (GNT), an isoflavone compound with known benefits in neuropsychiatric and neurodegenerative disorders, through modulation of the AC/cAMP/CREB/PKA signaling pathway and mitochondrial ETC complex (I-IV) function. In silico analyses revealed GNT's high affinity for these targets. Subsequent in vitro and in vivo experiments using a PRPA-induced rat model of autism demonstrated that GNT (40 and 80 mg/kg., orally) significantly improves locomotion, neuromuscular coordination, and cognitive functions in PRPA-treated rodents. Behavioral assessments showed reduced immobility in the forced swim test, enhanced Morris water maze performance, and restored regular locomotor activity. On a molecular level, GNT restored levels of key signaling molecules (AC, cAMP, CREB, PKA) and mitochondrial complexes (I-V), disrupted by PRPA exposure. Additionally, GNT reduced neuroinflammation and apoptosis, normalized neurotransmitter levels, and improved the complete blood count profile. Histopathological analyses confirmed that GNT ameliorated PRPA-induced brain injuries, restored normal brain morphology, reduced demyelination, and promoted neurogenesis. The study supports GNT's potential in autism treatment by modulating neural pathways, reducing inflammation, and restoring neurotransmitter balance.
Collapse
Affiliation(s)
- Manjeet Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India; Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
17
|
Luo Y, Xu Y, Ahmad F, Feng G, Huang Y. Characterization of Shy1, the Schizosaccharomyces pombe homolog of human SURF1. Sci Rep 2024; 14:21678. [PMID: 39289458 PMCID: PMC11408685 DOI: 10.1038/s41598-024-72681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Cytochrome c oxidase (complex IV) is the terminal enzyme in the mitochondrial respiratory chain. As a rare neurometabolic disorder caused by mutations in the human complex IV assembly factor SURF1, Leigh Syndrome (LS) is associated with complex IV deficiency. In this study, we comprehensively characterized Schizosaccharomyces pombe Shy1, the homolog of human SURF1. Bioinformatics analysis revealed that Shy1 contains a conserved SURF1 domain that links to the biogenesis of complex IV and shares high structural similarity with its homologs in Saccharomyces cerevisiae and humans. Our study showed that Shy1 is required for the expression of mtDNA-encoded genes and physically interacts with structural subunits and assembly factors of complex IV. Interestingly, Rip1, the subunit of ubiquinone-cytochrome c oxidoreductase or cytochrome bc1 complex (complex III), can also co-immunoprecipitate with Shy1, suggesting Shy1 may be involved in the assembly of the mitochondrial respiratory chain supercomplexes. This conclusion is further corroborated by our BN-PAGE analysis. Unlike its homologs, deletion of shy1 does not critically disrupt respiratory chain assembly, indicating the presence of the compensatory mechanism(s) within S. pombe that ensure mitochondrial functionality. Collectively, our investigation elucidates that Shy1 plays a pivotal role in the sustainability of the regular function of mitochondria by participating in the assembly of complex IV in S. pombe.
Collapse
Affiliation(s)
- Ying Luo
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuanqi Xu
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Fawad Ahmad
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Gang Feng
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
18
|
Lamačová LJ, Trnka J. Chelating mitochondrial iron and copper: Recipes, pitfalls and promise. Mitochondrion 2024; 78:101903. [PMID: 38777220 DOI: 10.1016/j.mito.2024.101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Iron and copper chelation therapy plays a crucial role in treating conditions associated with metal overload, such as hemochromatosis or Wilson's disease. However, conventional chelators face challenges in reaching the core of iron and copper metabolism - the mitochondria. Mitochondria-targeted chelators can specifically target and remove metal ions from mitochondria, showing promise in treating diseases linked to mitochondrial dysfunction, including neurodegenerative diseases and cancer. Additionally, they serve as specific mitochondrial metal sensors. However, designing these new molecules presents its own set of challenges. Depending on the chelator's intended use to prevent or to promote redox cycling of the metals, the chelating moiety must possess different donor atoms and an optimal value of the electrode potential of the chelator-metal complex. Various targeting moieties can be employed for selective delivery into the mitochondria. This review also provides an overview of the current progress in the design of mitochondria-targeted chelators and their biological activity investigation.
Collapse
Affiliation(s)
- Lucie J Lamačová
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Praha, Czech Republic
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Praha, Czech Republic.
| |
Collapse
|
19
|
Zunica ERM, Axelrod CL, Gilmore LA, Gnaiger E, Kirwan JP. The bioenergetic landscape of cancer. Mol Metab 2024; 86:101966. [PMID: 38876266 PMCID: PMC11259816 DOI: 10.1016/j.molmet.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Bioenergetic remodeling of core energy metabolism is essential to the initiation, survival, and progression of cancer cells through exergonic supply of adenosine triphosphate (ATP) and metabolic intermediates, as well as control of redox homeostasis. Mitochondria are evolutionarily conserved organelles that mediate cell survival by conferring energetic plasticity and adaptive potential. Mitochondrial ATP synthesis is coupled to the oxidation of a variety of substrates generated through diverse metabolic pathways. As such, inhibition of the mitochondrial bioenergetic system by restricting metabolite availability, direct inhibition of the respiratory Complexes, altering organelle structure, or coupling efficiency may restrict carcinogenic potential and cancer progression. SCOPE OF REVIEW Here, we review the role of bioenergetics as the principal conductor of energetic functions and carcinogenesis while highlighting the therapeutic potential of targeting mitochondrial functions. MAJOR CONCLUSIONS Mitochondrial bioenergetics significantly contribute to cancer initiation and survival. As a result, therapies designed to limit oxidative efficiency may reduce tumor burden and enhance the efficacy of currently available antineoplastic agents.
Collapse
Affiliation(s)
- Elizabeth R M Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
20
|
Xiong M, Liu Z, Wang B, Sokolich T, Graham N, Chen M, Wang WL, Boldin MP. The epithelial C15ORF48/miR-147-NDUFA4 axis is an essential regulator of gut inflammation, energy metabolism, and the microbiome. Proc Natl Acad Sci U S A 2024; 121:e2315944121. [PMID: 38917002 PMCID: PMC11228508 DOI: 10.1073/pnas.2315944121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/13/2024] [Indexed: 06/27/2024] Open
Abstract
Chronic inflammation is epidemiologically linked to the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease (IBD) and colorectal cancer (CRC). However, our understanding of the molecular mechanisms controlling gut inflammation remains insufficient, hindering the development of targeted therapies for IBD and CRC. In this study, we uncovered C15ORF48/miR-147 as a negative regulator of gut inflammation, operating through the modulation of epithelial cell metabolism. C15ORF48/miR-147 encodes two molecular products, C15ORF48 protein and miR-147-3p microRNA, which are predominantly expressed in the intestinal epithelium. C15ORF48/miR-147 ablation leads to gut dysbiosis and exacerbates chemically induced colitis in mice. C15ORF48 and miR-147-3p work together to suppress colonocyte metabolism and inflammation by silencing NDUFA4, a subunit of mitochondrial complex IV (CIV). Interestingly, the C15ORF48 protein, a structural paralog of NDUFA4, contains a unique C-terminal α-helical domain crucial for displacing NDUFA4 from CIV and its subsequent degradation. NDUFA4 silencing hinders NF-κB signaling activation and consequently attenuates inflammatory responses. Collectively, our findings have established the C15ORF48/miR-147-NDUFA4 molecular axis as an indispensable regulator of gut homeostasis, bridging mitochondrial metabolism and inflammation.
