1
|
Faa G, Pichiri G, Coni P, Dessì A, Fraschini M, Fanos V. They will be famous: Multipotent stem cells in breast milk. World J Clin Pediatr 2025; 14:101080. [PMID: 40491730 PMCID: PMC11947875 DOI: 10.5409/wjcp.v14.i2.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 03/18/2025] Open
Abstract
Breast milk represents the gold standard for neonatal nutrition, especially for preterm and term infants with a low birthweight. This awareness is based not only on the nutritional properties of human milk, which is specifically designed for the growth of humans but also on breast milk's non-nutritional properties, such as protection against infection. In fact, breast milk should be considered a heterogeneous ecosystem, including a wide range of cells in addition to those involved in immune function; growth factors, such as vascular endothelial growth factor; multiple noncoding microRNAs; immune cells; epithelial cells and multipotent mesenchymal stem cells. This recent identification of a pool of progenitor stem cells in human milk is the driving force behind the growing research aimed at identifying the nature of these stem/progenitor cells and their sources.
Collapse
Affiliation(s)
- Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari 09100, Sardegna, Italy
| | - Giuseppina Pichiri
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari 09100, Sardegna, Italy
| | - Pierpaolo Coni
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari 09100, Sardegna, Italy
| | - Angelica Dessì
- Department of Surgical Sciences, University of Cagliari, Cagliari 09100, Sardegna, Italy
| | - Matteo Fraschini
- Department of Ingegneria Elettrica ed Elettronica, University of Cagliari, Cagliari 09100, Sardegna, Italy
| | - Vassilios Fanos
- Department of Surgical Sciences, AOU and University of Cagliari, Neonatal Intensive Care Unit, Monserrato 09042, Italy
| |
Collapse
|
2
|
Koopmans T, van Rooij E. Molecular gatekeepers of endogenous adult mammalian cardiomyocyte proliferation. Nat Rev Cardiol 2025:10.1038/s41569-025-01145-y. [PMID: 40195566 DOI: 10.1038/s41569-025-01145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Irreversible cardiac fibrosis, cardiomyocyte death and chronic cardiac dysfunction after myocardial infarction pose a substantial global health-care challenge, with no curative treatments available. To regenerate the injured heart, cardiomyocytes must proliferate to replace lost myocardial tissue - a capability that adult mammals have largely forfeited to adapt to the demanding conditions of life. Using various preclinical models, our understanding of cardiomyocyte proliferation has progressed remarkably, leading to the successful reactivation of cell cycle induction in adult animals, with functional recovery after cardiac injury. Central to this success is the targeting of key pathways and structures that drive cardiomyocyte maturation after birth - nucleation and ploidy, sarcomere structure, developmental signalling, chromatin and epigenetic regulation, the microenvironment and metabolic maturation - forming a complex regulatory framework that allows efficient cellular contraction but restricts cardiomyocyte proliferation. In this Review, we explore the molecular pathways underlying these core mechanisms and how their manipulation can reactivate the cell cycle in cardiomyocytes, potentially contributing to cardiac repair.
Collapse
Affiliation(s)
- Tim Koopmans
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands.
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
3
|
Yang L, Yu XX, Wang X, Jin CT, Xu CR. The expression order determines the pioneer functions of NGN3 and NEUROD1 in pancreatic endocrine differentiation. SCIENCE ADVANCES 2025; 11:eadt4770. [PMID: 40138419 PMCID: PMC11939047 DOI: 10.1126/sciadv.adt4770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
Pioneer transcription factors (TFs) initiate chromatin remodeling, which is crucial for gene regulation and cell differentiation. In this study, we investigated how the sequential expression of neurogenin 3 (NGN3) and NEUROD1 affects their pioneering functions during pancreatic endocrine differentiation. Using a genetically engineered mouse model, we mapped NGN3-binding sites, confirming the pivotal role of this molecule in regulating chromatin accessibility. The pioneering function of NGN3 involves dose tolerance, and low doses are sufficient. Although NEUROD1 generally acts as a conventional TF, it can assume a pioneering role in the absence of NGN3. The sequential expression of NeuroD1 and Ngn3 predominantly drives α cell generation, which may explain the inefficient β cell induction observed in vitro. Our findings demonstrate that pioneer activity is dynamically shaped by temporal TF expression and inter-TF interactions, providing insights into transcriptional regulation and its implications for disease mechanisms and therapeutic targeting and enhancing in vitro differentiation strategies.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin-Xin Yu
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Chen-Tao Jin
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Cheng-Ran Xu
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Pun R, Thapa A, Takafuji SR, Suzuki RM, Kay GF, Howard TD, Kim MH, North BJ. BubR1 Controls Heart Development by Promoting Expression of Cardiogenesis Regulators. J Am Heart Assoc 2025; 14:e038286. [PMID: 40055864 DOI: 10.1161/jaha.124.038286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Congenital heart defects are structural anomalies present at birth that can affect the function of the heart. Aneuploidy is a significant risk factor for congenital heart defects. Mosaic variegated aneuploidy syndrome, caused by mutations in Bub1b (encoding BubR1, a mitotic checkpoint protein), leads to congenital heart defects such as septal defects. However, the molecular rationale for how Bub1b mutations promote congenital heart defects associated with mosaic variegated aneuploidy syndrome remains unresolved. METHODS To study morphological, structural, and cellular consequences of BubR1 deletion in the heart, we crossed mice carrying conditional alleles of Bub1b with Nkx2.5-cre mice. Single-cell RNA sequencing was carried out to determine differentially expressed genes and biological processes in various cell types present in the developing heart. Trajectory analysis was carried out to determine the differentiation trajectory of BubR1 knockout embryonic hearts. Finally, CellChat analysis provided details on the major signaling interactions that were either absent or hyperactive in the BubR1 knockout heart. RESULTS Here, we show that cardiac-specific BubR1 deletion causes embryonic lethality due to developmental stalling after cardiac looping with defects in cardiac maturation including chamber wall thickness, septation, and trabeculation. Single-cell transcriptomic profiling further revealed that the differentiation trajectory of cardiomyocytes is severely impacted with suppression of critical cardiogenesis genes. Hyperactivation of Wnt signaling in BubR1 knockout hearts indicated a disturbed homeostasis in cellular pathways essential for proper tissue morphogenesis of the heart. CONCLUSIONS Taken together, these findings reveal that BubR1 is a crucial regulator of cardiac development in vivo, which ensures the proper timing of heart morphogenesis.
Collapse
Affiliation(s)
- Renju Pun
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| | - Aradhana Thapa
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| | - Sylar R Takafuji
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| | - Rexton M Suzuki
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| | - Gabrielle F Kay
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| | - Toni D Howard
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| | - Michael H Kim
- CHI Heart Institute and Department of Medicine Creighton University School of Medicine Omaha NE USA
| | - Brian J North
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| |
Collapse
|
5
|
Orlovsky K, Appel E, Hantisteanu S, Olender T, Lotem J, Levanon D, Groner Y. Runx3, Brn3a and Isl1 interplay orchestrates the transcriptional program in the early stages of proprioceptive neuron development. PLoS Genet 2024; 20:e1011401. [PMID: 39715266 PMCID: PMC11729954 DOI: 10.1371/journal.pgen.1011401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/13/2025] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND The development and diversification of sensory proprioceptive neurons, which reside in the dorsal root ganglia (DRG) and express the tropomyosin receptor kinase C (TrkC), depend on the transcription factor (TF) Runx3. Runx3-deficient mice develop severe limb ataxia due to TrkC neuron cell death. Two additional TFs Pou4f1 (also called Brn3a) and Isl1 also play an important role in sensory neuron development. Thus, we aimed to unravel the chromatin state of early-developing TrkC neurons and decipher the Runx3 high-confidence target genes (HCT) and the possible cooperation between Runx3, Brn3a and Isl1 in the regulation of these genes. METHODS Runx3 expression is driven by the gene proximal P2 promoter. Transcriptome analysis was conducted by RNA-seq on RNA isolated from heterozygous (P2+/-) vs. homozygous (P2-/-) TrkC neurons and differentially expressed genes (DEGs) were determined. Genome-wide occupancy of Runx3, Brn3a, Isl1 and histone H3 acetylated on lysine 27 (H3K27Ac) was determined using CUT&RUN. The landscape of Transposase-accessible chromatin was analyzed via ATAC-seq. FINDINGS The intersection of Runx3 genomic occupancy-associated genes and DEG data discovered 244 Runx3 HCT. Brn3a and Isl1 were found to bind to numerous genomic loci, some of which overlapped with Runx3. Most genomic regions bound by each of these three TFs or co-bound by them resided in distantly located enhancer regions rather than in gene promoters. In activated and suppressed neuronal Runx3 HCT, Runx3 cooperated mainly with Brn3a to regulate expression through distantly located enhancers. Interestingly, suppression of non-neuronal immune genes was mainly managed via Runx3 without Brn3a. The distribution of ATAC and H3K27Ac marked regions in Runx3 peaks containing at least one RUNX binding site (Runx3_RBS) revealed that while most promoter regions were marked by ATAC, a prominent fraction of intron/intergenic regions occupied by Runx3, Brn3a or Isl1 were unmarked by ATAC and/or H3K27Ac. CONCLUSIONS These analyses shed new light on the interplay of Runx3, Brn3a, Isl1, and open chromatin regions in regulating the Runx3 HCT in the early developmental stages of TrkC neurons.
Collapse
Affiliation(s)
- Kira Orlovsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Appel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shay Hantisteanu
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Joseph Lotem
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ditsa Levanon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoram Groner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Stougiannou TM, Christodoulou KC, Karangelis D. In Vitro Models of Cardiovascular Disease: Embryoid Bodies, Organoids and Everything in Between. Biomedicines 2024; 12:2714. [PMID: 39767621 PMCID: PMC11726960 DOI: 10.3390/biomedicines12122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Cardiovascular disease comprises a group of disorders affecting or originating within tissues and organs of the cardiovascular system; most, if not all, will eventually result in cardiomyocyte dysfunction or death, negatively impacting cardiac function. Effective models of cardiac disease are thus important for understanding crucial aspects of disease progression, while recent advancements in stem cell biology have allowed for the use of stem cell populations to derive such models. These include three-dimensional (3D) models such as stem cell-based models of embryos (SCME) as well as organoids, many of which are frequently derived from embryoid bodies (EB). Not only can they recapitulate 3D form and function, but the developmental programs governing the self-organization of cell populations into more complex tissues as well. Many different organoids and SCME constructs have been generated in recent years to recreate cardiac tissue and the complex developmental programs that give rise to its cellular composition and unique tissue morphology. It is thus the purpose of this narrative literature review to describe and summarize many of the recently derived cardiac organoid models as well as their use for the recapitulation of genetic and acquired disease. Owing to the cellular composition of the models examined, this review will focus on disease and tissue injury associated with embryonic/fetal tissues.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, Democritus University of Thrace University General Hospital, 68100 Alexandroupolis, Greece; (K.C.C.); (D.K.)
| | | | | |
Collapse
|
7
|
Li L, Li D, Wang J, Dai Y. Single-cell RNA sequencing reveals key regulators and differentiation trajectory of iPSC-derived cardiomyocytes. Sci Rep 2024; 14:29268. [PMID: 39587160 PMCID: PMC11589621 DOI: 10.1038/s41598-024-79488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
Cardiac differentiation of human pluripotent stem cells is not only a new strategy of regenerative therapy for cardiovascular disease treatment but also provides unique opportunities for the study of in vitro disease models and human heart development. To elucidate the dynamic gene regulatory networks and pivotal regulators involved in the cardiomyocyte differentiation process, we conducted an analysis of single-cell RNA sequencing data obtained from the reprogramming of two human induced pluripotent stem cell (iPSC) lines into cardiomyocytes. The data were collected from 32,365 cells at 4 stages of this process. We successfully identified cardiomyocyte clusters and several other cell clusters with different molecular characteristics derived from iPSC and described the differentiation trajectory of cardiomyocytes during differentiation in vitro. Through differential gene analysis and SCENIC analysis, we identified several candidate genes including CREG and NR2F2 that play an important regulatory role in cardiomyocyte lineage commitment. This study provides the key differentiation trajectory of heart differentiation in vitro at single-cell resolution and reveals the molecular basis of heart development and differentiation of iPSC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Lu Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Dandan Li
- Experimental Center, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, 518118, Guangdong, China
| | - Jiahong Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Yong Dai
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, Anhui, China.
