1
|
Marino C, Soares FC, Bellard C. Conservation priorities for functionally unique and specialized terrestrial vertebrates threatened by biological invasions. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14401. [PMID: 39417612 PMCID: PMC11959344 DOI: 10.1111/cobi.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 10/19/2024]
Abstract
Invasive non-native species (INS) continue to pose a significant threat to biodiversity, including native population declines, which can ultimately disrupt ecosystem processes. Although there is growing evidence of the impacts of INS on functional diversity, most of the existing approaches to prioritization of species for conservation still focus on taxonomic diversity, neglecting the ecological role of species. We developed the functionally unique, specialized, and endangered by invasive non-native species (FUSE INS) score to fill this gap by combining functional irreplaceability (i.e., uniqueness and specialization) of species with their extinction risk due to INS. We calculated this score for 3642 terrestrial vertebrates exposed to INS by assessing how INS affected them based on the IUCN Red List and by evaluating their specialization and uniqueness in a multidimensional functional space. Thirty-eight percent of native species were both at high extinction risk because of INS and functionally unique and specialized, making them priority species for INS impact mitigation. Priority species of amphibians concentrated in Central America and Madagascar and of lizards in the Caribbean islands, northern Australia, New Zealand, and New Caledonia. Priority bird and mammal species were more widespread (birds, mostly in coastal areas, on Pacific islands, and in northern India and New Zealand; mammals, in southwestern Europe, Central Africa, East Africa, Southern Africa, Southeast Asia, and eastern Australia). Seventy-eight species were also highly irreplaceable but not yet threatened by INS, suggesting that preventive conservation measures may help protect these species. For the 50 birds of the highest priority, 64% required conservation actions to mitigate the INS threat. The FUSE INS score can be used to help prioritize indigenous species representing large amounts of functional diversity. Incorporating functional diversity into the conservation prioritization of species and associated areas is key to accurately reducing and mitigating the impacts of INS on native biodiversity.
Collapse
Affiliation(s)
- Clara Marino
- Université Paris‐Saclay, CNRS, AgroParisTech, Ecologie Systématique et EvolutionGif‐sur‐YvetteFrance
- FRB – CESABMontpellierFrance
| | - Filipa Coutinho Soares
- Centre d'Ecologie et des Sciences de la Conservation (CESCO)Muséum National d'Histoire NaturelleParisFrance
| | - Céline Bellard
- Université Paris‐Saclay, CNRS, AgroParisTech, Ecologie Systématique et EvolutionGif‐sur‐YvetteFrance
| |
Collapse
|
2
|
Che Q, Li C, Zhao X, Zhang J, Tang J, Zhou C. Effects of Climate and Land Use on Different Facets of Mammal Diversity in Giant Panda Range. Animals (Basel) 2025; 15:630. [PMID: 40075912 PMCID: PMC11898194 DOI: 10.3390/ani15050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 03/14/2025] Open
Abstract
Understanding the patterns and drivers of different facets of biodiversity is crucial for biodiversity conservation under global environmental change. In this study, we present the first assessment of the patterns of taxonomic, functional and phylogenetic diversity for 171 mammals in the giant panda range and their associations with climate, land use factors and topographic heterogeneity. We found that functional diversity showed a very different pattern with species richness and phylogenetic diversity. Additionally, mammal assemblages were more functionally diverse but phylogenetically similar than expected by chance in very few regions after controlling for species richness. Furthermore, species richness was positively correlated with topographic heterogeneity, the proportion of forest, mean annual temperature and temperature anomaly and negatively correlated with annual precipitation and precipitation anomaly between current and historical periods, while both functional and phylogenetic diversity are predominantly correlated with climate factors. Specifically, higher functional and phylogenetic diversity was mainly found in regions with a lower proportion of cropland, annual precipitation, mean annual temperature and precipitation anomaly between current and historical periods. These results indicate the large mismatches of driving factors between taxonomic diversity and the other diversity facets and the importance of contemporary climate and land use conditions and climate anomaly between current and historical periods in determining mammal functional and phylogenetic diversity in the giant panda range. Overall, our findings highlight the importance of integrating multiple dimensions of diversity to infer the underlying processes determining the spatial pattern of biodiversity and to better inform conservation management and planning.
Collapse
Affiliation(s)
- Qibing Che
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Institute of Ecology, China West Normal University, Nanchong 637009, China; (Q.C.); (C.L.); (X.Z.); (J.Z.)
| | - Chunxiao Li
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Institute of Ecology, China West Normal University, Nanchong 637009, China; (Q.C.); (C.L.); (X.Z.); (J.Z.)
| | - Xuzhe Zhao
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Institute of Ecology, China West Normal University, Nanchong 637009, China; (Q.C.); (C.L.); (X.Z.); (J.Z.)
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| | - Jindong Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Institute of Ecology, China West Normal University, Nanchong 637009, China; (Q.C.); (C.L.); (X.Z.); (J.Z.)
| | - Junfeng Tang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Institute of Ecology, China West Normal University, Nanchong 637009, China; (Q.C.); (C.L.); (X.Z.); (J.Z.)
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| | - Caiquan Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Institute of Ecology, China West Normal University, Nanchong 637009, China; (Q.C.); (C.L.); (X.Z.); (J.Z.)
| |
Collapse
|
3
|
Morelli F, Hanson JO, Benedetti Y. Human pressures threaten diet-specialized mammal communities. Proc Biol Sci 2025; 292:20241735. [PMID: 39904389 PMCID: PMC11793962 DOI: 10.1098/rspb.2024.1735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/20/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Environmental change is increasing worldwide and many animal species face anthropogenic threats, especially diet specialists. Yet the degree to which specialist species are currently impacted by environmental change remains poorly understood. We examine how anthropogenic pressures impact dietary specialist species. We calculated indices of diet specialization for mammal species, based on the Gini inequality coefficient, and combined these indices with human pressure data. We then used spatially explicit Mantel tests to examine global patterns in mammal diet specialization. We used a generalized linear mixed model to investigate correlations between the percentage of diet specialist species in mammal communities in an area and its total species richness, human pressure and protection status (mediated through an interaction with the continent). Findings revealed that areas with many diet specialists in mammal communities are also impacted by high human pressure. Additionally, we found that the global protected area system adequately covers habitat for many mammal diet specialists, but has lower effectiveness in South America, Oceania, North America and Europe compared with Africa and Asia. Finally, we identified potential reservoirs for specialist species-places containing many highly diet specialist species and that are subject to less human pressure-which may be important for conservation efforts.
Collapse
Affiliation(s)
- Federico Morelli
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6CZ-165 00, Czechia
- Institute of Biological Sciences, University of Zielona Gora, Prof. Szafrana St., Zielona GoraPL 65-516, Poland
- Department of Life and Environmental Sciences, Bournemouth University, Fern Barrow, PooleBH12 5BB, UK
| | - Jeffrey O. Hanson
- Department of Biology, Carleton University, Ottawa, ONK1S 5B6, Canada
| | - Yanina Benedetti
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6CZ-165 00, Czechia
| |
Collapse
|
4
|
Meeks D, Morton O, Edwards DP. Global dynamics of functional composition in CITES-traded reptiles. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3060. [PMID: 39564741 PMCID: PMC11733411 DOI: 10.1002/eap.3060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/04/2024] [Accepted: 09/04/2024] [Indexed: 11/21/2024]
Abstract
Global wildlife trade is a billion-dollar industry, with millions of individuals traded annually from a diversity of taxa, many of which are directly threatened by trade. Reptiles exhibiting desirable life-history or aesthetic traits, such as large body sizes or colorful morphologies, are traded preferentially. A key issue is understanding geographic and temporal variation between desirable species traits and their trade. Poor understanding of this can generalize patterns of consumer trait preferences and conceal functional consequences of wild harvest in ecosystems. Using records of legal, international trade in Convention on International Trade in Endangered Species (CITES)-listed reptiles between 2000 and 2020, we examine geographic and temporal variation in the functional composition of traded assemblages, both captive- and wild-sourced, identifying key hotspots and routes of functional diversity in trade. We also identify associations between functional traits and species presence in trade. We find that functionally diverse trade assemblages are exported primarily from the tropics, with hotspots in sub-Saharan Africa, and imported across Asia, Europe, and North America. Patterns of functional composition in trade remained broadly stable from 2000 to 2020. Globally, the species most likely to be traded were large, fecund, generalists. Sustained wild harvest of functionally diverse reptilian assemblages in trade hotspots, such as Madagascar and Indonesia, places substantial pressure on large-bodied reptiles that fulfill important ecological functions, including population control and nutrient cycling, while also endangering harvest-vulnerable species with slow life histories. Despite limited species-specific descriptions of reptilian ecological functions, management in harvest hotspots can safeguard ecosystem functioning by prioritizing protection for threatened species that contribute disproportionately to local and regional functional diversity.
Collapse
Affiliation(s)
- Dominic Meeks
- Ecology and Evolutionary BiologySchool of Biosciences, University of SheffieldSheffieldUK
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Oscar Morton
- Ecology and Evolutionary BiologySchool of Biosciences, University of SheffieldSheffieldUK
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
5
|
Pollard MD, Meyer WK, Puckett EE. Convergent relaxation of molecular constraint in herbivores reveals the changing role of liver and kidney functions across mammalian diets. Genome Res 2024; 34:2176-2189. [PMID: 39578099 PMCID: PMC11694762 DOI: 10.1101/gr.278930.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024]
Abstract
Mammalia comprises a great diversity of diet types and associated adaptations. An understanding of the genomic mechanisms underlying these adaptations may offer insights for improving human health. Comparative genomic studies of diet that employ taxonomically restricted analyses or simplified diet classifications may suffer reduced power to detect molecular convergence associated with diet evolution. Here, we use a quantitative carnivory score-indicative of the amount of animal protein in the diet-for 80 mammalian species to detect significant correlations between the relative evolutionary rates of genes and changes in diet. We have identified six genes-ACADSB, CLDN16, CPB1, PNLIP, SLC13A2, and SLC14A2-that experienced significant changes in evolutionary constraint alongside changes in carnivory score, becoming less constrained in lineages evolving more herbivorous diets. We further consider the biological functions associated with diet evolution and observe that pathways related to amino acid and lipid metabolism, biological oxidation, and small molecule transport experienced reduced purifying selection as lineages became more herbivorous. Liver and kidney functions show similar patterns of constraint with dietary change. Our results indicate that these functions are important for the consumption of animal matter and become less important with the evolution of increasing herbivory. So, genes expressed in these tissues experience a relaxation of evolutionary constraint in more herbivorous lineages.
Collapse
Affiliation(s)
- Matthew D Pollard
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152, USA;
- Center for Biodiversity Research, University of Memphis, Memphis, Tennessee 38152, USA
| | - Wynn K Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Emily E Puckett
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152, USA
- Center for Biodiversity Research, University of Memphis, Memphis, Tennessee 38152, USA
| |
Collapse
|
6
|
Alfaro-Lucas JM, Chapman ASA, Tunnicliffe V, Bates AE. High functional vulnerability across the world's deep-sea hydrothermal vent communities. Proc Natl Acad Sci U S A 2024; 121:e2403899121. [PMID: 39467128 PMCID: PMC11551373 DOI: 10.1073/pnas.2403899121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/05/2024] [Indexed: 10/30/2024] Open
Abstract
At the nearly pristine hydrothermal vents of the deep sea, highly endemic animals depend upon bacteria nourished by hydrothermal fluids that emerge as outflows from the seafloor. These animals are remarkable in tolerating extreme conditions, including high heat, toxic reduced sulfide, and low oxygen. Here, we test whether the extreme vent environment has selected for functionally similar species across the world's deep ocean, despite well-established global geographic patterns of high phylogenetic distinctness. High functional redundancy in species pools within regions suggests that the extreme environments select for species with specific traits. Yet, some regions emerge as functional hotspots where species pools with distinct functional trait compositions may represent geological idiosyncrasies of the habitats. Moreover, many species are functionally unique, an outcome of low species richness in a system where the species pool is small at all scales. Given the high proportion of functionally unique species, simulated species extinctions indicate that species losses would rapidly translate to the elimination of functionally irreplaceable species and could tip vent systems to functional collapse. Ocean changes and human-induced threats are expected to significantly impact many vent species as human activities expand in the remote deep sea. The opportunity exists now to take precautionary actions to limit the rates of extinction now ubiquitous in more accessible areas of Earth.
Collapse
Affiliation(s)
| | - Abbie S. A. Chapman
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, LondonWC1H 0NN, United Kingdom
| | - Verena Tunnicliffe
- Department of Biology, University of Victoria, Victoria, BCV8P 5C2, Canada
- School of Earth & Ocean Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
| | - Amanda E. Bates
- Department of Biology, University of Victoria, Victoria, BCV8P 5C2, Canada
| |
Collapse
|
7
|
Matthews TJ, Triantis KA, Wayman JP, Martin TE, Hume JP, Cardoso P, Faurby S, Mendenhall CD, Dufour P, Rigal F, Cooke R, Whittaker RJ, Pigot AL, Thébaud C, Jørgensen MW, Benavides E, Soares FC, Ulrich W, Kubota Y, Sadler JP, Tobias JA, Sayol F. The global loss of avian functional and phylogenetic diversity from anthropogenic extinctions. Science 2024; 386:55-60. [PMID: 39361743 DOI: 10.1126/science.adk7898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/15/2024] [Accepted: 08/08/2024] [Indexed: 10/05/2024]
Abstract
Humans have been driving a global erosion of species richness for millennia, but the consequences of past extinctions for other dimensions of biodiversity-functional and phylogenetic diversity-are poorly understood. In this work, we show that, since the Late Pleistocene, the extinction of 610 bird species has caused a disproportionate loss of the global avian functional space along with ~3 billion years of unique evolutionary history. For island endemics, proportional losses have been even greater. Projected future extinctions of more than 1000 species over the next two centuries will incur further substantial reductions in functional and phylogenetic diversity. These results highlight the severe consequences of the ongoing biodiversity crisis and the urgent need to identify the ecological functions being lost through extinction.