Collapse
Affiliation(s)
- Min Xiong
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Ze Liu
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Bintao Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Thomas Sokolich
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Natalie Graham
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Meirong Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Wei-Le Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Mark P. Boldin
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| |
Collapse
|
21
|
Zheng W, Chai P, Zhu J, Zhang K. High-resolution in situ structures of mammalian respiratory supercomplexes. Nature 2024; 631:232-239. [PMID: 38811722 PMCID: PMC11222160 DOI: 10.1038/s41586-024-07488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Mitochondria play a pivotal part in ATP energy production through oxidative phosphorylation, which occurs within the inner membrane through a series of respiratory complexes1-4. Despite extensive in vitro structural studies, determining the atomic details of their molecular mechanisms in physiological states remains a major challenge, primarily because of loss of the native environment during purification. Here we directly image porcine mitochondria using an in situ cryo-electron microscopy approach. This enables us to determine the structures of various high-order assemblies of respiratory supercomplexes in their native states. We identify four main supercomplex organizations: I1III2IV1, I1III2IV2, I2III2IV2 and I2III4IV2, which potentially expand into higher-order arrays on the inner membranes. These diverse supercomplexes are largely formed by 'protein-lipids-protein' interactions, which in turn have a substantial impact on the local geometry of the surrounding membranes. Our in situ structures also capture numerous reactive intermediates within these respiratory supercomplexes, shedding light on the dynamic processes of the ubiquinone/ubiquinol exchange mechanism in complex I and the Q-cycle in complex III. Structural comparison of supercomplexes from mitochondria treated under different conditions indicates a possible correlation between conformational states of complexes I and III, probably in response to environmental changes. By preserving the native membrane environment, our approach enables structural studies of mitochondrial respiratory supercomplexes in reaction at high resolution across multiple scales, from atomic-level details to the broader subcellular context.
Collapse
Affiliation(s)
- Wan Zheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jiapeng Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
22
|
Dinh N, Bonnefoy N. Schizosaccharomyces pombe as a fundamental model for research on mitochondrial gene expression: Progress, achievements and outlooks. IUBMB Life 2024; 76:397-419. [PMID: 38117001 DOI: 10.1002/iub.2801] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
Schizosaccharomyces pombe (fission yeast) is an attractive model for mitochondrial research. The organism resembles human cells in terms of mitochondrial inheritance, mitochondrial transport, sugar metabolism, mitogenome structure and dependence of viability on the mitogenome (the petite-negative phenotype). Transcriptions of these genomes produce only a few polycistronic transcripts, which then undergo processing as per the tRNA punctuation model. In general, the machinery for mitochondrial gene expression is structurally and functionally conserved between fission yeast and humans. Furthermore, molecular research on S. pombe is supported by a considerable number of experimental techniques and database resources. Owing to these advantages, fission yeast has significantly contributed to biomedical and fundamental research. Here, we review the current state of knowledge regarding S. pombe mitochondrial gene expression, and emphasise the pertinence of fission yeast as both a model and tool, especially for studies on mitochondrial translation.
Collapse
Affiliation(s)
- Nhu Dinh
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette cedex, France
| | - Nathalie Bonnefoy
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
23
|
Vercellino I, Sazanov LA. SCAF1 drives the compositional diversity of mammalian respirasomes. Nat Struct Mol Biol 2024; 31:1061-1071. [PMID: 38575788 DOI: 10.1038/s41594-024-01255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/16/2024] [Indexed: 04/06/2024]
Abstract
Supercomplexes of the respiratory chain are established constituents of the oxidative phosphorylation system, but their role in mammalian metabolism has been hotly debated. Although recent studies have shown that different tissues/organs are equipped with specific sets of supercomplexes, depending on their metabolic needs, the notion that supercomplexes have a role in the regulation of metabolism has been challenged. However, irrespective of the mechanistic conclusions, the composition of various high molecular weight supercomplexes remains uncertain. Here, using cryogenic electron microscopy, we demonstrate that mammalian (mouse) tissues contain three defined types of 'respirasome', supercomplexes made of CI, CIII2 and CIV. The stoichiometry and position of CIV differs in the three respirasomes, of which only one contains the supercomplex-associated factor SCAF1, whose involvement in respirasome formation has long been contended. Our structures confirm that the 'canonical' respirasome (the C-respirasome, CICIII2CIV) does not contain SCAF1, which is instead associated to a different respirasome (the CS-respirasome), containing a second copy of CIV. We also identify an alternative respirasome (A-respirasome), with CIV bound to the 'back' of CI, instead of the 'toe'. This structural characterization of mouse mitochondrial supercomplexes allows us to hypothesize a mechanistic basis for their specific role in different metabolic conditions.
Collapse
Affiliation(s)
- Irene Vercellino
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
24
|
Goldman C, Kareva T, Sarrafha L, Schuldt BR, Sahasrabudhe A, Ahfeldt T, Blanchard JW. Genetically Encoded and Modular SubCellular Organelle Probes (GEM-SCOPe) reveal lysosomal and mitochondrial dysfunction driven by PRKN knockout. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.594886. [PMID: 38979135 PMCID: PMC11230217 DOI: 10.1101/2024.05.21.594886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cellular processes including lysosomal and mitochondrial dysfunction are implicated in the development of many diseases. Quantitative visualization of mitochondria and lysosoesl is crucial to understand how these organelles are dysregulated during disease. To address a gap in live-imaging tools, we developed GEM-SCOPe (Genetically Encoded and Modular SubCellular Organelle Probes), a modular toolbox of fluorescent markers designed to inform on localization, distribution, turnover, and oxidative stress of specific organelles. We expressed GEM-SCOPe in differentiated astrocytes and neurons from a human pluripotent stem cell PRKN-knockout model of Parkinson's disease and identified disease-associated changes in proliferation, lysosomal distribution, mitochondrial transport and turnover, and reactive oxygen species. We demonstrate GEM-SCOPe is a powerful panel that provide critical insight into the subcellular mechanisms underlying Parkinson's disease in human cells. GEM-SCOPe can be expanded upon and applied to a diversity of cellular models to glean an understanding of the mechanisms that promote disease onset and progression.
Collapse
Affiliation(s)
- Camille Goldman
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Tatyana Kareva
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Lily Sarrafha
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Braxton R. Schuldt
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Abhishek Sahasrabudhe
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
| | - Tim Ahfeldt
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Joel W. Blanchard
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
- Lead Contact
| |
Collapse
|
25
|
Zhang W, Liu D, Yuan M, Zhu LQ. The mechanisms of mitochondrial abnormalities that contribute to sleep disorders and related neurodegenerative diseases. Ageing Res Rev 2024; 97:102307. [PMID: 38614368 DOI: 10.1016/j.arr.2024.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Sleep is a highly intricate biological phenomenon, and its disorders play a pivotal role in numerous diseases. However, the specific regulatory mechanisms remain elusive. In recent years, the role of mitochondria in sleep disorders has gained considerable attention. Sleep deprivation not only impairs mitochondrial morphology but also decreases the number of mitochondria and triggers mitochondrial dysfunction. Furthermore, mitochondrial dysfunction has been implicated in the onset and progression of various sleep disorder-related neurological diseases, especially neurodegenerative conditions. Therefore, a greater understanding of the impact of sleep disorders on mitochondrial dysfunction may reveal new therapeutic targets for neurodegenerative diseases. In this review, we comprehensively summarize the recent key findings on the mechanisms underlying mitochondrial dysfunction caused by sleep disorders and their role in initiating or exacerbating common neurodegenerative diseases. In addition, we provide fresh insights into the diagnosis and treatment of sleep disorder-related diseases.