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
8
|
Bolesani E, Bornhorst D, Iyer LM, Zawada D, Friese N, Morgan M, Lange L, Gonzalez DM, Schrode N, Leffler A, Wunder J, Franke A, Drakhlis L, Sebra R, Schambach A, Goedel A, Dubois NC, Dobreva G, Moretti A, Zelaráyan LC, Abdelilah-Seyfried S, Zweigerdt R. Transient stabilization of human cardiovascular progenitor cells from human pluripotent stem cells in vitro reflects stage-specific heart development in vivo. Cardiovasc Res 2024; 120:1295-1311. [PMID: 38836637 DOI: 10.1093/cvr/cvae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/11/2024] [Accepted: 04/06/2024] [Indexed: 06/06/2024] Open
Abstract
AIMS Understanding the molecular identity of human pluripotent stem cell (hPSC)-derived cardiac progenitors and mechanisms controlling their proliferation and differentiation is valuable for developmental biology and regenerative medicine. METHODS AND RESULTS Here, we show that chemical modulation of histone acetyl transferases (by IQ-1) and WNT (by CHIR99021) synergistically enables the transient and reversible block of directed cardiac differentiation progression on hPSCs. The resulting stabilized cardiovascular progenitors (SCPs) are characterized by ISL1pos/KI-67pos/NKX2-5neg expression. In the presence of the chemical inhibitors, SCPs maintain a proliferation quiescent state. Upon small molecules, removal SCPs resume proliferation and concomitant NKX2-5 up-regulation triggers cell-autonomous differentiation into cardiomyocytes. Directed differentiation of SCPs into the endothelial and smooth muscle lineages confirms their full developmental potential typical of bona fide cardiovascular progenitors. Single-cell RNA-sequencing-based transcriptional profiling of our in vitro generated human SCPs notably reflects the dynamic cellular composition of E8.25-E9.25 posterior second heart field of mouse hearts, hallmarked by nuclear receptor sub-family 2 group F member 2 expression. Investigating molecular mechanisms of SCP stabilization, we found that the cell-autonomously regulated retinoic acid and BMP signalling is governing SCP transition from quiescence towards proliferation and cell-autonomous differentiation, reminiscent of a niche-like behaviour. CONCLUSION The chemically defined and reversible nature of our stabilization approach provides an unprecedented opportunity to dissect mechanisms of cardiovascular progenitors' specification and reveal their cellular and molecular properties.
Collapse
Affiliation(s)
- Emiliano Bolesani
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Dorothee Bornhorst
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Lavanya M Iyer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Nina Friese
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - David M Gonzalez
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nadine Schrode
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Julian Wunder
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Annika Franke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Lika Drakhlis
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Robert Sebra
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Alexander Goedel
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Nicole C Dubois
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gergana Dobreva
- Department of Anatomy and Developmental Biology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Laura C Zelaráyan
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
9
|
Zhu Z, Zou Q, Wang C, Li D, Yang Y, Xiao Y, Jin Y, Yan J, Luo L, Sun Y, Liang X. Isl Identifies the Extraembryonic Mesodermal/Allantois Progenitors and is Required for Placenta Morphogenesis and Vasculature Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400238. [PMID: 38923264 PMCID: PMC11348239 DOI: 10.1002/advs.202400238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Indexed: 06/28/2024]
Abstract
The placenta links feto-maternal circulation for exchanges of nutrients, gases, and metabolic wastes between the fetus and mother, being essential for pregnancy process and maintenance. The allantois and mesodermal components of amnion, chorion, and yolk sac are derived from extraembryonic mesoderm (Ex-Mes), however, the mechanisms contributing to distinct components of the placenta and regulation the interactions between allantois and epithelium during chorioallantoic fusion and labyrinth formation remains unclear. Isl1 is expressed in progenitors of the Ex-Mes and allantois the Isl1 mut mouse line is analyzed to investigate contribution of Isl1+ Ex-Mes / allantoic progenitors to cells of the allantois and placenta. This study shows that Isl1 identifies the Ex-Mes progenitors for endothelial and vascular smooth muscle cells, and most of the mesenchymal cells of the placenta and umbilical cord. Deletion of Isl1 causes defects in allantois growth, chorioallantoic fusion, and placenta vessel morphogenesis. RNA-seq and CUT&Tag analyses revealed that Isl1 promotes allantoic endothelial, inhibits mesenchymal cell differentiation, and allantoic signals regulated by Isl1 mediating the inductive interactions between the allantois and chorion critical for chorionic epithelium differentiation, villous formation, and labyrinth angiogenesis. This study above reveals that Isl1 plays roles in regulating multiple genetic and epigenetic pathways of vascular morphogenesis, provides the insight into the mechanisms for placental formation, highlighting the necessity of Isl1 for placenta formation/pregnant maintenance.
Collapse
Affiliation(s)
- Zeyue Zhu
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Qicheng Zou
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Chunxiao Wang
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Dixi Li
- Department of Hematology, Tongji HospitalTongji University School of MedicineShanghai200120China
| | - Yan Yang
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Ying Xiao
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Yao Jin
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Jie Yan
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Lina Luo
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Yunfu Sun
- Shanghai East HospitalTongji University School of Medicine150 Jimo RoadShanghai200120China
| | - Xingqun Liang
- Shanghai East HospitalTongji University School of Medicine150 Jimo RoadShanghai200120China
| |
Collapse
|
10
|
Oh J, Kwon OB, Park SW, Kim JW, Lee H, Kim YK, Choi EJ, Jung H, Choi DK, Oh BJ, Min SH. Advancing Cardiovascular Drug Screening Using Human Pluripotent Stem Cell-Derived Cardiomyocytes. Int J Mol Sci 2024; 25:7971. [PMID: 39063213 PMCID: PMC11277421 DOI: 10.3390/ijms25147971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as a promising tool for studying cardiac physiology and drug responses. However, their use is largely limited by an immature phenotype and lack of high-throughput analytical methodology. In this study, we developed a high-throughput testing platform utilizing hPSC-CMs to assess the cardiotoxicity and effectiveness of drugs. Following an optimized differentiation and maturation protocol, hPSC-CMs exhibited mature CM morphology, phenotype, and functionality, making them suitable for drug testing applications. We monitored intracellular calcium dynamics using calcium imaging techniques to measure spontaneous calcium oscillations in hPSC-CMs in the presence or absence of test compounds. For the cardiotoxicity test, hPSC-CMs were treated with various compounds, and calcium flux was measured to evaluate their effects on calcium dynamics. We found that cardiotoxic drugs withdrawn due to adverse drug reactions, including encainide, mibefradil, and cetirizine, exhibited toxicity in hPSC-CMs but not in HEK293-hERG cells. Additionally, in the effectiveness test, hPSC-CMs were exposed to ATX-II, a sodium current inducer for mimicking long QT syndrome type 3, followed by exposure to test compounds. The observed changes in calcium dynamics following drug exposure demonstrated the utility of hPSC-CMs as a versatile model system for assessing both cardiotoxicity and drug efficacy. Overall, our findings highlight the potential of hPSC-CMs in advancing drug discovery and development, which offer a physiologically relevant platform for the preclinical screening of novel therapeutics.
Collapse
Affiliation(s)
- Jisun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Oh-Bin Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Sang-Wook Park
- Department of Oral Biochemistry, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Jun-Woo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Heejin Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Young-Kyu Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Eun Ji Choi
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (E.J.C.); (H.J.)
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (E.J.C.); (H.J.)
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Dong Kyu Choi
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Bae Jun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Sang-Hyun Min
- Department of Innovative Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
11
|
Qi K, Cao F, Wang J, Wang Y, Li G. miR-652-3p Suppressed the Protective Effects of Isoflurane Against Myocardial Injury in Hypoxia/Reoxygenation by Targeting ISL1. Cardiovasc Toxicol 2024; 24:646-655. [PMID: 38801481 DOI: 10.1007/s12012-024-09870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
This research is concentrated on investigating the role and mechanism of miR-652-3p in the protective effects of isoflurane (ISO) against myocardial ischemia-reperfusion (I/R) injury. H9c2 cells underwent pretreatment with varying concentrations of ISO, and subsequently, a hypoxia/reoxygenation (H/R) model was constructed. The levels of miR-652-3p, ISL LIM homeobox 1 (ISL1), and inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) were evaluated through reverse transcription polymerase chain reaction (RT-qPCR). Enzyme-linked immunosorbent assay was employed to investigate concentrations of myocardial injury markers, such as creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI). Cell counting kit-8 was used to evaluate cell viability, while flow cytometry was utilized to measure apoptosis. Additionally, a dual luciferase reporter assay was conducted to validate the targeting relationship between ISL1 and miR-652-3p. Herein, we confirmed that the level of miR-652-3p was gradually increased with prolonged hypoxia; nevertheless, this increase was suppressed by ISO pretreatment (P < 0.05). Additionally, ISO pretreatment prevented the decrease in cell viability, increase in apoptosis, and overproduction of IL-6, TNF-α, CK-MB, and cTnI induced by H/R (P < 0.05). However, the inhibitory effects of ISO were counteracted by the increased levels of miR-652-3p (P < 0.05). ISL1 is a potential target of miR-652-3p. H/R induction suppressed ISL1 levels compared to the control, but ISO treatment increased its expression (P < 0.05). Overexpression of ISL1 inhibited the elimination of the protective effect of ISO on myocardial damage induced by the elevation of miR-652-3p (P < 0.05). The findings of this research confirm that miR-652-3p attenuated the protective effect of ISO on cardiomyocytes in myocardial ischemia by targeting ISL1.
Collapse
Affiliation(s)
- Kaikai Qi
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, 366, Taishan Street, Taishan District, Taian, 271000, Shandong, China
| | - Fang Cao
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Jing Wang
- Operating Room, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Yu Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, 366, Taishan Street, Taishan District, Taian, 271000, Shandong, China
| | - Guohua Li
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, 366, Taishan Street, Taishan District, Taian, 271000, Shandong, China.
| |
Collapse
|
12
|
Hou X, Fan W, Zeng J, Gao Z, Wan J, Liao B. Generation of a ISL1 homozygous knockout stem cell line (WAe009-A-1G) by episomal vector-based CRISPR/Cas9 system. Stem Cell Res 2024; 76:103376. [PMID: 38452706 DOI: 10.1016/j.scr.2024.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/20/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024] Open
Abstract
The ISL LIM homeobox 1 (ISL1) gene belongs to the LIM/homeodomain transcription factor family and plays a pivotal role in conveying multipotent and proliferative properties of cardiac precursor cells. Mutations in ISL1 are linked to congenital heart disease. To further explore ISL1's role in the human heart, we have created a homozygous ISL1 knockout (ISL1-KO) human embryonic stem cell line using the CRISPR/Cas9 system. Notably, this ISL1-KO cell line retains normal morphology, pluripotency, and karyotype. This resource serves as a valuable tool for investigating ISL1's function in cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Xiaojie Hou
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Fan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou 646000, PR China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Jun Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Zhen Gao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100069, PR China
| | - Juyi Wan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou 646000, PR China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, PR China.