Collapse
Affiliation(s)
- Thomas J Matthews
- School of Geography, Earth and Environmental Sciences (GEES) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
- Centre for Ecology, Evolution and Environmental Changes (CE3C), Azorean Biodiversity Group, CHANGE - Global Change and Sustainability Institute, and Faculty of Agricultural Sciences and Environment, Universidade dos Açores, Angra do Heroísmo, Açores, Portugal
| | - Kostas A Triantis
- Department of Ecology and Taxonomy, Faculty of Biology, National and Kapodistrian University of Athens, Athens GR-15784, Greece
| | - Joseph P Wayman
- School of Geography, Earth and Environmental Sciences (GEES) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Thomas E Martin
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, UK
- Operation Wallacea, Wallace House, Old Bolingbroke, Lincolnshire, UK
| | - Julian P Hume
- Bird Group, Life Sciences, Natural History Museum, Tring, UK
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus, University of Helsinki, Helsinki, Finland
- CE3C, CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Chase D Mendenhall
- Physician Assistant Studies, Slippery Rock University, Slippery Rock, PA 16057, USA
| | - Paul Dufour
- Center for Functional and Evolutionary Ecology (CEFE), Université de Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
- Station Biologique de la Tour du Valat, Arles, France
| | - François Rigal
- Centre for Ecology, Evolution and Environmental Changes (CE3C), Azorean Biodiversity Group, CHANGE - Global Change and Sustainability Institute, and Faculty of Agricultural Sciences and Environment, Universidade dos Açores, Angra do Heroísmo, Açores, Portugal
- CNRS - Université de Pau et des Pays de l'Adour - E2S UPPA, Institut Des Sciences Analytiques et de Physico Chimie pour l'Environnement et les Materiaux, UMR5254, Pau, France
| | - Rob Cooke
- UK Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford, Oxfordshire, UK
| | - Robert J Whittaker
- School of Geography and the Environment, University of Oxford, Oxford, UK
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alex L Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Christophe Thébaud
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300 Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier (Toulouse III), Toulouse Cedex 9, France
| | - Maria Wagner Jørgensen
- School of Geography, Earth and Environmental Sciences (GEES) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Eva Benavides
- School of Geography, Earth and Environmental Sciences (GEES) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Filipa C Soares
- CE3C, Departamento de Biologia Animal, CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Werner Ulrich
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Toruń, Poland
| | - Yasuhiro Kubota
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Jon P Sadler
- School of Geography, Earth and Environmental Sciences (GEES) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Ferran Sayol
- CREAF, Edifici C Campus UAB, E08193 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
8
|
Stott I, Salguero-Gómez R, Jones OR, Ezard THG, Gamelon M, Lachish S, Lebreton JD, Simmonds EG, Gaillard JM, Hodgson DJ. Life histories are not just fast or slow. Trends Ecol Evol 2024; 39:830-840. [PMID: 39003192 DOI: 10.1016/j.tree.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 07/15/2024]
Abstract
Life history strategies, which combine schedules of survival, development, and reproduction, shape how natural selection acts on species' heritable traits and organismal fitness. Comparative analyses have historically ranked life histories along a fast-slow continuum, describing a negative association between time allocation to reproduction and development versus survival. However, higher-quality, more representative data and analyses have revealed that life history variation cannot be fully accounted for by this single continuum. Moreover, studies often do not test predictions from existing theories and instead operate as exploratory exercises. To move forward, we offer three recommendations for future investigations: standardizing life history traits, overcoming taxonomic siloes, and using theory to move from describing to understanding life history variation across the Tree of Life.
Collapse
Affiliation(s)
- Iain Stott
- Department of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK; Department of Biology, University of Southern Denmark, Odense 5230, Denmark.
| | | | - Owen R Jones
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Thomas H G Ezard
- School of Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 3ZH, UK
| | - Marlène Gamelon
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Claude Bernard Lyon 1, 69622, Villeurbanne, France
| | - Shelly Lachish
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | | | - Emily G Simmonds
- Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, 7491, Trondheim, Norway; Department of Mathematical Sciences, Norwegian University of Science and Technology, 7034, Trondheim, Norway
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Claude Bernard Lyon 1, 69622, Villeurbanne, France
| | - Dave J Hodgson
- Department of Ecology & Evolution, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
9
|
Xiong Y, Rozzi R, Zhang Y, Fan L, Zhao J, Li D, Yao Y, Xiao H, Liu J, Zeng X, Xu H, Jiang Y, Lei F. Convergent evolution toward a slow pace of life predisposes insular endotherms to anthropogenic extinctions. SCIENCE ADVANCES 2024; 10:eadm8240. [PMID: 38996028 PMCID: PMC11244536 DOI: 10.1126/sciadv.adm8240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/10/2024] [Indexed: 07/14/2024]
Abstract
Island vertebrates have evolved a number of morphological, physiological, and life history characteristics that set them apart from their mainland relatives. However, to date, the evolution of metabolism and its impact on the vulnerability to extinction of insular vertebrates remains poorly understood. This study used metabolic data from 2813 species of tetrapod vertebrates, including 695 ectothermic and 2118 endothermic species, to reveal that island mammals and birds evolved convergent metabolic strategies toward a slow pace of life. Insularity was associated with shifts toward slower metabolic rates and greater generation lengths in endotherms, while insularity just drove the evolution of longer generation lengths in ectotherms. Notably, a slow pace of life has exacerbated the extinction of insular endemic species in the face of anthropogenic threats. These findings have important implications for understanding physiological adaptations associated with the island syndrome and formulating conservation strategies across taxonomic groups with different metabolic modes.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Zoology, College of Life science, Sichuan Agricultural University, Ya’an 625000, China
| | - Roberto Rozzi
- Zentralmagazin Naturwissenschaftlicher Sammlungen, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115 Berlin, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Yizhou Zhang
- Department of Zoology, College of Life science, Sichuan Agricultural University, Ya’an 625000, China
| | - Liqing Fan
- Key Laboratory of Forest Ecology in Tibet Plateau, Tibet Agricultural & Animal Husbandry University, Ministry of Education, Nyingchi 860000, China
| | - Jidong Zhao
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institude of Zoology, Xi’an 710000, China
| | - Dongming Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yongfang Yao
- Department of Zoology, College of Life science, Sichuan Agricultural University, Ya’an 625000, China
| | - Hongtao Xiao
- Department of Zoology, College of Life science, Sichuan Agricultural University, Ya’an 625000, China
| | - Jing Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Xianyin Zeng
- Department of Zoology, College of Life science, Sichuan Agricultural University, Ya’an 625000, China
| | - Huailiang Xu
- Department of Zoology, College of Life science, Sichuan Agricultural University, Ya’an 625000, China
| | - Yanzhi Jiang
- Department of Zoology, College of Life science, Sichuan Agricultural University, Ya’an 625000, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Quigley KM, Baird AH. Future climate warming threatens coral reef function on World Heritage reefs. GLOBAL CHANGE BIOLOGY 2024; 30:e17407. [PMID: 39011806 DOI: 10.1111/gcb.17407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024]
Abstract
Climate change is the most significant threat to natural World Heritage (WH) sites, especially in the oceans. Warming has devastated marine faunas, including reef corals, kelp, and seagrass. Here, we project future declines in species and ecosystem functions across Australia's four WH coral reef regions. Model simulations estimating species-level abundances and probabilities of ecological persistence were combined with trait space reconstructions at "present," 2050 (+1.5°C of warming), and 2100 (+2°C) to explore biogeographical overlaps and identify key functional differences and forecast changes in function through time. Future climates varied by region, with Shark Bay projected to warm the most (>1.29°C), followed by Lord Howe, when standardized to marine park size. By 2050, ~40% of the Great Barrier Reef will exceed critical thresholds set by the warmest summer month (mean monthly maximum [MMM]), triggering mortality. Functional diversity was greatest at Ningaloo. At +1.5°C of warming, species and regions varied drastically in their functional responses, declined 20.2% in species richness (~70 extinctions) and lost functions across all reefs. At +2°C, models predicted a complete collapse of functions, consistent with IPCC forecasts. This variability suggests a bespoke management approach is needed for each region and is critical for understanding WH vulnerability to climate change, identifying thresholds, and quantifying uncertainty of impacts. This knowledge will aid in focusing management, policy and conservation actions to direct resources, rapid action, and set biodiversity targets for these reefs of global priority. As reefs reassemble into novel or different configurations, determining the winners and losers of functional space will be critical for meeting global landmark biodiversity goals.
Collapse
Affiliation(s)
- Kate M Quigley
- Minderoo Foundation, Perth, Western Australia, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Andrew H Baird
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
11
|
Moura MR, Ceron K, Guedes JJM, Chen-Zhao R, Sica YV, Hart J, Dorman W, Portmann JM, González-del-Pliego P, Ranipeta A, Catenazzi A, Werneck FP, Toledo LF, Upham NS, Tonini JFR, Colston TJ, Guralnick R, Bowie RCK, Pyron RA, Jetz W. A phylogeny-informed characterisation of global tetrapod traits addresses data gaps and biases. PLoS Biol 2024; 22:e3002658. [PMID: 38991106 PMCID: PMC11239118 DOI: 10.1371/journal.pbio.3002658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/03/2024] [Indexed: 07/13/2024] Open
Abstract
Tetrapods (amphibians, reptiles, birds, and mammals) are model systems for global biodiversity science, but continuing data gaps, limited data standardisation, and ongoing flux in taxonomic nomenclature constrain integrative research on this group and potentially cause biased inference. We combined and harmonised taxonomic, spatial, phylogenetic, and attribute data with phylogeny-based multiple imputation to provide a comprehensive data resource (TetrapodTraits 1.0.0) that includes values, predictions, and sources for body size, activity time, micro- and macrohabitat, ecosystem, threat status, biogeography, insularity, environmental preferences, and human influence, for all 33,281 tetrapod species covered in recent fully sampled phylogenies. We assess gaps and biases across taxa and space, finding that shared data missing in attribute values increased with taxon-level completeness and richness across clades. Prediction of missing attribute values using multiple imputation revealed substantial changes in estimated macroecological patterns. These results highlight biases incurred by nonrandom missingness and strategies to best address them. While there is an obvious need for further data collection and updates, our phylogeny-informed database of tetrapod traits can support a more comprehensive representation of tetrapod species and their attributes in ecology, evolution, and conservation research.
Collapse
Affiliation(s)
- Mario R. Moura
- Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Departamento de Biociências, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, United States of America
| | - Karoline Ceron
- Departamento de Biologia, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Jhonny J. M. Guedes
- Programa de Pós-Graduação em Ecologia e Evolução, Departamento de Ecologia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Rosana Chen-Zhao
- Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Yanina V. Sica
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, United States of America
| | - Julie Hart
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, United States of America
- New York Natural Heritage Program, State University of New York College of Environmental Science and Forestry, Albany, New York, United States of America
| | - Wendy Dorman
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, United States of America
- Department of Natural Resources and Environmental Sciences (NRES), University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Julia M. Portmann
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, United States of America
| | - Pamela González-del-Pliego
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, United States of America
- Rui Nabeiro Biodiversity Chair, MED Institute, Universidade de Évora, Évora, Portugal
| | - Ajay Ranipeta
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, United States of America
| | - Alessandro Catenazzi
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | - Fernanda P. Werneck
- Programa de Coleções Científicas Biológicas, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus Amazonas, Brazil
| | - Luís Felipe Toledo
- Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Nathan S. Upham
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - João F. R. Tonini
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Timothy J. Colston
- Biology Department, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico
| | - Robert Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America
| | - Rauri C. K. Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - R. Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington DC, United States of America
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
12
|
Cooke R, Sayol F, Andermann T, Blackburn TM, Steinbauer MJ, Antonelli A, Faurby S. Undiscovered bird extinctions obscure the true magnitude of human-driven extinction waves. Nat Commun 2023; 14:8116. [PMID: 38114469 PMCID: PMC10730700 DOI: 10.1038/s41467-023-43445-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Birds are among the best-studied animal groups, but their prehistoric diversity is poorly known due to low fossilization potential. Hence, while many human-driven bird extinctions (i.e., extinctions caused directly by human activities such as hunting, as well as indirectly through human-associated impacts such as land use change, fire, and the introduction of invasive species) have been recorded, the true number is likely much larger. Here, by combining recorded extinctions with model estimates based on the completeness of the fossil record, we suggest that at least ~1300-1500 bird species (~12% of the total) have gone extinct since the Late Pleistocene, with 55% of these extinctions undiscovered (not yet discovered or left no trace). We estimate that the Pacific accounts for 61% of total bird extinctions. Bird extinction rate varied through time with an intense episode ~1300 CE, which likely represents the largest human-driven vertebrate extinction wave ever, and a rate 80 (60-95) times the background extinction rate. Thus, humans have already driven more than one in nine bird species to extinction, with likely severe, and potentially irreversible, ecological and evolutionary consequences.
Collapse
Affiliation(s)
- Rob Cooke
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK.
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden.