Collapse
Affiliation(s)
- Wentao Zhang
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mei Yuan
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
26
|
Smith KK, Moreira JD, Wilson CR, Padera JO, Lamason AN, Xue L, Gopal DM, Flynn DB, Fetterman JL. A systematic review on the biochemical threshold of mitochondrial genetic variants. Genome Res 2024; 34:341-365. [PMID: 38627095 PMCID: PMC11067886 DOI: 10.1101/gr.278200.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/15/2024] [Indexed: 05/05/2024]
Abstract
Mitochondrial DNA (mtDNA) variants cause a range of diseases from severe pediatric syndromes to aging-related conditions. The percentage of mtDNA copies carrying a pathogenic variant, variant allele frequency (VAF), must reach a threshold before a biochemical defect occurs, termed the biochemical threshold. Whether the often-cited biochemical threshold of >60% VAF is similar across mtDNA variants and cell types is unclear. In our systematic review, we sought to identify the biochemical threshold of mtDNA variants in relation to VAF by human tissue/cell type. We used controlled vocabulary terms to identify articles measuring oxidative phosphorylation (OXPHOS) complex activities in relation to VAF. We identified 76 eligible publications, describing 69, 12, 16, and 49 cases for complexes I, III, IV, and V, respectively. Few studies evaluated OXPHOS activities in diverse tissue types, likely reflective of clinical access. A number of cases with similar VAFs for the same pathogenic variant had varying degrees of residual activity of the affected complex, alluding to the presence of modifying variants. Tissues and cells with VAFs <60% associated with low complex activities were described, suggesting the possibility of a biochemical threshold of <60%. Using Kendall rank correlation tests, the VAF of the m.8993T > G variant correlated with complex V activity in skeletal muscle (τ = -0.58, P = 0.01, n = 13); however, no correlation was observed in fibroblasts (P = 0.7, n = 9). Our systematic review highlights the need to investigate the biochemical threshold over a wider range of VAFs in disease-relevant cell types to better define the biochemical threshold for specific mtDNA variants.
Collapse
Affiliation(s)
- Karan K Smith
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | - Jesse D Moreira
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, USA
- Programs in Human Physiology, Department of Health Sciences, Boston University Sargent College, Boston, Massachusetts 02215, USA
| | - Callum R Wilson
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | - June O Padera
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | - Ashlee N Lamason
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | - Liying Xue
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | - Deepa M Gopal
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | - David B Flynn
- Medical Sciences and Education, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | - Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, USA;
| |
Collapse
|
27
|
Povea-Cabello S, Brischigliaro M, Fernández-Vizarra E. Emerging mechanisms in the redox regulation of mitochondrial cytochrome c oxidase assembly and function. Biochem Soc Trans 2024; 52:873-885. [PMID: 38526156 DOI: 10.1042/bst20231183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
In eukaryotic cells, mitochondria perform cellular respiration through a series of redox reactions ultimately reducing molecular oxygen to water. The system responsible for this process is the respiratory chain or electron transport system (ETS) composed of complexes I-IV. Due to its function, the ETS is the main source of reactive oxygen species (ROS), generating them on both sides of the mitochondrial inner membrane, i.e. the intermembrane space (IMS) and the matrix. A correct balance between ROS generation and scavenging is important for keeping the cellular redox homeostasis and other important aspects of cellular physiology. However, ROS generated in the mitochondria are important signaling molecules regulating mitochondrial biogenesis and function. The IMS contains a large number of redox sensing proteins, containing specific Cys-rich domains, that are involved in ETS complex biogenesis. The large majority of these proteins function as cytochrome c oxidase (COX) assembly factors, mainly for the handling of copper ions necessary for the formation of the redox reactive catalytic centers. A particular case of ROS-regulated COX assembly factor is COA8, whose intramitochondrial levels are increased by oxidative stress, promoting COX assembly and/or protecting the enzyme from oxidative damage. In this review, we will discuss the current knowledge concerning the role played by ROS in regulating mitochondrial activity and biogenesis, focusing on the COX enzyme and with a special emphasis on the functional role exerted by the redox sensitive Cys residues contained in the COX assembly factors.
Collapse
Affiliation(s)
- Suleva Povea-Cabello
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Michele Brischigliaro
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Erika Fernández-Vizarra
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| |
Collapse
|
28
|
Moretti-Horten DN, Peselj C, Taskin AA, Myketin L, Schulte U, Einsle O, Drepper F, Luzarowski M, Vögtle FN. Synchronized assembly of the oxidative phosphorylation system controls mitochondrial respiration in yeast. Dev Cell 2024; 59:1043-1057.e8. [PMID: 38508182 DOI: 10.1016/j.devcel.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Control of protein stoichiometry is essential for cell function. Mitochondrial oxidative phosphorylation (OXPHOS) presents a complex stoichiometric challenge as the ratio of the electron transport chain (ETC) and ATP synthase must be tightly controlled, and assembly requires coordinated integration of proteins encoded in the nuclear and mitochondrial genome. How correct OXPHOS stoichiometry is achieved is unknown. We identify the Mitochondrial Regulatory hub for respiratory Assembly (MiRA) platform, which synchronizes ETC and ATP synthase biogenesis in yeast. Molecularly, this is achieved by a stop-and-go mechanism: the uncharacterized protein Mra1 stalls complex IV assembly. Two "Go" signals are required for assembly progression: binding of the complex IV assembly factor Rcf2 and Mra1 interaction with an Atp9-translating mitoribosome induce Mra1 degradation, allowing synchronized maturation of complex IV and the ATP synthase. Failure of the stop-and-go mechanism results in cell death. MiRA controls OXPHOS assembly, ensuring correct stoichiometry of protein machineries encoded by two different genomes.
Collapse
Affiliation(s)
- Daiana N Moretti-Horten
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Carlotta Peselj
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Asli Aras Taskin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lisa Myketin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Biochemistry & Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marcin Luzarowski
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - F-Nora Vögtle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Network Aging Research, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
29
|
Misceo D, Strømme P, Bitarafan F, Chawla MS, Sheng Y, Bach de Courtade SM, Eide L, Frengen E. Biallelic NDUFA4 Deletion Causes Mitochondrial Complex IV Deficiency in a Patient with Leigh Syndrome. Genes (Basel) 2024; 15:500. [PMID: 38674434 PMCID: PMC11050323 DOI: 10.3390/genes15040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative phosphorylation involves a complex multi-enzymatic mitochondrial machinery critical for proper functioning of the cell, and defects herein cause a wide range of diseases called "primary mitochondrial disorders" (PMDs). Mutations in about 400 nuclear and 37 mitochondrial genes have been documented to cause PMDs, which have an estimated birth prevalence of 1:5000. Here, we describe a 4-year-old female presenting from early childhood with psychomotor delay and white matter signal changes affecting several brain regions, including the brainstem, in addition to lactic and phytanic acidosis, compatible with Leigh syndrome, a genetically heterogeneous subgroup of PMDs. Whole genome sequencing of the family trio identified a homozygous 12.9 Kb deletion, entirely overlapping the NDUFA4 gene. Sanger sequencing of the breakpoints revealed that the genomic rearrangement was likely triggered by Alu elements flanking the gene. NDUFA4 encodes for a subunit of the respiratory chain Complex IV, whose activity was significantly reduced in the patient's fibroblasts. In one family, dysfunction of NDUFA4 was previously documented as causing mitochondrial Complex IV deficiency nuclear type 21 (MC4DN21, OMIM 619065), a relatively mild form of Leigh syndrome. Our finding confirms the loss of NDUFA4 function as an ultra-rare cause of Complex IV defect, clinically presenting as Leigh syndrome.
Collapse
Affiliation(s)
- Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (F.B.); (Y.S.); (E.F.)
| | - Petter Strømme
- Division of Pediatrics and Adolescent Medicine, Oslo University Hospital and Faculty of Medicine, University of Oslo, 0450 Oslo, Norway;
| | - Fatemeh Bitarafan
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (F.B.); (Y.S.); (E.F.)
| | | | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (F.B.); (Y.S.); (E.F.)
| | | | - Lars Eide
- Department of Biochemistry, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (S.M.B.d.C.); (L.E.)