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou 646000, PR China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, PR China.
| |
Collapse
|
13
|
Chen R, Zhang G, Sun K, Chen AF. Aging-Associated ALKBH5-m 6A Modification Exacerbates Doxorubicin-Induced Cardiomyocyte Apoptosis Via AT-Rich Interaction Domain 2. J Am Heart Assoc 2024; 13:e031353. [PMID: 38156523 PMCID: PMC10863816 DOI: 10.1161/jaha.123.031353] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Chemotherapy-induced cardiovascular disease is a growing concern in the elderly population who have survived cancer, yet the underlying mechanism remains poorly understood. We investigated the role of ALKBH5 (AlkB homolog 5), a primary N6-methyladenosine (m6A) demethylase, and its involvement in m6A methylation-mediated regulation of targets in aging-associated doxorubicin-induced cardiotoxicity. METHODS AND RESULTS To validate the relationship between doxorubicin-induced cardiotoxicity and aging, we established young and old male mouse models. ALKBH5 expression was modulated through adeno-associated virus 9 (in vivo), Lentivirus, and siRNAs (in vitro) to examine its impact on cardiomyocyte m6A modification, doxorubicin-induced cardiac dysfunction, and remodeling. We performed mRNA sequencing, methylated RNA immunoprecipitation sequencing, and molecular assays to unravel the mechanism of ALKBH5-m6A modification in doxorubicin-induced cardiotoxicity. Our data revealed an age-dependent increase in doxorubicin-induced cardiac dysfunction, remodeling, and injury. ALKBH5 expression was elevated in aging mouse hearts, leading to reduced global m6A modification levels. Through mRNA sequencing and methylated RNA immunoprecipitation sequencing analyses, we identified ARID2 (AT-rich interaction domain 2) as the downstream effector of ALKBH5-m6A modulation in cardiomyocytes. Further investigations revealed that ARID2 modulates DNA damage response and enhances doxorubicin-induced cardiomyocyte apoptosis. CONCLUSIONS Our findings provide insights into the role of ALKBH5-m6A modification in modulating doxorubicin-induced cardiac dysfunction, remodeling, and cardiomyocyte apoptosis in male mice. These results highlight the potential of ALKBH5-targeted treatments for elderly patients with cancer in clinical settings.
Collapse
Affiliation(s)
- Runtai Chen
- Center for Vascular Disease and Translational MedicineThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of CardiologyThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Guogang Zhang
- Center for Vascular Disease and Translational MedicineThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of CardiologyThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Kun Sun
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Alex F. Chen
- Center for Vascular Disease and Translational MedicineThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of CardiologyThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
14
|
Gouhier A, Dumoulin-Gagnon J, Lapointe-Roberge V, Harris J, Balsalobre A, Drouin J. Pioneer factor Pax7 initiates two-step cell-cycle-dependent chromatin opening. Nat Struct Mol Biol 2024; 31:92-101. [PMID: 38177665 DOI: 10.1038/s41594-023-01152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/16/2023] [Indexed: 01/06/2024]
Abstract
Pioneer transcription factors direct cell differentiation by deploying new enhancer repertoires through their unique ability to target and initiate remodelling of closed chromatin. The initial steps of their action remain undefined, although pioneers have been shown to interact with nucleosomal target DNA and with some chromatin-remodeling complexes. We now define the sequence of events that enables the pioneer Pax7 with its unique abilities. Chromatin condensation exerted by linker histone H1 is the first constraint on Pax7 recruitment, and this establishes the initial speed of chromatin remodeling. The first step of pioneer action involves recruitment of the KDM1A (LSD1) H3K9me2 demethylase for removal of this repressive mark, as well as recruitment of the MLL complex for deposition of the activating H3K4me1 mark. Further progression of pioneer action requires passage through cell division, and this involves dissociation of pioneer targets from perinuclear lamin B. Only then are the SWI-SNF remodeling complex and the coactivator p300 recruited, leading to nucleosome displacement and enhancer activation. Thus, the unique features of pioneer actions are those occurring in the lamin-associated compartment of the nucleus. This model is consistent with previous work that showed a dependence on cell division for establishment of new cell fates.
Collapse
Affiliation(s)
- Arthur Gouhier
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM) Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Justine Dumoulin-Gagnon
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM) Montreal, Quebec, Canada
| | - Vincent Lapointe-Roberge
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM) Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Juliette Harris
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM) Montreal, Quebec, Canada
| | - Aurelio Balsalobre
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM) Montreal, Quebec, Canada
| | - Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM) Montreal, Quebec, Canada.
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
He X, Dutta S, Liang J, Paul C, Huang W, Xu M, Chang V, Ao I, Wang Y. Direct cellular reprogramming techniques for cardiovascular regenerative therapeutics. Can J Physiol Pharmacol 2024; 102:1-13. [PMID: 37903419 DOI: 10.1139/cjpp-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Cardiovascular diseases remain a leading cause of hospitalization affecting approximately 38 million people worldwide. While pharmacological and revascularization techniques can improve the patient's survival and quality of life, they cannot help reversing myocardial infarction injury and heart failure. Direct reprogramming of somatic cells to cardiomyocyte and cardiac progenitor cells offers a new approach to cellular reprogramming and paves the way for translational regenerative medicine. Direct reprogramming can bypass the pluripotent stage with the potential advantage of non-immunogenic cell products, reduced carcinogenic risk, and no requirement for embryonic tissue. The process of directly reprogramming cardiac cells was first achieved through the overexpression of transcription factors such as GATA4, MEF2C, and TBX5. However, over the past decade, significant work has been focused on enhancing direct reprogramming using a mixture of transcription factors, microRNAs, and small molecules to achieve cardiac cell fate. This review discusses the evolution of direct reprogramming, recent progress in achieving efficient cardiac cell fate conversion, and describes the reprogramming mechanisms at a molecular level. We also explore various viral and non-viral delivery methods currently being used to aid in the delivery of reprogramming factors to improve efficiency. However, further studies will be needed to overcome molecular and epigenetic barriers to successfully achieve translational cardiac regenerative therapeutics.
Collapse
Affiliation(s)
- Xingyu He
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Suchandrima Dutta
- Department of Internal MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Jialiang Liang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Christian Paul
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Wei Huang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Meifeng Xu
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Vivian Chang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Ian Ao
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Yigang Wang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| |
Collapse
|
16
|
Dobreva G, Heineke J. Inter- and Intracellular Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:271-294. [PMID: 38884717 DOI: 10.1007/978-3-031-44087-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiovascular diseases, both congenital and acquired, are the leading cause of death worldwide, associated with significant health consequences and economic burden. Due to major advances in surgical procedures, most patients with congenital heart disease (CHD) survive into adulthood but suffer from previously unrecognized long-term consequences, such as early-onset heart failure. Therefore, understanding the molecular mechanisms resulting in heart defects and the lifelong complications due to hemodynamic overload are of utmost importance. Congenital heart disease arises in the first trimester of pregnancy, due to defects in the complex morphogenetic patterning of the heart. This process is coordinated through a complicated web of intercellular communication between the epicardium, the endocardium, and the myocardium. In the postnatal heart, similar crosstalk between cardiomyocytes, endothelial cells, and fibroblasts exists during pathological hemodynamic overload that emerges as a consequence of a congenital heart defect. Ultimately, communication between cells triggers the activation of intracellular signaling circuits, which allow fine coordination of cardiac development and function. Here, we review the inter- and intracellular signaling mechanisms in the heart as they were discovered mainly in genetically modified mice.
Collapse
Affiliation(s)
- Gergana Dobreva
- ECAS (European Center for Angioscience), Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, Mannheim, Germany.
- German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/Mannheim, Germany.
| | - Joerg Heineke
- German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/Mannheim, Germany.
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
17
|
Buckingham M, Kelly RG. Cardiac Progenitor Cells of the First and Second Heart Fields. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:103-124. [PMID: 38884707 DOI: 10.1007/978-3-031-44087-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The heart forms from the first and second heart fields, which contribute to distinct regions of the myocardium. This is supported by clonal analyses, which identify corresponding first and second cardiac cell lineages in the heart. Progenitor cells of the second heart field and its sub-domains are controlled by a gene regulatory network and signaling pathways, which determine their behavior. Multipotent cells in this field can also contribute cardiac endothelial and smooth muscle cells. Furthermore, the skeletal muscles of the head and neck are clonally related to myocardial cells that form the arterial and venous poles of the heart. These lineage relationships, together with the genes that regulate the heart fields, have major implications for congenital heart disease.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, Paris, France.
| | - Robert G Kelly
- Aix Marseille Université, Institut de Biologie du Dévelopment de Marseille, Marseille, France.
| |
Collapse
|
18
|
Shafi O, Siddiqui G, Jaffry HA. The benign nature and rare occurrence of cardiac myxoma as a possible consequence of the limited cardiac proliferative/ regenerative potential: a systematic review. BMC Cancer 2023; 23:1245. [PMID: 38110859 PMCID: PMC10726542 DOI: 10.1186/s12885-023-11723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| | - Hassam A Jaffry
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
19
|
Katano W, Mori S, Sasaki S, Tajika Y, Tomita K, Takeuchi JK, Koshiba-Takeuchi K. Sall1 and Sall4 cooperatively interact with Myocd and SRF to promote cardiomyocyte proliferation by regulating CDK and cyclin genes. Development 2023; 150:dev201913. [PMID: 38014633 DOI: 10.1242/dev.201913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Sall1 and Sall4 (Sall1/4), zinc-finger transcription factors, are expressed in the progenitors of the second heart field (SHF) and in cardiomyocytes during the early stages of mouse development. To understand the function of Sall1/4 in heart development, we generated heart-specific Sall1/4 functionally inhibited mice by forced expression of the truncated form of Sall4 (ΔSall4) in the heart. The ΔSall4-overexpression mice exhibited a hypoplastic right ventricle and outflow tract, both of which were derived from the SHF, and a thinner ventricular wall. We found that the numbers of proliferative SHF progenitors and cardiomyocytes were reduced in ΔSall4-overexpression mice. RNA-sequencing data showed that Sall1/4 act upstream of the cyclin-dependent kinase (CDK) and cyclin genes, and of key transcription factor genes for the development of compact cardiomyocytes, including myocardin (Myocd) and serum response factor (Srf). In addition, ChIP-sequencing and co-immunoprecipitation analyses revealed that Sall4 and Myocd form a transcriptional complex with SRF, and directly bind to the upstream regulatory regions of the CDK and cyclin genes (Cdk1 and Ccnb1). These results suggest that Sall1/4 are critical for the proliferation of cardiac cells via regulation of CDK and cyclin genes that interact with Myocd and SRF.