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden.
| | - Ferran Sayol
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Tobias Andermann
- Department of Organismal Biology, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Tim M Blackburn
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Manuel J Steinbauer
- Bayreuth Center of Ecology and Environmental Research (BayCEER) & Bayreuth Center of Sport Science (BaySpo), University of Bayreuth, 95447, Bayreuth, Germany
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
- Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
| |
Collapse
|
13
|
Cox DTC, Gaston KJ. Global erosion of terrestrial environmental space by artificial light at night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166701. [PMID: 37652384 DOI: 10.1016/j.scitotenv.2023.166701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Artificial light at night (ALAN) disrupts natural light cycles, with biological impacts that span from behaviour of individual organisms to ecosystem functions, and across bacteria, fungi, plants and animals. Global consequences have almost invariably been inferred from the geographic distribution of ALAN. How ALAN is distributed in environmental space, and the extent to which combinations of environmental conditions with natural light cycles have been lost, is also key. Globally (between 60°N and 56°S), we ordinated four bioclimatic variables at 1.61 * 1.21 km resolution to map the position and density of terrestrial pixels within nighttime environmental space. We then used the Black Marble Nighttime Lights product to determine where direct ALAN emissions were present in environmental space in 2012 and how these had expanded in environmental space by 2022. Finally, we used the World Atlas of Artificial Sky Brightness to determine the proportion of environmental space that is unaffected by ALAN across its spatial distribution. We found that by 2012 direct ALAN emissions occurred across 71.9 % of possible nighttime terrestrial environmental conditions, with temperate nighttime environments and highly modified habitats disproportionately impacted. From 2012 to 2022 direct ALAN emissions primarily grew within 34.4 % of environmental space where it was already present, with this growth concentrated in tropical environments. Additionally considering skyglow, just 13.2 % of environmental space now only experiences natural light cycles throughout its distribution. With opportunities to maintain much of environmental space under such cycles fast disappearing, the removal, reduction and amelioration of ALAN from areas of environmental space in which it is already widespread is critical.
Collapse
Affiliation(s)
- Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK.
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
14
|
Martínez-Núñez C, Martínez-Prentice R, García-Navas V. Protected area coverage of vulnerable regions to conserve functional diversity of birds. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14131. [PMID: 37259609 DOI: 10.1111/cobi.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Global-change drivers are increasing the rates of species extinction worldwide, posing a serious threat to ecosystem functioning. Preserving the functional diversity of species is currently a priority to mitigate abrupt biodiversity loss in the coming decades. Therefore, understanding what factors better predict functional diversity loss in bird assemblages at a global scale and how existing protected areas cover the most vulnerable regions is of key importance for conservation. We examined the environmental factors associated with the risk of functional diversity loss under 3 scenarios of bird species extinction based on species distribution range size, generation length, and International Union for the Conservation of Nature conservation status. Then, we identified regions that deserve special conservation focus. We also assessed how efficiently extant terrestrial protected areas preserve particularly vulnerable bird assemblages based on predicted scenarios of extinction risk. The vulnerability of bird functional diversity increased as net primary productivity, land-use diversity, mean annual temperature, and elevation decreased. Low values for these environmental factors were associated with a higher risk of functional diversity loss worldwide through two mechanisms: one independent of species richness that affects assemblages with low levels of niche packing and high functional dissimilarity among species, and the other that affects assemblages with low species richness and high rates of extinction. Existing protected areas ineffectively safeguarded regions with a high risk of losing functional diversity in the next decades. The global predictors and the underlying mechanisms of functional vulnerability in bird assemblages we identified can inform strategies aimed at preserving bird-driven ecological functions worldwide.
Collapse
Affiliation(s)
- Carlos Martínez-Núñez
- Department of Integrative Ecology, Estación Biológica de Doñana EBD (CSIC), Seville, Spain
| | - Ricardo Martínez-Prentice
- Institute of Agriculture and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Vicente García-Navas
- Department of Integrative Ecology, Estación Biológica de Doñana EBD (CSIC), Seville, Spain
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Mayani-Parás F, Moreno CE, Escalona-Segura G, Botello F, Munguía-Carrara M, Sánchez-Cordero V. Classification and distribution of functional groups of birds and mammals in Mexico. PLoS One 2023; 18:e0287036. [PMID: 37934744 PMCID: PMC10629651 DOI: 10.1371/journal.pone.0287036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/28/2023] [Indexed: 11/09/2023] Open
Abstract
There has been a recent exponential growth in the study of functional trait ecology. Nonetheless, the study of functional traits and functional groups has been limited for terrestrial vertebrates. We conducted a classification update of functional groups (FG) of birds and mammals in Mexico, and determined the distribution patterns of FG species richness in different ecosystems nationwide. We selected six functional traits (feeding habit, locomotion, feeding substrate and technique, activity period, seasonality, and body size) obtained for 987 and 496 species of birds and mammals, respectively. A cophenetic correlation analyses resulted in values of 0.82 for the bird species dendrogram, and 0.79 for the mammal species dendrogram showing that the structures adequately reflected the similarity between observations. We obtained 52 FG for birds, assembled into 9 broader groups based on their feeding habits (16 invertivores, 6 carnivores: 5 herbivores, 9 aquatic vertivore/invertivore, 5 granivores, 1 scavenger, 3 nectarivores, 4 frugivores, and 3 omnivores). We obtained 35 FG for mammals, assembled into 9 broader groups based on their feeding habits (4 granivores, 10 herbivores, 1 nectarivore, 4 frugivores, 8 invertivores, 3 omnivores, 2 aquatic vertivore/invertivore, 1 hematophagous, and 2 carnivores). Overall, the distribution of FG species richness for birds and mammals gradually increased from the Nearctic to the Neotropical region, following a typical latitudinal species richness pattern. Few FG of migratory birds, and FG of granivore and herbivore mammals showed more species in the Nearctic and in the transitional regions. Our study provides a baseline for identifying ecological functions of species of birds and mammals in different ecosystems in Mexico, and contributes to understand the relationship between species diversity, community structure and ecosystem functioning. Identifying spatial patterns of functional trait diversity is important as biodiversity loss has a negative impact on ecosystem functioning and provision of environmental services.
Collapse
Affiliation(s)
- Fernando Mayani-Parás
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudia E. Moreno
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, Mexico
| | - Griselda Escalona-Segura
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur (ECOSUR), Campeche, Campeche, Mexico
| | - Francisco Botello
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Mariana Munguía-Carrara
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Mexico City, Mexico
| | - Víctor Sánchez-Cordero
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
16
|
Semper-Pascual A, Sheil D, Beaudrot L, Dupont P, Dey S, Ahumada J, Akampurira E, Bitariho R, Espinosa S, Jansen PA, Lima MGM, Martin EH, Mugerwa B, Rovero F, Santos F, Uzabaho E, Bischof R. Occurrence dynamics of mammals in protected tropical forests respond to human presence and activities. Nat Ecol Evol 2023; 7:1092-1103. [PMID: 37365343 DOI: 10.1038/s41559-023-02060-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/02/2023] [Indexed: 06/28/2023]
Abstract
Protected areas (PAs) play a vital role in wildlife conservation. Nonetheless there is concern and uncertainty regarding how and at what spatial scales anthropogenic stressors influence the occurrence dynamics of wildlife populations inside PAs. Here we assessed how anthropogenic stressors influence occurrence dynamics of 159 mammal species in 16 tropical PAs from three biogeographic regions. We quantified these relationships for species groups (habitat specialists and generalists) and individual species. We used long-term camera-trap data (1,002 sites) and fitted Bayesian dynamic multispecies occupancy models to estimate local colonization (the probability that a previously empty site is colonized) and local survival (the probability that an occupied site remains occupied). Multiple covariates at both the local scale and landscape scale influenced mammal occurrence dynamics, although responses differed among species groups. Colonization by specialists increased with local-scale forest cover when landscape-scale fragmentation was low. Survival probability of generalists was higher near the edge than in the core of the PA when landscape-scale human population density was low but the opposite occurred when population density was high. We conclude that mammal occurrence dynamics are impacted by anthropogenic stressors acting at multiple scales including outside the PA itself.
Collapse
Affiliation(s)
- Asunción Semper-Pascual
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
| | - Douglas Sheil
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, the Netherlands
- Center for International Forestry Research, Bogor, Indonesia
| | - Lydia Beaudrot
- Program in Ecology & Evolutionary Biology, Department of BioSciences, Rice University, Houston, TX, USA
| | - Pierre Dupont
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Soumen Dey
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Jorge Ahumada
- Moore Center for Science, Conservation International, Arlington, VA, USA
| | - Emmanuel Akampurira
- Institute of Tropical Forest Conservation, Mbarara University of Science and Technology, Kabale, Uganda
- Conflict Research Group, Ghent University, Ghent, Belgium
| | - Robert Bitariho
- Institute of Tropical Forest Conservation, Mbarara University of Science and Technology, Kabale, Uganda
| | - Santiago Espinosa
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Patrick A Jansen
- Smithsonian Tropical Research Institute, Ancon, Republic of Panama
- Wildlife Ecology & Conservation Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Marcela Guimarães Moreira Lima
- Biogeography of Conservation and Macroecology Laboratory, Institute of Biological Sciences, Universidade Federal do Pará, Pará, Brazil
| | - Emanuel H Martin
- Department of Wildlife Management, College of African Wildlife Management, Mweka, Tanzania
| | - Badru Mugerwa
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Faculty VI-Planning Building Environment, Institute of Ecology, Technische Universität Berlin, Berlin, Germany
| | - Francesco Rovero
- Department of Biology, University of Florence, Florence, Italy
- MUSE-Museo delle Scienze, Trento, Italy
| | | | | | - Richard Bischof
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
17
|
Darimont CT, Cooke R, Bourbonnais ML, Bryan HM, Carlson SM, Estes JA, Galetti M, Levi T, MacLean JL, McKechnie I, Paquet PC, Worm B. Humanity's diverse predatory niche and its ecological consequences. Commun Biol 2023; 6:609. [PMID: 37386144 PMCID: PMC10310721 DOI: 10.1038/s42003-023-04940-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
Although humans have long been predators with enduring nutritive and cultural relationships with their prey, seldom have conservation ecologists considered the divergent predatory behavior of contemporary, industrialized humans. Recognizing that the number, strength and diversity of predator-prey relationships can profoundly influence biodiversity, here we analyze humanity's modern day predatory interactions with vertebrates and estimate their ecological consequences. Analysing IUCN 'use and trade' data for ~47,000 species, we show that fishers, hunters and other animal collectors prey on more than a third (~15,000 species) of Earth's vertebrates. Assessed over equivalent ranges, humans exploit up to 300 times more species than comparable non-human predators. Exploitation for the pet trade, medicine, and other uses now affects almost as many species as those targeted for food consumption, and almost 40% of exploited species are threatened by human use. Trait space analyses show that birds and mammals threatened by exploitation occupy a disproportionally large and unique region of ecological trait space, now at risk of loss. These patterns suggest far more species are subject to human-imposed ecological (e.g., landscapes of fear) and evolutionary (e.g., harvest selection) processes than previously considered. Moreover, continued overexploitation will likely bear profound consequences for biodiversity and ecosystem function.
Collapse
Affiliation(s)
- Chris T Darimont
- Department of Geography, University of Victoria, Victoria, BC, Canada.
- Raincoast Conservation Foundation, Sidney, BC, Canada.
| | - Rob Cooke
- UK Centre for Ecology & Hydrology, Wallingford, UK.
| | - Mathieu L Bourbonnais
- Department of Earth, Environmental, and Geographic Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Heather M Bryan
- Raincoast Conservation Foundation, Sidney, BC, Canada
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, BC, Canada
| | - Stephanie M Carlson
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - James A Estes
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Mauro Galetti
- São Paulo State University (UNESP), Department of Biodiversity, Rio Claro, São Paulo, Brazil
- Kimberly Green Latin American and Caribbean Center, Florida International University (FIU), Miami, FL, USA
| | - Taal Levi
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, USA
| | - Jessica L MacLean
- Department of Geography, University of Victoria, Victoria, BC, Canada
- Raincoast Conservation Foundation, Sidney, BC, Canada
| | - Iain McKechnie
- Department of Anthropology, University of Victoria, Victoria, BC, Canada
- Hakai Institute, Heriot Bay, Quadra Island, BC, Canada
| | - Paul C Paquet
- Department of Geography, University of Victoria, Victoria, BC, Canada
- Raincoast Conservation Foundation, Sidney, BC, Canada
| | - Boris Worm
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Ocean Frontier Institute, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
18
|
Muñoz J, Jankowski JE. Neotropical mixed-species bird flocks in a community context. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220104. [PMID: 37066656 PMCID: PMC10107222 DOI: 10.1098/rstb.2022.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/31/2023] [Indexed: 04/18/2023] Open
Abstract
Mixed-species flocks are an important component of bird communities, particularly in the Neotropics, where flocks reach their highest diversity. The extent to which mixed-species flocks represent unique functional or ecological roles within communities, and how these attributes change over environmental gradients, however, is not well understood. We use a trait-based approach to examine functional aspects of flocking assemblages as they relate to those observed in the larger avian community across a 3000 m elevational gradient. Our results reveal similar ecological strategies among flocking species and the communities in which they occur, at the scale of the regional pool and across elevations. Trait variation in flocking and non-flocking assemblages is structured along two major axes defined by size- and resource-related traits. The trait space occupied by flocking species, however, represents only half (51%) that of the larger community. Similarly, the trait space of flocks across elevations is restricted compared to non-flocking species. The shared trait space across flock types represents small-bodied invertivores foraging in lower forest strata, traits associated with increased vulnerability to predation. The concentration of flocking species in functional trait space suggests high niche packing and either more overlap in ecological strategies or more finely divided niches relative to non-flocking species. This article is part of the theme issue 'Mixed-species groups and aggregations: shaping ecological and behavioural patterns and processes'.