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (F.B.); (Y.S.); (E.F.)
| |
Collapse
|
30
|
Haque MF, El-Nashar HAS, Akbor MS, Alfaifi M, Bappi MH, Chowdhury AK, Hossain MK, El-Shazly M, Albayouk T, Saleh N, Islam MT. Anti-inflammatory activity of d-pinitol possibly through inhibiting COX-2 enzyme: in vivo and in silico studies. Front Chem 2024; 12:1366844. [PMID: 38690012 PMCID: PMC11058972 DOI: 10.3389/fchem.2024.1366844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction: D-pinitol, a naturally occurring inositol, has diverse biological activities like antioxidant, antimicrobial and anticancer activities. This study aimed to evaluate anti-inflammatory effect of d-pinitol in a chick model. Additionally, in silico studies were performed to evaluate the molecular interactions with cyclooxygenase-2 (COX-2). Methods: The tested groups received d-pinitol (12.5, 25, and 50 mg/kg) and the standard drugs celecoxib and ketoprofen (42 mg/kg) via oral gavage prior to formalin injection. Then, the number of licks was counted for the first 10 min, and the paw edema diameter was measured at 60, 90, and 120 min. Results and Discussion: The d-pinitol groups significantly (p < 0.05) reduced the number of paw licks and paw edema diameters, compared to negative control. When d-pinitol was combined with celecoxib, it reduced inflammatory parameters more effectively than the individual groups. The in silico study showed a promising binding capacity of d-pinitol with COX-2. Taken together, d-pinitol exerted anti-inflammatory effects in a dose-dependent manner, possibly through COX-2 interaction pathway.
Collapse
Affiliation(s)
- Mst. Farjanamul Haque
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Heba A. S. El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Md. Showkoth Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Mohammed Alfaifi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Muhammad Kamal Hossain
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Pharmacy, University of Science and Technology Chittagiong, Chittagong, Bangladesh
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Tala Albayouk
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Na’il Saleh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
- BioLuster Research Center, Dhaka, Bangladesh
| |
Collapse
|
31
|
Zhou Q, Li X, Zhou H, Zhao J, Zhao H, Li L, Zhou Y. Mitochondrial respiratory chain component NDUFA4: a promising therapeutic target for gastrointestinal cancer. Cancer Cell Int 2024; 24:97. [PMID: 38443961 PMCID: PMC10916090 DOI: 10.1186/s12935-024-03283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/24/2024] [Indexed: 03/07/2024] Open
Abstract
Gastrointestinal cancer, one of the most common cancers, continues to be a major cause of mortality and morbidity globally. Accumulating evidence has shown that alterations in mitochondrial energy metabolism are involved in developing various clinical diseases. NADH dehydrogenase 1 alpha subcomplex 4 (NDUFA4), encoded by the NDUFA4 gene located on human chromosome 7p21.3, is a component of mitochondrial respiratory chain complex IV and integral to mitochondrial energy metabolism. Recent researchers have disclosed that NDUFA4 is implicated in the pathogenesis of various diseases, including gastrointestinal cancer. Aberrant expression of NDUFA4 leads to the alteration in mitochondrial energy metabolism, thereby regulating the growth and metastasis of cancer cells, indicating that it might be a new promising target for cancer intervention. This article comprehensively reviews the structure, regulatory mechanism, and biological function of NDUFA4. Of note, the expression and roles of NDUFA4 in gastrointestinal cancer including colorectal cancer, liver cancer, gastric cancer, and so on were discussed. Finally, the existing problems of NDUFA4-based intervention on gastrointestinal cancer are discussed to provide help to strengthen the understanding of the carcinogenesis of gastrointestinal cancer, as well as the development of new strategies for clinical intervention.
Collapse
Affiliation(s)
- Quanling Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaohui Li
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Honglian Zhou
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Juanjuan Zhao
- Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000, Guizhou, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Lijuan Li
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ya Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
32
|
He Z, Wu M, Tian H, Wang L, Hu Y, Han F, Zhou J, Wang Y, Zhou L. Euglena's atypical respiratory chain adapts to the discoidal cristae and flexible metabolism. Nat Commun 2024; 15:1628. [PMID: 38388527 PMCID: PMC10884005 DOI: 10.1038/s41467-024-46018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Euglena gracilis, a model organism of the eukaryotic supergroup Discoba harbouring also clinically important parasitic species, possesses diverse metabolic strategies and an atypical electron transport chain. While structures of the electron transport chain complexes and supercomplexes of most other eukaryotic clades have been reported, no similar structure is currently available for Discoba, limiting the understandings of its core metabolism and leaving a gap in the evolutionary tree of eukaryotic bioenergetics. Here, we report high-resolution cryo-EM structures of Euglena's respirasome I + III2 + IV and supercomplex III2 + IV2. A previously unreported fatty acid synthesis domain locates on the tip of complex I's peripheral arm, providing a clear picture of its atypical subunit composition identified previously. Individual complexes are re-arranged in the respirasome to adapt to the non-uniform membrane curvature of the discoidal cristae. Furthermore, Euglena's conformationally rigid complex I is deactivated by restricting ubiquinone's access to its substrate tunnel. Our findings provide structural insights for therapeutic developments against euglenozoan parasite infections.
Collapse
Affiliation(s)
- Zhaoxiang He
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mengchen Wu
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hongtao Tian
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Liangdong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiqi Hu
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fangzhu Han
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314400, China.
| | - Long Zhou
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
33
|
Chiang ACY, Ježek J, Mu P, Di Y, Klucnika A, Jabůrek M, Ježek P, Ma H. Two mitochondrial DNA polymorphisms modulate cardiolipin binding and lead to synthetic lethality. Nat Commun 2024; 15:611. [PMID: 38242869 PMCID: PMC10799063 DOI: 10.1038/s41467-024-44964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024] Open
Abstract
Genetic screens have been used extensively to probe interactions between nuclear genes and their impact on phenotypes. Probing interactions between mitochondrial genes and their phenotypic outcome, however, has not been possible due to a lack of tools to map the responsible polymorphisms. Here, using a toolkit we previously established in Drosophila, we isolate over 300 recombinant mitochondrial genomes and map a naturally occurring polymorphism at the cytochrome c oxidase III residue 109 (CoIII109) that fully rescues the lethality and other defects associated with a point mutation in cytochrome c oxidase I (CoIT300I). Through lipidomics profiling, biochemical assays and phenotypic analyses, we show that the CoIII109 polymorphism modulates cardiolipin binding to prevent complex IV instability caused by the CoIT300I mutation. This study demonstrates the feasibility of genetic interaction screens in animal mitochondrial DNA. It unwraps the complex intra-genomic interplays underlying disorders linked to mitochondrial DNA and how they influence disease expression.
Collapse
Affiliation(s)
- Ason C Y Chiang
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Jan Ježek
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- University College London Queen Square Institute of Neurology, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Peiqiang Mu
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Tianhe District, 510642, Guangzhou, Guangdong, P. R. China
| | - Ying Di
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Anna Klucnika
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Laverock Therapeutics, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, SG1 2FX, UK
| | - Martin Jabůrek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Petr Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Hansong Ma
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
34
|
Courtois S, Angelini C, M Durand C, Dias Amoedo N, Courreges A, Dumon E, Le Quang M, Goizet C, Martin-Negrier ML, Rossignol R, Lacombe D, Coupry I, Trimouille A. Mutation on MT-CO2 gene induces mitochondrial disease associated with neurodegeneration and intracerebral iron accumulation (NBIA). Biochim Biophys Acta Mol Basis Dis 2024; 1870:166856. [PMID: 37640115 DOI: 10.1016/j.bbadis.2023.166856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Mitochondrial diseases are genetic disorders impairing mitochondrial functions. Here we describe a patient with a neurodegenerative condition associated with myopia, bilateral sensorineural hearing loss and motor disorders. Brain MRIs showed major cortico-subcortical and infra-tentorial atrophies, as well as intracerebral iron accumulation and central calcifications, compatible with a NBIA-like phenotype. Mitochondrial DNA analysis revealed an undescribed variant: m.8091G>A in the MT-CO2 gene, associated with a complex IV deficiency and a decrease of the mitochondrial respiratory chain capabilities. We report here this pathogenic variant, associated with a NBIA-like phenotype.