Collapse
Affiliation(s)
- Wataru Katano
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Shunta Mori
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Shun Sasaki
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Yuki Tajika
- Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1, Kamioki-machi, Maebashi, Gunma 371-0052, Japan
| | - Koichi Tomita
- Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Jun K Takeuchi
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan
| | - Kazuko Koshiba-Takeuchi
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| |
Collapse
|
20
|
Schmidt C, Deyett A, Ilmer T, Haendeler S, Torres Caballero A, Novatchkova M, Netzer MA, Ceci Ginistrelli L, Mancheno Juncosa E, Bhattacharya T, Mujadzic A, Pimpale L, Jahnel SM, Cirigliano M, Reumann D, Tavernini K, Papai N, Hering S, Hofbauer P, Mendjan S. Multi-chamber cardioids unravel human heart development and cardiac defects. Cell 2023; 186:5587-5605.e27. [PMID: 38029745 DOI: 10.1016/j.cell.2023.10.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/31/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
The number one cause of human fetal death are defects in heart development. Because the human embryonic heart is inaccessible and the impacts of mutations, drugs, and environmental factors on the specialized functions of different heart compartments are not captured by in vitro models, determining the underlying causes is difficult. Here, we established a human cardioid platform that recapitulates the development of all major embryonic heart compartments, including right and left ventricles, atria, outflow tract, and atrioventricular canal. By leveraging 2D and 3D differentiation, we efficiently generated progenitor subsets with distinct first, anterior, and posterior second heart field identities. This advance enabled the reproducible generation of cardioids with compartment-specific in vivo-like gene expression profiles, morphologies, and functions. We used this platform to unravel the ontogeny of signal and contraction propagation between interacting heart chambers and dissect how mutations, teratogens, and drugs cause compartment-specific defects in the developing human heart.
Collapse
Affiliation(s)
- Clara Schmidt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Alison Deyett
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Tobias Ilmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; FH Campus Wien, Favoritenstraße 226, 1100 Vienna, Austria
| | - Simon Haendeler
- Center for Integrative Bioinformatics Vienna, Max Perutz Laboratories, University of Vienna, Medical University of Vienna, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Aranxa Torres Caballero
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter, 1030 Vienna, Austria
| | - Michael A Netzer
- Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Lavinia Ceci Ginistrelli
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Estela Mancheno Juncosa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Tanishta Bhattacharya
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Amra Mujadzic
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Lokesh Pimpale
- HeartBeat.bio AG, Dr. Bohr Gasse 7, 1030 Vienna, Austria
| | - Stefan M Jahnel
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Martina Cirigliano
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Daniel Reumann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Katherina Tavernini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Nora Papai
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Steffen Hering
- Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Pablo Hofbauer
- HeartBeat.bio AG, Dr. Bohr Gasse 7, 1030 Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
21
|
Edwards W, Bussey OK, Conlon FL. The Tbx20-TLE interaction is essential for the maintenance of the second heart field. Development 2023; 150:dev201677. [PMID: 37756602 PMCID: PMC10629681 DOI: 10.1242/dev.201677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
T-box transcription factor 20 (Tbx20) plays a multifaceted role in cardiac morphogenesis and controls a broad gene regulatory network. However, the mechanism by which Tbx20 activates and represses target genes in a tissue-specific and temporal manner remains unclear. Studies show that Tbx20 directly interacts with the Transducin-like Enhancer of Split (TLE) family of proteins to mediate transcriptional repression. However, a function for the Tbx20-TLE transcriptional repression complex during heart development has yet to be established. We created a mouse model with a two amino acid substitution in the Tbx20 EH1 domain, thereby disrupting the Tbx20-TLE interaction. Disruption of this interaction impaired crucial morphogenic events, including cardiac looping and chamber formation. Transcriptional profiling of Tbx20EH1Mut hearts and analysis of putative direct targets revealed misexpression of the retinoic acid pathway and cardiac progenitor genes. Further, we show that altered cardiac progenitor development and function contribute to the severe cardiac defects in our model. Our studies indicate that TLE-mediated repression is a primary mechanism by which Tbx20 controls gene expression.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Olivia K. Bussey
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frank L. Conlon
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Stathopoulou A, Wang P, Thellier C, Kelly RG, Zheng D, Scambler PJ. CHARGE syndrome-associated CHD7 acts at ISL1-regulated enhancers to modulate second heart field gene expression. Cardiovasc Res 2023; 119:2089-2105. [PMID: 37052590 PMCID: PMC10478754 DOI: 10.1093/cvr/cvad059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/20/2022] [Accepted: 04/12/2023] [Indexed: 04/14/2023] Open
Abstract
AIMS Haploinsufficiency of the chromo-domain protein CHD7 underlies most cases of CHARGE syndrome, a multisystem birth defect including congenital heart malformation. Context specific roles for CHD7 in various stem, progenitor, and differentiated cell lineages have been reported. Previously, we showed severe defects when Chd7 is absent from cardiopharyngeal mesoderm (CPM). Here, we investigate altered gene expression in the CPM and identify specific CHD7-bound target genes with known roles in the morphogenesis of affected structures. METHODS AND RESULTS We generated conditional KO of Chd7 in CPM and analysed cardiac progenitor cells using transcriptomic and epigenomic analyses, in vivo expression analysis, and bioinformatic comparisons with existing datasets. We show CHD7 is required for correct expression of several genes established as major players in cardiac development, especially within the second heart field (SHF). We identified CHD7 binding sites in cardiac progenitor cells and found strong association with histone marks suggestive of dynamically regulated enhancers during the mesodermal to cardiac progenitor transition of mESC differentiation. Moreover, CHD7 shares a subset of its target sites with ISL1, a pioneer transcription factor in the cardiogenic gene regulatory network, including one enhancer modulating Fgf10 expression in SHF progenitor cells vs. differentiating cardiomyocytes. CONCLUSION We show that CHD7 interacts with ISL1, binds ISL1-regulated cardiac enhancers, and modulates gene expression across the mesodermal heart fields during cardiac morphogenesis.
Collapse
Affiliation(s)
- Athanasia Stathopoulou
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | | | - Robert G Kelly
- Aix-Marseille University, CNRS UMR 7288, IBDM, Marseille, France
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Neurology and Neurosciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter J Scambler
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
23
|
Liu Q, Liu X, Wang G, Wu F, Hou Y, Liu H. Genome-wide DNA methylation analysis of Astragalus and Danshen on the intervention of myofibroblast activation in idiopathic pulmonary fibrosis. BMC Pulm Med 2023; 23:325. [PMID: 37667288 PMCID: PMC10478235 DOI: 10.1186/s12890-023-02601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF), a chronic progressive interstitial lung disease of unknown etiology, is characterized by continuous damage to alveolar epithelial cells, abnormal repair of alveolar tissue, and alveolar wall scar formation. Currently, the recommended treatment for IPF in Western medicine is relatively limited. In contrast, traditional Chinese medicine and compound prescriptions show advantages in the diagnosis and treatment of IPF, which can be attributed to their multi-channel and multi-target characteristics and minimal side-effects. The purpose of this study was to further corroborate the effectiveness and significance of the traditional Chinese medications Astragalus and Danshen in IPF treatment. METHODS We performed whole-genome methylation analysis on nine rat lung tissue samples to determine the epigenetic variation between IPF and non-fibrotic lungs using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and quantitative reverse transcription polymerase chain reactions. RESULTS We identified differentially methylated regions and 105 associated key functional genes in samples related to IPF and Chinese medicine treatment. Based on the methylation levels and gene expression profiles between the Chinese medicine intervention and pulmonary fibrosis model groups, we speculated that Astragalus and Salvia miltiorrhiza (traditionally known as Danshen) act on the Isl1, forkhead box O3, and Sonic hedgehog genes via regulation at transcriptional and epigenetic levels during IPF. CONCLUSIONS These findings provide novel insights into the epigenetic regulation of IPF, indicate the effectiveness of Astragalus and Danshen in treating IPF, and suggest several promising therapeutic targets for preventing and treating IPF.
Collapse
Affiliation(s)
- Qingyin Liu
- Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, University Science Park, Changqing District, Jinan City, 250355, China
| | - Xue Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jing Shi Road, Jinan City, 250013, China
| | - Guoyu Wang
- Capital Medical University, No. 10, Xizhang Road, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Fan Wu
- Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, University Science Park, Changqing District, Jinan City, 250355, China
| | - Yuan Hou
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jing Shi Road, Jinan City, 250013, China
| | - Huaman Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jing Shi Road, Jinan City, 250013, China.
| |
Collapse
|
24
|
Velichkova G, Dobreva G. Human pluripotent stem cell-based models of heart development and disease. Cells Dev 2023; 175:203857. [PMID: 37257755 DOI: 10.1016/j.cdev.2023.203857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/16/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
The heart is a complex organ composed of distinct cell types, such as cardiomyocytes, cardiac fibroblasts, endothelial cells, smooth muscle cells, neuronal cells and immune cells. All these cell types contribute to the structural, electrical and mechanical properties of the heart. Genetic manipulation and lineage tracing studies in mice have been instrumental in gaining critical insights into the networks regulating cardiac cell lineage specification, cell fate and plasticity. Such knowledge has been of fundamental importance for the development of efficient protocols for the directed differentiation of pluripotent stem cells (PSCs) in highly specialized cardiac cell types. In this review, we summarize the evolution and current advances in protocols for cardiac subtype specification, maturation, and assembly in cardiac microtissues and organoids.
Collapse
Affiliation(s)
- Gabriel Velichkova
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Centre for Cardiovascular Research (DZHK), Germany.
| |
Collapse
|
25
|
Alzamrooni A, Mendes Vieira P, Murciano N, Wolton M, Schubert FR, Robson SC, Dietrich S. Cardiac competence of the paraxial head mesoderm fades concomitant with a shift towards the head skeletal muscle programme. Dev Biol 2023; 501:39-59. [PMID: 37301464 DOI: 10.1016/j.ydbio.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
The vertebrate head mesoderm provides the heart, the great vessels, some smooth and most head skeletal muscle, in addition to parts of the skull. It has been speculated that the ability to generate cardiac and smooth muscle is the evolutionary ground-state of the tissue. However, whether indeed the entire head mesoderm has generic cardiac competence, how long this may last, and what happens as cardiac competence fades, is not clear. Bone morphogenetic proteins (Bmps) are known to promote cardiogenesis. Using 41 different marker genes in the chicken embryo, we show that the paraxial head mesoderm that normally does not engage in cardiogenesis has the ability to respond to Bmp for a long time. However, Bmp signals are interpreted differently at different time points. Up to early head fold stages, the paraxial head mesoderm is able to read Bmps as signal to engage in the cardiac programme; the ability to upregulate smooth muscle markers is retained slightly longer. Notably, as cardiac competence fades, Bmp promotes the head skeletal muscle programme instead. The switch from cardiac to skeletal muscle competence is Wnt-independent as Wnt caudalises the head mesoderm and also suppresses Msc-inducing Bmp provided by the prechordal plate, thus suppressing both the cardiac and the head skeletal muscle programmes. Our study for the first time suggests a specific transition state in the embryo when cardiac competence is replaced by skeletal muscle competence. It sets the stage to unravel the cardiac-skeletal muscle antagonism that is known to partially collapse in heart failure.