Collapse
Affiliation(s)
- Jenny Muñoz
- Biodiversity Research Center and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jill E. Jankowski
- Biodiversity Research Center and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
19
|
Froidevaux JSP, Toshkova N, Barbaro L, Benítez-López A, Kerbiriou C, Le Viol I, Pacifici M, Santini L, Stawski C, Russo D, Dekker J, Alberdi A, Amorim F, Ancillotto L, Barré K, Bas Y, Cantú-Salazar L, Dechmann DKN, Devaux T, Eldegard K, Fereidouni S, Furmankiewicz J, Hamidovic D, Hill DL, Ibáñez C, Julien JF, Juste J, Kaňuch P, Korine C, Laforge A, Legras G, Leroux C, Lesiński G, Mariton L, Marmet J, Mata VA, Mifsud CM, Nistreanu V, Novella-Fernandez R, Rebelo H, Roche N, Roemer C, Ruczyński I, Sørås R, Uhrin M, Vella A, Voigt CC, Razgour O. A species-level trait dataset of bats in Europe and beyond. Sci Data 2023; 10:253. [PMID: 37137926 PMCID: PMC10156679 DOI: 10.1038/s41597-023-02157-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Knowledge of species' functional traits is essential for understanding biodiversity patterns, predicting the impacts of global environmental changes, and assessing the efficiency of conservation measures. Bats are major components of mammalian diversity and occupy a variety of ecological niches and geographic distributions. However, an extensive compilation of their functional traits and ecological attributes is still missing. Here we present EuroBaTrait 1.0, the most comprehensive and up-to-date trait dataset covering 47 European bat species. The dataset includes data on 118 traits including genetic composition, physiology, morphology, acoustic signature, climatic associations, foraging habitat, roost type, diet, spatial behaviour, life history, pathogens, phenology, and distribution. We compiled the bat trait data obtained from three main sources: (i) a systematic literature and dataset search, (ii) unpublished data from European bat experts, and (iii) observations from large-scale monitoring programs. EuroBaTrait is designed to provide an important data source for comparative and trait-based analyses at the species or community level. The dataset also exposes knowledge gaps in species, geographic and trait coverage, highlighting priorities for future data collection.
Collapse
Affiliation(s)
- Jérémy S P Froidevaux
- University of Stirling, Biological and Environmental Sciences, Faculty of Natural Sciences, FK9 4LJ, Stirling, UK.
- Centre d'Ecologie et des Sciences de la Conservation (CESCO, UMR 7204), CNRS, MNHN, Sorbonne-Université, 29900 Concarneau, 75005, Paris, France.
- School of Biological Sciences, University of Bristol, Life Sciences Building, BS8 1TQ, Bristol, UK.
| | - Nia Toshkova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000, Sofia, Bulgaria
- National Museum of Natural History at the Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Luc Barbaro
- Centre d'Ecologie et des Sciences de la Conservation (CESCO, UMR 7204), CNRS, MNHN, Sorbonne-Université, 29900 Concarneau, 75005, Paris, France
- DYNAFOR, INRAE-INPT, University of Toulouse, Castanet-Tolosan, France
| | - Ana Benítez-López
- Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
- Department of Zoology, University of Granada, Granada, Spain
| | - Christian Kerbiriou
- Centre d'Ecologie et des Sciences de la Conservation (CESCO, UMR 7204), CNRS, MNHN, Sorbonne-Université, 29900 Concarneau, 75005, Paris, France
| | - Isabelle Le Viol
- Centre d'Ecologie et des Sciences de la Conservation (CESCO, UMR 7204), CNRS, MNHN, Sorbonne-Université, 29900 Concarneau, 75005, Paris, France
| | - Michela Pacifici
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Luca Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Clare Stawski
- Department of Biology, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Danilo Russo
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università, 100, 80055, Portici (Napoli), Italy.
| | - Jasja Dekker
- Jasja Dekker Dierecologie BV, Arnhem, the Netherlands
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Francisco Amorim
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Leonardo Ancillotto
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università, 100, 80055, Portici (Napoli), Italy
| | - Kévin Barré
- Centre d'Ecologie et des Sciences de la Conservation (CESCO, UMR 7204), CNRS, MNHN, Sorbonne-Université, 29900 Concarneau, 75005, Paris, France
| | - Yves Bas
- Centre d'Ecologie et des Sciences de la Conservation (CESCO, UMR 7204), CNRS, MNHN, Sorbonne-Université, 29900 Concarneau, 75005, Paris, France
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Lisette Cantú-Salazar
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation, 41 rue du Brill, L-4422, Belvaux, Luxemburg
| | - Dina K N Dechmann
- Max Planck Institute of Animal Behavior, Department of Migration, Am Obstberg 1, 78315, Radolfzell, Germany
- University of Konstanz, Department of Biology, Universitätsstr. 10, 78464, Konstanz, Germany
| | - Tiphaine Devaux
- Centre d'Ecologie et des Sciences de la Conservation (CESCO, UMR 7204), CNRS, MNHN, Sorbonne-Université, 29900 Concarneau, 75005, Paris, France
| | - Katrine Eldegard
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Sasan Fereidouni
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Joanna Furmankiewicz
- Department of Behavioural Ecology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335, Wroclaw, Poland
| | - Daniela Hamidovic
- Ministry of Economy and Sustainable Development, Institute for Environment and Nature, Radnička cesta 80, HR-10000, Zagreb, Croatia
- Croatian Biospeleological Society, Rooseveltov trg 6, HR-10000, Zagreb, Croatia
| | - Davina L Hill
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Carlos Ibáñez
- Department Evolutionary Ecology, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
| | - Jean-François Julien
- Centre d'Ecologie et des Sciences de la Conservation (CESCO, UMR 7204), CNRS, MNHN, Sorbonne-Université, 29900 Concarneau, 75005, Paris, France
| | - Javier Juste
- Department Evolutionary Ecology, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
- CIBER de Epidemiología y Salud Pública, CIBERESP, 28220, Madrid, Spain
| | - Peter Kaňuch
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Carmi Korine
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000, Midreshet Ben-Gurion, Israel
| | - Alexis Laforge
- Centre d'Ecologie et des Sciences de la Conservation (CESCO, UMR 7204), CNRS, MNHN, Sorbonne-Université, 29900 Concarneau, 75005, Paris, France
| | - Gaëlle Legras
- Centre d'Ecologie et des Sciences de la Conservation (CESCO, UMR 7204), CNRS, MNHN, Sorbonne-Université, 29900 Concarneau, 75005, Paris, France
| | - Camille Leroux
- Centre d'Ecologie et des Sciences de la Conservation (CESCO, UMR 7204), CNRS, MNHN, Sorbonne-Université, 29900 Concarneau, 75005, Paris, France
- Auddicé Biodiversité- ZAC du Chevalement, 5 rue des Molettes, 59286, Roost-Warendin, France
| | - Grzegorz Lesiński
- Institute of Animal Science, Warsaw University of Life Sciences (SGGW), Ciszewskiego 8, 02-787, Warsaw, Poland
| | - Léa Mariton
- Centre d'Ecologie et des Sciences de la Conservation (CESCO, UMR 7204), CNRS, MNHN, Sorbonne-Université, 29900 Concarneau, 75005, Paris, France
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS, MNHN, IRD, 61 Rue Buffon, 75005, Paris, France
| | - Julie Marmet
- Centre d'Ecologie et des Sciences de la Conservation (CESCO, UMR 7204), CNRS, MNHN, Sorbonne-Université, 29900 Concarneau, 75005, Paris, France
| | - Vanessa A Mata
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Clare M Mifsud
- Conservation Biology Research Group, Biology Department, University of Malta, MSD2080, Msida, Malta
| | | | - Roberto Novella-Fernandez
- Technical University of Munich, Terrestrial Ecology Research Group, Department for Life Science Systems, School of Life Sciences, Freising, Germany
| | - Hugo Rebelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- ESS, Polytechnic Institute of Setúbal, Campus do IPS - Estefanilha, 2910-761, Setúbal, Portugal
| | - Niamh Roche
- Bat Conservation Ireland, Carmichael House, 4-7, North Brunswick Street, Dublin, D07 RHA8, Ireland
| | - Charlotte Roemer
- Centre d'Ecologie et des Sciences de la Conservation (CESCO, UMR 7204), CNRS, MNHN, Sorbonne-Université, 29900 Concarneau, 75005, Paris, France
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Ireneusz Ruczyński
- Mammal Research Institute Polish Academy of Sciences, Stoczek 1, 17-230, Białowieża, Poland
| | - Rune Sørås
- Department of Biology, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway
| | - Marcel Uhrin
- Institute of Biology and Ecology, Faculty of Science, P. J, Šafárik University in Košice, Košice, Slovakia
| | - Adriana Vella
- Conservation Biology Research Group, Biology Department, University of Malta, MSD2080, Msida, Malta
| | - Christian C Voigt
- Department Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
| | - Orly Razgour
- Biosciences, University of Exeter, Streatham Campus, Hatherly Laboratories, Prince of Wales Road, Exeter, EX4 4PS, UK.
| |
Collapse
|
20
|
Lourenço J, Gutiérrez-Cánovas C, Carvalho F, Cássio F, Pascoal C, Pace G. Non-interactive effects drive multiple stressor impacts on the taxonomic and functional diversity of atlantic stream macroinvertebrates. ENVIRONMENTAL RESEARCH 2023; 229:115965. [PMID: 37105281 DOI: 10.1016/j.envres.2023.115965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/18/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Freshwaters are considered among the most endangered ecosystems globally due to multiple stressors, which coincide in time and space. These local stressors typically result from land-use intensification or hydroclimatic alterations, among others. Despite recent advances on multiple stressor effects, current knowledge is still limited to manipulative approaches minimizing biological and abiotic variability. Thus, the assessment of multiple stressor effects in real-world ecosystems is required. Using an extensive survey of 50 stream reaches across North Portugal, we evaluated taxonomic and functional macroinvertebrate responses to multiple stressors, including marked gradients of nutrient enrichment, flow reduction, riparian vegetation structure, thermal stress and dissolved oxygen depletion. We analyzed multiple stressor effects on two taxonomic (taxon richness, Shannon-diversity) and two trait-based diversity indices (functional richness, functional dispersion), as well as changes in trait composition. We found that multiple stressors had additive effects on all diversity metrics, with nutrient enrichment identified as the most important stressor in three out of four metrics, followed by dissolved oxygen depletion and thermal stress. Taxon richness, Shannon-diversity and functional richness responded similarly, whereas functional dispersion was driven by changes in flow velocity and thermal stress. Functional trait composition changed along a major stress gradient determined by nutrient enrichment and oxygen depletion, which was positively correlated with organisms possessing fast-living strategies, aerial respiration, adult phases, and gathering-collector feeding habits. Overall, our results reinforce the need to consider complementary facets of biodiversity to better identify assembly processes in response to multiple stressors. Our data suggest that stressor interactions may be less frequent in real-word streams than predicted by manipulative experiments, which can facilitate mitigation strategies. By combining an extensive field survey with an integrative consideration of multiple biodiversity facets, our study provides new insights that can help to better assess and manage rivers in a global change context.
Collapse
Affiliation(s)
- J Lourenço
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal.
| | - C Gutiérrez-Cánovas
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - F Carvalho
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - F Cássio
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - C Pascoal
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - G Pace
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| |
Collapse
|
21
|
Rodríguez-Caro RC, Graciá E, Blomberg SP, Cayuela H, Grace M, Carmona CP, Pérez-Mendoza HA, Giménez A, Salguero-Gómez R. Anthropogenic impacts on threatened species erode functional diversity in chelonians and crocodilians. Nat Commun 2023; 14:1542. [PMID: 36977697 PMCID: PMC10050202 DOI: 10.1038/s41467-023-37089-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The Anthropocene is tightly associated with a drastic loss of species worldwide and the disappearance of their key ecosystem functions. The orders Testudines (turtles and tortoises) and Crocodilia (crocodiles, alligators, and gharials) contain numerous threatened, long-lived species for which the functional diversity and potential erosion by anthropogenic impacts remains unknown. Here, we examine 259 (69%) of the existing 375 species of Testudines and Crocodilia, quantifying their life history strategies (i.e., trade-offs in survival, development, and reproduction) from open-access data on demography, ancestry, and threats. We find that the loss of functional diversity in simulated extinction scenarios of threatened species is greater than expected by chance. Moreover, the effects of unsustainable local consumption, diseases, and pollution are associated with life history strategies. In contrast, climate change, habitat disturbance, and global trade affect species independent of their life history strategy. Importantly, the loss of functional diversity for threatened species by habitat degradation is twice that for all other threats. Our findings highlight the importance of conservation programmes focused on preserving the functional diversity of life history strategies jointly with the phylogenetic representativity of these highly threatened groups.
Collapse
Affiliation(s)
- R C Rodríguez-Caro
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
- Departamento de Biología Aplicada, Universidad Miguel Hernández, Elche, 03202, Alicante, Spain.