Collapse
Affiliation(s)
- Sarah Courtois
- INSERM U1211, Rare Diseases: Genetics and Metabolism (MRGM), Bordeaux University, France; Reference Centre: Maladies Mitochondriales de l'Enfant à l'Adulte (CARAMMEL), University Hospital of Bordeaux, France.
| | - Chloé Angelini
- Neurogenetic Reference Centre, Medical Genetic Service, University Hospital of Bordeaux, France; Medical Genetics Department, University Hospital of Bordeaux, France; University of Bordeaux, CNRS, INCIA, UMR 5287, NRGen Team, F-33000 Bordeaux, France
| | - Christelle M Durand
- Neurogenetic Reference Centre, Medical Genetic Service, University Hospital of Bordeaux, France; Medical Genetics Department, University Hospital of Bordeaux, France; University of Bordeaux, CNRS, INCIA, UMR 5287, NRGen Team, F-33000 Bordeaux, France
| | | | - Armelle Courreges
- Reference Centre: Maladies Mitochondriales de l'Enfant à l'Adulte (CARAMMEL), University Hospital of Bordeaux, France; Pathology Department, University Hospital of Bordeaux, France
| | - Elodie Dumon
- INSERM U1211, Rare Diseases: Genetics and Metabolism (MRGM), Bordeaux University, France; Reference Centre: Maladies Mitochondriales de l'Enfant à l'Adulte (CARAMMEL), University Hospital of Bordeaux, France
| | - Mégane Le Quang
- Pathology Department, University Hospital of Bordeaux, France
| | - Cyril Goizet
- Neurogenetic Reference Centre, Medical Genetic Service, University Hospital of Bordeaux, France; Medical Genetics Department, University Hospital of Bordeaux, France; University of Bordeaux, CNRS, INCIA, UMR 5287, NRGen Team, F-33000 Bordeaux, France
| | | | - Rodrigue Rossignol
- INSERM U1211, Rare Diseases: Genetics and Metabolism (MRGM), Bordeaux University, France; Reference Centre: Maladies Mitochondriales de l'Enfant à l'Adulte (CARAMMEL), University Hospital of Bordeaux, France; CELLOMET, Bordeaux, France
| | - Didier Lacombe
- INSERM U1211, Rare Diseases: Genetics and Metabolism (MRGM), Bordeaux University, France; Reference Centre: Maladies Mitochondriales de l'Enfant à l'Adulte (CARAMMEL), University Hospital of Bordeaux, France; Medical Genetics Department, University Hospital of Bordeaux, France; CELLOMET, Bordeaux, France
| | - Isabelle Coupry
- University of Bordeaux, CNRS, INCIA, UMR 5287, NRGen Team, F-33000 Bordeaux, France
| | - Aurélien Trimouille
- INSERM U1211, Rare Diseases: Genetics and Metabolism (MRGM), Bordeaux University, France; Reference Centre: Maladies Mitochondriales de l'Enfant à l'Adulte (CARAMMEL), University Hospital of Bordeaux, France; Pathology Department, University Hospital of Bordeaux, France
| |
Collapse
|
35
|
Fang C, Peng Z, Sang Y, Ren Z, Ding H, Yuan H, Hu K. Copper in Cancer: from transition metal to potential target. Hum Cell 2024; 37:85-100. [PMID: 37751026 DOI: 10.1007/s13577-023-00985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
In recent years, with the continuous in-depth exploration of the molecular mechanisms of tumorigenesis, numerous potential new targets for cancer treatment have been identified, some of which have been further developed in clinical practice and have produced positive outcomes. Notably, researchers' initial motivation for studying copper metabolism in cancer stems from the fact that copper is a necessary trace element for organisms and is closely connected to body growth and metabolism. Moreover, over the past few decades, considerable progress has been made in understanding the molecular processes and correlations between copper and cancer. Certain achievements have been made in the development and use of relevant clinical medications. The concept of "cuproptosis," a novel concept that differs from previous forms of cell death, was first proposed by a group of scientists last year, offering fresh perspectives on the targeting capabilities of copper in the treatment of cancer. In this review, we introduced the fundamental physiological functions of copper, the key components of copper metabolism, and a summary of the current research contributions on the connection between copper and cancer. In addition, the development of new copper-based nanomaterials and their associated mechanisms of action are discussed. Finally, we described how the susceptibility of cancer cells to this metallic nutrition could be leveraged to further improve the existing cancer treatment paradigm in the new setting.
Collapse
Affiliation(s)
- Can Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Zhiwei Peng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Yaru Sang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zihao Ren
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Huiming Ding
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Haibo Yuan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Kongwang Hu
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, China.
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
36
|
Safari C, Ghosh S, Andersson R, Johannesson J, Båth P, Uwangue O, Dahl P, Zoric D, Sandelin E, Vallejos A, Nango E, Tanaka R, Bosman R, Börjesson P, Dunevall E, Hammarin G, Ortolani G, Panman M, Tanaka T, Yamashita A, Arima T, Sugahara M, Suzuki M, Masuda T, Takeda H, Yamagiwa R, Oda K, Fukuda M, Tosha T, Naitow H, Owada S, Tono K, Nureki O, Iwata S, Neutze R, Brändén G. Time-resolved serial crystallography to track the dynamics of carbon monoxide in the active site of cytochrome c oxidase. SCIENCE ADVANCES 2023; 9:eadh4179. [PMID: 38064560 PMCID: PMC10708180 DOI: 10.1126/sciadv.adh4179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Cytochrome c oxidase (CcO) is part of the respiratory chain and contributes to the electrochemical membrane gradient in mitochondria as well as in many bacteria, as it uses the energy released in the reduction of oxygen to pump protons across an energy-transducing biological membrane. Here, we use time-resolved serial femtosecond crystallography to study the structural response of the active site upon flash photolysis of carbon monoxide (CO) from the reduced heme a3 of ba3-type CcO. In contrast with the aa3-type enzyme, our data show how CO is stabilized on CuB through interactions with a transiently ordered water molecule. These results offer a structural explanation for the extended lifetime of the CuB-CO complex in ba3-type CcO and, by extension, the extremely high oxygen affinity of the enzyme.
Collapse
Affiliation(s)
- Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Rebecka Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Jonatan Johannesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Owens Uwangue
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Peter Dahl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Doris Zoric
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Emil Sandelin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Adams Vallejos
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Per Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Elin Dunevall
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Greger Hammarin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Giorgia Ortolani
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Matthijs Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Ayumi Yamashita
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Toshi Arima
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Mamoru Suzuki
- Laboratory of Supramolecular Crystallography, Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Tetsuya Masuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Hanae Takeda
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Raika Yamagiwa
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Kazumasa Oda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masahiro Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hisashi Naitow
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| |
Collapse
|
37
|
Yi J, Qi B, Yin J, Li R, Chen X, Hu J, Li G, Zhang S, Zhang Y, Yang M. Molecular basis for the catalytic mechanism of human neutral sphingomyelinases 1 (hSMPD2). Nat Commun 2023; 14:7755. [PMID: 38012235 PMCID: PMC10682184 DOI: 10.1038/s41467-023-43580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Enzymatic breakdown of sphingomyelin by sphingomyelinase (SMase) is the main source of the membrane lipids, ceramides, which are involved in many cellular physiological processes. However, the full-length structure of human neutral SMase has not been resolved; therefore, its catalytic mechanism remains unknown. Here, we resolve the structure of human full-length neutral SMase, sphingomyelinase 1 (SMPD2), which reveals that C-terminal transmembrane helices contribute to dimeric architecture of hSMPD2 and that D111 - K116 loop domain is essential for substrate hydrolysis. Coupled with molecular docking, we clarify the binding pose of sphingomyelin, and site-directed mutagenesis further confirms key residues responsible for sphingomyelin binding. Hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamic (MD) simulations are utilized to elaborate the catalysis of hSMPD2 with the reported in vitro substrates, sphingomyelin and lyso-platelet activating fator (lyso-PAF). Our study provides mechanistic details that enhance our knowledge of lipid metabolism and may lead to an improved understanding of ceramide in disease and in cancer treatment.