Collapse
Affiliation(s)
- Afnan Alzamrooni
- Institute of Biological and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Petra Mendes Vieira
- Institute of Biological and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Nicoletta Murciano
- Institute of Biological and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK; Nanion Technologies GmbH, Ganghoferstr. 70A, DE - 80339, München, Germany; Saarland University, Theoretical Medicine and Biosciences, Kirrbergerstr. 100, DE - 66424, Homburg, Germany
| | - Matthew Wolton
- Institute of Biological and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Frank R Schubert
- Institute of Biological and Biomedical Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Samuel C Robson
- Institute of Biological and Biomedical Sciences, Faculty of Science & Health, University of Portsmouth, Portsmouth, UK
| | - Susanne Dietrich
- Institute of Biological and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
26
|
Zhuang XX, Liu T, Wei LB, Gao JR. Construction of chronic glomerulonephritis‑related lncRNA‑mRNA regulatory network and lncRNA‑-miRNA‑mRNA ceRNA network by bioinformatics analysis. Exp Ther Med 2023; 26:403. [PMID: 37522060 PMCID: PMC10375445 DOI: 10.3892/etm.2023.12102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/16/2023] [Indexed: 08/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are ncRNA transcripts >200 nucleotides that are important genetic regulators. LncRNAs can directly regulate mRNA through a lncRNA-mRNA regulatory mode and can also regulate mRNA through competitive binding to micro (mi)RNA, which is generally known as the competitive endogenous RNA (ceRNA) network. The present study evaluated the functional roles and regulatory networks of lncRNAs in chronic glomerulonephritis (CGN). The proliferative ability of mouse glomerular mesangial cells (GMCs) induced by different concentrations of lipopolysaccharide (LPS) was assessed using the Cell Counting Kit-8 assay, and RNA sequencing (RNA-seq) was performed to identify differentially expressed lncRNAs in LPS-induced GMCs. Based on the sequencing results, six lncRNAs were selected for validation using reverse transcription-quantitative PCR (RT-qPCR). Furthermore, the lncRNA-mRNA regulatory network and the lncRNA-miRNA-mRNA ceRNA network were constructed to assess the role and mechanism of CGN-related lncRNAs. To elucidate the biological functions of lncRNAs, Gene Ontology (GO) biological process term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on all mRNAs involved in the lncRNA-mRNA regulatory network and in the ceRNA network. A total of 1,532 differentially expressed lncRNAs, including 594 upregulated lncRNAs and 938 downregulated lncRNAs, were identified using RNA-seq. The results of RT-qPCR validation were consistent with RNA-seq results. An lncRNA-mRNA regulatory network, including 236 lncRNAs and 556 mRNAs, and a ceRNA network, including 6 lncRNAs, 18 miRNAs and 419 mRNAs, were successfully constructed. The GO biological process term enrichment and KEGG pathway enrichment analyses demonstrated that those lncRNAs were often related to inflammatory response and substance metabolism. The present study identified key CGN-related lncRNAs in LPS-induced GMCs, and further demonstrated a global view of the lncRNA-mRNA regulatory network and ceRNA network involved in CGN. These results offered novel insights into the roles of lncRNAs in the pathogenesis of CGN and identified potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Xing-Xing Zhuang
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, Chaohu, Anhui 238000, P.R. China
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Tao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Liang-Bing Wei
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Jia-Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| |
Collapse
|
27
|
Astrof S, Arriagada C, Saijoh Y, Francou A, Kelly RG, Moon A. Aberrant differentiation of second heart field mesoderm prefigures cellular defects in the outflow tract in response to loss of FGF8. Dev Biol 2023; 499:10-21. [PMID: 37060937 PMCID: PMC10686765 DOI: 10.1016/j.ydbio.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
Development of the outflow tract of the heart requires specification, proliferation and deployment of a progenitor cell population from the second heart field to generate the myocardium at the arterial pole of the heart. Disruption of these processes leads to lethal defects in rotation and septation of the outflow tract. We previously showed that Fibroblast Growth Factor 8 (FGF8) directs a signaling cascade in the second heart field that regulates critical aspects of OFT morphogenesis. Here we show that in addition to the survival and proliferation cues previously described, FGF8 provides instructive and patterning information to OFT myocardial cells and their progenitors that prevents their aberrant differentiation along a working myocardial program.
Collapse
Affiliation(s)
- Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Cecilia Arriagada
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Yukio Saijoh
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Alexandre Francou
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Anne Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT, USA; The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
28
|
Plaisance I, Chouvardas P, Sun Y, Nemir M, Aghagolzadeh P, Aminfar F, Shen S, Shim WJ, Rochais F, Johnson R, Palpant N, Pedrazzini T. A transposable element into the human long noncoding RNA CARMEN is a switch for cardiac precursor cell specification. Cardiovasc Res 2023; 119:1361-1376. [PMID: 36537036 PMCID: PMC10262180 DOI: 10.1093/cvr/cvac191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 03/25/2024] Open
Abstract
AIMS The major cardiac cell types composing the adult heart arise from common multipotent precursor cells. Cardiac lineage decisions are guided by extrinsic and cell-autonomous factors, including recently discovered long noncoding RNAs (lncRNAs). The human lncRNA CARMEN, which is known to dictate specification toward the cardiomyocyte (CM) and the smooth muscle cell (SMC) fates, generates a diversity of alternatively spliced isoforms. METHODS AND RESULTS The CARMEN locus can be manipulated to direct human primary cardiac precursor cells (CPCs) into specific cardiovascular fates. Investigating CARMEN isoform usage in differentiating CPCs represents therefore a unique opportunity to uncover isoform-specific functions in lncRNAs. Here, we identify one CARMEN isoform, CARMEN-201, to be crucial for SMC commitment. CARMEN-201 activity is encoded within an alternatively spliced exon containing a MIRc short interspersed nuclear element. This element binds the transcriptional repressor REST (RE1 Silencing Transcription Factor), targets it to cardiogenic loci, including ISL1, IRX1, IRX5, and SFRP1, and thereby blocks the CM gene program. In turn, genes regulating SMC differentiation are induced. CONCLUSIONS These data show how a critical physiological switch is wired by alternative splicing and functional transposable elements in a long noncoding RNA. They further demonstrated the crucial importance of the lncRNA isoform CARMEN-201 in SMC specification during heart development.
Collapse
Affiliation(s)
- Isabelle Plaisance
- Experimental Cardiology Unit, Division of Cardiology, University of Lausanne Medical School, Lausanne, Switzerland
| | | | - Yuliangzi Sun
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Mohamed Nemir
- Experimental Cardiology Unit, Division of Cardiology, University of Lausanne Medical School, Lausanne, Switzerland
| | - Parisa Aghagolzadeh
- Experimental Cardiology Unit, Division of Cardiology, University of Lausanne Medical School, Lausanne, Switzerland
| | - Farhang Aminfar
- Experimental Cardiology Unit, Division of Cardiology, University of Lausanne Medical School, Lausanne, Switzerland
| | - Sophie Shen
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Woo Jun Shim
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Francesca Rochais
- Aix Marseille University, Marseille Medical Genetics, INSERM, U1251, Marseille, France
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, University of Bern, Bern, Switzerland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Nathan Palpant
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, University of Lausanne Medical School, Lausanne, Switzerland
| |
Collapse
|
29
|
Bohuslavova R, Fabriciova V, Lebrón-Mora L, Malfatti J, Smolik O, Valihrach L, Benesova S, Zucha D, Berkova Z, Saudek F, Evans SM, Pavlinkova G. ISL1 controls pancreatic alpha cell fate and beta cell maturation. Cell Biosci 2023; 13:53. [PMID: 36899442 PMCID: PMC9999528 DOI: 10.1186/s13578-023-01003-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Glucose homeostasis is dependent on functional pancreatic α and ß cells. The mechanisms underlying the generation and maturation of these endocrine cells remain unclear. RESULTS We unravel the molecular mode of action of ISL1 in controlling α cell fate and the formation of functional ß cells in the pancreas. By combining transgenic mouse models, transcriptomic and epigenomic profiling, we uncover that elimination of Isl1 results in a diabetic phenotype with a complete loss of α cells, disrupted pancreatic islet architecture, downregulation of key ß-cell regulators and maturation markers of ß cells, and an enrichment in an intermediate endocrine progenitor transcriptomic profile. CONCLUSIONS Mechanistically, apart from the altered transcriptome of pancreatic endocrine cells, Isl1 elimination results in altered silencing H3K27me3 histone modifications in the promoter regions of genes that are essential for endocrine cell differentiation. Our results thus show that ISL1 transcriptionally and epigenetically controls α cell fate competence, and ß cell maturation, suggesting that ISL1 is a critical component for generating functional α and ß cells.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia.
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Laura Lebrón-Mora
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Jessica Malfatti
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Zuzana Berkova
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Frantisek Saudek
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Sylvia M Evans
- Department of Pharmacology; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia.
| |
Collapse
|
30
|
Păun O, Tan YX, Patel H, Strohbuecker S, Ghanate A, Cobolli-Gigli C, Llorian Sopena M, Gerontogianni L, Goldstone R, Ang SL, Guillemot F, Dias C. Pioneer factor ASCL1 cooperates with the mSWI/SNF complex at distal regulatory elements to regulate human neural differentiation. Genes Dev 2023; 37:218-242. [PMID: 36931659 PMCID: PMC10111863 DOI: 10.1101/gad.350269.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
Pioneer transcription factors are thought to play pivotal roles in developmental processes by binding nucleosomal DNA to activate gene expression, though mechanisms through which pioneer transcription factors remodel chromatin remain unclear. Here, using single-cell transcriptomics, we show that endogenous expression of neurogenic transcription factor ASCL1, considered a classical pioneer factor, defines a transient population of progenitors in human neural differentiation. Testing ASCL1's pioneer function using a knockout model to define the unbound state, we found that endogenous expression of ASCL1 drives progenitor differentiation by cis-regulation both as a classical pioneer factor and as a nonpioneer remodeler, where ASCL1 binds permissive chromatin to induce chromatin conformation changes. ASCL1 interacts with BAF SWI/SNF chromatin remodeling complexes, primarily at targets where it acts as a nonpioneer factor, and we provide evidence for codependent DNA binding and remodeling at a subset of ASCL1 and SWI/SNF cotargets. Our findings provide new insights into ASCL1 function regulating activation of long-range regulatory elements in human neurogenesis and uncover a novel mechanism of its chromatin remodeling function codependent on partner ATPase activity.
Collapse
Affiliation(s)
- Oana Păun
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Yu Xuan Tan
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Harshil Patel
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Stephanie Strohbuecker
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Avinash Ghanate
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Clementina Cobolli-Gigli
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Miriam Llorian Sopena
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Lina Gerontogianni
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Robert Goldstone
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Siew-Lan Ang
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - François Guillemot
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Cristina Dias
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom;
- Medical and Molecular Genetics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| |
Collapse
|
31
|
Yin XY, Chen HX, Chen Z, Yang Q, Han J, He GW. Genetic Variants of ISL1 Gene Promoter Identified from Congenital Tetralogy of Fallot Patients Alter Cellular Function Forming Disease Basis. Biomolecules 2023; 13:358. [PMID: 36830727 PMCID: PMC9953631 DOI: 10.3390/biom13020358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023] Open
Abstract
Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease in newborns. ISL1 is a master transcription factor in second heart field development, whereas the roles of ISL1 gene promoter variants in TOF patients have not been genetically investigated. Total DNA extraction from 601 human subjects, including 308 TOF patients and 293 healthy controls, and Sanger sequencing were performed. Four variants (including one novel heterozygous variant) within the ISL1 gene promoter were only found in TOF patients. Functional analysis of DNA sequence variants was performed by using the dual-luciferase reporter assay and demonstrated that three of the four variants significantly decreased the transcriptional activity of ISL1 gene promoter in HL-1 cells (p < 0.05). Further, the online JASPAR database and electrophoretic mobility shift assay showed that the three variants affected the binding of transcription factors and altered ISL1 expression levels. In conclusion, the current study for the first time demonstrated that the variants identified from the ISL1 gene promoter region are likely involved in the development of TOF by affecting the transcriptional activity and altering the ISL1 expression level. Therefore, these findings may provide new insights into the molecular etiology and potential therapeutic strategy of TOF.