- Departamento de Ecología, Universidad de Alicante, San Vicent del Raspeig, 03690, Alicante, Spain.
| | - E Graciá
- Departamento de Biología Aplicada, Universidad Miguel Hernández, Elche, 03202, Alicante, Spain
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312, Orihuela, Spain
| | - S P Blomberg
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - H Cayuela
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, F-769622, Villeurbanne, France
| | - M Grace
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - C P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, 50409, Tartu, Estonia
| | - H A Pérez-Mendoza
- Facultad de Estudios Superiores Iztacala, Universidad Autónoma de México, 54090, Tlalnepantla, México
| | - A Giménez
- Departamento de Biología Aplicada, Universidad Miguel Hernández, Elche, 03202, Alicante, Spain
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312, Orihuela, Spain
| | - R Salguero-Gómez
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
- Max Plank Institute for Demographic Research, Konrad-Zuße Straße 1, 18057, Rostock, Germany.
| |
Collapse
|
22
|
Zheng S, Hu J, Ma Z, Lindenmayer D, Liu J. Increases in intraspecific body size variation are common among North American mammals and birds between 1880 and 2020. Nat Ecol Evol 2023; 7:347-354. [PMID: 36690729 DOI: 10.1038/s41559-022-01967-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/29/2022] [Indexed: 01/24/2023]
Abstract
Many studies have documented the average body size of animals declining over time. Compared to mean body size, less is known about long-term changes in intraspecific trait variation (ITV), which is also important to understanding species' ability to cope with environmental challenges. On the basis of 393,499 specimen records from 380 species collected in North America between 1880 and 2020, we found that body size ITV increased by 9.59% for mammals (n = 302) and 30.67% for birds (n = 78); human-harvested species had higher probability of ITV increase. The observed increasing ITV in many species suggests possible niche expansion and potential buffering effects against downsizing but it risks increased maladaptation to rapidly changing environments. The results demonstrate that trait mean and variance do not necessarily respond in similar ways to anthropogenic pressures and both should be considered.
Collapse
Affiliation(s)
- Shilu Zheng
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhijun Ma
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| | - David Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jiajia Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China. .,Institute of Eco-Chongming, Shanghai, China.
| |
Collapse
|
23
|
Germain RR, Feng S, Buffan L, Carmona CP, Chen G, Graves GR, Tobias JA, Rahbek C, Lei F, Fjeldså J, Hosner PA, Gilbert MTP, Zhang G, Nogués-Bravo D. Changes in the functional diversity of modern bird species over the last million years. Proc Natl Acad Sci U S A 2023; 120:e2201945119. [PMID: 36745783 PMCID: PMC9963860 DOI: 10.1073/pnas.2201945119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/28/2022] [Indexed: 02/08/2023] Open
Abstract
Despite evidence of declining biosphere integrity, we currently lack understanding of how the functional diversity associated with changes in abundance among ecological communities has varied over time and before widespread human disturbances. We combine morphological, ecological, and life-history trait data for >260 extant bird species with genomic-based estimates of changing effective population size (Ne) to quantify demographic-based shifts in avian functional diversity over the past million years and under pre-anthropogenic climate warming. We show that functional diversity was relatively stable over this period, but underwent significant changes in some key areas of trait space due to changing species abundances. Our results suggest that patterns of population decline over the Pleistocene have been concentrated in particular regions of trait space associated with extreme reproductive strategies and low dispersal ability, consistent with an overall erosion of functional diversity. Further, species most sensitive to climate warming occupied a relatively narrow region of functional space, indicating that the largest potential population increases and decreases under climate change will occur among species with relatively similar trait sets. Overall, our results identify fluctuations in functional space of extant species over evolutionary timescales and represent the demographic-based vulnerability of different regions of functional space among these taxa. The integration of paleodemographic dynamics with functional trait data enhances our ability to quantify losses of biosphere integrity before anthropogenic disturbances and attribute contemporary biodiversity loss to different drivers over time.
Collapse
Affiliation(s)
- Ryan R. Germain
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen2100, Denmark
| | - Shaohong Feng
- BGI-Shenzhen, Shenzhen518083, China
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China
| | - Lucas Buffan
- Département de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon69342 Cedex 07, France
| | - Carlos P. Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 51005, Estonia
| | - Guangii Chen
- BGI-Shenzhen, Shenzhen518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Gary R. Graves
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Department of Vertebrate Zoology, National Museum of Natural History Smithsonian Institution, Washington20560, DC
| | - Joseph A. Tobias
- Department of Life Sciences, Imperial College London, AscotSL5 7PY, UK
| | - Carsten Rahbek
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Institute of Ecology, Peking University, Beijing100871, China
- Danish Institute for Advanced Study, University of Southern Denmark, Odense5230, Denmark
| | - Fumin Lei
- Institute of Zoology, Key Laboratory of Zoological Systematics and Evolution, Chinese Academy of Sciences, Beijing100101, China
| | - Jon Fjeldså
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen2100, Denmark
| | - Peter A. Hosner
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen2100, Denmark
| | - M. Thomas P. Gilbert
- Center for Evolutionary Hologenomics, Globe Institute University of Copenhagen, Copenhagen1353, Denmark
- Department of Natural History, University Museum, Norwegian University of Science and Technology, Trondheim7491, Norway
| | - Guojie Zhang
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen2100, Denmark
- BGI-Shenzhen, Shenzhen518083, China
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650223, China
| | - David Nogués-Bravo
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
| |
Collapse
|
24
|
Nell CS, Pratt R, Burger J, Preston KL, Treseder KK, Kamada D, Moore K, Mooney KA. Consequences of arthropod community structure for an at-risk insectivorous bird. PLoS One 2023; 18:e0281081. [PMID: 36763634 PMCID: PMC9917275 DOI: 10.1371/journal.pone.0281081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/13/2023] [Indexed: 02/12/2023] Open
Abstract
Global declines in bird and arthropod abundance highlights the importance of understanding the role of food limitation and arthropod community composition for the performance of insectivorous birds. In this study, we link data on nestling diet, arthropod availability and nesting performance for the Coastal Cactus Wren (Campylorhynchus brunneicapillus sandiegensis), an at-risk insectivorous bird native to coastal southern California and Baja Mexico. We used DNA metabarcoding to characterize nestling diets and monitored 8 bird territories over two years to assess the relationship between arthropod and vegetation community composition and bird reproductive success. We document a discordance between consumed prey and arthropod biomass within nesting territories, in which Diptera and Lepidoptera were the most frequently consumed prey taxa but were relatively rare in the environment. In contrast other Orders (e.g., Hemiptera, Hymenoptera)were abundant in the environment but were absent from nestling diets. Accordingly, variation in bird reproductive success among territories was positively related to the relative abundance of Lepidoptera (but not Diptera), which were most abundant on 2 shrub species (Eriogonum fasciculatum, Sambucus nigra) of the 9 habitat elements characterized (8 dominant plant species and bare ground). Bird reproductive success was in turn negatively related to two invasive arthropods whose abundance was not associated with preferred bird prey, but instead possibly acted through harassment (Linepithema humile; Argentine ants) and parasite transmission or low nutritional quality (Armadillidium vulgare; "pill-bug"). These results demonstrate how multiple aspects of arthropod community structure can influence bird performance through complementary mechanisms, and the importance of managing for arthropods in bird conservation efforts.
Collapse
Affiliation(s)
- Cee S. Nell
- Department of Ecology & Evolutionary Biology and Center for Environmental Biology, University of California, Irvine, CA, United States of America
- * E-mail:
| | - Riley Pratt
- Department of Ecology & Evolutionary Biology and Center for Environmental Biology, University of California, Irvine, CA, United States of America
- California State Parks, San Clemente, CA, United States of America
| | - Jutta Burger
- Irvine Ranch Conservancy, Irvine, CA, United States of America
| | | | - Kathleen K. Treseder
- Department of Ecology & Evolutionary Biology and Center for Environmental Biology, University of California, Irvine, CA, United States of America
| | - Dana Kamada
- Natural Communities Coalition, Irvine, CA, United States of America
| | - Karly Moore
- Natural Communities Coalition, Irvine, CA, United States of America
| | - Kailen A. Mooney
- Department of Ecology & Evolutionary Biology and Center for Environmental Biology, University of California, Irvine, CA, United States of America
| |
Collapse
|
25
|
Gibb H, Bishop TR, Leahy L, Parr CL, Lessard J, Sanders NJ, Shik JZ, Ibarra‐Isassi J, Narendra A, Dunn RR, Wright IJ. Ecological strategies of (pl)ants: Towards a world-wide worker economic spectrum for ants. Funct Ecol 2023; 37:13-25. [PMID: 37056633 PMCID: PMC10084388 DOI: 10.1111/1365-2435.14135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Current global challenges call for a rigorously predictive ecology. Our understanding of ecological strategies, imputed through suites of measurable functional traits, comes from decades of work that largely focussed on plants. However, a key question is whether plant ecological strategies resemble those of other organisms.Among animals, ants have long been recognised to possess similarities with plants: as (largely) central place foragers. For example, individual ant workers play similar foraging roles to plant leaves and roots and are similarly expendable. Frameworks that aim to understand plant ecological strategies through key functional traits, such as the 'leaf economics spectrum', offer the potential for significant parallels with ant ecological strategies.Here, we explore these parallels across several proposed ecological strategy dimensions, including an 'economic spectrum', propagule size-number trade-offs, apparency-defence trade-offs, resource acquisition trade-offs and stress-tolerance trade-offs. We also highlight where ecological strategies may differ between plants and ants. Furthermore, we consider how these strategies play out among the different modules of eusocial organisms, where selective forces act on the worker and reproductive castes, as well as the colony.Finally, we suggest future directions for ecological strategy research, including highlighting the availability of data and traits that may be more difficult to measure, but should receive more attention in future to better understand the ecological strategies of ants. The unique biology of eusocial organisms provides an unrivalled opportunity to bridge the gap in our understanding of ecological strategies in plants and animals and we hope that this perspective will ignite further interest. Read the free Plain Language Summary for this article on the Journal blog.
Collapse
Affiliation(s)
- Heloise Gibb
- Department of Environment and Genetics and Centre for Future LandscapesLa Trobe UniversityBundooraVic.Australia
| | - Tom R. Bishop
- School of BiosciencesCardiff UniversityCardiffUK
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
| | - Lily Leahy
- Department of Environment and Genetics and Centre for Future LandscapesLa Trobe UniversityBundooraVic.Australia
| | - Catherine L. Parr
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
- Department of Earth, Ocean and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | | | - Nathan J. Sanders
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMIUSA
| | - Jonathan Z. Shik
- Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | | | - Ajay Narendra
- Department of Biological SciencesMacquarie UniversityNSWAustralia
| | - Robert R. Dunn
- Department of Applied EcologyNorth Carolina State UniversityRaleighNCUSA
| | - Ian J. Wright
- Department of Biological SciencesMacquarie UniversityNSWAustralia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| |
Collapse
|
26
|
Albaladejo‐Robles G, Böhm M, Newbold T. Species life-history strategies affect population responses to temperature and land-cover changes. GLOBAL CHANGE BIOLOGY 2023; 29:97-109. [PMID: 36250232 PMCID: PMC10092366 DOI: 10.1111/gcb.16454] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/24/2022] [Accepted: 08/27/2022] [Indexed: 06/01/2023]
Abstract
Human-induced environmental changes have a direct impact on species populations, with some species experiencing declines while others display population growth. Understanding why and how species populations respond differently to environmental changes is fundamental to mitigate and predict future biodiversity changes. Theoretically, species life-history strategies are key determinants shaping the response of populations to environmental impacts. Despite this, the association between species life histories and the response of populations to environmental changes has not been tested. In this study, we analysed the effects of recent land-cover and temperature changes on rates of population change of 1,072 populations recorded in the Living Planet Database. We selected populations with at least 5 yearly consecutive records (after imputation of missing population estimates) between 1992 and 2016, and for which we achieved high population imputation accuracy (in the cases where missing values had to be imputed). These populations were distributed across 553 different locations and included 461 terrestrial amniote vertebrate species (273 birds, 137 mammals, and 51 reptiles) with different life-history strategies. We showed that populations of fast-lived species inhabiting areas that have experienced recent expansion of cropland or bare soil present positive populations trends on average, whereas slow-lived species display negative population trends. Although these findings support previous hypotheses that fast-lived species are better adapted to recover their populations after an environmental perturbation, the sensitivity analysis revealed that model outcomes are strongly influenced by the addition or exclusion of populations with extreme rates of change. Therefore, the results should be interpreted with caution. With climate and land-use changes likely to increase in the future, establishing clear links between species characteristics and responses to these threats is fundamental for designing and conducting conservation actions. The results of this study can aid in evaluating population sensitivity, assessing the likely conservation status of species with poor data coverage, and predicting future scenarios of biodiversity change.
Collapse
Affiliation(s)
- Gonzalo Albaladejo‐Robles
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
- Institute of ZoologyZoological Society of LondonLondonUK
| | - Monika Böhm
- Institute of ZoologyZoological Society of LondonLondonUK
- Global Center for Species SurvivalIndianapolisIndianaUSA
| | - Tim Newbold
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| |
Collapse
|
27
|
Ali JR, Blonder BW, Pigot AL, Tobias JA. Bird extinctions threaten to cause disproportionate reductions of functional diversity and uniqueness. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Jarome R. Ali
- Department of Life Sciences Imperial College London Ascot UK
- Department of Ecology and Evolutionary Biology Princeton University Princeton New Jersey USA
| | - Benjamin W. Blonder
- Department of Environmental Science, Policy, and Management University of California Berkeley California USA
- Environmental Change Institute, School of Geography and the Environment University of Oxford Oxford UK
| | - Alex L. Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment University College London London UK
| | | |
Collapse
|
28
|
Wissler A, Blevins KE, Buikstra JE. Missing data in bioarchaeology II: A test of ordinal and continuous data imputation. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 179:349-364. [PMID: 36790608 PMCID: PMC9825894 DOI: 10.1002/ajpa.24614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Previous research has shown that while missing data are common in bioarchaeological studies, they are seldom handled using statistically rigorous methods. The primary objective of this article is to evaluate the ability of imputation to manage missing data and encourage the use of advanced statistical methods in bioarchaeology and paleopathology. An overview of missing data management in biological anthropology is provided, followed by a test of imputation and deletion methods for handling missing data. MATERIALS AND METHODS Missing data were simulated on complete datasets of ordinal (n = 287) and continuous (n = 369) bioarchaeological data. Missing values were imputed using five imputation methods (mean, predictive mean matching, random forest, expectation maximization, and stochastic regression) and the success of each at obtaining the parameters of the original dataset compared with pairwise and listwise deletion. RESULTS In all instances, listwise deletion was least successful at approximating the original parameters. Imputation of continuous data was more effective than ordinal data. Overall, no one method performed best and the amount of missing data proved a stronger predictor of imputation success. DISCUSSION These findings support the use of imputation methods over deletion for handling missing bioarchaeological and paleopathology data, especially when the data are continuous. Whereas deletion methods reduce sample size, imputation maintains sample size, improving statistical power and preventing bias from being introduced into the dataset.