Collapse
Affiliation(s)
- Jingbo Yi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Boya Qi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian Yin
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ruochong Li
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xudong Chen
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junhan Hu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Cryo-EM Facility Center, Southern University of Science & Technology, Shenzhen, China.
| |
Collapse
|
38
|
Nieto-Panqueva F, Rubalcava-Gracia D, Hamel PP, González-Halphen D. The constraints of allotopic expression. Mitochondrion 2023; 73:30-50. [PMID: 37739243 DOI: 10.1016/j.mito.2023.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Allotopic expression is the functional transfer of an organellar gene to the nucleus, followed by synthesis of the gene product in the cytosol and import into the appropriate organellar sub compartment. Here, we focus on mitochondrial genes encoding OXPHOS subunits that were naturally transferred to the nucleus, and critically review experimental evidence that claim their allotopic expression. We emphasize aspects that may have been overlooked before, i.e., when modifying a mitochondrial gene for allotopic expression━besides adapting the codon usage and including sequences encoding mitochondrial targeting signals━three additional constraints should be considered: (i) the average apparent free energy of membrane insertion (μΔGapp) of the transmembrane stretches (TMS) in proteins earmarked for the inner mitochondrial membrane, (ii) the final, functional topology attained by each membrane-bound OXPHOS subunit; and (iii) the defined mechanism by which the protein translocator TIM23 sorts cytosol-synthesized precursors. The mechanistic constraints imposed by TIM23 dictate the operation of two pathways through which alpha-helices in TMS are sorted, that eventually determine the final topology of membrane proteins. We used the biological hydrophobicity scale to assign an average apparent free energy of membrane insertion (μΔGapp) and a "traffic light" color code to all TMS of OXPHOS membrane proteins, thereby predicting which are more likely to be internalized into mitochondria if allotopically produced. We propose that the design of proteins for allotopic expression must make allowance for μΔGapp maximization of highly hydrophobic TMS in polypeptides whose corresponding genes have not been transferred to the nucleus in some organisms.
Collapse
Affiliation(s)
- Felipe Nieto-Panqueva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Rubalcava-Gracia
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico; Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrice P Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA; Vellore Institute of Technology (VIT), School of BioScience and Technology, Vellore, Tamil Nadu, India
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
39
|
Shim D, Han J. Coordination chemistry of mitochondrial copper metalloenzymes: exploring implications for copper dyshomeostasis in cell death. BMB Rep 2023; 56:575-583. [PMID: 37915136 PMCID: PMC10689082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Mitochondria, fundamental cellular organelles that govern energy metabolism, hold a pivotal role in cellular vitality. While consuming dioxygen to produce adenosine triphosphate (ATP), the electron transfer process within mitochondria can engender the formation of reactive oxygen species that exert dual roles in endothelial homeostatic signaling and oxidative stress. In the context of the intricate electron transfer process, several metal ions that include copper, iron, zinc, and manganese serve as crucial cofactors in mitochondrial metalloenzymes to mediate the synthesis of ATP and antioxidant defense. In this mini review, we provide a comprehensive understanding of the coordination chemistry of mitochondrial cuproenzymes. In detail, cytochrome c oxidase (CcO) reduces dioxygen to water coupled with proton pumping to generate an electrochemical gradient, while superoxide dismutase 1 (SOD1) functions in detoxifying superoxide into hydrogen peroxide. With an emphasis on the catalytic reactions of the copper metalloenzymes and insights into their ligand environment, we also outline the metalation process of these enzymes throughout the copper trafficking system. The impairment of copper homeostasis can trigger mitochondrial dysfunction, and potentially lead to the development of copper-related disorders. We describe the current knowledge regarding copper-mediated toxicity mechanisms, thereby shedding light on prospective therapeutic strategies for pathologies intertwined with copper dyshomeostasis. [BMB Reports 2023; 56(11): 575-583].
Collapse
Affiliation(s)
- Daeun Shim
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
40
|
Shim D, Han J. Coordination chemistry of mitochondrial copper metalloenzymes: exploring implications for copper dyshomeostasis in cell death. BMB Rep 2023; 56:575-583. [PMID: 37915136 PMCID: PMC10689082 DOI: 10.5483/bmbrep.2023-0172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 02/11/2025] Open
Abstract
Mitochondria, fundamental cellular organelles that govern energy metabolism, hold a pivotal role in cellular vitality. While consuming dioxygen to produce adenosine triphosphate (ATP), the electron transfer process within mitochondria can engender the formation of reactive oxygen species that exert dual roles in endothelial homeostatic signaling and oxidative stress. In the context of the intricate electron transfer process, several metal ions that include copper, iron, zinc, and manganese serve as crucial cofactors in mitochondrial metalloenzymes to mediate the synthesis of ATP and antioxidant defense. In this mini review, we provide a comprehensive understanding of the coordination chemistry of mitochondrial cuproenzymes. In detail, cytochrome c oxidase (CcO) reduces dioxygen to water coupled with proton pumping to generate an electrochemical gradient, while superoxide dismutase 1 (SOD1) functions in detoxifying superoxide into hydrogen peroxide. With an emphasis on the catalytic reactions of the copper metalloenzymes and insights into their ligand environment, we also outline the metalation process of these enzymes throughout the copper trafficking system. The impairment of copper homeostasis can trigger mitochondrial dysfunction, and potentially lead to the development of copper-related disorders. We describe the current knowledge regarding copper-mediated toxicity mechanisms, thereby shedding light on prospective therapeutic strategies for pathologies intertwined with copper dyshomeostasis. [BMB Reports 2023; 56(11): 575-583].
Collapse
Affiliation(s)
- Daeun Shim
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
41
|
Khalfaoui-Hassani B, Blaby-Haas CE, Verissimo A, Daldal F. The Escherichia coli MFS-type transporter genes yhjE, ydiM, and yfcJ are required to produce an active bo3 quinol oxidase. PLoS One 2023; 18:e0293015. [PMID: 37862358 PMCID: PMC10588857 DOI: 10.1371/journal.pone.0293015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023] Open
Abstract
Heme-copper oxygen reductases are membrane-bound oligomeric complexes that are integral to prokaryotic and eukaryotic aerobic respiratory chains. Biogenesis of these enzymes is complex and requires coordinated assembly of the subunits and their cofactors. Some of the components are involved in the acquisition and integration of different heme and copper (Cu) cofactors into these terminal oxygen reductases. As such, MFS-type transporters of the CalT family (e.g., CcoA) are required for Cu import and heme-CuB center biogenesis of the cbb3-type cytochrome c oxidases (cbb3-Cox). However, functionally homologous Cu transporters for similar heme-Cu containing bo3-type quinol oxidases (bo3-Qox) are unknown. Despite the occurrence of multiple MFS-type transporters, orthologs of CcoA are absent in bacteria like Escherichia coli that contain bo3-Qox. In this work, we identified a subset of uncharacterized MFS transporters, based on the presence of putative metal-binding residues, as likely candidates for the missing Cu transporter. Using a genetic approach, we tested whether these transporters are involved in the biogenesis of E. coli bo3-Qox. When respiratory growth is dependent on bo3-Qox, because of deletion of the bd-type Qox enzymes, three candidate genes, yhjE, ydiM, and yfcJ, were found to be critical for E. coli growth. Radioactive metal uptake assays showed that ΔydiM has a slower 64Cu uptake, whereas ΔyhjE accumulates reduced 55Fe in the cell, while no similar uptake defect is associated with ΔycfJ. Phylogenomic analyses suggest plausible roles for the YhjE, YdiM, and YfcJ transporters, and overall findings illustrate the diverse roles that the MFS-type transporters play in cellular metal homeostasis and production of active heme-Cu oxygen reductases.