Collapse
Affiliation(s)
- Xiu-Yun Yin
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Zhuo Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Jun Han
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
32
|
Inácio JM, Nunes MM, Almeida M, Cristo F, Anjos R, Belo JA. Gene-Edited Human-Induced Pluripotent Stem Cell Lines to Elucidate DAND5 Function throughout Cardiac Differentiation. Cells 2023; 12:520. [PMID: 36831187 PMCID: PMC9954670 DOI: 10.3390/cells12040520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
(1) Background: The contribution of gene-specific variants for congenital heart disease, one of the most common congenital disabilities, is still far from our complete understanding. Here, we applied a disease model using human-induced pluripotent stem cells (hiPSCs) to evaluate the function of DAND5 on human cardiomyocyte (CM) differentiation and proliferation. (2) Methods: Taking advantage of our DAND5 patient-derived iPSC line, we used CRISPR-Cas9 gene-editing to generate a set of isogenic hiPSCs (DAND5-corrected and DAND5 full-mutant). The hiPSCs were differentiated into CMs, and RT-qPCR and immunofluorescence profiled the expression of cardiac markers. Cardiomyocyte proliferation was analysed by flow cytometry. Furthermore, we used a multi-electrode array (MEA) to study the functional electrophysiology of DAND5 hiPSC-CMs. (3) Results: The results indicated that hiPSC-CM proliferation is affected by DAND5 levels. Cardiomyocytes derived from a DAND5 full-mutant hiPSC line are more proliferative when compared with gene-corrected hiPSC-CMs. Moreover, parallel cardiac differentiations showed a differential cardiac gene expression profile, with upregulated cardiac progenitor markers in DAND5-KO hiPSC-CMs. Microelectrode array (MEA) measurements demonstrated that DAND5-KO hiPSC-CMs showed prolonged field potential duration and increased spontaneous beating rates. In addition, conduction velocity is reduced in the monolayers of hiPSC-CMs with full-mutant genotype. (4) Conclusions: The absence of DAND5 sustains the proliferation of hiPSC-CMs, which alters their electrophysiological maturation properties. These results using DAND5 hiPSC-CMs consolidate the findings of the in vitro and in vivo mouse models, now in a translational perspective. Altogether, the data will help elucidate the molecular mechanism underlying this human heart disease and potentiates new therapies for treating adult CHD.
Collapse
Affiliation(s)
- José M. Inácio
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| | - Mafalda M. Nunes
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| | - Micael Almeida
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| | - Fernando Cristo
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| | - Rui Anjos
- Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, 1449-005 Lisboa, Portugal
| | - José A. Belo
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| |
Collapse
|
33
|
Dominguez MH, Krup AL, Muncie JM, Bruneau BG. Graded mesoderm assembly governs cell fate and morphogenesis of the early mammalian heart. Cell 2023; 186:479-496.e23. [PMID: 36736300 PMCID: PMC10091855 DOI: 10.1016/j.cell.2023.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023]
Abstract
Using four-dimensional whole-embryo light sheet imaging with improved and accessible computational tools, we longitudinally reconstruct early murine cardiac development at single-cell resolution. Nascent mesoderm progenitors form opposing density and motility gradients, converting the temporal birth sequence of gastrulation into a spatial anterolateral-to-posteromedial arrangement. Migrating precardiac mesoderm does not strictly preserve cellular neighbor relationships, and spatial patterns only become solidified as the cardiac crescent emerges. Progenitors undergo a mesenchymal-to-epithelial transition, with a first heart field (FHF) ridge apposing a motile juxta-cardiac field (JCF). Anchored along the ridge, the FHF epithelium rotates the JCF forward to form the initial heart tube, along with push-pull morphodynamics of the second heart field. In Mesp1 mutants that fail to make a cardiac crescent, mesoderm remains highly motile but directionally incoherent, resulting in density gradient inversion. Our practicable live embryo imaging approach defines spatial origins and behaviors of cardiac progenitors and identifies their unanticipated morphological transitions.
Collapse
Affiliation(s)
- Martin H Dominguez
- Gladstone Institutes, San Francisco, CA, USA; Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA.
| | - Alexis Leigh Krup
- Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | | | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Department of Pediatrics, Cardiovascular Research Institute, Institute for Human Genetics, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
34
|
Lopez LV, Camberos V, Bailey LL, Hasaniya N, Ramos C, Hughes L, Knox C, Kearns-Jonker MK. MicroRNA Expression in the Infarcted Heart Following Neonatal Cardiovascular Progenitor Cell Transplantation in a Sheep Model of Stem Cell-Based Repair. Cell Transplant 2022; 31:9636897221136787. [PMID: 36564913 PMCID: PMC9793054 DOI: 10.1177/09636897221136787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Myocardial infarctions affect approximately 735,000 people annually in the United States and have a substantial impact on quality of life. Neonates have an enhanced capability of repairing cardiovascular damage, while adults do not. The mechanistic basis for this age-dependent difference in regenerative capacity remains unknown. Recent studies have shown that microRNAs (miRNAs) play a significant role in regulating the regenerative ability of cardiovascular cells. This report defines the alterations in miRNA expression within the cardiovascular repair zone of infarcted sheep hearts following intracardiac injection of neonatal islet-1+ cardiovascular progenitor cells. Sheep were infarcted via left anterior descending coronary artery ligation. After 3 to 4 weeks of infarction, sheep neonatal islet-1+ cardiovascular progenitor cells were injected into the infarcted area for repair. Cell-treated sheep were euthanized 2 months following cell injection, and their hearts were harvested for the analysis of miRNA and gene expression within the cardiovascular repair zone. Ten miRNAs were differentially regulated in vivo, including miR-99, miR-100, miR-302a, miR-208a, miR-665, miR-1, miR-499a, miR-34a, miR-133a, and miR-199a. These miRNAs promote stemness, cell division, and survival. Several signaling pathways are regulated by these miRNAs, including Hippo, Wnt, and Erythroblastic Leukemia Viral Oncogene B (ERBB). Transcripts encoding Wnt, ERBB, and Neuregulin 1 (NRG1) were elevated in vivo in the infarct repair zone. Wnt5a signaling and ERBB/NRG1 transcripts contribute to activation of Yes-Associated Protein 1. MiRNAs that impact proliferation, cell survival, and signaling pathways that promote regeneration were induced during cardiovascular repair in the sheep model. This information can be used to design new approaches for the optimization of miRNA-based treatments for the heart.
Collapse
Affiliation(s)
- Larry V. Lopez
- Department of Pathology and Human
Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Victor Camberos
- Department of Pathology and Human
Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Leonard L. Bailey
- Department of Cardiovascular and
Thoracic Surgery, Loma Linda University School of Medicine, Loma Linda, CA,
USA
| | - Nahidh Hasaniya
- Department of Cardiovascular and
Thoracic Surgery, Loma Linda University School of Medicine, Loma Linda, CA,
USA
| | - Christopher Ramos
- Department of Pathology and Human
Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lorelei Hughes
- Department of Pathology and Human
Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Cole Knox
- Department of Pathology and Human
Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Mary K. Kearns-Jonker
- Department of Pathology and Human
Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA,Mary K. Kearns-Jonker, Department of
Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma
Linda, CA 92350, USA.
| |
Collapse
|
35
|
Larcombe MR, Hsu S, Polo JM, Knaupp AS. Indirect Mechanisms of Transcription Factor-Mediated Gene Regulation during Cell Fate Changes. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2200015. [PMID: 36911290 PMCID: PMC9993476 DOI: 10.1002/ggn2.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 06/18/2023]
Abstract
Transcription factors (TFs) are the master regulators of cellular identity, capable of driving cell fate transitions including differentiations, reprogramming, and transdifferentiations. Pioneer TFs recognize partial motifs exposed on nucleosomal DNA, allowing for TF-mediated activation of repressed chromatin. Moreover, there is evidence suggesting that certain TFs can repress actively expressed genes either directly through interactions with accessible regulatory elements or indirectly through mechanisms that impact the expression, activity, or localization of other regulatory factors. Recent evidence suggests that during reprogramming, the reprogramming TFs initiate opening of chromatin regions rich in somatic TF motifs that are inaccessible in the initial and final cellular states. It is postulated that analogous to a sponge, these transiently accessible regions "soak up" somatic TFs, hence lowering the initial barriers to cell fate changes. This indirect TF-mediated gene regulation event, which is aptly named the "sponge effect," may play an essential role in the silencing of the somatic transcriptional network during different cellular conversions.
Collapse
Affiliation(s)
- Michael R. Larcombe
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoria3168Australia
- Development and Stem Cells ProgramMonash Biomedicine Discovery InstituteClaytonVictoria3168Australia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoria3168Australia
| | - Sheng Hsu
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoria3168Australia
- Development and Stem Cells ProgramMonash Biomedicine Discovery InstituteClaytonVictoria3168Australia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoria3168Australia
| | - Jose M. Polo
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoria3168Australia
- Development and Stem Cells ProgramMonash Biomedicine Discovery InstituteClaytonVictoria3168Australia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoria3168Australia
- South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth Australia5005Australia
- Adelaide Centre for Epigenetics, Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Anja S. Knaupp
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoria3168Australia
- Development and Stem Cells ProgramMonash Biomedicine Discovery InstituteClaytonVictoria3168Australia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoria3168Australia
| |
Collapse
|
36
|
The pioneering function of the hox transcription factors. Semin Cell Dev Biol 2022:S1084-9521(22)00354-8. [PMID: 36517345 DOI: 10.1016/j.semcdb.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Ever since the discovery that the Hox family of transcription factors establish morphological diversity in the developing embryo, major efforts have been directed towards understanding Hox-dependent patterning. This has led to important discoveries, notably on the mechanisms underlying the collinear expression of Hox genes and Hox binding specificity. More recently, several studies have provided evidence that Hox factors have the capacity to bind their targets in an inaccessible chromatin context and trigger the switch to an accessible, transcriptional permissive, chromatin state. In this review, we provide an overview of the evidences supporting that Hox factors behave as pioneer factors and discuss the potential mechanisms implicated in Hox pioneer activity as well as the significance of this functional property in Hox-dependent patterning.