Collapse
Affiliation(s)
- Amanda Wissler
- Department of AnthropologyUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | | | - Jane E. Buikstra
- Center for Bioarchaeological Research, School of Human Evolution and Social ChangeArizona State UniversityTempeArizonaUSA
| |
Collapse
|
29
|
Fitzgerald DB, Freeman MC, Maloney KO, Young JA, Rosenberger AE, Kazyak DC, Smith DR. Multispecies approaches to status assessments in support of endangered species classifications. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Daniel B. Fitzgerald
- U.S. Geological Survey Eastern Ecological Science Center Kearneysville West Virginia USA
| | - Mary C. Freeman
- U.S. Geological Survey Eastern Ecological Science Center Athens Georgia USA
| | - Kelly O. Maloney
- U.S. Geological Survey Eastern Ecological Science Center Kearneysville West Virginia USA
| | - John A. Young
- U.S. Geological Survey Eastern Ecological Science Center Kearneysville West Virginia USA
| | - Amanda E. Rosenberger
- U.S. Geological Survey, Tennessee Cooperative Research Unit Tennessee Tech University Cookeville Tennessee USA
| | - David C. Kazyak
- U.S. Geological Survey Eastern Ecological Science Center Kearneysville West Virginia USA
| | - David R. Smith
- U.S. Geological Survey Eastern Ecological Science Center Kearneysville West Virginia USA
| |
Collapse
|
30
|
Calleja JA, Domènech G, Sáez L, Lara F, Garilleti R, Albertos B. Extinction risk of threatened and non-threatened mosses: Reproductive and ecological patterns. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Hughes EC, Edwards DP, Thomas GH. The homogenization of avian morphological and phylogenetic diversity under the global extinction crisis. Curr Biol 2022; 32:3830-3837.e3. [PMID: 35868322 PMCID: PMC9616725 DOI: 10.1016/j.cub.2022.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
Biodiversity is facing a global extinction crisis that will reduce ecological trait diversity, evolutionary history, and ultimately ecosystem functioning and services.1-4 A key challenge is understanding how species losses will impact morphological and phylogenetic diversity at global scales.5,6 Here, we test whether the loss of species threatened with extinction according to the International Union for Conservation of Nature (IUCN) leads to morphological and phylogenetic homogenization7,8 across both the whole avian class and within each biome and ecoregion globally. We use a comprehensive set of continuous morphological traits extracted from museum collections of 8,455 bird species, including geometric morphometric beak shape data,9 and sequentially remove species from those at most to least threat of extinction. We find evidence of morphological, but not phylogenetic, homogenization across the avian class, with species becoming more alike in terms of their morphology. We find that most biome and ecoregions are expected to lose morphological diversity at a greater rate than predicted by species loss alone, with the most imperiled regions found in East Asia and the Himalayan uplands and foothills. Only a small proportion of assemblages are threatened with phylogenetic homogenization, in particular parts of Indochina. Species extinctions will lead to a major loss of avian ecological strategies, but not a comparable loss of phylogenetic diversity. As the decline of species with unique traits and their replacement with more widespread generalist species continues, the protection of assemblages at most risk of morphological and phylogenetic homogenization should be a key conservation priority.
Collapse
Affiliation(s)
- Emma C Hughes
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Bird Group, Department of Life Sciences, Natural History Museum, Akeman Street, Tring HP23 6AP, UK.
| | - David P Edwards
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Gavin H Thomas
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Bird Group, Department of Life Sciences, Natural History Museum, Akeman Street, Tring HP23 6AP, UK.
| |
Collapse
|
32
|
Cox DTC, Gardner AS, Gaston KJ. Global and regional erosion of mammalian functional diversity across the diel cycle. SCIENCE ADVANCES 2022; 8:eabn6008. [PMID: 35960803 PMCID: PMC9374345 DOI: 10.1126/sciadv.abn6008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/28/2022] [Indexed: 06/08/2023]
Abstract
Biodiversity is declining worldwide. When species are physically active (i.e., their diel niche) may influence their risk of becoming functionally extinct. It may also affect how species losses affect ecosystems. For 5033 terrestrial mammals, we predict future changes to diel global and local functional diversity through a gradient of progressive functional extinction scenarios of threatened species. Across scenarios, diurnal species were at greater risk of becoming functionally extinct than nocturnal, crepuscular, and cathemeral species, resulting in deep functional losses in global diurnal trait space. Redundancy (species with similar roles) will buffer global nocturnal functional diversity; however, across the land surface, losses will mostly occur among functionally dispersed species (species with distinct roles). Functional extinctions will constrict boundaries of cathemeral trait space as megaherbivores, and arboreal foragers are lost. Variation in the erosion of functional diversity across the daily cycle will likely profoundly affect the partitioning of ecosystem functioning between night and day.
Collapse
|
33
|
Semper-Pascual A, Bischof R, Milleret C, Beaudrot L, Vallejo-Vargas AF, Ahumada JA, Akampurira E, Bitariho R, Espinosa S, Jansen PA, Kiebou-Opepa C, Moreira Lima MG, Martin EH, Mugerwa B, Rovero F, Salvador J, Santos F, Uzabaho E, Sheil D. Occupancy winners in tropical protected forests: a pantropical analysis. Proc Biol Sci 2022; 289:20220457. [PMID: 35858066 PMCID: PMC9277235 DOI: 10.1098/rspb.2022.0457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The structure of forest mammal communities appears surprisingly consistent across the continental tropics, presumably due to convergent evolution in similar environments. Whether such consistency extends to mammal occupancy, despite variation in species characteristics and context, remains unclear. Here we ask whether we can predict occupancy patterns and, if so, whether these relationships are consistent across biogeographic regions. Specifically, we assessed how mammal feeding guild, body mass and ecological specialization relate to occupancy in protected forests across the tropics. We used standardized camera-trap data (1002 camera-trap locations and 2-10 years of data) and a hierarchical Bayesian occupancy model. We found that occupancy varied by regions, and certain species characteristics explained much of this variation. Herbivores consistently had the highest occupancy. However, only in the Neotropics did we detect a significant effect of body mass on occupancy: large mammals had lowest occupancy. Importantly, habitat specialists generally had higher occupancy than generalists, though this was reversed in the Indo-Malayan sites. We conclude that habitat specialization is key for understanding variation in mammal occupancy across regions, and that habitat specialists often benefit more from protected areas, than do generalists. The contrasting examples seen in the Indo-Malayan region probably reflect distinct anthropogenic pressures.
Collapse
Affiliation(s)
- Asunción Semper-Pascual
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Richard Bischof
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Cyril Milleret
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Lydia Beaudrot
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, USA
| | - Andrea F. Vallejo-Vargas
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Jorge A. Ahumada
- Moore Center for Science, Conservation International, Arlington, VA, USA
| | - Emmanuel Akampurira
- Institute of Tropical Forest Conservation, Mbarara University of Science and Technology, Kabale, Uganda,Conflict Research Group, Ghent University, Belgium
| | - Robert Bitariho
- Institute of Tropical Forest Conservation, Mbarara University of Science and Technology, Kabale, Uganda
| | - Santiago Espinosa
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico,Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Patrick A. Jansen
- Smithsonian Tropical Research Institute, Panama City, Panama,Wildlife Ecology and Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Cisquet Kiebou-Opepa
- Wildlife Conservation Society - Congo Program, Brazzaville, Republic of the Congo,Nouabalé-Ndoki Foundation, Brazzaville, Republic of the Congo
| | - Marcela Guimarães Moreira Lima
- Biogeography of Conservation and Macroecology Laboratory, Institute of Biological Sciences, Universidade Federal do Pará, Pará, Brazil
| | - Emanuel H. Martin
- Department of Wildlife Management, College of African Wildlife Management, Mweka, Moshi, Tanzania
| | - Badru Mugerwa
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany,Department of Ecology, Technische Universität Berlin, Berlin, Germany
| | - Francesco Rovero
- Department of Biology, University of Florence, Florence, Italy,MUSE-Museo delle Scienze, Trento, Italy
| | | | | | | | - Douglas Sheil
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway,Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, The Netherlands,Center for International Forestry Research, Bogor, Indonesia
| |
Collapse
|
34
|
Gutiérrez F, Peri JM, Baillès E, Sureda B, Gárriz M, Vall G, Cavero M, Mallorquí A, Ruiz Rodríguez J. A Double-Track Pathway to Fast Strategy in Humans and Its Personality Correlates. Front Psychol 2022; 13:889730. [PMID: 35756215 PMCID: PMC9218359 DOI: 10.3389/fpsyg.2022.889730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The fast-slow paradigm of life history (LH) focuses on how individuals grow, mate, and reproduce at different paces. This paradigm can contribute substantially to the field of personality and individual differences provided that it is more strictly based on evolutionary biology than it has been so far. Our study tested the existence of a fast-slow continuum underlying indicators of reproductive effort-offspring output, age at first reproduction, number and stability of sexual partners-in 1,043 outpatients with healthy to severely disordered personalities. Two axes emerged reflecting a double-track pathway to fast strategy, based on restricted and unrestricted sociosexual strategies. When rotated, the fast-slow and sociosexuality axes turned out to be independent. Contrary to expectations, neither somatic effort-investment in status, material resources, social capital, and maintenance/survival-was aligned with reproductive effort, nor a clear tradeoff between current and future reproduction was evident. Finally, we examined the association of LH axes with seven high-order personality pathology traits: negative emotionality, impulsivity, antagonism, persistence-compulsivity, subordination, and psychoticism. Persistent and disinhibited subjects appeared as fast-restricted and fast-unrestricted strategists, respectively, whereas asocial subjects were slow strategists. Associations of LH traits with each other and with personality are far more complex than usually assumed in evolutionary psychology.
Collapse
Affiliation(s)
- Fernando Gutiérrez
- Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacións Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Josep M Peri
- Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Eva Baillès
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Bárbara Sureda
- Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Miguel Gárriz
- Institut de Neuropsiquiatria i Addiccions (INAD), Parc de Salut Mar, Barcelona, Spain
| | - Gemma Vall
- Department of Psychiatry, Mental Health, and Addiction, GSS-Hospital Santa Maria, Lleida, Spain.,Lleida Institute for Biomedical Research Dr. Pifarré Foundation, Lleida, Spain
| | - Myriam Cavero
- Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Aida Mallorquí
- Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
| | - José Ruiz Rodríguez
- Department of Clinical Psychology and Psychobiology, Personality, Evaluation and Psychological Treatment Section, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Munstermann MJ, Heim NA, McCauley DJ, Payne JL, Upham NS, Wang SC, Knope ML. A global ecological signal of extinction risk in terrestrial vertebrates. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13852. [PMID: 34668599 PMCID: PMC9299904 DOI: 10.1111/cobi.13852] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 05/13/2023]
Abstract
To determine the distribution and causes of extinction threat across functional groups of terrestrial vertebrates, we assembled an ecological trait data set for 18,016 species of terrestrial vertebrates and utilized phylogenetic comparative methods to test which categories of habitat association, mode of locomotion, and feeding mode best predicted extinction risk. We also examined the individual categories of the International Union for Conservation of Nature Red List extinction drivers (e.g., agriculture and logging) threatening each species and determined the greatest threats for each of the four terrestrial vertebrate groups. We then quantified the sum of extinction drivers threatening each species to provide a multistressor perspective on threat. Cave dwelling amphibians (p < 0.01), arboreal quadrupedal mammals (all of which are primates) (p < 0.01), aerial and scavenging birds (p < 0.01), and pedal (i.e., walking) squamates (p < 0.01) were all disproportionately threatened with extinction in comparison with the other assessed ecological traits. Across all threatened vertebrate species in the study, the most common risk factors were agriculture, threatening 4491 species, followed by logging, threatening 3187 species, and then invasive species and disease, threatening 2053 species. Species at higher risk of extinction were simultaneously at risk from a greater number of threat types. If left unabated, the disproportionate loss of species with certain functional traits and increasing anthropogenic pressures are likely to disrupt ecosystem functions globally. A shift in focus from species- to trait-centric conservation practices will allow for protection of at-risk functional diversity from regional to global scales.