Collapse
Affiliation(s)
- Bahia Khalfaoui-Hassani
- Université de Pau et des Pays de l’Adour, E2S UPPA, IPREM, UMR CNRS, Pau, France
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Crysten E. Blaby-Haas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
- Lawrence Berkeley National Laboratory, The Molecular Foundry, Berkeley, CA, United States of America
| | - Andreia Verissimo
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
- bioMT-Institute for Biomolecular Targeting, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
42
|
Keller A, Tang X, Bruce JE. Integrated Analysis of Cross-Links and Dead-End Peptides for Enhanced Interpretation of Quantitative XL-MS. J Proteome Res 2023; 22:2900-2908. [PMID: 37552582 PMCID: PMC10866149 DOI: 10.1021/acs.jproteome.3c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Chemical cross-linking with mass spectrometry provides low-resolution structural information on proteins in cells and tissues. Combined with quantitation, it can identify changes in the interactome between samples, for example, control and drug-treated cells or young and old mice. A difference can originate from protein conformational changes that alter the solvent-accessible distance separating the cross-linked residues. Alternatively, a difference can result from conformational changes localized to the cross-linked residues, for example, altering the solvent exposure or reactivity of those residues or post-translational modifications of the cross-linked peptides. In this manner, cross-linking is sensitive to a variety of protein conformational features. Dead-end peptides are cross-links attached only at one end to a protein with the other terminus being hydrolyzed. As a result, changes in their abundance reflect only conformational changes localized to the attached residue. For this reason, analyzing both quantified cross-links and their corresponding dead-end peptides can help elucidate the likely conformational changes giving rise to observed differences in cross-link abundance. We describe analysis of dead-end peptides in the XLinkDB public cross-link database and, with quantified mitochondrial data isolated from failing heart versus healthy mice, show how a comparison of abundance ratios between cross-links and their corresponding dead-end peptides can be leveraged to reveal possible conformational explanations.
Collapse
Affiliation(s)
- Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105 ,United States
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105 ,United States
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105 ,United States
| |
Collapse
|
43
|
Chu YD, Chen CW, Lai MW, Lim SN, Lin WR. Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly. World J Gastroenterol 2023; 29:4499-4527. [PMID: 37621758 PMCID: PMC10445009 DOI: 10.3748/wjg.v29.i29.4499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Cancer cells exhibit metabolic reprogramming and bioenergetic alteration, utilizing glucose fermentation for energy production, known as the Warburg effect. However, there are a lack of comprehensive reviews summarizing the metabolic reprogramming, bioenergetic alteration, and their oncogenetic links in gastrointestinal (GI) cancers. Furthermore, the efficacy and treatment potential of emerging anticancer drugs targeting these alterations in GI cancers require further evaluation. This review highlights the interplay between aerobic glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) in cancer cells, as well as hypotheses on the molecular mechanisms that trigger this alteration. The role of hypoxia-inducible transcription factors, tumor suppressors, and the oncogenetic link between hypoxia-related enzymes, bioenergetic changes, and GI cancer are also discussed. This review emphasizes the potential of targeting bioenergetic regulators for anti-cancer therapy, particularly for GI cancers. Emphasizing the potential of targeting bioenergetic regulators for GI cancer therapy, the review categorizes these regulators into aerobic glycolysis/ lactate biosynthesis/transportation and TCA cycle/coupled OXPHOS. We also detail various anti-cancer drugs and strategies that have produced pre-clinical and/or clinical evidence in treating GI cancers, as well as the challenges posed by these drugs. Here we highlight that understanding dysregulated cancer cell bioenergetics is critical for effective treatments, although the diverse metabolic patterns present challenges for targeted therapies. Further research is needed to comprehend the specific mechanisms of inhibiting bioenergetic enzymes, address side effects, and leverage high-throughput multi-omics and spatial omics to gain insights into cancer cell heterogeneity for targeted bioenergetic therapies.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chun-Wei Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
44
|
Chapleau A, Boucher RM, Pastinen T, Thiffault I, Gould PV, Bernard G. Neuropathological characterization of the cavitating leukoencephalopathy caused by COA8 cytochrome c oxidase deficiency: a case report. Front Cell Neurosci 2023; 17:1216487. [PMID: 37601282 PMCID: PMC10436302 DOI: 10.3389/fncel.2023.1216487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
COA8-related leukoencephalopathy is a recently described rare cavitating leukoencephalopathy caused by biallelic variants in the COA8 gene. Clinically, it presents heterogeneously and usually follows a bi-phasic clinical course with a period of acute onset and regression, followed by stabilization, and in some cases, even subtle improvement. We present a 4-year-old boy with a homozygous 2.5 kilobase pair deletion in the COA8 gene following a severe neurological deterioration resulting in death weeks after onset. Brain MRI revealed a distinctive pattern of cavitating leukodystrophy predominantly involving the posterior cerebral white matter which improved upon a follow-up MRI a month later. Brain pathology displayed overall white matter destruction with gliosis and infiltration by macrophages. There was preservation of astrocytes around blood vessels and axons around the zones of demyelination. This study is the first neuropathological examination of COA8-related leukoencephalopathy and provides further characterization of the clinical and MRI phenotype.
Collapse
Affiliation(s)
- Alexandra Chapleau
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Renée-Myriam Boucher
- Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC, Canada
| | - Tomi Pastinen
- Genomic Medicine Center, Children’s Mercy Hospital, Kansas City, MO, United States
- Kansas City School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Isabelle Thiffault
- Genomic Medicine Center, Children’s Mercy Hospital, Kansas City, MO, United States
- Kansas City School of Medicine, University of Missouri, Kansas City, MO, United States
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital, Kansas City, MO, United States
| | - Peter V. Gould
- Service d’anatomopathologie Hôpital de l’Enfant-Jésus du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Geneviève Bernard
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
45
|
Anderson AJ, Crameri JJ, Ang C, Malcolm TR, Kang Y, Baker MJ, Palmer CS, Sharpe AJ, Formosa LE, Ganio K, Baker MJ, McDevitt CA, Ryan MT, Maher MJ, Stojanovski D. Human Tim8a, Tim8b and Tim13 are auxiliary assembly factors of mature Complex IV. EMBO Rep 2023; 24:e56430. [PMID: 37272231 PMCID: PMC10398661 DOI: 10.15252/embr.202256430] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Human Tim8a and Tim8b are paralogous intermembrane space proteins of the small TIM chaperone family. Yeast small TIMs function in the trafficking of proteins to the outer and inner mitochondrial membranes. This putative import function for hTim8a and hTim8b has been challenged in human models, but their precise molecular function(s) remains undefined. Likewise, the necessity for human cells to encode two Tim8 proteins and whether any potential redundancy exists is unclear. We demonstrate that hTim8a and hTim8b function in the assembly of cytochrome c oxidase (Complex IV). Using affinity enrichment mass spectrometry, we define the interaction network of hTim8a, hTim8b and hTim13, identifying subunits and assembly factors of the Complex IV COX2 module. hTim8-deficient cells have a COX2 and COX3 module defect and exhibit an accumulation of the Complex IV S2 subcomplex. These data suggest that hTim8a and hTim8b function in assembly of Complex IV via interactions with intermediate-assembly subcomplexes. We propose that hTim8-hTim13 complexes are auxiliary assembly factors involved in the formation of the Complex IV S3 subcomplex during assembly of mature Complex IV.