Collapse
|
37
|
Sarwar S, Shabana, Tahir A, Liaqat Z, Naseer S, Seme RS, Mehmood S, Shahid SU, Hasnain S. Study of variants associated with ventricular septal defects (VSDs) highlights the unique genetic structure of the Pakistani population. Ital J Pediatr 2022; 48:124. [PMID: 35870951 PMCID: PMC9308904 DOI: 10.1186/s13052-022-01323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Background Ventricular septal defects (VSDs) are one of the leading causes of death due to cardiac anomalies during the first months of life. The prevalence of VSD in neonates is reported up to 4%. Despite the remarkable progress in medication, treatment and surgical procedure for VSDs, the genetic etiology of VSDs is still in infancy because of the complex genetic and environmental interactions. Methods Three hundred fifty subjects (200 VSD children and 150 healthy controls) were recruited from different pediatric cardiac units. Pediatric clinical and demographic data were collected. A total of six variants, rs1017 (ISL1), rs7240256 (NFATc1), rs36208048 (VEGF), variant of HEY2, rs11067075 (TBX5) and rs1801133 (MTHFR) genes were genotyped by tetra-ARMS PCR and PCR–RFLP methods. Results The results showed that in cases, the rs1017 (g.16138A > T) variant in the ISL1 gene has an allele frequency of 0.42 and 0.58 respectively for the T and A alleles, and 0.75 and 0.25 respectively in the controls. The frequencies of the AA, TA and TT genotypes were, 52%, 11% and 37% in cases versus 21%, 8% and 71% respectively in the controls. For the NFATc1 variant rs7240256, minor allele frequency (MAF) was 0.43 in cases while 0.23 in controls. For the variant in the VEGF gene, genotype frequencies were 0% (A), 32% (CA) and 68% (CC) in cases and 0.0%, 33% and 67% respectively in controls. The allele frequency of C and A were 0.84 and 0.16 in cases and 0.83 and 0.17 respectively in controls. The TBX5 polymorphism rs11067075 (g.51682G > T) had an allelic frequency of 0.44 and 0.56 respectively for T and G alleles in cases, versus 0.26 and 0.74 in the controls. We did not detect the presence of the HEY2 gene variant (g.126117350A > C) in our pediatric cohort. For the rs1801133 (g.14783C > T) variant in the MTHFR gene, the genotype frequencies were 25% (CC), 62% (CT) and 13% (TT) in cases, versus 88%, 10% and 2% in controls. The ISL1, NFATc1, TBX5 and MTHFR variants were found to be in association with VSD in the Pakistani pediatric cohort whilst the VEGF and HEY2 variants were completely absent in our cohort. Conclusion We propose that a wider programme of genetic screening of the Pakistani population for genetic markers in heart development genes would be helpful in reducing the risk of VSDs.
Collapse
|
38
|
Lamin A/C-dependent chromatin architecture safeguards naïve pluripotency to prevent aberrant cardiovascular cell fate and function. Nat Commun 2022; 13:6663. [PMID: 36333314 PMCID: PMC9636150 DOI: 10.1038/s41467-022-34366-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Tight control of cell fate choices is crucial for normal development. Here we show that lamin A/C plays a key role in chromatin organization in embryonic stem cells (ESCs), which safeguards naïve pluripotency and ensures proper cell fate choices during cardiogenesis. We report changes in chromatin compaction and localization of cardiac genes in Lmna-/- ESCs resulting in precocious activation of a transcriptional program promoting cardiomyocyte versus endothelial cell fate. This is accompanied by premature cardiomyocyte differentiation, cell cycle withdrawal and abnormal contractility. Gata4 is activated by lamin A/C loss and Gata4 silencing or haploinsufficiency rescues the aberrant cardiovascular cell fate choices induced by lamin A/C deficiency. We uncover divergent functions of lamin A/C in naïve pluripotent stem cells and cardiomyocytes, which have distinct contributions to the transcriptional alterations of patients with LMNA-associated cardiomyopathy. We conclude that disruption of lamin A/C-dependent chromatin architecture in ESCs is a primary event in LMNA loss-of-function cardiomyopathy.
Collapse
|
39
|
Mansour F, Hinze C, Telugu NS, Kresoja J, Shaheed IB, Mosimann C, Diecke S, Schmidt-Ott KM. The centrosomal protein 83 (CEP83) regulates human pluripotent stem cell differentiation toward the kidney lineage. eLife 2022; 11:e80165. [PMID: 36222666 PMCID: PMC9629839 DOI: 10.7554/elife.80165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, the mesoderm undergoes patterning into diverse lineages including axial, paraxial, and lateral plate mesoderm (LPM). Within the LPM, the so-called intermediate mesoderm (IM) forms kidney and urogenital tract progenitor cells, while the remaining LPM forms cardiovascular, hematopoietic, mesothelial, and additional progenitor cells. The signals that regulate these early lineage decisions are incompletely understood. Here, we found that the centrosomal protein 83 (CEP83), a centriolar component necessary for primary cilia formation and mutated in pediatric kidney disease, influences the differentiation of human-induced pluripotent stem cells (hiPSCs) toward IM. We induced inactivating deletions of CEP83 in hiPSCs and applied a 7-day in vitro protocol of IM kidney progenitor differentiation, based on timed application of WNT and FGF agonists. We characterized induced mesodermal cell populations using single-cell and bulk transcriptomics and tested their ability to form kidney structures in subsequent organoid culture. While hiPSCs with homozygous CEP83 inactivation were normal regarding morphology and transcriptome, their induced differentiation into IM progenitor cells was perturbed. Mesodermal cells induced after 7 days of monolayer culture of CEP83-deficient hiPCS exhibited absent or elongated primary cilia, displayed decreased expression of critical IM genes (PAX8, EYA1, HOXB7), and an aberrant induction of LPM markers (e.g. FOXF1, FOXF2, FENDRR, HAND1, HAND2). Upon subsequent organoid culture, wildtype cells differentiated to form kidney tubules and glomerular-like structures, whereas CEP83-deficient cells failed to generate kidney cell types, instead upregulating cardiomyocyte, vascular, and more general LPM progenitor markers. Our data suggest that CEP83 regulates the balance of IM and LPM formation from human pluripotent stem cells, identifying a potential link between centriolar or ciliary function and mesodermal lineage induction.
Collapse
Affiliation(s)
- Fatma Mansour
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Hinze
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| | - Narasimha Swamy Telugu
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Jelena Kresoja
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Iman B Shaheed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Sebastian Diecke
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
40
|
Wang Y, Zhang JW, Wang JW, Wang JL, Zhang SC, Ma RY, Zhang J, Li Y, Liu PJ, Xue WJ, Zheng J, Ding XM. BMSCs overexpressed ISL1 reduces the apoptosis of islet cells through ANLN carrying exosome, INHBA, and caffeine. Cell Mol Life Sci 2022; 79:538. [PMID: 36190571 PMCID: PMC11802980 DOI: 10.1007/s00018-022-04571-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/28/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022]
Abstract
Early apoptosis of grafted islets is one of the main factors affecting the efficacy of islet transplantation. The combined transplantation of islet cells and bone marrow mesenchymal stem cells (BMSCs) can significantly improve the survival rate of grafted islets. Transcription factor insulin gene enhancer binding protein 1 (ISL1) is shown to promote the angiogenesis of grafted islets and the paracrine function of mesenchymal stem cells during the co-transplantation, yet the regulatory mechanism remains unclear. By using ISL1-overexpressing BMSCs and the subtherapeutic doses of islets for co-transplantation, we managed to reduce the apoptosis and improve the survival rate of the grafts. Our metabolomics and proteomics data suggested that ISL1 upregulates aniline (ANLN) and Inhibin beta A chain (INHBA), and stimulated the release of caffeine in the BMSCs. We then demonstrated that the upregulation of ANLN and INHBA was achieved by the binding of ISL1 to the promoter regions of the two genes. In addition, ISL1 could also promote BMSCs to release exosomes with high expression of ANLN, secrete INHBA and caffeine, and reduce streptozocin (STZ)-induced islets apoptosis. Thus, our study provides mechanical insight into the islet/BMSCs co-transplantation and paves the foundation for using conditioned medium to mimic the ISL1-overexpressing BMSCs co-transplantation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Jiang-Wei Zhang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Jing-Wen Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Jia-Le Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Shu-Cong Zhang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Rui-Yang Ma
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Jing Zhang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Yang Li
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Pei-Jun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi, China
| | - Wu-Jun Xue
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Jin Zheng
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China
| | - Xiao-Ming Ding
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
41
|
Sierra-Pagan JE, Garry DJ. The regulatory role of pioneer factors during cardiovascular lineage specification – A mini review. Front Cardiovasc Med 2022; 9:972591. [PMID: 36082116 PMCID: PMC9445115 DOI: 10.3389/fcvm.2022.972591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular disease (CVD) remains the number one cause of death worldwide. Ischemic heart disease contributes to heart failure and has considerable morbidity and mortality. Therefore, alternative therapeutic strategies are urgently needed. One class of epigenetic regulators known as pioneer factors has emerged as an important tool for the development of regenerative therapies for the treatment of CVD. Pioneer factors bind closed chromatin and remodel it to drive lineage specification. Here, we review pioneer factors within the cardiovascular lineage, particularly during development and reprogramming and highlight the implications this field of research has for the future development of cardiac specific regenerative therapies.
Collapse
Affiliation(s)
- Javier E. Sierra-Pagan
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Daniel J. Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Daniel J. Garry
| |
Collapse
|
42
|
Luzete-Monteiro E, Zaret KS. Structures and consequences of pioneer factor binding to nucleosomes. Curr Opin Struct Biol 2022; 75:102425. [PMID: 35863165 PMCID: PMC9976633 DOI: 10.1016/j.sbi.2022.102425] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022]
Abstract
Pioneer transcription factors are able to bind a partially exposed motif on the surface of a nucleosome, enabling the proteins to target sites in silent regions of chromatin that have been compacted by linker histone. The targeting of nucleosomal DNA by pioneer factors has been observed in vitro and in vivo, where binding can promote local nucleosome exposure that allows other transcription factors, nucleosome remodelers, and histone modifiers to engage the chromatin and elicit gene activation or further repression. Pioneer factors thereby establish new gene expression programs during cell fate changes that occur during embryonic development, regeneration, and cancer. Here, we review recent biophysical studies that reveal the structural features and strategies used by pioneer factors to accomplish nucleosome binding and the consequential changes to nucleosomes that can lead to DNA accessibility.
Collapse
Affiliation(s)
- Edgar Luzete-Monteiro
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 9-131 SCTR, 3400 Civic Center Blvd., Philadelphia, PA 19104-5157, USA.,Department of Biology, School of Arts and Sciences, University of Pennsylvania, 433 S University Ave, Philadelphia, PA 19104-4544
| | - Kenneth S. Zaret
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 9-131 SCTR, 3400 Civic Center Blvd., Philadelphia, PA 19104-5157, USA
| |
Collapse
|
43
|
Okada D, Okamoto Y, Io T, Oka M, Kobayashi D, Ito S, Yamada R, Ishii K, Ono K. Comparative Study of Transcriptome in the Hearts Isolated from Mice, Rats, and Humans. Biomolecules 2022; 12:biom12060859. [PMID: 35740984 PMCID: PMC9221511 DOI: 10.3390/biom12060859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
The heart is a significant organ in mammalian life, and the heartbeat mechanism has been an essential focus of science. However, few studies have focused on species differences. Accordingly, challenges remain in studying genes that have universal functions across species and genes that determine species differences. Here, we analyzed transcriptome data in mouse, rat, and human atria, ventricles, and sinoatrial nodes (SA) obtained from different platforms and compared them by calculating specificity measure (SPM) values in consideration of species differences. Among the three heart regions, the species differences in SA were the greatest, and we searched for genes that determined the essential characteristics of SA, which was SHOX2 in our criteria. The SPM value of SHOX2 was prominently high across species. Similarly, by calculating SPM values, we identified 3 atrial-specific, 11 ventricular-specific, and 17 SA-specific markers. Ontology analysis identified 70 cardiac region- and species-specific ontologies. These results suggest that reanalyzing existing data by calculating SPM values may identify novel tissue-specific genes and species-dependent gene expression. This study identified the importance of SHOX2 as an SA-specific transcription factor, a novel cardiac regional marker, and species-dependent ontologies.
Collapse
Affiliation(s)
- Daigo Okada
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Shogoinkawahara-cho, Kyoto 606-8507, Japan; (D.O.); (R.Y.)
| | - Yosuke Okamoto
- Department of Cell Physiology, Akita Graduate School of Medicine, Hondo, Akita 010-8543, Japan; (D.K.); (S.I.); (K.O.)