Collapse
Affiliation(s)
- Maya J. Munstermann
- Department of BiologyUniversity of Hawaii at HiloHiloHawaiiUSA
- Tropical Conservation Biology and Environmental Science Graduate ProgramUniversity of Hawaii at HiloHiloHawaiiUSA
| | - Noel A. Heim
- Department of Earth & Ocean SciencesTufts UniversityMedfordMassachusettsUSA
| | - Douglas J. McCauley
- Department of Ecology, Evolution, and Marine Biology and Marine Science InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Jonathan L. Payne
- Department of Geological SciencesStanford UniversityStanfordCaliforniaUSA
| | - Nathan S. Upham
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Steve C. Wang
- Department of Mathematics and StatisticsSwarthmore CollegeSwarthmorePennsylvaniaUSA
| | - Matthew L. Knope
- Department of BiologyUniversity of Hawaii at HiloHiloHawaiiUSA
- Tropical Conservation Biology and Environmental Science Graduate ProgramUniversity of Hawaii at HiloHiloHawaiiUSA
| |
Collapse
|
36
|
Cooke R, Gearty W, Chapman ASA, Dunic J, Edgar GJ, Lefcheck JS, Rilov G, McClain CR, Stuart-Smith RD, Kathleen Lyons S, Bates AE. Anthropogenic disruptions to longstanding patterns of trophic-size structure in vertebrates. Nat Ecol Evol 2022; 6:684-692. [PMID: 35449460 DOI: 10.1038/s41559-022-01726-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 03/07/2022] [Indexed: 11/09/2022]
Abstract
Diet and body mass are inextricably linked in vertebrates: while herbivores and carnivores have converged on much larger sizes, invertivores and omnivores are, on average, much smaller, leading to a roughly U-shaped relationship between body size and trophic guild. Although this U-shaped trophic-size structure is well documented in extant terrestrial mammals, whether this pattern manifests across diverse vertebrate clades and biomes is unknown. Moreover, emergence of the U-shape over geological time and future persistence are unknown. Here we compiled a comprehensive dataset of diet and body size spanning several vertebrate classes and show that the U-shaped pattern is taxonomically and biogeographically universal in modern vertebrate groups, except for marine mammals and seabirds. We further found that, for terrestrial mammals, this U-shape emerged by the Palaeocene and has thus persisted for at least 66 million years. Yet disruption of this fundamental trophic-size structure in mammals appears likely in the next century, based on projected extinctions. Actions to prevent declines in the largest animals will sustain the functioning of Earth's wild ecosystems and biomass energy distributions that have persisted through deep time.
Collapse
Affiliation(s)
- Rob Cooke
- UK Centre for Ecology & Hydrology, Wallingford, UK. .,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden. .,Gothenburg Global Biodiversity Centre, Gothenburg, Sweden.
| | - William Gearty
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Abbie S A Chapman
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Jillian Dunic
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Jonathan S Lefcheck
- Tennenbaum Marine Observatories Network and MarineGEO Program, Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Gil Rilov
- National Institute of Oceanography, Israel Limnological and Oceanographic Research, Haifa, Israel
| | | | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - S Kathleen Lyons
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda E Bates
- Biology Department, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
37
|
Li T, Yang H, Yang X, Guo Z, Fu D, Liu C, Li S, Pan Y, Zhao Y, Xu F, Gao Y, Duan C. Community assembly during vegetation succession after metal mining is driven by multiple processes with temporal variation. Ecol Evol 2022; 12:e8882. [PMID: 35509610 PMCID: PMC9055294 DOI: 10.1002/ece3.8882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/02/2023] Open
Abstract
The mechanisms governing community assembly is fundamental to ecological restoration and clarification of the assembly processes associated with severe disturbances (characterized by no biological legacy and serious environmental problems) is essential. However, a systematic understanding of community assembly in the context of severe anthropogenic disturbance remains lacking. Here, we explored community assembly processes after metal mining, which is considered to be a highly destructive activity to provide insight into the assembly rules associated with severe anthropogenic disturbance. Using a chronosequence approach, we selected vegetation patches representing different successional stages and collected data on eight plant functional traits from each stage. The traits were classified as establishment and regenerative traits. Based on these traits, null models were constructed to identify the processes driving assembly at various successional stages. Comparison of our observations with the null models indicated that establishment and regenerative traits converged in the primary stage of succession. As succession progressed, establishment traits shifted to neutral assembly, whereas regeneration traits alternately converged and diverged. The observed establishment traits were equal to expected values, whereas regenerative traits diverged significantly after more than 20 years of succession. Furthermore, the available Cr content was linked strongly to species' ecological strategies. In the initial stages of vegetation succession in an abandoned metal mine, the plant community was mainly affected by the available metal content and dispersal limitation. It was probably further affected by strong interspecific interaction after the environmental conditions had improved, and stochastic processes became dominant during the stage with a successional age of more than 20 years.
Collapse
Affiliation(s)
- Ting Li
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Huaju Yang
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Xinting Yang
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Zhaolai Guo
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Denggao Fu
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Chang’e Liu
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Shiyu Li
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Ying Pan
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Yonggui Zhao
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Fang Xu
- YICI Municipal Garden Engineering Co. Ltd Kunming China
| | - Yang Gao
- YICI Municipal Garden Engineering Co. Ltd Kunming China
| | - Changqun Duan
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| |
Collapse
|
38
|
Long-Term Trends and Interannual Variability of Wind Forcing, Surface Circulation, and Temperature around the Sub-Antarctic Prince Edward Islands. REMOTE SENSING 2022. [DOI: 10.3390/rs14061318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In the Southern Ocean, the sub-Antarctic Prince Edward Islands (PEIs) play a significant ecological role by hosting large populations of seasonally breeding marine mammals and seabirds, which are particularly sensitive to changes in the surrounding ocean environment. In order to better understand climate variability at the PEIs, this study used satellite and reanalysis data to examine the interannual variability and longer-term trends of Sea Surface Temperature (SST), wind forcing, and surface circulation. Long-term trends were mostly weak and statistically insignificant, possibly due to the restricted length of the data products. While seasonal fluctuations accounted for a substantial portion (50–70%) of SST variability, the strongest variance in wind speed, wind stress curl (WSC), and currents occurred at intra-annual time scales. At a period of about 1 year, SST and geostrophic current variability suggested some influence of the Southern Annular Mode, but correlations were weak and insignificant. Similarly, correlations with El Niño Southern Oscillation variability were also weak and mostly insignificant, probably due to strong local and regional modification of SST, wind, and current anomalies. Significant interannual and decadal-scale variability in SST, WSC, and geostrophic currents, strongest at periods of 3–4 and 7–8 years, corresponded with the variability of the Antarctic Circumpolar Wave. At decadal time scales, there was a strong inverse relationship between SST and geostrophic currents and between SST and wind speed. Warmer-than-usual SST between 1990–2001 and 2009–2020 was related to weaker currents and wind, while cooler-than-usual periods during 1982–1990 and 2001–2009 were associated with relatively stronger winds and currents. Positioned directly in the path of passing atmospheric low-pressure systems and the Antarctic Circumpolar Current, the PEIs experience substantial local and regional atmospheric and oceanic variability at shorter temporal scales, which likely mutes longer-term variations that have been observed elsewhere in the Southern Ocean.
Collapse
|
39
|
Marino C, Leclerc C, Bellard C. Profiling insular vertebrates prone to biological invasions: What makes them vulnerable? GLOBAL CHANGE BIOLOGY 2022; 28:1077-1090. [PMID: 34783130 DOI: 10.1111/gcb.15941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Invasive alien species (IAS) are a major threat to insular vertebrates, although the ecological characteristics that make insular communities vulnerable to IAS are poorly understood. After describing the ecological strategies of 6015 insular amphibians, birds, lizards, and mammals, we assessed the functional and ecological features of vertebrates exposed to IAS. We found that at least 50% of insular amphibian functional richness was hosted by IAS-threatened amphibians and up to 29% for birds. Moreover, all IAS-threatened groups except birds harbored a higher functional richness than species groups threatened by other threats. Disentangling the ecological strategies threatened by IAS, compared to those associated with other threats, we showed that birds, lizards, and mammals were more likely to be terrestrial foragers and amphibians to have larval development. By contrast, large-bodied species and habitat specialists were universally threatened. By considering the functional aspect of threatened insular diversity, our work improves our understanding of global IAS impacts. This new dimension proves essential for undertaking relevant and effective conservation actions.
Collapse
Affiliation(s)
- Clara Marino
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Camille Leclerc
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Céline Bellard
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| |
Collapse
|
40
|
Feijó A, Brandão MV. Taxonomy as the first step towards conservation: an appraisal on the taxonomy of medium- and large-sized Neotropical mammals in the 21st century. ZOOLOGIA 2022. [DOI: 10.1590/s1984-4689.v39.e22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Vázquez-Reyes LD, Paz-Hernández H, Godínez-Álvarez HO, Arizmendi MDC, Navarro-Sigüenza AG. Trait shifts in bird communities from primary forest to human settlements in Mexican seasonal forests. Are there ruderal birds? Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
42
|
Gómez C, Tenorio EA, Cadena CD. Change in avian functional fingerprints of a Neotropical montane forest over 100 years as an indicator of ecosystem integrity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:1552-1563. [PMID: 33565119 DOI: 10.1111/cobi.13714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/09/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Ecologically relevant traits of organisms in an assemblage determine an ecosystem's functional fingerprint (i.e., the shape, size, and position of multidimensional trait space). Quantifying changes in functional fingerprints can therefore provide information about the effects of diversity loss or gain through time on ecosystem condition and is a promising approach to monitoring ecological integrity. This, however, is seldom possible owing to limitations in historical surveys and a lack of data on organismal traits, particularly in diverse tropical regions. Using data from detailed bird surveys from 4 periods across more than a century, and morphological and ecological traits of 233 species, we quantified changes in the avian functional fingerprint of a tropical montane forest in the Andes of Colombia. We found that 78% of the variation in functional space, regardless of period, was described by 3 major axes summarizing body size, dispersal ability (indexed by wing shape), and habitat breadth. Changes in species composition significantly altered the functional fingerprint of the assemblage and functional richness and dispersion decreased 35-60%. Owing to species extirpations and to novel additions to the assemblage, functional space decreased over time, but at least 11% of its volume in the 2010s extended to areas of functional space that were unoccupied in the 1910s. The assemblage now includes fewer large-sized species, more species with greater dispersal ability, and fewer habitat specialists. Extirpated species had high functional uniqueness and distinctiveness, resulting in large reductions in functional richness and dispersion after their loss, which implies important consequences for ecosystem integrity. Conservation efforts aimed at maintaining ecosystem function must move beyond seeking to sustain species numbers to designing complementary strategies for the maintenance of ecological function by identifying and conserving species with traits conferring high vulnerability such as large body size, poor dispersal ability, and greater habitat specialization. Article impact statement: Changes in functional fingerprints provide a means to quantify the integrity of ecological assemblages affected by diversity loss or gain.
Collapse
Affiliation(s)
- Camila Gómez
- Cornell Lab of Ornithology, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, U.S.A
- SELVA: Investigación para la Conservación en el Neotropico, Bogotá, Colombia
| | - Elkin A Tenorio
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY, 10016, U.S.A
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, U.S.A
- Instituto de Investigación de Recourses Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Carlos Daniel Cadena
- Departamento de Ciencias Biológicas, Laboratorio de Biología Evolutiva de Vertebrados, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
43
|
Bellard C, Bernery C, Leclerc C. Looming extinctions due to invasive species: Irreversible loss of ecological strategy and evolutionary history. GLOBAL CHANGE BIOLOGY 2021; 27:4967-4979. [PMID: 34337834 DOI: 10.1111/gcb.15771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Biological invasions are one of the main drivers of biodiversity decline worldwide. However, many associated extinctions are yet to occur, meaning that the ecological debt caused by invasive species could be considerable for biodiversity. We explore extinction scenarios due to invasive species and investigate whether paying off the current extinction debt will shift the global composition of mammals and birds in terms of ecological strategy and evolutionary history. Current studies mostly focus on the number of species potentially at risk due to invasions without taking into account species characteristics in terms of ecological or phylogenetic properties. We found that 11% of phylogenetic diversity worldwide is represented by invasive-threatened species. Furthermore, 14% of worldwide trait diversity is hosted by invasive-threatened mammals and 40% by invasive-threatened birds, with Neotropical and Oceanian realms being primary risk hotspots. Projected extinctions of invasive-threatened species result in a smaller reduction in ecological strategy space and evolutionary history than expected under randomized extinction scenarios. This can be explained by the strong pattern in the clustering of ecological profiles and families impacted by invasive alien species (IAS). However, our results confirm that IAS are likely to cause the selective loss of species with unique evolutionary and ecological profiles. Our results also suggest a global shift in species composition away from those with large body mass, which mostly feed in the lower foraging strata and have an herbivorous diet (mammals). Our findings demonstrate the potential impact of biological invasions on phylogenetic and trait dimensions of diversity, especially in the Oceanian realm. We therefore call for a more systematic integration of all facets of diversity when investigating the consequences of biological invasions in future studies. This would help to establish spatial prioritizations regarding IAS threats worldwide and anticipate the consequences of losing specific ecological profiles in the invaded community.
Collapse
Affiliation(s)
- Céline Bellard
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Camille Bernery
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Camille Leclerc
- INRAE, University of Aix Marseille, UMR RECOVER, Aix-en-Provence, France
| |
Collapse
|
44
|
Degree of anisogamy is unrelated to the intensity of sexual selection. Sci Rep 2021; 11:19424. [PMID: 34593863 PMCID: PMC8484679 DOI: 10.1038/s41598-021-98616-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Males and females often display different behaviours and, in the context of reproduction, these behaviours are labelled sex roles. The Darwin–Bateman paradigm argues that the root of these differences is anisogamy (i.e., differences in size and/or function of gametes between the sexes) that leads to biased sexual selection, and sex differences in parental care and body size. This evolutionary cascade, however, is contentious since some of the underpinning assumptions have been questioned. Here we investigate the relationships between anisogamy, sexual size dimorphism, sex difference in parental care and intensity of sexual selection using phylogenetic comparative analyses of 64 species from a wide range of animal taxa. The results question the first step of the Darwin–Bateman paradigm, as the extent of anisogamy does not appear to predict the intensity of sexual selection. The only significant predictor of sexual selection is the relative inputs of males and females into the care of offspring. We propose that ecological factors, life-history and demography have more substantial impacts on contemporary sex roles than the differences of gametic investments between the sexes.