Collapse
Affiliation(s)
- Alexander J Anderson
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Jordan J Crameri
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Ching‐Seng Ang
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Tess R Malcolm
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
- School of ChemistryThe University of MelbourneParkvilleVicAustralia
| | - Yilin Kang
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Megan J Baker
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Catherine S Palmer
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Alice J Sharpe
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVicAustralia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVicAustralia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVicAustralia
| | - Michael J Baker
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVicAustralia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVicAustralia
| | - Megan J Maher
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
- School of ChemistryThe University of MelbourneParkvilleVicAustralia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVicAustralia
| | - Diana Stojanovski
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| |
Collapse
|
46
|
Jacobs HT. A century of mitochondrial research, 1922-2022. Enzymes 2023; 54:37-70. [PMID: 37945177 DOI: 10.1016/bs.enz.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Although recognized earlier as subcellular entities by microscopists, mitochondria have been the subject of functional studies since 1922, when their biochemical similarities with bacteria were first noted. In this overview I trace the history of research on mitochondria from that time up to the present day, focussing on the major milestones of the overlapping eras of mitochondrial biochemistry, genetics, pathology and cell biology, and its explosion into new areas in the past 25 years. Nowadays, mitochondria are considered to be fully integrated into cell physiology, rather than serving specific functions in isolation.
Collapse
Affiliation(s)
- Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Department of Environment and Genetics, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
47
|
Chen Y, Zhou W, Xia Y, Zhang W, Zhao Q, Li X, Gao H, Liang Z, Ma G, Yang K, Zhang L, Zhang Y. Targeted cross-linker delivery for the in situ mapping of protein conformations and interactions in mitochondria. Nat Commun 2023; 14:3882. [PMID: 37391416 PMCID: PMC10313818 DOI: 10.1038/s41467-023-39485-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/15/2023] [Indexed: 07/02/2023] Open
Abstract
Current methods for intracellular protein analysis mostly require the separation of specific organelles or changes to the intracellular environment. However, the functions of proteins are determined by their native microenvironment as they usually form complexes with ions, nucleic acids, and other proteins. Here, we show a method for in situ cross-linking and analysis of mitochondrial proteins in living cells. By using the poly(lactic-co-glycolic acid) (PLGA) nanoparticles functionalized with dimethyldioctadecylammonium bromide (DDAB) to deliver protein cross-linkers into mitochondria, we subsequently analyze the cross-linked proteins using mass spectrometry. With this method, we identify a total of 74 pairs of protein-protein interactions that do not exist in the STRING database. Interestingly, our data on mitochondrial respiratory chain proteins ( ~ 94%) are also consistent with the experimental or predicted structural analysis of these proteins. Thus, we provide a promising technology platform for in situ defining protein analysis in cellular organelles under their native microenvironment.
Collapse
Affiliation(s)
- Yuwan Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weijie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xinwei Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kaiguang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
48
|
Salman AA, Goldring JPD. Expression and copper binding studies of a Plasmodium falciparum protein with Cox19 copper binding motifs. Exp Parasitol 2023:108572. [PMID: 37348640 DOI: 10.1016/j.exppara.2023.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Copper can exist in an oxidized and a reduced form, which enables the metal to play essential roles as a catalytic co-factor in redox reactions in many organisms. Copper confers redox activity to the terminal electron transport chain cytochrome c oxidase protein. Cytochrome c oxidase in yeast obtains copper for the CuB site in the Cox1 subunit from Cox11 in association with Cox19. When copper is chelated in growth medium, Plasmodium falciparum parasite development in infected red blood cells is inhibited and excess copper is toxic for the parasite. The gene of a 26 kDa Plasmodium falciparum PfCox19 protein with two Cx9C Cox19 copper binding motifs, was cloned and expressed as a 66 kDa fusion protein with maltose binding protein and affinity purified (rMBP-PfCox19). rMBP-PfCox19 bound copper measured by: a bicinchoninic acid release assay; an in vivo bacterial host growth inhibition assay; ascorbate oxidation inhibition and differential scanning fluorimetry. The native protein was detected by antibodies raised against rMBP-PfCox19. PfCox19 binds copper and is predicted to associate with PfCox11 in the insertion of copper into the CuB site of Plasmodium cytochrome c oxidase. Characterisation of the proteins involved in Plasmodium spp. copper metabolism will help us understand the role of cytochrome c oxidase and this essential metal in Plasmodium homeostasis.
Collapse
Affiliation(s)
| | - J P Dean Goldring
- Biochemistry, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa.
| |
Collapse
|
49
|
Leonard RA, Tian Y, Tan F, van Dooren GG, Hayward JA. An essential role for an Fe-S cluster protein in the cytochrome c oxidase complex of Toxoplasma parasites. PLoS Pathog 2023; 19:e1011430. [PMID: 37262100 PMCID: PMC10263302 DOI: 10.1371/journal.ppat.1011430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/13/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023] Open
Abstract
The mitochondrial electron transport chain (ETC) of apicomplexan parasites differs considerably from the ETC of the animals that these parasites infect, and is the target of numerous anti-parasitic drugs. The cytochrome c oxidase complex (Complex IV) of the apicomplexan Toxoplasma gondii ETC is more than twice the mass and contains subunits not found in human Complex IV, including a 13 kDa protein termed TgApiCox13. TgApiCox13 is homologous to a human iron-sulfur (Fe-S) cluster-containing protein called the mitochondrial inner NEET protein (HsMiNT) which is not a component of Complex IV in humans. Here, we establish that TgApiCox13 is a critical component of Complex IV in T. gondii, required for complex activity and stability. Furthermore, we demonstrate that TgApiCox13, like its human homolog, binds two Fe-S clusters. We show that the Fe-S clusters of TgApiCox13 are critical for ETC function, having an essential role in mediating Complex IV integrity. Our study provides the first functional characterisation of an Fe-S protein in Complex IV.
Collapse
Affiliation(s)
- Rachel A. Leonard
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yuan Tian
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Feng Tan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Giel G. van Dooren
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jenni A. Hayward
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
50
|
Ghifari AS, Saha S, Murcha MW. The biogenesis and regulation of the plant oxidative phosphorylation system. PLANT PHYSIOLOGY 2023; 192:728-747. [PMID: 36806687 DOI: 10.1093/plphys/kiad108] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 06/01/2023]
Abstract
Mitochondria are central organelles for respiration in plants. At the heart of this process is oxidative phosphorylation (OXPHOS) system, which generates ATP required for cellular energetic needs. OXPHOS complexes comprise of multiple subunits that originated from both mitochondrial and nuclear genome, which requires careful orchestration of expression, translation, import, and assembly. Constant exposure to reactive oxygen species due to redox activity also renders OXPHOS subunits to be more prone to oxidative damage, which requires coordination of disassembly and degradation. In this review, we highlight the composition, assembly, and activity of OXPHOS complexes in plants based on recent biochemical and structural studies. We also discuss how plants regulate the biogenesis and turnover of OXPHOS subunits and the importance of OXPHOS in overall plant respiration. Further studies in determining the regulation of biogenesis and activity of OXPHOS will advances the field, especially in understanding plant respiration and its role to plant growth and development.
Collapse
Affiliation(s)
- Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Saurabh Saha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| |
Collapse
|