- Correspondence:
| | - Toshiro Io
- Research Department, Ono Pharmaceutical Co., Ltd., Kyutaromachi, Osaka 618-8585, Japan; (T.I.); (M.O.)
| | - Miho Oka
- Research Department, Ono Pharmaceutical Co., Ltd., Kyutaromachi, Osaka 618-8585, Japan; (T.I.); (M.O.)
| | - Daiki Kobayashi
- Department of Cell Physiology, Akita Graduate School of Medicine, Hondo, Akita 010-8543, Japan; (D.K.); (S.I.); (K.O.)
| | - Suzuka Ito
- Department of Cell Physiology, Akita Graduate School of Medicine, Hondo, Akita 010-8543, Japan; (D.K.); (S.I.); (K.O.)
| | - Ryo Yamada
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Shogoinkawahara-cho, Kyoto 606-8507, Japan; (D.O.); (R.Y.)
| | - Kuniaki Ishii
- Department of Pharmacology, Faculty of medicine, Yamagata University, Iida-Nishi, Yamagata 990-9585, Japan;
| | - Kyoichi Ono
- Department of Cell Physiology, Akita Graduate School of Medicine, Hondo, Akita 010-8543, Japan; (D.K.); (S.I.); (K.O.)
| |
Collapse
|
44
|
Liu Y, Luan Y, Ma K, Zhang Z, Liu Y, Chen XL. ISL1 promotes human glioblastoma-derived stem cells self-renewal by activation of SHH/GLI1 function. Stem Cells Dev 2022; 31:258-268. [DOI: 10.1089/scd.2021.0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yingfei Liu
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., Xi'an, China
| | - Yan Luan
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., China
| | - Kaige Ma
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., China
| | - Zhichao Zhang
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., China
| | - Yong Liu
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., China
| | - Xin-lin Chen
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., Xi'an, Shaanxi, China,
| |
Collapse
|
45
|
Balsalobre A, Drouin J. Pioneer factors as master regulators of the epigenome and cell fate. Nat Rev Mol Cell Biol 2022; 23:449-464. [PMID: 35264768 DOI: 10.1038/s41580-022-00464-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/23/2022]
Abstract
Pioneer factors are transcription factors with the unique ability to initiate opening of closed chromatin. The stability of cell identity relies on robust mechanisms that maintain the epigenome and chromatin accessibility to transcription factors. Pioneer factors counter these mechanisms to implement new cell fates through binding of DNA target sites in closed chromatin and introduction of active-chromatin histone modifications, primarily at enhancers. As master regulators of enhancer activation, pioneers are thus crucial for the implementation of correct cell fate decisions in development, and as such, they hold tremendous potential for therapy through cellular reprogramming. The power of pioneer factors to reshape the epigenome also presents an Achilles heel, as their misexpression has major pathological consequences, such as in cancer. In this Review, we discuss the emerging mechanisms of pioneer factor functions and their roles in cell fate specification, cellular reprogramming and cancer.
Collapse
Affiliation(s)
- Aurelio Balsalobre
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montreal, QC, Canada
| | - Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montreal, QC, Canada.
| |
Collapse
|
46
|
Ren J, Miao D, Li Y, Gao R. Spotlight on Isl1: A Key Player in Cardiovascular Development and Diseases. Front Cell Dev Biol 2021; 9:793605. [PMID: 34901033 PMCID: PMC8656156 DOI: 10.3389/fcell.2021.793605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cardiac transcription factors orchestrate a regulatory network controlling cardiovascular development. Isl1, a LIM-homeodomain transcription factor, acts as a key player in multiple organs during embryonic development. Its crucial roles in cardiovascular development have been elucidated by extensive studies, especially as a marker gene for the second heart field progenitors. Here, we summarize the roles of Isl1 in cardiovascular development and function, and outline its cellular and molecular modes of action, thus providing insights for the molecular basis of cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Ren
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Danxiu Miao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China.,Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Yanshu Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Rui Gao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
47
|
Impact of Age on Emergency Resource Utilization and Outcomes in Pediatric and Young Adult Patients Supported with a Ventricular Assist Device. ASAIO J 2021; 68:1074-1082. [PMID: 34743138 PMCID: PMC9061895 DOI: 10.1097/mat.0000000000001603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
There are minimal data describing outcomes in ambulatory pediatric and young adult ventricular assist device (VAD)-supported patient populations. We performed a retrospective analysis of encounter-level data from 2006 to 2017 Nationwide Emergency Department Sample (NEDS) to compare emergency department (ED) resource utilization and outcomes for pediatric (≤18 years, n = 494) to young adult (19-29 years, n = 2,074) VAD-supported patient encounters. Pediatric encounters were more likely to have a history of congenital heart disease (11.3% vs. 4.8%). However, Pediatric encounters had lower admission/transfer rates (37.8% vs. 57.8%) and median charges ($3,334 (IQR $1,473-$19,818) vs. $13,673 ($3,331-$45,884)) (all p < 0.05). Multivariable logistic regression modeling revealed that age itself was not a predictor of admission, instead high acuity primary diagnoses and medical complexity were: (adjusted odds ratio; 95% confidence intervals): cardiac (3.0; 1.6-5.4), infection (3.4; 1.7-6.5), bleeding (3.9; 1.7-8.8), device complication (7.2; 2.7-18.9), and ≥1 chronic comorbidity (4.1; 2.5-6.7). In this largest study to date describing ED resource use and outcomes for pediatric and young adult VAD-supported patients, we found that, rather than age, high acuity presentations and comorbidities were primary drivers of clinical outcomes. Thus, reducing morbidity in this population should target comorbidities and early recognition of VAD-related complications.
Collapse
|
48
|
Advances in Cardiac Development and Regeneration Using Zebrafish as a Model System for High-Throughput Research. J Dev Biol 2021; 9:jdb9040040. [PMID: 34698193 PMCID: PMC8544412 DOI: 10.3390/jdb9040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Heart disease is the leading cause of death in the United States and worldwide. Understanding the molecular mechanisms of cardiac development and regeneration will improve diagnostic and therapeutic interventions against heart disease. In this direction, zebrafish is an excellent model because several processes of zebrafish heart development are largely conserved in humans, and zebrafish has several advantages as a model organism. Zebrafish transcriptomic profiles undergo alterations during different stages of cardiac development and regeneration which are revealed by RNA-sequencing. ChIP-sequencing has detected genome-wide occupancy of histone post-translational modifications that epigenetically regulate gene expression and identified a locus with enhancer-like characteristics. ATAC-sequencing has identified active enhancers in cardiac progenitor cells during early developmental stages which overlap with occupancy of histone modifications of active transcription as determined by ChIP-sequencing. CRISPR-mediated editing of the zebrafish genome shows how chromatin modifiers and DNA-binding proteins regulate heart development, in association with crucial signaling pathways. Hence, more studies in this direction are essential to improve human health because they answer fundamental questions on cardiac development and regeneration, their differences, and why zebrafish hearts regenerate upon injury, unlike humans. This review focuses on some of the latest studies using state-of-the-art technology enabled by the elegant yet simple zebrafish.
Collapse
|
49
|
Zheng SQ, Chen HX, Liu XC, Yang Q, He GW. Identification of variants of ISL1 gene promoter and cellular functions in isolated ventricular septal defects. Am J Physiol Cell Physiol 2021; 321:C443-C452. [PMID: 34260301 DOI: 10.1152/ajpcell.00167.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022]
Abstract
Ventricular septal defects (VSDs) are the most common congenital heart defects (CHDs). Studies have documented that ISL1 has a crucial impact on cardiac growth, but the role of variants in the ISL1 gene promoter in patients with VSD has not been explored. In 400 subjects (200 patients with isolated and sporadic VSDs: 200 healthy controls), we investigated the ISL1 gene promoter variant and performed cellular functional experiments by using the dual-luciferase reporter assay to verify the impact on gene expression. In the ISL1 promoter, five variants were found only in patients with VSD by sequencing. Cellular functional experiments demonstrated that three variants decreased the transcriptional activity of the ISL1 promoter (P < 0.05). Further analysis with the online JASPAR database demonstrated that a cluster of putative binding sites for transcription factors may be altered by these variants, possibly resulting in change of ISL1 protein expression and VSD formation. Our study has, for the first time, identified novel variants in the ISL1 gene promoter region in the Han Chinese patients with isolated and sporadic VSD. In addition, the cellular functional experiments, electrophoretic mobility shift assay, and bioinformatic analysis have demonstrated that these variants significantly alter the expression of the ISL1 gene and affect the binding of transcription factors, likely resulting in VSD. Therefore, this study may provide new insights into the role of the gene promoter region for a better understanding of genetic basis of the formation of CHDs and may promote further investigations on mechanism of the formation of CHDs.
Collapse
MESH Headings
- Adolescent
- Asian People
- Base Sequence
- Binding Sites
- Case-Control Studies
- Child
- Child, Preschool
- Databases, Genetic
- Female
- Gene Expression
- Genes, Reporter
- HEK293 Cells
- Heart Septal Defects, Ventricular/ethnology
- Heart Septal Defects, Ventricular/genetics
- Heart Septal Defects, Ventricular/metabolism
- Heart Septal Defects, Ventricular/pathology
- Humans
- Infant
- LIM-Homeodomain Proteins/genetics
- LIM-Homeodomain Proteins/metabolism
- Luciferases/genetics
- Luciferases/metabolism
- Male
- Polymorphism, Single Nucleotide
- Promoter Regions, Genetic
- Protein Binding
- Sequence Analysis, DNA
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Ventricular Septum/metabolism
- Ventricular Septum/pathology
Collapse
Affiliation(s)
- Si-Qiang Zheng
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Xiao-Cheng Liu
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
- Drug Research and Development Center, Wannan Medical College, Wuhu, People's Republic of China
- Department of Surgery, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
50
|
Schott J, Reitter S, Lindner D, Grosser J, Bruer M, Shenoy A, Geiger T, Mathes A, Dobreva G, Stoecklin G. Nascent Ribo-Seq measures ribosomal loading time and reveals kinetic impact on ribosome density. Nat Methods 2021; 18:1068-1074. [PMID: 34480152 DOI: 10.1038/s41592-021-01250-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 07/23/2021] [Indexed: 01/21/2023]
Abstract
In general, mRNAs are assumed to be loaded with ribosomes instantly upon entry into the cytoplasm. To measure ribosome density (RD) on nascent mRNA, we developed nascent Ribo-Seq by combining Ribo-Seq with progressive 4-thiouridine labeling. In mouse macrophages, we determined experimentally the lag between the appearance of nascent mRNA and its association with ribosomes, which was calculated to be 20-22 min for bulk mRNA. In mouse embryonic stem cells, nRibo-Seq revealed an even stronger lag of 35-38 min in ribosome loading. After stimulation of macrophages with lipopolysaccharide, the lag between cytoplasmic and translated mRNA leads to uncoupling between input and ribosome-protected fragments, which gives rise to distorted RD measurements under conditions where mRNA amounts are far from steady-state expression. As a result, we demonstrate that transcriptional changes affect RD in a passive way.
Collapse
Affiliation(s)
- Johanna Schott
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany.
| | - Sonja Reitter
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Doris Lindner
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Jan Grosser
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Marius Bruer
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Anjana Shenoy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Geiger
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arthur Mathes
- Department of Anatomy and Developmental Biology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Gergana Dobreva
- Department of Anatomy and Developmental Biology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Georg Stoecklin
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|