Collapse
|
45
|
Toussaint A, Brosse S, Bueno CG, Pärtel M, Tamme R, Carmona CP. Extinction of threatened vertebrates will lead to idiosyncratic changes in functional diversity across the world. Nat Commun 2021; 12:5162. [PMID: 34453040 PMCID: PMC8397725 DOI: 10.1038/s41467-021-25293-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/20/2021] [Indexed: 11/12/2022] Open
Abstract
Although species with larger body size and slow pace of life have a higher risk of extinction at a global scale, it is unclear whether this global trend will be consistent across biogeographic realms. Here we measure the functional diversity of terrestrial and freshwater vertebrates in the six terrestrial biogeographic realms and predict their future changes through scenarios mimicking a gradient of extinction risk of threatened species. We show vastly different effects of extinctions on functional diversity between taxonomic groups and realms, ranging from almost no decline to deep functional losses. The Indo-Malay and Palearctic realms are particularly inclined to experience a drastic loss of functional diversity reaching 29 and 31%, respectively. Birds, mammals, and reptiles regionally display a consistent functional diversity loss, while the projected losses of amphibians and freshwater fishes differ across realms. More efficient global conservation policies should consider marked regional losses of functional diversity across the world. Anthropogenic extinctions are driving functional shifts in biological communities, but these changes might differ considerably among taxa and biogeographic regions. Here the authors show that projected losses of functional diversity among land and freshwater vertebrates are unevenly distributed across the world.
Collapse
Affiliation(s)
- Aurele Toussaint
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | - Sébastien Brosse
- Université Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution et Diversité Biologique), Toulouse, France
| | - C Guillermo Bueno
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Riin Tamme
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Carlos P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
46
|
Bikomeye JC, Namin S, Anyanwu C, Rublee CS, Ferschinger J, Leinbach K, Lindquist P, Hoppe A, Hoffman L, Hegarty J, Sperber D, Beyer KMM. Resilience and Equity in a Time of Crises: Investing in Public Urban Greenspace Is Now More Essential Than Ever in the US and Beyond. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8420. [PMID: 34444169 PMCID: PMC8392137 DOI: 10.3390/ijerph18168420] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 01/14/2023]
Abstract
The intersecting negative effects of structural racism, COVID-19, climate change, and chronic diseases disproportionately affect racial and ethnic minorities in the US and around the world. Urban populations of color are concentrated in historically redlined, segregated, disinvested, and marginalized neighborhoods with inadequate quality housing and limited access to resources, including quality greenspaces designed to support natural ecosystems and healthy outdoor activities while mitigating urban environmental challenges such as air pollution, heat island effects, combined sewer overflows and poor water quality. Disinvested urban environments thus contribute to health inequity via physical and social environmental exposures, resulting in disparities across numerous health outcomes, including COVID-19 and chronic diseases such as cancer and cardiovascular diseases (CVD). In this paper, we build off an existing conceptual framework and propose another conceptual framework for the role of greenspace in contributing to resilience and health equity in the US and beyond. We argue that strategic investments in public greenspaces in urban neighborhoods impacted by long term economic disinvestment are critically needed to adapt and build resilience in communities of color, with urgency due to immediate health threats of climate change, COVID-19, and endemic disparities in chronic diseases. We suggest that equity-focused investments in public urban greenspaces are needed to reduce social inequalities, expand economic opportunities with diversity in workforce initiatives, build resilient urban ecosystems, and improve health equity. We recommend key strategies and considerations to guide this investment, drawing upon a robust compilation of scientific literature along with decades of community-based work, using strategic partnerships from multiple efforts in Milwaukee Wisconsin as examples of success.
Collapse
Affiliation(s)
- Jean C. Bikomeye
- Institute for Health & Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (J.C.B.); (S.N.); (C.A.)
| | - Sima Namin
- Institute for Health & Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (J.C.B.); (S.N.); (C.A.)
| | - Chima Anyanwu
- Institute for Health & Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (J.C.B.); (S.N.); (C.A.)
| | - Caitlin S. Rublee
- Department of Emergency Medicine, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;
| | - Jamie Ferschinger
- Sixteenth Street Community Health Centers, Environmental Health & Community Wellness, 1337 S Cesar Chavez Drive, Milwaukee, WI 53204, USA;
| | - Ken Leinbach
- The Urban Ecology Center, 1500 E. Park Place, Milwaukee, WI 53211, USA;
| | - Patricia Lindquist
- Wisconsin Department of Natural Resources, Division of Forestry, 101 S. Webster Street, P.O. Box 7921, Madison, WI 53707, USA;
| | - August Hoppe
- The Urban Wood Lab, Hoppe Tree Service, 1813 S. 73rd Street, West Allis, WI 53214, USA;
| | - Lawrence Hoffman
- Department of GIS, Groundwork Milwaukee, 227 West Pleasant Street, Milwaukee, WI 53212, USA;
| | - Justin Hegarty
- Reflo—Sustainable Water Solutions, 1100 S 5th Street, Milwaukee, WI 53204, USA;
| | - Dwayne Sperber
- Wudeward Urban Forest Products, N11W31868 Phyllis Parkway, Delafield, WI 53018, USA;
| | - Kirsten M. M. Beyer
- Institute for Health & Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (J.C.B.); (S.N.); (C.A.)
| |
Collapse
|
47
|
Myers EMV, Anderson MJ, Liggins L, Harvey ES, Roberts CD, Eme D. High functional diversity in deep-sea fish communities and increasing intraspecific trait variation with increasing latitude. Ecol Evol 2021; 11:10600-10612. [PMID: 34367600 PMCID: PMC8328419 DOI: 10.1002/ece3.7871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/24/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022] Open
Abstract
Variation in both inter- and intraspecific traits affects community dynamics, yet we know little regarding the relative importance of external environmental filters versus internal biotic interactions that shape the functional space of communities along broad-scale environmental gradients, such as latitude, elevation, or depth. We examined changes in several key aspects of functional alpha diversity for marine fishes along depth and latitude gradients by quantifying intra- and interspecific richness, dispersion, and regularity in functional trait space. We derived eight functional traits related to food acquisition and locomotion and calculated seven complementary indices of functional diversity for 144 species of marine ray-finned fishes along large-scale depth (50-1200 m) and latitudinal gradients (29°-51° S) in New Zealand waters. Traits were derived from morphological measurements taken directly from footage obtained using Baited Remote Underwater Stereo-Video systems and museum specimens. We partitioned functional variation into intra- and interspecific components for the first time using a PERMANOVA approach. We also implemented two tree-based diversity metrics in a functional distance-based context for the first time: namely, the variance in pairwise functional distance and the variance in nearest neighbor distance. Functional alpha diversity increased with increasing depth and decreased with increasing latitude. More specifically, the dispersion and mean nearest neighbor distances among species in trait space and intraspecific trait variability all increased with depth, whereas functional hypervolume (richness) was stable across depth. In contrast, functional hypervolume, dispersion, and regularity indices all decreased with increasing latitude; however, intraspecific trait variation increased with latitude, suggesting that intraspecific trait variability becomes increasingly important at higher latitudes. These results suggest that competition within and among species are key processes shaping functional multidimensional space for fishes in the deep sea. Increasing morphological dissimilarity with increasing depth may facilitate niche partitioning to promote coexistence, whereas abiotic filtering may be the dominant process structuring communities with increasing latitude.
Collapse
Affiliation(s)
- Elisabeth M. V. Myers
- New Zealand Institute for Advanced Study (NZIAS)Massey UniversityAucklandNew Zealand
| | - Marti J. Anderson
- New Zealand Institute for Advanced Study (NZIAS)Massey UniversityAucklandNew Zealand
| | - Libby Liggins
- School of Natural and Computational SciencesMassey UniversityAucklandNew Zealand
- Auckland War Memorial MuseumTāmaki Paenga HiraAucklandNew Zealand
| | - Euan S. Harvey
- School of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| | | | - David Eme
- New Zealand Institute for Advanced Study (NZIAS)Massey UniversityAucklandNew Zealand
- IFREMERUnité Ecologie et Modèles pour l’HalieutiqueNantesFrance
| |
Collapse
|
48
|
Mammola S, Carmona CP, Guillerme T, Cardoso P. Concepts and applications in functional diversity. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13882] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe) Finnish Museum of Natural History (Luomus) University of Helsinki Helsinki Finland
- Molecular Ecology Group (MEG) Water Research InstituteNational Research Council (CNR‐IRSA) Verbania Pallanza Italy
| | - Carlos P. Carmona
- Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Thomas Guillerme
- Department of Animal and Plant Sciences The University of Sheffield Sheffield UK
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe) Finnish Museum of Natural History (Luomus) University of Helsinki Helsinki Finland
| |
Collapse
|
49
|
Mouillot D, Loiseau N, Grenié M, Algar AC, Allegra M, Cadotte MW, Casajus N, Denelle P, Guéguen M, Maire A, Maitner B, McGill BJ, McLean M, Mouquet N, Munoz F, Thuiller W, Villéger S, Violle C, Auber A. The dimensionality and structure of species trait spaces. Ecol Lett 2021; 24:1988-2009. [PMID: 34015168 DOI: 10.1111/ele.13778] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/15/2021] [Accepted: 04/10/2021] [Indexed: 01/02/2023]
Abstract
Trait-based ecology aims to understand the processes that generate the overarching diversity of organismal traits and their influence on ecosystem functioning. Achieving this goal requires simplifying this complexity in synthetic axes defining a trait space and to cluster species based on their traits while identifying those with unique combinations of traits. However, so far, we know little about the dimensionality, the robustness to trait omission and the structure of these trait spaces. Here, we propose a unified framework and a synthesis across 30 trait datasets representing a broad variety of taxa, ecosystems and spatial scales to show that a common trade-off between trait space quality and operationality appears between three and six dimensions. The robustness to trait omission is generally low but highly variable among datasets. We also highlight invariant scaling relationships, whatever organismal complexity, between the number of clusters, the number of species in the dominant cluster and the number of unique species with total species richness. When species richness increases, the number of unique species saturates, whereas species tend to disproportionately pack in the richest cluster. Based on these results, we propose some rules of thumb to build species trait spaces and estimate subsequent functional diversity indices.
Collapse
Affiliation(s)
- David Mouillot
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France.,Institut Universitaire de France, IUF, Paris, France
| | - Nicolas Loiseau
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Matthias Grenié
- Centre d'Ecologie Fonctionnelle et Evolutive-UMR 5175 CEFE, University of Montpellier, CNRS, EPHE, University of Paul Valéry, IRD, Montpellier, France
| | - Adam C Algar
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | - Michele Allegra
- Institut de Neurosciences de la Timone, Aix Marseille Université, UMR 7289, CNRS, Marseille, France
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, ON, Canada
| | | | - Pierre Denelle
- Biodiversity, Macroecology & Biogeography, University of Goettingen, Göttingen, Germany
| | - Maya Guéguen
- Laboratoire d'Ecologie Alpine, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Anthony Maire
- EDF R&D, LNHE (Laboratoire National d'Hydraulique et Environnement), Chatou, France
| | - Brian Maitner
- Department of Ecology and Evolutionary Biology, University of Connecticut, Mansfield, CT, USA
| | - Brian J McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
| | - Matthew McLean
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nicolas Mouquet
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France.,FRB-CESAB, Institut Bouisson Bertrand, Montpellier, France
| | - François Munoz
- LiPhy (Laboratoire Interdisciplinaire de Physique), Université Grenoble Alpes, Grenoble, France
| | - Wilfried Thuiller
- Laboratoire d'Ecologie Alpine, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Sébastien Villéger
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Cyrille Violle
- Centre d'Ecologie Fonctionnelle et Evolutive-UMR 5175 CEFE, University of Montpellier, CNRS, EPHE, University of Paul Valéry, IRD, Montpellier, France
| | - Arnaud Auber
- IFREMER, Unité Halieutique Manche Mer du Nord, Laboratoire Ressources Halieutiques, Boulogne-sur-Mer, France
| |
Collapse
|
50
|
Santini L, Isaac NJB. Rapid Anthropocene realignment of allometric scaling rules. Ecol Lett 2021; 24:1318-1327. [PMID: 33932267 DOI: 10.1111/ele.13743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/20/2021] [Accepted: 03/10/2021] [Indexed: 11/30/2022]
Abstract
The negative relationship between body size and population density in mammals is often interpreted as resulting from energetic constraints. In a global change scenario, however, this relationship might be expected to change, given the size-dependent nature of anthropogenic pressures and vulnerability to extinction. Here we test whether the size-density relationship (SDR) in mammals has changed over the last 50 years. We show that the relationship has shifted down and became shallower, corresponding to a decline in population density of 31-73%, for the largest and smallest mammals, respectively. However, the SDRs became steeper in some groups (e.g. carnivores) and shallower in others (e.g. herbivores). The Anthropocene reorganisation of biotic systems is apparent in macroecological relationships, reinforcing the notion that biodiversity pattens are contingent upon conditions at the time of investigation. We call for an increased attention to the role of global change on macroecological inferences.
Collapse
Affiliation(s)
- Luca Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy.,National Research Council, Institute of Research on Terrestrial Ecosystems (CNR-IRET), Monterotondo (Rome), Italy
| | | |
Collapse
|